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INTRODUCTION

Nondestructive testing in civil engineering (NDT-CE) comprises the application
of ultrasonic and electromagnetic wave propagation and inverse scattering. The aims
of our current research are threefold:

1. Numerical modeling of ultrasonic wave propagation and scattering in concrete
with the EFIT code (EFIT: Elastodynamic Finite Integration Technique) to get
a better understanding of the ultrasonic wave phenomena in concrete,

2. application of the elastodynamic vector imaging scheme EL-FT-SAFT to
modeled data (EL-FT-SAFT: Elastodynamic Fourier Transform Synthetic
Aperture Focusing Technique) to detect delaminations in a metal duct or for
thickness determination,

3. application of the electromagnetic vector imaging algorithm HD-POFFIS to
measurements in order to locate a metal duct in reinforced concrete
(HD-POFFIS: Hertzian Dipole Physical Optics Far-Field Inverse Scattering).

ULTRASONIC WAVES APPLIED TO CONCRETE

Ultrasonic waves in concrete are governed by Cauchy’s equation of motion and
the equation of deformation rate [1, 2]. These equations are given in integral form for
a finite volume V' with the surface S by

// aﬁj@i)dV:ﬁgﬂ!(E»wdS + ///V f(R,t)dV, (1)
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J is the linear momentum density vector, T is the stress second rank tensor, S is the
strain second rank tensor, v is the particle velocity vector, f is the source of force
density, h is the source of deformation rate second rank tensor, n is the outward

normal unit vector of S and sym {nv} denotes the symmetric part of the dyad nv.



We assume concrete as a non-dissipative isotropic inhomogeneous material. According
to this the material properties are given by the following constitutive equations

(R) : T(R.1): (3)
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0o is the volume density of mass at rest and s is the compliance tensor of fourth rank.

The latter reads for the isotropic case
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A, p are Lamé’s constants and I is the unit dyadic or the idem factor.

EFIT Modeling of Ultrasonic Waves in Concrete

For the numerical time domain (TD) modeling of elastic waves in concrete we
use the Elastodynamic Finite Integration Technique (EFIT) [3, 4].
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Figure 1. Left side: concrete models of the size 50 cm x50 cm for EFIT modeling; right
side: detail drawings of the size 7.5 cmx7.5 c¢m; top: without air inclusions; bottom:
with air inclusions (white ellipses); mesh size 2,000x2,000 with Az=Az=250pm.
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Figure 2. EFIT-|v|-snapshots of the elastic wavefield in concrete; cement with biatit-
granite, basalt, and plaster (max. aggregate size 8mm, grading curve B8); top (1-4):
without air inclusions; bottom (5-8): with air inclusions (appearing as black dots).

First applications of the numerical modeling of ultrasonic waves in concrete and
an inverse scattering algorithm can be found in [4]. Due to the additives and air
inclusions which may occur the material concrete is very inhomogeneous. Usually
concrete consists of cement and several additives like basalt, plaster, and biatitgranite.
We modeled two different situations: (1) concrete without air inclusions and (2)
concrete with air inclusions. Fig. 1 illustrates the used concrete models. The base
material is cement and the additives used are basalt, plaster, and biaitgranite with a
max. aggregate size of 8mm. We used the grading curve B8. The additives are
modeled by ca. 60,000 ellipses which are varying statistically in size, orientation and
additives (see Fig. 1, right). Details can be found in [5]. Every material cell of the
EFIT grid can cover different material parameters [3]. From a numerical point of view
the total number of the ellipses is only limited by the number of material cells. In this
example we have with a cell size of Ar=Az=250pm a mesh size of 2,000x2,000 with
4x10° material cells. The detail drawings at the right side of Fig. 1 show clearly the
statistical distribution of the ellipses. We used a normal pressure probe which has a
diameter of D=>5cm and a center frequency of f. = 80 kHz in the pulse-echo technique.
The time history of the probe is modeled by a raised cosine with two cycles. For EFIT
modeling we applied a stress-free boundary condition on the top and bottom surface
and an open boundary condition (Higdon) at the left and right boundary in order to
model a infinite concrete structure. Snapshots of the elastic wavefield for both cases
are shown in Fig. 2. We recognize in Fig. 2.1 and Fig. 2.5 at t; the near-field of the
excited elastic wavefield. In Fig. 2.2 at ¢, we identify a prominent pressure wave
followed by a shear wave, head waves, and Rayleigh waves at the top surface. In the
case with air inclusions (Fig. 2.6 - Fig. 2.8) the wavefield is totally distorted because of
multiple reflections and mode conversion effects on the air inclusions. Due to the open
boundary condition reflections and mode conversions are suppressed at the vertical
boundaries. The backwall echo of the pressure wave shows up very clearly only in
Fig. 2.3 at t3, which then propagates back to the top surface, and it is recorded by the
normal pressure probe (Fig. 2.4). Only in concrete without air inclusions the traveling
time of the backwall echo can then be analysed, e.g. for thickness determination.
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Figure 3. Geometry of the concrete with a metal duct filled with cement.

Elastodynamic Vector Inverse Scattering: Detection of Delaminations in a Metal Duct

For inverse scattering in elastodynamics we formulated an elastic vector
imaging algorithm which is called ELastic Fourier Transform Synthetic Aperture
Focusing Technique (EL-FT-SAFT). It is based on the linear elastic far-field inversion
including a near-field far-field transformation. The formulation of the diffraction
imaging algorithm is based on Huygens’ principle. Application of the equivalence
principle leads to a representation of the scattered field on the surface S. The particle
displacement vector of the scattered field is then represented by

u“(R,w) = 6)
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with n’ as the outward normal unit vector of the surface S, X is the triadic and G the

dyadic displacement Green’s function of free space. Introducing far-field
approximation in (6) we get the definition of the linearized far-field scattering

amplitude for perfect scatterer Qa5(37 w). Then, in linear physical elastodynamics

(PE) the singular function of a perfect scatterer is given by the elastodynamic Fourier
diffraction slice theorem in the K-space here for the bistatic case (bi) [6]
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This equ. (7) represents the essence of the elastodynamic vector imaging algorithm
EL-FT-SAFT. As an example, we consider the following question: ,Is it possible to
detect delaminations in a metal duct which is filled with cement“? Fig. 3 shows the
geometry of a concrete sample with a metal duct which has three delaminations. The
EFIT modeled wavefield is given in Fig. 4, on the left hand side without
delaminations and on the right hand side with delaminations. In the latter case the
reflected pressure wave from the metal duct (delaminations) has a higher amplitude.
For each situation we ,recorded® a rf-data field in a finite aperture, which is indicated
by the black bar in Fig. 3. Then we applied the EL-FT-SAFT imaging scheme to the
pressure and shear part in order to get a P-image and S-image separately. The images
are shown in Fig. 5, left and middle. The superposition of the P- and S-image to a
PS-image is given on the right hand side of Fig. 5. We clearly recognize an
improvement in the PS-image. Nevertheless, it is not possible to image the
delaminations itself. We get only an indication of the delaminations because of the
higher amplitude in the reconstruction of the upper part of the metal duct.
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Figure 4. EFIT-|v|-snapshots of the elastic wavefield in concrete with metal duct; left
without and right with delamfmnations; the probe is indicatgll by the black bar.
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Figure 5. EL-FT-SAFT reconstructions; from the top to the bottom: without delami-
nations (1), with delaminations (2), scattered field (2 minus 1).

ELECTROMAGNETIC WAVES APPLIED TO CONCRETE

Electromagnetic waves are governed by Maxwell’s equation [7]. These read in
integral form for a finite surface S with the contour C'

//S%B(B,t)-gds = _j{cE(E’w.ng’ (8)
//S%Q(E’”'Eds = £H<E’t>-§dR—/ng(E,t>-gds; (9)
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Figure 6. Reinforced concrete sample with a size of 80cmx50cmx40cm (e, ~ 7) with
an embedded metal duct (9cm deep) and mesh reinforcements (3cm and 37cm deep).

B is the magnetic flux density vector, E is the electric field, D is the electric flux
density vector, H is the magnetic field, J is the electric current density vector, n is
the outward normal unit vector of S and s is the tangential vector of C'. We model
concrete as a non-magnetic non-dissipative isotropic material which is homogeneous
with respect to the relative permittivity €,. Then the electromagnetic constitutive
equations are the following

B(B7 t) - NOE<E> t) ) Q(E, t) - €r50E(E7 t) ) (10)

o is the permeability and g is the permittivity of free space. The phase velocity in
concrete is ¢ = 1/ /Hoé:E0 = co/V'T V7=1.134x10% m/s The relative permittivity of
concrete is £, ~ 7. This yields at center frequency a phase velocity of ¢;j'=

co/V7=1.134x10® m/s and a wave length of A" = 12.6 cm.

Electromagnetic Vector Inverse Scattering: Location of a Metal Duct

Fig. 6 shows a typical reinforced concrete sample with a metal duct (9cm deep,
diameter D=10cm) and mesh reinforcements (3cm and 37cm deep, mesh size 18cm)
which is applied to both sides of half the sample. The metal duct is filled with cement.
Tendons are not incorporated here. Important parameters of the concrete are:
strength category B45; portland blastfurnace cement HOZ35L; grading curve ABS;
total water/cement ratio 0.48. We assume that the metal duct and mesh reinforcement
are perfect conductors with infinite conductivity (o — oo). In order to locate the
metal duct in the reinforced concrete we applied a commercial ground probing pulsed
radar. We measured 21x498 points in xy-plane, each point has 512 time samples.
Then we applied a linear interpolation in z-direction and we took every sixth sample
in y-direction. This yields a 3D data field of 121 x84 x512 samples. The measurements
have been made by Dr. Maierhofer at the Bundesanstalt fiir Materialforschung und
-priifung (BAM) in Berlin/Germany. The antenna is a microstrip butterfly antenna of
the size 18 cm x 32 cm with a center frequency of f. =900 MHz and a bandwidth of
B=1 GHz (see Fig. 7). The butterfly antenna can be approximated by an electric
dipole p = po(w)p with the unit vector p and spectrum py(w). The excitation pulse is
a time derivated Gaussian function. For linear physical optics (PO) (Kirchhoff
approximation) we write down the following vector backprojection algorithm in the
time domain for the illuminated top surface of the singular function

7 (R Zi//s R- R/ _[AE'){BQ/—E)]Q

pE<(R,7 = 2/5R — R|/c;)dS’. (11)
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Figure 7. Three orthogonal slices of the reconstructed illuminated top surface of the
singular function v*M(R), showing the metal duct in the reinforced concrete. Lower
right: geometry of the microstrip butterfly antenna.

Figure 8. Isosurface of the reconstructed illuminated top surface of the singular function
VEM(R), showing the metal duct in the reinforced concrete.



This inversion scheme is called Hertzian Dipole Physical Optics Far-Field
Inverse Scattering (HD-POFFIS) [8]. A scalar version of POFFIS can be found in [9]
and for further reading about inverse scattering see [10, 11, 12]. We applied the
formula (11) to measurements of the concrete sample shown in Fig. 6. Fig. 7 shows
three orthogonal slices and Fig. 8 shows an isosurface of the reconstructed illuminated
top surface of the singular function. Both figures represent a good agreement with the
given real geometry of the metal duct (see Fig. 3). Because of shielding effects of the
mesh reinforcement on the right half of the sample, the right part of the metal duct is
missed in the reconstruction. To test the influence of the vector character of this
inversion scheme we made a further reconstruction with a purposely wrong dipole
direction p = e,. This leads to defocusing effects which are also present if we use a

scalar FT-SAFT imaging algorithm [13, 14].
CONCLUSIONS

We have presented the numerical modeling of ultrasonic waves in concrete with
the EFIT code. The highly inhomogeneous material concrete has been modeled by a
statistically varying distribution of ellipses. A typical number is 60,000. By the
combination of time domain EFIT modeling and the elastodynamic vector imaging
scheme EL-FT-SAFT it has been shown that it is possible to detect delaminations in
a metal duct with the application of ultrasonic waves. We have documented the
resulting improvement in the reconstruction by using the elastodynamic vector
inversion scheme. Finally, we have shown the application of the electromagnetic
vector imaging scheme HD-POFFIS to measured data in order to detect a metal duct
embedded in reinforced concrete taking into account the vector character of
electromagnetic waves.
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