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Abstract 

The basic equations of EFIT, the Elastodynamic Finite Integration Technique, are formulated for anisotropic inhomoge- 
neous media in 3D. For isotropic inhomogeneous media we discuss the discrete equations on a staggered grid resulting in 
a unique way to discretize material parameters, and evaluate stability conditions and consistency for isotropic homogeneous 
unbounded media. For the sake of simplified visualization, numerical results are presented for various two-dimensional prob- 
lems as they originate from nondestructive testing applications. In particular, EFIT wavefronts are reIated to group velocity 
curves for anisotropic media with transverse isotropy and cubic symmetry, the latter one being derived by a coordinate-free 
approach in the appendix. 

1. Introduction 

Particularly, seismological exploration and ultrasonic nondestructive testing require numerical modeling of 
radiation, propagation, and scattering of elastic waves. Unfortunately, analytical methods are only able to handle 
canonical problems, whereas real-life problems have to be tackled with numerical methods. These comprise 
semi-analytical techniques like the elastodynamic geometric theory of diffraction [ 1 ] and the boundary element 
method (BEM) , which is based upon an elastodynamic version of Huygens’ principle [ 21; “purely” numerical 
techniques mainly operate directly on the fundamental equations of motion, among them finite difference 
time domain methods (FDTD) [ 31, velocity-stress FDTD (VS-FDTD) [4] and finite element methods (FE) 
[5]. Recently [6,71, we have proposed another scheme acronymed EFIT for elastodynamic finite integration 
technique, which has a successful counterpart in electromagnetics [ 81. Several applications in nondestructive 
testing [ 91 proved its feasibility und utility, in particular for CA1 (Computer Aided Inspection) [lo], which 
combines modeling and imaging. For isotropic homogeneous media, the discrete EFIT equations are close to 
VS-FDTD, but for inhomogeneous media, the EFIT discretization proves superior. In the present paper we 
address the fundamental questions of stability, consistency, and convergence of the three-dimensional EFIT 
scheme, and discuss, for the sake of simplified visualization, some two-dimensional examples for isotropic 
inhomogeneous and anisotropic homogeneous media. 
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2. Integral formulation of linear elastodynamic equations for anisotropic inhomogeneous media 

Various textbooks [ 1 I-141 define the field variables of elastodynamics as function of time t and observation 
vector R: 

- motion-related particle displacement velocity v(R, t) and strain tensor E(R, t), 
- force-related momentum density p(&, t) and stress tensor T(&, t). 
The equations of elastodynamics combine motion-related and force-related field variables via fundamental 
physical laws. It is most convenient to consider a finite volume V with surface S of the solid; via definition of 

its 
_ total momentum vector 

JJJ p(R,t) dV, 
V 

- total surface traction vector - 9 denoting the outward normal unit vector on 5’ - 

JJ nC&'(R,t)dS, s 
- deformation volume second rank tensor 

JJJ g(R,t) dV, 

V 

- and particle flux second rank tensor 

JJ i~(R,t) a. s 
Newton’s principle of linear momentum yields 

d 

dt JJJ p(W) dV= JJ nd$(S,t>dS. 
V s 

(1) 

According to the law of deformation, a particle flux results in a time variation of the deformation volume 
according to 

d 

z JJJ $@,t> dV= JJ ; [nvUi,t> +v(E, t)sl dS 
V s 

(2) 

indicating that the antisymmetric particle flux only results in a rotation of the deformation volume, which does 

not contribute to its time variation, whence the symmetry of @, t). 
Eqs. ( 1) and (2) represent the elastodynamic counterpart of Maxwell’s equations of electromagnetics in 

integral form. If necessary, they can be augmented on the right hand side by an independent volume source 
term, respectively. This term is in Eq. (2). 
- the integrated force density f(R, t) 

JJJ f@L t> dY 
V 

(3) 
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and in Rq. (2) 
- the integrated source of deformation rate I& t) 

JJJ &(E>t> dV. 
V 

As is well-known in electromagnetics, for “media” other than vacuum, additional constitutive equations are 
required to solve Maxwell’s equations. The same holds for ( 1) and (2)) where usually linearity comes in, 
i. e. p and 1 are related by a mass density tensor (at rest) @JR) according to - 

p(Rv t> = e$Q * vm, t) , 
and, similarly, S and 2 are related by the fourth rank compliance tensor g according to - - 

(5) 

E(R, t) = s(R) : gm, t) . = - 

The double dot indicates double contraction [ 141. Alternatively, (6) can be inverted 

(6) 

E(R, t) = c(R) : gut, t) > (7) = - 

thus defining the fourth rank stiffness tensor of Hooke’s law. To model elastic wave propagation and scattering, 
the material parameters 5(R), c(R), g(R) have to be specified, in an inverse problem they have to be 

determined from field measuremeits. 

- 

= 
Inserting the elastodynamic constitutive equations into the equations of motion ( 1) and(2) and ignoring 

higher order effects due to a time variation of V itself, we obtain 

JJJ g(B) -4(&t) dV= JJ n-U&t) dS, _ 
V s 

JJJ s(R) :@,t) dV= JJ 1, (Rt 
= 2 nv _, ) +v(_lZ,t)nl dS, 

V- s 

(8) 

the dot indicating first time derivative. These two equations - Cauchy’s equation of motion and the deformation 
rate equation - represent the starting point for EFIT in anisotropic inhomogeneous media. In order not to 
complicate our discussion we first concentrate on isotropic inhomogeneous media. 

For isotropic media, only a scalar mass density is required, and hence 

(10) 

With the unity tensor 4. Similarly, with the two independent Lame’s constants A(R) and ,u(R), the stiffness 

tensor for isotropic media ’ is given by 

g(R) = NR)ZZ + P(R) @,‘3z4 + ,,13,,) 7 (11) -- = 

where we apply the upper indicial notation 2 of [ 141. The compliance tensor for isotropic media has the same 
structure as ( 11) , but [ 121 

’ In Voigt’s matrix notation we have cl1 = A + 2~ and ca = /_L with the isotropic symmetry condition cl* = ~11 - 2~44 = 1. 
* For instance, the transpose of a tensor A is written as AZ” ; accordingly, &i’34z is the identity operator with regard to double contraction, -- 

i.e. & : $$1342 = Es1342 : A = & and 4 : II’324 = ii’3u : & = A21 zz == = 
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p(E) = A( + M(R) (g1324 + ,,1342) , -= = 
with 

h(B) 

A(R)=-2~(R)[3W +2p(R)] ’ 
1 

M(R) =-4-J@ 

(12) 

(13) 

(14) 

3. EFIT discretization for isotropic inhomogeneous media 

The fundamental idea for EFIT is the Finite Integration Technique (FIT), which has been very successfully 
utilized to discretize Maxwell’s equations [ 81. To apply FIT to Eqs. (8) and (9) to yield EFIT as discussed in 
[ 61 for isotropic homogeneous media we evaluate the volume and surface integrals approximately for each cubic 
discretization volume V = Ax3 assuming constant v and 2 within V and on each of the six quadratic surfaces 

S = Ax2 of V. Obviously, this requires staggered grids, which are centered around the Cartesian components 
ut , ~2, u3 of x, and around the main and off-diagonal elements Ti 1, T22, T33, Tl2, Tl3, T23 of x. Careful investigation 
of the respective components necessary for either (8) or (9) results - in case of isotropic homogeneous media - 
in the location of components as displayed in Fig. 1, which, interesting enough, is appropriate for both Cauchy- 
and deformation rate equations, and, concerning the latter, for both main and off-diagonal elements of T. From 
the nine integration volumes we extract the EFIT-v-grid (compare Fig. l), which is staggered with regard to 
the “dual” EFIT-s-grid, the latter one being similarly organized than the z-grid by the Z’ij,i+j-components; it is 
centered around the Tii-components. 

In the case of inhomogeneous media a discretization of the material parameter distribution has to be intro- 
duced, which cannot be done arbitrarily, because continuity of n.T and II has to be ensured on its grid surfaces, 
and these transition conditions should involve only those compon&ts of the EFIT-discretization grid which are 
continuous on the material discretization grid. For instance, if the fit-integration cube of Fig. 1 would coincide 
with a cube of the material parameter grid, continuity of Tl1 would be required on the left boundary; but on this 
boundary, EFIT requires ‘l-components TZZ and Tss also, which are not supposed to be continuous. Accordingly, 
this discretization of material parameters is not appropriate for EFIT and does not lead to stable results. As 
a matter of fact, it turns out, that there is only ooze appropriate discretization for material parameters, which 
should coincide with the “dual” EFIT-g-grid; this is the essential difference of EFIT compared to [ 41. Then, 
for isotropic inhomogeneous media the following discrete EFIT equations are obtained, where Mi, i = 1,2,3 
denote the node number distance in xi-direction of the node adjacent to node n: 

x T;ft+“l)(t) -q(;)(t) +T:,“)(t) -T;;+‘(t) +T,:n)(t) -T;;--M3) (t)] 9 

1 
i,cn) /t\ - - 

2 

x [ 
(n) T12 (t> - Tl2 (n--Ml) (t) + ~~~+m) (n) (n) 

(t> -T22 (t> +T23 (t) -T23 (n--M3) (t)] , 

x T;;)(t) -T;;-““(t) +T;;)(t) -T;;-M2’(t) +T:3n+Ms) (t) -T;;‘(t)] 7 

(1% 

(16) 

(17) 
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Fig. 1. Staggered grid for EFIT for a particular node number n; T-cube s not shown. 

1 

p(n+M~+Mz) 

(19) 

(20) 

(21) 
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1;:;‘(t) Z-L 4 

Ax 1 + 1 1 1 - ~ ___ 
p(n) /J”+M’) + pU.(“+M3) + p(n+M1+M3) 

x 
C 

Ul(n+M3)(t) - u;“‘(t) + U$n+Mqt) - Lp(t) ) 1 (22) 
g;)(t) = -!- 4 

Ax 1 1 1 1 --___ 
/J(n) + /JU(n+M2) + $“+M3) + pu(“+MZ+M3) 

x $f”3) (t) - up (t) + uin+M2) (t) - u;“‘(t) 1 . (23) 

Notice, for the Ttt/z2/ss-equations only material parameters of cube n of the EFIT grid are involved, and, 
therefore, the g :-operation can be inverted for each cube to yield the stiffness formulation as inhomogeneous 

= 
media. 

Of course, if the medium is inhomogeneously anisotropic, the same ideas as above apply. 
The time derivative in ( 15)-(23) is approximated by central differences according to 

(24) 

(25) 

yielding a leap-frog integration scheme. In (24) and (25)) II!“’ denotes the vector composed of particle velocity 

components ui for all nodes n for a certain time t = z At with integer z ; TF’ is similarly defined. 
A number of 2D numerical results for nondestructive testing - transducer radiation into solids and scattering 

by defects in homogeneous media - are available in [ 9,10,15], and [ 9,101 also contain the “extension” of EFIT 
to purely acoustic waves, acronymed AFIT for Acoustic Finite Integration Technique [ 161. In two dimensions 
EFIT results have additionally been validated against analytical solutions [7] and a particular Finite Element 
code [ 171 described in [5]. 

4. Stability of EFIT for isotropic homogeneous unbounded media 

4.1. Stability of EFIT in 30 

Let us consider a slight generalization of our cubic EFIT grid in terms of unequal lateral dimensions 
Axt, Ax:!, Ax3 of the grid volume V, and let us further define grid nodes through the following numbering 

l-direction: il = 1,2,. . . ,Zt, 

2-direction : iz = 1,2,. . . ,I2, 

3-direction : i3 = 1,2,. . . ,Z3, 

yielding node n = n( il , i2, i3) through 

n(il,iz,&) = 1 + (il - 1) + (i2 - 1)Zt + (i3 - l)ZtZ2, (26) 

if we move through the grid in ( 1 - 2 - 3)-direction. Stability of the numerical marching-in-time scheme is 
investigated discussing the behavior of Eqs. (15)-(23) - as specified for homogeneous media - simultaneously 
for all nodes when time is incremented by At from ZA t to (z + 1) At. To do this we make a time harmonic 
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plane wave ansatz for all field components as proposed by J. von Neumann [ 181, for instance in terms of the 
particle velocity for the coordinates of node n and time zht 

U$ILZ 1 1 = U~“l.h>bq,o)& IO '(k1ilAn1+k~izAx2+k3i3Ax3),-joozAr 9 (27) 

where ki, i = 1,2,3 denote the Cartesian components of the wave number vector. Inserting this ansatz into 
( 15)-(23) with reference to Fig. 1 regarding the relative dislocation of components, and observing (24) and 
(25) we obtain straightforwardly the following matrix equation 

&z+W) = @z-‘/2) + 4. u(z), - 

with 

(28) 

(29) 

/o 0 0 2jxt 0 0 0 2.ix3 2jx2\ 
0 0 0 0 2_ix2 0 %x3 0 2jx1 
0 0 0 0 0 2.ix3 2jx2 2.ixl 0 

2j,yl 2jb,y2 2jbx3 0 0 0 0 0 0 
&.= 2jbx1 2jx2 2jbx3 0 0 0 0 0 0 . 

2jbxl 2jbx2 2j,y3 0 0 0 0 0 0 
0 2jax3 2jax2 0 0 0 0 0 0 

2&x3 0 2jaxl 0 0 0 0 0 0 
\2jax2 2jax1 0 0 0 0 0 0 0 / 

Here, stimulated by the stability investigations of Taflove and Brodwin [ 191 for the electromagnetic case, the 
9-component “field”-vector a(‘) is defined by 

U(Z) = 
- 

with the elastic pressure wave impedance 

VP= 1I&nTm. 

The quantities a and b are related to the pressure and shear wave speeds 

(30) 

(31) 

CP = do + %u)/eo, 

cs=diG7 
through 

a = cg/ci, 

b=l -2a. 

(32) 

(33) 

(34) 

(35) 
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The grid and the wave number 
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components ki of the plane wave are hidden in 

i= 1,2,3. 

Eliminating the half-time step @Z-t/2) in (28) through definition of 

y(z) = ~‘Z-W’ 
- 

we obtain the final matrix equation 

if WC’) is given by 

&l(z) = 
u(z) 

( > y(z) ; 

(361 

(37) 

(38) 

(39) 

Z_ denotes the 9x9-identity and Q the corresponding null matrix. The matrix B is called the amplification 
matrix, and according to J. von $&mann [ 181, a numerical scheme is stable provided the absolute value of 

the eigenvahtes v,, of g is not greater than one, i. e. 

[Y,,\ 5 1 form=1,...,18. (40) 

The explicit expression for the characteristic polynomial Psb( V) of g in three dimensions is given by 

P3D(V) = (Y3 (a6 + 4a4v2( 1 + 20) (/yT + x$ + x$) (41) 

+16a2v4a(2 + a) (x: + x; + x:)” + 64v6a2 (XT + x; + xi)‘} , 

with cr = y2 - 1. As eigenvalues, v1/3/5 = 1 and V2/4/6 = -1 are immediately recognized; substituting f~ = cu2 in 

the bracketed 6th order polynominal, it factorizes in the form 

[P + 4v2 (XT + x; + x$)1 [P + 4v2a (x: + x; + x:)12. (42) 

Therefore the zeros in ,u of the 6th order polynominal are 

PI = -4v2 (XT + x; + xi) , (43) 

p2/3 = -4v2a (x: + x; + x;) . (44) 

For the pt-equation the eigenvalues 

W/8/9 /IO = =u&Gg& l- (x:+x$+x;) 

are obtained, whereas the second ,uzp-equations yield 

vl l/12/13/14 = *jj/w h 1 - a (x? + xi + xi) = v15/16/17/18 . 

To ensure lv7,s,9,ta1 5 1, we have to require 

x:+x;+x; F 1, 

(45) 

(46) 

(47) 
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resulting in 

At&- 
1 

cP 
(48) 

l/Ax; + l/Ax; + l/Ax; 

Because cs < cp we always have a < 1, and therefore condition (48) also ensures J~rt-rs] < 1. Obviously, 
(48) complies with Tatlove’s and Brodwin’s result for the electromagnetic case [ 191, and it extends the well- 
known Courant-Friedrichs-Lewy stability criterion of one-dimensional FDTD methods [ 18,20,2 1 ] to higher 
dimensions. 

Stability of EFIT with regard to time is related to the highest wave speed, whereas spatial discretization 
is related to the lowest wave speed. We applied the stability criterion (48) also to bounded media and never 

encountered any difficulty. 

4.2. Stability of EFIT in 20 

In two dimensions, if the plane strain hypothesis is hold [ 141 - parallel to the ~1x3 plane - the same 
procedure as above yields with 

the characteristic polynominal in two dimensions 

P*,(v>=cr~cu4+4~*~*(1+a)(X:+X32)+ 

(49) 

16av4(X: + X3’)*] 1 (50) 

with CY = V* - 1. As eigenvalues, VII;? = f 1 are immediately recognized; substituting p = a2 in the bracketed 

factor we find 

I%/* = -2V71 +a)(X:+X;) f2v2(1 -a)(Xt+X;). (51) 

For the lower sign in (51) the eigenvalues 

v3/4/5/6 = *.ij/G * j/m (52) 

are obtained, whereas the upper sign yields 

v1/8/9f 10 = ki&GiGj? k- JW . (53) 

To ensure / v3/4/5/6] 5 1, we have to require 

x:+x; 51, (54) 

resulting in 

I’-+&. 
(55) 

This is the stability condition of the 2D EFIT scheme related to the highest wave speed. We applied this criterion 
(55) to bounded homogeneous, inhomogeneous and anisotropic media. For an inhomogeneous medium CP must 
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be replaced by cpmaX which is the maximum phase velocity expected within the spatial domain. Further, in the 
anisotropic case cp must be replaced by cgpmax which is the maximum group velocity. 

5. Dispersion relations, consistency, and convergence of EFIT for isotropic homogeneous unbounded 
media 

5.1. Dispersion relations of EFIT in 30 

If a numerical scheme is consistent in the sense that its discrete dispersion relation has the pertinent “contin- 
uous” dispersion relation as a limit, then the Lax equivalence theorem [ 18,211 ensures convergence provided 
the stability condition is satisfied. 

Consistency of the 3D EFIT scheme is explicitly shown in the following for isotropic homogeneous media. 
Suppressing the term e --j”ozAr in (28) by defining “phasors” 

u = u_(z+$ozA , (56) 

we obtain instead of (28) 

~.U=O, 

with 

‘D=2jxZ+Ca = - - 

= 

and 

2jxt 0 0 2jxl 0 0 0 2jx3 2jx2 
0 2jxt 0 0 2jx2 0 2jx3 0 2jxl 
0 0 2jxt 0 0 %x3 %x2 2jxl 0 

2jxl 23x2 2jbx3 2jxt 0 0 0 0 0 

2jbx1 2jx2 2jbx3 0 2jxr 0 0 0 0 

2jbx1 23x2 2jx3 0 0 2jxt 0 0 0 
0 2jax3 2jax2 0 0 0 2jxr 0 0 

2.&x3 0 2jax1 0 0 0 0 2jxr 0 
2jax2 2jax1 0 0 0 0 0 0 2jxt 

xt = sin F . 
( > 

(57) 

(58) 

(59) 

(60) 

Eq. (57) is a homogeneous “wave equation” for the discrete elastodynamic field in frequency-wave-number 
space. Hence, putting the determinant of 2, equal to zero yields the discrete dispersion relation. 

Obviously de@ = 0 yields a polynominal in xr, i. e. - 

detg= -512jx: {-x: + x4( 1 + 2a) (x: + xi + xi) 

-x:42+a) (x~+x~+x~)2+a2(x~+x~+x~)3} . 

Factorization of the bracketed 6th order polynominal in xr yields 

(61) 

(62) (-x: + XT + xZ + xi) [-xf + a (XT f x: + ~$1”. 
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Therefore the nontrivial solutions are readily obtained as 

x;, =x:+x;+k% (63) 

x:*,3 = &Y: +x; + XZ) * (64) 

Explicit writing reveals the discrete dispersion relations of the pressure and shear wave with the phase velocities 
cp and cs 

&sin2(~)=-&sin2(~)+&sin2(~)+-&sin2(~) . 

(65) 

(66) 

The discrete dispersion relations (65) and (66) can be utilized to quatitatively determine the numerical phase 
velocities, numerical wave numbers, and numerical group velocities of the 3D EFIT scheme as a function of 
At, Axt, AXZ, An3 and propagation direction. 

In the limit At -+ 0, Axt ---+ 0, Ax2 - 0, Ax3 - 0 the discrete dispersion relations (65) and (66) 
reach the “continuous” dispersion relations for (plane) pressure and shear waves 

&ICP,S 2=k:+k;+k$, (67) 

as they are, for instance, obtained by a plane wave ansatz for the wave equations of the elastodynamic Helmholtz 
potentials [ 121. 

Consequently, we have proven consistency of the 3D EFIT scheme. 
Furthermore, this suggests that numerical dispersion effects can be reduced to any degree that is desired if 

we only use a fine-enough grid spacing. 

5.2. Dispersion relations of EFIT in 20 

Investigating now the 2D case as in the previous section, 9 reduces to 

+Z2&~:jS), - 

and detg = 0 yields 

(68) 

detg = 32jxr [x: - x;( 1 + a) (x: + x$) + a(,~: + x;)“] = 0, (69) 

with the nontrivial solutions 

xY=x:+x;~ 
x: =4x: +x3 

and resulting in the discrete dispersion relations of the 2D EFIT scheme 

(70) 

(71) 

-+Sill* (F) =-&sin* (!7!_$?.) + __Lsin* (Ir3ix3) . 
c”P sA t2 

(72) 
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Fig. 2. Reflection, diffraction and mode conversion of finite aperture radiation by a plane boundary separating two homogeneous isotropic 
media (above boundary; Aluminium (polycrystal) with cp = 6420 m/s, cs = 3040 m/s and ~0 = 2700 kg/m3; below boundary: Zirconium 
with cp = 46.50 m/s, cs = 2250 m/s and QIJ = 6490 kg/m3) 

6. Numerical results 

For the sake of simplicity we discuss only two-dimensional examples in the following. 
Fig. 2 models transducer radiation into a two-layer isotropic specimen with stress-free boundaries in terms of 

time domain wavefront snap-shots. The excitation is in terms of a prescription of the normal component of the 
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stress tensor within a finite aperture; the spatial distribution is homogeneous, and the time variation is a finite 
bandwidth high-frequency pulse with linear retardation along the aperture resulting in a “steered beam” of both 
pressure and shear waves. These are then reflected, mode converted and diffracted at the interface between the 
two layers. 

Fig. 3 models the elastic radiation field of a line force in a transversely isotropic homogeneous solid; 
obviously, the EFIT wavefronts comply well with the group velocity diagram as it is computed by the method 
described in the appendix. 

Fig. 4 models transducer radiation into a transversely isotropic medium, and Fig. 5 gives an example of 
crack scattering in such a host material. It is interesting to observe thequasi-shear vertical wavefront cusps as 
they originate from the tips. Fig. 6 gives another example of line force radiation into a transversely isotropic 
medium, which has been deliberately chosen, because the pertinent wavefronts were recently derived by an 
analytic method [22]; of course, there is coincidence, but it should be emphasized, that EFIT gives also the 
amplitude distribution on the wavefronts. Fig. 6 also displays the group velocity diagrams. 

Fig. 7 now turns to the case of an anisotropic solid with cubic symmetry; the line force EFIT wavefronts are 

once again compared to the group velocity diagrams. 

Appendix A. Phase and group velocity for anisotropic media with transverse isotropy and cubic 
symmetry: a coordinate-free approach 

The EFIT wavefronts of Figs. 3, 6 and 7 for anisotropic homogeneous media are explicitly related to the 
directional variation of the pertinent group velocity of plane waves [ 231. To demonstrate this explicitly, we apply 
the formalism in [ 241, and describe a coordinate-free derivation of phase and group velocity for anisotropic 
media with transverse isotropy and with cubic symmetry. 

From the differential formulation of Cauchy’s equation of motion (6) and the deformation rate equation (7) 
a Navier-type differential equation 

v . c. Vg(It, t) - p&g(g, t) = 0 
= - 

(A.1) 

is derived for the displacement vector, which defines v(R, t) through its first time derivative, i.e. Y(&, t) = 
fi(R, t) ; V denotes the del-operator. Applying Fourier transforms with respect to time and space to (A. 1) 

according to 

+oo +cc +03 +co 

u(K, w) = J’ / / / u(lX, t)e-j(K’R-W’) d3B dt, 

-cc -co --03 --oo 

(A.2) 

with Fourier variables g and w we obtain 

E(K, @) . u(K, w> = 0, 

with the wave tensor 

&K,w) =K.g.K- ecW2& 
= 

(A.3) 

(A.4) 

For transversely isotropic media (crystals with hexagonal symmetry) the stiffness tensor reads [ 25,261 

C T1 = (c22 - 2c44) Ir + C44 (@324 = -- + 1t1342) + [‘AI + C22 - 2 (C12 + 2C55)1 aZ!%! __ 
= 

+ (Cl2 - C22 + 2C44) (Iha + atI> + (C55 - C44) @ad324 +;@‘342 + &!$1324 +J-S~~1342) , (A.5) - - 
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P 

sv 0 0 

Fig. 3. Line force radiation into a transversely isotropic homogeneous medium (5 horizontally oriented, force parallel to 5, Graphite-Epoxy 
1 with ct1 = 145.8, czz = 13.5, cu = 3.4, css = 6.8, crz = 10.2 in GPa and ~0 = 1600 kg/m3): EPIT-Jvl-snap-shot of the quasi-pressure 

(qP) and quasi-shear vertical (qSV) wavefronts and the group velocity diagrams compared to the isotropic homogeneous medium with 
pressure (P) and shear vertical (SV) wave 
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Fig. 4. Finite aperture radiation into transversely isotropic medium with a making an angle of 30” with regard to surface normal g; elastic 
material same as in Fig. 3: EFIT-]!I-snap-shots of quasi-pressure (qP), quasi-shear vertical (qSV) and pseudo surface waves 
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t3 

Fig. 5. Finite aperture radiation and crack scattering (stress-free boundary condition) in transversely isotropic homogeneous medium (3 

horizontally oriented; Austenite with ~11 = 236.6, cl2 = 102.7, ~22 = 262.5, cu = 92.8, ~55 = 118.7 in GPa and ~0 = 8100 kg/m3) 
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Fig. 6. Line force radiation into transversely isotropic homogeneous medium (g and force horizontally oriented; 

ctt less = 0.64, q2/c55 = 0.5523, c22/css = 0.64, cqq/css = 0.04385): EFIT-(y]-snap-shot of the quasi-pressure (qP) and quasi-shear 
vertical (qSV) wavefronts and the group velocity diagrams as compared to the EFIT wavefronts 

where ~11, ~12, ~22, ~44, and ~55 are five independent elastic constants replacing the Lame’s constants h and p 
of the isotropic case 3 . , a denotes the unit-vector perpendicular to which isotropy holds. 

For crystals with cubic symmetry, c has the representation 
= - 

3 The c’s are the stiffness matrix elements in Voigt’s notation for gin nt-direction with the hexagonal symmetry condition ~2s = ~22 -2~44. 
In [ 25,261 an alternative notation with the five elastic constants A,], Al, /.L,, , ~1, and v is used. These are according to the c’s as: ctr = 

A~~+2~~~,c~~=u,c~z=A~+2~~,c~=~~,~~~=r(~~~andc~~=~22-2~~=A~. 
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Fig. 7. Line force radiation into anisotropic medium with cubic symmetry; zi in xi-direction; with ~11 = 106.9, ~12 = 28.5, CM = 62.6 

in GPa and ~0 = 2700 kg/m3: EFIT-[xl-snap-shot of the quasi-pressure (qP) and quasi-shear vertical (qSV) wavefronts and the group 

velocity diagrams as compared to the EFIT wavefronts 

g = c12II + c44 (p24 -- -- +&g1342) + (Cl1 - Cl2 - 2c44) 5Ll$L$S&, 
= 

i=l 

(A.61 

with three independent constants cl 1, ~12, ~44 and the cubic symmetry planes normal unit-vectors mi 4 . In case 
(AS), the wave tensor adopts the form 

4 The c’s are Voigt-notation matrix elements for 3 in xi-direction. 
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w”(K @I = [C44K2 + cc55 - c44) 6%. El2 - @OW2] E + (c** - C44)KK + 

+{[C~~+C22-2(C12+2C55)](a.~)*+(c55-c~)K2},,+ 

+ [Cl2 + c55 - cc22 - Q4) 1 (a. K> ma + aK), 

with K* = K. I& or, in short-hand notation 

WY’(K* a) = c$ + PKK + yaa + 6Ka + &a& 

with 6 = E. Similarly, we obtain for case (A.6) 

(A.7) 

(A.8) 

EC@, 0) = (Q4K2 - @@J*) 1. + CC12 + C44)KK + (CII - CIZ - 2C44) f&. @*!E$.!ii, 3 (A.9) - 

or, in short-hand notation 

@?K, w) =$+PKK+Y%!im, +&B*!J.$+emgm3, (A.lO) 

with, of course, different meaning of the coefficients a, /3, y, S, E. 
Eqtmting the determinant of the wave tensor to zero results in a polynominal in K, its zeros determining 

the wave numbers of possible_plane wave solutions of (A.l) with propagation directions prescribed by the 
components of the unit-vector K = K/K. That way, the directional dependence of the phase velocity or slowness 
is obtained. 

Applying dyadic algebra [24] to (A.8) yields 

det~T’(~,w)=a{a2+cu(~K2+y+2e~~~)+(~y-s2) [K*-((a-K)*]}, 

and, respectively 

(A.ll) 

de@@& w) 

=a3+a2(PK2+y+8+~) 

+a{pK*(y+S+e) +~E+YE+~~)- -/3K2 [~(ml~~>2+S(~2.~)2+~(~~~~)2]} 

i-PK2 [Mm, 3)* +yc(g2 .K)* +y6(m, .I$)*] +ytk. (A.12) 

Inserting cy, /3, y, E into (A.1 1) reveals a factorization of the slowness polynominal allowing for its analytical 
solution [25,26] in terms of two quasi-shear wave modes and one quasi-pressure wave mode. Therefore, the 
directional dependence of the group velocity 5 as defined by 

(A.13) 

where 7 denotes the wave mode under concern, can also be computed analytically. Unfortunately, this factor- 
ization does not appear in detEc, so standard numerical techniques (Cardan’s formulas) have to be utilized 
for computation of slowness and group velocity surfaces in 3D. A factorization is only observed in 2D. If 
we only consider two-dimensional elastic wave propagation, where the wave vector K is coplanar with a in 
the “TI’‘-case and perpendicular to one m in the “P-case respectively, one quasi-shear mode separates. The 
remaining two wave modes - one quasi-shear and one quasi-pressure - are coupled via excitation, boundaries, 
interfaces and scattering surface as shown in our numerical results of Figs. 3-7. 

Exploiting the above procedure yields the group velocity curves of Figs. 3, 6 and 7. 
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