Detection of OH$^+$ and H$_2$O$^+$ towards Orion KL

H. Gupta1, P. Rimmer2, J. C. Pearson1, S. Yu1, E. Herbst2, N. Harada2, E. A. Bergin3, D. A. Neufeld4, G. J. Melnick5, R. Bachiller6, W. Baechtold7, T. A. Bell8, G. A. Blake8, E. Caux9,10, C. Ceccarelli11, J. Cernicharo12, G. Chattopadhyay1, C. Comito13, S. Cabrit14, N. R. Crockett3, F. Daniel12,15, E. Falgarone15, M. C. Diez-Gonzalez6, M.-L. Dubernet16,17, N. Erickson18, M. Emprechtinger8, P. Encenraz15, M. Gerin15, J. J. Gill1, T. F. Giesen19, J. R. Gioiocochea12, P. F. Goldsmith1, C. Joblin10,10, D. Johnstone21, W. D. Langer1, B. Larsson20, W. B. Latter22, R. H. Lin1, D. C. Lis8, R. Liseau23, S. D. Lord22, F. W. Maiwald4, S. Maret11, P. G. Martin24, J. Martin-Pintado12, K. M. Menten13, P. Morris22, H. S. P. Müller19, J. A. Murphy25, L. H. Nordh20, M. Olberg23, V. Ossenkopf19,26, L. Pagani14, M. Péault15, T. G. Phillips8, R. Plume28, S.-L. Qin19, M. Salez14, L. A. Samoska5, P. Schilke13,19, E. Schlecht1, S. Schlemmer19, R. Szczesba27, J. Stutzki19, N. Trappe25, F. F. S. van der Tak26, C. Vastel9, H. W. Yorke1, J. Zmuidzinas8, A. Boogert8, R. Güsten3, P. Hartogh29, N. Honingh21, A. Karpov8, J. Kooi8, J.-M. Krieg12, R. Schieder19, and P. Zaal26

(Affiliations are available on page 5 of the online edition)

Received 31 May 2010 / Accepted 26 July 2010

ABSTRACT

We report observations of the reactive molecular ions OH$^+$, H$_2$O$^+$, and H$_3$O$^+$ towards Orion KL with Herschel/HIFI. All three $N = 1–0$ fine-structure transitions of OH$^+$ at 909, 971, and 1033 GHz and both fine-structure components of the doublet ortho-H$_2$O$^+$ 1_1–0_0 transition at 1115 and 1139 GHz were detected; an upper limit was obtained for H$_3$O$^+$. OH$^+$ and H$_2$O$^+$ are observed purely in absorption, showing a narrow component at the source velocity of 9 km s$^{-1}$, and a broad blueshifted absorption similar to that reported recently for HP and para-H$_3$O$^+$, and attributed to the low velocity outflow of Orion KL. We estimate column densities of OH$^+$ and H$_2$O$^+$ for the 9 km s$^{-1}$ component of $9 \pm 3 \times 10^{12}$ cm$^{-2}$ and $7 \pm 2 \times 10^{13}$ cm$^{-2}$, and those in the outflow of $1.9 \pm 0.7 \times 10^{13}$ cm$^{-2}$ and $1.0 \pm 0.3 \times 10^{13}$ cm$^{-2}$. Upper limits of 2.4×10^{14} cm$^{-2}$ and 8.7×10^{14} cm$^{-2}$ were derived for the column densities of ortho and para-H$_3$O$^+$ from transitions near 985 and 1657 GHz. The column densities of the three ions are up to an order of magnitude lower than those obtained from recent observations of W31C and W49N. The comparatively low column densities may be explained by a higher gas density despite the assumption of a very high ionization rate.

Key words. astrochemistry – molecular processes – line: identification – ISM: abundances – submillimeter: ISM – stars: winds, outflows

1. Introduction

The Heterodyne Instrument for Far Infrared (HIFI) on the Herschel Space Observatory1 provides a unique opportunity to fully assess the first steps of the oxygen chemistry in a wide variety of sources. Initial HIFI observations quickly detected widespread absorption by OH$^+$ and H$_2$O$^+$ toward the star forming regions DR21, W31C, and W49N (Ossenkopf et al. 2010; Gerin et al. 2010; Neufeld et al. 2010). Prior to the HIFI observations, OH$^+$ had only been detected in absorption toward Sgr B2(M) (Wyrowski et al. 2010). Similarly, previous observations of H$_2$O$^+$ were limited to its detection in comet tails (e.g., Herzberg & Lew 1974; Wehinger et al. 1974), demonstrating the importance of photoionization in producing this ion in the absence of H$_2$. And until recently, only upper limits had been reported on the column density of H$_2$O$^+$ in the diffuse interstellar gas (Smith et al. 1984).

By contrast, the recent HIFI detections of OH$^+$ and H$_2$O$^+$ in warm diffuse gas with a fairly small fraction of molecular hydrogen, elucidated the role of O$^+$ in initiating the oxygen-hydrogen chemistry. This chemistry is thought to begin with the production of H$^+$ and H$_3^+$ via cosmic ray or X-ray ionization of hydrogen, followed by charge transfer to produce O$^+$. Rapid hydrogen abstraction reactions of O$^+$ with H$_2$ then yield OH$^+$ and H$_2$O$^+$, and terminate with the production of H$_3$O$^+$. In diffuse molecular clouds, which have high electron abundances, the H$_3$O$^+$ is destroyed via dissociative recombination to yield OH and H$_2$O. In dense molecular clouds, both the ionization fraction and the atomic hydrogen abundance are comparatively lower, and the sequence of reactions, expected to start at H$_3^+$ and OH$^+$, yields a larger abundance of H$_3$O$^+$. This picture is probably overly simplistic for molecular clouds such as Orion KL, which are composed of both diffuse and dense gas.

Orion KL is the brightest infrared region in the Orion-Monoceros molecular cloud complex located less than 500 pc from the sun (Menten et al. 2007). In the foreground of Orion KL is the Orion Nebula, an HII region known to contain a cluster of thousands of young stars which produce a substantial flux of X-ray photons (Getman et al. 2005). Molecular line studies reveal three main regions in Orion KL: i. a core of very dense and hot gas ($n \sim 10^7$ cm$^{-3}$, $T \sim 200$ K); ii. cool, quiescent gas between systemic velocities of 8 km s$^{-1}$ and 10 km s$^{-1}$, surrounded by high-velocity outflows (≥ 100 km s$^{-1}$); and iii. a highly dense gas (Smith et al. 1984).

1 Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

DOI: 10.1051/0004-6361/201015117
© ESO 2010
inhomogeneous and turbulent outflow source containing both high-velocity (≥30 km s\(^{-1}\)) and low-velocity (~18 km s\(^{-1}\)) gas (Blake et al. 1987; Genzel & Stutzki 1989; O’Dell et al. 2008).

In this Letter we report the detection of absorption lines of OH\(^+\) and H\(_2\)O\(^+\), and an upper limit on the column density of H\(_2\)O toward Orion KL. In addition to molecular absorption at a systemic velocity of 9 km s\(^{-1}\), these observations find broad blueshifted absorption by OH\(^+\) and H\(_2\)O\(^+\) extending to large negative velocities. This is consistent with previously observed lines of H\(_2\)O with ISO (Lerate et al. 2006), as well as those of HF and para-H\(_2^1\)O detected recently with HIFI, and attributed to the low-velocity molecular outflow (Phillips et al. 2010).

2. Observations and data reduction

The observations were done in March 2010 as part of the key program Herschel/HIFI observations of extra-ordinary sources: The Orion and Sagittarius star-forming regions (HEXOS). The dual beam switch (DBS) observing mode was used, with the DBS reference beams lying approximately 3′ east and west of the Orion KL position \(\alpha_2000 = \text{5h} 35^m 14.3^s\) and \(\delta_2000 = \text{−5°}22′33.7″\). Spectra were taken with the wide band spectrometer (WBS) with a Nyquist-limited frequency resolution of approximately 1.1 MHz over a 4 GHz wide IF band; the HIFI beams in bands 4, 5, and 6 have half-power beam widths of 21′′, 19′′, and 13′′ and main beam efficiencies of 0.670, 0.662, and 0.645 (HIFI observers’ manual, v. 2.0). The spectra were reduced through the standard Herschel Pipeline to Level 2 using HIPE version 2.4 (Ott 2010). The double sideband (DSB) spectra so obtained were then deconvolved (Comito & Schilke 2002) to single sideband (SSB) spectra using the doDeconvolution task in HIPE. The SSB spectra were converted to the FITS format and analyzed with the CLASS90 package. Although two orthogonal polarizations were observed simultaneously, only spectra from the H polarization in bands 4a and 6b and the V polarization in band 5a are shown, because of the smaller standing waves in these polarizations.

3. Spectroscopy

The spectroscopy of OH\(^+\), H\(_2\)O\(^+\), and H\(_2\)O\(^+\) has been discussed in detail in the recent detection papers (Ossenkopf et al. 2010; Gerin et al. 2010). Here we summarize the essential aspects of the rotational spectra of these ions. The OH\(^+\) ion has a \(\Sigma^+\) electronic ground state, the two unpaired electron spins \((S = 1)\) yielding three components of the \(N = 1−0\) transition. The nuclear spin of the hydrogen atom \((I_H = 1/2)\) further splits each component into hyperfine components. The H\(_2\)O\(^+\) ion has \(C_{\infty v}\) symmetry and a \(^2\Pi_1\) ground state which results in the lowest level having ortho symmetry. The spin of the unpaired electron \((S = 1)\) results in two fine-structure components, each exhibiting a complex hyperfine pattern due to the spins of the two equivalent hydrogen nuclei \((I_H = 1/2)\). Rotational spectroscopy of H\(_2\)O\(^+\) is limited to two laser magnetic resonance (LMR) studies (Strahan et al. 1986; Mürtz et al. 1998). Here, we adopt the values of Mürtz et al., which we and others have checked independently to be accurate to about 2 km s\(^{-1}\) in equivalent radial velocity (see Neufeld et al. 2010; Schilke et al. 2010). H\(_2\)O\(^+\) is a closed-shell symmetric top molecule with a large amplitude inversion near 1.65 THz, resulting in a spectrum similar to NH\(_3\) with transitions between symmetric and antisymmetric inversion states (Yu et al. 2009). Table 1 lists the observed transitions of the three ions, along with their line strengths and spontaneous emission rates.

Table 1. Spectroscopic parameters of the observed transitions.

<table>
<thead>
<tr>
<th>Transition</th>
<th>Frequency</th>
<th>(E_1)</th>
<th>(g_1)</th>
<th>(g_2)</th>
<th>(\mu^2S^a)</th>
<th>(10^2A_{ij})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(OH^+\ N = 1−0^0)</td>
<td>(J = 1−0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(F = 1/2−1/2)</td>
<td>909045.2 ± 1.5</td>
<td>0.004</td>
<td>4</td>
<td>6</td>
<td>1.20</td>
<td>1.05</td>
</tr>
<tr>
<td>(1/2−3/2)</td>
<td>909158.8 ± 1.5</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>2.40</td>
<td>0.52</td>
</tr>
<tr>
<td>(F = 5/2−3/2)</td>
<td>971803.8 ± 1.5</td>
<td>0</td>
<td>4</td>
<td>6</td>
<td>10.24</td>
<td>1.82</td>
</tr>
<tr>
<td>(3/2−1/2)</td>
<td>971850.3 ± 1.5</td>
<td>0.004</td>
<td>2</td>
<td>4</td>
<td>5.69</td>
<td>1.52</td>
</tr>
<tr>
<td>(3/2−3/2)</td>
<td>971912.9 ± 1.0</td>
<td>0</td>
<td>4</td>
<td>6</td>
<td>1.14</td>
<td>0.30</td>
</tr>
<tr>
<td>(α-H_2O^+\ 1_1−1_0)</td>
<td>(J = 3/2−1/2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(F = 3/2−1/2)</td>
<td>1115150.0 ± 1.8</td>
<td>0.004</td>
<td>2</td>
<td>4</td>
<td>4.14</td>
<td>1.67</td>
</tr>
<tr>
<td>(5/2−3/2)</td>
<td>1115204.0 ± 1.8</td>
<td>0</td>
<td>4</td>
<td>6</td>
<td>11.23</td>
<td>3.02</td>
</tr>
<tr>
<td>(3/2−1/2)</td>
<td>1115263.0 ± 1.8</td>
<td>0</td>
<td>4</td>
<td>6</td>
<td>3.35</td>
<td>1.35</td>
</tr>
<tr>
<td>(J = 1/2−1/2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(F = 3/2−1/2)</td>
<td>1139541.1 ± 1.8</td>
<td>0.004</td>
<td>2</td>
<td>2</td>
<td>0.42</td>
<td>3.61</td>
</tr>
<tr>
<td>(1/2−1/2)</td>
<td>1139560.6 ± 1.8</td>
<td>0.004</td>
<td>2</td>
<td>4</td>
<td>3.35</td>
<td>1.44</td>
</tr>
<tr>
<td>(2/2−3/2)</td>
<td>1139653.5 ± 1.8</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>3.32</td>
<td>2.86</td>
</tr>
<tr>
<td>(3/2−3/2)</td>
<td>1139673.3 ± 1.8</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4.14</td>
<td>1.78</td>
</tr>
<tr>
<td>(H_2O^{1-1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>((0^1_{1}−1^0_{1}))</td>
<td>948711.0 ± 0.1^4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>((1^1_{1}−1^0_{1}))</td>
<td>1655834.8 ± 0.3^4</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>((2^2_{1}−2^1_{1}))</td>
<td>1657248.4 ± 0.3^4</td>
<td>29.6</td>
</tr>
</tbody>
</table>

Notes. \(^{a}\) Dipole moments (µ): 2.256 D (OH\(^+\); Werner et al. 1983); 2.37 D (H\(_2\)O\(^+\); Wu et al. 2004); 1.44 D (H\(_3\)O\(^+\); Botschewina et al. 1985). Frequencies from: \(^{b}\) Müller et al. (2005); \(^{c}\) Mürtz et al. (1998); \(^{d}\) Yu et al. (2009). \(^{e}\) ∫ \(T_d\) \(dv\) < 0.482 K km \(s^{-1}\) for the 984.7 GHz line, and <2.412 K km \(s^{-1}\) for the 1675.2 GHz lin. \(^{f}\) Blended with a strong \(2_{2}−1_{1}\) ortho-H\(_2^1\)O line at 1655 831 MHz.

4. Results

Figure 1 shows the absorption lines of OH\(^+\) and H\(_2\)O\(^+\) toward Orion KL, as well as lines of HF and para-H\(_2^1\)O for comparison. The strongest hyperfine components of OH\(^+\) and H\(_2\)O\(^+\) appear at the source velocity of 9 km \(s^{-1}\), which matches well that of the HF line in Orion KL. Additionally, lines of both ions show broad blue absorption wings extending to about −75 km \(s^{-1}\), more extended than the HF absorption, but comparable to that of para-H\(_2^1\)O\(^{2−1}\) (~80 km \(s^{-1}\)). We attribute the extended absorption of the ions to originate mainly from the low velocity molecular outflow. We failed to detect any emission or absorption from H\(_3\)O\(^+\), and discuss the non-detection in Sect. 5.

The high density of molecular lines in Orion KL makes contamination by unrelated lines a common problem. The absorption lines detected here are blended with weak to moderately strong emission lines of abundant “weeds”, including CH\(_3\)OH and SO\(_2\). Efforts are underway to model and remove the emission from the contaminants by a method similar to that of Phillips et al. (2010); in the interim, the following approach was taken.

To better gauge the absorption, the contaminants were masked and intensities interpolated across the masked channels (Fig. 1). The velocity-integrated optical depths of the ionic lines were obtained by normalizing the SSB spectra with the continuum and integrating over the velocity ranges for the source and the outflow, the interpolation yielding errors of 20%–30%. On the assumptions that the absorption covers the source...
The column densities of OH\(^+\), H\(_2\)O\(^+\), and H\(_3\)O\(^+\) in Orion KL differ markedly from those in the diffuse gas toward W31C and W49N. In contrast with W31C and W49N, OH\(^+\) and H\(_2\)O\(^+\) are significantly more abundant relative to H\(_3\)O\(^+\), for which we are only able to obtain an upper limit. The absolute column densities of OH\(^+\) and H\(_2\)O\(^+\) are also lower compared with W31C and W49N. A likely explanation for the low column densities of the three ions is that they are present in fairly dense material, both in the quiescent gas and the outflow. Unlike the quiescent gas, the Orion KL outflow is exposed to a strong ionizing flux from the foreground HII region; the enhanced ionization flux enhances the formation of ions, but the resultant large fractional ionization leads to a fast and efficient removal of molecular ions by dissociative recombination with electrons.

The observed velocity profiles of OH\(^+\) and H\(_2\)O\(^+\) in Orion KL support the above conclusion. As Fig. 1 shows, the OH\(^+\) and H\(_2\)O\(^+\) absorption tracks the HF absorption to velocities of about \(-45\) km s\(^{-1}\). This absorption also seems to follow closely, to about \(-80\) km s\(^{-1}\), the \(\text{para-H}_2\)O absorption in the outflow, suggesting that like HF and \(\text{para-H}_2\)O\(^+\) and H\(_2\)O\(^+\) probably exist mainly in the low velocity outflow (Phillips et al. 2010). In fact, the molecular outflow accounts for over half of the observed column density of OH\(^+\) and H\(_2\)O\(^+\).

The conditions required to explain our observations may be more extreme than one might suppose. First, the molecular ions probably reside in gas of lower density (n \(\leq 10^3\) cm\(^{-3}\)) than that necessary to thermally excite the observed transitions - these have high spontaneous emission rates (\(>10^{-2}\) s\(^{-1}\), Table 1), and hence large critical densities (\(10^4 - 10^5\) cm\(^{-3}\)). This is supported by the observation that OH\(^+\) and H\(_2\)O\(^+\) are seen only in absorption. Second, the temperatures in the outflow gas are probably high.

We consider two scenarios in which the ions may be formed in the low velocity outflow. In the first, a large radiation flux impinges directly on the Orion KL outflow, which contains large water abundances (Melnick et al. 2010). The far UV flux that illuminates this gas can have values approaching \(4 \times 10^4\) times the average interstellar radiation field (Walmsley et al. 2000; Young Owl et al. 2000). In addition, the central region of the Orion Nebula has numerous sources of energetic X-ray photons (Getman et al. 2005; Preibisch et al. 2005), which can contribute to the surface ionization of this photon-dominated region (PDR).

We estimate that at \(A_V = 1\) into the PDR, the ionization rate \(\xi_7 \sim 3 \times 10^{-15}\) s\(^{-1}\). Under these conditions, water can undergo photodissociation to form H\(_2\)O\(^+\) directly, enhancing the abundance of this species.

\[\int \tau d \nu \text{ (cm s}^{-1}\text{)} = \frac{A_{\text{sp}} g_{\nu} \lambda^3}{8 \pi g_I} N, \]

where \(A_{\text{sp}}\) is the spontaneous emission rate, \(g_{\nu}\) and \(g_I\) are the upper and lower state degeneracies, and \(\lambda\) is the transition wavelength.

We estimate column densities of OH\(^+\) and H\(_2\)O\(^+\) at 9 km s\(^{-1}\) of \(9 \pm 3 \times 10^{12}\) cm\(^{-2}\) and \(7 \pm 2 \times 10^{12}\) cm\(^{-2}\), and those in the outflow of \(1.9 \pm 0.7 \times 10^{13}\) cm\(^{-2}\) and \(1.0 \pm 0.3 \times 10^{13}\) cm\(^{-2}\). The column densities of OH\(^+\) are more than an order of magnitude lower, and those of H\(_3\)O\(^+\) are 2–6 times lower than toward W31C and W49N (Gerin et al. 2010; Neufeld et al. 2010). From the least congested spectra of H\(_2\)O\(^+\) at 984.7 and 1657.2 GHz (see Table 1), and an assumed excitation temperature of 100 K, we derive 3\(\sigma\) upper limits of \(2.4 \times 10^{12}\) cm\(^{-2}\) and \(8.7 \times 10^{12}\) cm\(^{-2}\) for the column density of ortho and para-H\(_3\)O\(^+\), nearly an order of magnitude lower than in W31C (Gerin et al. 2010).

The abundance ratios of the three ions in Orion KL can be compared to the same ratios observed in W31C and W49N. The OH\(^+\)/H\(_2\)O\(^+\) ratio is found to be 1.3 \(\pm 0.6\) in the source and 1.8 \(\pm 0.8\) in the outflow. This ratio is 2–15 times lower than that measured toward W31C and W49N. The lower limit of 1.4 for the H\(_2\)O\(^+\)/H\(_3\)O\(^+\) ratio, however, is nearly 2 times larger than in W31C.

\[\text{Fig. 1. Lines of OH}^+, \text{ortho-H}_2\text{O}^+, \text{and H}_3\text{O}^+ \text{ in Orion KL, compared with those of HF (J = 1–0) and para-H}_2\text{O}^+. \text{The dashed vertical red line is at the systemic velocity of 9 km s}^{-1}. \text{and the solid horizontal red lines indicate the continuum level in each spectrum. Solid green lines indicate the channels over which the interpolation was done. The HF spectrum, adapted from Phillips et al. (2010), shows a broad absorption (black histogram) after modeling and removal of contaminating lines of CH}_3\text{OH and SO}_2 \text{(blue histogram). The contaminants in the 971.8 GHz (black histogram) after modeling and removal of contaminating lines of spectrum, adapted from Phillips et al. (2010), shows a broad absorption indicate the channels over which the interpolation was done. The HF lines indicate the continuum level in each spectrum. Solid green lines with those of HF (J = 9 \pm 1) of 976.1 GHz were labeled as \(T_A (K)\).} \]

5. Discussion

The abundance ratios of the three ions in Orion KL can be compared to the same ratios observed in W31C and W49N. The OH\(^+\)/H\(_2\)O\(^+\) ratio is found to be 1.3 \(\pm 0.6\) in the source and 1.8 \(\pm 0.8\) in the outflow. This ratio is 2–15 times lower than that measured toward W31C and W49N. The lower limit of 1.4 for the H\(_2\)O\(^+\)/H\(_3\)O\(^+\) ratio, however, is nearly 2 times larger than in W31C.
6. Conclusions
Our observations toward Orion KL have found OH+ and H2O+ absorption at the quiescent 9 km s⁻¹ component and extended absorption in the low velocity molecular outflow associated with this source. This is, to our knowledge, the first detection of these ions toward a source with a large fraction of molecular gas. Given the complex and inhomogeneous nature of Orion KL, however, there are probably regions where the densities are sufficiently low and the excitation conditions optimal for these reactive ions to exist at detectable levels. Another possibility is that depletion of some of the gas-phase species onto the grains can result in lower abundances of water, leading to small column densities of OH+ and H2O+. A surprising observation — and one remarkably different from that toward W31C — is the non-detection of H3O+. In our model of the outflow, we attribute this mainly to a very high ionization rate, which produces an almost equal abundance of atomic and molecular hydrogen at the assumed density.

Acknowledgements. HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands and with major contributions from Germany, France and the USA. Consortium members are: Canada: CSA, U. Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIIR, MPS, Ireland, NUI Maynooth; Italy: ASI, IFSE-INAF, Osservatorio Astrofisico di Arcetri- INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronomico Nacional (IGN), Centro de Astrobiología (CSIC-INTA); Sweden: Chalmers University of Technology, M. R., Barlow, M. J., Swinyard, B. M., et al. 2006, MNRAS, 370, 597

References
Mizumoto, K.-I. Morita, & M. Ohishi, ASP Conf. Ser., in press

Page 4 of 5