Research Projects
Finished Projects before 2010
Target
The goal of this project is the development of appropriate methods and instruments for an environmentally-friendly product design and their transfer into the actual production companies. This means to develop software for environmental balancing which allows for an environmentally-friendly design of products and production processes which, in turn, contribute significantly to sustainable development. In order to guarantee a transfer into production companies, branch-specific workshops are being organized which support the exchange of experience between experts from the different fields in Hesse and from the University of Kassel, and which identify the areas in the environmental balances that need further development.
Result
The current situation of the different branches has been assessed, the areas of research defined, and requirements for environmental balancing instruments have been deduced during expert meetings with representatives from regional companies in Hesse. Based on generally-applicable modeling instruments and in particular the GEMIS model (GesamtEMissionsmodell Integrierter Systeme) which was developed together with our Center, simple field-oriented modules in form of software or Excel Spreadsheets were developed, then transferred into and tested in actual companies. With the aid of these adjusted process models, development options and their environmental impacts could be analyzed and compared ahead of time.
Introductory workshops were organized in order to communicate the basic knowledge of environmentally-friendly design of products and production processes and the know-how of environmental balances on the basis of process chain models. Subsequently, the knowledge was transferred directly at the workplace in the different companies. In addition, field-specific workshops were held at representative companies. These workshops dealt in particular with environmental balances in the automobile- and construction- and, more specifically, building renovation industries.
Processing
After the finalization of the project in December 2000, the cooperation with the individual companies has continued until to date via Diplom theses and practical training sessions for students.
Funding agency
Europäische Kommission, ADAPT-Programm
Project duration
May 1998 − December 2000
Project management
Hartmut Hübner
Cooperations
Betriebe der Region, Ingenieurbüros für Umweltberatung
Zielsetzung
Wie in vielen anderen Städten und Gemeinden sind auch in Kassel Aktivitäten zur Ausarbeitung einer Lokalen Agenda 21 angelaufen. Anlässlich des Umweltgipfels in Rio 1992 war bekanntlich der kommunalen Ebene eine besondere Mitverantwortung bei der Vorbereitung und Durchführung von Problemlösungen im Zusammenhang mit Globalem Wandel zugeschrieben worden.
Als wichtiger Akteur in der Region steht es außer Frage, daß die GhK an den Aktivitäten in Kassel beteiligt sein muss, nicht zuletzt auch wegen der langjährigen Traditionen an der GhK in der Auseinandersetzung mit Umweltfragen.
In Kooperation mit Kollegen des Fachbereiches Stadt- und Landschaftsplanung wirkt das Zentrum an dem Prozess in Kassel mit. Es werden insbesondere Fragen zur Energieversorgung behandelt und es ist geplant, zur Entwicklung von Beurteilungskriterien zur Einschätzung von Fortschritten / Rückschritten beizutragen. Zudem wird ein Workshop vorbereitet, in dem Handlungen vor Ort - am Beispiel Kassels - auf die globale Dimension bezogen werden.
Projektlaufzeit
Januar 2000 − März 2006
Projektleitung
Karl-Heinz Simon
Projektbeteiligte
L. Katzschner
Target
The AIR-CLIM project was to investigate the relations between air pollution and climate change; its specific objective was to find answers to the following main questions:
- What will, in the long term, be the relative importance of regional air pollution and climate change in Europe?
- What are the possible linkages between regional air pollution and climate change in Europe's environment?
- What will be the impact of climate policies on the costs of controlling regional air pollution?
The project was organized as a large German-Dutch-Spanish joint venture by the European Union under the leadership of the Center.
Result
In order to answer the above questions, an integrated modeling framework was developed. Components of two existing integrated models, namely RAINS and IMAGE 2, served as a basis for this framework. The AIR-CLIM project was successfully completed at the end of 2000, and the results can be summarized as follows:
- The project provides a unique set of consistent emission scenarios for greenhouse gases and air-polluting substances in Europe.
- While acidification as a problem is expected to diminish in Europe over the long run, the areas where critical loads for eutrophication are exceeded will continue to be significant.
- A small part of Europe might experience a significant climate change-induced drop in the productivity of its potential natural vegetation whereas a much larger part may experience a change in the type of vegetation.
- For the highest emission scenario, parts of Spain and France will have unfavorable values for all indicators of impacts from regional air pollution and climate change, indicating that natural vegetation in these areas may be particularly at risk.
- Forest soils under climate change may in general become less sensitive to acid deposition. However, some parts of the Western coastal regions and the mountainous regions will become more sensitive. For nitrogen deposition, forest soils almost everywhere become less sensitive except in the Alps and the Western Iberian Peninsula.
- The effect of climate change appears larger on the sensitivity of the forest ecosystems (as seen by the critical loads) than on the deposition patterns of air pollutants (e.g., through altered wind velocities or changed precipitation patterns).
- The costs of controlling environmental pollution can be substantially reduced by developing "joint strategies" for reducing both CO2 emissions and air pollution emissions.
Processing
The results of the AIR-CLIM project have been published in Environmental Science and Policy No.4, Vol. 5, 2002, Special Issue.
Funding agency
EC Environment and Climate Research Program, EU
Project duration
January 1998 − December 2000
Project management
Joseph Alcamo
Project staff
Petra Mayerhofer
Jelle van Minnen
Janina Onigkeit
Cooperations
National Institute of Public Health and the Environment (RIVM, Niederlande), Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT, Spanien), TNO-MEP (Niederlande)
Target
AVALANCHE was developed to give quantitative answers to potential operators or policy makers about the cost-effectiveness and environmental compatibility of wind energy-, photo-voltaic-, bio-gas-, and small hydro-electrical technologies. The overall project was developed by a European project team with the University of Kassel as team leader. The Center was responsible for the development of the underlying theory and implementation of the sub-project "Environmental Impacts through the Use of Renewable Energy Technologies".
Result
The project was finalized in November 2000 and has provided a working evaluation model which is available on the Internet, and which was developed as follows:
In order to quantify environmental compatibility, it is necessary to create a balance of the negative and positive environmental impacts that occur during the construction and operation of a plant. Such balances are being done on the basis of detailed process chain analyses in which all manufacturing steps are followed back to the raw materials, and all energy inputs and emissions occurring during any of these steps are summed up. Since such analyses, however, require a high repetitive effort with respect to time and input data, models in form of mathematical functions were developed for AVALANCHE. These functions are based in specific data points on the results of individual process chain analyses and are interpolated between these data points.
The evaluation of the environmental impacts is done by comparison of the air pollutants NOx, SO2 and SO2-equivalents, the greenhouse gases CO2 and CO2-equivalents, and the primary energy input. These indicators appear on both the negative impact and the benefit side of the balance and are depicted in balance diagrams. Environmental benefits from the environmentally-friendly generation of electricity (compared with the conventional electricity production with fossil fuels of a European mix) are contrasted with the environmental impacts from the construction and operation of the plant (see Figure). For results see project homepage below.
Processing
Zur Zeit gibt es noch keine konkrete Zusage zur Fortführung und Weiterfinanzierung dieses Projekts, obwohl es wichtig wäre, neben den bisher berücksichtigten quantifizierbaren Umweltwirkungen auch qualitative Aspekte, wie z.B. die Landschaftsverträglichkeit bei Windenergieanlagen, für die Entscheidungsfindung zu berücksichtigen.
Funding agency
Europäische Kommission
Project duration
June 1998 − November 2000
Project management
Hartmut Hübner
Project staff
Andreas Hermelink
Cooperations
ESTI (Italien), ARMINES (Frankreich), EPIA (Belgien), IT-Power (England), TUD (Dänemark), ZEW (Deutschland)
Zielsetzung
Die EG-Wasserrahmenrichtlinie (WRRL) hat als zentrales Ziel die Erreichung eines „guten Zustands" in allen Oberflächen- und Grundwasserkörpern bis 2015. Belange des Naturschutzes und entsprechender Rechtsnormen wie der FFH-Richtlinie werden in der WRRL an einigen Stellen angesprochen. In einem Kooperationsprojekt mit drei Bundesländern hat das UFZ das Verfahren BASINFORM (River BASININFORMation and Management System) zur Aufstellung von Maßnahmenprogrammen nach WRRL entwickelt. BASINFORM strukturiert die Entscheidungsprozesse bei der Aufstellung von Maßnahmenprogrammen nach WRRL und beschreibt die einzelnen Arbeitsschritte.
Gegenwärtig gibt es europaweit kein Verfahren zur Aufstellung von Maßnahmenprogrammen, das in vergleichbarer Weise einerseits die Vorgaben der WRRL ihrem Geiste entsprechend umsetzt und andererseits dem Bedarf der Bundesländer für praktikable und pragmatische Lösungen nachkommt. In Thüringen wird BASINFORM eingesetzt werden. BASINFORM enthält noch keine Vorschläge, wie das so genannte Problem der Priorisierung gelöst werden kann. Priorisierung bezeichnet den Vorgang, bei dem festgelegt wird, welche Maßnahmen vorrangig und welche nachrangig umgesetzt werden. Die Priorisierung ist sowohl ein (vor allem naturwissenschaftliches) Wissensproblem als auch ein (vor allem sozialwissenschaftliches) Bewertungs- und Entscheidungsproblem. BASINFORM gibt auch noch keine Antwort darauf, wie bei der Aufstellung von Maßnahmenprogrammen die Belange des Naturschutzes in Betracht gezogen werden können.
Vor diesem Hintergrund besteht das Ziel des Projektes aus den folgenden drei Hauptteilen:
1. BASINFORM soll methodisch weiterentwickelt werden, indem ein Verfahren der Priorisierung ergänzt wird. Hierbei wird insbesondere untersucht, ob naturschutzfachliche Ziele leitend für die Priorisierung sein können.
2. Die Diskussion und Verbreitung des Verfahrens BASIN
Projektlaufzeit
April 2007 − Mai 2008
Projektleitung
Dietrich Borchardt
Projektbeteiligte
Markus Funke
Sandra Richter
Zielsetzung
Für den wasserrechtlichen Vollzug in Nordrhein-Westfalen, insbesondere im Zuge der Umsetzung der EU-Wasserrahmenrichtlinie, sind die Quantifizierung von Belastungsursachen und die Wirkungsanalyse von Maßnahmen zur Beseitigung der Belastungen erforderlich. Nach Aufzeigen der ökologischen Defizite im Rahmen der Bestandsaufnahme für die Fluss- bzw. Bearbeitungsgebiete bis Ende 2004 sind die Monitoringprogramme und Maßnahmenprogramme zu erarbeiten. Hierbei ist die quantitative und qualitative Gewässermodellierung ein wichtiges und notwendiges Instrument, wobei aber entsprechend den erweiterten Zielsetzungen eine Weiterentwicklung und Anpassung vorhandener Modellansätze notwendig ist.
Daraus ergeben sich folgende Aufgabenstellungen:
- Welche Aufgabenstellungen treten zukünftig bei immissionsorientierter Betrachtung von Fließ- und Standgewässern in Bezug auf Punkteinleitungen und diffuse Stoffeinträge in Nordrhein-Westfalen auf?
- Welchen Bezug besitzen diese Aufgaben zum wasserrechtlichen Vollzug, insbesondere zur Umsetzung der EU-WRRL nach 2004?
- Welche Daten sind für die Bearbeitung erforderlich, sind diese verfügbar bzw. zu erheben und mit welchem Aufwand?
- Welche Instrumente sind zur Bewältigung der Aufgaben nötig?
Gibt es Ersatzmöglichkeiten zur Gewässergütemodellierung bzw. welche Risiken entstehen bei Verzicht auf die Gewässergütemodellierung?
Auftraggeber
Förderantrag des BWK an das Ministerium für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen (MUNLV)
Projektlaufzeit
November 2003 − Februar 2004
Projektleitung
Dietrich Borchardt
Kooperationen
SYDRO Consult GbR, Darmstadt
Zielsetzung
Das BIOCLIM Projekt (BIOsphere, CLIMate, and Economy in the Global Carbon Cycle) hat mehrere Aspekte des Zusammenhangs von Biosphäre, Klima und Ökonomie im globalen Kohlenstoffzyklus untersucht. Das Wissenschaftliche Zentrum für Umweltsystemforschung hat insbesondere abgeschätzt, wieviel Kohlenstoff in Holzplantagen und Holzprodukten gespeichert werden könnten. Die Untersuchungen zur Kohlenstoffspeicherung wurden auf regionaler und globaler Ebene mit folgenden Schwerpunkten durchgeführt
- Konkurrenz von Land- und Forstwirtschaft und deren Einfluss auf die C-Speicherung;
- Aufbau eines Submodells zur Berechnung von C-Speicherung in Holzplantagen und Bewertung von Szenarien zur C-Speicherung durch unterschiedliche Nutzung der Holzplantagen;
- Entwicklung von Holznutzungsszenarien und Aufbau eines Holznutzungsmodells.
Insgesamt verstand sich das Projekt als Beitrag zur integrierten Modellierung des Klimawandels, dessen Ergebnisse sowohl für die Wissenschaft als auch für politische Entscheidungsträger von Belang sind.
Ergebnis
Das Projekt wurde im März 2001 abgeschlossen. Mit den erarbeiteten Szenarien und dem neu entwickelten Holzyklusmodell besteht erstmals die Möglichkeit einer globalen Abschätzung der Kohlenstoffflüsse und -vorräte, die mit dem Verbrauch von Papierprodukten und mit der Konstruktion von Gebäuden zusammenhängen. Die Ergebnisse lassen sich im wesentlichen wie folgt zusammenfassen
- Ertragssteigerungen in der Landwirtschaft, das Beibehalten der Ernährungsmuster ab dem Jahr 2020 und die Produktivitätssteigerung in der Viehzucht zeigen bei der Szenarienauswertung die größte positive Wirkung auf eine Vergrößerung der Kohlenstoffspeicherung in der Biosphäre. Die Effekte sind auf eine Reduzierung der landwirtschaftlichen Nutzfläche und eine damit verbundene Ausbreitung der bewaldeten Flächen zurückzuführen.
- Das maximale Aufforstungspotential wurde mit 490 Mha berechnet. Je nach Nutzungsoption der Holzplantagen (Energiegewinnung, Substitution fossiler Brennstoffe, Holzprodukte) beträgt die Verringerung der atmosphärischen CO2-Konzentration bis zum Jahr 2100 zwischen 1,5 und 8%.
- Die Verwendung von Holz als Konstruktionsmaterial in Gebäuden speichert Kohlenstoff. Die Größe der gebildeten Kohlenstoffsenke im Gebäudebestand wurde bis zum Jahr 2100 mit 11 Gt C berechnet. Bei energetischer Nutzung der Holzabfälle (Altholz und Restholz) kann das Senkenpotential auf 13,5 Gt C erhöht werden. Die Klimawirksamkeit zukünftiger Papiernutzung hängt entscheidend von der Nutzung der Papierabfälle ab. Eine energetische Nutzung würde die CO2-C Emissionen um rund 23 Gt C bis zum Jahr 2100 verringern, während eine Deponierung der Papierabfälle eine Freisetzung von rund 25 Gt CO2-C bis zum Jahr 2100 bewirken würde.
Weiterführung
Das Projekt wird mit Vorlage eines Abschlussberichtes, der sich zur Zeit im Druck befindet, beendet.
Auftraggeber
VW-Stiftung (Hannover)
Projektlaufzeit
Januar 1998 − April 2001
Projektleitung
Joseph Alcamo
Projektbeteiligte
Gerald Busch
Kooperationen
Johann-Wolfgang-Goethe Universität, Frankfurt am Main; Ernst-Moritz-Arndt-Universität, Greifswald; National Institute of Public Health and the Environment (RIVM, Niederlande)
Zielsetzung
Im Auftrag des Landes Nordrhein-Westfalen wurden ein Leitfaden und ein Begleitband über „Anforderungen an Misch- und Niederschlagswassereinleitungen unter Berücksichtigung örtlicher Verhältnisse" erarbeitet. Der Leitfaden wurde in überarbeiteter Form als BWK-Merkblatt M3 „Ableitung von immissionsorientierten Anforderungen an Misch- und Niederschlagswassereinleitungen unter Berücksichtigung örtlicher Verhältnisse" im Jahr 2001 als Weißdruck veröffentlicht. Das Merkblatt gibt Handlungsempfehlungen zur Beurteilung der Wirkung von Niederschlagswassereinleitungen aus Kanalisationsnetzen des Misch- und Trennverfahrens in oberirdischen Fließgewässern durch eine Immissionsbetrachtung in einem Nachweisverfahren. Diese Nachweisführung kann abhängig von den örtlichen Verhältnissen vereinfacht mit einem Berechnungsprogramm oder detailliert mit Hilfe von kalibrierten Modellen, durch Messungen oder durch gewässerökologische Untersuchungen erfolgen. Die vereinfachte Nachweisführung wird im BWK-Merkblatt 3 umfassend erläutert. Als Werkzeug der vereinfachten Nachweisführung wurde neben den im Merkblatt dokumentierten Excel-Berechnungen das Softwareprogramm VereNa.M3 entwickelt. Möglichkeiten und Anforderungen zur detaillierten Nachweisführung durch Simulationsmodelle, Messungen oder biologische Untersuchungen waren im BWK-Merkblatt 3 nur in den Grundzügen beschrieben, da der Schwerpunkt auf dem vereinfachten Nachweisverfahren lag. Diese Lücke wurde im Auftrag des Ministeriums für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen durch den „Leitfaden zur detaillierten Nachweisführung immissionsorientierter Anforderungen an Misch- und Niederschlagswassereinleitungen gemäß BWK-Merkblatt 3" geschlossen. Das vereinfachte Nachweisverfahren nach dem BWK Merkblatt M3 findet in der wasserwirtschaftlichen Praxis bei Planern, Wasserbehörden und Abwasserbeseitigungspflichtigen breite Anwendung. Aufgrund der noch vorhandenen Unsicherheit bei der Bearbeitung von Einzelfällen anhand der vereinfachten Nachweisführung (insbesondere bei der Gewässerbegehung, der Maßnahmenwahl aufgrund kritischer Belastungen) und der fehlenden Praxis in der Anwendung der detaillierten Nachweisführung soll in diesem Vorhaben ein Praxishandbuch mit verschiedenen Fallbeispielen erarbeitet werden, in dem die sachgerechte Anwendung des vereinfachten und detaillierten Verfahrens gemäß dem BWK-Merkblatt M3 nachvollziehbar dokumentiert wird. Neben der Erstellung des Praxishandbuchs werden zwei Schulungen zur praktischen Anwendung des BWK-Merkblattes M3 durchgeführt.
Projektlaufzeit
Januar 2007 − Juni 2008
Projektleitung
Dietrich Borchardt
Projektbeteiligte
Markus Funke
Sandra Richter
Target
The negotiations of the Kyoto Protocol to the Framework Convention on Climate Change (FCCC) are in their final stage. A difficult topic which is increasingly under discussion is that of binding reduction commitments for developing countries which until to date have not committed themselves to any reduction obligations. In order to support the discussion on this topic and to bring some new aspects into the discussion
- We developed new regional scenarios for the allocation of long-term emission rights of 17 world regions which allow the atmospheric greenhouse gas concentration to stabilize by the end of the century or later. These scenarios are based on the economic and technological pathways assumed for the new set of emission scenarios of the Intergovernmental Panel on Climate Change (IPCC) as they are implemented in the IMAGE 2.2 model.
- We evaluated the extent to which developing and industrialized countries will be affected by future climate change. For this analysis, we considered the global climate impacts on the water situation and crop productivity.
Result
The project was finalized in 2003 and results are being published as the final report "Scenarios for the regional distribution of long-term emission rights and impacts of climate change". The depicted figure shows the possible per capita emission pathways of industrialized and developing countries in order to achieve a CO2 stabilization at 550 ppm. These emission pathways are the result of the following two rules:
(1) Developing countries accept stepwise increasing obligations when (1) their per capita income reaches a certain level and (2) when their per capita emissions converge with those of industrialized countries.
(2) Emission rights of industrialized countries are computed from the difference between globally allowable emissions to achieve the stabilization target and the total emissions of developing countries as calculated under (1).
The resulting per capita emission pathways show that due to the mainly very low per capita emissions and the low per capita income in developing countries in the beginning of the scenario period, the industrialized countries will have to carry the major share of the reduction burden in the coming decades. However, due to the heterogeneity within the group of developing countries, some of them will have to begin quite early with emission control measures.
- the change of water stress, caused by socio-economic as well as climatic changes,
- the change in frequency of extreme high and low runoff events,
- the climate-induced change in crop productivity,
- the change in frequency of crop failures.
In all these analyses the inter-annual variability of climate was considered. A joint examination of sceanrios dealing with the allocation of regional rights for greenhouse gas emissions, on the one hand, and the extent of regional climate change impacts, on the other hand, show that especially developing regions, which already have a relatively high income but are not yet under any obligation to reduce climate-related emissions, might be burdened twice in the near future. This is because they will have to soon begin with emission controls due to their relatively high income, and might simultaneously suffer serious impacts on their crop productivity or water situation caused by changing climatic conditions.
Group
Funding agency
Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU)
Project duration
November 2000 − October 2002
Project management
Joseph Alcamo
Project staff
Janina Onigkeit
Cooperations
National Institute of Public Health and the Environment (RIVM, Niederlande), Internationales Institut für Angewandte Systemanalyse (IIASA, Österreich)
Weiterführender Link
http://www.usf.uni-kassel.de/usf/archiv/dokumente/projekte/emission_rights_summary.pdf
Target
Specific encouragement of hands-on and basic environmental knowledge regarding both, scientific and engineering aspects (applied hydrobiology and management of water resources) and basic aspects within the waters sector. This knowledge is going to be taught in the context of special trainings within the scheduled Bachelor and Master study course "Environmental Engineering" at two mongolian universities.
Results of this project should be implemented in the follwoing sectors:
- Transfer of hands-on environmental knowledge
- Training of prospective mongolian specialised staff
- Creation of teaching material
- Scientific results with international recognition
Funding agency
Bundesministerium für Bildung und Forschung (BMBF)
Project duration
May 2005 − December 2006
Project management
Dietrich Borchardt
Project staff
Ralf B. Ibisch
Daniel Krätz
Jeanette Völker
Cooperations
Nationaluniversität der Mongolei (NUM)
Mongolische Universität für Wissenschaft und Technik (MUST)
Target
The overall purpose of CAVES is to simulate complex human-environmental interactions. To achieve this aim we study the key phenomena of complex human behaviour regarding land and water use in four case studies. The main focus of CAVES lies on the influence of social networks on environmental behaviour. The project is sponsored by the European Union as part of the NEST programme. It is conducted in cooperation with several research institutions: Centre for Policy Modelling (Manchester Metropolitan University, Great Britain), Stockholm Environmental Institute (Oxford Office, Great Britain), Politechnika Wroclawska (Wroclaw, Poland), Uniwersytet Wroclawski (Wroclaw, Poland), International Institute for Applied Systems Analysis (Laxenburg, Austria), The Macaulay Land Use Research Institute (Aberdeen, Great Britain).
For the four case studies, regions in Poland, Scotland, South Africa and Australia were selected, which at one point or the other suffered from natural or social shocks which forced the population to adjust their respective land use. In the Odra Region in Poland these shocks include the loss of knowledge about time-tested land use strategies after World War II, the end of the communist era, the access to the European Union as well as several floods. In the Grampian Region in Scotland reactions to the foot and mouth disease are evaluated. Finally, the changes in land-use strategies after the apartheid regime and after several drought periods are analysed in the Limpopo Region of South Africa. Some of these external shocks have a substantial impact on the stability of the human-environment-interactions, whereas others hardly influence the respective actors. It is of special interest that phases of high insecurity and instability in the human-environment system seem to alternate with phases of relative insensitivity to external influences.
To analyse the interactions of people with their environment in the respective regions we construct agent-based models into which detailed data of the case studies will be inserted. In doing so we lay special emphasis on the emergence of features and incidents in complex social systems such as the influence of behaviour on the micro level on phenomena on the macro level as well as the dispersion of attitude and behaviour patterns.
Result
The work in the CAVES project is divided into several work packages. Besides coordinating the overall modelling activities, the group in Kassel mainly engages in the construction of abstract agent-based models for the Odra Region in Poland. Also the modelling work package is coordinated from Kassel. The difficulties concerning land and water use in the Odra case study region are mainly due to the fact that the conditions encountered on individual agricultural land parcels highly depend on the amount of effort devoted to the maintenance of the land reclamation system (LRS) on every land parcel upstream (especially in cases of drought) and downstream (especially in cases of flooding). Therefore, maintaining all the dikes, sluice gates and ditches requires collective action – most notably, in periods of extreme weather conditions. The asymmetric dependency relationship between the actors (the farmers) along the course of the river entails a social dilemma that may thwart the emergence of collective action and thus impede the construction of a functioning LRS.
Any model that is to adequately capture the situation encountered in the case study region must reflect the way in which agents are embedded into social networks and the behavioural rules governing their actions within those networks. Consequently, the first phase of modelling focussed on establishing an abstract agent-based model of the emergence of task-oriented networks (collaboration networks) from already existing acquaintance networks. This so-called SONATA model (Social Networks of Abstract Task oriented Agents) was then examined with respect to some general network-dynamic factors. Results showed that, given certain preconditions (e.g., a relatively low forgetting rate among agents concerning adequate collaborators, pairwise linking within the collaboration network and no fluctuations in the quality of the tasks assigned), stable network structures of efficient and highly interconnected cliques emerge in the long run. However, the simulation also suggested that such networks might react sensitively to external shocks, for instance, under the more realistic assumption that the quality of tasks changes.
Based on the insights gained from the SONATA model and considering the results of the Odra case study, the second step of the modelling process led to the development of the SoNARe model (Social Networks of Agents’ Reclamation of land). This new model already captures some of the core properties and processes of the environment and the agents in the Odra scenario on an abstract level, but it is currently limited to the agents’ upstream dependencies. The SoNARe model, like the SONATA model before, has been implemented as an agent-based simulation using the Repast framework (in Java).
Initial simulation runs were performed, in which the acquaintance network was initialised as a randomly generated small-world network but remained constant for the duration of a run. The simulations showed that maintenance will only prevail globally, if there is a spatially coherent group of agents using this strategy at the start of the simulation and if this group is located in the topmost section of the river. Moreover, the spreading of the strategy can also be hindered by an agent located directly below such a coherent group becoming a free rider, i.e., the agent profits from the maintenance upstream, but does not maintain the LRS on its own land parcel.
If, instead of varying the initial spatial distribution of the behavioural strategy, one varies the amount of compensation paid, a critical range can be observed. Above this range the maintenance strategy does not pay off. Below it the strategy soon prevails. Inside the critical range the maintenance strategy seems to prevail at first. After a while, however, some agents switch back to the strategy of neglect, since too few agents participate in the maintenance of the LRS. Those agents that retain the maintenance strategy beyond this point sooner or later face financial ruin, a process that is accelerate even more by the external shocks on the system. In the long run, all agents lose in this scenario, because the state of the LRS deteriorates more and more while the level of compensation no longer suffices to compensate for the resulting yield losses.
For the purpose of making the SoNARe model more realistic and incorporating more of the social complexity inherent in the case study region, the results of interviews with farmers were compiled into a set of characteristic behavioural rules. This was done in cooperation with the work group in Wroclaw. The group in Wroclaw has also developed a first biophysical model of the Odra region which captures the local land and water conditions as well as their dynamics in a more realistic way than the integrated environmental model currently does.
Processing
In order to further approximate the situation in the case study region and to press ahead with the study of interesting network-dynamic factors, the work group in Kassel intends to pursue the following goals:
- coupling the new biophysical model of the case study region with the agent model,
- extending the dependency relationships downstream and including the operation of sluice gates on individual land parcels,
- integrating the abstracted behavioural rules of the actors into the model in the form of agent decision rules implemented in Jess, an engine for rule-based systems, and
- studying the covariance of network properties and collective behaviour in the context of land and water use.
Funding agency
The CAVES project is funded under the EU 6FP NEST programme.
Project duration
March 2005 − March 2008
Project management
Andreas Ernst
Project staff
Michael Elbers
Friedrich Krebs
Cooperations
Centre for Policy Modelling, Manchester Metropolitan University
Stockholm Environmental Institute, Oxford Office
Politechnika Wroclawska
International Institute for Applied Systems Analysis
The Macaulay Land Use Research Institute
Target
The objective of this project was to improve the estimation of vulnerability to drought by analyzing and comparing differences between three distinct disciplinary perspectives (economics, political science, and behavioral science/environmental psychology). In order to make this comparison, we developed a new methodology for quantifying susceptibility which consisted of (i) translating qualitative knowledge into inference models, (ii) converting qualitative model variables into quantitative indicators by using fuzzy set theory, (iii) collecting data on the values of the indicators from case study regions, (iv) inputting the regional data to the models and computing quantitative values for susceptibility.
Result
The methodology was successfully applied to three case study regions having a range of socio-economic and water stress conditions -- Andhra Pradesh, India; Algarve and Alentejo, Portugal; Volgograd and Saratov, Russia. Bottom-up survey data and top-down statistical data were collected from each region and input to the models and quantitative estimates of susceptibility were computed. This is perhaps the first attempt to compare quantitative estimates of susceptibility to drought from three different disciplinary perspectives. In some cases, the estimates of susceptibility were surprisingly similar, in others not, depending on the factors included in the disciplinary models and their relative weights. For example, both the psychology and economic perspective models compute the susceptibility of the Russian and Portuguese regions to be about the same but due to different factors. The methodology provides a consistent basis for comparing differences between perspectives, and for identifying the importance of the differences.
A crisis data set was also developed for the case study regions as a basis for independently testing vulnerability estimates and identifying thresholds. The data set consisted of the years of occurrence of drought-related crises in the case study regions and was based on an extensive media analysis. The crisis data set was used to test 14 different water stress indicators, and 6 of these were found to be statistically significant. A new aggregate water stress index based on 3 other indicators was found to have a higher statistical significance than the other individual indicators and seems to be applicable to a wide range of water stress situations.
A detailed report of the project is available under www.usf.uni-kassel.de/secdiag. Also, several papers to be published in international journals are currently under preparation.
Processing
Currently, a proposal is being developed to carry out Phase 2 of this project under the title "Security Diagrams - A New Approach to Rapid Assessment of Vulnerability to Climate Change". In this new phase, we will develop a methodology for rapid assessment of the vulnerability of a region to climate change. By "rapid assessment" we mean an assessment carried out over a period of one to two years using a structured procedure that relies mainly on existing data (together with the collection of a limited amount of new data). By "region" we mean a geographic part of a country having some unifying feature (comprised of a single river basin, a similar economic or climate system, etc.). We will test the Rapid Assessment methodology on real world data for four to five additional case study regions. The final step in our proposed project phase will be to communicate the new methodology to potential users in the form of workshops, short courses, and internet tutorials.
For more details see the project-homepage.
Funding agency
German Federal Ministry of Education and Research (BMBF)
Project duration
April 2001 − December 2003
Project management
Joseph Alcamo
Project staff
Frank Eierdanz
Dörthe Krömker
Cooperations
Potsdam Institute for Climate Impact Research (PIK), Adelphi Research, Berlin
Weiterführender Link
Zielsetzung
Die Diemeltalsperre mit einer Fläche von 1,65 km² und einem Volumen von 19,93 Mio. m³ (bei Vollstau) wird zur Niedrigwasseraufhöhung der Weser, dem Hochwasserschutz, der Energiegewinnung und als Naherholungsgebiet für diverse Freizeitaktivitäten genutzt. Der trophische Zustand der Diemeltalsperre wird als eutroph 1 (mäßig eutroph) eingestuft und erreicht demnach das nach EG-WRRL geforderte „gute ökologische Potenzial“ von erheblich veränderten Wasserkörpern nicht.
Obwohl sich die Trophiekenngrößen in den Jahren 2002 bis 2007 nicht wesentlich verändert haben, kam es in den vergangenen Jahren immer häufiger zu Wasserblüten von Cyanobakterien (Blaualgen) in der Diemeltalsperre. Das massenhafte Auftreten von Blaualgen ist eine Folge zunehmender Eutrophierung, welche insbesondere durch das ausreichende Vorhandensein des Nährstoffs Phosphor hervorgerufen wird. Dieser wiederum ist ein limitierender Faktor für die Primärproduzenten (Algen).
Um die Ursache- Wirkungszusammenhänge und Faktoren für das verstärkte Auftreten von Blaualgenblüten in der Diemeltalsperre zu untersuchen, sollen in dem geplanten Vorhaben
(a) die Nährstoffkonzentrationen an insgesamt fünf vorgegebenen Probestellen im Rahmen eines Monitorings detailliert untersucht,
(b) das Nährstofffreisetzungspotenzial, insbesondere des Phosphors aus dem Seesediment bestimmt und
(c) ökologisch und ökonomisch effektive Handlungsstrategien für die Verminderung der Nährstofffrachten und lokal die Freisetzung des Phosphors aus dem Seesediment erarbeitet werden.
Auftraggeber
Gemeinde Diemelsee
Projektlaufzeit
Juni 2008 − Dezember 2008
Projektleitung
Ralf B. Ibisch
Projektbeteiligte
Jeanette Völker
Target
The United Nation Environment Programme (UNEP) requested the Center to review existing environmental scenarios with respect to their relevance to future State of the Environment and Global Environmental Outlook (GEO) reporting. The focus of the examination should be on European environmental scenarios or global environmental scenarios with a European analysis part.
Result
The eight studies reviewed covered different goals and modeling approaches, and had different spatial resolutions and time horizons. Our comparison was based on a common land cover classification, the analysis of driving forces and land cover change, and the grouping into four overall scenario "families". This comparison resulted in the identification of a number of commonalities and gaps. In addition to this comparison, we made suggestions as to how to elaborate such new scenarios, raised possible core questions to be addressed by new land use/cover scenarios in Europe, and suggested how to "frame" them regarding their spatial scale and organizational level.
- Future European land use/cover scenarios should be developed in a participatory scenario approach according to the Storyline and Simulation (SAS) approach proposed by the European Environment Agency (EEA, 2001).
- One of the first steps in developing such new scenarios should be to ?frame? them, i.e. to establish the general characteristics of the scenarios. This means, stakeholders have to identify the key environmental issues to be addressed by, and the goals of the scenarios.
- In addition to the goals or core questions of the scenarios, their dimensions, spatial scale and organizational level should be determined. The advantage of designing scenarios at multiple scales, such as the European and regional, should be taken into account.
- Regarding the land use/cover, more detail should be taken into account with respect to multiple functions of land, different intensities in land use, the impacts of urban and infrastructure development on other land cover types, landscape characteristics, and water availability.
- New scenario studies should try to incorporate the policy planning that takes place from the European to the regional level.
- New scenarios should try to include major changes in the world over time, for example, a world shifting from globalized to regionalized, or from an environmental emphasis to an economic emphasis, or vice versa.
Processing
The project was finalized in December 2003, and results are being published in a final report.
Funding agency
UNEP (Geneva, Switzerland)
Project duration
September 2003 − December 2003
Project management
Gerald Busch
Project staff
Joseph Alcamo
Zielsetzung
Im Nachgang zur Ederseekonferenz vom 21. November 2001 wurden zwei Gutachten zu wasserwirtschaftlichen und ökologischen Fragestellungen, die im Kontext möglicher Änderungen der Bewirtschaftung der Talsperre zu betrachten sind, vergeben. Von Seiten der Bundesanstalt für Gewässerkunde (BfG) - Mitte Mai 2002 beauftragt durch das WSA Hann. Münden - wird eine Analyse des Steuerungssystems der Edertalsperre zum Nachweis von Reserven und der Stützung des Pegels Hann. Münden erstellt. Darauf aufbauend wird eine Steuerungsstrategie entwickelt, die mit stark reduzierten Abflüssen höhere sommerliche Wasserstände im Edersee bewirken soll. Das Fachgebiet Wasserbau und Wasserwirtschaft und das Institut für Gewässerforschung und Gewässerschutz der Universität Kassel erarbeiten im Auftrage des Regierungspräsidiums Kassel dazu einen Vorschlag für einen ökologisch und ökonomisch vertretbaren Mindestwasserabfluss in der Unteren Eder und der Unteren Fulda. Ziel der Arbeiten ist es, die Auswirkungen der verschiedenen von der Bundesanstalt für Gewässerkunde vorgeschlagenen Strategien zur optimierten Steuerung der Wasserabgabe des Edersees auf die ca. 45 km lange Fließstrecke der Unteren Eder und die stauregulierte Fulda unterhalb von Kassel zu beurteilen. Dabei erstrecken sich die wasserwirtschaftlichen Untersuchungen von der Staustufe Affoldern bis zur Edermündung und von dort bis zur Mündung der Fulda in Hann. Münden und die ökologischen Untersuchungen auf die Untere Eder von der Staustufe Affoldern bis hin zur Edermündung. Es wird aufgezeigt, welche wassermengenwirtschaftlichen, wassergütewirtschaftlichen, naturschutzfachlichen und ökologischen Folgen bei unterschiedlichen Steuerstrategien zu erwarten sind und für welche Nutzungen des Gemeingebrauches Einschränkungen zu erwarten sind. Angaben zu den Nutzungen (Wasserkraftnutzung, Personenschifffahrt, Wasserentnehmer) werden vor Ort überprüft und ergänzt. Die Arbeiten stützen sich auf amtliche Unterlagen. Mit Bilanzen und Prognoserechnungen werden die Auswirkungen abgeschätzt. Im Rahmen dieser Arbeiten ist ein Naturversuch geplant. Dazu wird im September 2003 für ein bis zwei Tage der Abfluss aus dem Edersee auf 2 m3/s gedrosselt und es werden vor Ort Daten erhoben.
Auftraggeber
Land Hessen, Regierungspräsidium Kassel, Abteilung Staatliches Umweltamt Kassel
Projektlaufzeit
April 2006 − April 2006
Projektleitung
Dietrich Borchardt
Projektbeteiligte
Corina Günther
Jeanette Völker
Kooperationen
Universität Kassel, FB 14, FG Wasserbau, Prof. Tönsmann
Target
This study was prepared on behalf of the European Environment Agency (EEA) as a contribution to the next State of the Environment Outlook Report 2005 (SoEOR2005). The major objective of this work was to produce quantitative estimates of water use in Europe up to 2030 and to assess the impact of climate change and changing water use on future water availability and water stress.
Result
In this study we used the WaterGAP model (Alcamo et al., 2003a and b; Döll et al. 2003) to simulate future European water use and water availability up to the year 2030. Therefore, we analyzed and explained the impact of key economic, demographic, technological and other driving forces on the future development of water use in Europe. Additionally, the influence of climate change on European water resources and on irrigated agriculture was taken into account. We used a combined scenario and modeling approach. Two scenarios were developed to cover the time horizon from 2000 (the base year) to 2030 - a baseline scenario reflecting a continuation of current trends (Long Range Energy Modeling scenario, LREM-E) and a climate policy scenario (Sustainability Emission Pathway, SEP) assuming drastic policies to limit greenhouse gas emissions. The aim of the scenario analysis was not to predict the future but rather to enhance the understanding of complex systems, to examine the interactions of trends within a given domain and time frame, and to identify critical issues. The modeling approach was selected to quantify the current and future European water use in a consistent way and thus support the scenarios.
The results of this study have shown that water withdrawals at the European scale have a decreasing trend, 19 of 30 European countries will withdraw less water in the future. Following the baseline scenario (EU, 2003), water withdrawals are expected to decrease by about 11% across the Europe-30 region by 2030, to less than 275 km³. However, this trend varies not only with the European region considered, but also with the sectors analyzed. In 2000, the main water using sector in Northern Europe was the electricity production sector, but in the future the manufacturing and domestic sectors will have the largest withdrawals. This trend is also true for the New EU Member States, where electricity production as the most important sector in 2000 will be replaced by the domestic sector in 2030. Only in Southern Europe and in the EU Candidate States, water withdrawals are currently dominated by agricultural water use and will remain so. With expanding irrigated areas and reduced precipitation due to climate change, water used for irrigation is expected to increase by more than 10% in this region. The differences between the baseline and the climate policy scenario results are very small, although these policies will lead to lower water use in the electricity production sector. The emission reductions assumed in the climate policy scenario do not dampen climate change very much in the coming decades (because of the inertia in the climate system).
The results of this study explore the complexity of prospects and uncertainties of the water use outlook for different European regions. Additionally, they highlight the need for integrated and multi-sectoral approaches to support a sustainable use of water resources.
Processing
The project has been completed and results have been published as part of the European Environment Outlook (EEA, 2005).
Group
Funding agency
European Environment Agency (EEA), Copenhagen, Denmark
Project duration
October 2003 − September 2004
Project management
Joseph Alcamo
Project staff
Martina Flörke
Ellen Kynast
Hintergrund:
Bis März 2005 müssen alle Mitgliedstaaten einen Bericht an die Europäische Kommission darüber übermitteln, zu welchen Ergebnissen hinsichtlich des Gewässerzustands und der vorliegenden Gewässerbelastungen die Bestandsaufnahme geführt hat (Artikel 15 WRRL). Dieser Bericht wird in der Bundesrepublik Deutschland von den jeweils beteiligten Bundesländern für insgesamt zehn Flussgebietseinheiten erstellt und aufgrund der in den Ländern zum Teil unterschiedlichen Methoden nicht homogen sein. Daher soll im Rahmen des Vorhabens ein zusammenfassender Bericht für die Bundesrepublik Deutschland erarbeitet werden.
Ziele der Wasserrahmenrichtlinie:
Hauptziel der im Dezember 2000 in Kraft getretenen Wasserrahmenrichtlinie ist es, den guten Zustand der Gewässer europaweit bis zu einem festgesetzten Zeitpunkt (2015) zu erreichen. Die Ziele sollen durch eine ganzheitliche Bewirtschaftung der Flussgebiete, sichergestellt durch sogenannte Flussgebietsbewirtschaftungspläne, erreicht werden. Diese Pläne sind das Ergebnis einer ganzheitlichen, ökologisch orientierten Analyse und Bewertung von Flusseinzugsgebieten. Die Flussgebietsbewirtschaftungspläne werden für jede Flussgebietseinheit erstellt und spätestens 9 Jahre nach Inkrafttreten der Richtlinie veröffentlicht (Artikel 13 WRRL). Als wesentlicher Bestandteil der Vorarbeiten zur Erstellung der Flussgebietsbewirtschaftungspläne wird in Artikel 5 der WRRL gefordert, dass für jede Flussgebietseinheit eine
- Analyse ihrer Merkmale
- eine Überprüfung der Auswirkungen menschlicher Tätigkeiten auf den Zustand der Gewässer und
- eine wirtschaftliche Analyse
durchgeführt und bis spätestens Ende 2004 abgeschlossen wird. Über diese Analyse ist im März 2005 Bericht an die Europäische Kommission zu erstatten. Ergebnisse des Forschungsvorhabens sind daher einerseits eine etwa 60 Seiten umfassende Broschüre, die als Argumentationshilfe für Entscheidungsträger und für die Öffentlichkeitsarbeit dienen kann. Diese Broschüre soll allgemein verständlich, unter anderem anhand von Kartendarstellungen, ein Bild über den Status der Gewässer hinsichtlich der Anforderungen der WRRL vermitteln. Die Broschüre wird Ende März 2005 in der Reihe "Umweltpolitik" des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit (BMU) veröffentlicht.
Weiterhin werden die erforderlichen Kartengrundlagen sowie ein ausführlicher Forschungsbericht erstellt, der die Herleitung der bundesdeutschen Berichterstattung sowie die wissenschaftlichen und empirischen Grundlagen über die Vorgehensweise in den Bundesländern bzw. den Flussgebietseinheiten beinhaltet, um unter anderem eine Aussage über die Vergleichbarkeit der Ergebnisse für Deutschland treffen zu können.
Zielsetzung
Die Erstellung eines zusammenfassenden Berichtes über die Ergebnisse der Belastungs-analyse soll rechtzeitig vor der Aufstellung der Monitoring- und insbesondere der Maßnahmenprogramme Aufschluss darüber geben, wie sich die derzeitige Situation der bundesdeutschen Gewässer darstellt.
Ergebnis
Ergebnisse des Forschungsvorhabens sind daher einerseits eine etwa 60 Seiten umfassende Broschüre, die als Argumentationshilfe für Entscheidungsträger und für die Öffentlichkeitsarbeit dienen kann. Diese Broschüre soll allgemein verständlich, unter anderem anhand von Kartendarstellungen, ein Bild über den Status der Gewässer hinsichtlich der Anforderungen der WRRL vermitteln. Die Broschüre wird Ende März 2005 in der Reihe "Umweltpolitik" des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit (BMU) veröffentlicht.
Weiterhin werden die erforderlichen Kartengrundlagen sowie ein ausführlicher Forschungsbericht erstellt, der die Herleitung der bundesdeutschen Berichterstattung sowie die wissenschaftlichen und empirischen Grundlagen über die Vorgehensweise in den Bundesländern bzw. den Flussgebietseinheiten beinhaltet, um unter anderem eine Aussage über die Vergleichbarkeit der Ergebnisse für Deutschland treffen zu können.
Auftraggeber
Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU)
Projektlaufzeit
September 2004 − April 2006
Projektleitung
Dietrich Borchardt
Projektbeteiligte
Sandra Richter
Kooperationen
Umweltbundesamt (UBA)
Zielsetzung
Durch das EU-Projekt ENSEMBLES sollen die Aktivitäten auf der europäischen Ebene im Bereich der Klimaforschung weiter ausgebaut werden. In diesem Projekt werden sogenannte Modell-Ensembles durchgeführt, d.h. parallele Anwendungen europäischer Erdsystem- und Klimamodelle mit einheitlichen bzw. vergleichbaren Eingangsdaten. Bei den ausgewählten Klimamodellen handelt es sich um Ansätze, die dem aktuellen Stand der Forschung entsprechen und in Europa entwickelt wurden. Durch dieses Modell-Ensemble wird es erstmalig möglich, für simulierte Klimaänderungen sowie deren Auswirkungen Unsicherheitsbänder bzw. Wahrscheinlichkeiten zuzuweisen. Unsicherheiten in der Abbildung physikalischer, chemischer, biologischer und anthropogener Rückkopplungen in Erdsystem-Modellen sollen so quantifiziert und reduziert werden. Ein größtmöglicher Nutzen soll durch die Übertragung der Projektergebnisse auf Fragestellungen in der Landwirtschaft, der Lebensmittelsicherung, der Gesundheit, der Energie, der Wasserressourcen, im Versicherungswesen und im Risikomanagement erzielt werden. Etwa 70 Institute sind europaweit an ENSEMBLES beteiligt. Das Projekt selbst gliedert sich in zehn Forschungsschwerpunkte, die wiederum in mehrere Arbeitspakete aufgeteilt sind.
Ergebnis
Das Wissenschaftliche Zentrum für Umweltsystemforschung ist am Forschungsschwerpunkt „Analyse der Auswirkungen des Klimawandels“ beteiligt. Das bearbeitete Arbeitspaket befaßt sich mit einer quantitativen Abschätzung der Überschreitungswahrscheinlichkeit kritischer Schwellenwerte durch Klimawandel. Dazu wird anhand einer Sensitivitätsanalyse der Einfluß möglicher Kombinationen in den Änderungen von Klimavariablen auf den Abfluß mit dem globalen Wassermodell WaterGap untersucht (Abbildung 1).
Auftraggeber
Europäische Union
Projektlaufzeit
September 2004 − August 2009
Projektleitung
Joseph Alcamo
Projektbeteiligte
Tim Aus der Beek
Martina Weiß
Target
In the framework of the European research cooperation, members of the Center are involved in a STREP Project (Sust-A-Test) and in one of the COST Activities. Both activities focus on the development of methodologies.
The goal of the Sust-A-Test project is to critically review the status of methodology development regarding sustainability assessment. To do so, eight so-called Tool Teams describe existing methodologies and evaluate them according to their assessment potential and their necessary efforts. Members of the Center coordinate the Tool Team on scenario analyses. A mutual case study assesses the role of biofuels. One of the results will be a computer-supported manual which can be utilized by EU officials in order to evaluate sustainability problems.
The COST activity is aimed at the further elaboration of methods that are to assess future development paths. Members of the Center are currently mainly involved in the working group on "Seeds of Change".
Result
Currently, good progress is being made in both projects.
The Sust-A-Test project has produced a first version of the planned manual as well as a preliminary assessment of the existing EU documents and assessment reports concerning the Biofuel Directive. Regarding the scenario analysis tool, two different applications are being distinguished: (1) the use of exisiting scenarios (which requires relatively few personnel and a relatively small financial effort), and (2) the elaboration of new scenarios (which, according to past experience, requires normally up to several person-years).
In the frame of the COST activity, workshops are being held twice a year. Discussions during these workshops have up to now concentrated on technological processes. Further, a common EU-proposal is being prepared to investigate the research questions in more detail.
Processing
Until mid-2005, the Center will be working on the common case study of SUST-A-Test. The results will be used, among others, to finalize the preliminary manual. Also from the discussions in the frame of the COST activity, several summarizing publications are planned.
Funding agency
EU 6th Framework Programme
Project duration
September 2003 − July 2007
Project management
Karl-Heinz Simon
Project staff
Alejandra Matovelle
Target
The main goal of the EuroWasser study was to estimate the impacts of climate change on water availability, water withdrawals, flood and drought frequencies, as well as hydropower potential in Germany and Europe. The integrated assessment combined physical with policy-relevant factors and utilized existing data and models. In particular the WaterGAP model was applied which allows, in a unique way, to calculate both water availability and water withdrawals on a grid-, watershed-, and country-scale. The project aimed to produce approximate but consistent results for the whole of Europe in order to identify those river basins which show critical indications regarding their future development of water resources and hydrology.
Result
In this project, certain application concepts of the WaterGAP model were further developed and improved. New concepts were developed as to how to estimate, with a consistent approach, the effects of global change on flood and drought frequencies as well as on hydropower generation in all of Europe. These macro-scale developments and analyses were, to a large extent, breaking new ground in science. The results are of particular relevance to administrative and political decisions makers since they allow for an estimation of risk- and conflict-potentials both on a national and international level.
- Following the changes in precipitation, water availability generally increases in Northern Europe but decreases in the South.
- Stress on water resource systems continues to grow significantly in Eastern Europe, mainly due to projected large increases in water demand.
- Increases in precipitation and changing snowmelt patterns lead to a higher flood-risk in Northern Europe. Also, some individual rivers such as the Wisla (Vistula) in Poland and the middle Rhine in Germany react sensitively.
- Low-flow situations and/or hydrological droughts will occur more often in Southern and Eastern Europe, where in addition to reduced precipitation patterns, increases in water withdrawal play an important role in Eastern Europe.
- In strong correlation with water availability, the potential of existing hydro power plants to produce electricity increases in Northern Europe, but decreases in the South.
- The water resource situation and hydrology of Germany seem to be rather stable when compared to other European countries.
Processing
The project was finalized in February 2001, and results have been published as Report No 5 as part of the Center's "Kassel World Water Series": Lehner, B., Henrichs, T., Döll, P., Alcamo, J. (2001): "EuroWasser – Model-based Assessment of European Water Resources and Hydrology in the Face of Global Change".
Funding agency
German Federal Ministry for Research and Education (BMBF)
Project duration
March 1999 − February 2001
Project management
Joseph Alcamo
Petra Döll
Project staff
Thomas Henrichs
Frank Kaspar
Bernhard Lehner
Thomas Rösch
Stefan Siebert
Cooperations
Potsdam Institute for Climate Impact Research (PIK); Institute for Atmospheric Research, GKSS Research Center Geesthacht
Target
The goal of this project is to further develop the individual-oriented growth model for tropical rain forests FORMIND, and to apply it to different rain forest sites in South-East Asia and South America. The expected effects of human impacts are to be assessed by simulation studies. The project particularly focuses on the natural regeneration and the dynamics of tree species diversity.
Result
The model was already applied to the site Deramakot in South-East Asia. At the moment applications to all sites shown in the figure are developed. Logging will be simulated for each site.
The analysis should give insights into typical regeneration times of managed rain forests. Logging intensity and cycle and the damage level are parameters on which the regeneration time depends. Especially the role of natural regeneration and assumptions concerning seed dispersal strategies will be analyzed with respect to their effect on forest dynamics.
Funding agency
Otto-Braun-Fonds via the Kasseler Hochschulbund
Project duration
October 1998 − September 2000
Project management
Hartmut Bossel
Project staff
Andreas Huth
Peter Köhler
Target
In order to protect tropical rain forests, approaches need to be developed for a sustainable management of these forests. To do so, the effects of various types of disturbances on these forests need to be assessed. To this end, simulation models for small-scale stands of tropical rain forest have been elaborated and applied. A particular challenge of depicting the forest in a realistic manner is the heterogeneous pattern of different site characteristics and stand structures across large areas. We use a stand growth model and embed it in a Geographic Information System (GIS) so that we can realistically simulate forest development on the large scale.
Our site of application is the Deramakot Forest Reserve (DFR) in Sabah, Malaysia. In the past, the dipterocarp forests of the DFR were regularly harvested. Today, the DFR is established as a model area for developing and testing sustainable management strategies for such disturbed forests.
Result
Since 1998 the FORMIX 3-Q model has been thoroughly validated for 1 ha stands of dipterocarp forests, and is particularly sensitive to site characteristics. The analysis of field data regarding the spatial distribution of site characteristics and present forest vegetation contained in the GIS led to 48 site-specific stand types identified for the DFR. These stand types differ through, e.g., different intensities of disturbance due to timber harvest in the past (stratum 1: heavily degraded to stratum 4: good forest structure). Stand development for the different types was simulated representing each type by a forest stand of 1 ha extension. The forest development of the entire DFR area of 55.000 ha is deduced from the simulation results for the various single types taken together in the GIS.
The figure shows the simulated future forest development without any further disturbance for 120 years (beginning with the year of field data assessment in 1991). The results reveal that, even in the case of undisturbed regeneration, the forest would need more than 120 years to recover.
Processing
In a next step, the timber harvests currently planned for the DFR will be analyzed with respect to their economic yield and ecological effects. Our objective is to compare alternative management options and, thus, to derive practical advise for a sustainable management of the rain forest at Deramakot.
Funding agency
Deutsche Forschungsgemeinschaft (DFG)
Project duration
January 1997 − March 2000
Project management
Hartmut Bossel
Project staff
Thomas Ditzer
Andreas Huth
Cooperations
Institute for World Forestry, Federal Research Centre for Forestry and Forest Products, Hamburg (Germany). Malaysian-German Sustainable Forest Management Project, Sandakan (Malaysia).
Target
In earlier years, an environmental accounting model GEMIS (Total Emission Model of Integrated Systems - Gesamt-Emissions-Modell Integrierter Systeme) was developed together with the Institute for Ecology (Institut für angewandte Ökologie e.V.) in Darmstadt and has been used in various research projects and qualification studies in the energy, transport and agriculture sectors, mainly to produce eco-balances of climate-relevant gases. Current activities are continuing the work that was started in 1994 and peaked with the publication of a report for the Enquête-Commission of the German Parliament on the "Protection of the Earth's Atmosphere". In that report, preliminary results were published on the climatic relevance of the agriculture and food sectors. These early activities concentrated on a rather coarse analysis of the entire agriculture and food system and on some exemplary case studies. The present follow-up study aims at improving the methodology and completing the data base.
One methodological aspect is to relate our process chain approach to other approaches such as the so-called 'metabolism approach' as developed by Baccini and Brunner. With respect to the data base extension, data actualization and data refinement are priorities. The German KTBL provides data sets which can be used to support this task.
The project also serves as a vehicle to tie the Center more closely to the "International Human Dimensions Programme". Its project on Industrial Transformation focuses on so-called 'food consumption and production systems', and is very similar in approach to our own type of analysis.
Result
About 10 participating institutes dealing with eco-balances in agriculture and consumption systems were brought together in a workshop which discussed process parameters and definitions at various levels of aggregation. In the coming months, the Hessian Government will publish and distribute a CD-ROM which contains the results of our project on (a) a new version of the computer program GEMIS to compute the eco-balances, and (b) the new extended data base containing data and process descriptions representing the food and agriculture subsystem.
Funding agency
own resources, in part: Institut für angewandte Ökologie e.V.
Project duration
January 2000 − March 2006
Project management
Karl-Heinz Simon
Project staff
Lothar Rausch
M. Zehr, u.a.
Cooperations
Institut für angewandte Ökologie e.V., Büro Darmstadt; Hessisches Landesamt für Regionalentwicklung und Landwirtschaft; Fachhochschule Fulda, FG Haushaltsökonomie und Ernährung.
Weiterführender Link
Target
Following GEO reports no.1 to 3 (1997 until 2002), GEO 4 aims at providing comprehensive, reliable and scientifically credible, policy-relevant assessments on the interaction between environment and society. It is financed, coordinated and published by the United Nations Environment Programme (UNEP). GEO 4 consists of two parts: the assessment of the current global situation and the scenario based estimation of different future development states (chapter 9), whereas CESR is involved in the latter part.
Result
CESR is contributing to GEO 4 by designing and modeling future water related scenario storylines. For four scenarios, called Markets First, Policy First, Security First and Sustainability First, CESR has generated data on
- People and area under severe water stress
- Change in runoff extremes
- Discharge of treated and untreated wastewater
This has been realized by the application of the global state of the art hydrology and water use model WaterGAP within the temporal horizon 2050. It needs to be mentioned that WaterGAP is reliant on the results of other global models applied in GEO 4. For example, the IFs-model computes socio-economic data, such as GDP per capita or population, which serve as an input for the water use module of WaterGAP. The GEO 4 soft-linked model network is composed of the following models: WaterGAP, IFs, IMAGE, GloBio, EcoSim, Impact and AIM. Most of these models work on a global scale, but all results are also on UNEP-region and UNEP-sub-region levels available.
Additionally, CESR is also coordinating the transfer of knowledge and results between all modeling groups involved in chapter 9.
Links
UNEP - http://www.unep.org/geo/
UNEP GEO Data Portal - http://geodata.grid.unep.ch
GLOBIO-Modell - http://www.globio.info
IMAGE-Modell - https://www.pbl.nl/en/image/home
Funding agency
UNEP
Project duration
September 2005 − March 2007
Project management
Joseph Alcamo
Martina Flörke
Project staff
Tim Aus der Beek
Ellen Kynast
Kerstin Verzano
Target
The overall goal of the GLASS model (Global Assessment of Security) is an improved understanding of the impacts of global change on the global food and water security. The model is an integrated model describing large-scale environmental problems and integrating various types of information from different disciplines in a policy-relevant fashion.
From a scientific point of view, it was intended to provide an instrument that links extreme global change events, such as a change in the frequency of droughts and floods, with societal reactions to these changes. Further, a framework to quantify the relevant scientific and social science aspects was to be created.
Seen from a policy perspective, a tool was to developed that predicts security risks which are caused by environmental impacts. A further important goal here was to make available information needed for adaptation strategies.
Result
The underlying idea of the GLASS model is to use linked sub-models in order to compute the 'slow' and 'fast' environmental changes and how they influence the potential for crisis in society. Slow changes are represented in, e.g., land use, long-term average climate, and overall susceptible population in crisis situations. Fast changes include year-to-year variations in crop yield and water availability caused by climate variability.
The basic modeling hypothesis is that society can in the medium and long term adapt to slow changes, whereas fast changes constitute a high risk potential.
The GLASS model is a framework to link individual sub-models which partly were newly developed and partly already existed. In order to compute water availability, the WaterGAP 2 model, which has also been developed at the Center, was integrated into the framework. To simulate potential harvest of important crops, the Global Agro-Ecological Zones model (GAEZ) developed by the United Nations Food and Agriculture Organization (FAO) and the Interantional Institute for Applied Systems Analysis (IIASA) has been used.
The model calculates with annual time steps for the overall simulation period of 1901-1995 and for 2000-2099. The historical evaluation offers an opportunity for model validation, whereas the long scenario period starting in 2000 allows for an impact analysis of long-term trends. The geographical resolution of the model varies depending on the needs and ranges from a global grid to individual water sheds and countries.
The ideas and the software framework developed within the GLASS project have been used as a startign point for a regional study for the territory of the Russian Federation (R-GLASS)
Processing
Im weiteren Verlauf des Projekts werden Verbesserungen im Modellkonzept implementiert, die im Rahmen einer regionalen Studie für Russland (R-GLASS) entwickelt wurden.
Funding agency
Max-Planck-Society
Project duration
January 2000 − December 2002
Project management
Joseph Alcamo
Project staff
Marcel B. Endejan
Andrei Kirilenko (Russian Academy of Sciences)
Cooperations
International Institute for Applied Systems Analysis (IIASA, Austria)
Target
As part of German GLOWA program, the sub-project on 'Macroscale Integration' aims at deriving consistent macro-scale scenarios of water availability and water use in five river basins (Danube, Elbe, Oueme, Draa and Volta), taking into account the impact of climatic, demographic, socioeconomic and technological change. The overall goal of the GLOWA program is to develop integrated strategies for sustainable management of surface and ground water in large river basins. In our subproject, the global water quantity model WaterGAP 2 will be applied in order to compute for each river basi
- water availability,
- water use,
- total river discharge.
In addition, a first macro-scale model of nitrate fluxes will be developed in order to
- model mass nitrogen transport to the oceans;
- determine the surface water quality in the river basins.
Result
This on-going investigation started in May 2000. Preliminary calculations of the present water situation in all five river basins have been done. In addition, the industrial water use module of WaterGAP 2 has been improved. By participating in the GLOWA-Elbe scenarios group, we have supported the development of scale-consistent scenarios for the Elbe basin.
Processing
Future activities of the Center include
- comparison of data and results obtained in the Center with those from other partners within the GLOWA Elbe study;
- development of the driving forces for the scenarios within the GLOWA Elbe pilot study;
- calculation of water availability and water use based on these scenarios;
- development of a global nitrogen transport model;
- comparison of modeled water availability and use with results obtained in other GLOWA sub-programs.
Funding agency
German Federal Ministry of Education and Research (BMBF)
Project duration
May 2000 − April 2003
Project management
Petra Döll
Project staff
Sara Vassolo
Target
The goal of this project is to quantify the sources and sinks of greenhouse gases from land use/land use change and land cover in the German Federal State of Hesse. The evaluation includes the following greenhouse gases: CO2, N2O and CH4. Emission inventories are being established for the reference year 1990, the year 2000, as well as for a reference scenario for the year 2025. This project focuses on the carbon flows in soils and vegetation in order to get new insight into the role of these ecosystem components as potential sinks for carbon dioxide in Hesse. The project contributes to the strategic evaluation of different land use options with respect to their climate relevance. For this study, the GIS-based model system HILLS has been developed which integrates a land use change model with various grid-based modeling approaches to compute emissions and sinks of the above mentioned greenhouse gases.
Result
We developed and adapted various simulation models, including the dynamic land use change model LUCHesse, a modified version of the ecosystem model Century (GIS-Century) and GIS versions of IPCC greenhouse gas emission models. Integration of these models is done in a GIS context leading to the model system HILLS (see Figure). The model system is applied to quantify the following greenhouse gas sources and and sinks on different scale levels that reflect the IPCC emission categories
- carbon sequestration by afforestation and forest management (grid level);
- carbon sequestration in agricultural soils by abandonment of cropland (grid level);
- N2O-emissions from agricultural soils (grid level);
- CH4-emissions from livestock and landfills (district level).
We calculated a reference scenario for the period 2000-2025 which uses 1990 as a base year and reflects the implementation of the AGENDA 2000 EU policy for the agricultural sector, using results of the agro-economic model RAUMIS, and extrapolating current regional development trends for the urban, industrial, waste and forest sectors. Major findings of the simulation experiments are that managed forest and afforestation act as a major carbon sink with a capacity of 3000 kt CO2 per year which is equivalent to 6% of the yearly total carbon dioxide emissions of Hesse during the 1990ies. A smaller carbon sink (87 kt CO2) can be found in agricultural soils induced by the abandonment of cropland as projected by the RAUMIS model. Despite of the decreasing cropland area, N2O emissions (mainly resulting from fertilizer application) are increasing from 2.65 kt in 1990 up to 2.8 kt in 2025 because of the continued intensification in crop production including higher N-fertilizer inputs. In contrast, CH4 emissions of the waste and agricultural sectors are decreasing until 2025. Emissions from landfills drop from 115 kt (1990) to 33 kt (2025) due to a lower waste production and the implementation of advanced waste management concepts (i.e. re-use). In the same period, livestock emissions are reduced from 59 kt (1990) to 36 kt (2025). Here the reasons lie in the structural change of the agricultural sector leading to a drastic decline in livestock numbers.
Processing
The project was finalized in September 2004 and resulted in a number of publications listed belo
Funding agency
Hessian State Agency for Environment and Geology (HLUG)
Project duration
October 2000 − September 2004
Project management
Joseph Alcamo
Project staff
Gerald Busch
Rüdiger Schaldach
Cooperations
Hessian State Agency for Environment and Geology (HLUG)
Target
This project investigates the question of whether an improvement and systematization of sustainability indicators of integrated farm systems (combining plant cultivation, animal breeding and fish ponds) can be achieved when simulation models are applied. The project is split into several steps
- A simulation model is being developed which shows the most important interrelationships in the material and energy flows of a farm system.
- Indicators to assess sustainability are being collected and sorted using the so-called orientors approach.
- Links between indicators and model variables are being defined, and future perspectives to further elaborate simulation models are being discussed.
- The project combines scenario analysis by cybernetic feedback models with evaluation approaches such as the orientor approach.
Result
The simulation model which was developed during the first project phase was further elaborated and expanded to cover longer simulation periods. Several scenarios reflecting different resource utilization situations and strategies were simulated, and their impacts were analyzed and related to indicators.
Until now the link between the simulation model and the indicators has mainly been established via nutrients balances. This is, however, inadequate in order to obtain a complete picture of all processes in the farm system. To complete this picture it is planned to include additional qualitative indicators in the evaluation of results which are not part of the simulation model, and to extend the model so that it can treat additional indicators in a quantitative way.
Funding agency
ICLARM (Manila); GTZ
Project duration
October 1995 − June 1999
Project management
Karl-Heinz Simon
Project staff
Friedrich Krebs
M. Prein (Manila) A. Schallehn (bis Sept. 98)
Cooperations
International Center for Living Aquatic Resources Management, Manila, Philippines.
Target
The main objective of the ICLIPS project (Integrated Assessment of Climate Protection Strategies) is to carry out an analysis of climate stabilization strategies in order to support policymakers in their policy decisions under the Framework Convention on Climate Change (FCCC). The focus of the project is to develop a so-called Tolerable Windows Approach (TWA). The "Tolerable Window" is defined by unacceptable climate impact constraints. Within the ICLIPS project, the Center shares responsibility with the Jackson Environment Institute for the analysis of climate change impacts. The Center develops new analytical tools and methods to assess the impacts of CO2 increase and climate change on agricultural production, fresh water availability and natural vegetation distribution. Together with its partners, the Center will further contribute to applying the ICLIPS framework in order to evaluate proposals of various climate change policies. In brief, the Center has two main tasks
- The development of methods that contribute to a simplified depiction and analysis of climate change impacts. Possible methods include Response Surface Diagrams (RSDs) and Empirical Orthogonal Functions (EOFs).
- The analysis of long-term climate change impacts.
Result
In 1998 the RSDs and EOFs were developed to evaluate impacts on agricultural yield, fresh water availability and natural vegetation distribution. An example of an RDS is shown in the Figure. Both types of diagrams depict on a national scale the consequences of CO2 increase and climate change based on changes in precipitation and temperature. These two approaches differ in that the EOFs assume a spatial distribution of climate change, whereas the RSDs depict the consequences in a more general way. In addition, work was started on the impacts of climate variability.
Funding agency
German Federal Ministry of Education, Science, Research and Technology (BMBF)
Project duration
June 1996 − June 1999
Project management
Joseph Alcamo
Project staff
Marcel B. Endejan
Frank Kaspar
Jelle van Minnen
Cooperations
Within the ICLIPS project, the Center cooperates with the Potsdam Institute for Climate Impact Research (PIK) in Potsdam in Germany, the Batelle Institute in Washington in the USA, the Institute of World Economics in Kiel in Germany, the Institute for Applied Systems Analysis in Laxenburg in Austria, the Jackson Environment Institute of the University of Norwich in the United Kingdom, and the Max Planck Institute for Meteorology in Hamburg in Germany. The PIK is the initiator and main coordinator responsible for the project.
Target
The goal of this project was to analyze the perception and valuation of global environmental changes in various cultures. It was investigated where differences in the perception of climate change as an example of global environmental change could be observed. It was also studied which factors are important for the acceptance of protection measures such as, e.g., ecological taxing. Further, it was checked whether different images of nature influence this perceptio
Result
The study contributed to a better understanding of the social and cultural embedding of ways as to how to deal with climate change as well as other global change problems. The study was done with 588 students from four countries: Germany, India, the US and Peru. The perception of climate change and the acceptance of protection measures were investigated with the help of an integrated psychological action model. The following results were found
- The integration of three action theories worked well. The theory of planned behavior by Ajzen (1991), the Theory of Protection Motivation by Rogers et al. (1987, 1997) and the Norm-Activation Model by Schwartz et al. (1977, 1981) partly cover the same components, but partly cover different important aspects which should be considered in one integrated action model. The model structure was calculated with structural equation models and the empirical findings are satisfying.
- There are differences in the perception of climate change, the evaluation of the measures and consequently in the acceptance of measures between people from the four countries. However, there seems to be no obvious trend towards acceptance or non-acceptance with the exception of the German respondents who always tend to be in favor of the protection measures. Furthermore, nationality in itself does not explain such differences. Further variables or contents that lead to these differences are always needed for an explanation. Images of nature offer such content.
- Four images of nature could be identified: The "spiritual conserver" (47% of all interviewees), the "spiritual user" (11%), the "secular conserver" (15%) and the "secular user" (27%). The images were build with cluster analysis and cover the following aspects: whether nature exists as a purpose for human needs, whether it should be treated with respect, whether it needs and deserves to be protected, whether it is spiritual, whether it is threatening, whether it is tolerant to human interference and whether it is a limited resource (see Figure).
- The fact that all four images of nature were selected by participants from all four countries shows the plurality in the understanding of nature within a nation. However, certain images are preferred by people from a certain country. For instance, the secular conserver are mostly preferred by people from Germany, the secular user mostly by people from Peru, the spiritual conserver mostly by people from the US and India. And, if at all, the image of the spiritual user is preferred by people from India. This shows that certain images appear more dominant in one culture than in another.
- The images of nature are connected to the perception of climate change and to the acceptance of protection measures. In general, the user groups on the one hand and the conserver groups on the other hand have similar scores. The users have higher scores on those variables that hinder the acceptance of protection measures and lower scores on those that foster the acceptance. Consequently, their acceptance for protection measures is lower. In contrast, the conservers have lower scores on the hindering factors and higher scores on the fostering factors. Consequently, their acceptance for protection measures is higher.
Processing
The project was finalized in July 2003. Results are published in a book (Krömker (2004). Images of Nature, Climate Protection and Culture [in German].Beltz: Weinheitm), they have been presented at several conferences and are being fed into ongoing discussions, e.g., by the International Human Dimensions Programme (IHDP).
Funding agency
Internal project
Project duration
October 2001 − July 2003
Project management
Dörthe Krömker
Project staff
Andreas Stolberg
Cooperations
National Committee for Global Change Research, German-Indian Forum, Dept.. Social Psychology, University Zürich
Target
In order to realize the wide-ranging energy-economical perspectives of biomass, in all phases of the system design the diverse relationships within the supply system have to be taken into account. These relationships range from the agricultural resources up to the different types of energy carriers and end energy use and should include the dynamics of demands and of the power-grid as well. Therefore, the working approach of the project is to analyse the interconnected energy and material flows related to different concepts for biomass use for energy by means of system research and to visualize the conditions by interconnected models. This procedure requires an interdisciplinary approach and the application of coordinated methods of analysis and modelling.
The dynamic modelling allows to show quantitatively the advantages of biomass use, especially its storage capacity and reactivation on demand, and to apply techniques of system optimisation.
The innovation introduced by the research concept is 1) the dynamic view and systemic interpretation and 2) the integrative approach, i. e. the inclusion of logistic aspects, biogenous residual materials and 3) the integration into existing supply structures. Starting from the current state of research, a double-track proceeding becomes apparent: A long-term research project to develop methods for interdisciplinary modelling and valuation of the total system. Further, the modelling of a relevant supply line with known methods under variable general framework. The given “premature” application responds to actual research needs and to current funding programs. Both approaches provide a basis for model-based scenarios and valuation processe
Funding agency
Zentrale Forschungsförderung der Universität (ZFF)
Project duration
October 2005 − October 2007
Project management
Hartmut Hübner
Cooperations
Beteiligte Fachgebiete: Umweltsystemtechnik, ISET (Biogastechnologie), Rationelle Energienutzung, Abfalltechnik, Produktionsorganisation
Target
The main research question is:
How is the agricultural production in Hesse influenced by the climate change in the next 50 years?
The study is based on results from stochastical climate simulations for Hesse (Meteo-Research, 2004), which are available for 21 Hessian climate stations for the years 2000 to 2050.
The yields until 2050 will be simulated with an adapted version of the DayCent model (Parton et al., 2001). The results will be compared to the base year 2000. Focus of this study are the yields of the five most important crops in Hesse (winter wheat, winter barley, winter rapeseed, maize and sugar beet) and the productivity of grassland.
Result
The DayCent-model is used to calculate the crop yields based on presently applied agricultural management practices. As a first step in this simulation study, input data and model parameters have been generated, including the parameterization of new crops (rapeseed, sugar beet) which were not yet available in the DAYCENT crop list. All input data have been stored in a relational database system which can also be used for other research topics.
After completing the database system, the DayCent-model has been used to calculate the crop yields under climate change conditions for typical crop rotations. The results have been regionalized and analyzed for the three different agro-eco-regions in Hesse.
Processing
The project will be finalized during the course of June 2005. There is no immediate continuation of the project planne
Funding agency
Hessian State Office for Environment and Geology (HLUG)
Project duration
January 2005 − April 2005
Project management
Jörg A. Priess
Project staff
Maik Heistermann
Matthias Mimler
Janina Onigkeit
Rüdiger Schaldach
Daniela Trinks
Cooperations
Hessian State Company for Agriculture (LLH)
Target
Im Sinne der EU- Wasserrahmenrichtlinie sind viele der unterhalb von Talsperren gelegenen, zumeist rhithralen Fließgewässern hinsichtlich der Erreichung des „guten ökologischen Zustands" bzw. des „guten ökologischen Potenzials" als „gefährdet" einzustufen. Zwar bewirkt die zumeist relativ gute chemische und physikalische Gewässerbeschaffenheit des aus Trinkwassertalsperren abgelassenen Wassers ein hohes ökologisches Potenzial in den betroffenen Fließgewässerabschnitten in der fließenden Welle, jedoch können die Rückkopplungsprozesse zwischen fließender Welle, Gewässersohle und hyporheischem Interstitial durch die veränderte Geschiebedynamik gestört sein.
Daher hat die Integration fließgewässerökologischer Aspekte in das Management von mehrfachgenutzten Talsperren grundsätzliche Bedeutung und stellt fachliche Anforderungen an die daraus resultierenden Bewirtschaftungsstrategien, für die bisher noch wichtige Grundlagen fehlen.
In diesem Verbundprojekt sollen systematische Untersuchungen über das tatsächliche Ausmaß ökologischer Beeinträchtigungen in ausgewählten Fließgewässern unterhalb von mehrfach genutzten Talsperren in den Regionen Sachsen und Hessen durchgeführt werden. Im Vordergrund stehen dabei experimentelle Untersuchungen und die Erfassung von Kolmationsprozessen, Sauerstoff- und Temperaturverhältnissen, deren Einfluss auf Austauschvorgänge im hyporheischen Interstitial sowie die Modellierung und Kopplung von Fließgewässergüte- und Talsperrenmodellen.
Die Ergebnisse werden im Hinblick auf ihre Übertragbarkeit analysiert. Es werden Prozesse und Parameter quantifiziert, mit denen die Sicherung der ökologischen Funktionalität von Fließgewässern in das Management von Trinkwassertalsperren integriert werden kann. Diese Fragen sind nicht zuletzt für das Aufstellen und die Umsetzung der kosteneffizientesten Maßnahmen zum Erreichen der Umweltziele nach der EU-WRRL von wesentlicher Bedeutung.
Funding agency
Bundesministerium für Bildung und Forschung (BMBF)
Project duration
June 2006 − May 2009
Project management
Dietrich Borchardt
Prof. Dr. Uhl, TU Dresden
Project staff
Markus Funke
Jeanette Völker
Cooperations
Universität Dresden, Institut für Siedlungs- und Industriewasserwirtschaft, Institut für Hydrobiologie Ingenieurbüro Sydro Consult, Darmstadt Krüger Wabag GmbH, Bayreuth DOC Labor Dr. Huber, Karlsruhe
Target
The trading of greenhouse gas emission rights is seen as a way to minimize costs of climate protection measures. In July 2003 the European Union passed a Directive on a European Emission Trading Scheme which obliges the European national governments to establish trading schemes so that a test phase for the emissions trading scheme can start in the beginning of 2005. The aim of JET-SET as a multi-disciplinary project is to perform an integrated assessment of the social, economic and ecological implications of possible (current and future) designs of trading schemes. This investigation will result in concrete policy recommendations with respect to the design of a trading scheme for the first commitment period as well as for the realization of long-term climate protection targets.
The focus of the sub-project of the Center for Environmental Systems Research will be on two issues:
- the spatial distribution of yields for highly productive energy crops such as Miscanthus,
- different scenarios for the allocation of land area for the production of energy crops, and
- the changes of C- and N-fluxes caused by changing land-use patterns.
By coupling land-use change scenarios which are driven by socio-economic factors with models quantifying biogeochemical processes, it should be possible to get new insights into the implications of an extended use of energy plants as energy carriers.
(2) Climate protection scenarios: A set of mid- to-long-term scenarios for future climate protection pathways in Europe will be compiled. These scenarios, which include a future change of land-use patterns as well as pathways of greenhouse gas emissions will serve as a basis for a trans-disciplinary evaluation of different emission trading schemes.
Result
After the successful model calibration and validation for the perennial energy crop Miscanthus, the global version of DayCent was employed to estimate Miscanthus yields on the European scale under current climate conditions. As can be seen from Figure 1., rain-fed Miscanthus yields differ widely throughout EU-25 countries with high yields in France and Northern Italy. Due to limited water availability Miscanthus yields are low in Spain but also in Eastern Germany and Poland. This kind of map will serve as an input to the LandSHIFT model in order to calculate land use change scenarios.
Processing
In order to estimate the greenhouse gas emission mitigation potential of energy crops in Europe, future work will deal with the following issues: (1) an estimation of CO2 mitigation potentials of Miscanthus under different policy conditions, (2) the risk of yield variations due to year-to-year-climate variability, (3) the change in N2O emissions from agricultural soils under Miscanthus relative to emissions from soils under common land use practice, and (4) the estimation of additional mitigation potentials due to soil carbon sequestration caused by reduced management of perennial crops such as Miscanthu
Funding agency
German Federal Ministry of Education and Research (BMBF)
Project duration
May 2003 − April 2006
Project management
Joseph Alcamo
Janina Onigkeit
Cooperations
Institute for Energy and Environmental Research (ifeu, Heidelberg), Wuppertal Institute for Climate, Environment, Energy (Wuppertal), Centre for European Economic Research (ZEW, Mannheim), Institute for Socio-Ecological Research (ISOE, Frankfurt)
Target
The aim of the project was to sho
- which potentials for environmental benefits exist in the region through alternative lifestyles and production mechanisms;
- which components of such lifestyles can be generalized.
Result
The project was intended to contribute to the general discussion about sustainability by comparing the alternative lifestyles projects to the standard household, on the one side, and to the goals of sustainable development, on the other side.
For the case study 'Commune Niederkaufungen', an eco-balance has been carried out for the areas mobility, nutrition, housing, and building stock, and interconnections with the region were analyzed. In order to carry out an eco-balance, process chain modeling was used. The results of the eco-balance were compared with reference cases and evaluated according to a list of sustainability criteria that took into account ecological, social and regional economic aspects.
In the first half of the project, empirical data regarding production and energy throughputs in all areas considered were gathered. This data collection lasted for one year and the main throughputs, e.g., in the central kitchen, were continuously followed. In the other areas, interviews were carried out four times a year in order to gather the remaining throughputs, e.g., from the mobility of individual commune members. Twice during 2002, two additional alternative case studies (Sieben Linden, Pommritz) were incorporated into the analysis.
With respect to sustainability, results show significant advantages of the alternative living modes. In addition to the individual deliberate choice of a life with reduced consumption, there are some structural aspects that allow a more environmentally efficient use of devices (e.g., in transport) as well as an environmentally better organization of production (e.g., in food supply).
- a further optimization of conditions in the case study project,
- a more general application in society.
The recommendations for action are being prepared in an easily comprehensible format for various actor groups, such as providers, general public, etc., during a video, workshops and conferences.
Processing
The project started in the summer of 2001 and was completed at the end of 2003.
Funding agency
German Federal Ministry of Education and Research (BMBF)
Project duration
July 2001 − December 2003
Project management
Karl-Heinz Simon
Project staff
Dagmar Fuhr
Alejandra Matovelle
Klaus-Peter Kilmer-Kirsch, Peter Dangelmeyer
Cooperations
Verein für Ökologie, Gesundheit und Bildung e.V. (Kaufungen),
Öko-Institut (Darmstadt),
Ökodorf Sieben Linden,
Lebensgut Pommritz
Weiterführender Link
Target
The main goal of the project LTEEF II is to use process-oriented stand growth models to evaluate changes in the carbon and water cycles of representative European managed forest stands under a changing climate and increasing CO2 over a period of at least 50 years.
The forest growth model TREEDYN3 (Bossel, 1996) was further modularized, and a number of new sub-models were included, namely a biochemical leaf photosynthesis model, a phenology model and a radiation absorption model.
For model testing on the scale of daily carbon exchange, eddy covariance measurements were available from the project EUROFLUX for a number of European forest stands. For these stands, i.e. spruce in Germany, beech in France, and pine in the Netherlands, France and Finland, we parametrized TREEDYN3 and compared simulation results of daily CO2 exchange with measured values.
In another model validation step, we compared long-term forest stand development over a 50-year period simulated with TREEDYN3 with yield tables and/or measured data. In a subsequent step, the stand development and CO2 exchange will be investigated under different climate change scenarios. All of these results will serve as parametrization input for a European forest growth model that is currently being developed at the European Forestry Institute (EFI) in Finland.
Result
First simulation results with the TREEDYN3 model on the scale of daily carbon exchange as well as on long-term stand dynamics compare very favourably with measured data. Due to this good agreement, we expect to be able to scale up our results to the large-scale forestry model currently under development at the European Forestry Institute (EFI).
Funding agency
Commission of the European Community (CEC), Brussels/ Belgium
Project duration
January 1998 − June 2000
Project management
Hartmut Bossel
Project staff
Michael Sonntag
Cooperations
A close cooperation exists with Prof. Hauhs and his team at the University of Bayreuth and Dr. Cramer at the Potsdam Institute for Climate Impact Research (PIK). International contacts include the group of Prof. Mohren (Wageningen, The Netherlands, project leader), and Prof. Hari (Helsinki, Finland). In addition, we cooperate with participants of the EU projects EUROFLUX and ECOCRAFT.
Target
The overall goal of the Millennium Ecosystem Assessment (MA) is to improve the management of ecosystems and their contribution to human development. The strategic objectives of the MA in order to achieve this goal are:
(1) helping to bring the best available information and knowledge on ecosystem goods and services to bear on policy and management decisions, and
(2) building capacity at all levels to undertake integrated ecosystem assessments and to act on their findings. The primary users of the MA will be the international ecosystem-related conventions, national governments, civil society, and the private sector. The MA will provide information and strengthen capacity but it will not set goals or advocate specific policies or practices. It will be policy-relevant but not policy-prescriptive. The Center has a leading role in the quantitative assessments, including the elaboration of scenarios and modeling tasks.
Result
The Millennium Ecosystem Assessment conducted a global modeling exercise with the aim to develop scenarios of ecosystems services and human well-being for the time-period 2000-2050 with selected outlooks until 2100 which describe plausible alternative futures. Four scenarios were developed about crop production, the status of freshwater resources, land cover, fishery yield, and other important ecosystem indicators by first defining qualitative storylines, followed by the quantification of selected storyline drivers and parameters in an iterative process. Here, the qualitative storyline development was complemented by building quantitative scenarios using a linked set of global models. The different models used to compute these impacts were soft-linked and run with a set of drivers consistent with the storylines developed by the Scenario Working Group. In a next step, the calculations from the various models were harmonized into a set of consistent quantitative scenarios. Finally, the quantitative scenarios were harmonized with the scenario storylines by revising the storylines and re-running the models. The cycle of revising storylines and quantitative scenarios was repeated until a rich set of qualitative and quantitative scenarios were produced with as high a level of consistency as possible.
- Vast changes are expected in world freshwater resources and hence in the ecosystem services provided by freshwater systems. Water withdrawals are expected to increase especially outside OECD (as a result of economic and population development) but will continue to decline in the OECD regions (as a result of saturation of demand, efficiency improvements, and stabilizing population) (medium certainty).
- Land use change is a major driver of changes in the provision of ecosystem services up to 2050 (medium to high certainty). The scenarios indicate that 10 to 20% of current grassland and forest land may be lost between now and 2050, mainly due to the further expansion of agriculture (and secondarily, because of the expansion of cities and infrastructure) (low to medium certainty). This expansion mainly occurs in the low-income and arid regions, while in the high income regions, agricultural area declines.
- After 2050, climate change and its impacts (such as sea level rise) have an increasing effect on the provision of ecosystem services (medium certainty). Under the four MA scenarios, global temperature is expected to increase significantly (1.5-2.0 °C above pre-industrial levels in 2050, and 2.0-3.5 °C in 2100, depending on the scenario and using median estimates for climate change variables). There is an increase in global average precipitation (medium certainty), but some areas will become more arid while others will become more moist. Climate change will directly alter ecosystem services and change the frequency of extreme events with associated risks to ecosystem services. It will also indirectly affect ecosystem services, e.g., by causing sea level rise and thereby threatening mangroves and other vegetation which now protect the shorelines.
- Food security remains out of reach for many people, and child malnutrition cannot be eradicated by 2050 (with low to medium certainty).
- Demand for fish as food from both freshwater and marine sources, as well as from aquaculture will increase. As a result, there will be an increasing risk of a major long-lasting decline of regional marine fisheries (low to medium certainty).
- The future contribution of terrestrial ecosystems to the regulation of climate (currently they absorb CO2 at a rate of about 1 to 2 Gt C/yr) is uncertain. Carbon release or uptake by ecosystems affects the CO2 and CH4 content of the atmosphere at the global scale and thereby affects global climate.
Processing
The project was finalized in June 2004 and results have been published in an EEA Experts' corner report. These reports are prepared by an international group of experts and undergo two rounds of expert peer review.
Funding agency
Scientific Committee on Problems of the Environment (SCOPE), Paris, France
Project duration
December 2002 − June 2004
Project management
Joseph Alcamo
Project staff
Martina Flörke
Michael Märker
Kerstin Verzano
Cooperations
International Food Policy Research Institute (IFPRI, USA); National Institute for Environment Studies (NIES, Japan); National Institute of Public Health and the Environment (RIVM, Niederlande); University of British Colombia (Canada)
Related links
Target
Impact analysis for changes in the fish fauna
For this aspect historical and actual data of the fish assemblages of the river Main will be discussed on the basis of different construction works, which were carried out for inland navigation. By this significant impacts and ecological effects on the fish fauna will be identified and described.
Typing of groynes and areas of slack water
Aim of this aspect is the typing of groynes and areas of slack water on the basis of morphological, phsico-chemical and fish data. Depending on the typ tendencies for eutrophication or siltation and for loss of fish ecological function will be given.
Hydrological pressures on different typs of groynes and areas of slack water
This major aspects will be realized be quantitative and qualitative studies on the hydrological features like swells and sunk, which are generated by inland navigation and watergates. Additionally potential effects on water quality and other parameters, which are important for fish will be studied.
Importance of groynes and slack water for fish
By using former times fish data groynes and areas of slack water will be decribed functionally in respect of their importance for the local fish fauna. This functional decribtion contains the use of these areas by juvenil or adults or for reprodcution, abundances and taxa, which are likely to be found and the ecological value of these areas.
Formulation of measures to improve the situation
As syntheses of the previous aspects regards and notes for new constructions and modifications of groynes and slack water will be given. By this positive alteration in respect of reaching the goals of the EU-WFD should be implemented.
Target
The legal framework in Germany has been changed in order to promote increased exploitation of regenerative energies. According to the most recent building laws, building projects that use, develop, and research wind and water energy have a privileged status in the open country. By means of assigning specific locations, regional planners and communities have distinct possiblities to foster a planned expansion of renewable energy sites and to keep the remaining planning area free of any of the priviledged energy installations in order to maintain an aesthetically homogeneous landscape. A temporary transitional clause permits the communities to suspend building applications until the necessary extensive planning work has been completed.
In planning alternative energy sites, it is necessary to evaluate the entire area under consideration and make the choice of the selected sites transparent to everybody. On the other hand, the community has to provide some valid rationale as to why areas that do not conflict with public interest, should not be used as sites for alternative energy, such as wind generators.
A methodical procedure is being developed which compares energy, environmental, and economic aspects with physical planning aspects. The critical questions will be investigated with the help of computer-based instruments and evaluated according to a set of criteria which has to yet be developed.
Result
To fulfill the required tasks of the project, the following criteria were identified and agreed upon by all project participants: emission reductions, noise emissions, environmental impacts, nature balance, total area required, expense to feed energy into the distribution net.
Whereas demands of nature protection had to be dealt with directly through the identification of exclusive and restricted areas, flexible computer-based instruments were used to determine the wind energy potential, noise emissions and environmental impacts.
The investigation of space for the wind energy potential is done by wind field simulation models which take into consideration orography, flow barriers, and small scale classification and roughness of terrain. The procedure shows good correspondence between simulation results and calculations of the energy potential based on long-term series of measured values.
Environmental compatibility is a problem in particular in hilly terrain. In order to get undisturbed wind flow results, comparatively higher masts need to be erected and, in general, there is only sufficient wind speed in exposed areas. With the help of computer-based picture animation, the expected impacts can be visualised. This technique makes it possible, during this decision-making process, to flexibly compare alternative measures for impact reduction from different points of view, and to decide about their implementation in the course of the planning process.
After studying all individual impact factors, the identification of favourable sites is done by overlaying the mappings of the individual aspects. The favourable sites identified in this manner were taken by the decision makers and fed into the procedure of public hearings.
Funding agency
City council of Marburg
Project duration
December 1996 − July 1999
Project management
Hartmut Hübner
Project staff
I. Hawranke
Target
Background:
The watercourses of north-eastern Mongolia are located in the catchment area of the internationally recognized Lake Baikal and represent one of the last undisturbed natural areas in the northern hemisphere which have not yet, or only slightly, been changed due to human impact. However, in recent years anthropogenic activities in this region were increasing, especially because of a rapid expansion of open-cast goldmining. On the one hand, the gold reserves of Mongolia represent one of the country's important sources of raw material and from a socio-economic perspective, its utilization is important and requires development. The research area of the Khan Khentii, selected during preliminary studies conducted in 1998 through 2000, represents unique sites of both, watercourses under natural conditions (including the hyporheic zone, the aquatic fauna with the macrozoobenthos and fish) and due to a rapidly spreading open-cast mining influenced watercourses (including effects of deforestation, sediment load, riverine fragmentation).
Objectives:
Therefore, the aim of the project is to develop a basis for environmentally compatible surface mining with a specific ecological monitoring and the quantification of significant influences (including evaluation of international experiences). Furthermore, the transfer and implementation of management strategies, the testing of technologies to limit pollution, as well as setting up a pilot plant for waste water treatment are key issues of the work programme. An important objective of the research is therefore to scientifically document the natural state of selected watercourses and the ecological consequences of open-cast mining activities. The results of the research will be utilized to formulate protection strategies, environmental standards and a biomonitoring program at a national level, which at a later stage may be followed up independently by local decision makers. Furthermore, environmental techniques will be developed which are adjusted to local conditions (in particular settling tanks and filter equipment), and tested on an existing goldmine.
Following questions have to be answere
- How can ecological functions of natural rivers especially with regard to water quality and structure of the river bed and the hyporheic zone be characterized?
- What kind of species composition and functional characteristics does the macroinvertebrates and the fish fauna in natural water bodies have?
- In which way does the surface goldmining significantly alter the freshwater ecosystems including the riparian zone (quantitatively, qualitatively, spatially and temporally)?
- Against the background of the local conditions which are the most effective manage-ment strategies for landscaping and water protection?
- Under the prevailing circumstances which environmental technologies are robust and effective?
- How can a sustainable strategy for an ecologically compatible goldmining together with all participants going to be established?
Funding agency
Bundesministerium für Bildung und Forschung (BMBF)
Project duration
September 2002 − December 2006
Project management
Dietrich Borchardt
Project staff
Ralf B. Ibisch
Daniel Krätz
Cooperations
Fachbereich Stadt- und Landschaftsplanung, Universität Kassel, Prof. Dr. Robert Mayer Nationaluniversität der Mongolei, Prof. Dr. R.Samja Universität für Wissenschaft und Technologie der Mongolei, Dr. J. Budsuren.
Target
Mongolia is used as a model region for the development, solution and implementation of integrated water resources management (IWRM) in Central Asia. The sustainable use and protection of freshwater resources including the development of measures will be implemented by using a transdisciplinary management approach.
The IWRM strategies are planned to be implemented on three scales:
(1) a specific river catchment (River Kharaa/Darkhan) with a representative range of water problems (impact of global climate change, overexploitation of water resources, diffuse pollution, mining, water supply and wastewater treatment in rural and urban areas, protection of ecological functions and nature conservation) which can be addressed in a meaningful way
(2) the scale of other river catchments in Mongolia
(3) the scale of other catchments in Central Asia.
Result
Research plans:
Influence of Global Change processes on the water resources in Central Asia, Mongolia and the Kharaa catchment. Development of scenarios (foci: climate change, land-use change, and changes in water use) including the socio-econmomic and demographic dimensions of Global change.
Further development and amplification of the global model WaterGap for large scale simulation of the present and scenario-based water resources.
Further development and application of TRAIN for process orientated modeling of the regional dynamics of water-balance components for past and future climate conditions.
Adaptation and amplification of the regional land-use model SITE to simulate land-use dynamics of historical (approx. 1980 - 2005) and potential future changes (approx. 2003 - 2050) which are driven on the one hand by climate change and on the other hand by cultural, economic and social and factors
Funding agency
Bundesministerium für Bildung und Forschung (BMBF), Projektträger Jülich (PTJ)
Project duration
August 2006 − October 2009
Project management
Ralf B. Ibisch
Lucas Menzel
Project staff
Tim Aus der Beek
Maral Chimed-Ochir
Daniel Krätz
Michael Schäffer
Christian Schweitzer
Purevdorj Surenkhorloo
Tobias Törnros
Florian Wimmer
Cooperations
Helmholtz-Zentrum für Umweltforschung (UFZ), Aquatische Ökosystemanalyse; Fraunhofer Anwendungszentrum Systemtechnik Ilmenau, Abteilung Wasser; Ing.-Büro Dr. Pecher und Partner, München; Leibniz Institut für Gewässerökologie und Binnenfischerei Berlin (IGB), Abteilung Ökohydrologie; Technische Universität Ilmenau (TUIlm), Institut für Automatisierungs- und Systemtechnik
Related links
Target
The aim is to compare the sustainability of different approaches in urban planning to reach sustainability. The assumption that integrated and interdisciplinary strategies are meant to be successful is put into question and compared with sectoral more technological approaches.
A case-study approach is followed comparing the strategies of different OECD-cities.
Funding agency
Zentrale Forschungsförderung der Universität Kassel
Project duration
September 2008 − October 2009
Project management
Heike Köckler
Cooperations
Universität Kassel, FB 06, FG Stadterneuerung und Stadtumbau Universität Kassel, FB 06, FG Ökonomie der Stadt- und Regionalentwicklung
Target
NeWater is an Integrated Project (IP) within the Sixth Framework Programme of the European Union. The re-search objective of the project is to develop and test new concepts and methods for integrated water resources management in river basins. NeWater will focus on several key research and application issues within the EU Water Initiative (EUWI) and the European Water Framework Directive (WFD). The project directs its investiga-tions on selected river basins which aim to serve as exemplary cases for the development of future scenarios and generalized approaches for integrated water resource management.
The Center is involved in several tasks of NeWater and acts as a work package leader. The project work will support the Center?s activities towards the development of a new version of WaterGAP with an explicit consideration of water quality issues.
Result
NeWater started in the beginning of 2005 and is currently in its inception phase where detailed task descriptions are elaborated. This phase also includes the development of short briefing notes on key concepts and methods of the project. The Center contributes to the development of the scientific base for water quality aspects in analyzing water quality management issues in three case study basins: Amu Darya, Nile, and Rhine. Secondly, the Center leads the work for an assessment of driving forces of future stress on ecosystems and inhabitants and the analysis and development of scenarios of future vulnerability and adaptive capacity for the Elbe, Rhine, and Tisza case studies.
Processing
In the next phase of the project, the Center will further develop a conceptual framework and first techniques for an integrated water quality management. Furthermore, an inventory and selection of regional and global scenar-ios will be carried out and used as an information source for a rapid appraisal of trends in driving forces in each case study. Regional or global scenarios will elaborated and analyzed for the specified case studies and will pro-vide a consistent picture of future trends in economic growth, demographic change, the rate of improvement of water use efficiency, electricity production, irrigated area, and land cover change.
Funding agency
European Union, Brussels, Belgium
Project duration
January 2005 − December 2008
Project management
Joseph Alcamo
Lucas Menzel
Project staff
Martina Flörke
Alejandra Matovelle
Anja Voß
Related links
Target
Das Nutzerverhalten hat wesentliche Auswirkungen auf Energieverbrauch und Lastdynamik von Gebäuden und damit auf die Umweltbelastungen. Mit steigendem Standard der Einsparmaßnahmen gewinnt dieser Einfluss an Bedeutung. Bei der Gestaltung zukünftiger umweltverträglicher Gebäudekonzepte ist der Einfluss des Nutzerverhaltens daher von Beginn an mit zu berücksichtigen.
Eine wichtige Schnittstelle ergibt sich durch den Einsatz neuer Informations- und Kommunikationstechnologien zum Energiesparmanagement. Voraussetzung für die Realisierung der mit den Einspartechnologien intendierten Effekte ist eine nutzerfreundliche Gestaltung der Mensch-Maschine-Schnittstelle.
Der Lösungsansatz besteht in der Entwicklung eines integrierten Modells, auf dessen Basis in Abhängigkeit vom Raumklima und psychologischen Eingangsgrößen der Einfluss des Nutzungsverhaltens auf den Energieverbrauch untersucht werden kann. Die Modellierung erfolgt auf der Basis vorliegender, validierter verhaltenspsychologischer Modellansätze.
Result
Empirische Untersuchungen zum Energiesparen zeigen, dass weder das Wissen über die Zusammenhänge zwischen dem eigenen Verhalten und dem Energieverbrauch noch die Ausprägung des Umweltbewußtseins alleine zu umweltgerechtem Nutzungsverhalten führen. Es bestehen vielmehr deutliche Diskrepanzen zwischen Umweltbewußtsein und praktischem Handeln.
Zur Ableitung effektiver Interventionsmaßnahmen reicht es daher nicht aus, nur vom zu modifizierenden Verhalten auszugehen. Es müssen vielmehr eine Reihe von dahinterliegenden psychologischen Ursachen berücksichtigt werden. Die Vielfalt der Verhaltensweisen lässt sich auch nicht auf Mittelwerte und Korrelationen reduzieren. Über derartige Kennwerte sind die zum Nutzungsverhalten führenden Prozesse nicht darzustellen.
Auf der Basis validierter Prozessmodelle, die jeweils bestimmte Aspekte der zur Handlung führenden psychologischen Prozesse beschreiben, wurden auf das Nutzungsverhalten in Gebäuden zugeschnittene Verhaltensmodelle aufgebaut, die in vorliegende Gebäudemodelle integriert wurden. Das integrierte Modell erlaubt in Abhängigkeit vom Raumklima unter Vorgabe psychologischer Eingangsgrößen die Simulation des Einflusses des Nutzungsverhaltens.
Im ersten Ansatz werden die Handlungsfelder Heizen und Lüften (Fenster und Lüftungsanlage) untersucht. Die Verhaltensmodelle werden einzeln getestet und anhand empirischer Untersuchungsergebnisse validiert.
Project duration
January 2000 − March 2006
Project management
Hartmut Hübner
Project staff
B. Schmitz, M. Levin
Cooperations
Passivhaus Institut Darmstadt; Firma innovatec, Kassel; Gemeinnützige Wohnungsbaugesellschaft Kassel.
Zielsetzung
Die übergreifende Zielsetzung des Forschungsprojekts besteht im Identifizieren der Anforderungen, die Passivhäuser erfüllen müssen, damit sie einen relevanten Anteil am Bauvolumen erreichen und einen konkreten Beitrag zum nachhaltigen Wohnen leisten können. Zur Erschließung des wesentlichen Bereiches des Mietwohnungsbaus wird die Passivhaus-Technologie auf der Basis sozialwissenschaftlicher Untersuchungen mieterspezifisch nut-zungsorientiert weiterentwickelt.
- detaillierte Untersuchung der Ursachen des Nutzerverhaltens;
- Ableitung und Durchführung von Feedback- und Verbesserungsmaßnahmen;
- Untersuchung der durch diese Maßnahmen erreichten Ergebnisse.
Ergebnis
Als bundesweites Novum wurden in Kassel im Mai 2000 zwei Passivhäuser in Geschoßbauweise mit insgesamt 40 Wohnungen im Rahmen des sozialen Mietwohnungsbaus fertig gestellt. Die Untersuchung der oben genannten sozialwissenschaftlichen Fragestellungen bezüglich des Nutzerverhaltens erfolgte mittels teilstandardisierter persönlicher Querschnittsbefragungen aller Mie-ter. Es stellt sich heraus, dass den Punkten "Passivhaus" und "Heizkosten" von den Mietern wenig Bedeutung bei der Entscheidung zum Einzug beigemessen wird, wohingegen den Punkten wie "Neubau", "Wohnumfeld" und "Balkon" wesentlich höhere Bedeutung zukommt. Ursächlich hierfür sind der sehr geringe Bekanntheitsgrad von Passivhäusern unter Mietern und das geringe Wissen über die Höhe der Heizkosten und speziell der erzielbaren hohen Heizkosteneinsparungen.
Das Wohnen im Passivhaus erreichte bei den Mietern hohe Zufriedenheitswerte. Neben dieser positiven Grundeinstellung herrscht eine besondere Sensibilität der Mieter hinsichtlich der lüftungsanlagenbedingten Geräusche. Hier ist bei Planung und Montage noch erhöhte Aufmerksamkeit geboten. Generell wird die Frischluftversorgung über die Lüftungsanlage als Kom-forterweiterung empfunden. Auch die Temperierung der Wohnungen über den Zuluftstrom erreichte hohe Zufriedenheitswerte. Auffällig sind die ermittelten hohen Raumlufttemperaturen, die sich weitgehend mit der erhobenen, als genau richtig empfundenen Temperierung decken. Heizperioden-Mittelwerte über 23°C liegen damit deutlich über dem Auslegungswert von 20°C. Im Verhältnis zu den bekannten großen Streuungen der Heizwärmeverbräuche in Passivhäusern von Eigentümern treten im Ge-schoßwohnungsbau für Mieter extreme Streuungen auf. Den wesentlichen Erklärungsbeitrag hierfür liefern durch Temperaturdifferenzen zwischen den Wohnungen induzierte Wärmeströme. Die abhängig von den Heizwärmeverbräuchen streuenden Heizkostenabrechnungen sind für die Mieter ursächlich nicht nachvollziehbar, da sie wegen der Querströme nicht auf dem "tatsächlichen Eigenverbrauch" beruhen. Dem Passivhaus-Geschoßwohnungsbau angemessen wäre eine garantierte Warmmiete, welche die Verbreitung der Passivhaus-Technologie im Mietwohnungsbau wesentlich unterstützen würde.
Weiterführung
Als Praxistest zur Einführung einer kostendeckenden Warmmiete ist ein Feldversuch mit einem zeitnahen Feedbacksystem vorgesehen, der die erforderlichen Planungsgrundlagen liefert.
Auftraggeber
Deutsche Bundesstiftung Umwelt
Projektlaufzeit
Juni 2000 − Mai 2003
Projektleitung
Hartmut Hübner
Projektbeteiligte
Andreas Hermelink
Kooperationen
Passivhaus-Institut (Darmstadt), Fa. Innovatec (Kassel), Gemeinnützige Wohnungsbaugesellschaft (Kassel)
Zielsetzung
Die Umweltwirkungen, die von den Aktivitäten des CESR ausgehen, sollen bilanziert und bewertet werden. Hierzu wird die Methode der Ökobilanz angewendet, bei der sämtliche Umweltwirkungen von der Wiege bis zur Bahre eines Produktes oder einer Dienstleistung erfasst und bewertet werden. Zu den umweltrelevanten Aktivitäten des CESR zählen in erster Linie der Aufenthalt in den Büroräumen (Heizwärmebedarf), die Nutzung der elektrischen Geräte (Computer, Lampen, Kaffee- und Spülmaschine, etc.) und die Nutzung von Verkehrsmitteln für Dienstreisen. Mit diesen Aktivitäten sind der Verbrauch von Ressourcen, z.B. in Form von Energieträgern und Mineralien, und die Emission von Schadstoffen (Kohlendioxid, Schwefeldioxid, ...) verbunden. Diese Umweltwirkungen werden bestimmten Schadenskategorien zugeordnet und über Indikatoren quantifiziert. Die mit den einzelnen Aktivitäten verbundenen Mengen an Emissionen und Rohstoffverbräuchen werden der Software Gemis (Globales Emissionsmodell Integrierter Systeme) entnommen und in einem ersten Schritt über Excel ausgewertet.
Bei der Abschätzung der Umweltwirkungen werden folgende Indikatoren herangezogen:
- Treibhauspotenzial in CO2-Äquivalenten
- Versauerungspotenzial in SO2-Äquivalenten
- KEA (Kumulierte Energieaufwand) für den kumulierten Bedarf an Primärenergie
Zwischenergebnisse
Die hier dargestellten Ergebnisse geben einen ersten Eindruck auf die Verteilung der Wirkungen über die einzelnen Aktivitäten. Die Bilanz ist allerdings nicht vollständig, da bisher nur die Dienstreisen einiger Mitarbeiter erfasst worden sind.
Der Heizwärmebedarf hat mit ca. 50% den höchsten Anteil an den Wirkungen in den Kategorien Treibhauseffekt und Energieträgerbedarf. Nachfolgend trägt in diesen Kategorien der Strombedarf der elektrischen Geräte mit rund 25% zu den Umweltwirkungen bei. Die Flugreisen von stellvertretend sieben aller Mitarbeiter führen bereits zu einem Anteil von 20%. Einen relativ geringen Beitrag in diesen beiden Umweltkategorien weisen die Zugfahrten und der Verbrauch von Papier auf. n der Kategorie Versauerung zeigt sich eine andere Verteilung der Umweltwirkungen. Den weitaus größten Anteil an den Umweltwirkungen haben mit über 60% die bisher erfassten Flugreisen. Der Heizwärme- und Strombedarf tragen mit jeweils ca. 15% zu den Gesamtwirkungen bei. Die Zugfahrten und der Verbrauch von Papier sind auch in dieser Kategorie mit Anteilen um jeweils 2-3% eher unbedeutend.
Weiterführung
Die Aktivitäten (insbesondere Flugreisen) sollen in weiteren Arbeiten detaillierter erfasst werden. Die Umsetzung eines entsprechenden Stoffstrommodells in Umberto ist in einem ersten Schritt erfolgt, so dass individuell für jeden Mitarbeiter eine Analyse der Umweltwirkungen durchgeführt werden kann. Es ist vorgesehen, eine Bewertung zu implementieren, bei der diese Ergebnisse im Vergleich zum Durchschnittswert des CESR und anderen Werten dargestellt werden können.
Projektlaufzeit
November 2006 − Februar 2007
Projektleitung
Hartmut Hübner
Projektbeteiligte
Hartmut Hübner
Ulrich Neumann
Meike Schmehl
Target
The overall goal of the research project is the use-oriented design of buildings and home environment as well as the associated financial management of incurred costs so that passive houses can reach a significant share of the overall building stock and, thereby, contribute to sustainable living. In order to open the market of passive houses also to tenant housing, passive house technology is being further developed according to the user needs of the tenants assessed through sociological studies. Building on previous such studies, this project focused on the impacts of different tenant behavior, in particular on the following points
- the detailed study of the causes of user behavior;
- the derivation and implementation of feedback- and improvement measures;
- the analysis of results obtained by these measures.
Result
In May 2000, two passive apartment houses with a total of 40 flats were finalized in Kassel as part of the German Social Housing Program. This was the first of its kind in all of Germany. The sociological inquiry mentioned above about the user behavior was carried out with partly standardized, cross-sectional personal interviews. The results showed that tenants did not consider the items "passive house" and "heating costs" as very important for their decision to rent one of these flats. This may be due to the fact that tenants knew little about heating costs in general, as well as about passive houses and their high potential of saving heating costs in particular. Even after relevant information on this topic, tenants still underestimated the possible savings in a second inquiry.
In general, tenants gave high ratings of contentment to living in a passive house. They considered the supply with fresh air by the ventilation system as added luxury. Also, the contentment with the heating via the fresh air supply system of the apartments was high. It was remarkable that there was a high variance between tenants in what they perceived as agreeable room temperature, and that these temperatures were generally quite high. On the other hand, these temperatures, on average 23° Celsius, were generally met during the heating period although the design value had been only 20 ° Celsius.
Compared to the already wide-spread differences in the consumption of heating energy in privately-owned passive houses, an even wider spread was observed in tenant apartment buildings. This can be explained by the fact that an apartment with very high temperatures simultaneously heats the neighboring apartments through the transfer of induced heat currents. In this project, this has, for the first time, been shown with a multi-zonal model where each apartment is represented by its own zone rather than by one zone for the entire building. As a result, tenants who keep their apartments at very high temperatures have over-proportionally high energy costs, which they consider unjustified, as they do not understand that they also pay for heating the surrounding flats through these induced cross currents.
In order to rectify this unjust distribution of heating costs, and furthering the user-oriented design of passive-house technology in apartment buildings, a guaranteed flat-rate rent including the cost for heating would be very helpful. Currently, such praxis is, however, hampered by the German regulation requiring a meter reading in each individual apartment, and the false impression that flat rates necessarily increase the overall energy consumption.
Processing
Before changing the current system, it is, therefore, necessary to establish adequate limiting values of overall heat consumption, and to develop feedback methods to prevent an increasing consumption.
At the instigation of the German Environment Foundation (DBU), an expert workshop will be organized to assess the transition to a flat-rate rent system. In order to demonstrate the practicability of such a system, a field study is planned which includes a feedback system, and which should serve as the basis for deriving the data and planning information needed to implement such a system at a larger scale.
Funding agency
Deutsche Bundesstiftung Umwelt (DBU)
Project duration
June 2000 − December 2005
Project management
Hartmut Hübner
Project staff
Andreas Hermelink
Cooperations
Passivhaus-Institut (Darmstandt), Fa. Innovatec (Kassel)
Zielsetzung
Hintergrund:
Die EG-Wasserrahmenrichtlinie sieht zur Erreichung des "guten Zustands" in Oberflächengewässern und im Grundwasser bis 2015 die Aufstellung von Maßnahmenprogrammen vor (Art. 11, WRRL). Hierbei ist die bis Ende 2004 aufzustellende Bestandsaufnahme der Flussgebieteinheiten hinsichtlich naturräumlicher Merkmale, der Auswirkungen menschlicher Aktivitäten und der wirtschaftlichen Analyse der Wassernutzungen zu berücksichtigen (Art. 5.1, WRRL). Des Weiteren legt Anhang III für die wirtschaftliche Analyse fest, dass sie ausreichende Informationen enthalten muss, um eine Beurteilung der kosteneffizientesten Kombinationen der Maßnahmen für die aufzustellenden Maßnahmenprogramme zu ermöglichen. Das große Spektrum möglicher Instrumente und Maßnahmen in der Wasserwirtschaft bietet die unterschiedlichsten Lösungsansätze für die Verminderung signifikanter Gewässerbelastungen. Entscheidend ist jedoch die Frage, wie diese Maßnahmen auszuwählen und miteinander zu kombinieren sind, so dass die wirkungsvollste und zugleich kostengünstigste Kombination zur Anwendung kommt. Insbesondere ist dabei von Interesse, wie technische Lösungen gegenüber kooperativen Maßnahmen und ökonomischen Instrumenten abgewogen und mit ihnen kombiniert werden können.
Projektziel:
Anhand eines Pilotprojektes in Nordhessen im Einzugsgebiet der Fulda soll die Entwicklung von Methoden zur ökologisch und ökonomisch effizientesten Maßnahmenwahl im Hinblick auf das nach Artikel 11 WRRL erforderliche Maßnahmenprogramm erarbeitet und dokumentiert werden. Das Pilotprojekt deckt wesentliche Belastungssituationen Hessens repräsentativ ab, im Mittelpunkt stehen jedoch Untersuchungen zur Wiederherstellung der aquatischen Durchgängigkeit.
Die untersuchten Fälle werden in einem Handlungsleitfaden dokumentiert. Die Vorgehensweise, Methoden und Ergebnisse werden so aufgearbeitet, dass sie hessenweit für die ganz überwiegende Zahl der signifikanten Belastungen durch Unterbrechung der aquatischen Durchgängigkeit angewendet werden können. Die wasserwirtschaftlichen Akteure erhalten damit ein Werkzeug, das die wesentlichen Entscheidungsprozesse bei der Entwicklung kosteneffizienter Maßnahmen-programme im Zuge der Umsetzung der WRRL unterstützt.
Die Bearbeitung wissenschaftlicher Fragestellungen der Sozioökonomie soll in Zusammenarbeit mit dem Umweltforschungszentrum (UFZ) Halle-Leipzig (Prof. Dr. Bernd Hansjürgens) durchgeführt werden
Auftraggeber
Regierungspräsidium Kassel
Projektlaufzeit
Juli 2005 − Dezember 2006
Projektleitung
Dietrich Borchardt
Projektbeteiligte
Markus Funke
Kooperationen
Hessisches Landesamt für Umwelt und Geologie (HLUG)
Background:
To reach the good status for surface waterbodies and groundwater until 2015 the EU-Water Framework Directive determines the elaboration of plans of activities (Article 11 WFD). Therefor the river basin district analysis, which has to be made up until the end of 2004, has to be considered in terms of natural and use oriented features and economical analysis of the water uses (Article 5.1 WFD).
For the economical analysis Annex III predefines furthermore adequate information, in order to list a combination of the most cost efficient measures. The wide range of potential instruments and measures in the water management offers the most diverse solutions for the reduction of significant environmental pressures on the water bodies.
Crucial is however the question how these measures are being selected and combined in order to implement the most effective and at the same time the most cost-efficient combinations. In particular is thereby of interest how technical solutions are compared to co-operative measures and economical instruments are being measured and how these can be combined.
Objectives:
On the basis of a pilot project in the German Land (state) Hesse in the catchment area of the river Lahn the development of methods for the ecological and economical most efficient way to select measures according to Article 11 WFD is being worked out and documented. This pilot project covers typical situations of ecological pressures for water bodies in Hesse. Researches into the impact of morphological changes and diffuse pressures of the River Lahn and the diffuse pressures caused by agriculture in the catchment area of the Emsbach will be in the focus of this project. The procedure, methods and outcomes will be elaborated in a way they can be used throughout Hesse for similar significant pressures. This gives the water management authorities a tool which will support them in the decision-making process in the development of cost-efficient programmes of measures in the course of the implementation of the WFD.
The development of socio-economic scientific problems will be undertaken in cooperation with the Umweltforschungszentrum (UFZ) (center for environmental research) in Halle-Leipzig (Prof. Dr. Bernd Hansjürgens
Funding agency
Regierungspräsidium Gießen
Project duration
July 2005 − December 2006
Project management
Dietrich Borchardt
Project staff
Markus Funke
Sandra Richter
Cooperations
Hessisches Landesamt für Umwelt und Geologie
Target
The PRELUDE project of the European Environment Agency assessed environmental implications of land use and land cover changes in Europe in a participatory scenario exercise. The project was carried out by six subgroups with different tasks. The Center for Environmental Systems Research (CESR) acted as Scenario Analysis Support Group whose task it was to provide support to the developing, drafting and writing of the land use change scenarios, and to the translation between qualitative and quantitative scenario information. CESR co-operated closely with the Université Catholique de Louvain-la-Neuve who acted as Modeling Group and provided quantitative land use/cover change modeling analyses of the scenarios.
Result
The project was carried out according to the Story And Simulation Approach (SAS) (EEA, 2001): It was a co-operation between stakeholders, land use specialists, and modeling experts. The stakeholders produced five storylines of possible futures of land use and land cover in Europe until 2035 described by qualitative information. Based on these storylines, CESR translated this qualitative information into quantitative scenarios which were the departure point for the computer modeling done by the modeling group in Louvain. The output of the project is a set of five scenarios that provide insight into the environmental consequences of changes in land use and land cover in the EU-25 Member countries over the next 30 years (see Figure).
With the help of professional sounding-board of a fiction writer, a journalist, a future studies expert and a policy maker, the stakeholders successfully dramatized their storylines so that attractive text for a general audience was generated. The scenario generation reflects different future pathways of European land use and portray the stakeholders? view that a crisis is necessary for triggering a change in current policies and behavior. All five scenarios are represented by a set of 20 driving forces, however, only a subset of these could be taken directly into account in the modeling exercise. Model results, which are currently under review, show distinct geographical patterns of future land use in Europe arising from the quantified scenario information. In conclusion, it can be said that the PRELUDE exercise has given some valuable insight into the potential future development of land use and land cover in Europe. Scenario exercises of this type are likely to generate further useful insights for the development of land-related policies.
Processing
The results were presented to the Stakeholders at a third Stakeholder Meeting in May 2005 and will have the opportunity for final discussion of these results.
Funding agency
European Environment Agency (EEA), Copenhagen, Denmark
Project duration
May 2004 − February 2005
Project management
Joseph Alcamo
Project staff
Gerald Busch
Cooperations
Isabelle Reginster and Mark Rounsevell, Université Catholique de Louvain-la-Neuve, Belgium
Target
The overall goal of the project was to obtain an improved understanding of the impacts of global change on food and water security of Russia. The focus of the investigation was on environmetnally caused security risks. The analyses concentrated on medium- and long-term trends and were intended to help Russia and international organizations to develop and implement possible adaptation strategies.
Result
R-GLASS is a unique project since it combines aspects of global change with possible problems in the area of food security as well as problems of water availablity in Russia, and thus provides information on the simultaneous occurrence of these two problems in individual regions of Russia. The analysis was based on results obtained with the simulation model R-GLASS which, in turn, is based on the GLASS model which was being developed in parallel. The first project phase focused on data collection, whereas the second phase concentrated on model development. In cooperation with project partners in Moscow, the main interrelationships and feedbacks in the food production and supply system were identified and implemented in the R-GLASS model. The collection and synthesis of qualitative information were supported through so-called dialogue workshops wicih were attended by scientists, experts in the field, and policy makers.
The modeling approach was presented and discussed at Moscow State University in April 2001. The suggestions from this meeting were taken into account in the further development of the R-GLASS model. First modeling resutls were presented at an expert meeting at the Russian Research Institute of Economy, Political Science and Law in Moscow in November 2001. A final presentation took place at the German Embassy in Moscow in February 2003.
Processing
In a follow-up to this project, suggestions made by the expert panel are being incorporated into the R-GLASS model and scenarios for future analysis are being elaborated. The R-GLASS model, once finalized, will be made available for further analyses to experts and scientists in Russia and elsewhere.
Funding agency
Max-Planck-Society
Project duration
January 2000 − December 2003
Project management
Joseph Alcamo
Project staff
Marcel B. Endejan
Andrei Kirilenko (Russian Academy of Sciences), Genady Golubev, Nikolai Dronin (Moscow State University (MGU))
Cooperations
Moscow State University (MGU), Russian Academy of Sciences
Target
The central question was to see which competences are needed to act efficiently in extremely complex contexts? In order to participate, for example, in a regional development where social and environmental systems co-exist, the sole knowledge of facts is not enough. In addition, an understanding of systems, strategical knowledge, competency in managing uncertainties, capability for a problem-oriented self-regulation and social competence, such as conflict management, are also needed.
Between 1994 and 1998, a multi-media educational tool, called SYRENE, has been developed by the Kassel working group under the direction of Prof. Lantermann. This system enables the acquisition of new competences in the management of complex conflict environments. The biosphere reserve Schorfheide-Chorin served as the actual case study with regard to conception and design of such an educational aid. The central topic in the biosphere reserve Schorfheide-Chorin is the development of tourism. Starting point for the work with SYRENE is an actual and heavily discussed hotel project in the biosphere reserve. System models and simulation systems of varying degrees of complexity with different topical emphases (e.g. ecology, social dilemma) help the user experimenting with intervention strategies, and understanding the chain of consequences of different actions. The acquired knowledge can then be used in dealing with the actual task of building a hotel in the biosphere reserve.
The set-up and construction of the multi-media tool SYRENE assume that educational goals such as competence in the management of uncertainty, social and strategical competency or the capability for a problem-oriented self-regulation cannot be acquired from the conventional learning principles of education. They require a maximum of self-determination in choosing the learning process, the inclusion of individual experience, and the possibility to present and defend individual solutions, instead of pre-structured learning processes and solutions.
The multi-media learning tool has been conceived for the application in schools, primarily for juniors and seniors in high school (approximately 16 to 18 years of age). It can, however, be applied as well by individual users.
Result
A first evaluation phase and intensive contact with teachers have shown that there is a great interest in SYRENE in schools. Both teachers and pupils are enthusiastic about this offer to learn differently.
SYRENE's modular structure which also allows for the use of only selected sections, as well as its possibility to design one's own learning processes, permit a flexible application in different contexts.
Funding agency
Ministry for Research, Education, and Technology (BMBF) and the Federal State of Brandenburg
Project duration
January 1994 − December 1998
Project management
Ernst-Dieter Lantermann
Project staff
B. Schmitz
Cooperations
The design of the multimedial learning system SYRENE is only a subproject of the entire Schorfheide-Chorin project. Another subproject was carried out in Bamberg under the leadership of Prof. Dörner, and a third subproject was done by Prof. Kruse-Graumann in Hagen.
Target
Given the current rate of new construction in the housing sector of below 1%, the potential contribution by the newly attained technology standard to sustainable building and living is minimal. Therefore, the renovation of the existing building stock constitutes the next field of application of the sustainability concepts. For this reason, the Center initiated the project "SOLANOVA: Solar-Supported, Integrated Eco-efficient Renovation of Large Residential Buildings and Heat Supply Systems", and is now coordinating it. SOLANOVA started in January 2003 and is supported by the EESD Program (Energy, Environment and Sustainable Development) of the European Commission. The main objective is the development of integrated environmentally and socially acceptable retrofit concepts for the housing sector. The space heat demand will be reduced by a factor of 10.
The concepts developed will be exemplified by transforming a selected seven-story panel building in the Hungarian town Dunaújváros into Eastern Europe first building almost matching Passive House standards. A major share of the remaining heat demand will be covered by solar generated heat. The concepts were derived from life-cycle analyses (LCA) and investigations into the dweller needs. A handbook for retrofit will be based on the results of comprehensive monitoring of physical and social parameters which have been and are collected through all project stages. One of the handbook main aspects will be the implications of a Factor 10 retrofit and simultaneous large scale use of solar energy on the supply system and the service "dwelling quality". The demonstration project of SOLANOVA in Hungary is the first and currently only large-scale project of this type in Eastern Europe supported by the European Commission.
Result
The first period mainly has been used for analyzing the current situation. The analysis consisted of three parts: (1) technical analysis, (2) rough LCA, (3) social science-based survey. The technical analysis and related simulations with different variations of alter-natives for retrofit revealed that the savings aimed at can be realized within the very tight budget. Several detailed LCAs for parts like wall insulation, ventilation systems and windows combined with their economic effects have been conducted since then. LCA of the example building showed considerable resource input and related emissions for the initial construction of the building. This is a major reason for "retrofit instead of dynamite". The most striking result of the interviews with the dwellers was that the main design focus had to be shifted from winter to summer where comfort had the lowest ratings.
In September 2004 the contract between the developer and a general construction company has been signed. Several optimizations and negotiations have been necessary since then with strong emphasis on maintaining the necessary structural quality while staying within the budget constraints.
Processing
The next steps will be a handbook for dwellers and housing associations which will be compiled within the social science work package to foster the best possible benefit for the dwellers. An LCA and cost analysis will be carried out for the materials finally chosen. These findings will be the basis for first concepts for a handbook on sustainable construction which is to be ready by the end of the project in December 2006. The handbook is meant to show the steps of an eco-efficient optimization by documenting the SOLANOVA design and building process which integrated ecologic, economic and social aspects to set an example with maximum replication potential.
Funding agency
Eurpean Community, 5th Framework Programme, Target Action "Eco Buildings"
Project duration
January 2003 − March 2007
Project management
Andreas Hermelink
Hartmut Hübner
Project staff
Meike Schmehl
Cooperations
Budapest University of Technology and Economics (Hungary), District Heating Company of Dunaujvaros (Hungary), Fiorentini Solar (Hungary), Internorm Fenster International GmbH (Austria), Energy Centre Hungary, Sziget Foundation Dunaujvaros (Hungary), Passive House Institute Dr. Wolfgang Feist (Germany), Innovatec Energiesysteme GmbH (Germany)
Target
In the frame of the new focus of the German Federal Ministry of Education and Research (BMBF) on socio-ecological research, a series of preparatory studies were carried out in order to assess the current state-of-knowledge and to gather material for further research topics and their feasibility. The Center was involved in such a study about modeling approaches. The goal was to analyze existing modeling approaches and their applicability, keeping in mind the special requirements of socio-ecological research that societal as well as ecological-scientific dynamics and their interactions have to be considered.
Result
The analyses have shown that currently no modeling approaches exist that are sufficiently comprehensive in representing the different aspects combined in socio-ecological research. However, numerous approaches exist that deal with specific aspects of the problem and through the use of modeling techniques make these problems more comprehensible or more communicable. Modeling approaches further play an important role in carrying out interdisciplinary research co-operations because they can contribute to the integration of different disciplines through systems theoretical methods and scenario techniques. The current state of development of modeling systems shows a large variety in approaches which correspond to the different research questions. Next to the "classical approaches" such as systems dynamics, we find innovative developments such as multi-agent systems and their coupling with cellular automates and other representations of spatially-resolved conditions. Currently inadequately used potentials are knowledge-based approaches and qualitative simulation.
Processing
The preparatory study has been finalized; the experience gained in it is supposed to benefit future co-operative programs in the field of socio-ecological research. The Center is interested in a series of such co-operations; however, the decision about the financing has not yet been taken. The results are further of interest in related projects, such as the Kaufungen project of "Communitarian Lifestyles and Economics and Their Environmental Impacts".
Funding agency
Bundesministerium für Bildung und Forschung (BMBF)
Project duration
July 2000 − August 2001
Project management
Karl-Heinz Simon
Project staff
Friedrich Krebs Bernhard Marien
Cooperations
Institut für Sozialökologische Forschung (Frankfurt) u.a.
Target
The aim of this study is to provide policy makers with information that can be helpful to develop a long-term perspective for climate protection. The project provides a first estimate of global and regional impacts of two long-term stabilization targets of 550 ppm and 450 ppm CO2 in the atmosphere. For the period 1990-2100, we analyzed
- the allowable global and regional greenhouse gas emissions to achieve these stabilization targets;
- the impacts of climate change of these stabilization targets on important natural and socioeconomic systems.
- All calculations were performed with the integrated global IMAGE 2.1 model.
Result
The project was finalized in April 2000 with the report "Stabilization Targets for Atmospheric Greenhouse Gas Concentrations: An Assessment of Impacts and Emission Pathways". The main conclusions can be summarized as follows
- A significant reduction of global greenhouse gas emissions is necessary at the global as well as regional level in order to attain stabilization targets for CO2 in the atmosphere.
- Reduction measures will have to be carried out or financed mainly by the industrialized countries if developing and industrialized countries will be given the same right of (per capita) emissions in the long term.
- In spite of a reduction of global greenhouse gas emissions and a long-term stabilization of greenhouse gas concentrations, the climate will change and some adverse impacts of this climate change might be expected. In the short term, impacts of climate change might rapidly increase, although a stabilization of CO2 is realized on the prescribed concentration pathway. A delay of reduction measures as it is often proposed from an economic point of view could lead to a more rapid climate change with all its consequences for natural and socioeconomic systems.
- Since a significant change of climate is soon to be expected, the planning and increasing of adaptation capabilities should play a role of comparable importance to that of greenhouse gas emissions reductions. The adaptation of natural ecosystems is difficult in principle and, therefore, these systems can be seen as especially vulnerable with respect to climatic change.
Processing
As a follow-up we carried out a project with the title "Scenarios for the regional distribution of long-term emission rights and impacts of climate change" commissioned by the German Environmental Agency.
Funding agency
German Federal Ministry for Environment, Nature Conservation and Nuclear Safety (BMU)
Project duration
February 1997 − February 1999
Project management
Joseph Alcamo
Project staff
Frank Kaspar
Janina Onigkeit
Paul Reuter
Thomas Rösch
Cooperations
National Institute of Public Health and the Environment (RIVM, The Netherlands)
Target
Nearly 500 samples of the benthic invertebrates have been accomplished in morphological degraded small rivers in Hessen, Germany in the year 2005. Based on this data, the correlation between the indices of the macrozoobenthos, e.g. number of taxa, EPT-index, part of the rheophile taxa, etc. and single parameters respectively combinations of parameters of the German river habitat survey have been carried out by statistical methods. Within this study three central questions were discussed: 1. Which parameters of the German river habitat survey are crucial to represent the benthic biocoenosis? 2. Is it possible to extrapolate the results of the sample sites to the whole waterbody or even to other riversheds? 3. Is it possible to draw conclusions from the selected parameters of the river habitat survey to the ecological status of the macrozoobenthos? The results of this study allowed fundamental statements to simplified the practice of the actually complex assessment of the biological status within the monitoring and the selection of coast effective measures in order to the implementation of the European Water Framework Directive.
Funding agency
Hessisches Landesanstalt für Umwelt und Geologie HLUG)
Project duration
April 2006 − August 2006
Project management
Dietrich Borchardt
Project staff
Jeanette Völker
Target
Several European research and demonstration projects aim at a thermal renovation of large scale residential buildings. Meanwhile, successful solutions can be recommended, e.g. as a result of the SOLANOVA project in the field of refurbish panel construction. However, up to now, these results have only scarcely entered the educational programs in architecture and the professional practice of housing companies. Energy consumption, one of the most important characteristics for future fitness of building and living is still insufficiently taken into consideration in long-term decisions on refurbishment measures. Compared to new building projects the building stock provides an excellent starting point for improvements in climate protection and enhancing resources efficiency. Also in that context social aspects become more and more important: In times of increasing energy costs, thermal renovation preserve low income families in social housing from drastic future economic and social burdens.
The new European Directive of Buildings takes these trends into account and formulates new challenges with ask for open-mindedness for innovations and new professional skills. Therefore, making the question of energy consumption part of vocational training and advanced training courses is an urgent necessity in the future. Thus the aim of TREES is to establish and maintain a close cooperation between research and education in order to assure that the new knowledge is included into media-adapted training material and background information.
Procedure
Different types of solutions developed in research projects and tested in case studies will be analysed according to their suitability in education contexts and their transferability. Selected elements will be entered into training material. Software tools for supporting LCA, the calculation of heat requirement and the related costs, as well as the provision of planning aids for sustainable concepts and construction management complete the technical basics. In order to contribute to a harmonisation of knowledge on the European level especially for the New Member States case studies are presented which illustrate the chosen sustainability approach and its application
Funding agency
EU, Intelligent Energie Executive Agency
Project duration
January 2006 − January 2008
Project management
Hartmut Hübner
Project staff
Ulrich Neumann
Cooperations
ARMINES, Budapest University, EnerMa, DHV Building and Industry, SINTEF
Target
The goal of this project was to define the vague principle of vulnerability (susceptibility) from the perspective of an agent-based action model. Indicators were to be deduced which allow to depict vulnerability on a global scale. These were to take into account social as well as environmental factors. The index was further to be validated with the aid of extreme data. The following steps were to be included in the project
- Indices were to be identified for internal and external action barriers which prevent a successful management of crisis situations.
- An overall index should be constructed through regression analysis and weighing of the individual indices.
- In this particular case, vulnerability against water scarcity and food shortage was to be analyzed.
- With the help of an international data bank on disasters, a measure of crisis was to be developed that could depict the extent of a drought-related food shortage. This measure was to be used to validate the overall index.
Result
The project was finalized in October 2001 with a presentation at the International Human Dimensions Program (IHDP) Open Meeting in Rio de Janeiro. The main findings can be summarized as follows
- In the context of actor-oriented action theory, vulnerability is defined as the absence of successful action possibilities in a critical environmental situation.
- Action possibilities of the respective agent are determined through the perception and evaluation of external and internal conditions, such as, e.g., environmental, economic, infra-structural, or political factors as external, and culturally-based qualities, pool of knowledge, and social norms as internal actor-specific conditions.
- Due to the lack of data, only indices for external conditions could be identified.
- From the multitude of external indices, seven main factors influencing the overall vulnerability index for water scarcity could be identified via factor- and regression analysis: (1) rate of aids prevalence, (2) share of services in the overall GDP, (3) water stress, (4) per capita share of fertile land, (5) welfare (a factor determined by factor analysis which includes predominantly health- and education-related data), (6) soil degradation, and (7) inequality in income distribution.
- The tendency shows that the probability for a country is high of being impacted seriously by a water shortage if its share of services in the GDP and welfare are low, and all other factors are high.
- The overall index formed allows for a 46,1% (r= 0,68) explanation of variance, which is a relatively good result in light of the poor data situation. Using this new index, the prediction of drought-related crises has been significantly improved compared to using already existing indices.
- A country-specific analysis of the individual indices making up the overall index gives some indication as to which are the most important influencing variables on overall susceptibility in a country (see Figure).
Processing
Currently, a publication describing the approach and results of this project is under preparation. The results are further being used in the current project on "security diagrams" (DEKLIM).
Funding agency
Internal project
Project duration
May 2000 − October 2001
Project management
Dörthe Krömker
Project staff
Lars Gerold
Zielsetzung
Der "Dialogue on Water and Climate" wurde im Jahr 2001 auf der Global Water Conference in Bonn zum Umgang mit einer knappen Ressource ins Leben gerufen. Mit Hilfe des Dialogue on Water and Climate soll die Diskussion sowie der Informationsfluss zwischen Wassermanagern, Experten und Entscheidungsträgern zu einem nachhaltigen Umgang mit Wasser gefördert werden. Ziel dieses Projekts ist die Verbreitung und Veröffentlichung von gewonnen Kenntnissen und Informationen bezüglich der Auswirkungen des zukünftigen Klimawandels bzw. der Klimavariabilität auf die Wasserressourcen sowie die Gefährdung der Bevölkerung hinsichtlich der Folgen.
Ergebnis
Mit Hilfe des am Zentrum für Umweltsystemforschung entwickelten globalen Wassermodells WaterGAP 2 wurden die Einflüsse des globalen Klimawandels und der sozioökonomischen Entwicklung auf die Wasserverfügbarkeit und den Wasserbedarf berechnet. Darüber hinaus wurden Indikatoren entwickelt, die zur Identifizierung von Regionen beitragen, die unter Wasserstress stehen oder sogar einen Krisenherd darstellen. Um die Bandbreite der zukünftigen Klimaauswirkungen auf die Wasserressourcen quantifizieren zu können, wurden die Niederschlags- und Temperaturdaten zweier globaler Klimamodelle, HadCM3 vom Hadley Centre (Pope et al. 2000) und ECHAM4 vom Max Planck Institut (Roeckner et al. 1996), verwendet. In Betracht gezogen wurden zwei Emissionsszenarien des Intergovernmental Panel on Climate Change (SRES A2 und B2) (IPCC, 2000).
Resümee dieser Studie ist, dass die Klimaszenarien in großen Teilen der Erde zu einer Zunahme der Wasserverfügbarkeit führen. Gleichzeitig verringert sich jedoch auch die Ressource in den Gebieten, in denen der Niederschlag abnehmen bzw. die Temperatur zunehmen wird. Dies wird vornehmlich im Mittleren Osten, im Südwesten Russlands sowie im Norden Südamerikas und in Teilen Afrikas und Australiens sein. Basierend auf den Studien der zukünftigen Wasserverfügbarkeiten können auch Aussagen über das Auftreten von extremen Ereignissen (Hochwasser, Trockenheit) getroffen werden. In den humiden Regionen der Erde, z.B. West-Indien, Nord-China oder Argentinien wird sich die Wahrscheinlichkeit von Hochwasserereignissen erhöhen. Demgegenüber werden sich in Zukunft die Wiederkehrintervalle von Trockenheiten in ariden Regionen wie z.B. in den Mittelmeerregionen, Türkei, Mittlerer Osten sowie in Teilen der USA verkürzen. Die Abbildung zeigt eine globale Karte, die die Zunahme von Extremereignissen in der Zukunft, hier 2070, verdeutlicht. Erstellt wurde diese Karte durch die Kombination des Variationskoeffizienten des Abflusses mit der Veränderung des mittleren jährlichen Niederschlags, jeweils in der Gegenüberstellung der heutigen Situation mit der zukünftigen. Eine Zunahme in der Variation und eine Zunahme des mittleren Jahresniederschlags weist auf einen Anstieg von Hochwasserereignissen hin. Ähnliches gilt für die Trockenheiten durch eine Zunahme der Variation in Kombination mit einer Abnahme des Niederschlags.
Weiterführung
Die Untersuchung wurde 2003 abgeschlossen und die Ergebnisse wurden in einem Bericht anlässlich des dritten Weltwasserforums in Kioto (2003) vorgestellt (Alcamo et al., 2003). Außerdem sind die Ergebnisse dieser Studie auf der projekteigenen Webseite watclim.cesr.de dargestellt.
Auftraggeber
Sekretariat des "Dialogue on Water and Climate", IHE-Delft, The Netherlands
Projektlaufzeit
März 2002 − Juni 2003
Projektleitung
Joseph Alcamo
Projektbeteiligte
Martina Flörke
Michael Märker
Sara Vassolo
Weiterführender Link
Target
The goal of the WaterGAP (Water - a Global Assessment and Prognosis) project is to assess the impact of global change on world-wide water availability and water use, and on the problem of flooding. To this end, we are developing a global simulation model with a spatial resolution of 0.5 degrees, which computes the relevant water quantity variables for river basins. The assessment will serve as the basis for deriving sustainable water management strategies.
Result
After having developed, in 1997, a first version of WaterGAP for a report on future freshwater-related problems by the WBGU (Advisory Council of the Federal Government on Germany on Global Change), for which only long-term climatic averages could be taken into account, climate variability was included in 1998 (Fig. 1). Scenarios for the years 2025 und 2075 were calculated. For each of the 1162 river basins, typical dry years were determined, as in those years, the criticality of the water situation shows more distinctly than under average climatic conditions. Furthermore, the first digital global map of irrigated areas was generated, which is now improved in cooperation with FAO. In the near future, version 2 of the WaterGAP model will be finished, which will allow much improved simulations of water availability, water use and flooding.
Processing
Das Modell Watergap wir in verschiedenen Projekten innerhalb des Zentrum und von anderen Forschungsgruppen eingesetzt und weiterentwickelt.
Funding agency
Center's core funding
Project duration
September 1996 − December 2002
Project management
Petra Döll
Project staff
Joseph Alcamo
Frank Kaspar
Thomas Rösch
Stefan Siebert
Cooperations
The project is done in cooperation with the National Institute of Public Health and the Environment (RIVM, Niederlande). Prof. Luis Mata from the University of Caracas (Venezuela) provides information and advice with respect to Latin America; with financial support from the University of Kassel, he visited the Center various times.
Target
The objective of this project was to help Brazilian authorities make water management decisions for the coming 25 years that are based on an assessment of future water use including long-term effects of current activities and policies so that they can achieve sustainable development of the two study regions, the two Federal states of Ceará and Piauí. In order to support such water management decisions, the following tasks were carried out as part of the project
- compile, analyze, and integrate information about water use and water management in Ceará and Piauí;
- develop a large-scale water use model NoWUM (Nordeste Water Use Model) which covers the whole of Ceará and Piauí and provides sectoral water use estimates for each municipality;
- compute current (1996/98) and future water use with NoWUM as well as the costs to fulfill future water demands;
- compute water scarcity indicators which identify those municipalities that will suffer most from water scarcity;
- derive water use as well as integrated regional scenarios for the year 2025 which reflect different possible societal development paths;
Result
The main findings can be summarized as follows
- For the first time, municipality-specific estimates of current water use, distinguishing five water use sectors, are being provided for the two semi-arid states of Ceará and Piauí.
- The scenario analysis shows an increased water use in the future in 99% of the municipalities, indicating that water scarcity will become more severe even though runoff will increase in more than 50% of the municipalities as a result of climate change.
- The analysis of the integrated scenarios, which takes into account changes in climate, water availability, water use and agricultural economy, shows that until 2025, water stress increases mainly due to the extension of the irrigation sector and, in particular, the extension of irrigated areas, but not due to climate change.
- Following irrigation, domestic water use will remain the second most important sector ahead of industrial water use.
- The integrated scenarios further show that until 2025, water availability in drought years will not decrease if investments for new reservoirs are halved compared to the current investment rate.
- Water use is strongly coupled with water quality and costs, which should both be taken into account when planning and implementing new water management and development projects.
In the course of the project, three policy workshops were co-organized with Brazilian planning agencies.
Processing
First results have been published in the Report No. 3 "Water Use in Semi-arid Northeastern Brazil" in the "Kassel World Water Series". A book with the results of all subprojects of the WAVES Program is currently being published. Although the project was finished in October 2001, a continued research cooperation with Brazilian researchers and planning agencies is foreseen.
Funding agency
German Federal Ministry of Education and Research (BMBF)
Project duration
September 1997 − October 2001
Project management
Joseph Alcamo
Petra Döll
Project staff
E. Mario Mendiondo
Maike Hauschild
Weiterführender Link
Target
The project was carried out in the frame of the German-Brazilian Research Cooperation WAVES (Water Availability and Vulnerability of Ecosystems and Society in North-East Brazil). The objective of the subproject "Migration and Quality of Life", which was dealt with by the Center, was to describe and explain the interaction between quality of life and adaptive behavior in the rural areas of Northeastern Brazil, and in particular, in the two Federal States of Piauí and Ceará. The aim of this subproject was to support the regional development planning in these two states and thus contribute to the overall goal of the WAVES Program "Identification of Sustainable Development Paths for the two Federal States of Piauí and Ceará".
Result
The investigation focused on the interrelationships between climate variability, water availability, agricultural production, and quality of life. The main results can be summarized as follows
- development of the space-related migration model MigFlow (MIGration FLOW);
- development of methods to identify socioeconomic and socio-cultural options and restrictions for the improvement of the quality of life in the rural region of the area of investigation;
- computation of the spatial differences in the quality of life index in each of the 332 municipalities of Piauí and Ceará for the period 1996 until 2025;
- computation of the spatial differences in the sectoral income in each of the 332 municipalities of Piauí and Ceará for the period 1996 until 2025 (scenarios);
- development of integrated regional scenarios for the year 2025 (as member of the WAVES Scenario Working Group);
- co-organization of three scenario workshops which were organized locally together with Brazilian planning agencies.
At the end of the project, all data collected during the questioning of 100 households in the course of the subproject as well as the prototype version of the demographic migration model "MIGFlow" were given to the planning authorities in Ceará.
Processing
The project ended in October 2001. In 2003 a book with the results from all subprojects of the WAVES Program has appeared.
Funding agency
German Federal Ministry of Education and Research (BMBF)
Project duration
August 1997 − October 2001
Project management
Ernst-Dieter Lantermann
Karl-Heinz Simon
Project staff
Dagmar Fuhr
Martin Grebe
Francisco Matias da Rocha
Zielsetzung
Seit den 1890er Jahren werden im Grenzgebiet von Hessen und Thüringen entlang der Werra hochwertige Düngesalze bergmännisch gewonnen. Aus dieser Produktion fallen Salzlösungen als Abfall an, von denen ein Teil bereits seit etwa 100 Jahren in die Werra entsorgt wird. Die daraus folgende Werraversalzung wird schon von Anbeginn des Kaliabbaus in der Region öffentlich und politisch diskutiert. Auch wenn es dem Unternehmen Kali+Salz durch technische Fortschritte in der Produktion und durch ein verbessertes Abwassermanagement in den letzten Jahren, speziell nach der Übernahme der ehemals ostdeutschen Werke, gelungen ist, die Einleitung von Salzlösungen in die Werra deutlich zu verringern, hat dieses Thema aktuell eine hohe Bedeutung. Auslöser der derzeitigen Diskussionen ist der Antrag des Unternehmens, Haldenabwässer durch eine Pipeline aus dem Werk Fulda-Neuhof am Standort Hattorf (Werk Werra) in den Fluss einzuleiten. Werraanrainer – Kommunen wie Bürger – fordern von Politik und Unternehmen eine Lösung des Gesamtproblems Werraversalzung. Zudem fordert die EG-Wasserrahmenrichtlinie den „Guten Zustand“ für alle Gewässer bis zum Jahr 2015 bzw. das „Gute ökologische Potenzial“ für erheblich veränderte Gewässer. Die Wasserqualität der Werra wird neben der Einleitung von Salzabwasser auch durch andere Faktoren beeinträchtigt: durch kommunale Abwässer von Gemeinden, die die Anforderungen an die Abwasserbehandlung nach der Kommunalabwasserverordnung nicht erfüllen, durch diffuse Einträge aus der Landwirtschaft sowie durch Bauwerke, die die Fließdynamik und die Durchgängigkeit der Werra und ihrer Nebengewässer beeinträchtigen. Die hessische Landespolitik hat sich nicht zuletzt vor dem Hintergrund der zeitlich begrenzten wasserrechtlichen Genehmigungen der Problematik angenommen und daher im Juli 2007 die Einrichtung eines Runden Tisches zur Behandlung des Themas „Gewässerschutz Werra/Weser und Kaliproduktion“ beschlossen. Der Thüringische Landtag fasste einen fast wortgleichen Beschluss. Der Runde Tisch hat die Aufgabe, ein langfristiges, nachhaltiges, technisch und wirtschaftlich umsetzbares und möglichst breit getragenes Konzept zu erarbeiten. Dabei sind die Anforderungen der Europäischen Wasserrahmenrichtlinie ebenso zu beachten wie die wirtschaftlichen Interessen der Region und die Sicherung vorhandener Arbeitsplätze. Wesentliche Bestandteile des Konzeptes sind Zielvorgaben für die Gewässerqualität der Werra und Weser, wobei gleichgewichtig die Kali-Arbeitsplätze zu sichern sowie weitere Umweltbelange und Nutzungen zu berücksichtigen sind, eine Strategie, wie diese Zielvorgaben dauerhaft erreicht und gesichert werden, und ein Zeitplan zur Umsetzung der Strategie. Zum Konzept gehören auch Zwischenschritte, die der zügigen und wirtschaftlichen Umsetzung der Strategie dienen. Durch eine wissenschaftliche Begleitung soll die Leitung des Runden Tisches unterstützt werden.
Projektlaufzeit
Mai 2008 − Oktober 2009
Projektleitung
Sandra Richter
Target
The aim of this project was to use the Center's Water GAP model to generate scenarios of the world water situation in 2025. These scenarios were developed for the World Commission on Water for the 21st Century in order to help them express their vision of the future of freshwater in the world. In particular, three scenarios were created
- a "Business-as-Usual" scenario in which water conservation has a low priority;
- a "Free Market and Technology" scenario which leads to greater water conservation;
- a "Lifestyle Change" scenario which, by a different path, also leads to greater water conservation.
Result
In order to generate these scenarios, the Center used agreed-upon assumptions about economic and population growth, the extent of irrigated land, and other aspects of future society and economy. These assumptions were translated into inputs to the Water GAP model. The model then computed future trends in household, industrial and agricultural water use. These water uses were compared to the model's estimates of water availability (i.e. runoff plus shallow groundwater) in over 1,000 watersheds throughout the world. Based on this comparison, the Center estimated the severity of pressure on water resources in different parts of the world under different scenarios and found tha
- the areas affected by "high water stress" will expand and intensify under the Business-as-Usual scenario;
- between 1995 and 2025, the number of people living in these areas will increase from 2.1 to 4 billion people;
- in these river basins, there will be strong competition for scarce water resources between households, industry and agriculture;
- technology will greatly improve the efficiency of water use, but not enough to avoid water scarcity in many river basins because increases in population and the economy tend to increase water demand and negate the gains of improving water use efficiency;
- not only technological improvements but also basic structural changes (such as a shift from thermal to non-thermal power plants) will be needed to avoid future water scarcity.
Results have been published in Report No. 2 "World Water in 2025" of the Center's "Kassel World Water Series" and some have also been cited in the major reports of the World Water Commission; others are expected to be included in future reports. The Center presented its results in association with the Commission at the Second World Water Forum in The Hague, March, 2000.
Processing
The World Water Project was concluded with the presentation of a Final Report to the World Water Commission. However, the Center remains to be active in providing data and information on the current and future world water situation to various institutions. Furthermore, scientific publication of the various project results continues.
Funding agency
UNESCO / World Bank
Project duration
May 1999 − May 2001
Project management
Joseph Alcamo
Project staff
Thomas Henrichs
Thomas Rösch
Cooperations
International Food Policy Research Institute (IFPRI); Stockholm Environment Institute (SEI); International Water Management Institute (IWMI)
Zielsetzung
Das "World Water Assessment Programme" WWAP ist eine Initiative des im Jahr 2000 eingerichteten weltweiten Programms der Vereinten Nationen (UN) zur Abschätzung der Wasservorkommen. Zentrale Aufgaben der Studie am Zentrum waren neben der Bewertung des Status der quantitativen und qualitativen Situation der Wasserressourcen und Wasserentnahmen das Herausstellen von Wasserkrisenherden und Konfliktpotenzialen bei der Bewirtschaftung gemeinsamer Wasservorräte. Darüber hinaus wurden Indikatoren zur Bewertung vorgestellt. Mit Hilfe der Indikatoren sollen Fachleuten im Wassersektor, Entscheidungsträgern und der Öffentlichkeit die Komplexität der Wassersektoren verständlich gemacht werden. Hier gilt es nicht nur politische und wirtschaftliche Probleme zu berücksichtigen, sondern auch soziale. Schließlich soll mit diesem Verständnis erreicht werden, die Bedeutung von Wasserproblemen zu erkennen, zu verstehen und durch nachhaltiges Wassermanagement zu minimieren.
Ergebnis
Die Ermittlung der globalen Wasserverfügbarkeit erfolgte mit dem hydrologischen Modul des globalen Wassermodells WaterGAP 2. Dafür sind Kenntnisse über das Klima und den hydrologischen Kreislauf von Bedeutung. Um die Bewirtschaftung integrierter Wasserressourcen bewerten zu können, sind Angaben über die Sektoren, die die Wasserverfügbarkeit beeinflussen und nutzen, notwendig. Dies sind die Sektoren Haushalt, Industrie und Landwirtschaft, die in dem Wassernutzungsmodul von WaterGAP Berücksichtigung finden. Mit einem Verbrauch von ca. 70% für die Bewässerung hat die Landwirtschaft den größten Anteil der gesamten weltweiten Wasserentnahmen, es folgen die Industrie (ca. 22%) und die Haushalte mit dem geringsten Anteil von 8%. Da die Bewirtschaftung häufig über Verwaltungs- und Ländergrenzen hinausgeht, bestimmt sich die kleinste Gebietseinheit auf Basis der Größe eines Wasser- bzw. Flusseinzugsgebiets. Als ein Indikator zur Bewertung von Wasserkrisenherden wurde der Quotient von Wasserentnahme und Wasserverfügbarkeit vorgestellt. In der abgebildeten Karte sind die unter "Wasserstress" stehenden Flusseinzugsgebiete dargestellt. Unter Wasserstress befinden sich Einzugsgebiete, in denen der Anteil des Wasserbedarfs mindestens 20% des Wasservorkommens ist (Cosgrove and Rijsberman 2000, Raskin et al. 1997). Die verschiedenen farblichen Kennzeichnungen verdeutlichen zudem den Sektor, der den größten Wasserverbrauch in diesem Gebiet hat.
Die Abbildung veranschaulicht die Dominanz des landwirtschaftlichen Sektors im Hinblick auf Wasserentnahmen. Mit zunehmender Industrialisierung und Reichtum eines Landes vergrößert sich jedoch der Wasserverbrauch der Industrie. Dies trifft in Zentraleuropa, USA, Japan und Korea sowie der Ukraine zu, wo aufgrund von genügend Niederschlag auf eine Bewässerung landwirtschaftlicher Flächen in hohem Maße verzichtet werden kann. Eine untergeordnete Rolle spielt der Wasserverbrauch durch Haushalte, dessen Dominanz sich nur in einigen wenigen Einzugsgebieten wiederspiegelt.
Weiterführung
Das Projekt wurde 2002 abgeschlossen. Das Zentrum produzierte zahlreiche thematische Karten und Datensätze, die im ersten Weltwasserentwicklungsbericht (World Water Development Report (WWDR), 2003) eingebunden wurden. Dieser Bericht wurde von der UNESCO anlässlich des dritten Weltwasserforums in Kioto (2003) vorgestellt. Des Weiteren finden sich die Ergebnisse dieser Studie auf der projekteigenen Webseite wwap.cesr.de
Auftraggeber
Sekretariat des "World Water Assessment Programme", UNESCO, Paris, Gordon J. Young
Projektlaufzeit
Februar 2002 − Juli 2002
Projektleitung
Joseph Alcamo
Projektbeteiligte
Martina Flörke
Michael Märker
Sara Vassolo