
Application of modeling techniques for ultrasonic austenitic
weld inspection

K.J. Langenberga,* , R. Hannemanna, T. Kaczorowskia, R. Markleina, B. Koehlerb, C. Schurigb,
F. Walteb

aDepartment of Electrical Engineering, University of Kassel, D-34109 Kassel, Germany
bFraunhofer Institute for Nondestructive Testing, EADQ and IZFP, Dresden and Saarbru¨cken, Germany

Abstract

After a brief discussion of the fundamental equations of elastic wave propagation in anisotropic (transversely isotropic) materials and their
basic solutions in terms of plane waves and Green functions, we point out and demonstrate the usefulness of Huygens’ principle in
conjunction with the results obtained by the numerical Elastodynamic Finite Integration Technique (EFIT)-code for an intuitive physical
understanding of ultrasound propagation in austenitic steel. EFIT is briefly explained and then validated against a weld transmission
experiment; applications to pulse echo simulations for various canonical and real-life geometries and structures with and without backwall
entering notches are to follow. Further, we have been able to confirm the existence of the second qSV-wave, as predicted by plane wave
theory, through EFIT-modeling as well as experiments.q 2000 Elsevier Science Ltd. All rights reserved.
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1. As an introduction: the mathematical setting

1.1. Governing equations, plane waves, Green’s functions,
Huygens’ principle

1.1.1. Governing equations
Ultrasonic inspection of solids as a particular method of

NDE (Nondestructive Evaluation) relies on elastic waves in
Rt-space:R is the vector of position andt is time. For model-
ing purposes, the underlying governing equations have to be
solved. In our case of linear elastodynamics these are the
equation of motion and the deformation rate equation [1–5]:

2

2t
j �R; t� � 7·T�R; t�1 f �R; t�; �1�

2

2t
S�R; t� � 1

2 {7v�R; t�1 �7v�R; t�� 21} 1 h�R; t�; �2�

where the elastic wavefield is characterized by the momen-
tum densityj �R; t�; the second rank stress tensorT�R; t�; the
second rank strain tensorS�R; t�; and the particle velocity
v�R; t�; the upper indicial notation indicates the transpose
of a dyadic, and7 is the del-operator: it stands for the
divergence when applied by a dot-product, it stands for the

curl when applied by a cross-product, and it stands for the
gradient (dyadic) when applied without dot or cross, i.e. as a
dyadic product. The quantitiesf �R; t�; h�R; t�—the volume
force density and the injected deformation rate—account for
external (given, prescribed) sources, i.e. transducers.

On a boundarySbetween two homogeneous materials (1)
and (2) with different elastic properties, the governing equa-
tions reduce to boundary conditions forR [ S :

n·�T �2��R; t�2 T�1��R; t�� � 2t�R; t�; �3�

1
2 �nv�2��R; t�1 v�2��R; t�n 2 nv�1��R; t�2 v�1��R; t�n�
� 2g�R; t�; �4�

wheret andg are given surface densities of force and injected
deformation rate, respectively;n is the normal unit-vector on
Spointing from material (1) into material (2). If material (1)
supports no elastic wave field, we have instead of Eqs. (3) and
(4)—the index (2) becomes superfluous

n·T�R; t� � 2t�R; t�; R [ S; �5�

1
2 �nv�R; t�1 v�R; t�n� � 2g�R; t�; R [ S: �6�

The case of material (1) being vacuum is particularly
important in NDE, it yields the stress-free boundary
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conditions

n·T�R; t� � 0; R [ S; �7�

1
2 �nv�R; t�1 v�R; t�n� � 2g�R; t�; R [ S: �8�
Here, g�R; t� in Eq. (8) can no longer beprescribedarbi-
trarily, it has to bedeterminedenforcing the boundary con-

dition (7) for a particular solution of the governing equations;
then g�R; t� turns out to be an equivalent, field-dependent
source of the secondary field because of the scattering or
diffraction of the incident field by the surfaceS.

Considered as such, Eqs. (1) and (2) are still useless,
because each equation contains different physical fields:
constitutive equations are required! We apply

j �R; t� � r�R�v�R; t� �9�
together with Hooke’s law of linear elastodynamics

S�R; t� � s�R� : T�R; t� �10�

introducing the mass densityr�R� ands�R�; the compliance

tensor of rank four. By symmetry ofS and T, as well as
recognizing the elastodynamic Poynting-theorem for the
Poynting-vector

S�R; t� � 2v�R; t�·T�R; t�; �11�
the 81 components ofs�R� reduce to only 21 independent

ones. The particular constitutive equations refer to linear,
anisotropic, inhomogeneous, time-invariant, locally and
instantaneously reacting materials, i.e. dissipation and,
therefore, frequency dependence is not included.

Inverting Hooke’s law defining the stiffness tensorc�R�
through

T�R; t� � c�R� : S�R; t� �12�

we obtain a single partial differential equation forv�R; t� :

7·c�R� : 7v�R; t�2 r�R� 2
2

2t2
v�R; t�

� 2
2

2t
f �R; t�2 7·c�R� : h�R; t�: �13�

Three solution categories for this equation can be defined:

• solutions of the homogeneous equation;
• solutions of the inhomogeneous equation for given

sources in “free space”: this is the transducer problem
in an elastic material of infinite extent;

• solutions of the inhomogeneous equation in the presence
of boundaries and scatterers: this is—in our case—the
weld modeling problem.

1.1.2. Plane waves
Solutions of thehomogeneousEq. (13) are of particular

interest forhomogeneousmaterials (of infinite extent); they

(may) define plane waves as the fundamental building block
for ultrasonic experiment interpretation.

Introducing a Fourier transform with regard tot—circu-
lar frequencyv is the conjugate variable, and j the imagin-
ary unit—according to

v�R;v� �
Z∞

2 ∞
v�R; t� ejvt dt �14�

as well as a three-dimensional (3D) Fourier transform with
regard to the three components ofR in a cartesian coordi-
nate systemx; y; z according to

v�K ;v� �
Z∞

2 ∞

Z∞

2 ∞

Z∞

2 ∞
v�R;v� e2jK ·R d3R �15�

yields

�K ·c·K �·v�K ;v� � rv2v�K ;v� �16�

instead of Eq. (13). The Fourier vectorK has cartesian
componentsKx;Ky;Kz: Eq. (16) defines an eigenvalue
problem for the eigenvaluesv �K � and the corresponding
eigenvectorsv�K ;v�: Two special cases are really im-
portant: the isotropic material for the sake of simplicity,
and the transversely isotropic material as our model for
anisotropic welds. In the first case we have

c� lI I 1 m�I I1342 1 I I1324� �17�

with Lamé’s constantsl andm 2 I is the dyadic idemfactor,
I I its dyadic product with itself, and the upper indicial nota-
tion indicates transposition of the elements ofI I : Solving the
eigenvalue problem (16) for (17) we obtain the single
eigenvalue

v�K � �
����������������
l 1 2m

r
K ·K

s
� KcP; �18�

which restricts—for a given circular frequencyv—the
magnitudeK of the Fourier vector to the wavenumberkp �
K � v=cP of pressure (primary) waves with the phase vel-
ocity cP; and a double eigenvalues

v�K � �
���������
m

r
K ·K

r
� KcS �19�

with the wavenumberkS � K � v=cS and the phase velocity
cS of shear (secondary) waves. For the eigenvectors it turns
out, that pressure wave Fourier spectra are longitudinally
polarized, i.e. a single plane wave componentv0�k̂;v� out
of the Fourier spectrum ofv�K ;v� with unit-propagation
vector k̂ according to

v�R;v� � v0�k̂;v� ejkPk̂·R �20�
must satisfyv0�k̂;v� × k̂ � 0: On the other hand, shear
wave Fourier spectra are transversely polarized, i.e. for

v�R;v� � v0�k̂;v� ejkSk̂·R �21�
we havev0�k̂;v�:k̂ � 0: As the corresponding eigenvalue
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appears twice, we can choose two arbitrary orthogonal
transverse shear wave polarizations (usually denoted by
SH—shear horizontal withn·v0 � 0—and SV—shear
vertical with n × k̂·v0 � 0 — which refers to an appropri-
ately chosen reference plane with unit-normaln; for
instance the plane surface of a specimen or part).

The transversely isotropic material is defined as a special
anisotropic material with a preference direction given by the
unit-vector â; in the plane orthogonal tôa the material is
assumed to be isotropic. Austenitic steel welds are very
often characterized by a crystal structure, which allows for
this model, and we will demonstrate that in this paper. The
stiffness tensor of such a material is given by

c� l'I I 1 m'�I I1324 1 I I1342�1 �l' 1 2m' 1 lk 1 2mk

22�n 1 2mk�ââââ 1 �n 2 l'��I ââ 1 ââI �

1�mk 2 m'��I ââ1342 1 ââI1324 1 I ââ1342 1 ââI1342�
�22�

thus defining five independent “Lame´-constants” [4,6].
Again, inserting Eq. (22) into Eq. (16) results in three real
eigenvalues defining wavenumberskqP�k̂; â�; kqS1�k̂; â�;
kqS2�k̂; â� for plane waves with (phase) propagation direc-
tion k̂: All wavenumbers are related to their respective phase
velocitiescqP�k̂; â�; cqS1�k̂; â�; cqS2�k̂; â� throughkqP;qS1;qS2

� v=cqP;qS1;qS2; they are proportional to the slownesses

mh � c21
h with h � qP;qS1;qS2: Three real eigenvalues

yield three real-valued orthogonal eigenvectors accounting
for the polarization of plane waves in transversely isotropic

media; none of these polarizations is, in general, either
parallel or orthogonal tôk: In the case of only weak aniso-
tropy of the material, we observe that qP refers to a nearly
longitudinally polarized pressure wave, and qS1/qS2 refer
to two orthogonal transversely polarized shear waves. If, in
addition,â lies in the plane spanned bŷk and the reference
plane normaln; i.e. in the “plane of incidence”, that is to
say, ifn·â × k̂ � 0; we can identify qS1 with SH�v0·n � 0�
and, at least approximately, qS2 with qSV�v0·n × k̂ � 0�:

The most important observation, yet, is the dependence of
the wavenumbers and phase velocities on thedirection k̂ of
phase propagation. Therefore, for the three wave modes qP,
qS1, qS2 we obtain for̂a� cos 608e1 1 sin 608e3 the slow-
ness diagrams of Fig. 1 (we haven·â × k̂ � 0� in the ânk̂-
plane withx1x3-coordinates, hence, qS1� SH; qS2� qSV;
we have chosen a mass density at rest ofrA � 7800 kg=m3

and elastic constants given in form of the stiffness matrix for
â� e1

�c�A�â� e1�

�

216:0 145:0 145:0 0:0 0:0 0:0

262:75 98:25 0:0 0:0 0:0

262:75 0:0 0:0 0:0

82:25 0:0 0:0

sym 129:0 0:0

129:0

26666666666664

37777777777775
GPa

referring to a special austenitic steel A.
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qP;qSV;SH for austenitic steel.



Interesting enough, the group velocitiescgr;qP;qS1;qS2�k̂; â�
as defined by the velocity of Poynting-vector propagation
not only depend upon̂k as well, they are, in particular, not
equal to the phase velocities, neither regarding their magni-
tude nor their direction, i.e.cgr;qP;qS1;qS2 ± cqP;qS1;qS2k̂ (for
instance: [6–9]). Fig. 2 shows the respective group velocity
diagrams (magnitudes) complementing Fig. 1. In Fig. 1 we
have also indicated the fact, that for a given phase vector, say
k̂pSV; the unit-vector of the group velocitŷcgr;qSV is orthog-
onal to the corresponding slowness diagram, and vice versa in
Fig. 2: This illustrates the different directions of phase and
energy propagation. But: For theplanewave, this different
direction is not “visible”, the energy simply “slides” along the
wavefront of infinite extent. Therefore, interpreting the
consequences of phase and group velocity distinction for
NDE transducer and scattered fields isthe key to perform
and understand ultrasonic austenitic weld modeling.

1.1.3. Green’s functions, incident fields
The simplest source one can consider in a homogeneous

elastic solid of infinite extent is a dyadic point source
d�R 2 R 0�I at the source pointR 0; d�R 2 R 0� denoting
the 3D delta-distribution. In the frequency domain, the
resulting “wavefield” is then given by the dyadic Green
function G�R 2 R 0;v� satisfying the accordingly inhomo-
geneous Fourier-transformed Eq. (13):

7·c : 7G�R 2 R 0;v�1 rv 2G�R 2 R 0;v� � 2d�R 2 R 0�I :
�23�

The essence of Green functions (dyadics) is, that the solution
of Eq. (13) for the arbitrary volume source densities residing
in the volumeVQ is just the super position of “dyadic point-
source wavefields” represented byG�R 2 R 0;v� :

vi�R;v� �
ZZZ

VQ

�2jvf �R 0;v�

17 0·c : h�R 0;v��·G�R 2 R 0;v� d3R 0: �24�

We have added an index for “incident”, because Eq. (24) is an
appropriate model forincidenttransducer fields, the sourcesf
andh being supposed to be given: It is obvious, that this is a
“Point Source Synthesis Model” for the most general case of
an arbitrary anisotropic, yet homogeneous, material (of infi-
nite extent).

For arbitrary anisotropy, the explicit solution of Eq. (23)
is not known, but for theisotropic solid—c given by Eq.

(17)—the solution is readily at hand in terms of the scalar
Green functionsGP;S�R 2 R 0;v� [1–3]:

G�R 2 R 0;v� � 2
1

rv2 77GP�R 2 R 0;v�

1
1

rv2 �k2
SI 1 77�GS�R 2 R 0;v�; �25�

where

GP;S�R 2 R 0;v� � ejkP;SuR2R 0 u

4puR 2 R 0u
: �26�
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Fig. 2. Group velocity diagramscA
gr;qP;qSV;SH for austenistic steel.



Therefore, in this case, it is easy to visualize the “elementary
elastic wavelets” (in Huygens’ terminology) for a given
point source, sayf �R;v� � F�v�d�R�f̂ and h�R;v� being
zero; F(v) as the Fourier transform off(t) is the source
spectrum and̂f its (unit-vector) direction.

From Eq. (25) we obtain the convolution integral

vi�R; t� �
Z∞

2∞
df �t�
dt

f̂ ·G�R; t 2 t� dt; �27�

and obviously,vi�R; t� exhibits spherical pressure and shear
wavefronts with directional dependent amplitudes whose
time structure, at least in the far-field, is determined by
df �t�=dt.

Through partial integration, the�7 0·�-derivative onc :

h�R 0;v� in Eq. (25) can be shifted toG yielding

v i�R;v� �
ZZZ

VQ

�2jv f �R 0;v�·G�R 2 R 0;v�

2h�R 0;v� : S 0�R 2 R 0;v�� d3R 0; �28�
with the third rank Green tensorS 0 given by

S 0�R 2 R 0;v� � c : 7 0G�R 2 R 0;v�: �29�

Eq. (29) is the starting point to argue for a Point Source
Synthesis Model ofscatteredfields in terms of Huygens’
principle.

1.1.4. Huygens’ principle
Consider a scatterer—a “defect”—with surfaceSc and

outward normalnc: We “derive” Huygens’ principle for
elastic waves by intuition: First, we reduce the volume
source densitiesf andh in Eq. (28) to surface source densi-
ties t and g located onSc, and, second, we relatethoseto

surfacefieldsaccording to

t�R;v� � 2nc·T�R;v�; R [ Sc; �30�

g�R;v� � 2 1
2 �ncv�R;v�1 v�R;v�nc�; R [ Sc; �31�

yielding the scattered fieldvs�R;v� as

vs�R;v� �
ZZ

Sc

�jvn 0c·T�R 0;v�·G�R 2 R 0;v�

1n 0cv�R 0;v� : S 0�R 2 R 0;v�� dS0: �32�
A concise derivation of the Huygens principle (32) can be
found in Ref. [4]. Notice: The scattered field outsideSc, i.e.
vs�R;v�; adds to the incident field to yield the total field

v�R;v� � vs�R;v�1 vi�R;v�; �33�
therefore, the fieldv under the integral is thetotal field, and
the same holds forT.

Very often, the canonical scatterers in nondestructive
material testing are cracks and voids in solids. Therefore,
we confine ourselves to scatterers with stress-free bound-
aries, i.e. with the boundary conditionnc·T�R;v� � 0; R [

Sc; then we obtain

vs�R;v� �
Z∞

2 ∞

Z∞

2 ∞

Z∞

2 ∞
n 0cv�R 0;v�

: S 0�R 2 R 0;v� d3R 0: �34�

Again, the surface deformation raten 0cv�R 0;v� implies the
total field.

What are the problems with the applications of Eq. (34) to
defect scattering in anisotropic materials?

1. The Green tensorS 0; and because of its definition (29),

the Green tensorG; has to be known; we have already
pointed out that this is only true forisotropic materials,
even though some progress has been made to derive at
least integral representations for Green tensors in aniso-
tropic materials [7,10–13]. Notice: The knowledge ofG
is also required in the Point Source Synthesis Model (25)
for v i :

2. The total fieldv has to be known on the scattering surface
Sc, but vs has yet to be computed via Eq. (34); therefore,
Eq. (34) serves to enforce the inherent boundary con-
dition giving rise to integral equations forv on Sc,
which have then to be solved numerically (Boundary
Element Method; [13,14]).

Recognizing that the Boundary Element Method
requires tedious numerical calculations, one restricts to
“guesses” and approximations ofv on Sc, in particular
with the arguments of Physical Elastodynamics, which
are borrowed from Kirchhoff’s Physical Optics approx-
imation in electromagnetics (NDE applications for
isotropic materials: [15–18]). If Physical Elastody-
namics comes with approximations of Green’s
tensors—for instance, the far-field approximation
[19]—one arrives at effective computational schemes
even for NDE modeling ofanisotropic materials ([21];
strictly speaking, this is anapproximatePoint Source
Synthesis Model,not a generalization; it might only
be called a generalization regarding the previous restric-
tion of the approximatePoint Source synthesis Model to
isotropic materials).

Not only that the elastodynamic Huygens principle
serves as a starting point for approximate ultrasonic
modeling tools, it has a tremendous potential and
value to arrive at a physical intuitive understanding
and explanation of elastic wave propagation in anisotro-
pic materials. Again this physical understanding is
based upon guesses ofv on Sc in Eq. (34)—or prescrip-
tions of f in Eq. (27)—together with a physical “reali-
zation” of the wavefronts of point sources, i.e. Green’s
tensors. It turns out that these “wave surfaces” coincide
with the group velocity diagrams ofplane waves
[7,8,22], thus revealing thephysics behind these
diagrams. We will compute and display, i.e. realize,
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these wave surfaces with the help of a numerical
method, the EFIT.

2. Elastodynamic Finite Integration Technique: EFIT

EFIT is based on an integral form of the governing equa-
tions of elastodynamics, which is obtained integrating
Eqs.(1) and (2) over a volumeV with closed surfaceSg

and utilizing Gauss’ theorem—for simplicity, sources are
ignored:ZZ

Sg

n·T�R; t� dS�
ZZZ

V

2

2t
j �R; t� dV; �35�

ZZ
Sg

1
2 { nv�R; t�1 �nv�R; t��21}dS�

ZZZ
V

2

2t
S�R; t� dV:

�36�
Applying the Finite Integration Technique to Eqs. (35) and
(36), components ofT andv; for instance, have to be allo-
cated as shown in Fig. 3.

Additionally, discretization of inhomogeneous materials
is stringent, and that way, a consistent and convergent
numerical algorithm is obtained once the stability criterion
relating space and time discretization is satisfied [22].
Concerning errors, the EFIT-code is second order in space
and time. Present 2D- and 3D-versions of EFIT allow for the
modeling of inhomogeneous-anisotropic materials [23].
And recently, an extension to PFIT has been developed to
account for coupling between electromagnetics and elasto-
dynamics through the piezoelectric effect [23]; that way, it
is principally possible to model real life piezoelectric
transducers.

EFIT has been validated against a large number of ana-
lytical and experimental results [24,25].

3. EFIT and Huygens’ principle: transducer radiation
into anisotropic materials

As has been pointed out already, a “visualization” of the
elementary elastodynamic wavelets, the wave surfaces, is
required in order to apply Huygens’ principle to the super-
position of point sources located within a finite aperture,
thus modeling a transducer. And, in fact, EFIT istheappro-
priate tool to visualize such wave surfaces [23]. According
to Eq. (27), we have to choose a time functionf (t) for the
wavelet; one of our standard impulses for such purposes, an
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Fig. 3. The staggered grid for EFIT.

Fig. 4. RC4-pulse as a model for broadband transducer signals (f0 is the center frequency).



RC4-pulse (raised cosine with four cycles) modeling the
response of a commercial broadband piezoelectric transdu-
cer (MWB45-2) is displayed in Fig. 4. Fig. 5 exhibits wave-
fronts output of EFIT for an austenitic steel (modeled as
transversely isotropic with given̂a as indicated), wheref
models a line source witĥf as indicated; the EFIT-simula-
tion is two-dimensional (2D) in thêf â-plane: It is obvious
from the comparison with Fig. 2, that the wave surfaces of
qP- and qSV-wavesare the (energy) group velocity
diagrams (notice: SH-waves are not excited for this line
source excitation)! With that knowledge we can now
construct a transducer beam in austenitic steel through the
superposition of wave surfaces from point (line) sources
within a finite aperture: Fig. 6 compares this Huygens-
type construction for the 2D model ofline sources with
equal amplitudes, the aperturex�l�1 # x1 # x�r�1 indicated by
the black bar, forisotropic (ferritic) steel (top) andtrans-
versely isotropic(austenitic) steel (bottom); through a linear
time retardationtret(x1) of the line sources within the aper-
ture, we “produce” a 458-SV-beam in the isotropic material:
The Huygens-construction implies drawing tangential lines
to the spherical wavelets giving rise to an energy beam
ĉgr;SV which has the same direction as the normalk̂SV to
the phase fronts (the tangent lines), i.e. the phase propaga-
tion direction. In opposition to that, the same Huygens-type
construction based on the appropriate wave surfaces as
visualized by EFIT and computed as a qSV-energy velocity
diagram yieldŝcgr;qSV ± k̂qSV : The 458 phaseorientation in
the beam is maintained—it is enforced bytret(x1)—but the
energy, and hence, thebeam, travels nearly orthogonal to
the aperture: What was not visible forplanewaves (Fig. 2)
now becomes obvious forbeams.

Of course, the Huygens-construction of ultrasonic beams
in anisotropic materials does not account for amplitudes; it
“only” serves as an intuitive way of understanding strange
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Fig. 5. 2D-EFIT-simulation of a line source in a transversely isotropic material of infinite extent (wavefronts for various fixed times).

Fig. 6. Huygens-construction of a transducer beam radiating into an iso-
tropic material and into a transversely isotropic material: (a) time retarda-
tion; (b) isotropic steel ST; (c) austenitic steel A.



ultrasound paths in these materials, but as such, we consider
it to be of tremendous importance.

Amplitudes in the ultrasonic beam can be supplied essen-
tially by two methods: evaluate the Point (Line) Source
Synthesis integrals (25) or (32) via approximate expressions
for the Green functions [20,21] (approximate analytical
method) or apply EFIT to the same prescription of source
distributions (“exact” numerical method).

The output of EFIT for the example of Fig. 6 is given in
Figs. 7 and 8 for a MWB45-2 transducer, where we also
applied a measured traction force distribution within the
transducer aperture. Fig. 7 displays ultrasonic RC4-qSV-

wavefronts as snapshots, Fig. 8 shows qSV-wavefronts for
a time harmonic excitation functionf(t) with a given switch-
on time thus “reproducing” the Huygens-beam of Fig. 6.

4. Experimental validation; modeling results for various
weld geometries and structures

4.1. Experimental validation

Of course, a tool such as EFIT is most powerful to model
real-life ultrasonic testing situations, but, as a matter of fact,
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Fig. 7. 2D-EFIT impulsive transducer modeling in transversely isotropic materials.

Fig. 8. 2D-EFIT monofrequent transducer modeling in transversely isotropic materials.



validation is mandatory. This has two aspects: validation of
the code—in particular its numerical accuracy—and vali-
dation of the physical model—for instance of the aniso-
tropic weld structure under concern. We have checked
that against a “canonical” experiment, the ultrasonic trans-
mission through a narrow-gap weld with a herring-bone
structure of the crystal grain orientation [26]. Fig. 9 exhibits
the geometry under concern; a photograph of the weld struc-
ture gives rise to the particular herring-bone grain orienta-
tion in our model, which combines two transversely

isotropic materials with the previously chosen elastic
constants of austenitic steel. The transducer is a commercial
458-shear wave transducer designed for “standard” ferritic
steel; in this experiment it is located at the indicated position
close to the weld with some overlap (other positions are
shown in Ref. [26]). The EFIT-model of the transducer is
the one discussed in the previous section. Fig. 10 displays
the resulting 2D-EFIT-wavefronts for the pulse-excitation
given in Fig. 4; notice: There is a P-wave precursor near the
specimen surface, because the 458-SV-wave is accompanied
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Fig. 9. Transmission through a narrow-gap weld with a herring-bone grain structure: (a) geometry and photograph of the weld; (b) experimental results;
(c) EFIT modeling; (d) ray tracing modeling results.



by a pressure wave beyond its respective critical angle. The
snapshots clearly visualize the physics of elastic wave
propagation through the weld; because of the narrow weld
geometry the particular effects of the anisotropic material
are not really obvious in this scale, but they determine the
details of the “B-scan”-like data which are displayed in Fig.
9: Ultrasonic signals recorded on the backwall of the speci-
men within the indicated scan aperture with a very small
probe are stacked as A-scans. The topmost B-scan shows the
experimental results, the one below the EFIT-modeling
results, and the bottom “data” have been obtained with a
ray tracing algorithm taking into account amplitudes
according to plane wave theory [27], i.e. starting with a
ray bundle from the transducer aperture and tracing it
through boundaries with plane wave transmission coeffi-
cients disregarding reflections; Fig. 10 displays these rays
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Fig. 10. 2D-EFIT-wavefronts (a) for the ultrasonic testing situations of Fig. 9, together with “EFIT-ray-tracing” (b) and “true” ray tracing (c).

Fig. 11. Parametric weld geometry; two models for austenitic weld
structure.



in the bottom figure below the EFIT-ray-tracing through
superposition of broadband wavefronts. We emphasize,
that Fig. 9 clearly validates the numerical EFIT results:
every single fine structure in the B-scan is present in the
experiment. Of course, ray tracing, even though a powerful
and fast approximate computational scheme, is only able to
produce the signals from the specular reflection of the SV-
wave at the backwall.

4.2. Parametric modeling study of weld geometries and
structures with and without defects

Fig. 11 indicates important parameters of a weld: the
anglea of the weld boundary inclination, the transducer
position as counted byDx from the middle of the weld,
and two structural models, one with parallel grain
orientation orthogonal to the surface, and one with the
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Fig. 12. 2D-EFIT-modeling results for the weld with parallel grains orthogonal to the surface�a � 158; transducer position indicated by the bar); left: no notch,
right: notch present.



already introduced herring-bone structure. The width of the
weld at the backwall and the thickness of the specimen, as
well as the transducer parameters (the same as in the
previous section) are kept fixed. Notice: In contrast to the
previous section, the weld isnot a narrow gap. We
performed a parametric 2D-EFIT-study varying onlyone
of the parameters at a time; the same parametric variation

was then repeated in the presence of a backwall breaking
notch of fixed depth [28].

Figs. 12 and 13 compare the two weld structures with
regard to the observability of potential notch tip echoes.
In Fig. 12, the parallel grain structure is investigated, and
this time, we do not only compare wavefronts nor B-scans
but single A-scans in a pulse-echo measurement simulation;
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Fig. 13. 2D-EFIT-modeling results for the weld with the herring-bone structure�a � 158; transducer position indicated by the bar); left: no notch; right: notch
present.



reception by the transducer is modeled via a time-shifted
integration of the normal displacement component within
the aperture [23]. Apart from corner reflections—either
initiated by the weld boundary or by the notch corner—
Fig. 12 gives no indication of a notch tip because the tip
diffracted qSV-wave exhibits a “gap” in the amplitude of the
“scattering coefficient”, which is clearly visible in the wave
surface emanating from the tip of the notch. Obviously, this
is different for the herring-bone weld structure model in Fig.
13, thus confirming that the weld structure is of considerable
importance in the evaluation of defects. Notice: This result
is obtained throughmodeling!

During this extensive parametric study we encountered
some wave phenomena which confirmed a strange predic-
tion made by plane wave theory for the refraction of a plane
SV-wave by a plane boundary between an isotropic and a
transversely isotropic solid [9,27], and which, to our

knowledge, has not yet been observed neither in numerical
simulations nor in experiments: the occurrence of a second
qSV-wave! We give the theoretical arguments together with
the EFIT-realization below, and present experimental
evidence in the next section.

Consider Fig. 14: The horizontal coordinate axis accounts
for the interface between a half-space of isotropic (above the
axis) and a half-space of transversely isotropic material
(below the axis). Thêa-direction is related to the interface
as indicated, i.e. it refers to an�a � 108�-inclination
between the parallel grain orientation and the weld interface
of Fig. 11. For the SV-wave incident from the isotropic half-
space we assume a resulting 458-orientation of the phase
vector ktrans

qSV of the transmitted qSV-wave with regard to
the interfacein the anisotropic half-space, where its loca-
tion on the slowness surface (qSVaust: dotted curve) is deter-
mined by the phase-matching condition in the interface,
relating the projection ofktrans

qSV (dotted line orthogonal to
the interface) to the pertinent projection of the phase vector
krefl

SV of the SV-wave reflected back into the isotropic half-
space and being located on aspherical slowness surface
(SVsteel: dashed curve). The direction of the energy velocity
of the transmitted qSV-wave is found as the vectorĉtrans

gr;qSV;

which is orthogonal to the slowness surface at the point
ktrans

qSV : This is the first—conventional, regular, ordinary?—
qSV-wave.

In addition to the slowness surface of the qSV-wave in the
anisotropic half-space we have plotted the qP-slowness
surface (encircled 1), which, with increasing angle of inci-
dence of the SV-wave beyond the critical angle of the qP-
wave, exhibits, besides a real part (encircled 2), an imagin-
ary part (encircled 3), thus defining an evanescent wave. In
contrast to “ordinary” evanescent waves, the real part of the
phase vector, as a solution of the pertinent eigenvalue
problem, points into the upper half-space (and not along
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Fig. 14. Splitting of an incident SV-wave into two qSV-waves at the plane
interface between an isotropic and a transversely isotropic half-space; the
anglea betweenâ and the interface is 108.

Fig. 15. 2D-EFIT-snapshot relating to the wave surface diagram of Fig. 14.

Fig. 16. Experimental (top) and numerical 2D-EFIT (bottom) B-scans for
the weld as displayed in Fig. 11 (left); the arrows refer to pronounced
diffraction curves to be explained in Fig. 17 (time axis from left to right;
scan axis from bottom—transducer centrally on top of the weld—to top—
transducer on left-hand side from the weld).



the interface); with further increasing angle of incidence,
this real part continues its path as areal (vanishing imagin-
ary part) solution on the slowness surface of the qSV-wave
as if the latter would exist in the upper half-space (encircled
4), and when it reaches the “phase-matching-line”, it defines
a phase vector of a second qSV-wavektrans

qSV�2�; whose perti-
nent energy velocity vector̂ctrans

gr;qSV�2�; being orthogonal to

the slowness surface, points downward to the interface,
thus physicallyrealizing that wave as a propagating trans-
mitted wave. Consequently, the computed EFIT-snapshot of
Fig. 15 should not come as a surprise: EFIT visualizes the
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Fig. 17. Icons to explain the physical origin of the diffraction curves of Fig.
16 marked by the arrows.

Fig. 18. Geometry and grain structure of a real-life weld.

Fig. 19. Experimental (top) and numerical 2D-EFIT (bottom) B-scans for
the weld as displayed in Fig. 18; the arrows refer to pronounced diffraction
curves to be explained in Fig. 20 (time axis from left to right; scan axis from
bottom—transducer centrally on top of the weld—to top—transducer on
left-hand side from the weld).



physics of elastic wave propagation, and, obviously,both
transmitted qSV-waves appear at the weld interface.

4.3. Towards modeling of real-life anisotropic welds

In this section we want to confirm that a certain model

deduced from a real-life weld (Fig. 18)mustbe modeled as
such, it cannot be replaced by a simpler model (Fig. 11) for
quantitative prediction of ultrasonic signals. We will do this
in terms of numerical and experimental pulse echo B-scan
results [28,29]. So, let us go back to Fig. 11, in particular to
the weld structured as parallel grains orthogonal to the
surface, to compute and measure B-scans in a pulse echo
mode; Fig. 16 compares the results, and a very good coin-
cidence of the main features is immediately recognized. Fig.
17 displays various icons, which explain the physical origin
of the most prominent diffraction curves in Fig. 16; of
course, in order to find the diffraction curve of a particular
ultrasonic “ray”, it is very helpful to watch to animated
wave propagation, which is the primary output of EFIT. A
careful investigation of these animations revealed physical
evidence of the second qSV-wave as discussed in the
previous section (arrows 6 and 7 in Fig. 16).

Fig. 18 shows the geometry and grain structure of a real-
life weld together with the model we adjust to it; notice: we
account for a continuous curvature of the grains, i.e. char-
acterizing an inhomogeneoustransversely isotropic ma-
terial. The B-scan results of the experiment and the 2D-
EFIT-simulation are given in Fig. 19, and Fig. 20 presents
the pertinent icons.

It is astonishing how well the numerical simulations
reproduce the experiment; this gives confidence that model-
ing tools such as EFIT are not restricted to canonical testing
situations with no practical relevance; in contrast to that,
they prove to be a thorough means to interprete, analyze,
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Fig. 20. Icons to explain the physical origin of the diffraction curves of Fig.
19 marked by the arrows.

Fig. 21. 2D-EFIT-simulations of the real-life weld with (bottom) and with-
out (top) notch (time axis from left to right; scan axis from bottom—
transducer centrally on top of the weld—to top—transducer on left-hand
side from the weld).

Fig. 22. Comparison of 2D-EFIT-modeled B-scans for the weld with paral-
lel grain orientation (top) and the weld with curved grains (bottom) (time
axis from left to right; scan axis from bottom—transducer centrally on top
of the weld—to top—transducer on left-hand side from the weld).



plan and optimize ultrasonic testing of real-life austenitic
welds.

Therefore, Fig. 21confirmsvia simulations that a notch
corner as well as its tip is clearly visible in the B-scan of the
real-life weld.

Fig. 22 presentsthe crucial result: It compares the
modeled B-scans for the weld with purely parallel grain
orientation with the one for the weld with curved grain
orientation, and, obviously, it is amustto model the real-
life weld as it is, and not in a downgraded approximation.
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