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Abstract

Convenient tools for nondestructive evaluation of solids can be electromagnetic
and/or elastodynamic waves; since their governing equations, including
acoustics, exhibit strong structural similarities, the same inversion concepts
apply. In particular, the heuristic SAFT algorithm (synthetic aperture focusing
technique) can be—and has been—utilized for all kinds of waves, once a scalar
approximation can be justified. Relating SAFT to inverse scattering in terms
of diffraction tomography, it turns out that linearization is the most stringent
inherent approximation. Hence, the results of nonlinear inversion schemes such
as contrast source inversion are compared to the output of SAFT for a carefully
designed ultrasonic experiment. In addition, it will be shown via synthetic as
well as experimental data that SAFT can be extended to electromagnetic vector
fields and to an inhomogeneous and/or anisotropic background material.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Historically, imaging in nondestructive evaluation started with the utilization of ultrasonic
waves (in solids) adopting the radar imaging concept SAR (synthetic aperture radar) under
the acronym of SAFT (synthetic aperture focusing technique) (Fitch 1988, Ganapathy et al
1982). SAFT is understood as a synthetic focusing of time domain wavefronts emanating
from an ensemble of point scatterers back to their (secondary, equivalent, induced) sources for
homogeneous isotropic lossless media and scalar (acoustic) waves; in terms of time domain
backpropagation this is simply based on the knowledge of the infinite-space scalar Green
function. To date, SAFT has been evaluated as a powerful tool in nondestructive testing
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with ultrasound (Miiller and Schmitz 2002), where the transition from acoustic (fluid) to solid
media has been made by applying appropriate time gating techniques between primary (P- or
pressure) and secondary (S- or shear) waves. For practical applications the aim is towards
a fast automated three-dimensional implementation; on the other hand, improvements and
extensions of the SAFT algorithm require that we address more fundamental issues:

e embedding in the theory of wavefield inversion resulting in a connection with frequency
domain diffraction tomography (Langenberg 1987, 2002, Langenberg et al 1993b, 1997,
1999b) and a pertinent implementation based on Fourier transforms only (FT-SAFT: Mayer
1990, Mayer et al 1990),

o utilization of polarization when applied to electromagnetic waves (Langenberg ef al 1994,
1999a, Brandfal3 1996),

o utilization of mode conversion for elastodynamic waves in solids (Langenberg et al 2002)
and formulating backpropagation for inhomogeneous anisotropic media (Langenberg et al
1997, Hannemann 2002),

e complementing SAFT with nonlinear inverse scattering schemes (Marklein ef al 2001),

e combination with numerical modelling techniques to obtain a convenient test bed for
various versions of the algorithm (Langenberg ef al 1993b, 1999b, 2002, Marklein 1997).

These itemized issues are addressed in this paper and supported by actual examples.

Regarding mathematical notation, vectors and tensors are written with boldface characters,
the number of underlines indicating the rank, i.e. a vector with one underline appears as a tensor
of rank one.

Regarding engineering notation, a (multi-)monostatic or pulse—echo experiment collects
data with the same ‘antenna’ used as transmitter and receiver, whereas a (multi-)bistatic or
pitch—catch experiment collects data for separated transmitting and receiving ‘antennas’; here,
‘multi’ refers to a scan within a finite-measurement aperture of the transmitting—receiving or
the receiving ‘antenna’.

2. Wavefield inversion

Scattering of wavefields can be physically understood and mathematically formulated as a
radiation of equivalent, secondary or induced sources in terms of Huygens’ principle as a
consequence of the underlying governing equations. This requires knowledge of the Green
functions!

Figures 1-3 introduce the governing equations Fourier transformed with regard to time
(e!* as kernel of the Fourier transform) of acoustics, electromagnetics and elastodynamics
together with the pertinent integral representations of the respective wavefields as given by
prescribed (volume) sources (de Hoop 1995). Since we confine ourselves to linear time-
invariant materials, the Fourier transform is a convenient tool to switch between the time
and frequency domains; this is often appropriate for mathematical derivations, even though a
deliberately chosen space may be more advantageous for algorithmic implementation.

Linear time-invariant homogeneous isotropic instantaneously and locally reacting acoustic
media are characterized by two scalar material constants, p, the mass density, and «, the
(adiabatic) compressibility. Then, the field quantities v (R, w) (Fourier transform of the particle
velocity with respect to time) and p (R, @) (Fourier transform of the pressure), both depending
on the vector of position R and the Fourier variable (circular frequency) w, are related by the
governing equations of acoustics, as given in the middle of figure 1: particles are accelerated
by a pressure gradient and external forces (Fourier transform of force density f(R, ®)), and
the divergence of a particle flow together with an external (Fourier transformed) dilatation
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Figure 1. Green functions relating to the acoustic volume sources of force density f and dilatation
rate h.
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Figure 2. Green functions relating to the electromagnetic volume sources of electric and magnetic
current densities, J ., and J , respectively.
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Figure 3. Green functions relating to the elastodynamic volume sources of force density f and
(symmetric) injected deformation rate h; ¢ is the stiffness tensor for homogeneous isotropic lossless

media.

rate h(R, w) cause a rate of change of the pressure. Introducing infinite-space Green function
Fourier spectra
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with the wavenumber

k = w./kp, 3)

the field quantities are given by integral representations (figure 1, top and bottom) outside
the source volume! V to which the sources are considered to be confined. As soon as a
scattering volume V.. is present besides the source volume Vg, v(R, ) = v;(R, w) and
P(R, w) = p;(R, w), as given in figure 1, can be interpreted as (prescribed) incident fields,
which have to be complemented by scattered fields v (R, w) and p,(R, w) to satisfy the
transition (boundary) conditions for the total fields v = v; +v,, p = p; + p; on S, the
surface of V,; this surface is conveniently described by its (vector) singular function Y. (R),
which has the direction of the outward normal n, (Bleistein 1984, van Bladel 1996). Since
we are looking for a Huygens-type representation of the scattered fields in terms of Helmholtz
integrals outside V., the extinction theorem tells us that this representation must yield zero
fields inside V,; the transition conditions as obtained from the governing equations define
surface force densities and surface dilatation rates

f.(B.0)=pR o)y (B, “)
he(R, ) = —v(R, ) -y (R), (&)

which sustain the discontinuous jump from zero fields inside to the total fields outside.

When inserted into the integral representations of figure 1, we obtain, for instance, the
Helmholtz integral for the scattered pressure (due to the sifting property of the singular function)
for R outside V,:

ps(R, ) = f/ [—jwon, - v(R, 0)G(R— R, w) + p(R, 0)n. - V'GR - R, »)]dS".
Se
(6)

Let us assume now that the scatterer is defined by a Dirichlet boundary condition, i.e. it is
considered to be acoustically soft. Then (6) reduces to

ps(R, w) = —jwp // - v(R,0)GR - R, w)ds". )
Se

If py(R, w) with R on some measurement surface Sy, is considered as data, inversion of (7)
aims towards the equivalent sources on S,.: here, the normal component of the particle velocity
or, via the first governing equation in figure 1, the normal derivative of the pressure. The first
attempt to solve this inversion is—Ilinearization! For a perfect scatterer like the acoustically
soft scatterer the introduction of the Kirchhoff or physical optics (PO) approximation yields
the required linearization in terms of

PO (R, @) = —2jwp / / - v,(R. 0GR~ R wu(-k,; - n)ds ®)

Se

where the total field under the integral has been replaced by twice the incident field, and the

unit step-function u(—k; - n’.) accounts for the illuminated part of the scattering surface.

Equation (8) is the key equation for diffraction tomography (Dindliker and Weiss 1970), and

a particularly simple version is obtained for far-field data; in that case, the approximation
elkR o o

G"(R.R . 0) = —— e ME ©)

47 R

! For observation points R inside the source volume (integration is with respect to R'), G , must be complemented
by §-distributional terms (de Hoop 1995, van Bladel 1996).
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(R is the unit vector to R) together with a plane wave ansatz
v, (R, 0) = vy(@)E B (10)

with propagation direction E ; and longitudinal polarization v,(w) for the incident field
basically turns (8) into a three-dimensional spatial Fourier integral with the Fourier vector

K =kR-k) (11

provided an appropriate diversity experiment has been made, and, obviously, either frequency
(w) or angular diversity (E ;) is available. Hence, in these cases, inversion is straightforward;
details are given by Langenberg (2002).

Turning to electromagnetic wavefield inversion, the same fundamental ideas as above
apply, but with an additional complexity: electromagnetic waves exhibit polarization diversity,
which must be properly accounted for.

Figure 2 shows the time harmonic governing equations (Maxwell equations) for a linear
time-invariant homogeneous isotropic instantaneously and locally reacting medium with
relative permittivity €, and relative permeability u,. Field quantities in that case are the
(Fourier transformed) electric field strength E (R, w) and the (Fourier transformed) magnetic
field strength H (R, w), and given (field independent) sources are electric and magnetic current
densities, J (R, w) and J ., (R, w), respectively.

Since both Maxwell equations exhibit the same spatial (curl) derivative (the origin of
duality), the same Green functions (R # R/)

1
Ge = <£+ k—ZV/V/>G(E— R, w), (12)

G =-VxG[R-R,0)=-VGER-R,0)xI (13)

appear in both volume source integrals in figure 2 (R & Vo); I is the dyadic idem factor and

k = w\/€o€r Lofhr (14)

the electromagnetic wavenumber. As in the acoustic case, the definition of field-dependent
equivalent sources

SR o0) =y (B) x H(R, w), 15)
SR, 0) = —y (R) X E(R, w) (16)

on S, yields, for instance, the representation
E (R o) = // liopop,n, x H(R,0) -G (R— R, 0)
S -

—n, xE[R, 0)-G (R- R, 0)]dS A7)

for the scattered electric field outside V.. The special case of a perfect electric conductor V,
reduces (17) to

E (R, ») = jopokr // n,x HR 0)-G (R— R, »)dS, (18)
S, -
and within the far-field approximation
GY(R,R,0)=(I—-RRG"(R R, o) (19)
we obtain
QIkR

E"™(R, ) = jopopr——I — RR) - / / n. x H(R, w)e *E 4§ (20)
Se

47 R
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Now, even though we are close to a Fourier inversion scheme after introducing the linearizing
Kirchhoff approximation

JX(R 0) =2y (R) x H;(R, ») 1)
with
v, (B =y (Ru(-k n) (22)

we are not yet finished due to the zero determinant of the second-rank tensor I — RR,ie.it

cannot be inverted in order to operate on the data Eﬁ"" and not on the equivalent sources.

The elastodynamic governing equations can be picked from figure 3; following Cauchy,
the scalar pressure has to be replaced by the second-rank (symmetric) stress tensor T'(R, w)
(i.e. its Fourier transform), and the second equation is nothing but the definition of the dyadic
deformation rate together with Hooke’s law of linear elasticity for time-invarianthomogeneous
isotropic instantaneously and locally reacting media. Hence, the fourth-rank stiffness tensor
c is understood to be composed of only two (Lamé) constants A and ju:

e

=AL +2u I (23)

here, I % and I * have the following property:

!S :é:é:f:%traee(é), (24)
I':A=A:L =LA+ AY) @5)
under double contraction : with any second-rank tensor A; if A = A;;ee j (summation

convention is understood) is given in components with regard to an orthonormal set e;
(i=1,2,3),then A*' = Ajje;e; = Ajiee;.
The infinite-space Green functions for the source field integrals read (R # R/) as

1 1 1
G(R-R,0) =— [(l + —2V'V'> Gs(R—R,0) — 5V'V'Gp(R—- R, w)}, (26)
= HL\T kg kg
E(R-R.,0)=—c:VGR-R. ), 27)
OR-R.0)=-[VER-R. o))" :c (28)
with P- and S-wavenumbers
0
kp = , 29
p=w a2 (29)
kg = a)\/Z 30)
7
and
/ cikps|B—R/| a0
Gps(R—R,0) = ———.
ps(R— R, w) MR- R (31)

Of course, ¢ is always given by (23). As above, if ¥ = X;jie;e ¢, then 2321 = Yijkee;e; =

Tijie e [V'E]P! follows from a similar definition.
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Field-dependent equivalent sources
ic(ﬂv CL)) = _ZC(E) ‘ g(ﬂv CL)), (32)
h(R,0)=-I":y (Rv(R, ) (33)

yield the representation theorem
v (R 0) = / / ljon. - TR, ») - G(R— R, 0) - n'v(R 0): Z(R- R, »)]dS’
S - - =

(34)
due to the symmetry ¥ = X", which results from a symmetry of ¢. In solids, the acoustical

soft scatterer is characterized by a traction-free surface (a vacuum hole in a solid is a typical
canonical defect in NDE). Hence, for such a class of scatterers we obtain

v (R, 0) = — // (R, 0): Z(R- R, 0)dS. (35)
Se -

Obviously, due to the superposition of P- and S-waves in (26), and consequently in (27), the
inversion of (35), even after introducing the elastodynamic version of the linearizing Kirchhoff
approximation, is even more complex than the inversion of (18). Fortunately, for far-field data

we have
kpR eiksR

OL+2uRR) R+ jkspt ’

2R R, w) = jk (RI+RIR" -2RRR) (36)

= 47 R 47 R
exhibiting the fact that far-field scattered P-waves (first term of (36)) are strictly longitudinally
polarized, whereas far-field scattered S-waves (second term of (36)) are strictly transversely
polarized. Hence, mode separation is possible through polarization separation.

3. SAFT versus FT-SAFT

As already mentioned in the introduction, the Fourier transform is utilized as a convenient tool
to switch between spaces, i.e. time and frequency domain. For instance, the Green function
mathematics as discussed in the previous section is more lucid in the frequency domain.
On the other hand, time domain interpretation in terms of wavefronts is physically more
intuitive. This is the reason why heuristic approaches to wavefield inversion tend to prefer
the time domain, this being particularly true for SAFT; the original reasoning and even the
standard implementation by Miiller and Schmitz (2002) is in the time domain. Nevertheless,
if SAFT is embedded in a rigorous wavefield inversion theory (Langenberg 1987, 2002), the
a priori choice of the frequency domain seems to be more appropriate to derive a general
inversion formula, which, when obtained, can be transformed back to the time domain to
yield—after several approximations—the SAFT scheme. In addition, this approach provides
a frequency domain diffraction tomographic implementation alternative called FT-SAFT for
Fourier-transform-SAFT.

3.1. SAFT: synthetic aperture focusing technique

Interestingly, there is no mathematical theory to derive SAFT, it is just simple reasoning with
physically based arguments.
The simplest scatterer one can imagine is an acoustic point scatterer, its scattered field
being proportional to the Green function (1), which reads in the time domain as
|R—R/|
5 — BR)

GIR-R,t)=—F—°—; 37
B0 = R-R o7
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y—y

Figure 4. Diffraction surface of an acoustic point scatterer for a planar measurement surface Sy;.

c is the acoustic wave speed ¢ = (kp)~'/2. For a planar measurement surface, say the xy-plane
of a Cartesian coordinate system, the diffraction surface in three-dimensional xyz-data space
as defined by the support of the §-distribution is a hyperboloid (figure 4). Hence, inversion
(backpropagation) of this data space into object space requires (re)focusing the hyperboloid
into the point scatterer located at R. This is achieved by two different algorithmic versions
of SAFT:

e A-scan-driven approach. Each xy¢-data amplitude is equally distributed (backpropagated)
on a spherical (isochronic) surface (Hagedoorn 1954, Bleistein and Gray 2001, Bleistein
et al 2001); they all intersect at R/, where the scatterer resides.

e Pixel-driven approach. For each voxel (pixel in 2D) in discretized object space integration
through data space along the pertinent hyperboloid is performed; the voxel containing R’/
gets the highest amplitude.

In any case, an extended scatterer (defect) is considered to be an ensemble of point scatterers,
which expresses the underlying linearizing approximation.

In practice, ultrasonic data are bandlimited; hence, the above SAFT versions will
reproduce the time signal oscillations in image space. Our version of SAFT therefore applies
backpropagation to the data as well as to the timely Hilbert-transformed data to create complex
valued analytic signals in image space, where a subsequent magnitude calculation gets rid of
the oscillations (Langenberg et al 1993a).

As far as P- and S-waves in solids are concerned, SAFT applies a time gating technique
for mode separation and treats each wave as scalar.

The success of this imaging algorithm for ultrasonic NDE purposes is documented in
the paper by Miiller and Schmitz (2002), and the question of to what extent a solution of the
inverse scattering problem is obtained has been answered by Langenberg (1987, 2002): SAFT
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is basically a time domain (frequency diversity) backpropagation version of linear inverse
scattering within the framework of diffraction tomography.

3.2. FTI-SAFT

The close relationship of SAFT and diffraction tomography as outlined in detail by Langenberg
(1987, 2002) suggests use of (scalar) far-field Fourier inversion as a speedy alternative (in
particular in 3D), and to provide, if necessary, the far-field data through a near-field, far-field
transform based on the representation theorem of Huygens’ principle. As a matter of fact,
this transform does not even need to be explicitly computed if the measurement surface is
planar: in that case, and for far-field observation points, the representation integral (6) with
—jwpn,. - v = —V’p reduces to a two-dimensional Fourier integral

. . 1 N ’ ;o _ikR-R / /
Re 7 p(R, w) = —E[J"E'Ez f fs ps(x,y', 2 w)e MR dx' dy

0 SRR
’ // —ps(x, Y, 7 w)e HEE dy/ dy/} (38)
Su az 7'=29
with regard to the measurement coordinates x’, y" defining a Fourier vector K’ with components
K., K}, K] according to

K =kR, (39)

K, = [k* — K2 — K2 (40)
Through the mapping

K =K' —kk;,. (41

i.e. (39) together with (11), the resulting Fourier-transformed data can be immediately
organized in far-field K -space (Langenberg 2002).

The following example for a comparison of SAFT and FT-SAFT originates from NDE of
concrete: here, a typical task is to locate metallic tendon ducts below the steel reinforcement,
and electromagnetic ground probing radar systems have been found to contribute to the solution
of this problem (Maierhofer et al 1995). Such systems provide (multi-)monostatic (pulse—echo)
broadband (base band with approximately 1 GHz bandwidth) scalar data to be fed into (the
monostatic versions of) SAFT and FT-SAFT, respectively (Mayer et al 1990). Aiming towards
the experimental check of a bistatic (pitch—catch) polarimetric FI-SAFT algorithm (section
5), we performed a scalar monostatic free-space experiment in the 75—-100 GHz range with an
appropriately down-scaled model of a wire mesh above a steel rod (figure 5(a)): the images
obtained from SAFT in figure 5(b) and FT-SAFT in figure 5(c)—here, the wire mesh plane has
been selected—are nearly identical. But note that the one-slice-out-of-3D SAFT processing
takes 40 min, whereas the complete 3D FI-SAFT processing (only one slice is displayed) takes
1.5 min on the same computer. With figure 6 we go into the depth of the 3D FT-SAFT imaging
space to confirm that the tendon duct model—the rod—is monostatically visible below the
wire mesh.

4. InASAFT: SAFT for inhomogeneous anisotropic materials

There is a rich variety of elastically anisotropic media, as specified by ¢. In ultrasonic

NDE, transversely isotropic media like fibre-reinforced composites or austenitic steel play an
important role; they are described by five elastic constants A |, i 1, A, 4y, v and a preference



1742 R Marklein et al

(b) (c) e sen oz 02008

xy-Sice 1812 02088 m

[ 0.08 01 018 02 024

o 008 01 018 02 0.24
il

i

Figure 5. Comparison of SAFT and FT-SAFT.

(a) (®) P

xy-Sice 8 ot 2 030775 m

| o

L] 00 01 015 0z 025 o 005 o1 015 02 025
e ]

Figure 6. FT-SAFT imaging planes for the above model at two different depths below the wire
mesh; the over-all size of the mesh is 112 x 112 mm?, the spacing varying from 14 over 7 to
3.5 mm, the wire diameter is 0.8 mm, the rod diameter 10 mm.

direction a (the fibre direction, the crystal orientation); orthogonal to a, the material is isotropic.
For these materials c reads (Spies 1992, Marklein 1997)

+
ISH
+

c=MD+2u I" +ajaaaa+or(laa+aal)

aD"+as(Laa+aal)™” (42)

ISH

+

1>
Q>

+Ol3(£

o =)\,L+2/,LL+)»“+2/,L“—2(V+2/L||), (43)
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Figure 7. Test geometry for ASAFT.

=V —2A, (44)

o3 = ) — K. (45)
In contrast to the degeneracy of isotropic materials, plane gP- and gS-wave? phase- and energy
velocities depend on the propagation direction k, and the direction of the energy velocity is
always perpendicular to the slowness surface. Since ultrasonic signal recording is with regard
to the energy propagation direction, algorithmic data processing must properly account for it
in order to locate and size defects exactly. As we pointed out in section 2, the availability
of Green functions is mandatory, but, unfortunately, explicit expressions similar to (26)—(28)
are not available for transversely isotropic media. But it turns out that the geometrical shapes
of time domain wavefronts emanating from point sources are identical to the so-called wave
surfaces of plane wave energy diagrams (Helbig 1994, Snieder 2002, Langenberg er al 2002);
hence, with (37) the Green function expression (26) could be generalized to

) )
CEgs (D cgqp (D)

triso _ — _ — R
GMEBE-R.N=C(R-R.nx—p—p =+ G (B-R.0x—5—p

s

(46)
where CEqp’qS(z) are qP- and gS-wave energy velocities as a function of the ray vector

i = (R — R)/|R — R/|; the asterisk stands for a z-convolution integral. Now, as stated
before, the tensor amplitudes ng,qS are not known, and, hence, within a first approximation
a SAFT algorithm for homogeneous anisotropic materials could be based on the §-functions
in (46) only: this is ASAFT.

We turn to an example given by Hannemann (2002) with synthetic (bistatic, pitch—catch)
data as produced with the numerical EFIT code (elastodynamic finite integration technique:
Fellinger et al 1995, Marklein 1997). Figure 7 shows the (two-dimensional) geometry
(scales in mm): an austenitic steel block (austenitic steel 308) contains three notches with
different heights, and the preference direction a of the homogeneous material has been chosen
subsequently according to the three arrows; the fat bar on top indicates the 400 mm wide
measurement aperture, excitation is a 45° P-wave transducer with an aperture width of 12 mm
centred with respect to the measurement aperture.

Figure 8 compares qP-slowness and -energy velocity diagrams of this kind of transversely
isotropic austenitic steel and isotropic ferritic steel; obviously, the differences for the gP-wave
mode are not very large. Nevertheless, the SAFT imaging results (figures 9(a), (¢), (e)) exhibit
strongly misplaced corners of the notches whereas ASAFT locates them correctly (figures 9(b),

(@), ().

2 Inanisotropic materials primary waves are only quasi-pressure (qP-)waves and secondary waves are only quasi-shear
(gS-)waves; qS-waves appear in two orthogonal polarizations.
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Figure 8. qP-slowness and energy velocity diagrams for ferritic and austenitic steel;, a is

horizontally oriented.
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Figure 9. SAFT (left) and ASAFT (right) imaging results for three different a-orientations: 0°,
10° and 170° from top to bottom.

Based on the same imaging principle, ASAFT has been extended to pixelwise

inhomogeneous anisotropic materials (InASAFT: Hannemann 2002); for each A-scan one
starts with equally spaced slowness directions in the first pixel and computes the corresponding
energy ray directions as being orthogonal to the slowness surface; at the first interface, for
a particular selected energy ray, phase matching for the corresponding slowness produces
the slowness direction in the adjacent pixel, which is then again transformed into the
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corresponding energy direction; reflected and mode-converted rays are disregarded, and
transmission coefficients are set equal to one. Having obtained all ray paths, travel times
are computed on the basis of the pertinent energy velocities according to the Green function
approximation. This algorithm is presently under check for experimental data obtained within
a joint European project (Dikstra and Cameron 2002).

5. Electromagnetic vector diffraction tomography

Electromagnetic and ultrasonic imaging in solids should account for the proper polarization
of any wave mode. For electromagnetic waves this means that (20) together with (21) should
be under concern for inversion. Choosing

E, (R, ©) = Ey(w) e B B, @7)

as the linearly polarized incident field with frequency spectrum Ey(w) we obtain (Z =

v MO/Lr/GOGr)

H (R = 25 b, fry et (48)
and

IR, ) = Eo() %z (R x (k; x By elhE (49)

=J (R

For any smooth surface S, with singular function y . (R) we have

Vxy (R =0, (50)
and, hence,

Vxy (B =08k, n)y (B xVk, -n)=0 1)

is postulated, since a shadow line on S, is only somewhat arbitrarily introduced by § (— E i)
resulting from the PO approximation. From (51) and (49) we deduce

V-J (R =0, (52)

which yields (the tilde characterizes the three-dimensional Fourier transform with respect to
R)

K-J . (K)=0; (53)

this, together with (11),reduces the operatorl—EE tol— (K+kéi )Ei/k, which is invertible.
Therefore, the vector function J .(R) can be deduced from a far-field Fourier inversion scheme,
and, as in the scalar case, a near-field, far-field transform can be avoided applying the vector
representation theorem of the electromagnetic Huygens principle together with the mapping
rule (41) (Brandfa3 1996).

Various applications of this electromagnetic vector diffraction tomographic algorithm to
synthetic data gave superior results to pure scalar inversion operating on the scalar components
of the scattered electric field strength (Langenberg et al 1994, 1999a, 1999b, Brandfali 1996).
The most convincing results were obtained for synthetic scattering data for an air plane model
obtained with the MAFIA code (Bartsch et al 1990, Brandfa3 1996, Langenberg et al 1999a).
Hence, we performed a bistatic polarimetric experiment for an appropriately down-scaled
model in the 75-100 GHz range (the same experimental setup as was utilized to obtain the
results of figures 5 and 6). Even though this is not yet an NDE-related experiment, it should at
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least prove the practicability of experimental polarimetric inversion. Figure 10 shows results:
the air plane model is illuminated orthogonally to the wings with a horn antenna in a distance
of 300 mm, and a second identical horn antenna scans the bistatic electric field strength
components along a plane in the backscattering direction for the same distance; horizontal
polarization denotes the component of the electric field strength orthogonal to the fuselage,
and vertical polarization denotes the respective component parallel to the fuselage. Obviously,
the superimposed polarimetric image is more complete than the single scalar images, which
contain complementary information. This generally confirms the numerical experiments with
synthetic data (Brandfall 1996, Langenberg ef al 1999a). Note that all 2D images in figure 10
are obtained by adding up the single image planes of three-dimensional image space.

Returning to NDE, the air plane model is replaced by the mesh-rod model of figure 5,
and the same bistatic electromagnetic experiment as before is performed. The actual available
results are given in figure 11.

First, cross-polarized data are way down in amplitude as compared to the co-polarization
data, and both co-polarizations yield approximately similar images. Hence, an algorithmic
superposition does not seem appropriate. Second, the bistatic scalar result, even though
given for two different polarizations, is less convincing than the monostatic result of figures 5
and 6. This is particularly disappointing at the moment, because the numerical experiments on
synthetic data performed much better (Brandfall 1996, Langenberg ef al 1999b). The reason
might be a violation of some algorithmic assumption, e.g. the replacement of plane wave
by strongly directive horn antenna illumination, which is particularly serious for this kind of
geometry in contrast to our air plane model.

For ultrasonic applications, vector diffraction tomography is additionally concerned with
the superposition of primary and secondary wave modes. As a matter of fact, an elastodynamic
version of FT-SAFT, called EL-FT-SAFT, has been realized via a mode-selective (through
far-field polarization) far-field Fourier inversion together with a K -space mapped near-field,
far-field transform (Kostka 2000, Kostka et al 1998). Here, experimental results could confirm
the practicability (Langenberg et al 1999b, 2002).

6. Nonlinear inversion

The nonlinear nature of the inverse scattering problem has been disregarded in the previous
sections. All versions of SAFT and FT-SAFT together with their polarimetric extensions are
linear algorithms. In this section we present some inversion results applying nonlinear inverse
scattering schemes, where we focus on the scalar case. For applications in ultrasonic NDE,
this means that we consider a specific wave mode as scalar, here the P-wave. In fact, various
approaches have been formulated, which try to solve the nonlinear scalar inverse scattering
problem with more or less approximations:

e extended Born method (see e.g. Habashy er al 1993)

e iterative Born method (see e.g. Tijhuis 1989)

e distorted Born or Newton—Kantorovich method (see e.g. Roger 1981, Chew and Wang
1990, Franchois 1993)

e modified gradient method (MGF) (see e.g. Kleinman and van den Berg 1992, 1994,
Pelekanos 1997, Haak 1999, Pelekanos er al 2000)

e contrast source inversion (CSI) (see e.g. Kleinman and van den Berg 1997, Haak 1999,
van den Berg et al 1999)

e extended contrast source inversion (ECSI) (see e.g. van den Berg et al 1999, Abubakar
2000)
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Figure 10. Bistatic polarimetric image (top left) of an air plane model (top right) obtained by
scalar algorithmic superposition of horizontal-horizontal co-, vertical-vertical co-, horizontal—
vertical cross- and vertical-horizontal cross-polarization (middle left, middle right, bottom left,
bottom right respectively); the model is 103 mm long with a wingspan of 85 mm.

linear sampling method (LSM) (see e.g. Colton and Kirsch 1996, Colton et al 1997, Kirsch

1998, 1999, Arens 2001)

approximate inverse method (AIM) (see e.g. Louis 1995, 1996, Abdullah and Louis 1999)
real-coded genetic algorithm (RGA) (see e.g. Qing 2001, Qing et al 2001)

e and others.



1748 R Marklein et al

wy-Shes 27 ol 7 03805 m wy-Shice 27 at 7 -0.3805 m

xy-Shce Tetz 0.3865m xy-Shoe Tatz -03855m

-36? [ 002 0.04 0.08 0.08 01 012 014 0.‘16 h 002 L 002 0.04 0.08 008 o1 012 014 0.16
m] qm]

Figure 11. Scalar horizontal-horizontal (left) and vertical-vertical (right) co-polarization images
of a mesh-rod model in two different depths (top: plane of the mesh; bottom: plane of the rod).

A comparative study of the performance of the majority of the above algorithms has been
reported by van den Berg (1999, 2001), Marklein et al (2001).

The applications of most of the above-mentioned methods in electromagnetic or ultrasonic
NDE are still very few. Here, we will apply two versions of the CSI method for the scalar
nonlinear inverse scattering problem:

e the CSI method with weighted contrast sources (CSIW) and
o the ECSI method.

Both have been successfully validated using real electromagnetic inverse scattering data for
remote sensing and geophysical prospecting, see e.g. the special sections in IEEE Transactions
on Antennas and Propagation Magazine (McGahan and Kleinman 1996, 1997, 1999a, 1999b)
and the special section in Inverse Problems (2001) on ‘Testing inversion algorithms against
experimental data’.

In the CSIW and ECSI method the inverse problem is posed as an optimization problem,
where a cost functional given in terms of the domain integral equations is iteratively minimized.
An important advantage of these methods is to avoid the full solution of the underlying direct
problem in each iteration by updating two unknowns simultaneously.

A sketch of the scattering problem is given in figure 12. We consider an inhomogeneous
scatterer V, immersed in a homogeneous background V. The ith transmitting and receiving
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Figure 12. Experimental setup for the direct and inverse scattering problem.

ultrasonic transducers, 7; and R;, are placed at the transmitter and measurement surface, St
and Sy, enclosing the scattering domain V.. The total field inside the domain Vp is given by
the superposition of the (scalar) incident and scattered field:

¢ (R, 0) = ¢$i(R, w) + ¢s(R, »).

It has been shown (see, for example, Colton and Kress 1998) that the field ¢ satisfies

the following domain integral equation (Lippman—Schwinger equation; object equation) for
R e Vp:

PR, ®) = i(R, 0) + K / / / G(R—R,0)x(R,w)¢p(R,w)d°R. (54)
Vb
For R € S); we have
¢s(R, ) = k* f f f G(R—R,w) x(R,0w)¢(R,w)d’R (55)
Vb

which is the so-called data equation; G(R— R/, w) according to (1) denotes the Green function
of the homogeneous background and x (R) is the contrast function defined as

P@®)

xR = k?
0, E S R3\VC’

L, ReV, (56)

where k is the wavenumber of the homogeneous background and k(R) represents the
wavenumber function of the (unknown) inhomogeneous scatterer.

In the above two equations the incident field ¢; (R, ) is usually assumed as a plane wave
and the scattered field ¢, (R, w) is supposed to be known from measurements. The unknown
to be determined is the contrast function x (R).

Introducing the operators for R € Vp, Sy

Guy s, (o) = K2 / / / GR-R.0) (o) R 57)
Vb
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turns (54) and (55) into

$i(R, 0) = ¢(R, 0) — Gy, {x(-, 0) 9(-, 0)}(R), (58)

¢s (R, 0) = Gs, {x(-, 0)¢ (-, 0)}(R). (39)
The product of the contrast and the total field

w(R, 0) = x (R, ) ¢(R, ) (60)

is called the contrast source, which can be considered as an equivalent source generating the
measured scattered field, since the total field ¢ satisfies the equation

(A +k)P(R, 0) = —k* w(R, o). 61)
With (58) and (59) we deduce

X(R, 0)¢: (R, ) = w(R, 0) — x (R, ®)Gy,{w(-,w)}(R), (62)

¢s(R, w) = G, {w(-, 0)}(R). (63)

A rough outline of the nonlinear CSIW and ECSI inversion schemes reads as follows.

e The weighted contrast source inversion (CSIW) method is a variation of the CSI method
using instead of the contrast source and field their weighted counterparts

R, 7 Ra
II)(E, a)) — M and ¢(E’ a)) — M

¢i(R, ) ¢i(R, )
(see Kleinman and van den Berg 1997, Haak 1999). This results in weighted object and
data equations

(64)

X(RB, ») =w(R, w) - %Gm{@(w w)w(-, )} (R), (65)
¢s(R, w) = G, {di (-, ) w( -, ) }(R). (66)

The nonlinear inverse scattering scheme consists of three steps:

(i) Calculation of the weighted contrast source w (R, ®) by minimizing the misfit in the
object and data equations—(65) and (66)—using a conjugate gradient update. In the first
iteration an initial value for the contrast is assumed and in the subsequent iterations the
contrast in the previous iteration is used instead of x (R, ).

(ii) Computation of the weighted total field ¢ (R, w) using the weighted equivalent of (62)

1
R, w) =1+ mGVD{¢i( o), o)} (R). (67)

(iii) Reconstruction of the contrast function minimizing the misfit in the definition of the

weighted contrast source:

B(R, ) = (R, 0)}(R, 0). (68)
This equation is minimized for

b (R, ©)$* (R, »)
X (R, w) = = - (69)
[¢(R, w)|

In the above equation the star “*’ denotes conjugate complex.

The CSIW can work for both penetrable and perfect scatterers as well as with or without a priori
information. Regularization methods using total variation (TV) can be used for stabilizing the
convergence of the CSIW method (see e.g. Abubakar and van den Berg (2001) and references
therein), but this has not been implemented for our applications.
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Figure 13. Experimental setup for the ultrasonic IZFP data set.

Table 1. Parameters of ultrasonic IZFP data set

Background Aluminium cylinder with a radius of 36 mm
Scatterer Two air-filled cylindrical holes with a diameter of
2 mm and separated by a distance of 4 mm

Wave type Ultrasonic waves (P wave processed only)

Wave speed of P wave cp = 6297 ms~!

Transient pulse excitation — Transient signal with a bandwidth from 3.75 to 7 MHz
Multi-pulse—echo Transceivers: 360 at a radius of 70 mm, each 1° apart
Multi-pitch—catch Transmitters: 360 at a radius of 70 mm, each 1° apart

Receivers: 340 at a radius of 55 mm, each 1° apart

e The ECSI method is an extended version of the CSI method (van den Berg et al 1999).
In the CSI method, the contrast for each iteration is computed analytically using (69), but
the total misfit in the object and data equations may not decrease using this formula. To
overcome this difficulty, the ECSI method is introduced where the reduction in the total
misfit is guaranteed by updating the contrast using a line minimization algorithm. This
helps to introduce an extra minimization term for the residual function representing the
TV of the contrast. To avoid a tuning process which is needed if an additive TV term
is used, van den Berg ef al (1999) introduced a multiplicative TV term. This has been
implemented for our applications, yet it has been completely unsuccessful in inverting
the experimental data given in the following section; the multiplicative TV regularization
worked only for synthetic data. Obviously, research has to continue in this direction to
obtain successful results on experimental data using regularization.

6.1. Inversion example related to ultrasonic NDE

As a canonical (two-dimensional) inversion example related to ultrasonic NDE we present
results of the reconstruction of two air-filled cylindrical holes in an aluminium cylinder
immersed in a water tank as obtained with SAFT, CSIW and ECSI. An outline of the experiment
is shown in figure 13. Two ultrasonic transducers are positioned on a circle around the
aluminium cylinder focusing on its surface. Two data sets have been measured representing
two typical NDE measurement techniques:
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e a multi-pulse—echo (multi-monostatic) data set and
e a multi-pitch—catch (multi-bistatic) data set.

For the multi-pulse—echo data set an ultrasonic transducer operating in pulse—echo mode on
a measurement circle around the aluminium cylinder records A-scans for 360 positions each
1° apart. For the multi-pitch—catch data set 340 receiver positions are chosen for any one of
the 360 emitter positions each 1° apart. The most important parameters of the experiment are
summarized in table 1.

The multi-pulse—echo data set is processed with the time domain SAFT algorithm, and the
multi-pitch—catch data set is processed with the linear time domain SAFT and the nonlinear
frequency domain CSIW and ECSI algorithms.

6.1.1. Processing and inversion of the multi-pulse—echo (multi-monostatic) data set. The
transceiver output is a bandlimited time domain signal between 3.75 and 7 MHz which is
digitized at 80 MHz and stored in a computer. The complete multi-pulse—echo data set is
plotted in figure 14. The transducer is placed on a measurement circle Sy, with a radius of
70 mm and transmits a transient bandlimited pulse. The transmitted transient incident wave
is first reflected by the near-boundary of the aluminium cylinder, which is to be recorded first,
followed by the echoes from the two holes. Finally, the return echo from the far-boundary of
the aluminium cylinder is recorded. The time between the near-boundary echo and the far-
boundary echo corresponds to a distance equal to twice the diameter of the cylinder. Figure 14
shows 2580 time samples for each of the 360 transceiver positions placed around the cylinder.
In this pulse—echo case the scattered field from the two holes can be time gated and given as
input in the SAFT algorithm. The exact geometry of the scatterers is shown in figure 15(a).
The imaging result using the time domain SAFT is shown in figure 15(b). The CSIW and
the ECSI algorithms could not yield noteworthy results with this multi-pulse—echo data set
and, hence, they are not shown here. The domain V), is confined to 10 x 10 mm? within the
aluminium cylinder being discretized by a grid of 256 x 256 pixels. Here, all 360 transceiver
positions have been used to obtain the displayed image. Obviously, the boundaries of the holes
are clearly visible but the image is not free of ghost artifacts.

6.1.2. Processing and inversion of the multi-pitch—catch (multi-bistatic) data set. In this case,
the total time domain field is measured at 340 receiver positions for any of the 360 transmitter
positions around the cylinder. All positions are separated by an angle of 1°. Using many
receiver positions for one transmitter position provides angular diversity for each transmitter
position, which is absent in the multi-pulse—echo data set. Figure 16 shows the data set plot
obtained for 340 receivers and a transmitter placed at an angle of 0°. Again, the sampling
frequency is 80 MHz and the total time corresponds to 16.75 us. Similar data sets are
recorded for the other 359 transmitter positions. In contrast to the previous data set, these
data sets contain the incident field as well, yet the algorithms, especially CSIW and ECSI, only
operate on the scattered field, hence the incident field must be removed. After several trials, the
following method was adopted: the total field data—similar to those shown in figure 16—are
added up for all transmitters, which generate predominantly incident field data, as the scattered
echo is different for different transmitters. The incident field obtained that way is subtracted
from each data set to yield the scattered field data.

The time domain data set obtained by the above procedure is ready to be used as input to
the time domain SAFT algorithm, but the CSIW and ECSI algorithms need frequency domain
data. Hence, the time domain signals are Fourier transformed into the frequency domain using
an FFT routine, and the complex amplitudes are selected at some single discrete frequencies.
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Figure 14. Measured ultrasonic pulse—echo (multi-monostatic) time domain data set. The voltage
output of the transducer is plotted, which is normalized by the maximum value. The vertical axis
shows the position angle of the transducer in degrees. The horizontal axis shows the time samples
for a total time of 32.25 pus. The sampling frequency is 80 MHz corresponding to a sampling
distance of 12.5 ns.
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Figure 15. Images obtained for the multi-pulse—echo (multi-monostatic) data set; (a) Actual profile;
(b) SAFT image.

The two air-filled scattering holes in the aluminium cylinder are placed closer to the x-axis
as compared to the previous configuration. The exact profile is shown in figure 17(a). With
340 receiver positions for each of the 360 transmitter positions a considerable number of data is
available, hence a data reduction is introduced considering only 36 transmitter positions placed
10° apart and 68 receiver positions placed 5° apart. The frequency band of the time domain
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Figure 16. Measured ultrasonic multi-pitch—catch (multi-bistatic) time domain data set for the
transmitter at 0°. The voltage output of the receiving transducer is plotted, which is normalized
by the maximum value. The vertical axis shows the position angle of the receiving transducer in
degrees. The horizontal axis shows the time samples for a total time of 16.75 pus. The sampling
frequency is 80 MHz corresponding to a sampling distance of 12.5 ns.

data ranges from 3.5 to 7 MHz, hence 17 frequencies from 4.606 to 5.212 MHz with a spacing
of 60.3 kHz are available, which are then subsequently used as the scattered field data as input
to the algorithms. For the SAFT reconstruction shown in figure 17(b), we used the complete
time domain data set, the CSIW and the ECSI algorithms were separately run for each of the
17 frequencies (a concurrent frequency (CF) or frequency hopping approach (Marklein et al
2001) is not performed). The best results were obtained for the CSIW at 4.545 MHz, plotted
in figure 17(c), and for the ECSI at 4.303 MHz, as shown in figure 17(d). In both cases,
the scatterer is assumed to be a perfect scatterer, whence the imaginary part of the contrast is
computed and plotted in these images. The grid size is 64 x 64 over an area of 10 mm x 10 mm.
It should be remembered that the wave speed is the propagation velocity of pressure waves in
aluminium taken as cp = 6297 m s~! resulting in a wavelength of 1.57 mm at 4 MHz yielding
the radius of the holes to be ¢ = 1.27 A and the size of the domain Vp to be 6.371 x 6.37A.
Of the 17 frequencies mentioned before, the reconstruction was only possible for five
frequencies with CSIW as well as ECSI. CSIW converged for 4.242, 4.545, 4.606, 4.909 and
4.970 MHz, while ECSI converged for 4.242, 4.303, 4.606, 4.667 and 5.030 MHz within the
frequency range given above. A considerable amount of noise is present in each of these
reconstructions, hence the results obtained at these five frequencies were added up to create
a better contrast with less noise. This result is shown in figure 18(c) for the CSIW and in
figure 18(d) for the ECSI reconstruction. We note that the CSIW reconstruction seems to have
less noise than the ECSI reconstruction, and that there is a shadow that appears for the left
hole for both the CSIW and the ECSI reconstructions. Even though the final residue of ECSI
is less than that of CSIW for the same number of iterations, which was the main reason for its
development, visual inspection does not confirm the superiority of the ECSI reconstruction.
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Figure 17. Images for the multi-pitch—catch (multi-bistatic) data set; (a) Actual profile; (b) SAFT
image; (¢) CSIW image for a single frequency of 4.545 MHz (256 iterations); (d) ECSI image for
a single frequency of 4.303 MHz (256 iterations).

Further results for experimental electromagnetic scattering data can be found in
Balasubramanian (2001) and Marklein ez al (2001).

Presently, we are working on the extension of CSIW and ECSI to the vectorial and multi-
mode cases (see also Pelekanos 1997, Pelekanos et al 2000, Arens 2001).

7. Conclusion

The paper demonstrates the considerable potential to extend and improve the ultrasonic imaging
technique SAFT while consulting the mathematics of wavefield inversion, yet, in particular if
the underlying effort is considered, the relatively simple and effective SAFT algorithm works
surprisingly well.

Since SAFT is a widely accepted imaging tool in ultrasonic NDE it seems worthwhile to
check its formal restrictions and assumptions—whether they could be overcome and whether
they would outperform the standard and original SAFT algorithm.

e Being heuristically formulated, the inherent assumptions of SAFT inversion are not
obvious ab ovo; yet the embedding of this algorithm within mathematical scalar wavefield
inversion reveals that it is quantitatively related to linear time domain backpropagation
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Figure 18. Reconstructions for the multi-pitch—catch (multi-bistatic) data set; (a) Actual profile;
(b) SAFT image; (c) Averaged CSIW image obtained using five CSIW reconstructions for the data
at frequencies 4.242, 4.545, 4.606, 4.909 and 4.970 MHz; (d) Averaged ECSI image obtained using
five ECSI reconstructions for the data at frequencies 4.242, 4.303, 4.606, 4.667 and 5.030 MHz.

diffraction tomography. Due to the many articles on this subject, only references are given
here.

e The linearization can be overcome by applying nonlinear inversion schemes. For the
particular canonical NDE problem under consideration in this paper the result of SAFT
still compares very well with well-tested nonlinear inversion schemes. Therefore, the
question has to be answered, whether this continues to hold for more practically related
test situations. Anyway, the problem is certainly the great number of very precise data to
be recorded: the less sophisticated an algorithm is, the more robust it seems to be.

e The extension of SAFT to inhomogeneous and/or anisotropic background materials is a
must for many applications, and this could be achieved along with the original ‘theory’ of
SAFT. But, of course, more examples are needed.

e The scalar nature of SAFT can easily be overcome within the framework of linear vector
wavefield inversion; this is true for electromagnetic as well as elastodynamic waves, yet,
again, the problem seems to be the proper data acquisition: at the moment, utilization of
synthetic data gives far better results than experimental data.
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Final conclusion: not much remains to be done regarding the theoretical formulation of
linear wavefield inversion, yet improvements with nonlinear inversion can certainly be made.
Ockham’s razor is simply: will it work in practice?
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