Modeling the Impact of Climate Change on Water Availability in the Zarrine River Basin and Inflow to the Boukan Dam, Iran

Farzad Emami and Manfred Koch
Department of Geotechnology and Geohydraulics, University of Kassel, Germany

ABSTRACT. The impacts of climate change on the water availability of Zarrine River Basin (ZRB), the headwater of Lake Urmia, in western Iran, with the Boukan dam, are simulated under various climate scenarios up to year 2029, using the SWAT hydrological model. The latter is driven by meteorological variables predicted from MPI-ESM-LR-GCM with RCP 2.6 and 4.5 scenarios (precipitation) and HADCM3-GCM with SRES A2 and B2 scenarios (temperature), and downscaled with Quantile Mapping (QM) bias-correction and SDSM, respectively. From two variants of QM employed, the Empirical-CDF-QM model decreased the biases of raw GCM precipitation predictors particularly strongly. SWAT was then calibrated and validated with historical (1981-2011) ZRB streamflow, using the SWAT-CUP model. The subsequent SWAT-simulations for the future period 2012-2029 indicate that the predicted climate change for both RCPs will lead to a reduction of the inflow to Boukan dam as well as of the overall water yield of ZRB, mainly due to a 28% and 31% future precipitation reduction for RCP 2.6 and RCP 4.5, respectively, with a concomitant reduction of the groundwater baseflow to the main channel. Nevertheless, the future runoff-coefficient shows a 1% and 3% increase, as the -4% and -12% decrease of the surface runoff is overcompensated by the named precipitation decrease. In summary, based on these predictions, together with the expecting increase of demands due to the agricultural and other developments, the ZRB is likely to face a water shortage in the near future as the water yield will decrease by -23% and -36%, unless some adaptation plans are implemented for a better management of water resources.

Keywords: Climate change, Statistical downscaling, Quantile-Mapping, SWAT, Water yield, Iran’s Lake Urmia

1. Introduction

Fresh water uses are expected to increase significantly in the coming years, owing to population growth, increased urbanization and agricultural development. The Comprehensive Assessment of Water Management in Agriculture reveals that one in three people in the world is already facing severe water shortages (CA, 2007). This holds particularly for the Mediterranean and arid climate zone across the northern hemisphere. For example, recent NASA satellite studies reveals that parts of the arid Middle East region and western Iran lost freshwater reserves rapidly over the past decade, which means that Iran will be facing a serious and protracted water shortage (Voss et al., 2013). This water scarcity is aggravated by increased climate variability due to global climate change reflected by droughts with drying lakes and rivers, declining groundwater resources and deteriorating water quality in the country (Madani, 2014).

As global warming is expected to intensify in the 21st century, further hydro-climatic disasters, namely, water scarcity in the form of droughts, are to be anticipated. Since climate change impacts will not only reduce the available water resources, but also increase the water demands by crops, i.e. will negatively impact agricultural production (Punkari et al., 2014), the first unavoidable step to prepare affected societies
for this water shortage and to evaluate these adverse water resources impacts is the identification of the climate variations, followed by a prediction of the hydro-climatic conditions for the future.

Numerous publications deal with the assessment of regional climate change impacts on available water resources there (e.g. Abbaspour et al., 2009; Blanc et al., 2013; Emami and Koch, 2018). However, fewer studies focused on the evaluation of streamflow changes, let alone to apply the further step which is to manage the available regional water resources under changing future climate scenarios (Tegene et al., 2013; Ashraf Vaghefi et al., 2014). The novelty of this research lies in transferring the large scale GCM-based climate signals to the local hydrologic cycle changes and in predicting the future hydrological components and the available water resources of a river basin in a semi-arid region from the simulation of the inflow to a main reservoir.

With the above background at hand, this paper gears to assess the impacts of climate change on the hydrological characteristics of the Zarrine River Basin (ZRB) with the Boukan dam located in northwest Iran. The Zarrine River (ZR) is the main inflow source of Lake Urmia, which is the largest inland wetland of Iran and the largest lake in the Middle East (Pengra, 2012). In fact, recent publications (e.g. AghaKouchak et al., 2015) indicate that the Aral Sea syndrome desiccates also Lake Urmia - located in the vicinity of the present study region - so that the area of this Iranian lake has decreased by around 88% in the past decades. In fact, Lake Urmia’s water body which has an international importance based on the Ramsar convention has been diminishing steadily since 1995. Based on these facts, it has been argued that the current condition of Lake Urmia necessitates immediate action to avoid an environmental and ecological disaster. The significant shrinkage in the lake's surface area is not only due to prolonged droughts in recent years, but also a consequence of the aggressive regional water resources development plans, unsustainable agricultural activities, anthropogenic changes of the system and upstream stakeholder competition over water in the upstream areas, i.e. the ZRB (Emami and Koch, 2018).

In the present study future GCM climate predictions of temperatures and precipitation under different climate scenarios are downscaled for use as input in a hydrologic watershed model (SWAT) to simulate the ZRB’s water resources response to the impacts of a changing climate. Particular emphasis will be laid on the prediction of the Boukan dam’s future inflow changes, as this reservoir stores much of the region’s surface water for satisfying the various water needs there.

2. Study Area

The ZRB, located between 45° 46’ E to 47° 23’ W longitude and 35° 41’ S to 37° 44’ N latitude, forms the southern sub-basin of the Lake Urmia catchment and covers an area of about 11,000 km² (see Figure 1a). The ZR itself has a total length of about 300 km and most of its course is within a mountainous area. The ZRB belongs to the Lake Urmia hydrologic basin which is one of the six main basins in Iran. Up to recent times the ZR flowed directly into Lake Urmia, however, with the more recent drying trend, the lake has retreated by about 30 km from the river's mouth.

The reservoir system in the ZRB contains three operating dams and one diversion dam, together with 24 hydrometrical stations. The ZR’s headwaters pour out from the Kurdistan Chelchshe Mountains, pass through deep valleys in northern direction and flow into the Lake Urmia. The main branches of the ZR are named Chamkhorkhore, Saghezchay and Saroghcaby. The first two join near Polgheslagh and then Saroghcaby joins them at the most important dam of the basin, the Boukan reservoir dam, the only dam located on the Zarrine River and serving with a storage capacity of 650 MCM much of the region’s needs of potable and agriculturally used water. The discharge of the dam continues to flow towards the North, while intersecting the three rivers Joshatosofla, Ajorlochay and Ghoorichay. Then the river enters the Norouzlooo diversion dam and finally discharges into Lake Urmia.
Fig. 1. Map of the Lake Urmia basin (Iran) with the ZRB as the major sub-basin and further delineation of the sub-basins with gauge station outlets (a) together with DEM and (b) landuse cover of the ZRB (c).

The region's climate is mostly characterized as semi-wet cold or wet-cold in the mountain areas with annual precipitation of up to 800mm/yr, but changes to semi-dry in the vicinity of Lake Urmia where the precipitation is only about 200mm/yr. The major land cover of the basin is 45% dry land, 37% pasture and 14% forest (see Figure 1c). The ZRB is rather prone to flooding and devastating floods have occurred there in recent years, especially, in the beginning of the spring, when snow melt in the mountain areas of the basin occurs.

3. Materials and Methods

3.1. Hydrological simulation model SWAT

3.1.1. Theoretical concepts of the SWAT-model

The Soil and Water Assessment Tool (SWAT) is a physically-based integrated semi-distributed hydrological model that has originally been developed to mainly simulate the impacts of land management practices in large and complex watersheds (Nietsch et al., 2011). However, SWAT is also an efficient simulator of hydrology and water quality, so that it has increasingly being used to investigate climate change impacts on agro-hydrological systems (Jha et al., 2004; Abbaspour et al., 2009). In such applications, SWAT’s meteorological input drivers are usually downscaled climate predictors from GCM-models.

The watershed to be modeled is partitioned further into sub-basins to represent the large-scale spatial heterogeneity of the research area, and each sub-watershed is divided further into a set of HRUs
The simulated hydrological variables of the SWAT model are evapotranspiration, surface runoff, percolation, groundwater return flow, snowmelt, flow from shallow aquifers to streams, lateral subsurface flow, and channel transmission losses. The model inputs for the land- and other routing phases of the hydrologic cycle can be categorized as climate, hydrology, land cover, nutrients, pesticides and management practices. Required climate inputs for SWAT are min. and max. daily temperatures and precipitation as the ultimate climate drivers of the runoff process. The most important hydrologic and land cover model inputs include the physical characteristics of the watershed and sub-basins, i.e. soil type, land slope, slope lengths, Manning’s n-values (roughness coefficient) and characteristics of the surface water bodies. The remaining categories mentioned are not considered in this study and are thus not further discussed.

3.1.2. Model setup.

The required data for the SWAT-modelling were gathered from several sources. The network of rivers and the sub-basins of the watershed was delineated using the Digital elevation model (DEM) of the Iranian surveying organization, with a spatial resolution of 85 m (Figure 1.b), and the land use map of the watershed, with a resolution of 1000 m and 10 land use classes (see Figure 1c) was obtained from MOJA (2007). The soil map of the watershed was extracted from the FAO digital soil map of the world, with a spatial resolution of 10 km, and includes 8 types of soil with two layers for the study area. The land management practices and irrigation plans of the crops in ZRB are defined based on Ahmadzadeh et al. (2015).

The climate input data contain daily precipitation of 21 stations obtained from the Iran Ministry of Energy (MOE), from which 7 representative stations (excluding other stations with longer and continuous data gaps) are selected, as shown in Figure 2. It should be noted that the model will assign precipitation for each sub-basin only from the nearest rain gauge to its centroid. In addition, because of a lack of temperature observations, GCM- predicted (on a 0.5° x 0.5° grid) daily max. and min. temperatures obtained from the Climate Research Unit (CRU) (http://www.cru.uea.ac.uk/) for the nearest 7 grid points (CRU stations) around or in the watershed over a period of 36 years (1977–2012) are used (see Figure 2a). River discharge data for 7 hydrometric stations, located at the outlets of the most important and effective sub-basins of the SWAT model (see Figure 2b) were obtained from MOE for the same period, whereas the reservoir’s monthly outflow was gathered from the IWRM Company.

3.1.3. Calibration, validation and sensitivity analysis.

The recently developed SUFI-2 (Sequential Uncertainty Fitting) embedded in the SWAT-CUP (Calibration and Uncertainty Program) (Abbaspour et al., 2004; Abbaspour, 2015) was used for the calibration (parameter optimization), and sensitivity study of the SWAT-model. In SUFI-2/SWAT-CUP, users can investigate different objective functions and treat input data as near random parameters, i.e. model input parameters are expressed as ranges, accounting for all sources of uncertainties, due to parameter-, conceptual model-, input-, measured data- and other errors. In this method a meaningful set of ranges is initially assigned to the calibrating parameters and then a set of samples are drawn from the ranges using Latin hypercube scheme, which divides the parameter ranges uniformly into N intervals (number of iterations) and randomly samples the values within the interval for each parameter. The uncertainty is quantified at the 2.5% and 97.5% levels of the cumulative frequency distribution of the simulated outputs which is referred to as the 95% prediction uncertainty (95PPU) (Abbaspour, 2015; Koch and Cherie, 2013).

(Hydrologic Response Units) which are a particular combination of land cover-, soil- and management-areal units. For each HRU in a sub-basin, the soil water content, water and sediment yield, crop growth and the land management practices are simulated and then aggregated, based on the watershed slopes, reach dimensions, and the other physical characteristics of the sub-basin. The streamflow of the sub-basins are estimated using the modified Soil Conservation Service (SCS) curve number method, routed by classic methods, and then accumulated consequently through the river basin.
Thus the SUFI-2 algorithm differs from the classical deterministic Parameter Solution (ParaSol) method (van Griensven et al., 2014), used hitherto in most applications of SWAT (Gassman et al., 2007).

The quality of the fit of the model output, namely, streamflow, to the observed one is also measured in SWAT-CUP by various quantities, such as the NSE, \(R^2 \) (coefficient of determination) and RMSE (root-mean-square error) and a somewhat less used quantity, bR. The latter takes, in addition to \(R^2 \), also the slope b of the regression line between observed and simulated predictions into account, and has been promoted by Krause (2005) as an effective measure. The performance of the model in terms of uncertainties is also evaluated using the P-factor (percentage of the observed data enveloped by the 95 PPU band) and the R-factor (the average width of the band) indices. The P-factor varies from 0 to 1, with 1 the ideal value, whereas for the R-factor, a value around 1 is optimal.

3.2. Climate change scenarios and predictions

3.2.1. GCM-selection

For assessing climate change impacts on water resources and possible subsequent planning and management adaptation strategies, the important future meteorological drivers, i.e. precipitation and temperatures, of the hydrological processes in the study basin must be determined. This is usually done by employing downscaled predictors of a Global Circulation Model (GCM) (Abbaspour et al., 2009; Themeßl et al., 2011).

Here the Hadley center’s HadCM3-GCM’s (2.5° x 3.75° grid) coarse predictors for daily min. and max. temperatures for a 24-year period, 2006-2029, with the extreme emission scenario (SRES) A2 (promoting further regional economic development) and the more benevolent B2 (with emphasis on an ecologically sustainable development) were used. This GCM output has been chosen for further downscaling, owing to (1) previous experiences with downscaling of climate predictors, also in Iran, (Massah et al., 2006; Emami, 2009; Samadi, 2010) and (2) to the long available predictor period (1977 to 2012).

For precipitation, several GCM model outputs were tested against the observed precipitation and, finally, one of the 5th -Coupled Model Intercomparison Project (CMIP5) - GCM model outputs, namely, the recent 1.86° x 1.87° grid MPI-ESM-LR (ECHAM-6) GCM of the MPI Hamburg under the (benevolent) radiative forcing scenarios RCP 2.6 as a very low forcing level scenario and the (intermediate) emission scenarios RCP 4.5 as medium stabilization scenario (van Vuuren et al., 2011) were employed. Representative Concentration Pathways (RCPs) is the latest generation of scenarios, named according to their radiative forcing target level for year 2100, relative to pre-industrial values, and usually taken as +2.6, +4.5, +6.0, and +8.5 W/m² in climate model predictions.

Note that for the selected model in the CMIP5 ensemble this domain contains three grid boxes of which the bottom corner of each box is marked with a red circle as representative GCM points in Fig. 2b (nearest-neighbor interpolation). Therefore, the zonal averages of precipitation within the selected domain were extracted from output of the GCM. However, since the spatial resolution of these two GCMs is not fine enough for a regional analysis, the coarse-grid information of GCM’s must be downscaled on to a finer grid.

3.2.2. SDSM- and QM - downscaling of climate predictors

For the downscaling of the temperatures the well-known Statistical Downscaling Model (SDSM) (Wilby et al., 2002) was used, as previous publications (Wilby and Dawson, 2013; Emami and Koch, 2018) confirmed suitable performance of the SDSM for the temperature downscaling. SDSM is a transfer- or multiple linear regression model which employs a few selected large-scale atmospheric predictors of the parent GCM to predict a climate variable on the local scale, once the regression model has been calibrated on observed local climate variables.
Fig. 2. (a) Map of selected weather and hydrometric stations in the ZRB-SWAT model (precipitation (PCP) and temperature (TMP)); (b) selected GCM points and gridbox of the MPI-ESM-LR.

On the other hand, because of well-known problems of the SDSM with the downscaling of intermittent precipitation (Wilby et al., 2002; Hessami et al., 2008), the more-recently-coming-to-the-fore Quantile Mapping (QM) bias correction technique, which has been found to do better for this climate variable than the other methods mentioned (Themßl et al., 2011; 2012; Miao et al., 2016), was employed for the downscaling of precipitation. QM has shown to be an effective method for removing some GCM-predictors biases with almost little computational expense (Piani et al., 2010; Themßl et al., 2011; 2012; Miao et al., 2016) and appears to deliver much better correlations with the observed predictands (precipitation) at the high resolution local scale.

The basic idea behind QM-bias correction is to adjust the future climate predictors of a GCM by the error encountered by the GCM, when trying to predict the local climate observations in the historical reference period, i.e. the bias. QM has evolved since its inception more than a decade ago from simple distribution mapping under the assumption of stationarity of historical and future predictor series to variants that release this assumption (Li et al., 2010).

In the original traditional QM-method the adjusted (corrected) future predictor value for a particular month $\tilde{x}_{m-p, \text{adjust}}$ of the original future value (quantile) x_{m-p} is found by inverting the cumulative distribution function (CDF) F_{m-c} of the current GCM-predictor series with the CDF F_{o-c} of the observed (current) series, i.e.

$$\tilde{x}_{m-p, \text{adjust}} = F_{o-c}^{-1}(F_{m-c}(x_{m-p})),$$ (1)

where x is the climate variable of interest, either observation (o) or model (m) for the current climate (c) in the reference period, or future projection period (p) and F is the CDF and F^{-1} is its inverse.

As mentioned, the underlying assumption in the application of Eq. (1) that the climate variable of interest has a similar future distribution as that of the reference period and the form of this CDF, i.e. its variance and skew remains the same in the future, but only its mean, defining the bias, is allowed to change, whereas the mean may change and is then adjusted as part of the bias correction. On the other hand, because climate variables’ time series are often nonstationary, this assumption has been put into question by Milly...
et al. (2008) and, consequently, Li et al. (2010) proposed an improved QM-method, called equidistant CDF matching (EDCDFm), wherefore the bias corrected values are computed as:

$$
\tilde{x}_{m-p,\text{adjust}} = x_{m-p} + \frac{1}{c_{m-c}} \left(F_{m-p}(x_{m-p}) - F_{m-c}^{-1}(F_{m-p}(x_{m-p})) \right),
$$

(2)

However, this method may provide some negative values for the bias-corrected variable which is unacceptable for the precipitation. For remedy, Miao et al. (2016) proposed a modified nonstationary CDF-matching (CNCDFm) technique, wherefore Eq. (2) is replaced by:

$$
\tilde{x}_{m-p,\text{adjust}} = \begin{cases}
 l(x), & l(x) > 0 \\
 g(x), & l(x) < 0 \\
 0, & x_{m-p} = 0
\end{cases}
$$

(3)

with

$$
l(x) = x_{m-p} + \frac{1}{c_{m-c}} \left(F_{m-p}(x_{m-p}) - F_{m-c}^{-1}(F_{m-p}(x_{m-p})) \right),
$$

(4)

and

$$
g(x) = x_{m-p} \times \frac{F_{m-c}^{-1}(F_{m-p}(x_{m-p})) - F_{m-c}^{-1}(F_{m-p}(x_{m-p}))}{r_{m-c}^{-1}(F_{m-p}(x_{m-p}))}
$$

(5)

Based on the equations above, the bias correction of the monthly precipitation by means of the CNCDFm-method comprises then the following steps which were coded in the MATLAB© programming environment:

Firstly, the monthly precipitation for each grid box and each month of the year of the 36 years (1977–2012) long dataset is calibrated and then validated by a repeated cross validation process for 30 times, using two non-parametric conversion function options, namely, the Empirical Cumulative Distribution Function (ECDF), as advocated by Theemel et al. (2011) for quantile mapping, and the Kernel Density Function (KDF) to estimate the CDFs and the inverse CDFs for the precipitation data for each month of the year (e.g. January, .., December) (Miao et al., 2016). For the calibration of the QM-model 20 years out of 36 years of monthly precipitation sampled (i.e. 1977 to 1996) and the 16 years as the rest of the period (i.e. 1997 to 2005) are used for the validation of the model. This procedure is repeated 30 times and the average of the bias correction success rate and percentage of the improvement of the biases computed.

Secondly, the best validated option is then selected to assess the biases of the raw GCM series and the corrected values after the bias correction by computing the QBi – index, for different percentiles (25%, 50% and 75%), of the corresponding CDF. QBi is defined as (Mehran et al., 2014):

$$
QB_i = \frac{\sum_{t=1}^{30} PCP_{\text{model}} (PCP_{\text{model}} > t)}{\sum_{t=1}^{30} PCP_{\text{observed}} (PCP_{\text{observed}} > t)}
$$

(6)

where the PCP_{model} and PCP_{observed} are the quantiles of the monthly precipitation of the raw GCM and the observed series of the validation period above the threshold t, i.e. the percentile level (25%, 50% and 75%). Obviously, the QBi index is equal to 1 when there is no bias in the prediction, whereas a value above or below 1 indicates that the amounts of the precipitation above the specific threshold are overestimated or underestimated, respectively.

Thirdly, the daily future precipitation of the future period at each station is predicted from the average of 10 ensembles created based on the validated model of the previous step. The ensembles are generated based on the statistics of the monthly (bias-corrected) precipitation time series using a two-state first-order Markov chain process for (Wilks, 2006; Mhanna and Bauwens, 2012), wherefore four different transitions dry-dry, dry-wet, wet-wet and wet-dry, denoted by the observationally determined transition probabilities $p_{00}, p_{01}, p_{10}, p_{11}$, respectively, are possible. Using this approach, the synthetic daily time series $x_t (t=1,...,30,31)$ for a
particular month is generated, beginning at day 1 with x_1 either dry (=0) or wet (=1), depending on whether
a random number drawn from a uniform [0,1] distribution is less than the stationary, long term probability
π_1 of the occurrence of precipitation, which in turn depends on p_{01} and p_{11} (Wilks, 2006; Mhanna and
Bauwens, 2012). The situation of the subsequent day ($t=2$) and further on depends then on the value of a
new random number, relative to these two transition probabilities p_{01} or p_{10}, respectively.

Finally, the synthetic daily wet-and-dry series for a month is scaled to get the appropriate bias-corrected
daily precipitation amounts of the wet days, while making sure at the same time that the monthly aggregated
GCM-predicted precipitation amounts are guaranteed.

It should be noted that the precipitation and temperature downscaling models are calibrated and validated
for different periods, i.e. 1977 to 2005 and 1977 to 2012, respectively, as the outputs of their parent GCM
models are available for these periods. This means that the downscaling simulations are done for the
overlapping period of the related GCM predictors and of the historical observed data.

4. Results and discussion
4.1. SWAT-CUP sensitivity analysis
The results of the SWAT-CUP sensitivity analysis of the simulated river discharge carried out for each sub-
basin and with initially 7 general parameters for the basin and 15 effective model parameters are listed in
Tables 1 and 2 in ranked order, following mostly previous studies of one of the authors (Emami, 2009).
Then the sensitivity analysis is performed hierarchically sub-basin-wise from the utmost upstream sub-basin
(11) down to the outlet of the total basin, using the other 11 most sensitive model parameters (p-value less
than 0.05). It is interesting to see from Table 1 that the most sensitive general parameters are snowmelt
parameters, which is a consequence of the Urmia watershed being surrounded by mountains, so that about
one third of ZRB’s water is meltwater from snow cover which prevails in the mountains over up to six
months in the winter season.

Other than that, the ranking in Table 2 indicates that the most sensitive parameter of the model is CN_2, the
Initial SCS runoff curve number for moisture condition II which is of no surprise, as it affects the surface
runoff changes directly. The default values of the curve numbers are given in the SWAT model based on the
land covers and soil types and which have some uncertainties. The other sensitive parameters can be
classified in three hydrological groups, and soil parameters, channel routing, and groundwater. Thus, the
moist bulk density of the soil (SOL_{BD}), base flow alpha factor for bank storage ($ALPHA_{BNK}$) and the
threshold depth of water in the shallow aquifer required for return flow ($GWQMN$), are the most sensitive
parameters of the three named groups, respectively.

These sets of effective parameters of the model are considered for the sensitivity analysis separately for the
eight groups of sub-basins (see Fig. (as shown in Table 2 which the sub-basin 11 is the first and sub-
basins 1 and 2 assumed as the last group), and finally the most sensitive ones are selected for the final model
calibration based on their interactions.

Finally, it should be noted that the streamflow is also sensitive to some other parameters such as
LAT_TIME and HRU_SLP, but they are estimated in the model based on physical conditions and are kept
as defaults.
adjusted calibration parameters is the parameter highlighted in bold in Table 3, calibration outlets of the specified subbasins of Fig 1a in terms of R², NS and the bR² are listed in Table 3 for the calibration- and the validation period. Based on these numbers, particularly bR² as the most important parameter highlighted in bold in Table 3, the fit of the model to the data (streamflow) can be considered as quite satisfactory for both the calibration and the validation period. The final value/range obtained for the adjusted calibration parameters is given in Table 2, wherefore the range reflects the values obtained for the 8 different groups of sub-basins, and calibration parameters superscribed by (*) denote a constant value determined for the whole basin.

Table 1. Ranks of the most sensitive general parameters of the basin with their final calibrated values.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Parameter Name</th>
<th>Final value</th>
<th>Rank</th>
<th>Parameter Name</th>
<th>Final value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CN2.mgt</td>
<td>35-89</td>
<td>9</td>
<td>SOL_AWC(1).sol</td>
<td>0.09-0.34</td>
</tr>
<tr>
<td>2</td>
<td>SOL_BD(1).sol</td>
<td>0.9-1.96</td>
<td>10</td>
<td>ALPHA_BF.gw</td>
<td>0.25-0.96</td>
</tr>
<tr>
<td>3</td>
<td>SOL_Z(1).sol</td>
<td>132-476</td>
<td>11</td>
<td>REVAPMN.gw</td>
<td>162-407</td>
</tr>
<tr>
<td>4</td>
<td>GWQMN.gw</td>
<td>0.27-0.65</td>
<td>12</td>
<td>GW_SPYLD.gw*</td>
<td>0.05</td>
</tr>
<tr>
<td>5</td>
<td>ESCO.hru</td>
<td>0.91-0.99</td>
<td>13</td>
<td>CH_K2.rte*</td>
<td>0.5</td>
</tr>
<tr>
<td>6</td>
<td>SOL_K(1).sol</td>
<td>4-22</td>
<td>14</td>
<td>RCHRG_DP.gw*</td>
<td>dimensionless</td>
</tr>
<tr>
<td>7</td>
<td>GW_DELAY.gw</td>
<td>10-35</td>
<td>15</td>
<td>CH_N2.rte*</td>
<td>0.016</td>
</tr>
</tbody>
</table>

*Final value of these parameters applies to the whole basin.

Table 2. Ranks of the most sensitive input parameters for the different sub-basins

<table>
<thead>
<tr>
<th>Rank</th>
<th>Parameter Name</th>
<th>Dimension</th>
<th>Final value/ range</th>
<th>Rank</th>
<th>Parameter Name</th>
<th>Dimension</th>
<th>Final value/ range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CN2.mgt</td>
<td>dimensionless</td>
<td>35-89</td>
<td>9</td>
<td>SOL_AWC(1).sol</td>
<td>mm H₂O/mm</td>
<td>0.09-0.34</td>
</tr>
<tr>
<td>2</td>
<td>SOL_BD(1).sol</td>
<td>g/cm³</td>
<td>0.9-1.96</td>
<td>10</td>
<td>ALPHA_BF.gw</td>
<td>1/day</td>
<td>0.25-0.96</td>
</tr>
<tr>
<td>3</td>
<td>SOL_Z(1).sol</td>
<td>mm</td>
<td>132-476</td>
<td>11</td>
<td>REVAPMN.gw</td>
<td>mm H₂O</td>
<td>162-407</td>
</tr>
<tr>
<td>4</td>
<td>GWQMN.gw</td>
<td>mm H₂O</td>
<td>1076-3827</td>
<td>12</td>
<td>GW_SPYLD.gw*</td>
<td>m³/m²</td>
<td>0.05</td>
</tr>
<tr>
<td>5</td>
<td>ESCO.hru</td>
<td>dimensionless</td>
<td>0.91-0.99</td>
<td>13</td>
<td>CH_K2.rte*</td>
<td>mm/hr</td>
<td>0.5</td>
</tr>
<tr>
<td>6</td>
<td>SOL_K(1).sol</td>
<td>mm/hr</td>
<td>4-22</td>
<td>14</td>
<td>RCHRG_DP.gw*</td>
<td>dimensionless</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>GW_DELAY.gw</td>
<td>day</td>
<td>10-35</td>
<td>15</td>
<td>CH_N2.rte*</td>
<td>dimensionless</td>
<td>0.016</td>
</tr>
</tbody>
</table>

4.2. SWAT-model calibration and validation

Using SUFI-2 algorithm of SWAT-CUP, the SWAT-model was calibrated on the ZRB streamflow for the 1991-2012 and validated for the 1981-1990 period. To that avail the 11 most sensitive parameters (the non-starred parameters in Table 2) were optimized for the 8 groups of sub-basins from the upstream outlets (subbasin 9, 10, 11) to the main outlet of the basin (subbasin 2) starting with some initial ranges, which are based on previous studies (Emami, 2009; Ahmadzadeh et al. 2015) and the knowledge of the basin. The minimum and maximum allowable value of each parameter are also considered in the calibration and validation procedures based on the SWAT model documentation (Arnold et al., 2012a). Then several iterations with about 500 simulations each were performed to determine the distribution and the 95%-prediction uncertainty of the objective function (misfit between observed and modeled streamflow).

For the validating the calibrated SWAT model, the first 4-years of the available data (1977-1981) are used for the warm-up of the model and the final value or range of the parameters calculated in the calibration procedure, are applied in the SWAT model and the performance indices of the results are evaluated for the next 10 years. It should be also noted that the first 10 years are selected for the validation in order to balance the dry-wet years of the calibration and validation period, as Arnold et al. (2012b) suggested that both wet and dry periods should be included in both the calibration and validation periods.

The statistical results of the optimized objective (misfit) functions for the six hydrometric stations at the outlets of the specified sub-basins of Figure 1a in terms of R², NS and the bR² are listed in Table 3 for the calibration- and the validation period. Based on these numbers, particularly bR² as the most important parameter highlighted in bold in Table 3, the fit of the model to the data (streamflow) can be considered as quite satisfactory for both the calibration and the validation period. The final value/range obtained for the adjusted calibration parameters is given in Table 2, wherefore the range reflects the values obtained for the 8 different groups of sub-basins, and calibration parameters superscribed by (*) denote a constant value determined for the whole basin.
The good SWAT-model performance can also be seen from Fig. 3, which shows observed and simulated monthly hydrographs for outflow station 8 measuring the inflow to the Boukan reservoir dam and the outflow station 2 as the main outlet of the basin which is marked with a red circle in Figure 2a. However, some peaks are underestimated because of the occurrence of the some dry years with low precipitation, especially, during 1998-2002.

Table 3. Statistical measures for the SUFI-2 - optimized objective functions for calibration and validation periods for various sub-basin outlet stations together with the uncertainty measures (P-factor and R-factor).

<table>
<thead>
<tr>
<th>Outlet #</th>
<th>Station</th>
<th>Calibration</th>
<th>Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>P-f</td>
<td>R-f</td>
</tr>
<tr>
<td>2</td>
<td>Nezamabad</td>
<td>0.90</td>
<td>1.1</td>
</tr>
<tr>
<td>4</td>
<td>Choobloche</td>
<td>0.82</td>
<td>1.0</td>
</tr>
<tr>
<td>7</td>
<td>Sarighamish</td>
<td>0.92</td>
<td>1.2</td>
</tr>
<tr>
<td>8</td>
<td>Boukan Dam</td>
<td>0.79</td>
<td>1.4</td>
</tr>
<tr>
<td>9</td>
<td>Safakhaneh</td>
<td>0.85</td>
<td>1.1</td>
</tr>
<tr>
<td>11</td>
<td>Sonateh</td>
<td>0.86</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>0.86</td>
<td>1.2</td>
</tr>
</tbody>
</table>

* P-f and R-f stands for P-factor and R-factor of the model.

Fig. 3. Observed (solid line) and simulated (dashed line) hydrographs for outlet station 8 measuring inflow to the Boukan dam (bottom panel) and the main basin outlet station 2, Nezamabad (top panel).

4.3. **SDSM- downscaling of HADCM3- historical temperatures**

Based on a cross-correlation analysis of the HADCM3- temperature predictors with the observed historical daily temperatures, the three highest correlating predictors, ncep_mslp (mean sea level pressure), ncep_shum (near surface specific humidity) and ncep_temp (mean temperature at 2m) were selected in the
Fig. 4. Observed and simulated min. (upper panels) and max. (lower panels) monthly temperatures for calibration (left panels) and validation (right panels) periods at 452255t station.

Table 4. R^2 and SE of SDSM- downscaled monthly min. and max. temperatures for historical calibration and validation periods.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Station Name</th>
<th>R^2 Calibration</th>
<th>R^2 Validation</th>
<th>SE Calibration</th>
<th>SE Validation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. Temperature</td>
<td>452255t</td>
<td>0.63</td>
<td>0.72</td>
<td>2.05</td>
<td>1.67</td>
</tr>
<tr>
<td></td>
<td>453253t</td>
<td>0.56</td>
<td>0.61</td>
<td>2.48</td>
<td>2.10</td>
</tr>
<tr>
<td></td>
<td>453254t</td>
<td>0.61</td>
<td>0.68</td>
<td>2.20</td>
<td>1.82</td>
</tr>
<tr>
<td></td>
<td>454252t</td>
<td>0.54</td>
<td>0.59</td>
<td>2.55</td>
<td>2.19</td>
</tr>
<tr>
<td></td>
<td>454254t</td>
<td>0.60</td>
<td>0.70</td>
<td>2.2</td>
<td>1.76</td>
</tr>
<tr>
<td></td>
<td>454255t</td>
<td>0.64</td>
<td>0.74</td>
<td>2.06</td>
<td>1.62</td>
</tr>
<tr>
<td></td>
<td>455253t</td>
<td>0.57</td>
<td>0.65</td>
<td>2.34</td>
<td>1.88</td>
</tr>
<tr>
<td>Max. Temperature</td>
<td>452255t</td>
<td>0.73</td>
<td>0.78</td>
<td>2.04</td>
<td>1.81</td>
</tr>
<tr>
<td></td>
<td>453253t</td>
<td>0.77</td>
<td>0.70</td>
<td>1.78</td>
<td>2.20</td>
</tr>
<tr>
<td></td>
<td>453254t</td>
<td>0.72</td>
<td>0.79</td>
<td>2.07</td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td>454252t</td>
<td>0.68</td>
<td>0.77</td>
<td>2.21</td>
<td>1.81</td>
</tr>
<tr>
<td></td>
<td>454254t</td>
<td>0.71</td>
<td>0.78</td>
<td>2.16</td>
<td>1.79</td>
</tr>
<tr>
<td></td>
<td>454255t</td>
<td>0.72</td>
<td>0.78</td>
<td>2.11</td>
<td>1.82</td>
</tr>
<tr>
<td></td>
<td>455253t</td>
<td>0.69</td>
<td>0.77</td>
<td>2.17</td>
<td>1.84</td>
</tr>
<tr>
<td>Average</td>
<td>0.66</td>
<td>0.72</td>
<td>2.17</td>
<td>1.86</td>
<td></td>
</tr>
</tbody>
</table>

SDSM- regression model for the downscaled prediction of the min. temperature, whereas the two predictors ncep_p500 (500 hPa geopotential height) and ncep_temp were employed for the max. temperature.

Figure 4 and Table 4 show the statistical results of SDSM- downscaled predictions of these two temperature predictands after monthly aggregation for both the calibration (1977-2000) and the validation (2001-2012) period at the CRU grid points. One can notice a very good agreement between observed and downscaled
monthly variables, though this holds somewhat less for the min. temperature in the validation period. This visual impression is also corroborated by the rather high, respective, low values for the coefficient of determination, R^2 and the standard error (SE) of the calibrated and validated model listed in Table 4.

It should be noted that the ECDF-QM method was also tested with temperature predictors from the MPI-ESM-LR GCM model, but turned out lower model performance than SDSM in the validation period ($R^2=0.38$ and $SE=6.85$ against $R^2=0.72$ and $SE=1.86$). This is the reason for using SDSM for temperature downscaling above.

4.4. QM-downscaling of MPI-ESM-LR precipitation predictors

For the validation of the two QM-downscaling variants employed, i.e. ECDF and the KDF, procedures, 10 series realizations of cross validation were carried out for 20 years, randomly selected between years 1977 and 2005, and then evaluated using the quantile bias (QB_t) parameter for different percentiles t on the monthly aggregated data (see Eq. 6). Table 4 shows the results obtained for the two QM-variants. One may notice that while the raw GCM (MPI-ESM-LR)-predicted precipitation mostly overestimates the observed one ($QB_t>1$), - with the exception of the more extreme 75% percentile, where GCM’s are usually known to underestimate the real precipitation - KDF- and ECDF- bias corrected precipitation underestimate it slightly ($QB_t<1$), however, with the ECDF- QB_t values closer to 1, i.e. this QM-variant works better than the other one. Based on these results, only the ECDF-QM-variant is further applied in the subsequent analysis.

Table 4. Precipitation quantile bias (QB_t) as a function of the percentile obtained with the raw GCM, KDF and ECDF- QM variants.

<table>
<thead>
<tr>
<th>Percentile</th>
<th>Raw GCM</th>
<th>KDF</th>
<th>ECDF</th>
</tr>
</thead>
<tbody>
<tr>
<td>25%</td>
<td>1.48</td>
<td>0.69</td>
<td>0.96</td>
</tr>
<tr>
<td>50%</td>
<td>1.35</td>
<td>0.57</td>
<td>0.87</td>
</tr>
<tr>
<td>75%</td>
<td>0.86</td>
<td>0.46</td>
<td>0.79</td>
</tr>
<tr>
<td>Average</td>
<td>1.23</td>
<td>0.57</td>
<td>0.88</td>
</tr>
</tbody>
</table>

The effects of the ECDF-QM application on the historical precipitation are shown at the meteorological station Nouroozloo as an example in Figure 5. Corroborating the results of Table 4, one may notice that while the raw GCM precipitation overestimates the observed one, the ECDF-bias corrected comes much closer to the latter. Similarly good results ($0.75<QB_t<1$) are obtained for other stations, but not shown here.

![Fig. 5. Monthly observed and QM-downscaled (bias-corrected with ECDF and KDF) precipitation at Nouroozloo station for the calibration period 1977 to 1996.](image-url)
Fig. 6. Empirical CDF for daily precipitation for observed, reference raw GCM (1977-2005), future raw GCM for the RCP4.5 climate scenario (2006-2029) and QM- bias-corrected data at Nouroozloo station for March and December.

Using the underlying procedures of the ECDF- QM-method, as epitomized by Eqs. 2-5, the future monthly MPI-ESM-LR- precipitation- predictors under radiation forcing scenarios RCP 2.6 and RCP 4.5 for years 2006 to 2029 were bias-corrected. Figure 6 shows the empirical CDFs of the observed, raw historic GCM, raw future GCM of the RCP 4.5 scenario and the bias-corrected future GCM precipitation for months of March and December at the Nouroozloo precipitation gauging station. Again, the previously mentioned overestimation of the historic precipitation by the raw GCM-predictions is clearly noticeable which leads to a corresponding "downward" correction of the future raw GCM- predictions. Similar results were obtained for other stations and other months and are not presented here.

Finally daily precipitation values were generated from the monthly biased corrected data for the two RCP -scenarios by means of the stochastic Markov-chain approach for the sequence of wet and dry days in a month and random drawing from the appropriate ECDF and scaling to get the correct precipitation amount (see Section 3.3.2). With this procedure, 10 stochastic realizations of future daily precipitation were generated which will be further processed for use as input in the SWAT- model in the following section. Figure 7 shows the future (2006-2029) bias-corrected monthly precipitation series generated from the average of the 10 realizations, together with the raw future GCM- precipitation, for scenario RCP2.6 for the station Nouroozloo. In agreement with Figure 6, one can clearly notice again that the QM- bias corrected monthly precipitation is consistently lower than the raw GCM-data.

4.5. SWAT future dam inflow simulations for various climate scenarios.

For the simulation of future streamflow in the ZRB and, particularly, of the inflow to the Boukan dam, three possible representative future precipitation series for each RCP scenario, RCP 2.6 and 4.5, called hitherto PA, PB and PC, were selected from the aforementioned realization-set of 10 QM- stochastically generated daily precipitation series. The PA- scenario has the less predicted rainy days, the PC- scenario the most, and the PB- scenario represents the 10-realizations average.

The precipitations predicted in this way for the two RCP-scenarios (2.6 and 4.5) were then inputted as drivers into the previously calibrated SWAT- model, together with the downscaled min. and max. temperatures for the two SRES-scenarios A2 and B2 (named here TA and TB), resulting in a total of 12 possible climate scenarios, to predict the future reservoir dam inflow.
Fig. 7. Future (2006-2029) raw GCM- and bias corrected monthly precipitation series for scenario RCP2.6 for Nouroozloo station.

Figure 8 shows the SWAT-simulated future inflow variations to the Boukan dam for these 12 climate scenarios. Comparing the future streamflows predicted for the different scenarios, one may recognize that the trends are more or less the same, though different extreme values may arise. In general, the future predicted inflows are larger for the more extreme RCP 4.5 (bottom panels) than for RCP 2.6 (top panels).

Fig. 8. SWAT-simulated future monthly inflows at Boukan Dam for 12 climatic scenarios, i.e. RCP 2.6 (top panels) and RCP 4.5 (bottom panels) for precipitation, and two SRES- temperature scenarios, A2 (TA) (left panels) and B2 (TB) (right panels) and three precipitation scenarios (PA, PB, PC, see text for details).
The above predicted changes of the future inflow to the Boukan dam, the major water supply reservoir in the ZRB, will have significant adverse implications on the water supply in the basin, requiring various adaptation strategies, especially, for agriculture, such as reduced or more efficient irrigation, or even changing the crop patterns, as has been indicated by e.g. Fereidoon and Koch (2017) for another, similar agriculturally used basin in Iran.

The various water balance parameters for the whole ZRB, which are either input to SWAT (precipitation) or simulated, are presented in Table 5 as averages of the 6 variants for each of the two climatic scenarios, RCP 2.6 and RCP 4.5, together with those obtained for the historical reference period. One will notice from the table that, in comparison with the validation period (1981 to 1990), precipitation (rainfall plus snowfall) will decrease gradually by 28% and 31% for the two RCP’s, respectively. For the snowmelt, the reductions are with 41% and 44% even more tremendous. Relative to the later calibration period (1991 to 2012), the reduction of future precipitation will be 11% less for both RCPs, while snowmelt will be 19% and 18% less for RCP 2.6 and 4.6 scenarios, respectively. The decreasing average of snowfall and sublimation also agree with the reducing trend of snowmelt in the predicted scenarios. Evapotranspiration (ET) shows also a decreasing trend in the future years, with the latter being, somewhat unexpectedly, stronger for RCP 4.5 than for RCP 2.6, whereas the shallow aquifer recharge is also reduced for both RCPs, though somewhat less for RCP 4.5.
Table 5. Annual SWAT-modeled water balance components for the ZRB for the historical reference period (1981-2012) (validation (1981-1990), calibration (1991-2012), and average) and the averages of the 6 variants for each of the two climatic scenarios, RCP 2.6 and RCP 4.5 for the future period (2012-2029). Red line bordered cells mark the flow contributions to the total water yield (streamflow).

Red line bordered cells mark the flow contributions to the total water yield (streamflow).

<table>
<thead>
<tr>
<th>Water Balance components (mm)</th>
<th>Historical Period</th>
<th>RCP 2.6</th>
<th>RCP 4.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Validation</td>
<td>Calibration</td>
<td>Average</td>
</tr>
<tr>
<td>Precipitation</td>
<td>454.6</td>
<td>393.1</td>
<td>423.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snowfall</td>
<td>145</td>
<td>118.3</td>
<td>131.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sublimation</td>
<td>38.5</td>
<td>38.5</td>
<td>38.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snowmelt</td>
<td>105.9</td>
<td>79.7</td>
<td>92.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aquifer Recharge Shallow</td>
<td>174.2</td>
<td>148.4</td>
<td>161.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evapotranspiration</td>
<td>254.8</td>
<td>253.5</td>
<td>254.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ SWQ</td>
<td>61.7</td>
<td>42.5</td>
<td>52.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ LWQ</td>
<td>29.7</td>
<td>25.2</td>
<td>27.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ GWQ</td>
<td>133.2</td>
<td>101.0</td>
<td>117.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- TLOSS</td>
<td>2.3</td>
<td>1.8</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>= WYLD</td>
<td>222.3</td>
<td>166.9</td>
<td>194.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Runoff Coefficient (RC)</td>
<td>15%</td>
<td>12%</td>
<td>14%</td>
</tr>
</tbody>
</table>

*The percentage in the parentheses shows the relative difference with the average of the historical period.

The future declining trends in the above mentioned parameters will have direct consequences on the three important routing contributors, surface runoff (SWQ), lateral subsurface flow (LWQ) and groundwater inflow (GWQ) which make up (minus the transmission losses, TLOSS) the streamflow in the main channel, i.e. the water yield WYLD, as framed by the red line in Table 5. Thus, when compared with the historical period, these three flow components will be significantly lower in the future for the two RCP scenarios and, with it, the total water yield, which decreases by 36% and 23% for RCP 2.6 and 4.5, respectively. In fact, this reduction is mostly due to the large drop of the groundwater contribution (GWQ) to the main stream which is by 34% to 49% on average.

The ratio of the surface runoff SWQ to the liquid precipitation plus snowmelt defines the surface runoff coefficient RC (Merz and Blöschel, 2009). It is predicted to have on average a slight increase which is more in RCP 4.5 (from 15% and 12% in validation and calibration periods to 15% and 17% in RCP 2.6 and RCP 4.5, respectively), as the liquid precipitation plus the snowmelt (denominator of the RC-ratio) will have a stronger reduction by 23% to 25% than the average surface runoff with only a 12% and 4% decrease for RCP 2.6 and RCP 4.5, respectively. Based on the values in Table 5 one may also notice that, despite the fact that the surface runoff and, consequently, the inflows to the Boukan dam will decline by 25% and 19% for the two RCP’s, respectively, compared to the validation period 1981-1990, but increase by 8% and 17% in comparison with the later calibration period 1991-2012 for the two RCPs, because of the decreasing evapotranspiration and losses.

In summary, the impacts of climate change on the water balance of the ZRB will overall be negative, as the available freshwater resources will be diminished for the two future climate scenarios investigated. Based
on these predictions, there is a higher likelihood of a future water scarcity in the ZRB, unless some adaptation strategies are implemented, e.g. construction of new hydraulic storage facilities and/or changing agricultural crop pattern that are more prone to resist water scarcity.

5. Conclusions

The impacts of a changing climate on inflows in the Boukan dam and on general water availability in the Zarrine river basin (ZRB) were investigated, using the basin-wide SWAT- hydrologic model, driven by GCM- climate predictors, downscaled by the statistical downscaling method (temperatures), and a nonstationary CDF-matching Quantile Mapping (QM)- bias correction technique (precipitation).

SWAT was first calibrated and validated satisfactorily for six available discharge stations around the basin, one by one, for the historical reference period 1981-2012 and then used to predict future hydrological basin parameters, namely, streamflow (water yield) up to year 2029. Input precipitation to the model is based on MPI-ESM-LR model from CMIP5 GCM simulation results for RCP 2.6 and RCP 4.5 scenarios, downscaled by QM with two variants, Kernel Density Function and Empirical CDF (ECDF). Owing to the better performance of the latter, the QM-ECDF variant was applied to the raw GCM-precipitation in the study area and turned out to be able to significantly reduce the biases of the latter. Input temperatures to the SWAT-model were SDSM - a hybrid of multiple linear regression and stochastic weather generator- downscaled predictors of the HADCM3 GCM.

To evaluate the impacts of future climate variations on water availability in the ZRB, the SWAT-predicted hydrological changes were investigated, i.e. water balance components, including the weather inputs, precipitation, snowfall and snowmelt and evaporation, and three main routing contributors, surface water, lateral flow and groundwater to the water yield as the net available water resources in the basin are compared for the historic (reference) and future periods under RCP 2.6 and RCP 4.5 climate scenarios.

The results of this analysis indicate that the impacts of future climate change on the water balance in the ZRB will generally be negative in the recent future period 2012-2029, as the long-term river discharge and with it the inflow of the Boukan dam, the major water reservoir in the basin, will decrease, particularly, for RCP 2.6. This holds also for the total water yield of the watershed which will decrease by -23% (RCP 4.5) and -36% (RCP 2.6), as rainfall, lateral flow and groundwater baseflow, in particular, to the main channel diminish. Notwithstanding, the future runoff coefficient shows a slight 1% (RCP 2.6) and 3% (RCP 4.5) increase, as the future precipitation decreases more (~30%) than the surface runoff (~5%).

Thus, considering these predicted future drops of the available water resources, together with a concurrent future increase of the water demand, due to further agricultural- and other development plans for the ZRB, the necessity of an adaptation plan to mitigate these negative impacts of climate change on the ZR-streamflow, as well as on Lake Urmia with its fragile ecosystem. The adverse situation could be further exacerbated by the possible emergence of more climate extremes, as indicated for similar other basins in Iran by e.g. Abbaspour et al. (2009); Fereidoon and Koch (2017).

Based on the research proposed here, a case for further studies can be provided to deal with water management and decision making on the basin scale in Iran, in order to better respond to changing future water availability with some adaptation plans. The modelling approach used in the present study could be used for a high-resolution analysis of water resources system and further as a base tool for managing available freshwater resources with a sustainable and optimal river basin management approach, such as MODSIM (Fereidoon and Koch, 2017). Moreover, as it has been shown in the present study that groundwater plays a significant role in the total water yield of the basin, a better understanding of the characteristics of the groundwater system in the basin should be obtained which could be achieved by coupling the SWAT- surface water model with a groundwater model, such as MODFLOW, as done by Taie Semiromi and Koch (2017) in a similar basin in the region.
References

