
 

Abstract — This paper presents in a unified way nu-
merical methods for the time-domain modeling of 
ultrasonic waves and coupled ultrasonic-
electromagnetic transducers. The modeling tools are 
based on the direct discretization of underlying gov-
erning field equations in integral form by applying 
the so-called finite integration technique on a stag-
gered grid complex in space and time. This yields 
discrete grid equations, which can be written in ma-
trix form introducing well-defined discrete topologi-
cal matrix operators. These operators allow a consis-
tent formulation of the discrete grid equations insur-
ing the properties of the governing equations. The 
simple structure of the discrete grid equations allows 
a very efficient implementation on high performance 
computers, workstations, personal computers and 
even state-of-the-art laptops. The potential of the nu-
merical codes is presented for selected applications, 
where the paper mainly focuses on applications in 
ultrasonic non-destructive evaluation. 
 

I. INTRODUCTION 
 The computational time-domain modeling of 
different types of wave field problems is utilized in 
various disciplines of engineering and science: in 
increasingly challenging problems in remote sensing, 
communication, optics, geophysical exploration, 
ground penetrating radar, medical diagnosis, and non-
destructive evaluation. For example, for the computer 
simulation of ultrasonic wave phenomena and 
transducers there is a need of simple, flexible, and 
powerful numerical methods. Figure 1 displays a 
typical sketch of a setup used in non-destructive 
testing with ultrasound and Figure 2 shows a typical 
transient echo signal measured with this setup. 
 Various numerical techniques can be applied 
today to model transient ultrasonic waves and 
transducers: for instance, the finite difference (FD), 
finite element (FE), finite volume (FV), finite 
difference time domain (FDTD), finite integration 
(FI), and finite volume time domain (FVTD) method. 

In this paper we present in a unified way the 
application of the finite integration technique (FIT) 
for the time-domain modeling of ultrasonic waves 
and coupled ultrasonic-electromagnetic transducers. 
The presented numerical modeling tools are called 
AFIT, EFIT, PFIT, and EMUSFIT, which stands for 
acoustic (A), elastodynamic (E), piezoelectric (P), 
and electromagnetic-ultrasonic (EMUS) finite 
integration technique (FIT).  
 Historically, the FIT has been introduced three 
decades ago in electrodynamics [1], where the FIT is 
applied to the full set of Maxwell’s equations in 
integral form. Then, these ideas were adapted to the 
elastodynamics, which resulted in the so-called 
elastodynamic finite integration technique (EFIT) [2]. 
A unified treatment of the acoustic, electromagnetic, 
elastodynamic, piezoelectric, and electromagnetic-
ultrasonic case can be found in [3, 4] and applications 
are given for instance in [2-6]. 
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Figure 1: Typical setup applied in non-destructive 
testing with ultrasonic waves: steel block with a per-
fect scatterer. 
 
 

Figure 2: Typical time history of a transient echo 
signal (A-Scan) received in pulse-echo mode. 



 

II. GOVERNING FIELD EQUATIONS FOR 
ULTRASONIC WAVES AND ULTRASONIC 

TRANSDUCER MODELING 
Ultrasonic Wave Modeling with AFIT and EFIT 
 The governing field equations for the ultrasonic 
wave modeling are the linear equations of acoustics 
and elastodynamics, which read for linear, 
inhomogeneous, anisotropic, instantaneously and 
locally reacting media in integral form: 
(Acoustics) 
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p   [N/m2] Pressure 
j   [Ns/m3] Momentum density vector 
v   [m/s] Particle velocity vector 
S   [1] Scalar deformation 
f   [N/m3] Volume force density vector 
h   [1/s] Injected deformation rate 
T  [N/m] Cauchy’s stress tensor 
j  [Ns/m3] Momentum density vector 
v   [m/s] Particle velocity vector 
S   [1] Deformation tensor 
f   [N/m3] Volume force density vector 
h   [1/s] Injected deformation rate tensor 

 
 In the above Equations (1)-(4) S V=∂  is the 
closed surface of the volume V  and n is the outward 
unit vector of S. The symmetric part of a second rank 
tensor is denoted by { }211sym{ ( , )} ( , ) [ ( , )]

2
t t t= +nv R nv R nv R . 

 The Equations (1)-(4) are coupled if we 
introduce appropriate constitutive equations, e.g., for 
linear, inhomogeneous, anisotropic, instantaneously 
and locally reacting media: 
 
(Acoustics) 
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(Elastodynamics) 
e0( , )   ( ) ( , )t tρ=j R R v R                (6) 

( , )   ( ) ( , )t t=S R s R : T R                (7) 

a0ρ [kg/m3] Acoustic mass density at rest 
κ [m2/N] Compressibility 

e0ρ [kg/m3] Elastic mass density at rest 
s [m2/N] Compliance tensor of rank four 

 If we add appropriate time integration schemes to 
the two sets of equations and apply the finite 
integration technique (FIT) using a staggered grid 
complex in space and time, we obtain the following 
two sets of matrix equations: 
 
(Acoustics) 
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 These are the so-called grid equations of AFIT and 
EFIT in matrix form, which represent a one-to-one 
translation to the governing equations. Each of the 
above two sets of matrix equations represents an ex-
plicit marching-on-in-time algorithm of “leap frog” 
type of second order in space and time. 

The topological operators are ensuring essential 
vector analytic properties in the discrete grid space: 
 

∇×∇ = 0 ⇔ kk[ ] [ ] [ ] [ ] [ ]= =curl grad curl grad 0     (16) 
0∇ ∇× =i ⇔ jk[ ] [ ] [ ] [ ] [ ]= =div curl div curl 0 ,     (17) 

 
where the algebraic null matrix is denoted by [ ]0 . 
 Further details are given in [3, 4] and modeling 
results can be found in [2-6]. 



 

Ultrasonic Transducer Modeling with PFIT and 
EMUSFIT 
 The piezoelectric finite integration technique 
(PFIT) and the electromagnetic-ultrasonic finite 
integration technique (EMUSFIT) are time-domain 
modeling tools for typical transducers applied in 
ultrasonics [3, 4]. Due to the limited space, in the 
following we only consider the piezoelectric case. 
The constitutive relations for piezoelectric materials 
read for linear, inhomogeneous, instantaneously and 
locally reacting piezoelectric (pe) media: 

S
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Sε  [As/Vm] Permittivity tensor at const.=S  

pe
e  As/m2] Piezoelectric coupling tensor of third 

rank 
Es    [m2/N] Compliance tensor at const.=E  

pe
d   [As/N] Piezoelectric coupling tensor of third 

rank 
 If we assume that the typical dimension of the 
piezoelectric material is small compared to the 
electromagnetic wavelength - low frequency 
approximation for Maxwell's equations -, we can 
neglect the induction term in Faraday's law. Then, the 
electric field strength is an irrotational gradient field, 
i.e., ( , ) ( , )t t= −∇ΦE R R  with the scalar electric 
potential ( , )tΦ R , where ( , )t∇× =E R 0  holds. This is 
the so-called electroquasistatic (EQS) approximation 
[3]. This results in an elliptic Poisson equation for the 
time derivative of the scalar electric potential 
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 The application of FIT to the integral form of Eq. 
(20) yields the following equation in matrix form 
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with ( )[ ]{ } { }tn =curl E 0 and ( ) ( )1{ } [ ] [ ]{ }t tn n−= −E R grad Φ . 

The underlying staggered grid complex in space 
and time of PFIT is displayed in Figure 3. PFIT uses 
a scalar electric potential-velocity-stress formulation. 
 

 
 PFIT comes in two versions, a voltage and a 
current driven version, U- and I-PFIT [3]. The I-PFIT 
can be combined with a 1-D network algorithm to 
model an external impedance load (see Fig. 4). 

 
 Figure 5 and 6 show the PFIT modeling of a 
piezoelectric transducer coupled to a solid brass 
cylinder with a backwall breaking notch. A 
comparison between the modeled and experimental 
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Figure 4: Equivalent circuit modeled by a 1-D 
network algorithm. 

a) 
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Figure 3: Staggered spatial (a) and staggered 
temporal (b) grid complex of PFIT. 



 

piezoelectric voltage observed at the piezoelectric 
disk is given in Fig. 5, displaying the agreement 
between the numerical and physical world. The 
dominant echo signals are the excitation pulse, the 
notch echo, and the backwall echo. Time-domain 
snapshots are displayed in Fig. 6, which show the 
ultrasonic wave propagation and the generation of the 
so-called notch echo signal and backwall echo signal. 
 

 

 

III. CONCLUSION 
The paper presented the application of the finite in-

tegration technique in ultrasonic wave and transducer 

modeling, e.g., piezoelectric transducers. Especially, 
the paper tried to present the topic under considera-
tion in a unified way starting from the sets of field 
and constitutive relations up to the sets of discrete 
grid equations. This unified presentation gives a deep 
insight into the physical similarities between the dif-
ferent phenomena and their numerical treatment. 
 Due to the limited space and the various wave field 
phenomena it is impossible to cover all features of the 
finite integration technique and its application in 
time-domain computation of wave fields. The author 
refers to the references below and references therein. 
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Figure 6: Pz27 disk on a brass cylinder with a 
backwall breaking notch: 2-D PFIT time-domain 
snapshots of the magnitude of the particle velocity 
vector. 

Figure 5: Pz27 disk on a brass cylinder with a 
backwall breaking notch: comparison between the 
numerical (a) and experimental (b) piezoelectric 
voltage at the Pz27 disk for an external impedance 
load of Rg = 50 Ω; two cycle sine pulse excitation 
with u0 = 10 V and fc = 2 MHz. 


