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Summary

This thesis presents innovative and advanced electromagnetic techniques for the in-line in-
spection of hot wire steel. The hot wire inspection procedure is performed with the eddy
current (EC) sensor technique. Any type of crack on the upper surface of the steel wire
disturbs the eddy current distribution which can be detected by the eddy current sensors.
However, the eddy current distribution is only weakly influenced by cracks which are paral-
lel to the wire, so-called longitudinal cracks. The conventional eddy current sensors cannot
detect these cracks properly. To detect such longitudinal cracks a number of new EC sensors
have been developed and successfully tested.

The modeling of the EC sensors and inspection techniques are numerically performed by
setting up the governing equations for eddy current problems and then the differential, as
well as the integral equations are solved with a suitable numerical method. A proper selec-
tion of the numerical technique plays an important role in successful simulation of the eddy
current inspection procedure. Different numerical methods - the finite integration technique
(FIT), the finite element method (FEM) and the boundary element method (BEM) are used
to model this NDT (non-destructive testing) situation. The presented work is a part of the
so-called INCOSTEEL project which is sponsored by the European Commission through the
Research Fund for Coal and Steel (INCOSTEEL: In-line quality control of hot wire steel -
Towards innovative contactless solutions and data fusion).

Every numerical method has its own advantages and disadvantages that need to be consid-
ered before using them to model a certain eddy current problem. FIT, FEM and BEM are
discussed elaborately in this thesis for this purpose. A FIT based numerical tool MQSFIT
is developed as a part of the scientific work. Two other simulation tools, based on FEM
and BEM, along with MQSFIT, are used to model and optimize the eddy current sensors
developed in INCOSTEEL project. However, the numerical results have to be validated
against analytical and published results to prove the accuracy and reliability of the simula-
tions. As a part of that, analytical solutions for a simple eddy current problem are discussed
in the work. A comparison of all the numerical methods to the analytical solutions is also
presented.

The numerical modeling, optimization and feedback modeling have met the demands of the
INCOSTEEL project and thus led to the successful completion of the project in December
2008. The obtained results have opened the door for further future research and innovative
ideas.
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Chapter 1

Introduction to Eddy Current Sensors
and Modeling Techniques

1.1 Statement of the Problem of Hot Wire Steel In-

spection

The production of long steel products like steel wires, rods and bars within the steel market is
subjected to very strict specifications with regard to quality and reliability as well as in terms
of increasing productivity. Product quality along the different production processes has a
high impact on the quality of the end component. Nondestructive testing (NDT) techniques
are widely used for quality assurance in steel manufacturing, e.g., for the detection and
evaluation of all potential types of internal and surface defects. The principal goal is to
develop a sensor system to optimize the in-line detection of transversal and longitudinal
defects produced in the manufacturing process of hot wire steel. Existing NDT systems
have some limitations regarding detection and characterization of several types of common
defects.

The aim of this thesis is to discuss the electromagnetic modeling techniques in order to
analyze the eddy current inspection techniques. Hot wire stainless steel (Fig. 1.1a) of a
diameter D = 6 − 42 mm is considered, driven by a guiding system through the sensor
coils at a temperature of 1000◦ − 1200◦ C above the Curie point with a rolling speed up to
vc = 120 m/s depending on the diameter of the wire. Typical longitudinal and transversal
cracks in the hot wire steel are shown in Fig. 1.1b and 1.1c, respectively. In a parameter
study we use cracks with the shortest length of l = 5 mm, the lowest width of w = 0.2 mm,
and a minimum depth of d = 0.2 mm.

1.2 Numerical Modeling and Simulation of the Inspec-

tion Technique

In Chapter 1 we define the problem of hot wire inspection and give an outline of the ap-
plied sensors. A brief description of the numerical tools to model the inspection technique
numerically is also presented in Chapter 1. The mathematical background, this means the
governing equations of the applied sensor types, are given in Chapter 2. In Chapter 3 we
discuss the finite integration technique (FIT) to discretize the magnetic diffusion equation in
integral form. The discretizetion is performed in cartesian as well as in cylindrical coordinate

3
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a) b)

c)

Figure 1.1: a) Hot wire steel in the production line, b) a typical transversal and c) a typical longitudinal
crack.

system. The finite element method (FEM) to solve the eddy current problem is discussed in
Chapter 4. Both FIT and FEM based simulation tools are used to simulate two dimensional
(2-D) problems.

However, all the eddy current sensors cannot be modeled in 2-D and hence, a suitable numer-
ical tool is chosen for 3-D modeling, which is based on the method of moments (MoM), also
known as the boundary element method (BEM). The formulation of the so called electric
field integral equation (EFIE) and magnetic field integral equation (MFIE) are important
for discretization in BEM and are discussed in Chapter 5.

The numerical results need to be validated against the analytical solutions to prove the ac-
curacy and reliability of the modeling. We discuss the analytical solutions of a typical eddy
current problem in chapter 6. A comparison of the numerical results with the analytical
solutions is also presented. The simulation results using developed eddy current (EC) sen-
sors, along with the performance analysis of the sensors are presented in Chapter 7. At the
end, we conclude the scientific work with the final outcome of the eddy current simulations
together with the innovative ideas for future research.

To fulfil the demands of the INCOSTEEL project we need to detect transversal and longitu-
dinal cracks with high precision, which includes proper identification of the geometry as well
as the location of the crack in the hot wire. Five types of eddy current sensors are developed
during this project. A brief description of these sensors is presented in Table 1.1. The
encircling coil sensors are modeled by the finite integration technique. As the geometry of
the modeled region contains a rotational symmetry, a 3-D eddy current problem is reduced
to a 2-D problem in cylindrical coordinates. A FIT based simulation tool is developed to
solve such a 2-D problem. Furthermore, we also present numerical modeling of encircling
coil sensors with the finite element method. The point coil sensors, i.e., 3-coils sensor, 4-coils
sensor, D-coils sensor and pot core sensor are modeled by the boundary element method.
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Type of Sensor Characteristics

Encircling Coil Consists of four encircling coils

Good performance for detecting transversal cracks

3-coils Sensor Consists of three coils

Designed to detect the longitudinal cracks mainly

D-coils Sensor Designed to detect the longitudinal cracks

Limited performance

4-coils Sensor Modified version of the 3-coils sensor

Designed for better detection of the longitudinal cracks

Pot core sensor Modified version of the D-coils sensor

Good performance in detecting longitudinal cracks

Table 1.1: List of developed eddy current sensors.

1.3 Modeling Tools

Selected numerical modeling tools to simulate eddy current (EC) sensors are:

• MQSFIT (Marklein, 2002) based on Finite Integration technique (FIT)

• Opera-2d 10.5 (Opera, 10.5) based on Finite Element Method (FEM)

• Faraday 6.3 (Faraday , 6.1) based on Boundary Element Method (BEM)

1.3.1 MQSFIT

Magnetoquasistatic Finite Integration Technique (MQSFIT) is a software tool, developed for
modeling and characterization of the EC sensors during the INCOSTEEL project in 2008.
MQSFIT is a frequency domain solver for a monochromatic impressed current excitation
and is programmed in MATLAB. The basic geometry is embedded in the code, whereas
the geometry details can be changed with a script file easily. The integral form of the
magnetoquasistatic equation is discretized using the staggered grid system in cylindrical
coordinates. The obtained matrices are then reformulated to generate band matrices which
are quite sparse and therefore, are compressed to save memory and computational time. The
resulting linear matrix equation is then solved with the conjugate gradient (CG) method.
The simulation results, obtained from MQSFIT, are validated against analytical as well as
measured results.

1.3.2 Opera

OPERA-2d is a finite element program, developed by Vector Fields Software to analyze
electrical engineering designs in two dimensions. It includes a pre and post-Processor envi-
ronment and analysis modules. The 2-D version of Opera is used here to simulate a rotational
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symmetric EC problem. However, Opera-2D consists of a number of different modules. The
used modules to solve the EC problems are:

• AC Module (steady state)

• LM module (linear motion)

The steady state module, along with FIT based MQSFIT, are used to observe the effect of
cracks in magnetic flux density and electric current density distribution in the test area. The
linear motion module is useful to observe the effect of velocity on eddy current distribution
on the surface of the steel wire.

1.3.3 Faraday 6.1

Faraday is an easy-to-use 3D eddy current field solver, developed by the Integrated En-
gineering Software. Using the boundary element method (BEM) Faraday is suitable for
applications requiring large open region analysis, exact modeling of boundaries and prob-
lems where dealing with small skin depths are critical. The parametric solvers of this tool
allow automatically vary and experiment with geometry, materials and sources and thus
reduce the tedious, repetitive task of fine-tuning multiple design parameters. The obtained
simulation results are saved in text format and a separate MATLAB program is developed
to read and plot the results.

1.3.4 Other Tools

Interpretation of the simulation results plays an important role to understand and analyze
the performance of the sensors, as well as the effect of different parameters in detection of
cracks. The best way to do that is to develop a movie which shows the A-scan of the sensor
together with the complete test procedure. The commercial simulation tools, however, do not
prepare such a movie. A movie making tool is developed using MATLAB which shows the
A-scan obtained from the differential signal on the top and the eddy current test procedure
along with the induced current density on the hot wire at the bottom. Snapshots of such
movies are included in Chapter 7 to present the simulation results.



Chapter 2

Governing Equations for
Magnetoquasistatic Problem

2.1 Maxwell’s Equations for Macroscopic Non-moving

Medium

Maxwell’s equations are a set of equations that govern all macroscopic electromagnetic phe-
nomena. The equations can be written in both differential and integral form. For general
time-varying fields and in case of a non-moving medium, Maxwell’s equations in integral
form are given by Langenberg (2003) and Rothwell & Cloud (2001):

z

C=∂S

E(R, t) ·dR =−
x

S

∂

∂t
B(R, t) ·dS−

x

S

Jm(R, t) ·dS (2.1)

z

C=∂S

H(R, t) ·dR =
x

S

∂

∂t
D(R, t) ·dS +

x

S

Je(R, t) ·dS (2.2)

{

S=∂V

D(R, t) ·dS =
y

V

%e dV (2.3)

{

S=∂V

B(R, t) ·dS =
y

V

%m dV , (2.4)

with the field quantities

E = electric field strength (V/m)

D = electric flux density (As/m2)

H = magnetic field strength (A/m)

B = magnetic flux density (Vs/m2)

and the source quantities

Je = electric current density (A/m2)

Jm = magnetic current density (V/m2)

%e = electric volume charge density (As/m3)

%m = magnetic volume charge density (Vs/m3)

7
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Maxwell’s equations in differential form can be derived from Eqs. (2.1)-(2.4) by using Gauss’
and Stoke’s theorems. Let us consider a point in space where all the field quantities and their
derivatives are continuous. If we apply Gauss’s and Stoke’s theorems to Eqs. (2.1)-(2.4), we
obtain

∇×E(R, t) =− ∂

∂t
B(R, t)− Jm(R, t) (2.5)

∇×H(R, t) =
∂

∂t
D(R, t) + Je(R, t) (2.6)

∇·B(R, t) = %m(R, t) (2.7)

∇·D(R, t) = %e(R, t) . (2.8)

Here E, H, B and D stand for electric field strength, magnetic field strength, magnetic field
and electric flux density respectively. The continuity equation is given by

∇·Je(R, t) =− ∂

∂t
%e(R, t) . (2.9)

Here %e and Je stand for electric charge density and electric current density respectively.
The constitutive equations for vacuum are:

B(R, t) =µ0H(R, t) (2.10)

D(R, t) = ε0E(R, t) , (2.11)

where µ0 and ε0 represent permeability and permittivity of free space. For an inhomogeneous,
linear, isotropic and instantaneously reacting medium having the relative permeability µr and
relative permittivity εr we rewrite Eq. (2.10)-(2.11) as

B(R, t) =µ(R) H(R, t) = µ0 µr(R) H(R, t) (2.12)

D(R, t) = ε(R) E(R, t) = ε0 εr(R) E(R, t) . (2.13)

However, the electric current density Je(R, t) on the right hand side of Eq. (2.6) has two
parts:

Je(R, t) = Jcon
e (R, t) + Jimp

e (R, t) . (2.14)

Here Jcon
e and Jimp

e represent the electric current density of the conductor and the external
current source respectively. Using Ohm’s law of field quantities the conducting part, i.e. the
electric current density of the conductor Jcon

e is associated with the electric field strength
E(R, t) by

Jcon
e (R, t) =σe(R) E(R, t) , (2.15)

where σe(R) stands for electric conductivity of an inhomogeneous medium. Inserting Eq. (2.15)
into Eq. (2.14) yields

Je(R, t) =σe(R) E(R, t) + Jimp
e (R, t) . (2.16)

With the help of this expression of electric current density Je(R, t) we rewrite Eq. (2.6) as

∇×H(R, t) =
∂

∂t
D(R, t) + σe(R) E(R, t) + Jimp

e (R, t) . (2.17)
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2.2 Transition and Boundary Conditions

The electric and magnetic field components satisfy the transition conditions at the interface
between two media (see Fig. 2.1a), whereas the boundary conditions need to be fulfilled at
the boundary of a perfect electrically conducting (PEC) material (see Fig. 2.1b).

a) b)Transition Condition PEC Boundary Condition

n n

Medium (2)
Medium (1)

Medium
SInterface

SBoundary

σe(R)→∞PEC

Figure 2.1: a) Transition interface between two materials and b) boundary surface.

2.2.1 Transition Conditions

At the transition surface, the jump at the normal component of the electric flux density
D(R, t) is defined by the surface electric charge density ηe(R, t) (Langenberg , 2003; EFT II ,
2009). Using Eq. (2.8) we show that

n ·
[
D(2)(R, t)−D(1)(R, t)

]
=

{
ηe(R, t) with source

0 source-free
; R ∈ SInterface . (2.18)

Here n represents the normal vector on the interface defined in Fig. 2.1a. The tangential
component of the electric field strength at the interface follows

n×
[
E(2)(R, t)− E(1)(R, t)

]
=

{
−Km(R, t) with source

0 source-free .
(2.19)

A jump in the tangential component of the electric field strength represents magnetic current
density Km(R, t) at the transition surface. Again, for the magnetic flux density we define
the jump in the normal component by magnetic charge density ηm(R, t) at the transition
surface.

n ·
[
B(2)(R, t)−B(1)(R, t)

]
=

{
ηm(R, t) with source

0 source-free .
(2.20)

The tangential component of the magnetic field strength jumps at the transition surface
causes a surface electric current density Ke(R, t)

n×
[
H(2)(R, t)−H(1)(R, t)

]
=

{
Ke(R, t) with source

0 source-free .
(2.21)

Now, using the constitutive equations described in Eq. (2.12)-(2.13) we formulate equations
Eq. (2.18)-(2.21) as

n ·
[
ε(2) E(2)(R, t)− ε(1) E(1)(R, t)

]
=

{
ηe(R, t) with source

0 source-free
(2.22)
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n×
[

1

ε(2)
D(2)(R, t)− 1

ε(1)
D(1)(R, t)

]
=

{
−Km(R, t) with source

0 source-free
(2.23)

n ·
[
µ(2) B(2)(R, t)− µ(1) B(1)(R, t)

]
=

{
ηm(R, t) with source

0 source-free
(2.24)

n×
[

1

µ(2)
B(2)(R, t)− 1

µ(1)
B(1)(R, t)

]
=

{
Ke(R, t) with source

0 source-free .
(2.25)

2.2.2 Boundary Conditions

For a perfectly electrically conducting (PEC) boundary, the electric conductivity inside the
PEC material is expressed by σe → ∞ (EFT I , 2009). In Fig. 2.1b medium (2) is a PEC
material, where the surface SBoundary denotes the boundary. As a result, the tangential
component of the electric field strength and the normal component of magnetic flux density
at the boundary becomes zero, i.e.,

n× E(R, t) = 0 (2.26)

n ·B(R, t) = 0 . (2.27)

Furthermore, the normal component of the electric flux density D(R, t) is expressed by the
electric charge density ηe(R, t) on the boundary surface and therefore, we obtain

n ·D(R, t) = ηe(R, t) (2.28)

and using the constitutive equation we write

n ·E(R, t) =
1

ε
ηe(R, t) . (2.29)

The tangential component of the magnetic field strength H(R, t) is determined by the surface
electric current density Ke(R, t) at the boundary surface SBoundary, which leads to

n×H(R, t) = Ke(R, t) (2.30)

and is written using constitutive equation as

n×B(R, t) =µ Ke(R, t) . (2.31)

2.3 Field Equations in the Frequency Domain

The eddy current problem can be solved in the time domain as well as in the frequency
domain. The time domain technique is often used in case of pulsed eddy current system. In
case of excitation pulse of a single frequency the static solution of the eddy current problem
can easily be obtained in the frequency domain. Therefore, it is necessary to transform the
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governing equations of the previous section into frequency domain using Fourier transforma-
tion. For a function f(t) we define the fourier transformed F (ω) as

F (ω) =

∞w

−∞
f(t) e jωt dt , (2.32)

where ω represents the angular frequency. Again, for a function F (ω) the inverse Fourier
transformation is defined by

f(t) =
1

2π

∞w

−∞
F (ω) e− jωt dω . (2.33)

According to the definition of the Fourier integrals in Eq. (2.32) we obtain the following
Fourier transforms:

∂

∂t
◦———• − jω

E(R, t) ◦———• E(R, ω)

B(R, t) ◦———• B(R, ω)

Am(R, t) ◦———• Am(R, ω)

Jimp
e (R, t) ◦———• Jimp

e (R, ω) .

Using these identities Maxwell’s equations described by Eq. (2.5)-(2.8) are expressed in
frequency domain by

∇×E(R, ω) = jωB(R, ω)− Jm(R, ω) (2.34)

∇×H(R, ω) =− jωD(R, ω) + Je(R, ω)

=− jωD(R, ω) + σe(R) E(R, ω) + Jimp
e (R, ω) (2.35)

∇·B(R, ω) = %m(R, ω) (2.36)

∇·D(R, ω) = %e(R, ω) (2.37)

and for a medium having the relative permeability µr and relative permittivity εr the con-
stitutive equations in frequency domain are formulated as

B(R, ω) =µ(R) H(R, ω) = µ0 µr(R) H(R, ω) (2.38)

D(R, ω) = ε(R) E(R, ω) = ε0 εr(R) E(R, ω) . (2.39)

2.4 Inhomogeneous Helmholtz Equations

The inhomogeneous Helmholtz equations describe the wave propagation in the frequency
domain for the electric field strength E(R, ω) and the magnetic field strength H(R, ω).
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2.4.1 Inhomogeneous Helmholtz Equation for the Electric Field

Maxwell’s first equation in differential form in the frequency domain states

∇×E(R, ω) = jωB(R, ω) − Jm(R, ω) . (2.40)

Taking the curl of this equation results

∇×∇×E(R, ω) = jω∇×B(R, ω) − ∇×Jm(R, ω) , (2.41)

which is reformulated using the constitutive equation Eq. (2.38) as

∇×∇×E(R, ω) = jω∇× [µ(R) H(R, ω)] − ∇×Jm(R, ω) . (2.42)

Simplifying Eq. (2.42) for a medium of homogeneous µ yields

∇×∇×E(R, ω) = jωµ ∇×H(R, ω) − ∇×Jm(R, ω) , (2.43)

Using Maxwell’s second equation Eq. (2.35) we obtain

∇×∇×E(R, ω)

= jωµ
[
− jωD(R, ω) + σe(R) E(R, ω) + Jimp

e (R, ω)
]
− ∇×Jm(R, ω)

= ω2µ D(R, ω) + jωµσe(R) E(R, ω) + jωµ Jimp
e (R, ω) − ∇×Jm(R, ω) . (2.44)

The ∇×∇× operator on the left side of Eq. (2.44) is expressed by

∇×∇×E(R, ω) =∇∇·E(R, ω) − ∆E(R, ω) . (2.45)

For a medium of homogeneous electric permittivity, ε(R) = ε and therefore, Using the
constitutive equation Eq. (2.39) we write

∇×∇×E(R, ω) =
1

ε
∇∇·D(R, ω) − ∆E(R, ω) , (2.46)

which is reformulated using Maxwell’s fourth equation Eq. (2.37) as

∇×∇×E(R, ω) =
1

ε
∇%e(R, ω) − ∆E(R, ω) , (2.47)

Inserting Eq. (2.47) in Eq. (2.44) and replacing D(R, ω) with εE(R, ω) results

∆E(R, ω) + ω2µε E(R, ω) + jωµσe(R) E(R, ω)

= − jωµ Jimp
e (R, ω) +

1

ε
∇%e(R, ω) + ∇×Jm(R, ω) (2.48)

and for a conductive medium of homogeneous electric conductivity, we write σe(R) = σe and
thus we obtain

∆E(R, ω) + ω2µε E(R, ω) + jωµσe E(R, ω)

= − jωµ Jimp
e (R, ω) +

1

ε
∇%e(R, ω) + ∇×Jm(R, ω)

⇒ ∆E(R, ω) + k2
c E(R, ω) = − jωµ Jimp

e (R, ω) +
1

ε
∇%e(R, ω) +∇×Jm(R, ω) , (2.49)

where kc is the complex wave number and is expressed by

kc =
√
ω2µε+ jωµσe . (2.50)
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2.4.2 Inhomogeneous Helmholtz Equation for the Magnetic Field

We recall Maxwell’s second equation in differential form in frequency domain

∇×H(R, ω) =− jωD(R, ω) + σe(R) E(R, ω) + Jimp
e (R, ω) . (2.51)

Let us introduce a curl operator (∇×) on both sides

∇×∇×H(R, ω) =∇×
[
− jωD(R, ω) + σe(R) E(R, ω) + Jimp

e (R, ω)
]
. (2.52)

Using the constitutive equation Eq. (2.39) for a medium of homogeneous electric permittivity
we obtain

∇×∇×H(R, ω) = − jωε∇×E(R, ω) + ∇× [σe(R) E(R, ω)] +∇×Jimp
e (R, ω) .

(2.53)

Rearranging Eq. (2.53) results

∇×∇×H(R, ω)

= [− jωε+ σe(R)]∇×E(R, ω) − E(R, ω)×∇σe(R) + ∇×Jimp
e (R, ω) . (2.54)

The ∇×∇× operator of Eq. (2.54) is given by

∇×∇×H(R, ω) =∇∇·H(R, ω) − ∆H(R, ω) . (2.55)

Using the constitutive equation Eq. (2.38) we show that

∇×∇×H(R, ω) =∇∇· 1

µ(R)
B(R, ω) − ∆H(R, ω) . (2.56)

For a medium of homogeneous magnetic permeability, it is assumed that µ(R) = µ, which
leads to

∇×∇×H(R, ω) =
1

µ
∇∇·B(R, ω) − ∆H(R, ω) . (2.57)

Using Maxwell’s third equation Eq. (2.36) in Eq. (2.57) results

∇×∇×H(R, ω) =
1

µ
∇%m(R, ω) − ∆H(R, ω) . (2.58)

Inserting Eq. (2.58) in Eq. (2.53) yields

1

µ
∇%m(R, ω)−∆H(R, ω)

= [− jωε+ σe(R)]∇×E(R, ω) − E(R, ω)×∇σe(R) + ∇×Jimp
e (R, ω) . (2.59)

Replacing ∇×E(R, ω) according to the Maxwell’s first equation Eq. (2.34) we obtain

1

µ
∇%m(R, ω)−∆H(R, ω)

= [− jωε+ σe(R)] [ jωB(R, ω)− Jm(R, ω)] − E(R, ω)×∇σe(R) + ∇×Jimp
e (R, ω)

(2.60)
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and we rearrange by using the constitutive equation Eq. (2.38) to obtain

∆H(R, ω) + ω2εµ H(R, ω) + jωσe(R)µ H(R, ω) − E(R, ω)×∇σe(R)

= − jωεJm(R, ω) + σe(R)Jm(R, ω) +
1

µ
∇%m(R, ω) − ∇×Jimp

e (R, ω) . (2.61)

For a medium of homogeneous electric conductivity σe we neglect the term E(R, ω)×∇σe(R),
and hence, Eq. (2.61) is simplified to

∆H(R, ω) + ω2µε H(R, ω) + jωµσe H(R, ω)

= − jωεJm(R, ω) + σe Jm(R, ω) +
1

µ
∇%m(R, ω) − ∇×Jimp

e (R, ω) , (2.62)

which can be formulated as

∆H(R, ω) + k2
c H(R, ω)

= − jωεJm(R, ω) + σe Jm(R, ω) +
1

µ
∇%m(R, ω) − ∇×Jimp

e (R, ω) , (2.63)

where

kc =
√
ω2µε+ jωµσe . (2.64)

2.5 Electromagnetic Potentials of an Electrically Con-

ducting Material

Firstly, we derive the potential representation for the electric and magnetic field strength
using electric and magnetic scalar and vector potentials for the source-free case. Using these
expressions we derive the the potential representation with source in the second part.

2.5.1 Electromagnetic Potentials in Source-Free Case

The Maxwell’s equations in frequency domain, described by Eq. (2.34)-(2.37) are written in
source-free case as

∇×E(R, ω) = jωB(R, ω) (2.65)

∇×H(R, ω) =− jωD(R, ω) + σe E(R, ω) (2.66)

∇·D(R, ω) = 0 (2.67)

∇·B(R, ω) = 0 . (2.68)

2.5.1.1 Derivation of the Potential Representation using Magnetic Vector Po-
tential and Electric Scalar Potential

We know from the vector algebra that the curl of divergence produces also zero, i.e, for a
vector Am(R, ω) we obtain

∇· [∇×Am(R, ω)] = 0 . (2.69)



2.5. Electromagnetic Potentials of an Electrically Conducting Material 15

From the equations Eq. (2.68) and Eq. (2.69) the magnetic flux density B(R, ω) is given by

B(R, ω) =∇×Am(R, ω) , (2.70)

where Am(R, ω) is called magnetic vector potential, because it is related to the magnetic
flux density B(R, ω) through differentiation. The first Maxwell’s equation (Eq. (2.65)), also
known as Faraday’s law of induction in source-free case, is written using magnetic vector
potential Am(R, ω) as

∇×E(R, ω) = jω∇×Am(R, ω)

⇒ ∇× [E(R, ω)− jωAm(R, ω)]︸ ︷︷ ︸
=∇Φe(R, ω)

= 0 , (2.71)

which leads to the electric scalar potential Φe(R, ω) because of the vector identity

∇× [∇Φe(R, ω)] = 0 . (2.72)

Rewriting Eq. (2.71) results

E(R, ω)− jωAm(R, ω) =−∇Φe(R, ω) , (2.73)

where Φe(R, ω) is called electric scalar potential. The negative sign on the right-hand side
is introduced because of the historical convention (Langenberg , 2003) and it defines the sign
of the electrical voltage in static case. Rearranging Eq. (2.73) yields

E(R, ω) =−∇Φe(R, ω) + jωAm(R, ω) . (2.74)

2.5.1.2 Derivation of the Potential Representation using Magnetic Scalar Po-
tential and Electric Vector Potential

For a vector Ae(R, ω) we know from vector identity that

∇· [∇×Ae(R, ω)] = 0 . (2.75)

From the equations Eq. (2.68) and Eq. (2.75) the electric flux density D(R, ω) is defined by

D(R, ω) =−∇×Ae(R, ω) , (2.76)

where Ae(R, ω) is called electric vector potential and it is related to the electric flux density
D(R, ω) through differentiation. The negative sign on the right-hand side is introduced
according to the historical convention. Maxwell’s second equation (Eq. (2.66)), also known
as Ampère-Maxwell circuital law of induction is reformulated in source-free case using the
constitutive equation Eq. (2.39) as

∇×H(R, ω) =− jωD(R, ω) +
σe

ε
D(R, ω) . (2.77)

Using electric vector potential Ae(R, ω) we obtain

∇×H(R, ω) = − jω [−∇×Ae(R, ω)] +
σe

ε
[−∇×Ae(R, ω)]

⇒ ∇×H(R, ω) = jω∇×Ae −
σe

ε
∇×Ae(R, ω)

⇒ ∇×
[
H(R, ω)− jωAe(R, ω) +

σe

ε
Ae(R, ω)

]
= 0 . (2.78)
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For a scalar potential Φm(R, ω)

∇× [∇Φm(R, ω)] = 0 . (2.79)

Comparing Eq. (2.79) to Eq. (2.78) leads to

H(R, ω)− jωAe(R, ω) +
σe

ε
Ae(R, ω) =−∇Φm(R, ω) , (2.80)

where Φm(R, ω) is called magnetic scalar potential and the negative sign on the right-hand
side is introduced because of the historical convention. Rearranging Eq. (2.80) results

H(R, ω) =−∇Φm(R, ω) + jωAe(R, ω)− σe

ε
Ae(R, ω) . (2.81)

2.5.2 Electromagnetic Potentials in Case with Electric and Mag-
netic Sources

The electric and magnetic fields in terms of the potentials in source-free case are described
by equations (2.70), (2.74), (2.76) and (2.81). In case of electric and magnetic sources for an
electrically conducting media using superposition theorem we reformulate these equations
as

E(R, ω) =−∇Φe(R, ω) + jωAm(R, ω)− 1

ε
∇×Ae(R, ω) (2.82)

H(R, ω) =−∇Φm(R, ω) + jωAe(R, ω)− σe

ε
Ae(R, ω) +

1

µ
∇×Am(R, ω) (2.83)

B(R, ω) =−µ∇Φm(R, ω) + jωµAe(R, ω)− µσe

ε
Ae(R, ω) +∇×Am(R, ω) (2.84)

D(R, ω) =−ε∇Φe(R, ω) + jωεAm(R, ω)−∇×Ae(R, ω) . (2.85)

2.6 Decoupling of Maxwell’s Equations by Electromag-

netic Potentials

Maxwell’s equations represent a coupled system where the electric and magnetic fields are
physically coupled through induction and magnetomotive force. Mathematically we observe
the coupling of the fields through divergence and curl operators. However, the electric and
magnetic fields can be decoupled using magnetic and electric scalar and vector potentials.

2.6.1 Expression of the Magnetic Vector Potential in the Fre-
quency Domain

We start with the Ampère-Maxwell circuital law in frequency domain and recall Eq. (2.35)

∇×H(R, ω) = (− jωε+ σe) E(R, ω) + Jimp
e (R, ω) . (2.86)

The magnetic field strength H(R, ω) and electric field strength E(R, ω) are represented by
the potentials according to Eqs. (2.82)-(2.83) and therefore, we rewrite Eq. (2.86) as

∇×
[
−∇Φm(R, ω) + jωAe(R, ω)− σe

ε
Ae(R, ω) +

1

µ
∇×Am(R, ω)

]

= (− jωε+ σe)

[
−∇Φe + jωAm −

1

ε
∇×Ae

]
+ Jimp

e (R, ω) . (2.87)
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Rearranging Eq. (2.87) yields

−µ∇×∇Φm(R, ω)︸ ︷︷ ︸
= 0

+ jωµ∇×Ae(R, ω)− µσe

ε
Ae(R, ω) +∇×∇×Am(R, ω)

= jωµε∇Φe(R, ω) + ω2µε Am(R, ω) + jωµ∇×Ae(R, ω)− µσe∇Φe(R, ω)

+ jωµσe Am(R, ω)− µσe

ε
Ae(R, ω) + µ Jimp

e (R, ω) . (2.88)

Canceling the common parts from both sides we obtain

∇×∇×Am(R, ω) = jωµε∇Φe(R, ω) + ω2µε Am(R, ω)− µσe∇Φe(R, ω)

+ jωµσe Am(R, ω) + µ Jimp
e (R, ω) . (2.89)

The ∇×∇× operator can be replaced by ∇∇· −∇·∇, which leads to

∇·∇Am(R, ω) + ω2µε Am(R, ω) + jωµσeAm(R, ω)

= µJimp
e (R, ω) +∇∇·Am(R, ω) + jωµε∇Φe(R, ω)− µσe∇Φe(R, ω)

⇒ ∆Am(R, ω) + k2
c Am(R, ω)

= −µJimp
e (R, ω) +∇ [∇·Am(R, ω)− jωµεΦe(R, ω) + µσeΦe(R, ω)] . (2.90)

With the Lorenz gauge

∇·Am(R, ω)− jωµεΦe(R, ω) + µσeΦe(R, ω) = 0 (2.91)

we obtain from Eq. (2.90)

∆Am(R, ω) + k2
c Am(R, ω) =−µJimp

e (R, ω) . (2.92)

2.6.2 Expression of the Electric Scalar Potential in the Frequency
Domain

Let us recall Maxwell’s fourth equation in frequency domain

∇·D(R, ω) = %e(R, ω) . (2.93)

Using the expression of the electric flux density D(R, ω) by the potentials according to
Eq. (2.85) results

∇· [−ε∇Φe(R, ω) + jωεAm(R, ω)−∇×Ae(R, ω)] = %e(R, ω) , (2.94)

which is rearranged as

−ε∇·∇Φe(R, ω) + jωε∇·Am(R, ω)−∇·∇×Ae(R, ω)︸ ︷︷ ︸
= 0

= %e(R, ω)

⇒ ∆Φe(R, ω) = −1

ε
%e(R, ω) + jω∇·Am(R, ω) . (2.95)
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Now we add on both sides of Eq. (2.95) the term (ω2µε+ jωµσe) Φe(R, ω) and thus we
obtain the PDE for Φe(R, ω)

∆Φe(R, ω) +
(
ω2εµ+ jωµσe

)
Φe(R, ω)

= −1

ε
%e(R, ω) + jω∇·Am(R, ω) + ω2µεΦe(R, ω) + jωµσeΦe(R, ω)

⇒ ∆Φe(R, ω) + k2
c Φe(R, ω)

= −1

ε
%e(R, ω) + jω [∇·Am(R, ω)− jωµεΦe(R, ω) + jωµσeΦe(R, ω)] , (2.96)

which is comparable to the PDE for Am(R, ω) in Eq. (2.89). With the Lorenz gauge
(Eq. (2.91)) we simplify Eq. (2.96) to

∆Φe(R, ω) + k2
c Φe(R, ω) =−1

ε
%e(R, ω) . (2.97)

2.6.3 Expression of the Electric Vector Potential in the Frequency
Domain

Faraday’s law of induction in frequency domain states

∇×E(R, ω) = jωB(R, ω)− Jm(R, ω) . (2.98)

Inserting the representation of magnetic field strength E(R, ω) and magnetic flux density
strength B(R, ω) by the potentials according to Eq. (2.82) and Eq. (2.84) we find

∇×
[
−∇Φe(R, ω) + jωAm(R, ω)− 1

ε
∇×Ae(R, ω)

]

= jω
[
−µ∇Φm(R, ω) + jωµAe(R, ω)− µσe

ε
Ae(R, ω) +∇×Am(R, ω)

]
− Jm(R, ω) .

(2.99)

Rearranging Eq. (2.99) results

−∇×∇Φe(R, ω)︸ ︷︷ ︸
= 0

+ jω∇×Am(R, ω)− 1

ε
∇×∇×Ae(R, ω)

= − jωµ∇Φm(R, ω)− ω2µ Ae(R, ω)− jω
µσe

ε
Ae(R, ω) + jω∇×Am(R, ω)

− Jm(R, ω) . (2.100)

We cancel the common parts from both sides and rewrite Eq. (2.100) as

∆Ae(R, ω) + ω2µε Ae(R, ω) + jωµσe Ae(R, ω)

= −εJm(R, ω) +∇∇·Ae(R, ω)− jωµε∇Φm(R, ω)

⇒ ∆Ae(R, ω) + k2
c Ae(R, ω)

= −εJm(R, ω) +∇ [∇·Ae(R, ω)− jωµεΦm(R, ω)] . (2.101)
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With the Lorenz gauge

∇·Ae(R, ω)− jωµεΦm(R, ω) = 0 (2.102)

we obtain from Eq. (2.101)

∆Ae(R, ω) + k2
c Ae(R, ω) =−εJm(R, ω) . (2.103)

2.6.4 Expression of the Magnetic Scalar Potential in the Fre-
quency Domain

We recall Maxwell’s third equation in frequency domain Eq. (2.36)

∇·B(R, ω) = %m(R, ω) . (2.104)

Using the expression electric flux density D(R, ω) by the potentials according to Eq. (2.85)
we obtain

∇·
[
−µ∇Φm(R, ω) + jωµAe(R, ω)− µσe

ε
Ae(R, ω) +∇×Am(R, ω)

]
= %m(R, ω) ,

(2.105)

which is rearranged as

−µ∇·∇Φm(R, ω) + jωµ∇·Ae(R, ω)− µσe

ε
∇·Ae(R, ω)−∇·∇×Am(R, ω)︸ ︷︷ ︸

= 0

= %m(R, ω)

⇒ ∆Φm(R, ω) = − 1

µ
%m(R, ω) + jω∇·Ae(R, ω)− σe

ε
∇·Ae(R, ω) . (2.106)

Adding on both sides of Eq. (2.106) the term (ω2µε+ jωµσe) Φm(R, ω) results

∆Φm(R, ω) +
(
ω2εµ+ jωµσe

)
Φm(R, ω)

= − 1

µ
%m(R, ω) + jω∇·Ae(R, ω)− σe

ε
∇·Ae(R, ω) + ω2µεΦm(R, ω)

+ jωµσeΦm(R, ω) . (2.107)

Following Lorenz gauge Eq. (2.102) we show that

∇·Ae(R, ω)− jωµεΦm(R, ω) = 0

⇒ ∇·Ae(R, ω) = jωµεΦm(R, ω) . (2.108)

Inserting Eq. (2.108) into Eq. (2.107) yields

∆Φm(R, ω) +
(
ω2εµ+ jωµσe

)
Φm(R, ω)

= − 1

µ
%m(R, ω) + jω∇·Ae(R, ω)− jωµσeΦm(R, ω) + ω2µεΦm(R, ω)

+ jωµσeΦm(R, ω)

⇒ ∆Φm(R, ω) + k2
c Φm(R, ω) = − 1

µ
%m(R, ω) + jω [∇·Ae(R, ω)− jωµεΦm(R, ω)] .

(2.109)
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With the Lorenz gauge Eq. (2.102) we obtain

∆Φm(R, ω) + k2
c Φm(R, ω) =− 1

µ
%m(R, ω) . (2.110)

2.6.5 Summary of Electromagnetic Potentials in the Frequency
Domain

The final expressions for the electric and magnetic vector and scalar potentials are listed
from Eq. (2.92), Eq. (2.97), Eq. (2.103) and Eq. (2.110) as

∆Am(R, ω) + k2
c Am(R, ω) =−µJimp

e (R, ω) (2.111)

∆Φe(R, ω) + k2
c Φe(R, ω) =−1

ε
%e(R, ω) (2.112)

∆Ae(R, ω) + k2
c Ae(R, ω) =−εJm(R, ω) (2.113)

∆Φm(R, ω) + k2
c Φm(R, ω) =− 1

µ
%m(R, ω) . (2.114)

2.7 Magnetoquasistatic Field

The magnetoquasistatic (MQS) field is defined by using a simple rule of thumb: Lower the
time rate of change (frequency) of the driving source so the fields become static (Haus &
Melcher , 1989). If the electric field vanishes in this process, the field is MQS. As we have
discussed earlier, the complex wave number is given by

kc =
√
ω2µε+ jωµσe . (2.115)

For a medium of large electric conductivity σe we assume

ωµσe � ω2µε ⇒ σe � ωε , (2.116)

which results
kc≈

√
jωµσe . (2.117)

However, the real part of the wave number is originated from the diffusion current of
the Ampère-Maxwell circuital law and hence, the diffusion part on the right hand side of
Eq. (2.35) is approximated as zero, i.e.

jωD(R, ω) ≈ 0 (2.118)

and thus we obtain from Eq. (2.35)

∇×H(R, ω) =σe(R) E(R, ω) + Jimp
e (R, ω)

∇×
[

1

µ(R)
B(R, ω)

]
=σe(R) E(R, ω) + Jimp

e (R, ω) . (2.119)

Using the magnetoquasistatic approximation the inhomogeneous Helmholtz equation for
electric field strength is written using Eq. (2.49) as

∆E(R, ω) + jωµσe E(R, ω) = − jωµ Jimp
e (R, ω) +

1

ε
∇%e(R, ω) +∇×Jm(R, ω)

⇒ ∆E(R, ω) + k2
c E(R, ω) = − jωµ Jimp

e (R, ω) +
1

ε
∇%e(R, ω) +∇×Jm(R, ω) (2.120)



2.8. Magnetoquasistatic Field Equations with Magnetic Vector Potential 21

and the expression for magnetic field strength is obtained from Eq. (2.63) by neglecting the
term jωεJm(R, ω) according to Eq. (2.116) as

∆H(R, ω) + jωµσe H(R, ω) = σe Jm(R, ω) +
1

µ
∇%m(R, ω)−∇×Jimp

e (R, ω)

⇒ ∆H(R, ω) + k2
c H(R, ω) = σe Jm(R, ω) +

1

µ
∇%m(R, ω)−∇×Jimp

e (R, ω) , (2.121)

where
kc =

√
jωµσe =

√
j
√
ωµσe . (2.122)

For the square-root of the imaginary unit j we compute

√
j =
√

e j π
2 =

(
e j π

2

) 1
2 = e j π

4

= cos
π

4
+ j sin

π

4
=

1√
2

+ j
1√
2
. (2.123)

It follows for the complex wave number

kc =

(
1√
2

+ j
1√
2

) √
ωµσe

=

√
ωµσe

2
+ j

√
ωµσe

2
= <{kc} + j={kc} . (2.124)

The real part <{kc} represents wave propagation and the imaginary part ={kc} stands for
the attenuation of the electromagnetic waves in conductive medium, whereas Eq. (2.124)
states that in magnetoquasistatic case the real part and imaginary part of the complex wave
number kc are the same. Again, the electric and magnetic field strength are represented
using electric and magnetic scalar and vector potentials are described by Eq. (2.82) and
Eq. (2.83). In magnetoquasistatic case, using the approximation Eq. (2.118) we neglect the
term jωAe(R, ω) of Eq. (2.83) and thus we obtain

E(R, ω) =−∇Φe(R, ω) + jωAm(R, ω)− 1

ε
∇×Ae(R, ω) (2.125)

H(R, ω) =−∇Φm(R, ω)− σe

ε
Ae(R, ω) +

1

µ
∇×Am(R, ω) . (2.126)

2.8 Magnetoquasistatic Field Equations with Magnetic

Vector Potential

The magnetic vector potential Am(R, ω) can be related to the electric field strength E(R, ω)
in frequency domain using Eq. (2.125). Neglecting the magnetic sources we find

E(R, ω) = jωAm(R, ω) − ∇Φe(R, ω) , (2.127)

which shows the relationship between the electric field strength E(R, ω) with the magnetic
vector potential Am(R, ω). In non-moving conductor case the electric scalar potential term
of Eq. (2.127) can be approximated as zero and hence

E(R, ω) = jωAm(R, ω) . (2.128)
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Using magnetic vector potential Am(R, ω) we rewrite Eq. (2.119) as

∇× [ν(R)∇×Am(R, ω)]− jωσe(R) Am(R, ω) = Jimp
e (R, ω) , (2.129)

where ν(R) = 1/µ(R). Eq. (2.129) represents the magnetic diffusion equation in frequency
domain with magnetic vector potential for a medium of inhomogeneous permeability µ(R)
and electric conductivity σe(R), whereas Eq. (2.111) describes magnetic vector potential for
a medium of homogeneous µ(R) and σe(R). Rewriting Eq. (2.129) in integral form results

x

S

∇× [ν(R) ∇×Am(R, ω)] ·dS−
x

S

jωσe(R) Am(R, ω) ·dS =
x

S

Jimp
e (R, ω) ·dS .

(2.130)

Let us apply the Stoke’s Theorem on the double Curl term of Eq. (2.130) and thus we obtain

z

C=∂S

[ν(R) ∇×Am(R, ω)] ·dR−
x

S

jωσe(R) Am(R, ω) ·dS =
x

S

Jimp
e (R, ω) ·dS ,

(2.131)

which describes the magnetoquasistatic problem in the frequency domain with magnetic
vector potential. Eq. (2.131) is considered as the governing equation for the solution of
the eddy current problem by the finite integration technique (FIT) in chapter 3 and by the
finite element method (FEM) in chapter 4, where we determine the unknown values of the
magnetic vector potential Am(R, ω) to solve the magnetoquasistatic problem.

2.9 Transition and Boundary Conditions for the Mag-

netic Vector Potential

The transition and boundary conditions have to be considered while discretizing the govern-
ing equation Eq. (2.131) by FIT or FEM for unknown values of Am(R, ω). For the magnetic
vector potential the Coulomb gauge states that

∇·Am(R, t) = 0 , (2.132)

which is written in integral form as

{

S=∂V

Am(R, t) ·dS = 0 . (2.133)

We solve the integral for an elementary surface ∆S and thus we obtain

[
A(2)

m (R, t)−A(1)
m (R, t)

]
·n ∆S= 0

⇒ n ·
[
A(2)

m (R, t)−A(1)
m (R, t)

]
= 0 (2.134)

and in the frequency domain:

n ·
[
A(2)

m (R, ω)−A(1)
m (R, ω)

]
= 0 , (2.135)
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which means the normal component of the magnetic vector potential Am(R, t) is continuous
at the transition interface. Again, for a source free transition interface, rewriting Eq. (2.19)
in the frequency domain results

n×
[
E(2)(R, ω)− E(1)(R, ω)

]
= 0 . (2.136)

Inserting Eq. (2.128) in Eq. (2.136) yields

n×
{

jω
[
A(2)

m (R, ω)−A(1)
m (R, ω)

]}
= 0

⇒ n×
[
A(2)

m (R, ω)−A(1)
m (R, ω)

]
= 0 , (2.137)

which states that the tangential component of the magnetic vector potential Am(R, ω) is
continuous at the transition interface.

To define the PEC boundary condition for the magnetic vector potential we set A(1)
m (R, ω) =

0 in Eq. (2.143) which results

n ·
[
A(2)

m (R, ω)
]

= 0 i.e., n ·Am(R, ω) = 0 (2.138)

and from Eq. (2.137) we obtain

n×Am(R, t) = 0 . (2.139)

We sum up from Eq. (2.138) and Eq. (2.139) that the tangential and normal components of
the magnetic vector potential diminish at the PEC boundary. The transition and boundary
conditions of the magnetic vector potential will be discussed further in chapter 3 and 4 for
FIT and FEM, respectively.

2.10 Field Equations for a Moving Conductor

Maxwell’s equations in their differential and integral form are valid for any stationary media.
However, Maxwell’s third and fourth equation are not affected by the motion of the medium
(Poljak & Brebbia, 2005). On the other hand, the extension of the law of induction, expressed
by Maxwell’s first equation for a moving medium, requires considerable care. The governing
equations for the modeling of an eddy current sensor in a moving conductor are Maxwell’s
equations for a moving medium, where the first one read (Rothwell & Cloud , 2001)

∇×E(R, t) =− ∂

∂t
B(R, t)− Jm(R, t) +∇× [vc(R, t)×B(R, t)] , (2.140)

which is derived from Maxwell’s equations in integral form by using the Helmholtz transport
theorem (Rothwell & Cloud , 2001; Tai , 1997). Neglecting the magnetic current density
Jm(R, t) results

∇×E(R, t) =− ∂

∂t
B(R, t) +∇× [vc(R, t)×B(R, t)] . (2.141)
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Using magnetic vector potential Am(R, t) we rewrite Eq. (2.141) as

∇×E(R, t) = − ∂

∂t
[∇×Am(R, t)] +∇× [vc(R, t)×∇×Am(R, t)]

⇒ ∇×
[
E(R, t) +

∂Am(R, t)

∂t
− vc(R, t)×∇×Am(R, t)

]

︸ ︷︷ ︸
= −∇Φe(R, t)

= 0 . (2.142)

Using electric scalar potential Φe(R, t) we obtain

E(R, t) +
∂Am(R, t)

∂t
− vc(R, t)×∇×Am(R, t) = −∇Φe(R, t)

⇒ E(R, t) = −∂Am(R, t)

∂t
+ vc(R, t)×∇×Am(R, t)−∇Φe(R, t) . (2.143)

Formulating Eq. (2.143) in frequency domain yields

E(R, ω) = jωAm(R, ω) + vc ×∇×Am(R, ω)−∇Φe(R, ω) . (2.144)

Using equation Eq. (2.131) we arrive at the magnetic diffusion equation for a moving con-
ductor

∇× [ν(R)∇×Am(R, ω)]− σe(R) [ jω Am(R, ω) + vc ×∇×Am(R, ω)−∇Φe(R, ω)]

= Jimp
e (R, ω) . (2.145)

For a medium of homogeneous µ Eq. (2.145) is simplified to

∆Am(R, ω) + µσe(R) [ jω Am(R, ω) + vc ×∇×Am(R, ω)−∇Φe(R, ω)]

= −µJimp
e (R, ω) . (2.146)



Chapter 3

Finite Integration Technique (FIT)

Historically, the finite integration technique (FIT) was first applied to the full sets of
Maxwell’s equations in integral form (Weiland , 1977). The method uses all six vector com-
ponents of electric field strength and magnetic flux density on a dual grid system (Marklein,
2002). In our case, FIT is used for the direct discretisation of the governing equation of
magnetoquasistatics. As described eddy current sensors are driven by a monochromatic ex-
citation pulse, it is easier to solve the magnetoquasistaic problem in the frequency domain
than in the time domain. The governing equations in integral form are then discretized on
a staggered voxel grid in space. The allocation of the vector components satisfies the tran-
sition conditions “automatically”, if the inhomogeneous material is discretised (Marklein,
1997, 2002). The following steps should be followed to solve a magnetoquasistaic problem
using FIT:

• Discretization of electromagnetic medium in space (Sec. 3.1)

• Allocation of the discrete field quantities (Sec. 3.2)

• Setting up the discrete field quantities and derivation of the grid equation in cartesian
coordinates (Sec. 3.3-3.4)

• Derivation of the grid equation in cylindrical coordinates (Sec. 3.5-3.6)

• Implementation of the boundary condition (Sec. 3.7)

• Formation of a band matrix (Sec. 3.8)

3.1 Discretization of the Electromagnetic Medium in

Space

The governing equation of a magnetoquasistatic problem in the frequency domain can be
recalled from Chapter 2 as

z

C=∂S

[ν(R) ∇×Am(R, ω)] ·dR −
x

S

jω σe(R) Am(R, ω) ·dS =
x

S

Jimp
e (R, ω) ·dS .

(3.1)

Before we start with the discretization of the governing equation, we have to define the
discretization of the medium in material cells. The discretization of the electromagnetic
medium Mem is defined as follows:

25
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• The material cells m(n) of the material grid M has a constant material filling and
coincides with the grid cells g(n) of the grid G, i. e.

m(n) = g(n) .

• the material cells m(n) is addressed with the grid node n in the center point of the grid
cell g(n) of the grid G

{µ(R),σ
e
(R)} ,R ∈ R3 ⇒ {µ(n),σ(n)

e
} , n ∈ RN ,

where all material tensors have the form

µ =µii eiei .

3.2 Allocation of the Discrete Field Quantities in Carte-

sian Coordinates

The governing equation, along with the transition and boundary conditions, prescribe the
allocation of the discrete electromagnetic field components. Instead of deriving the allo-
cation while discretizing the governing equations, we define the allocation of the discrete
electromagnetic field components as it follows. The allocation of the discrete field compo-
nents has to be performed in that way, that only continuous field component are allocated
at the boundary ∂m(n) of next nairbour material cells m(n), in order to ensure the transition
conditions, which read for a source–free interface

n ·B(R, ω) = continous (3.2)

and using the Coulomb gauge we write the transition condition for the magnetic vector
potential Am(R, ω) from Eq. (2.134) as

n ·Am(R, ω) = continous . (3.3)

For a source-free interface the tangential component of the electric field strength and the
normal component of the magnetic flux density must be continuous. We define the allocation
of the discrete electromagnetic field quantities as follows:

• the three Cartesian components of the magnetic vector potential vector A
(n)
i are posi-

tioned at the center of the edges of the material cell m(n) and each Cartesian component
points in positive coordinate direction.

• the three Cartesian components of the magnetic flux density vector B
(n)
i are positioned

at the center of the edges of the facet with the normal vector n = ei of the material
cell m(n) and points in positive coordinate direction.

• the three Cartesian components J
(n)
m,i– and H

(n)
i coincide with the B

(n)
i components.

• the three Cartesian components J
(n)
e,i –, and D

(n)
i components coincide with the A

(n)
i

components.

Fig. 3.1 shows the allocation of the discrete electromagnetic field components assigned to the
global grid node n. This allocation ensures that only normal components of the magnetic flux
density and only tangential components of the electric field strength are positioned at the
interface between material cells with different material properties. The transition conditions
Eqs. (3.2)-(3.3) are ensured in a natural way.
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Figure 3.1: Allocation of the discrete magnetic field components A(n)
1 , A(n)

2 , A(n)
3 , B(n)

1 , B(n)
2 , and B(n)

3

assigned to the global grid node (n)

3.3 Discrete Field Quantities in Cartesian Coordinates

in 2-D case

We have discussed in Chapter 2 that the encircling coil sensors can be simulated using the
rotational symmetry and therefore, a 3-D magnetoquasistatic problem can be reduced into
a 2-D problem in cylindrical coordinates. As the first step, the discrete field quantities will
be discussed in cartesian coordinates in this section. Fig. 3.1 can be reduced to Fig. 3.2 for
2-D case, which shows the integration cell I

(n)
Ay

. We define the allocation of the discrete field
quantities as follows:

• The y component of magnetic vector potential Ay is positioned at the corners of the

material cells, as for example, A
(n)
y is positioned at the common node of the four mate-

rial cells m(n), m(n+Mx), m(n+Mz), and m(n+Mx+Mz) and it points the normal direction
of the xz plane.

• The x and z components of the magnetic flux density vector B
(n)
x , B

(n)
z , B

(n+Mz)
x , and

B
(n+Mx)
z are positioned at the center of the edges of the facet and each component

points the tangential directions to the surface.

• The y component of electric current density J
(n)
ey is positioned at the center of the

material cell m(n). Similarly, J
(n+Mx)
ey , J

(n+Mz)
ey , and J

(n+Mx+Mz)
ey are positioned at the

center of corresponding material cells.
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Figure 3.2: Allocation of the discrete electromagnetic field components Bx, Bz, and Ay assigned to the
global grid node (n) in 2-D case in cartesian coordinates.

3.4 Derivation of the Discrete Grid Equation in Carte-

sian Coordinates in 2-D case

The discrete grid equation in cartesian coordinates can be computed by discretizing the
governing equation Eq. (3.1) using the following steps:

1. The line integral contains a curl operator which can be computed in the cartesian
coordinates as:

∇×Am(R, ω) =

[
∂Az(ω)

∂y
− ∂Ay(ω)

∂z

]
ex +

[
∂Ax(ω)

∂z
− ∂Az(ω)

∂x

]
ey

+

[
∂Ay(ω)

∂x
− ∂Ax(ω)

∂y

]
ez . (3.4)

As we are computing in xz plane and are considering only the y component of magnetic
vector potential, The curl operator can be reduced to

∇×Am(R, ω) =− ∂Ay(ω)

∂z
ex +

∂Ay(ω)

∂x
ez . (3.5)
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2. Furthermore, the line integral can be divided into four parts, named as: ‘Up’, ‘down’,
‘Left’, and ‘Right’ integral, which results

w

C(u)

[ν(R)∇×Am(R, ω)] ·dR =
w

C(u)

ν(u)

[
−∂Ay(ω)

∂z
ex +

∂Ay(ω)

∂x
ez

]
· exdx

⇒
w

C(u)

[ν(R) B(R, ω)] ·dR =
w

C(u)

ν(u)

[
− ∂Ay(ω)

∂z

]
dx . (3.6)

w

C(d)

[ν(R)∇×Am(R, ω)] ·dR =
w

C(d)

ν(d)

[
−∂Ay(ω)

∂z
ex +

∂Ay(ω)

∂x
ez

]
· exdx

⇒
w

C(d)

[ν(R) B(R, ω)] ·dR =
w

C(d)

ν(d)

[
− ∂Ay(ω)

∂z

]
dx . (3.7)

w

C(l)

[ν(R)∇×Am(R, ω)] ·dR =
w

C(l)

ν(l)

[
−∂Ay(ω)

∂z
ex +

∂Ay(ω)

∂x
ez

]
· ezdz

⇒
w

C(l)

[ν(R) B(R, ω)] ·dR =
w

C(l)

ν(l)

[
+
∂Ay(ω)

∂x

]
dz . (3.8)

w

C(r)

[ν(R)∇×Am(R, ω)] ·dR =
w

C(r)

ν(r)

[
−∂Ay(ω)

∂z
ex +

∂Ay(ω)

∂x
ez

]
· ezdz

⇒
w

C(r)

[ν(R) B(R, ω)] ·dR =
w

C(r)

ν(r)

[
+
∂Ay(ω)

∂x

]
dz . (3.9)

3. The component A
(n)
y is positioned in the center of the integration cell I

(n)
Ay

. By using
the right-hand rule, the line integral can be shown as a sum of these four integrals as

z

C=∂S

[ν(R)∇×Am((R, ω)] ·dR

=
w

C(d)

[ν(R) B(R, ω)] ·dR −
w

C(u)

[ν(R) B(R, ω)] ·dR

+
w

C(l)

[ν(R) B(R, ω)] ·dR −
w

C(r)

[ν(R) B(R, ω)] ·dR

=
w

C(d)

ν(d)B(d)
x (ω) dx−

w

C(u)

ν(u)B(u)
x (ω) dx+

w

C(l)

ν(l)B(l)
z (ω) dz −

w

C(r)

ν(r)B(r)
z (ω) dz .

(3.10)

4. The cells are considered to be quadratic and therefore, ∆z = ∆x.

5. The other two integrals of Eq. (3.1) are surface integrals and can be computed directly.
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6. Average values of material parameters ν(R) and σe(R) should be taken while comput-
ing the integrals.

Up: Fig. 3.3a shows the upper part of the integration cell I
(n)
Ay

. We can write from Eq. (3.6)
that

w

C(u)

ν(u)B(u)
x (ω) dx=

w

C(u)

ν(n) + ν(n+Mx)

2
B(n)
x (ω) dx

=
ν(n) + ν(n+Mx)

2

[
A(n−Mz)
y (ω)− A(n)

y (ω)

∆z(n)

]
∆x(n) +O

[
(∆x)3]

≈ ν
(n) + ν(n+Mx)

2

[
A(n−Mz)
y (ω)− A(n)

y (ω)
] ∆x

∆z

= ν
(n)
Hx

[
A(n−Mz)
y (ω)− A(n)

y (ω)
]
, (3.11)

where ν
(n)
Hx

will be computed by averaging the magnetic impermeability of the cells m(n) and

m(n+Mx) as

ν
(n)
Hx

=
ν(n) + ν(n+Mx)

2
. (3.12)

Down: The lower part of the integration cell I
(n)
Ay

(Fig. 3.3b) will be considered here.

a)

b)

A
(n−Mz)
y

A
(n)
y

A
(n+Mz)
y

A
(n)
y

∆x

∆z

∆z

ν(n)

σ
(n)
e

ν(n+Mz)

σ
(n+Mz)
e

ν(n+Mx)

σ
(n+Mx)
e

ν(n+Mx+Mz)

σ
(n+Mx+Mz)
e

B
(n)
x

B
(n+Mz)
x

Figure 3.3: a) Upper part and b) lower part of the integration cell I(n)
Ay

.
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Eq. (3.7) can be re-written as

w

C(d)

ν(d)B(d)
x (ω) dx=

w

C(d)

ν(n+Mz) + ν(n+Mx+Mz)

2
B(n+Mz)
x (ω) dx

=
ν(n+Mz) + ν(n+Mx+Mz)

2

[
A(n)
y (ω)− A(n+Mz)

y (ω)

∆z(n+Mz)

]
∆x(n+Mz) +O

[
(∆x)3]

≈ ν
(n+Mz) + ν(n+Mx+Mz)

2

[
A(n)
y (ω)− A(n+Mz)

y (ω)
] ∆x

∆z

= ν
(n+Mz)
Hx

[
A(n)
y (ω)− A(n+Mz)

y (ω)
]
, (3.13)

where the magnetic impermeability of the cells m(n+Mz) and m(n+Mx+Mz) will be averaged to
compute ν

(n+Mz)
Hx

as

ν
(n+Mz)
Hx

=
ν(n+Mz) + ν(n+Mx+Mz)

2
. (3.14)

Left: Let us now consider the left part of the integration cell (Fig. 3.4a). We can show from
Eq. (3.8) that

w

C(l)

ν(l)B(l)
z (ω) dz=

w

C(l)

ν(n) + ν(n+Mz)

2
B(n)
z (ω) dz

=
ν(n) + ν(n+Mz)

2

[
A(n)
y (ω)− A(n−Mx)

y (ω)

∆x(n)

]
∆z(n) +O

[
(∆z)3]

≈ ν
(n) + ν(n+Mz)

2

[
A(n)
y (ω)− A(n−Mx)

y (ω)
] ∆z

∆x

= ν
(n)
Hz

[
A(n)
y (ω)− A(n−Mx)

y (ω)
]
, (3.15)

where ν
(n)
Hz

will be computed by averaging the magnetic impermeability of the cells m(n) and

m(n+Mz) as

ν
(n)
Hz

=
ν(n) + ν(n+Mz)

2
. (3.16)

Right: The right part of the line integral can be realized from Fig. 3.4b. Rearranging
Eq. (3.9) yields

w

C(r)

ν(r)B(r)
z (ω) dz=

w

C(r)

ν(n+Mx) + ν(n+Mx+Mz)

2
B(n+Mx)
z (ω) dz

=
ν(n+Mx) + ν(n+Mx+Mz)

2

[
A(n+Mx)
y (ω)− A(n)

y (ω)

∆x(n+Mx)

]
∆z(n+Mx) +O

[
(∆z)3]

≈ ν
(n+Mx) + ν(n+Mx+Mz)

2

[
A(n+Mx)
y (ω)− A(n)

y (ω)
] ∆x

∆z

= ν
(n+Mx)
Hz

[
A(n+Mx)
y (ω)− A(n)

y (ω)
]
, (3.17)
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a) b)
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σ
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Figure 3.4: a) Left part and b) right part of the integration cell I(n)
Ay

.

where the magnetic impermeability of the cells m(n+Mx) and m(n+Mx+Mz) will be averaged
to compute ν

(n+Mx)
Hz

as

ν
(n+Mx)
Hz

=
ν(n+Mx) + ν(n+Mx+Mz)

2
. (3.18)

Using Eq. (3.10) we can sum up all the parts to compute the local grid equation for the

integration cell I
(n)
Ay

as:

z

C=∂S

[ν(R)∇×Am(R, ω)] ·dR

=
w

C(d)

ν(d)B(d)
x (ω) dx−

w

C(u)

ν(u)B(u)
x (ω) dx+

w

C(l)

ν(l)B(l)
z (ω) dz −

w

C(r)

ν(r)B(r)
z (ω) dz

= ν
(n+Mz)
Hx

[
A(n)
y (ω)− A(n+Mz)

y (ω)
]
− ν(n)

Hx

[
A(n−Mz)
y (ω)− A(n)

y (ω)
]

+ ν
(n)
Hz

[
A(n)
y (ω)− A(n−Mx)

y (ω)
]
− ν(n+Mx)

Hz

[
A(n+Mx)
y (ω)− A(n)

y (ω)
]

= − ν
(n)
Hx
A(n−Mz)
y (ω)− ν(n)

Hz
A(n−Mx)
y (ω)− ν(n+Mx)

Hz
A(n+Mx)
y (ω)− ν(n+Mz)

Hx
A(n+Mz)
y (ω)

+
[
ν

(n)
Hx

+ ν
(n+Mz)
Hx

+ ν
(n)
Hz

+ ν
(n+Mx)
Hz

]
A(n)
y (ω) . (3.19)

Now let us compute the first surface integral. The electric conductivity at node n will be
computed by averaging the values of surrounding cells as:

σ̃(n) =
1

4

[
σ(n) + σ(n+Mx) + σ(n+Mz) + σ(n+Mx+Mz)

]
. (3.20)
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Using the average electric conductivity σ̃(n) the first surface integral of Eq. (3.1) can be
written as:

x

S

jω σe(R) Am(R, ω) ·dS = jω
x

S

σ̃(n)A(n)
y (ω) ey · ey dS

= jω σ̃(n)A(n)
y (ω) ∆x∆z +O

[
(∆x)3∆z + (∆z)3∆x

]

≈ jω σ̃(n)A(n)
y (ω) (∆x)2 , (3.21)

by assuming ∆x = ∆z which results dS = (∆x)2. The second surface integral of Eq. (3.1)
can be computed in the similar way.

x

S

Jimp
e (R, ω) ·dS =

x

S

J (n)
ey (ω) ey · ey dS = J (n)

ey (ω) ∆x∆z +O
[
(∆x)3∆z + (∆z)3∆x

]

≈ J (n)
ey (ω) (∆x)2 . (3.22)

Inserting Eqs. (3.19)-(3.22) in Eq. (3.1) yields,

−ν(n)
Hx
A(n−Mz)
y − ν(n)

Hz
A(n−Mx)
y − ν(n+Mx)

Hz
A(n+Mx)
y − ν(n+Mz)

Hx
A(n+Mz)
y

+
[
ν

(n)
Hx

+ ν
(n+Mz)
Hx

+ ν
(n)
Hz

+ ν
(n+Mx)
Hz

]
A(n)
y − jω σ̃(n)A(n)

y (∆x)2 = J (n)
ey (∆x)2 . (3.23)

Rearranging Eq. (3.23) delivers

−ν(n)
Hx
A(n−Mz)
y − ν(n)

Hz
A(n−Mx)
y +

[
ν

(n)
Hx

+ ν
(n+Mz)
Hx

+ ν
(n)
Hz

+ ν
(n+Mx)
Hz

− jω σ̃(n)(∆x)2
]
A(n)
y − ν(n+Mx)

Hz
A(n+Mx)
y − ν(n+Mz)

Hx
A(n+Mz)
y = J (n)

ey (∆x)2 .(3.24)

Introducing the shift operator S±Mi
and the identity operator I we obtain

{
− ν(n)

Hx
S−Mz − ν(n)

Hz
S−Mx +

[
ν

(n)
Hx

+ ν
(n+Mz)
Hx

+ ν
(n)
Hz

+ ν
(n+Mx)
Hz

− jω σ̃(n)(∆x)2
]
I

−ν(n+Mx)
Hz

SMx − ν(n+Mz)
Hx

SMz

}
A(n)
y = J (n)

ey (∆x)2 . (3.25)

The final equation can be written in the form

{
t1(n) S−Mz + s1(n) S−Mx +

[
d1(n) + d2(n)

]
I + s2(n) S+Mx + t2(n) S+Mz

}
x(n) = b(n) ,(3.26)
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with the coefficients

t1(n) =−ν(n)
Hx

(3.27)

s1(n) =−ν(n)
Hz

(3.28)

d1(n) = ν
(n)
Hx

+ ν
(n+Mz)
Hx

+ ν
(n)
Hz

+ ν
(n+Mx)
Hz

(3.29)

d2(n) =− jω σ̃(n)(∆x)2 (3.30)

s2(n) =−ν(n+Mx)
Hz

(3.31)

t2(n) =−ν(n+Mz)
Hx

(3.32)

x(n) = A(n)
y (3.33)

b(n) = J (n)
ey (∆x)2 . (3.34)

3.5 Discrete Field Quantities in Cylindrical Coordi-

nates in 2-D case

The discrete field quantities in cylindrical coordinates can be computed in the similar way
as in cartesian coordinates. We have to consider the following few changes in this case:

• The simulation will be performed in rz plane, instead of xz plane.

• The unknown field quantity is Aϕ.

• The left and right integrals of Eq. (3.15) and Eq. (3.17) will contain extra coefficients,
as the curl operator in cylindrical coordinates differs from that in the cartesian coor-
dinates.

Fig. 3.5 shows the integration cell I
(n)
Aϕ

for 2-D case. The allocation of the field quantities is
listed below:

• The ϕ component of magnetic vector potential Aϕ is positioned at the corners of the
material cells and point the normal direction of the rz plane.

• The r and z components of the magnetic flux density vector B
(n)
r , B

(n)
z , B

(n+Mz)
r , and

B
(n+Mr)
z are positioned at the center of the edges of the facet and each component

points the tangential directions to the surface.

• The ϕ component of electric current density J
(n)
eϕ is positioned at the center of the

material cell m(n).
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Figure 3.5: Allocation of the discrete electromagnetic field components Br, Bz, and Aϕ assigned to the
global grid node (n) in 2-D case in cylindrical coordinates.

3.6 Derivation of the Discrete Grid Equation in Cylin-

drical Coordinates in 2-D case

We can determine the discrete grid equation in cylindrical coordinates by discretizing the
governing equation Eq. (3.1) using the following steps:

1. The curl operator of the line integral can be computed in the cylindrical coordinates
as:

∇×Am(R, ω) =

[
1

r

∂Az(ω)

∂ϕ
− ∂Aϕ(ω)

∂z

]
er +

[
∂Ar(ω)

∂z
− ∂Az(ω)

∂r

]
eϕ

+
1

r

[
∂(r Aϕ(ω))

∂r
− ∂Ar(ω)

∂ϕ

]
ez . (3.35)

As the rz plane is the computation plane, magnetic vector potential has only the ϕ
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component and therefore, the curl operator can be reduced to

∇×Am(R, ω) = − ∂Aϕ(ω)

∂z
er +

1

r

∂(r Aϕ(ω))

∂r
ez . (3.36)

2. The line integral of of Eq. (3.1) can be divided into ‘Up’, ‘Down’, ‘Left’, and ‘Right’
integrals, that results

w

C(u)

[ν(R)∇×Am(R, ω)] ·dR =
w

C(u)

ν(u)

[
− ∂Aϕ(ω)

∂z
er +

1

r

∂(r Aϕ(ω))

∂r
ez

]
· er dr

⇒
w

C(u)

[ν(R) B(R, ω)] ·dR =
w

C(u)

ν(u)

[
− ∂Aϕ(ω)

∂z

]
dr . (3.37)

w

C(d)

[ν(R)∇×Am(R, ω)] ·dR =
w

C(d)

ν(d)

[
− ∂Aϕ(ω)

∂z
er +

1

r

∂(r Aϕ(ω))

∂r
ez

]
· er dr

⇒
w

C(d)

[ν(R) B(R, ω)] ·dR =
w

C(d)

ν(d)

[
− ∂Aϕ(ω)

∂z

]
dr . (3.38)

w

C(l)

[ν(R)∇×Am(R, ω)] ·dR =
w

C(l)

ν(l)

[
− ∂Aϕ(ω)

∂z
er +

1

r

∂(r Aϕ(ω))

∂r
ez

]
· ez dz

⇒
w

C(l)

[ν(R) B(R, ω)] ·dR =
w

C(l)

ν(l)

[
1

r

∂(r Aϕ(ω))

∂r

]
dz . (3.39)

w

C(r)

[ν(R)∇×Am(R, ω)] ·dR =
w

C(r)

ν(r)

[
− ∂Aϕ(ω)

∂z
er +

1

r

∂(r Aϕ(ω))

∂r
ez

]
· ez dz

⇒
w

C(r)

[ν(R) B(R, ω)] ·dR =
w

C(r)

ν(r)

[
1

r

∂(r Aϕ(ω))

∂r

]
dz . (3.40)

3. A
(n)
ϕ is positioned in the center of the integration cell I

(n)
Aϕ

. The line integral of Eq. (3.1)
can be computed as a sum of these four integrals as

z

C=∂S

[ν(R)∇×Am((R, ω)] ·dR

=
w

C(d)

[ν(R) B(R, ω)] ·dR −
w

C(u)

[ν(R) B(R, ω)] ·dR

+
w

C(l)

[ν(R) B(R, ω)] ·dR −
w

C(r)

[ν(R) B(R, ω)] ·dR

=
w

C(d)

ν(d)B(d)
r (ω) dr −

w

C(u)

ν(u)B(u)
r (ω) dr +

w

C(l)

ν(l)B(l)
z (ω) dz −

w

C(r)

ν(r)B(r)
z (ω) dz .

(3.41)



3.6. Derivation of the Discrete Grid Equation in Cylindrical Coordinates in 2-D case 37

4. Quadratic cells are taken here for ease of discretization, i.e., ∆z = ∆r.

5. The surface integrals of Eq. (3.1) can be computed directly.

6. Average values of material parameters ν(R) and σe(R) should be taken while comput-
ing the integrals.

Up: The upper part can be computed by rearranging Eq. (3.37) as

w

C(u)

ν(u)B(u)
r (ω) dr=

w

C(u)

ν(n) + ν(n+Mr)

2

[
− ∂Aϕ(ω)

∂z

]
dr

=
ν(n) + ν(n+Mr)

2

[
A(n−Mz)
ϕ (ω)− A(n)

ϕ (ω)

∆z(n)

]
∆r(n) +O

[
(∆r)3]

≈ ν
(n) + ν(n+Mr)

2

[
A(n−Mz)
ϕ (ω)− A(n)

ϕ (ω)
] ∆r

∆z

= ν
(n)
Hr

[
A(n−Mz)
ϕ (ω)− A(n)

ϕ (ω)
]
, (3.42)

where ν
(n)
Hr

will be computed by averaging the magnetic impermeability of the cells m(n) and

m(n+Mr) as

ν
(n)
Hr

=
ν(n) + ν(n+Mr)

2
. (3.43)

Down: The lower part of the integration cell I
(n)
Aϕ

can be computed using Eq. (3.38) as

w

C(d)

ν(d)B(d)
r (ω) dr=

w

C(d)

ν(n+Mz) + ν(n+Mr+Mz)

2

[
− ∂Aϕ(ω)

∂z

]
dr

=
ν(n+Mz) + ν(n+Mr+Mz)

2

[
A(n)
ϕ (ω)− A(n+Mz)

ϕ (ω)

∆z(n+Mz)

]
∆r(n+Mz) +O

[
(∆r)3]

≈ ν
(n+Mz) + ν(n+Mr+Mz)

2

[
A(n)
ϕ (ω)− A(n+Mz)

ϕ (ω)
] ∆r

∆z

= ν
(n+Mz)
Hr

[
A(n)
ϕ (ω)− A(n+Mz)

ϕ (ω)
]
, (3.44)

where the magnetic impermeability of the cells m(n+Mz) and m(n+Mr+Mz) will be averaged to
compute ν

(n+Mz)
Hr

as

ν
(n+Mz)
Hx

=
ν(n+Mz) + ν(n+Mr+Mz)

2
. (3.45)
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Left: Let us now rearrange Eq. (3.39) to compute the left part as

w

C(l)

ν(l)B(l)
z (ω) dz=

w

C(l)

ν(n) + ν(n+Mz)

2

[
1

r

∂(r Aϕ(ω))

∂r

]
dz

=
ν(n) + ν(n+Mz)

2 r(n− 1
2
Mr)

[
r(n)A(n)

ϕ (ω)− r(n−Mr)A(n−Mr)
ϕ (ω)

∆r(n)

]
∆z(n) +O

[
(∆z)3]

≈ ν(n)
Hz

[
r(n)

r(n− 1
2
Mr)

A(n)
ϕ (ω)− r(n−Mr)

r(n− 1
2
Mr)

A(n−Mr)
ϕ (ω)

]
∆z

∆r

= ν
(n)
Hz

[
r(n)

r(n− 1
2
Mr)

A(n)
ϕ (ω)− r(n−Mr)

r(n− 1
2
Mr)

A(n−Mr)
ϕ (ω)

]
, (3.46)

where ν
(n)
Hz

will be computed by averaging the magnetic impermeability of the cells m(n) and

m(n+Mz) as

ν
(n)
Hz

=
ν(n) + ν(n+Mz)

2
. (3.47)

Right: The right part of the line integral can be computed using Eq. (3.40) as

w

C(r)

ν(r)B(r)
z (ω) dz=

w

C(r)

ν(n+Mr) + ν(n+Mr+Mz)

2

[
1

r

∂(r Aϕ(ω))

∂r

]
dz

=
ν(n+Mr) + ν(n+Mr+Mz)

2 r(n+ 1
2
Mr)

[
r(n+Mr)A(n+Mr)

ϕ (ω)− r(n)A(n)
ϕ (ω)

∆r(n+Mr)

]
∆z(n+Mr)

+O
[
(∆z)3]

≈ ν(n+Mr)
Hz

[
r(n+Mr)

r(n+ 1
2
Mr)

A(n+Mr)
ϕ (ω)− r(n)

r(n+ 1
2
Mr)

A(n)
ϕ (ω)

]
∆z

∆r

= ν
(n+Mr)
Hz

[
r(n+Mr)

r(n+ 1
2
Mr)

A(n+Mr)
ϕ (ω)− r(n)

r(n+ 1
2
Mr)

A(n)
ϕ (ω)

]
, (3.48)

where the magnetic impermeability of the cells m(n+Mr) and m(n+Mr+Mz) will be averaged to
compute ν

(n+Mr)
Hz

as

ν
(n+Mr)
Hz

=
ν(n+Mr) + ν(n+Mr+Mz)

2
. (3.49)
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Using Eq. (3.41) we can sum up all the parts to compute the line integral for the integration

cell I
(n)
Aϕ

as:

z

C=∂S

[ν(R)∇×Am(R, ω)] ·dR

=
w

C(d)

ν(d)B(d)
r (ω) dr −

w

C(u)

ν(u)B(u)
r (ω) dr +

w

C(l)

ν(l)B(l)
z (ω) dz −

w

C(r)

ν(r)B(r)
z (ω) dz

= ν
(n+Mz)
Hr

[
A(n)
ϕ (ω)− A(n+Mz)

ϕ (ω)
]
− ν(n)

Hr

[
A(n−Mz)
ϕ (ω)− A(n)

ϕ (ω)
]

+ ν
(n)
Hz

[
r(n)

r(n− 1
2
Mr)

A(n)
ϕ (ω)− r(n−Mr)

r(n− 1
2
Mr)

A(n−Mr)
ϕ (ω)

]

− ν
(n+Mr)
Hz

[
r(n+Mr)

r(n+ 1
2
Mr)

A(n+Mr)
ϕ (ω)− r(n)

r(n+ 1
2
Mr)

A(n)
ϕ (ω)

]

= − ν
(n)
Hr
A(n−Mz)
ϕ (ω)− ν

(n)
Hz

r(n−Mr)

r(n− 1
2
Mr)

A(n−Mr)
ϕ (ω)

− ν
(n+Mr)
Hz

r(n+Mr)

r(n+ 1
2
Mr)

A(n+Mr)
ϕ (ω)− ν

(n+Mz)
Hr

A(n+Mz)
ϕ (ω)

+

[
ν

(n)
Hr

+ ν
(n+Mz)
Hr

+ ν
(n)
Hz

r(n)

r(n− 1
2
Mr)

+ ν
(n+Mr)
Hz

r(n)

r(n+ 1
2
Mr)

]
A(n)
ϕ (ω) . (3.50)

The first surface integral of Eq. (3.1) contains electric conductivity σe, which will be com-
puted at node n by averaging the values of surrounding cells as:

σ̃(n) =
1

4

[
σ(n) + σ(n+Mr) + σ(n+Mz) + σ(n+Mr+Mz)

]
. (3.51)

Using the average electric conductivity σ̃(n) we can compute the first surface integral as:

x

S

jω σe(R) Am(R, ω) ·dS = jω
x

S

σ̃(n)A(n)
ϕ (ω) eϕ · eϕ dS

= jω σ̃(n)A(n)
ϕ (ω) ∆r∆z +O

[
(∆r)3∆z + (∆z)3∆r

]

≈ jω σ̃(n)A(n)
ϕ (ω) (∆r)2 , (3.52)

where the grid cells are assumed to be quadratic, that results ∆r = ∆z and dS = (∆r)2.
The second surface integral of Eq. (3.1) can be computed in the similar way.

x

S

Jimp
e (R, ω) ·dS =

x

S

J (n)
eϕ (ω) eϕ · eϕ dS = J (n)

eϕ (ω) ∆r∆z +O
[
(∆r)3∆z + (∆z)3∆r

]

≈ J (n)
eϕ (ω) (∆r)2 . (3.53)
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Inserting Eqs. (3.50)-(3.53) in Eq. (3.1) yields,

− ν
(n)
Hr
A(n−Mz)
ϕ − ν

(n)
Hz

r(n−Mr)

r(n− 1
2
Mr)

A(n−Mr)
ϕ − ν

(n+Mr)
Hz

r(n+Mr)

r(n+ 1
2
Mr)

A(n+Mr)
ϕ

− ν
(n+Mz)
Hr

A(n+Mz)
ϕ +

[
ν

(n)
Hr

+ ν
(n+Mz)
Hr

+ ν
(n)
Hz

r(n)

r(n− 1
2
Mr)

+ ν
(n+Mr)
Hz

r(n)

r(n+ 1
2
Mr)

]
A(n)
ϕ

− jω σ̃(n)A(n)
ϕ (∆x)2 = J (n)

eϕ (∆r)2 . (3.54)

Eq. (3.54) can be rewritten as

− ν
(n)
Hr
A(n−Mz)
ϕ − ν

(n)
Hz

r(n−Mr)

r(n− 1
2
Mr)

A(n−Mr)
ϕ

+

[
ν

(n)
Hr

+ ν
(n+Mz)
Hr

+ ν
(n)
Hz

r(n)

r(n− 1
2
Mr)

+ ν
(n+Mr)
Hz

r(n)

r(n+ 1
2
Mr)
− jω σ̃(n) (∆x)2

]
A(n)
ϕ

− ν
(n+Mr)
Hz

r(n+Mr)

r(n+ 1
2
Mr)

A(n+Mr)
ϕ − ν

(n+Mz)
Hr

A(n+Mz)
ϕ = J (n)

eϕ (∆r)2 . (3.55)

Using the shift operator S±Mi
and the identity operator I we can rearrange Eqs. (3.55) as

following

{
− ν

(n)
Hr
S−Mz − ν

(n)
Hz

r(n−Mr)

r(n− 1
2
Mr)
S−Mr

+

[
ν

(n)
Hr

+ ν
(n+Mz)
Hr

+ ν
(n)
Hz

r(n)

r(n− 1
2
Mr)

+ ν
(n+Mr)
Hz

r(n)

r(n+ 1
2
Mr)
− jω σ̃(n) (∆x)2

]
I

− ν
(n+Mr)
Hz

r(n+Mr)

r(n+ 1
2
Mr)
S+Mr − ν

(n+Mz)
Hr

S+Mz

}
A(n)
ϕ = J (n)

eϕ (∆r)2 . (3.56)

The final grid equation can be written in the form

{
t1(n) S−Mz + s1(n) S−Mr +

[
d1(n) + d2(n)

]
I + s2(n) S+Mr + t2(n) S+Mz

}
x(n) = b(n) ,

(3.57)

where the coefficients can be computed as following

t1(n) =−ν(n)
Hr

(3.58)

s1(n) =−ν(n)
Hz

r(n−Mr)

r(n− 1
2
Mr)

(3.59)

d1(n) = ν
(n)
Hr

+ ν
(n+Mz)
Hr

+ ν
(n)
Hz

r(n)

r(n− 1
2
Mr)

+ ν
(n+Mr)
Hz

r(n)

r(n+ 1
2
Mr)

(3.60)
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d2(n) =− jω σ̃(n)(∆r)2 (3.61)

s2(n) =−ν(n+Mr)
Hz

r(n+Mr)

r(n+ 1
2
Mr)

(3.62)

t2(n) =−ν(n+Mz)
Hr

(3.63)

x(n) = A(n)
ϕ (3.64)

b(n) = J (n)
eϕ (∆r)2 . (3.65)

3.7 Boundary Conditions

Fig. 3.6 shows the simulation plane rz in cylindrical coordinates, which is discretized by
Nr × Nz nodes. The coefficients t1, t2, s1, s2, d1 and d2 are computed at each node of
the simulation plane using Eqs. (3.58)-(3.63). Before forming a band matrix from these

r

z

Aϕ = 0

Aϕ = 0

Aϕ = 0 Aϕ = 0

(Nr, 1)

(Nr, Nz)(1, Nz)

(1, 1)

Figure 3.6: PEC boundary condition on a FIT cell.

coefficients to solve the final grid equation, the boundary condition should be implemented
which can be

• perfectly electric conducting (PEC)

• perfectly matched layer (PML)

The perfectly electric conducting (PEC) boundary condition is considered here. From the
transition condition described in Eq. (3.3) we know that

n ·Am(R, ω) = continuous

⇒ n ·
[
A(2)

m (R, ω)−A(1)
m (R, ω)

]
= 0 . (3.66)
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At the material boundary Eq. (3.66) can be rewritten as

n · [∇×Am(R, ω)] = 0 . (3.67)

As our simulation domain resides in rz plane, the normal vector n = eϕ and hence,

eϕ ×Am(R, ω) = 0

⇒ Aϕ(R, ω) = 0 , (3.68)

The PEC boundary condition is applied to the outermost nodes (marked red), and therefore,
the computation region will be reduced to (Nr − 1)× (Nz − 1). Let us now discuss the top,
bottom, left and right boundaries individually.

Top Boundary: Fig. 3.7a shows the top side of the simulation domain. As Aϕ(nr,1) = 0,

a) b)Aϕ = 0

A
(n−Mz)
ϕ

A
(n−Mr)
ϕ A

(n)
ϕ A

(n+Mr)
ϕ

A
(n−Mz)
ϕ

Aϕ = 0

A
(n−Mz)
ϕ

A
(n)
ϕ

A
(n+Mz)
ϕ

A
(n−Mr)
ϕ A

(n+Mr)
ϕ

Figure 3.7: PEC boundary condition on the a) top and b) bottom of the simulation domain.

the discrete grid equation (Eq. (3.55)) can be rewritten by setting Aϕ(n−Mz) = 0 as

− ν
(n)
Hz

r(n−Mr)

r(n− 1
2
Mr)

A(n−Mr)
ϕ +

[
ν

(n)
Hr

+ ν
(n+Mz)
Hr

+ ν
(n)
Hz

r(n)

r(n− 1
2
Mr)

+ ν
(n+Mr)
Hz

r(n)

r(n+ 1
2
Mr)

− jω σ̃(n) (∆x)2
]
A(n)
ϕ − ν

(n+Mr)
Hz

r(n+Mr)

r(n+ 1
2
Mr)

A(n+Mr)
ϕ − ν

(n+Mz)
Hr

A(n+Mz)
ϕ = J (n)

eϕ (∆r)2

(3.69)

⇒
{
s1(n) S−Mr +

[
d1(n) + d2(n)

]
I + s2(n) S+Mr + t2(n) S+Mz

}
x(n) = b(n) .

(3.70)

The coefficients can be computed using Eqs. (3.59)-(3.65) as mentioned in Sec. 3.6.
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Bottom Boundary: The bottom side of the simulation domain is shown in Fig. 3.7b.
The boundary condition leads to Aϕ(nr,Nz) = 0 and therefore, the discrete grid equation
(Eq. (3.55)) can be rewritten by setting Aϕ(n+Mz) = 0 as

− ν
(n)
Hr
A(n−Mz)
ϕ − ν

(n)
Hz

r(n−Mr)

r(n− 1
2
Mr)

A(n−Mr)
ϕ +

[
ν

(n)
Hr

+ ν
(n+Mz)
Hr

+ ν
(n)
Hz

r(n)

r(n− 1
2
Mr)

+ ν
(n+Mr)
Hz

r(n)

r(n+ 1
2
Mr)
− jω σ̃(n) (∆x)2

]
A(n)
ϕ − ν

(n+Mr)
Hz

r(n+Mr)

r(n+ 1
2
Mr)

A(n+Mr)
ϕ = J (n)

eϕ (∆r)2

(3.71)

⇒
{
t1(n) S−Mz + s1(n) S−Mr +

[
d1(n) + d2(n)

]
I + s2(n) S+Mr

}
x(n) = b(n) . (3.72)

Left Boundary: The effect of PEC boundary condition at the left side of the simulation

a) b)

Aϕ = 0
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Figure 3.8: PEC boundary condition on the a) left side and b) right side of the simulation domain.

domain is shown in Fig. 3.8a. On the left boundary Aϕ(1, nz) = 0 and therefore, the discrete
grid equation (Eq. (3.55)) can be rewritten by setting Aϕ(n−Mr) = 0 as

− ν
(n)
Hr
A(n−Mz)
ϕ +

[
ν

(n)
Hr

+ ν
(n+Mz)
Hr

+ ν
(n)
Hz

r(n)

r(n− 1
2
Mr)

+ ν
(n+Mr)
Hz

r(n)

r(n+ 1
2
Mr)

− jω σ̃(n) (∆x)2
]
A(n)
ϕ − ν

(n+Mr)
Hz

r(n+Mr)

r(n+ 1
2
Mr)

A(n+Mr)
ϕ − ν

(n+Mz)
Hr

A(n+Mz)
ϕ = J (n)

eϕ (∆r)2

(3.73)

⇒
{
t1(n) S−Mz +

[
d1(n) + d2(n)

]
I + s2(n) S+Mr + t2(n) S+Mz

}
x(n) = b(n) . (3.74)
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Right Boundary: The right side of the simulation domain is shown in Fig. 3.8b. The bound-
ary condition results Aϕ(Nr,nz) = 0 and therefore, the discrete grid equation (Eq. (3.55)) can
be rewritten by setting Aϕ(n+Mr) = 0 as

− ν
(n)
Hr
A(n−Mz)
ϕ − ν

(n)
Hz

r(n−Mr)

r(n− 1
2
Mr)

A(n−Mr)
ϕ +

[
ν

(n)
Hr

+ ν
(n+Mz)
Hr

+ ν
(n)
Hz

r(n)

r(n− 1
2
Mr)

+ ν
(n+Mr)
Hz

r(n)

r(n+ 1
2
Mr)
− jω σ̃(n) (∆x)2

]
A(n)
ϕ − ν

(n+Mz)
Hr

A(n+Mz)
ϕ = J (n)

eϕ (∆r)2

(3.75)

⇒
{
t1(n) S−Mz + s1(n) S−Mr +

[
d1(n) + d2(n)

]
I + t2(n) S+Mz

}
x(n) = b(n) . (3.76)

3.8 Formation of a Band Matrix

A typical LU decomposition is showed in Fig. 3.9. Now let us take the final grid equation in

[A] =




..................................................................................................................................................................................................................................................................................................................................................................................................................

[L]

..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..............................................................................................................................................................................................................................
[D]..............................................................................................................................................................................................................................

..................................................................................................................................................................................................................................................................................................................................................................................................................

[U]






= [L] + [D] + [U]
[L] : lower matrix
[D] : diagonal matrix
[U] : upper matrix

Figure 3.9: 2-D case in the rz plane: decomposition of the matrix [A] into 5 bands

cylindrical coordinates. Using the shift operator S±Mi
and the identity operator I, we can

form a band matrix from Eq. (3.57) by taking the following steps:

• The computation region is (Nr − 1)× (Nz − 1). The coefficients t1, t2, s1, s2, d1, d2
and b are computed for each node.

• The main diagonal of [A] correspond to the coefficients d1 and d2 with identity operator
I, and therefore, it contains N ′ = (Nr − 1)× (Nz − 1) values.

• t1 and t2 correspond to the first lower band LM1 and the second lower band LM2
respectively. The shift operator S±Mr = 1 and S±Mz = Nr. Using these values of the
shift operators LM1 and LM2 are positioned as shown in Fig. 3.10, where LM1 and
LM2 have N ′ − 1 and N ′ −Nr components respectively.

• Similarly s1 and s2 correspond to the first upper band UM1 and the second upper band
UM2 respectively. UM1 and UM2 contain N ′−1 and N ′−Nr components respectively,
and are positioned as shown in Fig. 3.10.
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[A] =




.................
LM2..............................................................................................................................................................................................................................

............................................................................................................................................
LM1..............................................................................................................................................................................................................................

..............................................................................................................................................................................................................................
DM..............................................................................................................................................................................................................................

..............................................................................................................................................................................................................................
UM1...............................................................................................................................................

..............................................................................................................................................................................................................................
UM2........................

Mr................................................................................ ....................... .......................................................................................................
Mz...................................................................................................................................................................... ....................... .............................................................................................................................................................................................




LM2 : 2nd lower band
LM1 : 1st lower band
DM : diagonal band
UM1 : 1st upper band
UM2 : 2nd upper band

Figure 3.10: 2-D case in the rz plane: formation of bandmatrx

We can rewrite Eq. (3.57) following these steps as
{
LM2(n) S−Mz + LM1(n) S−Mr + DM(n) I + UM1(n) SMr + UM2(n) SMz

}
x(n) = b(n) , (3.77)

with the normalized coefficients

DM(n) =
d1(n) + d2(n)

d1(n) + d2(n)
= 1 . (3.78)

LM2(n) =
t1(n)

t1(n) + s1(n) + s2(n) + t2(n) + d2(n)
. (3.79)

LM1(n) =
s1(n)

t1(n) + s1(n) + s2(n) + t2(n) + d2(n)
. (3.80)

UM1(n) =
s2(n)

t1(n) + s1(n) + s2(n) + t2(n) + d2(n)
. (3.81)

UM2(n) =
t2(n)

t1(n) + s1(n) + s2(n) + t2(n) + d2(n)
. (3.82)

x(n) =A(n)
ϕ . (3.83)

b(n) =− J
(n)
eϕ (∆r)2

t1(n) + s1(n) + s2(n) + t2(n) + d2(n)
. (3.84)

We can write Eq. (3.77) in the general form

[A] {x}= {b} , (3.85)

which is a linear matrix equation and a suitable linear matrix solver will be used to solve
this equation by determining the unknown values of {x}.

3.9 Computation of Induced Electric Voltage

The electric field strength E(R, ω) is then computed from the magnetic vector potential
Am(R, ω) in the second step using Eq. (2.128) which can be recalled from Chapter 2 as

E(R, ω) = jωAm(R, ω) . (3.86)
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The induced electric voltage Ve(ω) for each conductor of the receiving coil is then calculated
from the electric field strength by

Ve(ω) =
z

E(R, ω) ·dR . (3.87)

The total induced electric voltage of the receiving coil is then computed as

V tot
e (ω) =Nt Ve(ω) , (3.88)

where the receiving coil consists of Nt turns of copper wire. The modelling of the receiving
coils will be discussed in detail in Chapter 7.



Chapter 4

Finite Element Method (FEM)

The finite element method (FEM) is a numerical technique for obtaining approximate solu-
tions to boundary-value problems of mathematical physics. The basis of the modern finite
element method consists of Ritz variational method and Galerkin’s method. The principle
of this method is to replace an entire continuous domain by a number of subdomains in
which the unknown function is represented by interpolation functions with unknown coef-
ficients and thus, the solution of the entire domain is approximated by a finite number of
unknown coefficients. A system of algebraic equations is then obtained by applying the
Ritz variational or Galerkin procedure (Kost , 1994; Jin, 2002). The system of equations are
solved to determine the unknown coefficients. The following steps will be followed to solve
a magnetoquasistatic problem using FEM:

• Formulation of the magnetoquasistatic governing equation (Sec. 4.1)

• Discretization of the domain in space (Sec. 4.2)

• Node-based elemental interpolation (Sec. 4.3)

• Formulation by Galerkin’s method (Sec. 4.4)

• Formulation of the system of equations (Sec. 4.5)

• Implementation of the boundary conditions (Sec. 4.6)

4.1 Formulation of the Magnetoquasistatic Governing

Equation

As we have discussed earlier, the described eddy current sensors are driven by a monochro-
matic excitation pulse, it is easier to solve the magnetoquasistatic problem in the frequency
domain than in the time domain. Let us recall the governing equation of the magnetoqua-
sistatic problem in the frequency domain from Chapter 2 as

∇× [ν(R)∇×Am(R, ω)]− jωσe(R) Am(R, ω) = Jimp
e (R, ω) . (4.1)

The developed encircling coil sensors are simulated using the rotational symmetry and hence,
a 3-D magnetoquasistatic problem is reduced into a 2-D problem in cylindrical coordinates.
As the first step, the discrete field quantities will be discussed in Cartesian coordinates.

47
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4.1.1 2-D Formulation in Cartesian Coordinates

The Curl Operator of Eq. (4.1) is computed in Cartesian coordinates as:

∇×Am(R, ω) =

[
∂Az(x, z, ω)

∂y
− ∂Ay(x, z, ω)

∂z

]
ex +

[
∂Ax(x, z, ω)

∂z
− ∂Az(x, z, ω)

∂x

]
ey

+

[
∂Ay(x, z, ω)

∂x
− ∂Ax(x, z, ω)

∂y

]
ez . (4.2)

Let us consider that our simulation domain Ω lies in xz plane and therefore, we have to
consider only the y component of magnetic vector potential. As a result, the curl operator
is reduced to

∇×Am(R, ω) =− ∂Ay(x, z, ω)

∂z
ex +

∂Ay(x, z, ω)

∂x
ez . (4.3)

The left-hand side of Eq. (4.1) can be computed as

∇× [ν(R)∇×Am(R, ω)]

=

[
ex

∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z

]
×
[
− ν(x, z)

∂Ay(x, z, ω)

∂z
ex + ν(x, z)

∂Ay(x, z, ω)

∂x
ez

]
.

(4.4)

The electric current density Jimp
e (R, ω) has only the y component and therefore, we have to

consider only the coefficients of ey, which results

∇× [ν(R)∇×Am(R, ω)] = − ∂

∂x

[
ν(x, z)

∂Ay(x, z, ω)

∂x

]
ey −

∂

∂z

[
ν(x, z)

∂Ay(x, z, ω)

∂z

]
ey .

(4.5)

Inserting Eq. (4.5) in Eq. (4.1) and replacing Am(R, ω) with Ay(x, z, ω)ey results

− ∂

∂x

[
ν(x, z)

∂Ay(x, z, ω)

∂x

]
ey−

∂

∂z

[
ν(x, z)

∂Ay(x, z, ω)

∂z

]
ey

− jωσe(x, z)Ay(x, z, ω)ey = Jey(x, z, ω)ey , (4.6)

which is rewritten as

− ∂

∂x

[
ν(x, z)

∂Ay(x, z, ω)

∂x

]
− ∂

∂z

[
ν(x, z)

∂Ay(x, z, ω)

∂z

]

− jωσe(x, z)Ay(x, z, ω) = Jey(x, z, ω) . (4.7)

The Dirichlet and Neumann conditions are common boundary conditions for the magnetic
vector potential. We write the Dirichlet boundary condition as

Ay(x, z, ω) = constant . (4.8)

At the interface between the two medium having different magnetic impermeability ν, the
magnetic vector potential satisfies the continuity conditions

A(1)
y (x, z, ω) =A(2)

y (x, z, ω) (4.9)

ν(1)∂A
(1)
y (x, z, ω)

∂n
= ν(2)∂A

(2)
y (x, z, ω)

∂n
. (4.10)
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4.1.2 2-D Formulation in Cylindrical Coordinates

We can compute the Curl Operator of Eq. (4.1) in cylindrical coordinates as:

∇×Am(R, ω) =

[
1

r

∂Az(r, z, ω)

∂ϕ
− ∂Aϕ(r, z, ω)

∂z

]
er +

[
∂Ar(r, z, ω)

∂z
− ∂Az(r, z, ω)

∂r

]
eϕ

+
1

r

[
∂(r Aϕ(r, z, ω))

∂r
− ∂Ar(r, z, ω)

∂ϕ

]
ez . (4.11)

Let us consider the rz plane as the computation plane, therefore, the magnetic vector po-
tential contains only the ϕ component. The curl operator of Eq. (4.11) is reduced to

∇×Am(R, ω) =− ∂Aϕ(r, z, ω)

∂z
er +

1

r

∂(r Aϕ(r, z, ω))

∂r
ez . (4.12)

Assuming that the electric current density Jimp
e (R, ω) has only the ϕ component, we consider

only the coefficients of eϕ, which results

∇× [ν(R)∇×Am(R, ω)] = − ∂

∂r

[
ν(r, z)

r

∂Aϕ(r, z, ω)

∂r

]
eϕ

− ∂

∂z

[
ν(r, z)

∂Aϕ(r, z, ω)

∂z

]
eϕ . (4.13)

Inserting Eq. (4.13) in Eq. (4.1) and replacing Am(R, ω) with Aϕ(r, z, ω)eϕ results

− ∂

∂r

[
1

r
ν(r, z)

∂Aϕ(r, z, ω)

∂r

]
eϕ −

∂

∂z

[
ν(r, z)

∂Aϕ(r, z, ω)

∂z

]
eϕ− jωσe(r, z)Aϕ(r, z, ω)eϕ

= Jeϕ(r, z, ω)eϕ , (4.14)

which is rearranged as

− ∂

∂r

[
1

r
ν(R)

∂Aϕ(r, z, ω)

∂r

]
− ∂

∂z

[
ν(r, z)

∂Aϕ(r, z, ω)

∂z

]
− jωσe(r, z)Aϕ(r, z, ω)

= Jeϕ(r, z, ω) . (4.15)

Before we employ the finite element formulation for a solution of the problem, we check the
continuity conditions for rAϕ at the interface of medium 1 and 2.

r(1)A(1)
ϕ (r, z, ω) = r(2)A(2)

ϕ (r, z, ω) (4.16)

1

r(1)ν(1)

∂

∂n

[
r(1)A(1)

ϕ (r, z, ω)
]

=
1

r(2)ν(2)

∂

∂n

[
r(2)A(2)

ϕ (r, z, ω)
]
. (4.17)

4.2 Discretization of the Domain in 2-D Space

We have to discretize the simulation domain before we start with the discretization of the
governing equation. FEM is based on the spatial discretization of the solution domain,
where a given finite element is associated to its physical dimensions in space (Ida, 1995).
Therefore, the first step of a finite element analysis is to divide the domain Ω in a finite
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Figure 4.1: a) 2-D triangular element and b) 2-D discretization with four elements.

number of elements, in our case, a finite number of two-dimensional elements. Furthermore,
the elements should be connected by their vertices, i.e., a vertex of an element can only be
the vertex of the neighboring element. We have taken linear triangular elements to discretize
the domain. A typical triangular element is shown in Fig. 4.1a. The nodes and elements
can be labeled with separate sets of integers for identification. Since each element is related
to three nodes, a node is assigned a local label in the associated element, in addition to its
global label relative to the entire system. Fig. 4.1b shows a typical FEM discretization with
four elements.

4.3 Node-Based Elemental Interpolation

After discretizing the simulation domain we have to approximate the unknown function Ay
in case of the cartesian coordinates. For linear triangular elements the unknown function Ay
within each element can be approximated as

Aey (x, z) = ae + bex + cez , (4.18)

where ae, be and ce are constant coefficients to be determined for each element e. Fig. 4.1a
shows a linear triangular element with three nodes, where the nodes are numbered counter-
clockwise by numerals 1, 2 and 3, with the corresponding values of Ay denoted by Aey1, Aey2

and Aey3. Using Eq. (4.18) at the three nodes results

Aey1 (x, z) = ae + bex1 + cez1 (4.19)

Aey2 (x, z) = ae + bex2 + cez2 (4.20)

Aey3 (x, z) = ae + bex3 + cez3 , (4.21)

where xej and zej represents the coordinates of the j-th node in the e-th element for j = 1, 2, 3.
Eqs. (4.19)-(4.21) can be rewritten as



Aey1

Aey2

Aey3


 =




1 x1 z1

1 x2 z2

1 x3 z3






a

b

c


 . (4.22)
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Solving for the coefficients ae, be und ce as functions of Aeyj results



a

b

c


 =




1 x1 z1

1 x2 z2

1 x3 z3




−1 

Aey1

Aey2

Aey3


 . (4.23)

Inserting Eq. (4.23) in Eq. (4.18) yields

Aey (x, z) =
[
1 x z

]



1 x1 z1

1 x2 z2

1 x3 z3




−1 

Aey1

Aey2

Aey3


 , (4.24)

which can be written in the form (Silvester & Ferrari , 1983)

Aey (x, z) =
3∑

j=1

N e
j (x, z) Aeyj , (4.25)

where N e
j are the interpolation or expansion functions, also known as basis functions, which

can be denoted as

N e
j (x, z) =

1

2∆e
(aej + bejx+ cejz) , (4.26)

in which

ae1 = xe2 z
e
3 − xe3 ze2; be1 = ze2 − ze3; ce1 = xe3 − xe2

ae2 = xe3 z
e
1 − xe1 ze3; be2 = ze3 − ze1; ce2 = xe1 − xe3

ae3 = xe1 z
e
2 − xe2 ze1; be3 = ze1 − ze2; ce3 = xe2 − xe1

(4.27)

and ∆e represents the area of the e-th element as

∆e =
1

2

∣∣∣∣∣∣∣

1 xe1 ze1
1 xe2 ze2
1 xe3 ze3

∣∣∣∣∣∣∣
=

1

2
(be1c

e
2 − be2ce1) . (4.28)

4.4 Formulation by Galerkin’s Method

Galerkin’s method belongs to the family of weighted residual methods, which seeks the
solution by weighting the residual of the differential equation. When applying Galerkin’s
testing procedure, the testing function is identical to the expansion function (Volakis et al.,
1998).

4.4.1 Formulation in Cartesian Coordinates

The residual associated with Eq. (4.7) is computed as

r = − ∂

∂x

[
ν(x, z)

∂Ay(x, z, ω)

∂x

]
− ∂

∂z

[
ν(x, z)

∂Ay(x, z, ω)

∂z

]
− jωσe(x, z)Ay(x, z, ω)

− Jey(x, z, ω) . (4.29)
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For simplicity let us replace Ay(x, z, ω) with Ay and for element e we rearrange Eq. (4.29)
as

re =− ∂

∂x

[
νe
∂Ay
∂x

]
− ∂

∂z

[
νe
∂Ay
∂z

]
− jωσeAy − Jey (4.30)

and the weighted residual for element e is formulated as

Re
i =

x

Ωe

N e
i r dx dz ; i = 1, 2, 3 . (4.31)

Inserting Eq. (4.30) in Eq. (4.31) yields

Re
i =

x

Ωe

N e
i

[
− ∂

∂x

(
νe
∂Ay
∂x

)
− ∂

∂z

(
νe
∂Ay
∂z

)
− jωσeAy − Jey

]
dx dz , (4.32)

which is written as

Re
i = −

x

Ωe

N e
i

∂

∂x

(
νe
∂Ay
∂x

)
dx dz −

x

Ωe

N e
i

∂

∂z

(
νe
∂Ay
∂z

)
dx dz

− jω
x

Ωe

N e
i σ

eAy dx dz −
x

Ωe

N e
i Jey dx dz . (4.33)

We formulate the first integral of Eq. (4.33) as

−
x

Ωe

N e
i

∂

∂x

(
νe
∂Ay
∂x

)
dx dz = −

x

Ωe

[
−∂N

e
i

∂x
νe
∂Ay
∂x

+
∂

∂x

(
N e
i ν

e ∂Ay
∂x

)]
dx dz

(4.34)

and we rewrite the second integral of Eq. (4.33) as

−
x

Ωe

N e
i

∂

∂z

(
νe
∂Ay
∂z

)
dx dz = −

x

Ωe

[
−∂N

e
i

∂z
νe
∂Ay
∂z

+
∂

∂z

(
N e
i ν

e ∂Ay
∂z

)]
dx dz .

(4.35)

Using Eqs. (4.34)-(4.35) we rearrange Eq. (4.33) as

Re
i = −

x

Ωe

[
−∂N

e
i

∂x
νe
∂Ay
∂x

+
∂

∂x

(
N e
i ν

e ∂Ay
∂x

)]
dx dz

−
x

Ωe

[
−∂N

e
i

∂z
νe
∂Ay
∂z

+
∂

∂z

(
N e
i ν

e ∂Ay
∂z

)]
dx dz

− jω
x

Ωe

N e
i σ

eAy dx dz −
x

Ωe

N e
i Jey dx dz

⇒ Re
i =

x

Ωe

[
∂N e

i

∂x
νe
∂Ay
∂x

+
∂N e

i

∂z
νe
∂Ay
∂z

]
dx dz

−
x

Ωe

[
∂

∂x

(
N e
i ν

e ∂Ay
∂x

)
+

∂

∂z

(
N e
i ν

e ∂Ay
∂z

)]
dx dz

− jω
x

Ωe

N e
i σ

eAy dx dz −
x

Ωe

N e
i Jey dx dz . (4.36)
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The second integral of Eq. (4.36) is rewritten as

−
x

Ωe

[
∂

∂x

(
N e
i ν

e ∂Ay
∂x

)
+

∂

∂z

(
N e
i ν

e ∂Ay
∂z

)]
dx dz

= −
x

Ωe

[
∂U(x, z)

∂x
+
∂V (x, z)

∂z

]
dS

= −
x

Ωe

∇· [U(x, z)ex + V (x, z)ez] dS , (4.37)

where

U(x, z) =N e
i ν

e ∂Ay
∂x

(4.38)

V (x, z) =N e
i ν

e ∂Ay
∂z

. (4.39)

Using Gauss’ theorem on the right-side of Eq. (4.37) yields

−
x

Ωe

∇· [U(x, z)ex + V (x, z)ez] dS=−
z

C=∂S

[U(x, z)ex + V (x, z)ez] ·dR , (4.40)

which results

−
x

Ωe

[
∂

∂x

(
N e
i ν

e ∂Ay
∂x

)
+

∂

∂z

(
N e
i ν

e ∂Ay
∂z

)]
dx dz

= −
z

C=∂S

{[
N e
i ν

e ∂Ay
∂x

]
ex +

[
N e
i ν

e ∂Ay
∂z

]
ez

}
·dR . (4.41)

Inserting Eq. (4.41) in Eq. (4.36) results

Re
i =

x

Ωe

[
∂N e

i

∂x
νe
∂Ay
∂x

+
∂N e

i

∂z
νe
∂Ay
∂z

]
dx dz

−
z

C=∂S

{[
N e
i ν

e ∂Ay
∂x

]
ex +

[
N e
i ν

e ∂Ay
∂z

]
ez

}
·dR

− jω
x

Ωe

N e
i σ

eAy dx dz −
x

Ωe

N e
i Jey dx dz . (4.42)

The unknown function Ay is written with basis functions using Eq. (4.25) as

Aey (x, z) =
3∑

j=1

N e
j (x, z) Aeyj (4.43)

and the first order derivatives of Ay is expressed as

∂

∂x
Aey (x, z) =

3∑

j=1

Aeyj
∂N e

j (x, z)

∂x
(4.44)

∂

∂z
Aey (x, z) =

3∑

j=1

Aeyj
∂N e

j (x, z)

∂z
. (4.45)
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Using Eqs. (4.43)-(4.45) we rewrite Eq. (4.42) as

Ri =
3∑

j=1

Aeyj

x

Ωe

νe
[
∂N e

i

∂x

∂N e
j

∂x
+
∂N e

i

∂z

∂N e
j

∂z

]
dx dz

− jω
3∑

j=1

Aeyj

x

Ωe

σeN e
iN

e
j dx dz −

x

Ωe

N e
i Jey dx dz

−
z

C=∂S

{[
N e
i ν

e ∂Ay
∂x

]
ex +

[
N e
i ν

e ∂Ay
∂z

]
ez

}
·dR , (4.46)

which is written in matrix form

[S] {A} − jω [T] {A} − {b}+ {g}= 0 . (4.47)

Rearranging Eq. (4.47) results

[S] {A} − jω [T] {A}= {b} − {g} , (4.48)

with the coefficients in local form

Seij =
x

Ωe

νe
[
∂N e

i

∂x

∂N e
j

∂x
+
∂N e

i

∂z

∂N e
j

∂z

]
dx dz (4.49)

T eij =
x

Ωe

σeN e
iN

e
j dx dz (4.50)

bei =
x

Ωe

N e
i Jey dx dz (4.51)

gei =
z

C=∂S

{[
N e
i ν

e ∂Ay
∂x

]
ex +

[
N e
i ν

e ∂Ay
∂z

]
ez

}
·dR (4.52)

Ae =Aey(x, z, ω) . (4.53)

In our case, there is no source at the boundary and therefore, we set {g} = 0 and simplify
Eq. (4.48) as

[S] {A} − jω [T] {A}= {b} . (4.54)

4.4.2 Formulation in Cylindrical Coordinates

The magnetoquasistatic governing equation in cylindrical coordinates is described by Eq. (4.14).
The residual associated with this equation is computed as

r = − ∂

∂r

[
1

r
ν(r, z)

∂Aϕ(r, z, ω)

∂r

]
− ∂

∂z

[
ν(r, z)

∂Aϕ(r, z, ω)

∂z

]
− jωσe(r, z)Aϕ(r, z, ω)

− Jeϕ(r, z, ω) . (4.55)
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If we follow the same steps as for the cartesian coordinates, we shall obtain the matrix
equation of similar form

[S] {A} − jω [T] {A}= {b} , (4.56)

where the coefficients are denoted as

Seij =
x

Ωe

νe

r

[
∂N e

i

∂r

∂N e
j

∂r
+
∂N e

i

∂z

∂N e
j

∂z

]
dr dz (4.57)

T eij =
x

Ωe

σeN e
iN

e
j dr dz (4.58)

bei =
x

Ωe

N e
i Jeϕ dr dz (4.59)

gei =
z

C=∂S

{[
N e
i ν

e ∂Aϕ
∂r

]
er +

[
N e
i ν

e ∂Aϕ
∂z

]
ez

}
·dR (4.60)

Ae = r Aeϕ(r, z, ω) . (4.61)

4.5 Formulation of the System of Equations

Let us consider the 2-D formulation in cartesian coordinates. The global matrices [T], [S]
and {b} described in Eq. (4.54) can be computed using the following steps:

• Computation of the local coefficients Seij, T
e
ij and bei for each element

• Relating the local nodes of the elements to the global nodes

• Arrangement of the local coefficients in global matrices

4.5.1 Computation of the Local Coefficients

The local T -matrix is described in Eq. (4.50) as

T eij =
x

Ωe

σeN e
iN

e
j dx dz , (4.62)

which is computed as (see Ida, 1995, p. 316)

[T e] =
∆e

12
σe




2 1 1
1 2 1
1 1 2


 . (4.63)

Furthermore, the S-Matrix is denoted by Eq. (4.49)

Seij =
x

Ωe

νe
[
∂N e

i

∂x

∂N e
j

∂x
+
∂N e

i

∂z

∂N e
j

∂z

]
dx dz , (4.64)
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which is evaluated as (see Ida, 1995, p. 323)

[Se] =
νe

4 ∆e




(be1)2 + (ce1)2 be1 b
e
2 + ce1 c

e
2 be1 b

e
3 + ce1 c

e
3

be2 b
e
1 + ce2 c

e
1 (be2)2 + (ce2)2 be2 b

e
3 + ce2 c

e
3

be3 b
e
1 + ce3 c

e
1 be3 b

e
2 + ce3 c

e
2 (be3)2 + (ce3)2


 . (4.65)

The local b-vector in cartesian coordinates is described by

bei =
x

Ωe

N e
i Jey dx dz (4.66)

and is formulated as (see Jin, 2002, p. 98)

bei =
∆e

3
Jey . (4.67)

4.5.2 Relating the Local Nodes of the Elements to the Global
Nodes

A typical 2-D discretizing scheme is shown in Fig. 4.2, where the global node numbers are
marked in blue and the local node numbers in black. Each element has three nodes who
can be identified by their local as well as global numbers. A relationship between these two
numbers is presented in Table 4.1. On the left side, the elements are described with global
numbers associated to the corresponding nodes. As for example, an arbitrary element e = 7
contains three nodes with the global numbers n(1, 7) = 5, n(2, 7) = 6 and n(3, 7) = 9. The
coordinates of the global nodes are listed on the right side.

e n(1,e) n(2,e) n(3,e) Global node x z

1 1 2 5 1 0 0
2 2 6 5 2 0.5 0
3 2 3 6 3 1.0 0
4 3 7 6 4 1.5 0
5 3 4 7 5 0 0.5
6 4 8 7 6 0.5 0.5
7 5 6 9 7 1.0 0.5
8 6 10 9 8 1.5 0.5
9 6 7 10 9 0 1.0
10 7 11 10 10 0.5 1.0
11 7 8 11 11 1.0 1.0
12 8 12 11 12 1.5 1.0
13 9 10 13 13 0 1.5
14 10 14 13 14 0.5 1.5
15 10 11 14 15 1.0 1.5
16 11 15 14 16 1.5 1.5
17 11 12 15
18 12 16 15

Table 4.1: Left: 2-D global node number and right: coordinates of the global nodes.
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Figure 4.2: 2-D discretization with linear triangular elements.

4.5.3 Arrangement of the local coefficients in global matrices

The local coefficients Seij, T
e
ij and bei are computed in cartesian coordinates using Eqs. (4.63),

(4.65) and (4.67) for each element. T eij and Seij can be included in the global matrices [T]
and [S] by

T eij =Tn(i,e), n(j,e) (4.68)

Seij =Sn(i,e), n(j,e) , (4.69)

which means, the local coefficients T eij and Seij for e-th element should be placed in the
global [T] and [S] matrices, respectively, with the corresponding row and column numbers
n(i, e), n(j, e). The dimension of the generated [T] and [S] matrices depend on the number
of global nodes, and therefore, on the number of elements. Table 4.1 shows an example with
e = 18 elements and n = 16 global nodes. The resulting [T] and [S] matrices have the
dimensions of n× n = 16× 16.
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As a second example, Eqs. (4.70)-(4.71) show the construction of [T] and [S] matrices re-
spectively for e = 6 elements (see Fig. 4.1b), where the number of global nodes is n = 8 and
hence, the size of the matrices becomes n× n = 8× 8 (Akcakoca, 2009).

6∑

e=1

[T e] = [T] = (4.70)


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13 ) (T
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13 ) 0 0

0 T
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21 (T
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(4)
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(4)
13 ) (T
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0 0 T
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6∑

e=1

[Se] = [S] = (4.71)
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

.

Similarly, bei can be included in {b} vector by

bei = bn(i,e) , (4.72)

which means, the local coefficients bei for e-th element should be positioned in the global {b}
vector with the corresponding row number n(i, e). As an example, the construction of {b}
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vector for e = 6 elements is shown in Eq. (4.73).

6∑

e=1

[be] = {b} =




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



. (4.73)

The boundary conditions should be applied before we solve the generated linear matrix
equation Eq. (4.54).

4.6 Implementation of the Boundary Conditions

In this section, the Dirichlet boundary conditions will be discussed. Let us consider Fig. 4.1b
and assume that the nodes n = 3, n = 5 and n = 6 lie on the boundary (see Fig. 4.3), where
Ay is constant, i.e.

Ayn = pn = p ; n = 3, 5, 6 . (4.74)

The linear matrix equation described in Eq. (4.54) is rewritten as
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Figure 4.3: Dirichlet boundary condition on the simulation domain Ω.

[S]− jω [T]{A}= {b}
⇒ [K]{A}= {b} , (4.75)
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where

[K] = [S]− jω [T] =




K11 K12 K13 K14 K15 K16

K21 K22 K23 K24 K25 K26

K31 K32 K33 K34 K35 K36

K41 K42 K43 K44 K45 K46

K51 K52 K53 K54 K55 K56

K61 K62 K63 K64 K65 K66




(4.76)

and using this expression [K] we rewrite Eq. (4.75) as



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K51 K52 K53 K54 K55 K56

K61 K62 K63 K64 K65 K66






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Ay5
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



=




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b3

b4

b5

b6





. (4.77)

To impose the conditions described by Eq. (4.74), we simply set

b3 = b5 = b6 = p , (4.78)

which results
K33 = K55 = K66 = 1 (4.79)

and
K3i = K5i = K6i = 0 ; i = 1, 2, 3, 4, 5, 6 . (4.80)

However, imposing boundary conditions in such a way destroys the symmetry of the matrix
[K]. To restore this property the [K] matrix has to be modified by setting

Ki3 = Ki5 = Ki6 = 0 ; i = 1, 2, 3, 4, 5, 6 , (4.81)

which causes a modification of the {b} vector as

bi ← bi −Ki3p−Ki5p−Ki6p ; i = 1, 2, 4 . (4.82)

Using Eq. (4.78)-(4.82) the matrix [K] becomes

[K] =




K11 K12 0 K14 0 0

K21 K22 0 K24 0 0

0 0 1 K34 0 0

K41 K42 0 K44 0 0

0 0 0 0 1 0

0 0 0 0 0 1




(4.83)
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and the vector {b} becomes

{b} =





b1 −K13p−K15p−K16p

b2 −K23p−K25p−K26p

p

b4 −K43p−K45p−K46p

p

p





. (4.84)

We can, however, delete the third, fifth and sixth equation from the system, which will not
change the solution. Thus, the final system of equations will be written as




K11 K12 K14

K21 K22 K24

K41 K42 K44








Ay1

Ay2

Ay4





=





b1 −K13p−K15p−K16p

b2 −K23p−K25p−K26p

b4 −K43p−K45p−K46p





, (4.85)

which will be solved by a linear matrix solver to determine the unknown values of Ay.

However, it is possible to impose the Dirichlet boundary conditions following a second ap-
proach. Let us consider the same boundary problem described in Fig. 4.3. Instead of
imposing the conditions (4.78)-(4.81) directly, we choose a very large number, e.g., 1099 and
thus we obtain

K33 = K55 = K66 = 1099 (4.86)

and therefore,

b3 = b5 = b6 = p× 1099 . (4.87)

As a result, the system of equation becomes




K11 K12 K13 K14 K15 K16
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K61 K62 K63 K64 K65 1099



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
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

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=
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

b1

b2
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b4
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



. (4.88)

We observe from Eq. (4.88) that the symmetry of the [K] matrix is retained and we do
not require any additional steps. This approach is therefore much simpler than the first
approach and it needs only two operations two impose boundary conditions: one on the
diagonal element and the other on the known source vector. Additionally, this technique
is suitable for the sparse matrices, stored in a compact form. However, all the equations
associated with the boundary nodes exist and hence, a reduction of the size of the matrices
is not permitted here, which is the major disadvantage of this approach (Jin, 2002).
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Chapter 5

Boundary Element Method (BEM)

The boundary element method (BEM), also known as the method of moments (MoM),
approaches the eddy current problem by solving the underlying boundary integral equations
(BIE), based on quasi-variational principles, for the equivalent sources, i.e., for the equivalent
electric and magnetic current density and the electric and magnetic charge density. BEM is
applicable to problems for which Green’s functions can be calculated, which usually involve
fields in linear homogeneous media. This places considerable restrictions on the range and
generality of problems to which boundary elements can usefully be applied (Gibson, 2007;
Harrington, 1993). The boundary integral equation approach leads to the development
of so-called week formulations, which permit the approximate satisfaction of the different
equations or conditions (Poljak & Brebbia, 2005). The use of approximate functions for the
variables under consideration in these week formulations introduce errors that are minimized
using the weighted residual techniques, such as, Galerkin’s method.

BEM offers a number of advantages over the other numerical methods, such as:

• Dimensions of the problems are effectively reduced by one.

• The simulation domain is extended to infinity without the need to discretize a large
portion of the body.

• BEM requires meshes, which can be easily varied without the need to satisfy the type
of continuity requirements, which is essential in FEM.

• More accurate weighting functions are applied in BEM, such as, Green’s functions.

Because of these advantages BEM becomes a more suitable candidate than the domain type
methods in eddy current analysis with high conductivity or at high frequency. However,
there are some difficulties in analyzing eddy current problems with BEM (Zhang , 1997),
which can be mentioned as:

• The vector nature of problems results in a very large number of unknowns.

• Loose coupling between electric and magnetic fields in the air at low frequency makes
it difficult to satisfy the interface conditions and to obtain a unique solution in con-
junction with an appropriate choice of Gauge condition.

• Highly singular kernels in boundary integral equations require expensive numerical
integration to obtain accurate solutions.

63
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A magnetoquasistatic problem is solved by the boundary element method using the following
steps:

• Formulation of the magnetoquasistatic governing equation (Sec. 5.1)

• Integral equation formulation (Sec. 5.2 and 5.3)

• Boundary element discretization and formulation of the system of equations (Sec. 5.4)

5.1 Formulation of the Magnetoquasistatic Governing

Equation

In our case, the simulated hot wire has a temperature of 1000◦ − 1200◦ C, which is well
above Curie point and therefore, the relative permeability µr can be considered to be 1
and µ(R) = µ0. Similarly, we can consider that the relative permittivity εe = 1, which
results ε = ε0. As a result, the hot wire can be represented by a linear, isotropic and
homogeneous conducting material region Vσe , which is embedded in free space V0. The region
Vσe is bounded by the surface Sσe with the outward unit normal nσe

and is characterized by
magnetic permeability µ(R) = µ0 and electric conductivity σe, as shown in Fig. 5.1.

Ein(R, ω)
Esc(R, ω)

0
R′

R

nσe

n′

Vs

Vσe

V0

Sσe = ∂Vσe

Sc = ∂Vs

Jimp
e (R, ω), Jimp

m (R, ω)

%e(R, ω)

%m(R, ω)

ε0, µ0

ε0, µ0, σe

Figure 5.1: Geometry for applying Green’s functions.

5.1.1 Formulation for the Conducting Region

Using Eq. (2.120) and Eq. (2.121) we write the inhomogeneous Helmholtz equations in
magnetoquasistatic case for the conducting region Vσe as

∆E(R, ω) + k2
c E(R, ω) =− jωµ0 Jimp

e (R, ω) +
1

ε0

∇%e(R, ω) +∇×Jm(R, ω) (5.1)

∆H(R, ω) + k2
c H(R, ω) =σe Jm(R, ω) +

1

µ0

∇%m(R, ω)−∇×Jimp
e (R, ω) , (5.2)
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where kc is the complex wave number and is given by

kc =
√

jωµσe . (5.3)

We express the electric field strength E(R, ω) and magnetic field strength H(R, ω) by the
electric and magnetic scalar and vector potentials from Eq. (2.125) and Eq. (2.126) as

E(R, ω) =−∇Φe(R, ω) + jω Am(R, ω)− 1

ε0

∇×Ae(R, ω) (5.4)

H(R, ω) =−∇Φm(R, ω)− σe

ε
Ae(R, ω) +

1

µ0

∇×Am(R, ω) , (5.5)

where Am(R, ω), Ae(R, ω), Φe(R, ω) and Φm(R, ω) represent magnetic vector potential,
electric vector potential, electric scalar potential and magnetic scalar potential respectively.
Using Lorentz approximation we write the following expressions for the potentials

∆Φe(R, ω) + k2
cΦe(R, ω) =− 1

ε0

%e(R, ω) (5.6)

∆Am(R, ω) + k2
cAm(R, ω) =−µ0J

imp
e (R, ω) (5.7)

∆Φm(R, ω) + k2
cΦm(R, ω) =− 1

µ0

%m(R, ω) (5.8)

∆Ae(R, ω) + k2
cAe(R, ω) =−ε0Jm(R, ω) . (5.9)

Using equations Eq. (5.6)-Eq. (5.9) we need to define a Green’s function which satisfies the
following differential equation

∆Gσe(R−R′, ω) + k2
cGσe(R−R′, ω) =−δ(R−R′, ω) , (5.10)

where Gσe(R − R′, ω) is the scalar Green’s function for the conducting region Vσe and is
defined by

Gσe(R−R′, ω) =
e j kc|R−R′|

4π|R−R′| (5.11)

and applying Green’s theorem for vector variables boundary integral equations for the field
vectors are derived.

5.1.2 Formulation for the Non-Conducting Region

For the non-conducting region V0, σe = 0 and hence we rewrite Eqs. (5.1)-(5.2) as

∆E(R, ω) =− jωµ0 Jimp
e (R, ω) +

1

ε0

∇%e(R, ω) +∇×Jm(R, ω) (5.12)

∆H(R, ω) =
1

µ0

∇%m(R, ω)−∇×Jimp
e (R, ω) . (5.13)

The electric field strength E(R, ω) and magnetic field strength H(R, ω) are expressed by
the electric and magnetic scalar and vector potentials by equations Eq. (5.4) and Eq. (5.5).
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Again, using Eqs. (5.6)-(5.9) we write the expressions for the potentials as

∆Φe(R, ω) =− 1

ε0

%e(R, ω) (5.14)

∆Am(R, ω) =−µ0J
imp
e (R, ω) (5.15)

∆Φm(R, ω) =− 1

µ0

%m(R, ω) (5.16)

∆Ae(R, ω) =−ε0Jm(R, ω) . (5.17)

We define a Green’s function Gms(R−R′) for the non-conducting region V0 which satisfies
the equation

∆Gms(R−R′) =−δ(R−R′) , (5.18)

where
Gms(R−R′) =

1

4π|R−R′| . (5.19)

5.2 Integral Representation of Electrical and Magnetic

Field Strength

5.2.1 Integral Representation for Conducting Region

The special solutions of the inhomogeneous Helmholtz equations Eq. (5.1) and Eq. (5.2) in
magnetoquasistatic case for the conducting region Vσe are written using the scalar Green’s
function as

E(R, ω) = − 1

ε0

∇
y

Vσe

%e(R
′, ω) Gσe(R−R′, ω) d3R′

+ jωµ0

y

Vσe

Jimp
e (R′, ω) Gσe(R−R′, ω) d3R′

− ∇×
y

Vσe

Jm(R′, ω) Gσe(R−R′, ω) d3R′ (5.20)

H(R, ω) = − 1

µ0

∇
y

Vσe

%m(R′, ω) Gσe(R−R′, ω) d3R′

− σe

y

Vσe

Jimp
m (R′, ω) Gσe(R−R′, ω) d3R′

+ ∇×
y

Vσe

Je(R
′, ω) Gσe(R−R′, ω) d3R′ . (5.21)

Let us apply Gauss’s integral theorem to reduce the volume sources to surface sources, which
results

%e,m ⇒ ηe,m (5.22)

Je,m ⇒ Ke,m . (5.23)
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Using these expressions on the conducting surface Sσe we formulate the boundary conditions
from equations Eq. (2.18)-Eq. (2.21) as

ηe(R
′, ω) = ε0 nσe

·E(R′, ω) = −ε0 n′ ·E(R′, ω) (5.24)

Ke(R
′, ω) = nσe

×H(R′, ω) = −n′ ×H(R′, ω) (5.25)

ηm(R′, ω) = µ0 nσe
·H(R′, ω) = −µ0 n′ ·H(R′, ω) (5.26)

Km(R′, ω) = −nσe
× E(R′, ω) = n′ × E(R′, ω) , (5.27)

where nσe
is the normal vector on the conducting surface Sσe as shown in Fig. 5.1 and

n′ = −nσe
. Using equations (5.22)-(5.27) we replace the volume integrals of Eq. (5.20) and

Eq. (5.21) with the closed surface integrals and thus we obtain

E(R, ω) = ∇
{

Sσe

n′ ·E(R′, ω) Gσe(R−R′, ω) dS ′

− jωµ0

{

Sσe

n′ ×H(R′, ω) Gσe(R−R′, ω) dS ′

−∇×
{

Sσe

n′ × E(R′, ω) Gσe(R−R′, ω) dS ′ (5.28)

H(R, ω) = ∇
{

Sσe

n′ ·H(R′, ω) Gσe(R−R′, ω) dS ′

−σe

{

Sσe

n′ × E(R′, ω) Gσe(R−R′, ω) dS ′

−∇×
{

Sσe

n′ ×H(R′, ω) Gσe(R−R′, ω) dS ′ . (5.29)

The ∇-differentiation of Gσe(R−R′, ω) can be performed inside the integral and hence, the
(R−R′) dependency of Gσe can be replaced by −∇′-differentiation, which yields

E(R, ω) = −
{

Sσe

n′ ·E(R′, ω) ∇′Gσe(R−R′, ω) dS ′

− jωµ0

{

Sσe

n′ ×H(R′, ω) Gσe(R−R′, ω) dS ′

−
{

Sσe

[n′ × E(R′, ω)]×∇′Gσe(R−R′, ω) dS ′ (5.30)
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H(R, ω) = −
{

Sσe

n′ ·H(R′, ω) ∇′Gσe(R−R′, ω) dS ′

− σe

{

Sσe

n′ × E(R′, ω) Gσe(R−R′, ω) dS ′

−
{

Sσe

[n′ ×H(R′, ω)]×∇′Gσe(R−R′, ω) dS ′ . (5.31)

The equations Eq. (5.30) and Eq. (5.31) are called the Stratton-Chu version of the inte-
grals. At the surface of the conducting region using the boundary value of the Helmholtz
representation we rewrite Eq. (5.30) and Eq. (5.31) as

1

2
Eσe

(R, ω) = −
{

Sσe

n′ ·Eσe
(R′, ω) ∇′Gσe(R−R′, ω) dS ′

− jωµ0

{

Sσe

n′ ×Hσe
(R′, ω) Gσe(R−R′, ω) dS ′

−
{

Sσe

[
n′ × Eσe

(R′, ω)
]
×∇′Gσe(R−R′, ω) dS ′ (5.32)

1

2
Hσe

(R, ω) = −
{

Sσe

n′ ·Hσe
(R′, ω) ∇′Gσe(R−R′, ω) dS ′

− σe

{

Sσe

n′ × Eσe
(R′, ω) Gσe(R−R′, ω) dS ′

−
{

Sσe

[
n′ ×Hσe

(R′, ω)
]
×∇′Gσe(R−R′, ω) dS ′ , (5.33)

where Eσe
(R, ω) and Hσe

(R, ω) represent the electric and magnetic field strength in con-
ducting region, respectively.

5.2.2 Integral Representation for Non-conducting Region

For the non-conducting region we set σe = 0 in Eqs. (5.30)-(5.31) and thus we obtain the
special solutions for the homogeneous Helmholtz equations Eq. (5.12) and Eq. (5.13). We
write the electric field strength and magnetic field strength in non-conducting region as
E0(R, ω) and H0(R, ω), respectively and thus we obtain

E0(R, ω) = −
{

S0=∂V0

n′ ·E0(R′, ω) ∇′Gms(R−R′) dS ′

− jωµ0

{

S0=∂V0

n′ ×H0(R′, ω) Gms(R−R′) dS ′

−
{

S0=∂V0

[n′ × E0(R′, ω)]×∇′Gms(R−R′) dS ′ (5.34)
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H0(R, ω) = −
{

S0=∂V0

n′ ·H0(R′, ω) ∇′Gms(R−R′) dS ′

−
{

S0=∂V0

[n′ ×H0(R′, ω)]×∇′Gms(R−R′) dS ′ . (5.35)

However, the external sources are located in the non-conducting region (see Fig. 5.1) and
hence, we have to add the source terms on the right side of Eq. (5.34) and Eq. (5.35), which
results

E0(R, ω) = Eimp(R, ω) −
{

S0=∂V0

n′ ·E0(R′, ω) ∇′Gms(R−R′) dS ′

− jωµ0

{

S0=∂V0

n′ ×H0(R′, ω) Gms(R−R′) dS ′

−
{

S0=∂V0

[n′ × E0(R′, ω)]×∇′Gms(R−R′) dS ′ (5.36)

H0(R, ω) = Himp(R, ω) −
{

S0=∂V0

n′ ·H0(R′, ω) ∇′Gms(R−R′) dS ′

−
{

S0=∂V0

[n′ ×H0(R′, ω)]×∇′Gms(R−R′) dS ′ . (5.37)

Considering the electric surface current density Kimp
e (R′, ω) as the source, we write the

expression of incident electric field Eimp(R, ω) using Green’s theorem as

Eimp(R, ω) =− jωµ0

{

Sc

Kimp
e (R′, ω) Gms(R−R′) dS ′

=− jωµ0

{

Sc

n′ ×H0(R′, ω) Gms(R−R′) dS ′ . (5.38)

The expression for incident magnetic field Himp(R, ω) is written using Maxwell’s first equa-
tion as

jωBimp(R, ω) =∇×Eimp(R, ω) = − jωµ0∇×
{

Sc

Kimp
e (R′, ω) Gms(R−R′) dS ′

⇒ Himp(R, ω) = −∇×
{

Sc

Kimp
e (R′, ω) Gms(R−R′) dS ′ . (5.39)

5.3 Integral Equation Formulation

Before we derive the boundary integral equations, we have to set the transition conditions
for the electric and magnetic field. The transition conditions for the tangential components
of the electric and magnetic field strength are described by (Zhang , 1997)

n′ ×Hσe
(R, ω) = n′ ×H0(R, ω) =−Ke(R, ω) (5.40)

n′ × Eσe
(R, ω) = n′ × E0(R, ω) = Km(R, ω) . (5.41)
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Let us recall the transition condition for magnetic flux density at the source-free transition
surface from chapter 2:

n′ ·
[
Bσe

(R, t)−B0(R, t)
]

= 0 , (5.42)

which is written in frequency domain as

n′ ·
[
Bσe

(R, ω)−B0(R, ω)
]

= 0 ⇒ n′ ·
[
Hσe

(R, ω)−H0(R, ω)
]

= 0 . (5.43)

The normal component of the magnetic flux density is expressed using Maxwell’s first equa-
tion as

n′ ·Bσe
(R, ω) = B0(R, ω) =

1

jω
∇· [n′ × E0(R, ω)] = − j

ω
∇·Km(R, ω) . (5.44)

The transition condition for the normal component of electric field strength is recalled as

n′ ·
[
Eσe

(R, ω)− E0(R, ω)
]

=− 1

ε0

ηe(R, ω) . (5.45)

However, for the low frequency eddy current problems we assume ωε ≈ 0 and hence, the
normal component of electric field strength in conductive medium vanishes which results

n′ ·Eσe
(R, ω) = 0 (5.46)

n′ ·E0(R, ω) = − 1

ε0

ηe(R, ω) . (5.47)

The integral representations of the electric and magnetic field strength in conductive and
non-conductive medium are described in equations (5.32), (5.33), (5.36) and (5.37) and need
to be solved to find the equivalent sources. In order to obtain accurate solutions an over
determined system has to be solved and the transition conditions described by Eqs. (5.40)-
(5.47), need to be satisfied.

5.3.1 Electric Field Integral (EFIE) Formulation

The surface of the conductive region Vσe acts as a transition surface between the conducting
and non-conducting region and hence, both Eq. (5.32) and Eq. (5.36) are valid at this surface.

5.3.1.1 EFIE for Conducting Region

Inserting the transition conditions (5.40)-(5.47) in Eq. (5.32) yields

1

2
Eσe

(R, ω) = jωµ0

{

Sσe

Ke(R
′, ω) Gσe(R−R′, ω) dS ′

−
{

Sσe

Km(R′, ω)×∇′Gσe(R−R′, ω) dS ′ . (5.48)

We compute n′ × Eσe
(R, ω) and rearrange Eq. (5.48) by using the transition condition

Eq. (5.41) as

1

2
Km(R, ω) + n′ ×

{

Sσe

Km(R′, ω)×∇′Gσe(R−R′, ω) dS ′

= jωµ0 n′ ×
{

Sσe

Ke(R
′, ω) Gσe(R−R′, ω) dS ′ . (5.49)



5.3. Integral Equation Formulation 71

Again, we perform the operation (n′ · ) on both sides of Eq. (5.48) and using the transition
conditions Eq. (5.46) we obtain

n′ ·
{

Sσe

Km(R′, ω)×∇′Gσe(R−R′, ω) dS ′ = n′ · jωµ0

{

Sσe

Ke(R
′, ω) Gσe(R−R′, ω) dS ′ .

(5.50)

5.3.1.2 EFIE for Non-conducting Region

We insert the transition conditions (5.40)-(5.47) in the integral representation of the electric
field strength Eq. (5.36)

E0(R, ω) = Eimp(R, ω) +
{

Sσe

1

ε0

ηe(R
′, ω) ∇′Gms(R−R′) dS ′

+ jωµ0

{

Sσe

Ke(R
′, ω) Gms(R−R′) dS ′

−
{

Sσe

Km(R′, ω)×∇′Gms(R−R′) dS ′ . (5.51)

Performing the operation (n′×) and rearranging Eq. (5.51) yields

Km(R, ω) + n′ ×
{

Sσe

Km(R′, ω)×∇′Gms(R−R′) dS ′

− 1

ε0

n′ ×
{

Sσe

ηe(R
′, ω) ∇′Gms(R−R′) dS ′

= jωµ0 n′ ×
{

Sσe

Ke(R
′, ω) Gms(R−R′) dS ′ + n′ × Eimp(R, ω) . (5.52)

Similarly, performing the operation (n′ · ) results

− 1

ε0

ηe(R, ω) + n′ ·
{

σe

Km(R′, ω)×∇′Gms(R−R′) dS ′

− 1

ε0

n′ ·
{

Sσe

ηe(R
′, ω) ∇′Gms(R−R′) dS ′

= jωµ0 n′ ·
{

Sσe

Ke(R
′, ω) Gms(R−R′) dS ′ + n′ ·Eimp(R, ω) . (5.53)

We solve the electric field integral equations, described by (5.49), (5.50) (5.52) and (5.53)
to find the unknown surface source quantities. However, EFIE has the disadvantage that
Fredholm integral equations of the second kind are used for the electric field quantities
only, which leads to ill-conditioned equations systems when the complex diffusion constant
increases at higher frequencies or higher conductivity (Rucker et al., 1995).
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5.3.2 Magnetic Field Integral (MFIE) Formulation

As we have mentioned earlier, the surface Sσe acts as a transition surface between the con-
ducting and non-conducting region. Thus both Eq. (5.33) and Eq. (5.37) are valid at this
surface.

5.3.2.1 MFIE for Conducting Region

Let us insert the transition conditions (5.40)-(5.47) in Eq. (5.33) to obtain

1

2
Hσe

(R, ω) = −
{

Sσe

j

ωµ
[∇′ ·Km(R, ω)] ∇′Gσe(R−R′, ω) dS ′

− σe

{

Sσe

Km(R′, ω) Gσe(R−R′, ω) dS ′

+
{

Sσe

Ke(R
′, ω)×∇′Gσe(R−R′, ω) dS ′ . (5.54)

We compute then n′×Hσe
(R, ω) and rearrange Eq. (5.54) by using the transition condition

Eq. (5.40) as

−1

2
Ke(R, ω) − n′ ×

{

Sσe

Ke(R
′, ω)×∇′Gσe(R−R′, ω) dS ′

+
j

ωµ
n′ ×

{

Sσe

[∇′ ·Km(R′, ω)] ∇′Gσe(R−R′, ω) dS ′

= − σe n′ ×
{

Sσe

Km(R′, ω) Gσe(R−R′, ω) dS ′ . (5.55)

Performing the operation (n′ · ) on both sides of Eq. (5.54) and using the transition conditions
Eq. (5.44) yields

−1

2

j

ωµ
∇·Km(R, ω) − n′ ·

{

Sσe

Ke(R
′, ω)×∇′Gσe(R−R′, ω) dS ′

+
j

ωµ
n′ ·

{

Sσe

[∇′ ·Km(R′, ω)] ∇′Gσe(R−R′, ω) dS ′

= − σe n′ ·
{

Sσe

Km(R′, ω) Gσe(R−R′, ω) dS ′ . (5.56)

5.3.2.2 MFIE for Non-conducting Region

Inserting the transition conditions (5.40)-(5.47) in Eq. (5.37) results

H0(R, ω) = Himp(R, ω) −
{

Sσe

j

ωµ
∇′ ·Km(R′, ω) ∇′Gms(R−R′) dS ′

+
{

Sσe

Ke(R
′, ω)×∇′Gms(R−R′) dS ′ . (5.57)
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We perform the operation n′× on both sides of Eq. (5.57) and use the transition condition
Eq. (5.40) to obtain

−Ke(R, ω) +
j

ωµ
n′ ×

{

Sσe

∇′ ·Km(R′, ω) ∇′Gms(R−R′) dS ′

− n′ ×
{

Sσe

Ke(R
′, ω)×∇′Gms(R−R′) dS ′ = n′ ×Himp(R, ω) . (5.58)

Performing the operation (n′ · ) on both sides of Eq. (5.54) and using the transition conditions
Eq. (5.44) yields

− j

ωµ
∇·Km(R, ω) +

j

ωµ
n′ ·

{

Sσe

∇′ ·Km(R′, ω) ∇′Gms(R−R′) dS ′

− n′ ·
{

Sσe

Ke(R
′, ω)×∇′Gms(R−R′) dS ′ = n′ ·Himp(R, ω) . (5.59)

The surface field quantities are defined by the MFIE for the conducting and the non-
conducting region. The MFIE represents a Fredholm integral equation of the second kind for
the magnetic field quantities only and therefore, this formulation has the same disadvantages
as the EFIE formulation.

5.4 Boundary Element Discretization and Formulation

of the System of Equations

Good results are obtained by using a mixed formulation, where the unknown surface quan-
tities are defined by EFIE for the conducting region and by MFIE for the non-conducting
region. For example, the so-called KHJ-formulation (Rucker et al., 1995) is constructed
with the EFIE for the conducting region Eq. (5.49) for Km(R, ω), the MFIE for the con-
ducting region Eq. (5.56) for H0n(R, ω) and the MFIE for non-conducting region Eq. (5.58)
for Ke(R, ω) where

H0n(R, ω) = − j

ωµ
∇·Km(R, ω) . (5.60)

The normal component of the electric field outside the conductive region can be calculated
with Eq. (5.53) in a second step.

Theoretically, BEM is a combination of the classical boundary integral equation method and
the discretization technique originated from FEM, and therefore, the most important step to
solve a magnetoquasistatic problem by BEM is to derive the integral equation formulation
of the governing equation that we have discussed earlier. In order to apply the boundary
element method (BEM) the surface of the conducting region is discretized into so called
boundary elements. Numerical solutions with high accuracy are obtained by using boundary
elements of higher order, e. g. eight-noded quadrilateral isoparametric elements using second
order shape functions Nk(α, β) (Rucker & Richter , 1990).

r(ζ1, ζ2) =
8∑

k=1

Nk(ζ1, ζ2) rk , (5.61)
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where (ζ1, ζ2) is the local coordinate system, defined for each boundary element and the
position of the k-th node is given by rk. We define two orthogonal tangential unit vectors u
and v as

n = u× v (5.62)

in the surface nodes for the description of the surface fields. In the local coordinate system
of the considered element the tangential vectors are given by

u(ζ1, ζ2) =
∂r(ζ1, ζ2)/∂ζ1

|∂r(ζ1, ζ2)/∂ζ1|
(5.63)

v(ζ1, ζ2) =
∂r(ζ1, ζ2)/∂ζ2

|∂r(ζ1, ζ2)/∂ζ2|
. (5.64)

Thus we obtain the orthogonal tangential vectors in the nodes of the global coordinate system
as following:

uk =αk u(ζ1, ζ2) + βku(ζ1, ζ2) (5.65)

vk = γk u(ζ1, ζ2) + δku(ζ1, ζ2) . (5.66)

As for example, the tangential component of the electric field is given by Km according to
Eq. (5.41) and is computed as

Km(ζ1, ζ2) =
8∑

k=1

Nk(ζ1, ζ2) [Kukuk +Kvkvk] . (5.67)

The discretization of the boundary integral equations lead for the KHJ formulation to the
following equation system:




Huu Huv 0 jωµGuu jωµGuv

Hvu Hvv 0 jωµGvu jωµGvv

σeGnu σeGnv Hnn Hnu Hnv

0 0 Hun Huu Huv

0 0 Hvn Hvu Hvv


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. (5.68)

The matrix elements in Eq. (5.68) are N ×N sub-matrices where N is the total number of
nodes on the closed surface Sσe . The coefficients of the element matrices [H] are listed below

hkuu =− (v × uk)
x

Sσe

Nk∇′G(R,R′) dS ± 1

2
δij (5.69)

hkuv =− (v × vk)
x

Sσe

Nk∇′G(R,R′) dS (5.70)

hkvu = (u× uk)
x

Sσe

Nk∇′G(R,R′) dS (5.71)

hkvv = (u× vk)
x

Sσe

Nk∇′G(R,R′) dS ± 1

2
δij (5.72)
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hknu = (n× uk)
x

Sσe

Nk∇′G(R,R′) dS (5.73)

hknv = (n× vk)
x

Sσe

Nk∇′G(R,R′) dS (5.74)

hkun =−v
x

Sσe

Nk∇′G(R,R′) dS (5.75)

hkvn = u
x

Sσe

Nk∇′G(R,R′) dS (5.76)

hknn =−n
x

Sσe

Nk∇′G(R,R′) dS ± 1

2
δij (5.77)

and the coefficients of the element matrices [G] are given by

gkuu = (v ·uk)
x

Sσe

Nk∇′G(R,R′) dS ± 1

2
δij (5.78)

gkuv = (v ·vk)
x

Sσe

Nk∇′G(R,R′) dS (5.79)

gkvu =− (u ·uk)
x

Sσe

Nk∇′G(R,R′) dS (5.80)

gkvv =− (u ·vk)
x

Sσe

Nk∇′G(R,R′) dS ± 1

2
δij (5.81)

gknu = (n ·uk)
x

Sσe

Nk∇′G(R,R′) dS (5.82)

gknv = (n ·vk)
x

Sσe

Nk∇′G(R,R′) dS . (5.83)

In general, Eq. (5.68) is written as

[H] {K}= {J} , (5.84)

which is a linear matrix equation. A suitable linear matrix solver, such as, the conjugate
gradient (CG) method (Press et al., 2007) or the generalized modified residual (GMRES)
method (Meister , 2008) is used to solve this equation by determining the unknown values
of {K}.
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Chapter 6

Analytical Solution of an Eddy
Current Problem

Numerical modeling of eddy current problems plays an important role in nondestructive
evaluation. The results obtained using different numerical techniques should be compared
to the analytical results to prove the accuracy and consistency of the numerical methods.
As the first step, a simple geometry is chosen for this comparison and then the analytical
solution is computed.

6.1 Geometry of a Typical Eddy Current Problem

The most common geometries of interest involve excitation coils near plane or cylindrical
surfaces. A typical example is shown in Fig. 6.1 where a current coil resides over a conducting
half-space. Due to the excitation in the current coil, an eddy current will be induced on
the metal surface. The eddy current field is perturbed by variations in the dimensions
or properties (e.g. permeability µ and electric conductivity σe) of the metal and by the
presence of defects (Hower et al., 1984). These perturbations, in turn, produce changes in
the electromagnetic fields near the metal surface which can be detected as changes in the
impedance of the eddy current excitation (or search) coil. Theoretical calculations typically

r

z

Conducting Half-Spce

Current Coil

Figure 6.1: A circular coil over a conducting half-space.

involve a full numerical solution of the field equations using finite integration technique
(FIT), finite element method (FEM) or method of moments (MoM). Such a problem can

77
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also be solved analytically by evaluating the integral expressions, obtained by solving the
appropriate boundary value problem. Specifically, we consider here a circular coil above and
parallel to the surface of a homogeneous conducting half-space (see Fig. 6.1). The case of a
multiple-turn coil of rectangular cross-section has been presented by Dodd & Deeds (1984).
The cross-section of such a coil is shown in Fig. 6.2.

r

z

l1

z

l2 − l1

d

r1

r2

Figure 6.2: Cross section of a circular coil over a conducting half-space. Parameter: r1 =inner radius,
r2 =outer radius, l1 =distance between coil to conducting half-space and l2 − l1 = coil height.

6.2 Analytical Expressions

The expressions of the electric field strength E and magnetic field strength H for the typical
eddy current problem, shown in Fig. 6.2, need to be computed in cylindrical coordinate
system. The axis of the coil shows the z-axis and the air-metal interface located at z = 0.
As mentioned in the previous chapters, we compute the magnetic vector potential A to
solve an eddy current problem. The geometry is located in rz-plane and therefore, the ϕ
component of the magnetic vector potential Aϕ has to be computed. We can write the
expression of Aϕ for the conducting half-space as

Eϕ(r, z) =− jωAϕ(r, z)

=− jωµK

∞w

α=0

J1(αr)Fa(αr2, αr1)Fb(α, z) dα (6.1)

⇒ Aϕ(r, z) =µK

∞w

α=0

J1(αr)Fa(αr2, αr1)Fb(α, z) dα , (6.2)

where

K =
NIe

(r2 − r1)(l2 − l1)
(6.3)

Fa(αr2, αr1) =

αr2w

x=αr1

J1(x) dx (6.4)

Fb(α, z) =

(
e−αl1 − e−αl2

)
e
√
α2+ jωµσez

α2(α +
√
α2 + jωµσe)

. (6.5)
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Here N is the number of turns on the coil, Ie is the electric current in the coil, ω is the angular
frequency and σe is the electric conductivity of the conducting half-space. Furthermore, J1

represents Bessel function of the first kind and of first order. At the surface of the conducting
half-space Eq. (6.5) can be rewritten as

Fb(α, z = 0) =
e−αl1 − e−αl2

α2(α +
√
α2 + jωµσe)

=
e−αl1

α2(α +
√
α2 + jωµσe)

− e−αl2

α2(α +
√
α2 + jωµσe)

. (6.6)

The right side of Eq. (6.2) contains integrals which need to be computed numerically to
determine the value of Aϕ. One of the following methods can be implemented for this
purpose:

• Trapezoidal rule

• Simpson’s rule

• Romberg integration

• Gauss quadrature

The first three involve equally spaced samples of the integrand but differ in the method
of approximating intermediate values, which causes incorrect results in case of inherent
oscillation of the integrand, e.g., in Bessel function. Such an integration requires a relatively
small step size and has the difficulty in deciding when to terminate the integration. Gauss
quadrature rule can be used to overcome this difficulty. However, it has several approaches,
such as

• Gauss-Laguerre quadrature

• Gauss-Lagendre quadrature

• Chebyshev-Gauss quadrature

• Gauss-Kronrod quadrature

• Lobatto quadrature etc.

The definite integral in Eq. (6.4) is solved by Gauss-Kronrod quadrature, which attempts
to approximate the integral of a scalar-valued function fun from a to b using high-order
global adaptive quadrature. Furthermore, Gauss-Laguerre quadrature rules are designed to
approximate integrals on semi-infinite intervals, like [0,∞), and therefore, are suitable to
determine the integration of Eq. (6.2).

6.3 Gauss-Laguerre Quadrature

Gauss-Laguerre quadrature deals with a Gaussian quadrature with an interval [0,∞) with
weighting function w(x) = e−x (see Abramowitz & Stegun (1972)). If there exists an integral
of the form

∞w

x=0

e−xf(x) dx ,
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then it can be computed as

∞w

x=0

e−xf(x) dx=
n∑

i=1

wif(xi) , (6.7)

where

wi =
1

xi
[

d
dx
Ln(xi)

]2 . (6.8)

Here Ln(xi) are the roots of the Laguerre polynomial of n-th order. A higher value of n
should be selected while integrating an oscillating function.

6.4 Gauss-Kronrod Quadrature

As mentioned earlier, Gauss-Kronrod quadrature is suitable for definite integrals where the
intervals can be typically mentioned as [a, b]. If there exists a definite integral of the form

bw

x=a

f(x) dx ,

then it can be approximated by n-points Gaussian quadrature as

bw

x=a

dx ≈
n∑

i=1

wif(xi) , (6.9)

where wi and xi are the weights and points at which to evaluate the function f(x). If
the interval [a, b] is subdivided, the Gauss evaluation points of the new subintervals never
coincide with the previous evaluation points (except at zero for odd numbers) and thus the
integrand must be evaluated at every point. Gauss-Kronrod formulas are extensions of Gauss
quadrature formulas generated by adding n+ 1 points to an n-point rule in such a way that
the resulting rule is of order 3n+ 1. This allows for computing higher-order estimates while
reusing the function values of a lower-order estimate.

6.5 Computation of the Integrals

Inserting Eq. (6.6) into Eq. (6.2) yields,

Aϕ(r, z) = µK

∞w

α=0

e−αl1
J1(αr)Fa(αr2, αr1)

α2(α +
√
α2 + jωµσe)

dα

−µK
∞w

α=0

e−αl2
J1(αr)Fa(αr2, αr1)

α2(α +
√
α2 + jωµσe)

dα . (6.10)

We have to substitute αl1 with α′ to compute the first integral as

α′=α l1 ⇒ α =
α′

l1

⇒ dα=
1

l1
dα′ . (6.11)
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Using this substitution the first integral of Eq. (6.10) can be rewritten as

∞w

α=0

e−αl1
J1(αr)Fa(αr2, αr1)

α2(α +
√
α2 + jωµσe)

dα

=
1

l1

∞w

α′=0

e−α
′

J1

(
α′

l1
r
)
Fa

(
α′

l1
r2,

α′

l1
r1

)

(
α′

l1

)2
(
α′

l1
+

√(
α′

l1

)2

+ jωµσe

) dα′ (6.12)

=
1

l1

∞w

α′=0

e−α
′
f(α′) dα′ , (6.13)

where

f(α′) =
J1

(
α′

l1
r
)
Fa

(
α′

l1
r2,

α′

l1
r1

)

(
α′

l1

)2
(
α′

l1
+

√(
α′

l1

)2

+ jωµσe

) dα′ . (6.14)

Applying Eq. (6.7) we can compute the integral as

1

l1

∞w

α′=0

e−α
′
f(α′) dα′ =

n∑

i=1

wif(α′i) . (6.15)

In order to compute the second integral of Eq. (6.10) we have to substitute αl2 with α′′ as

α′′=α l2 ⇒ α =
α′′

l2

⇒ dα=
1

l2
dα′′ . (6.16)

Using this substitution the second integral can be computed in the same way as the first
one.

∞w

α=0

e−αl2
J1(αr)Fa(αr2, αr1)

α2(α +
√
α2 + jωµσe)

dα

=
1

l2

∞w

α′′=0

e−α
′′

J1

(
α′′

l2
r
)
Fa

(
α′′

l2
r2,

α′′

l2
r1

)

(
α′′

l2

)2
(
α′′

l2
+

√(
α′′

l2

)2

+ jωµσe

) dα′′ (6.17)

=
1

l2

∞w

α′′=0

e−α
′′
f(α′′)dα′′ , (6.18)

=
n∑

i=1

wif(α′′i ) . (6.19)
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Inserting Eq. (6.15) and Eq. (6.19) into Eq. (6.10) yields

Aϕ(r, z) =µK

n∑

i=1

wif(α′i)− µK
n∑

i=1

wif(α′′i )

=µK

[
n∑

i=1

wif(α′i)−
n∑

i=1

wif(α′′i )

]
. (6.20)

6.6 Analytical Results

The coil is described by number of turns N = 200, inner radius r1 = 12 mm, outer radius
r2 = 16 mm, distance from conducting half-space l1 = 4 mm, height of the coil l2 − l1 = 4
mm, electric current Ie = 1 A and angular excitation frequency ω = 4.295 × 104 s−1.
The conducting half space has the thickness d = 5 mm and the electric conductivity of
σe = 2.46× 107 A/Vm. The whole simulation region is considered to have the permeability
µ = µ0, where µ0 is the permeability of free space. The magnetic vector potential Aϕ at the
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Figure 6.3: Analytic result: magnitude of Aϕ at z = 0. Parameter: N = 200, r1 = 12 mm, r2 = 16 mm,
l1 = 4 mm, l2 − l1 = 4 mm, d = 5 mm, Ie = 1 A, ω = 4.295× 104 s−1, σe = 2.46× 107 A/Vm and µ = µ0.

upper surface of the conducting half-space is then computed using Eq. (6.20). Some control
of the oscillations of the integrands can be exerted by proper selection of the order n for the
Gauss-Laguerre quadrature. Fig. 6.3 shows the computed Aϕ at z = 0 for n = 300.

6.7 Comparison with Numerical Results

The eddy current problem mentioned in Sec. 6.1 can also be solved using numerical tech-
niques, such as, the finite integration technique (FIT), the finite element method (FEM) and
the boundary element method (BEM).
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6.7.1 FIT Results

A 3-D eddy current problem can be reduced to a 2-D problem using rotational symmetry
in cylindrical coordinates, and therefore, it is enough to simulate the right half of Fig. 6.2,
as shown in Fig. 6.4. The simulation region is discretized by Nr × Nz = 200 × 200 cells,

r

z

l1z = 0

l2 − l1

d

r1

r2

Figure 6.4: Geometry for FIT and FEM using rotational symmetry. Parameter: r1 =inner radius, r2 =outer
radius, l1 =distance between coil to conducting half-space and l2 − l1 = coil height.

where the width of each cell ∆ = 0.25 mm. The excitation coil is fed with an electric current
density of Je = 38.875kA/m2, which is equivalent to the electric current of Ie = 1 A in the
conductors. The perfectly electric conducting (PEC) boundary conditions are implemented
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Figure 6.5: FIT result: a) Aϕ distribution in rz-plane and b) Aϕ at z = 0. Parameter: Nr = 200, Nz = 200,
∆ = ∆x = ∆z = 0.25 mm, Je = 38.875 kA/m2, ω = 4.295× 104 s−1, σe = 2.46× 107 A/Vm and µ = µ0.

on all sides of the simulation plane. The computed magnitude of Aϕ is shown in Fig. 6.5a,
where the while line indicates the upper surface of the conducting half-space. Aϕ at this
surface is shown in Fig. 6.5b.
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6.7.2 FEM Results

The reduced 2-D problem is simulated here using FEM where the rz-plane is discretized
by Ne = 18000 triangular elements. The excitation coil is supplied with an electric current
density of Je = 38.875 kA/m2. Similar to FIT, the PEC boundary condition is implemented
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Figure 6.6: FEM result: a) Aϕ distribution in rz-plane and b) Aϕ at z = 0. Parameter: Ne = 18000,
Je = 38.875 kA/m2, ω = 4.295× 104 s−1, σe = 2.46× 107 A/Vm and µ = µ0.

here on all sides of the simulation plane. The computed Aϕ is shown in Fig. 6.6a, whereas
Aϕ at z = 0 is shown in Fig. 6.6b.

6.7.3 BEM Results
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Figure 6.7: BEM result: a) Aϕ distribution on the surface of the conducting half-space and b) Aϕ at z = 0.
Parameter: Ne = 5000, NI = 622 A-T, ω = 4.295× 104 s−1, σe = 2.46× 107 A/Vm and µ = µ0.
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A 3-D eddy current problem is solved here using BEM by discretizing the surface of the
conducting half space with Ne = 5000 triangular elements. The excitation of the coil is
defined by the volume current, i.e., by assigning NIe = 622 A-T. Fig. 6.7 shows the simulated
Aϕ distribution at the surface of the conducting half-space.

6.7.4 Comparison

A direct comparison between all the methods is shown in Fig. 6.8, where the analytical, FIT,
FEM and BEM results are shown in black, red, blue and magenta, respectively. All the results
agree perfectly to each other, which proves the accuracy and consistency of the numerical
methods. Although we obtain accurate results using all the three techniques, the major
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Figure 6.8: Comparison of results obtained from different techniques.

point of consideration is the computation time. Here we have solved the magnetoquasistatic
problem with the finite integration technique for 40000 unknowns in 2 minutes, whereas a
finite element method based software package Opera (Opera, 10.5) requires the same time for
20000 unknowns and a boundary element based software tool Faraday (Faraday , 6.1) requires
120 minutes for 5000 unknowns. Due to the large computational time 3-D simulations will
be performed only for the models which cannot be simulated in 2-D, such as, for point coil
sensors.
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Chapter 7

Simulation Results

In this chapter we discuss the results of different eddy current sensors developed during the
INCOSTEEL project, which is an EU research project and is performed by the University
of Kassel in collaboration with Tecnatom (Tecnatom, S.A.), TU Freiberg (TU Freiberg , FB)
and Sidenor (Sidenor , S.A.). At first, a traditional encircling coil will be discussed. Such a
sensor is typically used to detect the transversal cracks. Secondly, we shall discuss about the
modified encircling coil sensor. In the next part, the point core sensors, suitable to detect
the longitudinal cracks, will be reported. At the end, we shall make a velocity analysis to
simulate the effect of the velocity of the hot wire on the detection process.

7.1 Simulation Results of Encircling Coil Sensors

Two types of encircling coils have been analyzed in this section.

• Encircling coil sensor without ferrite core

• Encircling coil sensor with ferrite core

We simulate the following simulations with the sensors mentioned above:

• Encircling coil sensor without ferrite core to simulate a transversal crack

• Encircling coil sensor with ferrite core to simulate a transversal crack

• Encircling coil sensor without ferrite core to simulate a longitudinal crack

7.1.1 Encircling Coil Sensor without Ferrite Core to Simulate a
Transversal Crack

In this section the modeling of the detection of a transversal crack with an encircling coil
sensor without ferrite core is reported. Such a sensor is typically used in the rolling mills to
detect the surface defects. This prototype is built according to the design of the encircling
coil sensor which is in operation in Sidenor (Sidenor , S.A.). The modeling of this first
generation sensor need to be performed to understand and determine the ways to modify it.
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7.1.1.1 Geometry of an Encircling Coil Sensor without Ferrite Core

The schematic view of an encircling coil sensor is shown in Fig. 7.1. Such a sensor consists
of four coils, where the two outer coils (red colored in Fig. 7.1b) operate as excitation coils
and the two inner coils (blue colored in Fig. 7.1b) operate as receiving coils. Each of the
excitation coils has the height of 3 mm and consists of 140 turns of copper wire and each of
the receiving coils is constructed of 180 turns of copper wire.
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Figure 7.1: a) Cross section of the encircling coil sensor with steel wire inside and b) detailed view of the
cross section of the sensor coils.
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Figure 7.2: Schematic view of the geometry of the hot wire steel with a crack at z = 20 mm embedded in
free-space and a sketch of an encircling coil sensor, electric conductivity of hot wire σe = 1.4 × 106 A/Vm
and magnetic permeability µ = µ0.
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The applied voltage at the driving circuit of the excitation coils is V = 1.14142 V (rms)
which results a current density Jimp

e (R, ω) = 2.4 × 104 A/m2 in the excitation coil. The
obtained voltages in the receiver coils are recorded and plotted to determine the response of
the sensor when a crack crosses the sensor. The size of the crack is length l = 5 mm and
depth d = 0.5 mm.

7.1.1.2 Numerical Technique to Simulate an Encircling Coil Sensor without
Ferrite Core

The simulations are performed by finite integration technique (FIT) with the help of MQS-
FIT (Marklein, 2002). The geometry shown in Fig. 7.2 lies in rz-plane and is discretized by
500× 500 = 250000 rectangular elements. The resulting linear matrix equation is iteratively
by bi-congugate gradient (BCG) method (Shewchuk et al., 1994; Press et al., 2007) with
a relative tolerance of 1 × 10−8. An excitation frequency of f = 50 kHz is used and the
resulting radial component of the magnetic flux density is displayed in Fig. 7.3, the real part
of Aϕ is displayed on the left and the imaginary part on the right.
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Figure 7.3: Simulation result using MQSFIT: a) real part and b) imaginary part of Aϕ distribution in hot
wire. Parameter: Nr = 500, Nz = 500, ∆ = ∆x = ∆z = 0.1 mm, f = 50 kHz, σe = 1.4 × 106 A/Vm and
µ = µ0.

7.1.1.3 Modeling of the Receiving Coils

The cross section of a receiving coil is shown in Fig. 7.4a. However, a coil consists of copper
wires and cannot be realized as a block of copper. Fig. 7.4b shows an approximated view of
the cross section of the receiving coil, where the cross sections of the copper wires are drawn
as blue circles and ∆ = ∆r = ∆z. We compute Aϕ for each of the node which resides inside
the coil using MQSFIT. The electric field strength E(R, ω) is then computed in the second
step by

Eϕ(R, ω) = jωAϕ(R, ω) . (7.1)
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a) b)Receiving Coil Approximated Coil

3 mm

3 mm
2∆

2∆

Figure 7.4: a) cross section of a receiving coil and b) the approximated geometry of the coil; ∆ = ∆r = ∆z.

The ϕ component of the electric field strength Eϕ(R, ω) at the center of each conductor is
determined by Eq. (7.1). We assume that inside each conductor Eϕ(R, ω) remains constant
and therefore, the induced electric voltage Ve(ω) for each conductor of the receiving coil is
calculated by

Ve(ω) =
z

E(R, ω) ·dR = 2πRcon Eϕ(R, ω) , (7.2)

where Rcon is the radius of the considered conductor. The total induced electric voltage of
the receiving coil is then computed as

V tot
e (ω) =Nt Ve(ω) , (7.3)

where the receiving coil consists of Nt turns of copper wire.
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Figure 7.5: Simulation result using MQSFIT: a) Induced electric voltages of an encircling coil sensor as
a function of crack position and b) change of induced electric voltages with the presence of a crack as a
function of crack position.
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7.1.1.4 Results and Performance Analysis of an Encircling Coil Sensor without
Ferrite Core

A plot of the induced electric voltages recorded at the sensor coil as a function of crack
position is given in Fig. 7.5a (Rahman & Marklein, 2006). The induced electric voltage at
the receiver coils without any crack is 542.75 mV. Taking this voltage as an offset, the change
of the induced voltage with the presence of a crack is plotted in Fig. 7.5b. If we take a close
look of the magnetic flux distribution in Fig. 7.3, we find that measures can be taken to
focus the magnetic flux density towards the steel surface, which will increase the induced
electrical voltage at the sensor coil and will ensure better detection. The outcome of the
modeling results lead to the development of a modified version of the encircling coil sensor
which is later manufactured by Messtechnik, University of Kassel (Messtechnik , KS) and is
presented in the next section.

7.1.2 Encircling Coil Sensor with Ferrite Core to Simulate a Trans-
versal Crack

An encircling coil sensor with ferrite core, developed by the University of Kassel, is a modified
version of an encircling coil. The simulation of the detection process with the presence of a
transversal crack will be discussed here.
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Figure 7.6: Schematic view of the geometry of the hot wire steel with a crack at z = 20 mm embedded in
free-space and a sketch of an encircling coil sensor with ferrite core.
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7.1.2.1 Geometry of an Encircling Coil Sensor with Ferrite Core

An encircling coil sensor with ferrite core has been shown in Fig. 7.6. The excitations coils
are marked as red and the receiving coils are marked as blue. The ferrite core of the thickness
of 0.8 mm resides in and around the sensor coils. A so called T38 type ferrite material is
used here which posses a high magnetic permeability µr = 5000 and therefore, it is suitable
for guiding magnetic flux towards the steel wire. The other geometric details are the same
as the encircling coil sensor without ferrite.

7.1.2.2 Numerical Technique to Simulate an Encircling Coil Sensor with Ferrite
Core

The simulations are performed in cylindrical coordinates by finite element method (FEM)
with the help of the steady-state AC module of Opera-2d (Opera, 10.5). We have used
e = 20000 elements to discretize the simulation domain, which resides in rz-plane. The
radial component of the magnetic flux density Br is displayed in Fig. 7.7. As the magnetic
flux lines are focused towards the steel bar with the help of the ferrite core, we observe here
higher flux concentration and hence, higher induced voltage than in the case without ferrite
core (see Fig. 7.8).
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Figure 7.7: Field distribution of the radial component of the magnetic flux density of an encircling coil
sensor system: a) without with ferrite core and b) with ferrite core. Parameter: no. of triangular elements
Ne = 20000, σe = 1.4× 106 A/Vm, µ = µ0.

7.1.2.3 Results and Performance Analysis of an Encircling Coil Sensor with
Ferrite Core

A comparison of the induced electric voltages recorded at the sensor coil of the modified
encircling coil sensor system with that of a traditional encircling coil sensor system is given
in Fig. 7.8, where we find that the modified encircling coil sensor with ferrite core shows
a higher sensitivity than a traditional one (Rahman & Marklein, 2009). Fig. 7.9 shows a
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a) b)Without Ferrite Core With Ferrite Core
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Figure 7.8: Change of induced electric voltages with the presence of a crack as a function of crack position
obtained from a) an encircling coil sensor system without ferrite core and b) with ferrite core.

comparison of the synthetic A-scan to the measured A-scan, where the synthetic A-scan is
shown on the right and the simulated A-scan on the right.
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Figure 7.9: Eddy current testing of hot wire with an encircling coil with ferrite core: a) measured A-scan
and b) simulated A-scan.

7.1.3 Encircling Coil Sensor without Ferrite Core to Simulate a
Longitudinal Crack

The detection of the transversal cracks is not enough to meet the goals of the INCOSTEEL
project. Depending on the production process, the presence of the longitudinal cracks at
the upper surface of hot wire is quite usual and therefore, the encircling coil sensors need
to be tested whether they are capable of detecting such cracks. In this section we report
the modeling of the detection of a longitudinal crack with an encircling coil sensor without
ferrite core.
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7.1.3.1 Geometry of an Encircling Coil Sensor without Ferrite Core

The geometry of the encircling coil sensor without ferrite core is already discussed in Sec.
7.1.1.1 (see Fig. 7.2). The two outer coils of the sensor work as excitation coils , while the
inner two marked as R1 and R2 in Fig. 7.10, function as receiver coils. The dimension of
the crack is length l = 20 mm, depth d = 0.5 mm and width w = 0.5 mm. A steel wire of
the length L = 50 mm and a diameter D = 12 mm is tested here.

Figure 7.10: A snapshot of the hot wire inspection with a longitudinal crack. Geometry of Crack: l = 20
mm, d = 0.5 mm, w = 0.5 mm, Parameter: f = 50 kHz, σe = 1.4× 106 A/Vm and µ = µ0.

7.1.3.2 Numerical Technique to Simulate an Encircling Coil Sensor without
Ferrite Core

It is not possible to simulate a longitudinal crack using rotational symmetry and hence, we
have to perform a 3-D modeling in this case. The simulations are accomplished by boundary
element method (BEM) with the help of Faraday 6.1 (Faraday , 6.1). Fig. 7.10 shows a
snapshot of the detection process where the eddy current distribution on the steel surface is
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displayed in the bottom and the obtained differential signal (vR1−vR2) from the receiver
coils is plotted on the top.

7.1.3.3 Results and Performance Analysis of an Encircling Coil Sensor without
Ferrite Core

A plot of the induced electric voltages recorded at the sensor coil as a function of crack
position is given in Fig. 7.11. The first peak indicates the beginning of the crack, while
the second peak indicates the end. Such a sensor detects only the edges of the cracks and
does not give continuous response while a longitudinal crack is crossing the sensor coils.
Theoretically, it is possible to detect a longitudinal crack with an encircling coil sensor, as
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Figure 7.11: Differential signal vR1−vR2 obtained from an encircling coil sensor without ferrite core in
presence of a longitudinal crack.

we have seen in the simulation results. Practically, in a rolling mill where more than one
cracks can occur at the same time, it is almost impossible to detect the beginning and end of
each longitudinal cracks with an encircling coil sensor. As a result, new sensors need to be
developed which will not only detect the beginning and end of the crack, but also produce
continuous response while the longitudinal cracks are passing by.

7.1.3.4 Innovative Ideas to Detect Longitudinal Cracks

The modeling results in the previous section show that a new kind of eddy current sensor
has to be developed to detect the longitudinal cracks. As we observe from Fig. 7.10 that
an encircling coil sensor produces a eddy current distribution which is parallel to the sensor
coils and therefore, a longitudinal crack weekly influences such a distribution. As a result,
an encircling coil sensor can only detect the crack tips and no continuous response can be
obtained. To solve this problem we need to produce such an eddy current distribution which
is more sensitive to the longitudinal one, i.e., a distribution which is not in the perpendicular
direction to the length of the longitudinal crack. A circular uniform distribution on the steel
surface is a suitable option in this sense but to produce such a distribution we require point
coils. Based on this theoretical background the first point coil sensor, also known as a 3-coils
sensor is suggested by Tecnatom (Tecnatom, S.A.). However, the inspection technique needs
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to be modeled before manufacturing such a sensor system. Furthermore, the behaviour of
the point coil sensor system in array mode also need to be studied.

7.2 Simulation Results of Point Coil Sensors

A number of point coil sensors are developed in INCOSTEEL (INCOSTEEL, 2004) project
to detect the longitudinal cracks. We shall discuss in this section the following types of point
coil sensors:

• 3-coils sensor in unitary mode

• 3-coils sensor in array mode

• D-coils sensor

• 4-coils sensor

• Pot core sensor

7.2.1 A 3-Coils Sensor in Unitary Mode

A 3-coils sensor consists of three small elementary coils (see Fig. 7.12a) where one of the
coils operates as the excitation coil and the other two coils operate as the receiving coils.
For test purpose this type of sensor is first operated in unitary mode.

a) b)Coil 1 mm

3 mm

3.1 mm

Ferrite Core

Coil

c)

Hot Wire

Crack1 mm
5 mm

10 mm 5 mm 5 mm

Figure 7.12: a) Photo of a 3-coils sensor, b) geometric detail of a single element of a 3-coils sensor and c)
test setup using a 3-coils sensor.
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7.2.1.1 Geometry of a 3-Coils Sensor in Unitary Mode

Each element of a 3-coils sensor has the height of 3 mm and the diameter of 3.1 mm (see
Fig. 7.12b). 260 turns of copper wire is wound over a ferrite core to form a single element.
In Fig. 7.12c the elements marked as R1 and R2 work as the receiving coils. The other
lone element works as the excitation coil, which posses a current density of Jimp

e (R, ω) =
2.337×107 A/m2, where a monochromatic frequency of f = 74 kHz is used. The coils reside
0.5 mm above the steel surface and 5 mm apart from each other (see Fig. 7.12c).

Figure 7.13: A snapshot of the detection process; top: induced voltage in the receiving coils, bottom: eddy
current distribution on the hot wire.

7.2.1.2 Numerical Technique to Simulate a 3-Coils Sensor in Unitary Mode

The 3-coils sensor system is simulated boundary element method (BEM) with the help of
Faraday 6.1 (Faraday , 6.1). To discretize the geometry the eddy current skin depth of the
hot wire steel is calculated as

χ =
1√

πfµσe

= 1.55 mm , (7.4)

where relative permittivity of hot wire steel µ = µ0 above the Courie point and the electric
conductivity σe = 1.4 × 106 A/Vm. The length of a side of each triangular element should
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be less than the skin depth and therefore, triangles having the area of 0.21 mm2 have been
chosen. A total number of Ne = 6000 triangular elements are used to discretize the steel
surface, whereas each of the ferrite core is discretized using 308 triangular elements. The
obtained linear matrix equation has been solved using generalized minimal residual (GM-
RES) method (Meister , 2008). Fig. 7.13 shows a snapshot of the detection process. L = 50
mm of a steel wire of the diameter D = 31 mm has been simulated here. The size of the
crack is: length l = 10 mm, width w = 1 mm and depth d = 1 mm. The eddy current
distribution on the steel surface is displayed in the bottom of Fig. 7.13, where an excitation
frequency of f = 74 kHz is used. The obtained voltages in the sensor coils are recorded
and the differential signal is plotted on the top of Fig. 7.13 to determine the response of the
sensor when a crack crosses the sensor.
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Figure 7.14: Hot wire testing with a 3-coils sensor: a) measured A-scan and b) simulated A-scan.

7.2.1.3 Results and Performance Analysis of a 3-Coils Sensor in Unitary Mode

The synthetic A-scan, obtained from the simulation, is validated against the measured A-
scan in Fig. 7.14. The comparison shows satisfactory results and proves the accuracy of the
simulation (Rahman & Marklein, 2008; Ricken et al., 2008). The modeling of the inspection
technique shows good detection of the longitudinal cracks with a 3-coils sensor. This leads to
the manufacturing of the prototype of this sensor and testing in the industrial environment in
TU Freiberg (TU Freiberg , FB). A 3-coils sensor shows good results to detect the longitudinal
cracks in laboratory as well as industrial environment. However, this sensor shows a major
drawback when any longitudinal crack resides direct beneath the excitation coil. In this
case, both the excitation coils show the same voltages, and hence no differential signal can
be obtained. A modification needs to be performed to overcome this difficulty. Furthermore,
for successful testing of the hot wire we have to operate a 3-coils sensor in array mode and
hence, more simulations need to be performed to evaluate the array mode of such a sensor.

7.2.2 A 3-Coils Sensor in Array Mode

The use of an array of sensors shows better performance in detecting the cracks than a single
sensor. That’s why it is important to study the performance of sensors when they work in
an array.
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Figure 7.15: A snapshot of the detection process with an array of 3-coils sensor consists of 2 excitation
coils and 3 receiver coils; top: induced voltage in the receiving coils and bottom: eddy current distribution
on the hot steel wire.

7.2.2.1 Geometry and Numerical Technique to Simulate a 3-Coils Sensor in
Array Mode

A sensor array consisting 2 excitation coils and 3 receiver coils is simulated in Fig. 7.15. The
differential signal obtained from the receiver elements R1 and R2 is shown on top. On the
bottom the eddy current distribution on the hot wire is shown. The simulated crack has
the length of l = 10 mm and the depth of d = 1 mm. The excitation is performed using
a current density Jimp

e (R, ω) = 2.337 × 107 A/m2 in the excitation coils where a frequency
of f = 74 kHz is used. The shadowed bar of the A-scan indicates the induced voltage at
the particular crack position. As this type of sensor is an edge-detected one, we observe the
change in the induced voltage only at the beginning and end of the crack.

7.2.2.2 Simulation Results and Performance Analysis of a 3-Coils Sensor in
Array Mode

The voltages obtained from the receiver coils R1, R2 and R3 are plotted in Fig. 7.16. The
calculated difference signals vR1−vR2 and vR1−vR3 are shown in Fig. 7.17. Comparing
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Figure 7.16: Induced voltages at a) receiver 1 (vR1), b) receiver 2 (vR2) and c) receiver 3 (vR3).
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Figure 7.17: Differential signal obtained from a 3-coils sensor in array mode: a) vR1-vR2 and b) vR1-vR3.

Fig. 7.17 to Fig. 7.13 we find that the induced voltage obtained from a 3-coils sensor in
array mode is higher than that in unitary mode, which proves, a 3-coils sensor shows better
sensitivity in array mode than in unitary mode. However, it is difficult to manufacture such
arrays because of the angular displacement between the rings of excitation and receiver coils.
To overcome this difficulty a 4-coils sensor is developed which has simpler geometry and also
better sensitivity.

7.2.3 Simulation Results of a D-coils Sensor

University of Kassel has developed several designs of surface probe coils throughout the
project. The aim of this design was the detection of longitudinal defects, although other
defect orientations were also detected.

7.2.3.1 Geometry of a D-coils Sensor

A D-coils sensor consists of an oval shaped excitation coil (see Fig. 7.18a), which resides
around the receiving coils. The receiving coils are developed inside the pot formed ferrite
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cores (see Fig. 7.18b). The excitation coil is built of 150 turns of copper wire and each of
the receiving coils is formed of 40 turns of copper wire. The efficiency of the prototype has
to be determined through numerical modeling before fabricating it for industrial test.
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Figure 7.18: a) Photo of a D-coils core sensor, b) ferrite core of the receiver coils of the sensor and c) top
view of test setup using a d-coils sensor.

7.2.3.2 Numerical Technique to Simulate a D-coils Sensor

Fig. 7.19 shows a snapshot of the detection process using a D-coils sensor. 50 mm of a steel
wire of the diameter D = 12 mm has been simulated here. The size of the crack is: length
l = 10 mm, width w = 1 mm and depth d = 1 mm. An excitation frequency of f = 400 kHz
is used and the eddy current distribution on the steel surface is displayed in the bottom of
Fig. 7.19. The obtained voltages in the sensor coils are recorded and the differential signal is
plotted on the top of Fig. 7.19 to determine the response of the sensor when a crack crosses
the sensor. The simulation is performed using the boundary element method (BEM) with
the help of Faraday 6.1 (Faraday , 6.1).

7.2.3.3 Simulation Results and Performance Analysis of a D-coils Sensor

The induced voltages in the receiver coils R1 and R2 are plotted in Fig. 7.20a and Fig. 7.20b
respectively, whereas the differential signal vR1−vR2 is plotted in Fig. 7.20c. There are
some major cons of the D-coils sensor. As this sensor is larger than the steel wire of the
diameter of D = 12 mm, it fails to produce a uniform eddy current distribution on the steel
surface and therefore, offers poor sensitivity. Furthermore, the receiver coils are oriented
along the axis of the steel wire, which causes difficulties in determining the position and
size of the longitudinal cracks (see Fig. 7.20c). Due to these drawbacks we conclude from
numerical modeling that this prototype is not suitable in detecting longitudinal cracks and
therefore, modifications need to be performed to overcomes these problems.
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Figure 7.19: Hot wire testing using a d-coils sensor; top: induced voltage in the receiving coils, bottom:
eddy current distribution on the hot wire.
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Figure 7.20: Induced voltages at a) receiver 1 (vR1), b) receiver 2 (vR2) and c) differential signal
(vR1−vR2).
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One idea to modify this sensor is to reduce the size of the pot shaped ferrite cores of the
receiving coils and to redesign the excitation coils. The second idea is to use same type of
excitation coils as the receiving coils. These two ideas lead to the development of the pot
coil sensor which will be discussed later.

7.2.4 Simulation Results of a 4-Coils Sensor

The 4-coils sensor, a modified version of the 3-coils sensor, is developed by Tecnatom in
order to overcome the difficulties of a 3-coils sensor. However, the initial prototype needs
to be verified and optimized through numerical simulations to develop the final prototype.
After the numerical evaluation of the first prototype we have executed a parameter study to
find the optimum distance between the coils.
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Figure 7.21: a) Photo of a 4-coils sensor, b) geometry of a single element of a 4-coils sensor and c) top
view of test setup using a 4-coils sensor.

7.2.4.1 Geometry of a 4-Coils Sensor

A 4-coils sensor consists of four coils, where two of them operate as excitation coils and
the other two (marked as R1 and R2 in Fig. 7.21c) operate as receiving coils. 260 turns of
copper wire is wound over a ferrite core of the height of 3 mm and the width of 1mm (see
Fig. 7.21b). Two rings of sensor coils are used here, where each ring contains eight coils. The
optimum distance between an excitation and a receiving coil is 6 mm which is determined
by a parametric analysis.
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7.2.4.2 Numerical Technique to Simulate a 4-Coils Sensor

A surface crack of the length l = 10 mm, width w = 0.5 mm and depth d = 0.5 mm
is detected using a 4-coils sensor system in Fig. 7.22. The tested steel wire has a length
of L = 50 mm and a diameter D = 12 mm. The excitation coils are fed with a current
density of Jimp

e (R, ω) = 5.26 × 107 A/m2 with a frequency of f = 200 kHz. The resulting
eddy current distribution on the steel surface is displayed in the bottom of Fig. 7.22. The

Figure 7.22: A snapshot of the detection process using a 4-coils sensor; top: induced voltage in the receiving
coils, bottom: eddy current distribution on the hot wire.

obtained voltages in the sensor coils are recorded and the differential signal is plotted on
the top of Fig. 7.22 to determine the response of the sensor. The boundary element method
(BEM) is implemented here to model this eddy current problem with the help of Faraday 6.1
(Faraday , 6.1). Induced voltages at different receiving points have been shown in Fig. 7.23.
The receiver 1 shows higher induced voltage than that of receiver 2 because it resides over
the crack (Rahman & Marklein, 2009). A differential signal vR1−vR2 is plotted on the left
side of Fig. 7.24.
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7.2.4.3 Simulation Results and Performance Analysis of a 4-Coils Sensor

Like its predecessor a 4-coils sensor also shows good performance in detecting longitudinal
cracks. Comparing the results of a 3-coils sensor with that of a 4-coils sensor reveals that
a 4-coils sensor shows higher sensitivity in presence of a crack (see Fig. 7.14 and Fig. 7.24).
Furthermore, unlike a 3-coils sensor this sensor system does not show a blind zone when
a crack resides direct beneath the excitation coils. The modeling results show that a 4-
coils sensor posses high sensitivity and better performance and hence, is suitable for final
prototype. This leads to the manufacturing of the final prototype of a 4-coils sensor, which
has shown very good performance in laboratory tests as well as in the rolling mills in TU
Freiberg.
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Figure 7.23: Induced voltages at a) receiver 1 (vR1) and b) receiver 2 (vR2).
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Figure 7.24: Hot wire testing with a 4-coils sensor: a) measured A-scan and b) simulated A-scan
(vR1−vR2).

7.2.4.4 Effect of the Length of a Crack on Sensor Performance

The effect of the length of a crack on the performance of a 4-coils sensor need to be determined
before final test in Sidenor (Sidenor , S.A.). Numerical modeling is obviously the best way
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for such an evaluation. In our previous simulations, we have used a crack length of l = 10
mm. A hot wire steel with a surface crack of the length l = 15 mm, width w = 0.5 mm and
depth d = 0.5 mm is inspected using a 4-coils sensor system in Fig. 7.25. The geometrical
details of the sensor and the hot wire remain unchanged.

Fig. 7.26 shows a comparison between the differential signals for a crack of the length l = 10

Figure 7.25: A snapshot of the detection process using a 4-coils sensor with a crack of the length l = 15
mm; top: induced voltage in the receiving coils, bottom: eddy current distribution on the hot wire.

mm and that of a crack of the length l = 15 mm. In case of l = 10 mm (see Fig. 7.26a) we
observe higher oscillation at the beginning and at the end of the voltage peak, whereas, in
case of l = 15 mm (see Fig. 7.26b) the voltage rise to the peak level is relatively smooth.
Furthermore, this comparison shows that a 4-coils sensor gives continuous response as long
as the crack is there and therefore, is suitable to detect longitudinal cracks of any length in
hot wire steel.

Because of good performance in all the the numerical evaluations, a 4-coils sensor is accepted
for the final design and later used to produce a combined sensor system.
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Figure 7.26: Hot wire testing with a 4-coils sensor with a crack of the length a) l = 10 mm and b) l = 15
mm.

7.2.5 Simulation Results of a Pot Core Sensor

A pot core sensor is a modified version of a D-coils sensor and is developed by Messtechnik,
University of Kassel (Messtechnik , KS). The aim of this design is to apply the ideas, obtained
from the numerical modeling of the D-coils sensor and thus develop a new sensor as an
alternative to the 4-coils sensor for the detection of longitudinal cracks. We have tested a
number of different orientation of the coils of a pot core sensor by numerical modeling and
have found the geometry shown in Fig. 7.27d as the best one.

a) b) c)

d)

1.15 mm

0.75 mm 0.25 mm

Ferrite
Core

Coil

Sensor 2.5 mm

4 mm

3.2 mm
@30◦

Hot Wire

Crack

1 mm

10 mm

Figure 7.27: a) Photo of a pot core sensor, b) pot shaped ferrite core of the sensor, c) pot core with coil
inside and d) top view of test setup using a pot core sensor.
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7.2.5.1 Geometry of a Pot Core Sensor

The formation of a pot core sensor system is similar to a 4-coils sensor system. It also
consists of four coils, where two of them operate as excitation coils and the other two as
receiving coils. Each coil has its own pot formed ferrite core (see Fig. 7.27b), which operates
as a magnetic shield from the neighboring coils and a guide for the magnetic flux towards
the steel surface. 140 turns of copper wire is wound inside a ferrite core to form a coil, which
has the height of 1.15 mm and the outer diameter of 2.5 mm (see Fig. 7.27c). To illustrate
the size of a pot core, a 10 cent coin is shown by the side of a pot core in Fig. 7.27a. Twelve
coils are positioned with an angular coil to coil distance of 30◦ to form a ring and two such
rings are used in this sensor system - one for the excitation coils and the other one for the
receiver coils.

Figure 7.28: Hot wire testing using a pot core sensor; top: induced voltage in the receiving coils, bottom:
eddy current distribution on the hot wire.

7.2.5.2 Numerical Technique to Simulate a Pot Core Sensor

A snapshot of the detection process using a pot core sensor is shown in Fig. 7.28. The
detection process is simulated using the boundary element method (BEM). The size of the
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crack is: length l = 10 mm, width w = 1 mm and depth d = 1 mm. An excitation frequency
of f = 300 kHz is used and the eddy current distribution on the steel surface is displayed in
the bottom of Fig. 7.28. We apply a current density Jimp

e (R, ω) = 1.19 × 107 A/m2 in the
excitation coil and the resulting induced electric voltages in the receiver coils vR1 and vR2
are recorded and the differential signal vR1−vR2 is plotted in Fig. 7.29.

7.2.5.3 Simulation Results and Performance Analysis of a Pot Core Sensor

Due to the pot formed ferrite core, this sensor system shows less sensitivity than a 4-coils
sensor system. We conclude from Fig. 7.22 and Fig. 7.29 that a pot core sensor shows a
peak of 26.34 mV at the presence of a crack whereas, a 4-coils sensor shows a 39.2 mV
peak. However, the compactness of the pot core sensor is its major advantage over the other
sensor systems. As a result, a higher number of coils can be positioned around the hot
wire to cover the entire circumference. In snapshot Fig. 7.28 the coils are positioned at 30◦

angular distance and thus, an array of 12 coils are used for excitation or reception. On the
other hand, in case of the previous point coil sensors, such as a 4-coils sensor or a 3-coils
sensor we have used an angular displacement of 45◦ to position the coils, which means, only
8 coils can be positioned in an array. The use of higher number of elements in excitation
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Figure 7.29: Induced voltages at a) receiver 1 (vR1) and b) receiver 2 (vR2) of a pot core sensor.

and reception array results less blind zones and ensures better detection and hence, a pot
core sensor is also a good choice for hot wire steel inspection. According to the numerical
results we conclude that a pot core sensor is also a suitable candidate for final design and
therefore, such a sensor is also used in the combined EC sensor system.

7.3 Selection of Eddy Current Sensors for the Final

Prototype

We have discussed different encircling coil and point coil sensors in the previous sections.
The advantages and disadvantages of each of the developed sensors need to be considered in
order to select suitable sensors for final prototype.
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• Encircling coil without ferrite core:
+ Good performance for detecting transversal cracks
− Poor detection of longitudinal cracks

• Encircling coil with ferrite core:
+ Modified version of an encircling coil without ferrite core
+ Very Good detection of transversal cracks
− Poor performance in detecting longitudinal cracks

• 3-coils sensor:
+ Designed to detect the longitudinal cracks
− Problems exist due to blind zones and geometric difficulty

• D-coils sensor:
− Poor detection of the cracks due to large size and orientations of the coils

• 4-coils sensor:
+ Modified version of the 3-coils sensor
+ Offers the highest sensitivity
+ Very good detection of the longitudinal cracks

• Pot core sensor:
+ Modified version of the D-coils sensor
+ Due to very small size higher number of elements can be used in the array which
ensures less blind zones
+ Good detection of the longitudinal cracks

The analysis of the modeled sensors, given above, shows that an encircling coil sensor with
ferrite core is suitable for detecting the transversal cracks, whereas a 4-coils sensor and a pot
core sensor shows good results in detecting longitudinal cracks. As a result, a mixed sensor
system: an encircling coil and a 4-coils sensor or an encircling coil and a pot core sensor are
the suitable options to fulfill our goal.

7.4 Velocity Analysis

The linear velocity of the hot wire influences magnetic flux distribution and thus causes
change in the induced voltage in the sensor coils. The effect of velocity on the performance
of the sensor system is discussed in this section. As mentioned before, the eddy current
problem in case of a moving conductor is solved by determining the magnetic vector potential
Am(R, ω) using Eq. (2.146). Here we simulate the hot wire inspection process with the help
of the Linear Motion (LM) module of Opera-2d (Opera, 10.5) to determine the velocity
effect. The LM module is a Transient Eddy Current Solver, extended to include the effects
of motion. The simulated model has a rotational symmetry, where the motion is in z-
direction. The output time points are selected first and at these time points, the transient
value of the induced voltages are recorded. The applied voltage at the driving circuit of
the excitation coils is V = 1.4142 V (rms). The construction of the simulated eddy current
sensor is similar to the encircling coil sensor, described in Sec. 7.1.
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7.4.1 Simulation Results for Different Velocities

The simulated crack has the length l = 5 mm and the depth d = 0.5 mm. At time t = 0,
the crack lies between z = 15 mm and z = 20 mm zone of the steel wire (see Fig. 7.30a).
The steel wire moves in the positive z-direction at a linear velocity vc. Fig. 7.30b shows the
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Figure 7.30: a) Geometry of the experimental setup for velocity analysis and b) induced electric voltages
at different velocities: vc = 0 m/s (black), 5 m/s (red), 10 m/s (blue), 30 m/s (magenta) and 50 m/s (cyan).

comparison of the received voltages at the velocity of vc = 5, 10, 20, 30, 50 m/s of the hot
wire. The effect of the increasing velocity is explained by recalling Eq. (2.146) as

∆Am(R, ω) + µσe(R) [ jω Am(R, ω) + vc ×∇×Am(R, ω)−∇Φe(R, ω)]

= −µJimp
e (R, ω) (7.5)

and the electric field strength E(R, ω) is then computed from the magnetic vector potential
Am(R, ω) by

E(R, ω) = jωAm(R, ω) + vc ×∇×Am(R, ω)−∇Φe(R, ω) , (7.6)

which is written in time-domain as

∂E(R, t)

∂t
=−∂Am(R, t)

∂t
+ vc(R, t)×∇×Am(R, t)−∇Φe(R, t) . (7.7)

The addition of the velocity term vc(R, t) ×∇×Am(R, t) causes a negative effect in the
induced voltage which is shown by Eq. (7.7) mathematically and is also visible in Fig. 7.30b.

7.4.2 Validation of the Simulation Results

A validation of the velocity analysis is important to examine the results of the simulation. As
no measurements have been performed with velocity, this validation has been done against
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Figure 7.31: a) Geometry of the experimental setup for validation of the results and b) distribution of the
radial component of the magnetic flux Br.
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Figure 7.32: a) Published flux density and b) simulated flux density.

the results published by Yu et al. (1998). The geometry of the experimental setup is shown
in Fig. 7.31a. On the left part is the conductor which has a crack on the top. The length of
the crack is l = 4 mm and the depth d = 2 mm. The conductor is moving in the z-direction
with the velocity of vc = 50 m/s. There are two coils in this figure, mentioned as E1 and
R1. Here E1 is the excitation coil and R1 is the receiving coil. The distribution of the radial
component of the magnetic flux density Br is shown in Fig. 7.31b. The flux density at the
upper surface of the conductor is plotted as a function of distance in Fig. 7.32, where the flux
density from the published paper (Yu et al., 1998) is plotted on the left and the simulated
result on the right (Ebby , 2007). The comparison shows that the simulated result is identical
to the published one what proves the accuracy of velocity modeling.



Conclusions

The eddy current (EC) problem is modeled by solving the magnetic diffusion problem de-
scribed by the magnetoquasistatic governing equation. A proper numerical method need to
be chosen to solve the underlying differential as well as integral equation accurately. For
the eddy current modeling we apply the finite integration technique (FIT), the finite ele-
ment method (FEM) and the boundary element method (BEM). Two commercial software
packages – Opera and Faraday based on FEM and BEM are used to model the problem.
However, a specific software tool with built-in geometry is always the best option to solve
a particular eddy current problem. The commercial tools have generalized structures and
suffer from major drawbacks, such as, difficulty with choosing the type of excitation for the
excitation coils, complex procedure for reading data from the output files and also very slow
computation. As a solution to these problems a software tool named as MQSFIT, based
on the finite integration technique (FIT), is developed for deep understanding of numeri-
cal approach and proper modeling of the eddy current problem. The results obtained from
MQSFIT are compared with the measured A-scan and also validated against analytical re-
sults.

The reliability and accuracy of the numerical methods need to be determined before using
them for sensor optimization and feedback modeling. This can be performed by validating
the numerical results against the analytic one. As the first step for such a validation we have
defined a typical eddy current problem and have discussed the analytical solution of this
problem. In the second step, we have computed numerical solutions using FIT, FEM and
BEM. A comparison of the results to the analytical results is performed and the advantages
and disadvantages of each method are discussed to find a suitable one.

The modeling results play an important role in optimization and validation of eddy current
sensors. Numerical modeling ensures deep physical understanding by analyzing the influence
of different parameters and thus facilitates the development of EC sensors to meet the goals
of INCOSTEEL project. The initial modeling, performed with a standard encircling coil,
shows us the drawbacks of such a sensor and also the ways to modify it for better perfor-
mance. The result is the encircling coil sensor with ferrite core, which offers better detection
of transversal cracks. However, the simulation results show that this modification is not
enough and the problem with a longitudinal crack cannot be solved. As an initial solution a
3-point sensor is proposed by Tecnatom, which obviously need to be modeled to validate the
design. This opens the door for further modification and innovative ideas to develop new
sensors to meet the goals. Based on the numerical computations we have developed, modified
and optimized two encircling coils and four point coil sensors. The numerical techniques,
modeling details, simulation results and performance analysis are discussed for each sensor
type. The inspection techniques have been modeled and the results are shared with the
other groups (measurement and testing). The simulated results are compared and validated
against the measured results. At the end, the results obtained from different sensors have
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been compared to choose optimum candidates to fulfill the goal of INCOSTEEL project.

Considering the pros and cons of different sensor systems, three of them have been selected
for final prototypes. An encircling coil sensor with ferrite core is suitable for detecting the
transversal cracks, whereas a 4-coils sensor and a pot core sensor show good results in case
of detecting longitudinal cracks. As a result, a mixed sensor system: an encircling coil and
a 4-coils sensor or an encircling coil and a pot core sensor are suggested. Both of the mixed
sensor systems show good results in laboratory, as well as in rolling mill tests. The project
results are accepted by the EU scientific commission, which brings up the successful conclu-
sion of the INCOSTEEL project.

The results obtained from this thesis opens the door for future research. The computation
time required for 3-D modeling is a serious issue which needs to be studied further. As for
example, the developed MQSFIT tool is tested with a 2-D magnetoquasistatic problem with
250000 unknowns, which is solved in 25 minutes with an AMD X2 Processor (2x2.1 GHZ).
The FEM based software package Opera is able to solve a problem with maximum 20000
unknowns because of memory allocation problem, where it requires 2 minutes with the same
processor. Furthermore, the BEM based software tool Faraday 6.1 requires 2 hours to solve
a 3-D magnetoquasistatic problem with 5000 unknowns, which need to be improved using a
better technique.

As a solution to this problem the discontinuous Galerkin finite element (DGFEM) method
(Hesthaven & Warburton, 2008) can be proposed. Although DGFEM is a state of art nu-
merical method to solve a 3-D magnetoquasistatic problem with high speed and accuracy,
the FIT based MQSFIT is a suitable option for solving 2-D problems for its simplicity and
accuracy.
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