kassel .

university
press

Church-Rosser Languages and Related Classes

Gundula Niemann



Die vorliegende Arbeit wurde vom Fachbereich Mathematik / Informatik der Universitat Kassel als
Inaugural-Dissertation zur Erlangung des akademischen Grades eines Doktors der Mathematik / Informatik
(Dr. rer. nat.) angenommen.

Erster Gutachter:  Prof. Dr. Friedrich Otto
Zweiter Gutachter: Prof. Dr. Jirgen Dassow

Tag der miindlichen Priifung 13. August 2002

Bibliografische Information Der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet (iber
http://dnb.ddb.de abrufbar

Zugl.: Kassel, Univ., Diss. 2002
ISBN 3-89958-002-8

© 2003, kassel university press GmbH, Kassel
www.upress.uni-kassel.de

Das Werk einschlieBlich aller seiner Teile ist urheberrechtlich geschiitzt. Jede Verwertung auBerhalb der
engen Grenzen des Urheberrechtsschutzgesetzes ist ohne Zustimmung des Verlags unzuldssig und strafbar.
Das gilt insbesondere fiir Vervielfaltigungen, Ubersetzungen, Mikroverfilmungen und die Einspeicherung und
Verarbeitung in elektronischen Systemen.

Umschlaggestaltung: 5 Biiro fiir Gestaltung, Kassel
Druck und Verarbeitung: Unidruckerei der Universitat Kassel
Printed in Germany



Abstract

In the present thesis we show that the class of Church-Rosser languages CRL has several characteriza-
tions through different concepts from string-rewriting and automata theory. This answers questions
concerning the exact position of CRL in relation to other language classes that have been open for a
long time. We also investigate the closure properties of CRL and present some typical examples of
languages that are or are not included in this class.

The “nondeterministic counterpart” of CRL is the class GCSL of growing context-sensitive lan-
guages. Our main result concerning this class is its characterization by acyclic context-sensitive gram-
mars. This result is counterintuitive and sheds some light on the limits of “information transport”
within a string during its production by weight-increasing rules.

Then we have a closer look at the inner structure and power of CRL by investigating two of its
strict subclasses. Finally we turn our attention to some language classes that are defined by restarting
automata. Also in this concept we obtain characterizations for the classes CRL and GCSL. Then we
show that the most general types of restarting automata recognize some languages that are not growing
context-sensitive and even some NP-complete languages. This indicates that the question of separating
the most general language class defined by restarting automata from the class CSL of context-sensitive
languages is quite hard.

Zusammenfassung

In der vorliegenden Arbeit wird gezeigt, dass die Klasse der Church-Rosser-Sprachen CRL verschiedene
Charakterisierungen in unterschiedlichen Konzepten sowohl aus dem Gebiet der Wortersetzungssyste-
me als auch aus dem Gebiet der Automatentheorie besitzt. Dies beantwortet lange offen gebliebene
Fragen zur genauen Lage von CRL im Verhéltnis zu anderen Sprachklassen. Wir untersuchen aufler-
dem die Abschlusseigenschaften von CRL und betrachten einige typische Beispiele von Sprachen, die
in CRL enthalten oder nicht enthalten sind.

Das ,nichtdeterministische Gegenstiick“ von CRL ist die Klasse GCSL der wachsend kontextsensiti-
ven Sprachen. Unser Hauptresultat in Bezug auf die Klasse GCSL ist ihre Charakterisierung durch azy-
klische kontextsensitive Grammatiken. Dieses Resultat ist kontraintuitiv und beleuchtet die Grenzen
des ,, Informationstransportes* innerhalb eines Wortes wéhrend der Erzeugung mit gewichtserh6henden
Regeln.

Dann betrachten wir die innere Struktur und Méchtigkeit von CRL, indem wir zwei ihrer echten
Teilklassen ndher untersuchen. Anschliefend wenden wir uns einigen Sprachklassen zu, die durch
Restart-Automaten definiert werden. Auch in diesem Konzept erhalten wir Charakterisierungen der
Klassen CRL und GCSL. Daneben zeigen wir, dass die allgemeinsten Typen von Restart-Automaten
einige Sprachen erkennen, die nicht wachsend kontextsensitiv sind, und sogar einige NP-vollstindige
Sprachen. Die allgemeinste von Restart-Automaten definierte Sprachklasse von der Klasse CSL der
kontextsensitiven Sprachen zu trennen, stellt sich damit als eine sehr schwierige Aufgabe heraus.
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Chapter 1

Introduction

Summary of the results

The notion of a Church-Rosser language was introduced by Robert McNaughton, Paliath
Narendran, and Friedrich Otto [Nar84, MNOS88]. As we will show, this language class turns
out to have neat properties. It has several characterizations in different concepts from the
field of string-rewriting as well as in automata theory. Its interesting structure sheds light on
closely related language classes. And it is embedded in the rich hierarchy of different versions
of restarting automata.

The present thesis gives the definition of this class and its relatives and introduces previous
work on it. Then the main characterization result on the class of Church-Rosser languages is
shown: the characterization by the so-called shrinking deterministic two-pushdown automata,
shortly sDTPDA. This result follows from the equivalence of the shrinking TPDA (in both the
deterministic and the nondeterministic case) and the length-reducing TPDA. And it implies
the coincidence of CRL with the closely related classes CRDL [MNO88] and GCRL [BO9S].
Next we show that CRL can also be characterized by the so-called deterministic restarting
automata [JMPVI8b]. Thus we have several characterizations of CRL in completely different
concepts. Then we turn to the closure properties of CRL and look at some typical languages
included or not included in this class.

We then turn to the “nondetermistic counterpart” of CRL, the class of so-called growing
context-sensitive languages (GCSL), which is defined via growing context-sensitive grammars
[DW86]. This class is characterized by nondeterministic shrinking TPDA [BO98]. The main
result in this thesis on this class is its characterization by a more restricted class of grammars,
the acyclic context-sensitive grammars. This result is rather counterintuitive, and it gives
some insight into the internal nature of GCSL. Next we show that GCSL is also characterized by
certain (nondeterministic) restarting automata, the so-called weakly monotonous restarting
automata. As deterministic restarting automata are trivially weakly monotonous, this reveals
GCSL again as “nondetermistic counterpart” of CRL.

Then we turn to two subclasses of CRL: the Church-Rosser congruential languages CRCL
[MNOS8S8] and its proper sublass CICL of confluent internal contextual languages, which are a
restriction of the internal contextual languages ICL from [EPR98]. Concerning CRCL we treat
the question of whether each regular language is contained in CRCL. First we show that at
least each regular language of polynomial density is indeed Church-Rosser congruential, and
next we give a series of regular languages of exponential density with completely different
internal structure that are also in CRCL. But the question whether each regular language is
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in CRCL remains open.

Then we define the class CICL. It is a proper subclass of CRCL. It is also contained in
the weakest language class defined by deterministic restarting automata above the class of
deterministic context-free languages DCFL. CICL is surprisingly expressive. It represents the
recursively enumerable languages. More precisely, each recursively enumerable language can
be expressed as the left quotient of a confluent internal contextual language by a regular
language.

Last we turn to the several language classes defined by restarting automata. We summarize
the results by Petr Jancar, FrantiSek Mréaz, Martin Platek, and Jorg Vogel as well as the
results given in the previous chapters of this thesis. We show that the use of nonterminals is
equivalent to the operation of taking the intersection with a regular language in this model.
Then we address the question of wether the inclusion relations not addressed in the original
papers are proper. Unfortunately, we cannot answer all questions here. Namely, whether
separating the restart-step from the rewrite-step increases the power of such automata has to
be left open for some of these classes. Next we show that the most general types of restarting
automata recognize languages that are not growing context-sensitive and even NP-complete
languages. So, separating the most general language class defined by restarting automata
from CSL turns out to be a hard question.

Background of the Results

The class of Church-Rosser languages is defined via string-rewriting systems. If R is a finite
and length-reducing string-rewriting system on some finite alphabet 3, then there exists a
linear-time algorithm that, given a string w € ¥* as input, computes an irreducible descendant
W of w with respect to the reduction relation —x that is induced by R [Boo82, BO93]. If, in
addition, the system R is confluent, then the irreducible descendant w is uniquely determined
by w. Hence, in this situation two strings u and v are congruent modulo the Thue congruence
« induced by R if and only if their respective irreducible descendants @& and o coincide.
Thus, the word problem for a finite, length-reducing, and confluent string-rewriting system
is decidable in linear time.

Motivated by this result Robert McNaughton, Paliath Narendran, and Friedrich Otto
introduced the notion of Church-Rosser language [MNOS88, Nar84]. A Church-Rosser language
L C ¥* is given through a finite, length-reducing, and confluent string-rewriting system R
on some alphabet I' properly containing ¥, two irreducible strings t1,t2 € (I' \ X)*, and an
irreducible letter Y € I' \ X satisfying the following condition for all strings w € >*:

w € L if and only if t;wits 2LRY.

Hence, the membership problem for a Church-Rosser language is decidable in linear time. It
follows immediately that the class CRL of Church-Rosser languages is contained in the class
CSL of context-sensitive languages.

On the other hand, the class CRL contains the class DCFL of deterministic context-free
languages, and it contains some languages that are not even context-free [MNOS8S8|. Hence,
the class CRL can be seen as an extension of the class DCFL that preserves the linear-time
decidability of the membership problem. As such it is certainly an interesting language class.

McNaughton et al established a few closure properties for the class CRL, but among
other things it remained open whether the class CRL is closed under the operation of com-
plementation. Accordingly, they introduced the class of Church-Rosser decidable languages



CRDL, which still contains the class DCFL and which is closed under complementation. Also it
remained open at the time whether or not every context-free language is a Church-Rosser lan-
guage, although it was conjectured that the linear language Lpaiindrome := {ww™|w € {a,b}*}
is not a Church-Rosser language. Here w™ denotes the reversal of the string w.

After their introduction the Church-Rosser languages did not receive much attention un-
til another, seemingly unrelated development had taken place. Elias Dahlhaus and Manfred
Warmuth [DW86] considered the class GCSL of growing context-sensitive languages. These
languages are generated by monotone grammars each production of which is strictly length-
increasing. They called such grammars growing contert-sensitive. They proved that these
languages have membership problems that are decidable in polynomial time. Although it
might appear from the definition that GCSL is not an interesting class of languages, Gerhard
Buntrock and Krzysztof Lory$ showed that GCSL is an abstract family of languages [BL92],
that is, this class of languages is closed under union, product, iteration, intersection with reg-
ular languages, e-free morphisms, and inverse morphisms. Exploiting these closure properties
Buntrock and Lorys$ characterized the class GCSL through various other classes of grammars
that are less restricted [BL92, BL94|. The most important of these in our context is the
one of weight-increasing grammars. Here a positive weight is assigned to each terminal and
nonterminal symbol. By adding up the weights this gives a weight for every string. Now it is
required that in each rule the weight of the right-hand side is strictly larger than the weight
of the left-hand side. A detailed investigation of the class GCSL can be found in Gerhard
Buntrock’s Habilitationsschrift [Bun96].

Using these grammars Gerhard Buntrock and Friedrich Otto [BO98] derived a charac-
terization of the class GCSL by a nondeterministic machine model, the so-called shrinking
pushdown automaton with two pushdown stores (sTPDA). The input for such a machine is
provided as the initial contents of one of the pushdown stores, and it accepts either by final
state or (equivalently) by empty pushdown stores. A positive weight is assigned to each tape
symbol and each internal state symbol of the machine. By adding up the weights this gives
a weight for each configuration. Now it is required that the weight of the actual configura-
tion decreases with each step of the machine. It is with respect to these weights that the
two-pushdown automaton is called shrinking.

Since the sTPDA is a nondeterministic device, it was only natural to consider the class of
languages that are accepted by the deterministic variant of it. As it turned out the deter-
ministic sTPDA accept exactly the so-called generalized Church-Rosser languages, which are
obtained from the Church-Rosser languages by admitting finite, weight-reducing, and conflu-
ent string-rewriting systems in the definition [BO98]. Thus, the class GCRL of generalized
Church-Rosser languages coincides with the class of ‘deterministic growing context-sensitive
languages’. In particular, it follows that this class is closed under complementation. Further,
Gerhard Buntrock and Friedrich Otto concluded from this result that the language classes
CFL and GCRL, and therewith the classes CFL and CRL, are indeed incomparable under set
inclusion. Since CFL is contained in GCSL, this yields the following chain of (proper) inclu-
sions:

DCFL ¢ CRDL C CRL € GCRL ¢ GCSL c CSL

where it was left open whether or not the two inclusions CRDL C CRL C GCRL are proper.
The main result shown in the present thesis is that the three language classes CRDL, CRL,
and GCRL all coincide. Our proof makes use of the above-mentioned characterization of the
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generalized Church-Rosser languages through the deterministic sSTPDA. We consider length-
reducing pushdown automata with two pushdown stores (IF'TPDA). These are two-pushdown
automata that have an input window of constant length for each of the two pushdown stores
and that are required to decrease the length of the combined contents of the two pushdown
stores in each step. It can easily be shown that each language recognized by a IrDTPDA is in
fact Church-Rosser decidable. We will then prove that each language that is accepted by some
sTPDA is already recognized by a IFTPDA, and that the latter is deterministic, if the former
is. So, in fact, the two machine models are equivalent, which, in turn, yields GCRL € CRDL
implying that the three classes above actually coincide.

The fact that the two language classes CRL and GCRL coincide means that the language
generating power of the length-reducing and the weight-reducing (confluent) string-rewriting
systems is the same, which reflects the equivalence of the machine models and which reflects
also the equivalence of growing (i.e. length-increasing) and weight-increasing grammars. It
also yields another characterization of the class GCSL by a machine model.

Another topic is to determine the closure properties of the class of Church-Rosser lan-
guages. Some fairly simple ones were already proved in the original paper on Church-Rosser
languages [MNOSS|, and the closure under the operation of taking the complement now fol-
lows from the above characterization as well as the closure under the operation of taking the
intersection with a regular set. A class of languages C is called a basis for the recursively
enumerable (r.e.) languages if, for each r.e. language L C 3*, there exists a language C' € C
on some alphabet I strictly containing 3 such that L = 75 (C'). Here 7y, denotes the canonical
projection from I'* onto ¥*. Friedrich Otto, Masashi Katsura, and Yuji Kobayashi [OKK97]
proved that the class of Church-Rosser languages is indeed a basis for the r.e. languages. It
follows that the class CRL is not closed under morphisms. We summarize the results known
and the ones following from the characterization results and additionally show that CRL is
neither closed under product of languages nor under iteration nor under union nor under the
power operation. After looking at the closure and non-closure properties of CRL we illustrate
the power and the limits of this class by looking at some typical languages included or not
included in CRL. With the aid of these examples CRL can easily be separated from numerous
language classes like the class of indexed languages [Aho68] or the class of ETOL languages
[RS80].

The class GCSL can be seen as an insertion into the Chomsky hierarchy [McN99|, as the
definition is natural and simple and it lies strictly between CFL and CSL. Also it reappears in
a central position in the hierarchy of McNaughton families of languages as defined by Martin
Beaudry, Markus Holzer, Gundula Niemann, and Friedrich Otto [BHNO02, BHNOO3]. These
classes are obtained as generalizations of the Church-Rosser languages, in that also other
classes of string-rewriting systems are considered.

Due to the well-known characterization of the class of context-sensitive languages CSL by
monotone grammars [Cho59], the class GCSL defined by strictly monotone grammars has been
given the name “growing context-sensitive”. Thus it arises as a natural question, whether we
obtain the same language class if we use context-sensitive grammars as defined by [Cho59]
that are additionally length-increasing or weight-increasing.

A context-sensitive grammar is acyclic, if its context-free kernel contains no cycle of chain
rules. These grammars have been defined under the name 14-grammars by Rohit Parikh
[Par66]. We denote the corresponding language class of acyclic context-sensitive languages
by ACSL. The acyclic context-sensitive grammars are exactly those that are context-sensitive
and weight-increasing at the same time [Bun96].
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By GACSL we denote the class of growing acyclic context-sensitive languages which are de-
fined by length-increasing context-sensitive grammars. Obviously, these grammars are acyclic.
This class was defined by Rohit Parikh under the name 1p-grammars [Par66], and it also has
been investigated by Franz-Josef Brandenburg [Bra74], who defined the class of context gram-
mars with normal kernel. It turns out that these grammars also characterize the language
class GACSL [Bun96]. We give the exact definitions in Chapter 4.

It is easily seen that GACSL C ACSL C GCSL. Gerhard Buntrock investigates these three
classes in his Habilitationsschrift [Bun96], and he conjectures that both inclusions are strict.
The main result in this thesis on the language class GCSL is that it actually coincides with
ACSL. That is, for a weight-increasing grammar we can find an equivalent one that is also
weight-increasing and at the same time context-sensitive. The proof uses a combination of
two techniques: the classical method of forming a context-sensitive grammar from a monotone
one by Noam Chomsky [Cho59] and a new technique called weight-spreading used by Jens
Woinowski to construct a normal form for string-rewriting systems that define Church-Rosser
languages [Woi01b]. It remains as an open question whether GCSL also coincides with GACSL.
We conjecture that this is not the case.

The results obtained on CRL imply some other characterization results for the class GCSL.
From the equivalence of length-reducing and weight-reducing TPDA shown in Section 3.2.1
follows a new characterization of GCSL by an automaton model: GCSL is characterized by
(nondeterministic) length-reducing TPDA. We also show that GCSL is characterized by certain
(nondeterministic) restarting automata: the so-called weakly monotonous nondeterministic
restarting automata. As deterministic restarting automata are trivially weakly monotonous,
we then have three automaton models where the deterministic version characterizes CRL and
the nondeterministic version characterizes GCSL. So GCSL can be seen as the “nondetermin-
istic counterpart” of CRL. According to [BHNOO2] it can also be seen as the non-confluent
counterpart of CRL. So these two language classes are indeed very closely related.

After investigating this superclass of CRL we then turn to two proper subclasses.

Robert McNaughton et al [MNOS88] used the finite, length-reducing, and confluent string-
rewriting systems also to define another class of languages: the class CRCL of Church-Rosser
congruential languages. A language is Church-Rosser congruential if it can be presented as
the union of finitely many congruence classes of a finite, length-reducing, and confluent string-
rewriting system. CRCL is a proper subclass of CRL. It was shown in [MNOS88| that CRCL
and DCFL are incomparable under set inclusion and that CRCL contains some languages that
are not even context-free.

However it is not known whether the class of regular languages is contained in CRCL.

In the present thesis we investigate this question more closely. We give a partial answer to
it by showing that at least the regular languages with polynomial density are Church-Rosser
congruential. From [Yu97] we know that the regular languages with polynomial density are
exactly those that have only non-nested and non-branching loops in their presentation (by a
regular expression or by a finite automaton). This characterization is exploited in our proof.

CRCL also contains regular languages of exponential density like ¥.* or the set of all strings
over {a,b} of even length. We give a series of examples for regular languages of exponential
density that are in CRCL, each with a completely different internal structure. But it still
remains open whether CRCL contains all regular languages.

The other proper subclass of CRL we investigate here is in fact a proper subclass of CRCL
and it is newly defined here. It is obtained by a restriction of the internal contextual languages
as presented in [EPR98]. An internal contextual grammar as considered here is a triple of
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the form G = (3, A, R), where X is a finite alphabet, A is a finite set of strings from ¥*, the
so-called axioms, and R is a finite set of rules of the form (x — wzv), where u, v,z € ¥* and
uv # . The language L(G) generated by G consists of all strings w € ¥* such that w can be
derived from some a € A by a finite sequence of applications of rules in R. By ICL we denote
the class of internal contextual languages, which are the languages that are generated by the
internal contextual grammars. In [EPR98] it is shown that the class ICL contains the class of
regular languages, and that it is sufficiently expressive to yield simple representations for all
recursively enumerable (r.e.) languages.

When the left- and right-hand sides of the rules of an internal contextual grammar G are
interchanged, we obtain a length-reducing string-rewriting system S(G). In fact, S(G) is even
more restricted, since the right-hand side of each rule is a proper factor of the corresponding
left-hand side. The language L(G) coincides with the set of ancestors of the axioms A with
respect to the reduction relation induced by S(G).

Here we define and consider the class of languages which is obtained by requiring in
addition that the string-rewriting system S(G) is confluent. The resulting class of languages
is the class CICL of confluent internal contextual languages. It is easily seen that this class is a
proper subclass of the class CRCL of Church-Rosser congruential languages. Hence, the class
CICL establishes a connection between the internal contextual languages on the one hand and
the various classes of Church-Rosser languages on the other hand.

Further, each confluent internal contextual language is accepted by a deterministic restart-
ing automaton, det-R-automaton, see below. Hence, the class CICL also establishes a connec-
tion between the internal contextual languages and the languages accepted by the various
classes of restarting automata.

In Chapter 6 we show that this language class is surprisingly expressive. We prove that
it is a quotient basis for the r.e. languages, that is, each r.e. language can be expressed as
the left quotient of a confluent internal contextual language by a regular language. Because
of the above-mentioned inclusions we see that also the class CRCL and the class L(det-R) of
languages accepted by the deterministic restarting automata have this property.

In the last chapter of this thesis we turn to the rich family of language classes defined
by restarting automata. In [JMPV95] Petr Jancar, Frantisek Mrdaz, Martin Platek, and
Jorg Vogel presented the restarting automaton, which is a nondeterministic machine model
processing strings that are stored in lists. These automata model certain elementary aspects
of the syntactical analysis of natural languages.

A restarting automaton, or R-automaton for short, is a one-tape device with a finite control
and a tape-window of length k+ 1 for some fixed integer k£ > 0 that works as follows. The left
end and the right end of the input are marked by special symbols. At the beginning of the
computation the tape-window sees the left delimiter and the first k£ input symbols, and the
finite control is in the initial state. For its (nondeterministic) computation the R-automaton
has two different kinds of transitions, the so-called mowve-transitions, where the tape-window
is moved one symbol to the right and the internal state of the automaton may change, and
the restart-transitions, which delete some letters in the tape window, the now superfluous
cells of the tape are removed, the tape-window is placed over the left end of the remaining
tape contents, and the finite control reenters the initial state.

In subsequent papers Jancar and his co-workers extended the restarting automaton by
introducing rewrite-steps that instead of simply deleting some letters replace the contents of
the read/write-window by some shorter string from the input alphabet [JMPV97b]. This is
the so-called RW-automaton. Later the restarting automaton was allowed to use auxiliary
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symbols, so-called nonterminals, in the replacement operation [JMPV98b], which leads to
the so-called RWW-automaton. Finally the restarting operation was separated from the
rewriting operation [JMPV98b, JMPV98al, which yields the RRW-automaton. Obviously,
the later variations can be combined, giving the so-called RRWW-automaton, see a summary
in [JMPV99].

Since one can put various additional restrictions on each of these variants of the restarting
automaton, a potentially very large family of automata and corresponding language classes
is obtained. For example, various notions of monotonicity have been defined, and it has
been shown that (all kinds of) the monotonous and deterministic restarting automata ac-
cept the deterministic context-free languages [JMPV97b], and that the monotonous RWW-
automata accept the context-free languages [JMPV98b|. However, the various forms of the
non-monotonous deterministic restarting automaton were not investigated in detail by that
time.

In this thesis we extend that work. As a general result we will see that the use of non-
terminals in the rewriting operation of a restarting automaton corresponds on the part of
the language accepted to the operation of taking the intersection with a regular language.
Then we investigate some classes of deterministic restarting automata and their relation-
ship to each other and to the corresponding nondeterministic restarting automata and to
the language classes CRL and GCSL. We derive a characterization of CRL by the determin-
istic RRWW-automata as well as by the deterministic RWW-automata (see Section 3.2.3),
and we will show that any growing context-sensitive language is recognized by some RRWW-
automaton (see also Section 3.2.3). Moreover we will see that the class GCSL is characterized
by the so-called weakly monotonous R(R)WW-automata (see Section 4.3). Thus we see that
by separating the restarting operation from the rewriting operation the descriptive power of
the deterministic restarting automaton and of the weakly monotonous restarting automaton
is not increased. In the cases of deterministic RW-automata and of deterministic R-automata
it is still open whether separating the restarting operation from the rewriting operation in-
creases the power of these models. Accordingly, it is open whether L£(det-RR) C L(det-RW)
holds. In all other cases only the trivial inclusions hold, and all inclusions are proper.

Then we turn to the chain of inclusions GCSL C L(RWW) C L(RRWW) C CSL. First
we show that the Gladkij language Lgiaari; = {w#Hw~#w | w € {a,b}*} is accepted by
an RRWW-automaton, which implies that the class GCSL is properly contained in the class
L(RRWW), as Lgiqadri; ¢ GCSL (which follows from [Gla64]). Here, a very powerful technique
that we call mutual testing is used. It is due to Friedrich Otto. Then, by a different technique
that bases on an idea due to Tomasz Jurdzinski and Krzysztof Lorys we show that even
Lciaari; € L(RWW). Thus, the first inclusion in the chain above is proper. Then we show
that L(RRWW) contains some rather complicated languages and even NP-complete languages.
In detail, we show that a certain encoding of the NP-complete problem 3SAT is accepted by
an RRWW-automaton. Here the techinique of mutual testing is used extensively. With a
trick due to Tomasz Jurdzinski it can be shown that a different encoding of 3SAT is even
contained in L(RWW). Thus separating L(RWW) from CSL turns out to be a hard problem.

Then we turn to the closure properties for the different classes of languages recognized by
the different types of restarting automata.

Several questions remain open, the most important of which probably are:

e Is REG contained in CRCL?
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e Does the separation of restart-step and rewrite-step increase the power for some type
of restarting automata ?

The important and long-standing question of whether the language of palindromes is in
CRL has been answered recently in the negative by Tomasz Jurdzinski and Krzysztof Lory$
[JLO2], thus confirming the conjecture of [MNOSS].



Chapter 2

Preliminaries

Here we state the main definitions and establish notation regarding the various classes of
Church-Rosser languages, the class of growing context-sensitive languages, and the charac-
terization results shown in Chapters 3 and 4. The reader is assumed to be familiar with the
basics of the theory of string-rewriting systems as well as the basics of formal language and
automata theory. For additional information concerning the notions introduced the reader
is asked to consult the literature, where [BO93] serves as our main reference concerning the
theory of string-rewriting systems, and [HU79] is our main reference for formal language and
automata theory.

2.1 String Rewriting Systems

Let X be a finite alphabet. Then ¥* denotes the set of strings over ¥ including the empty
string e, and 1 = ¥* \ {e}. A function ¢: ¥ — Ny is called a weight-function. Tts
extension to X*, which we will also denote by ¢, is defined inductively through ¢(g) := 0
and p(wa) := p(w) + ¢(a) for all w € ¥* and a € ¥. A particular weight-function is the
length-function | .| : ¥ — N4, which assigns each letter the weight (length) 1.

A string-rewriting system R on X is a subset of ¥* x ¥*. An element (¢,r) € R is called a
rewrite rule or simply a rule, and it will usually be written as (¢ — r). In this thesis we will
only be dealing with finite string-rewriting systems. We define range(R) = {r : 3l with (I —
r) € R}.

A string-rewriting system R on Y induces several binary relations on >*, the simplest of
which is the single-step reduction relation

— g = {(uwlv,urv) |u,v € ¥*,({ - r) € R}.

Its reflexive and transitive closure is the reduction relation — g induced by R, and its reflex-
. . o . k .
ive, symmetric, and transitive closure «—p is the Thue congruence generated by R.

If u——pwv, then u is an ancestor of v, and v is a descendant of u. If there is no v € ¥*
such that u — g v holds, then the string u is called irreducible (modulo R). By IRR(R) we
denote the set of all irreducible strings. If R is finite, then IRR(R) is obviously a regular
language.

The string-rewriting system R is called

— length-reducing if |¢| > |r| holds for each rule (¢ — r) € R,

15
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— weight-reducing if there exists a weight-function ¢ such that ¢(¢) > ¢(r) holds for each
rule (¢ —r) € R,

— confluent if, for all u,v,w € ¥*, u—pv and u —pw imply that v and w have a
common descendant,

— locally confluent if, for all u,v,w € ¥*, u — v and u — g w imply that v and w have
a common descendant,

— normalized if, for each rule (¢ — r) € R, £ € IRR(R ~ {¢ — r}) and r € IRR(R).

If a string-rewriting system R is length-reducing or weight-reducing, then it allows no
infinite reduction sequence of the form wy — g w; — g ...; indeed, if we have a reduction
sequence wyg —R W] —R ... — R Wy, then m < |wp| or m < ¢(wp), respectively. If, in
addition, R is confluent, then each string w € ¥* has a unique irreducible descendant w €
IRR(R). Actually, in this situation u < v if and only if 4% = ©. Since @ can be determined
from u in linear time [Boo82], this shows that the Thue congruence «—p is decidable in
linear time for each finite, length-reducing (or weight-reducing), and confluent string-rewriting
system.

To determine whether or not the string-rewriting system R is locally confluent, it is
sufficient to consider pairs of rewriting rules where the left-hand sides overlap. For each pair
of not necessarily distinct rewriting rules (¢1,r1) and ({2, r2) from R, let the set of critical pairs
corresponding to this pair be {(xr1,rey) | Iz, y € ¥* : xly = loy A |x| < |lo|} U {{r1,2r2y) |
dz,y € ¥* : {1 = xlyy}. We will say that a critical pair (z1, z2) resolves if z; and 2z, have a
common descendant. The string-rewriting system R is locally confluent if and only if every
critical pair resolves.

Obviously, a finite string-rewriting system R has only finitely many critical pairs that can
be computed in polynomial time from R. Now it turns out that a system R that does not
admit any infinite reduction sequences is confluent if and only if x and y have a common
descendant modulo R for each critical pair (x,y) of R. In particular, R is confluent if it has
no critical pairs at all, that is, if there are no overlaps between the left-hand sides of its rules.
Such a system is called orthogonal.

So, each string-rewriting system R that is length-reducing (or weight-reducing) and locally
confluent is also confluent, and it can effectively be transformed into a normalized, length-
reducing (or weight-reducing, respectively), and confluent system R; that generates the same
Thue congruence as R and that yields the same irreducible strings.

While confluence is undecidable in general, it is decidable in polynomial time for length-
reducing or weight-reducing string-rewriting systems [KKMN85].

There are various different reduction strategies for a string-rewriting system. Among them
the so-called leftmost reduction has been found most useful.

Definition 2.1.1. Let R be a string-rewriting system on an alphabet ¥. A reduction step
w—p z 1s called leftmost, denoted by w ,— g z, if the following condition is satisfied:

o if w = x1liy1, z = x1riy1 for some (I1 — r1) € R, and also w = x3loys for some
(I = 12) € R, then

— x1ly is a proper prefix of xals, or

— 1l = x3ly and x1 is a proper prefix of xo2, or
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— 21 =29 and |1 = 5.

Let ,——p be the reflexive and transitive closure of ,—pg. For every w,z € ¥*, a sequence
of reduction steps that begins with w and ends with z such that every step is leftmost is called
a leftmost reduction from w to z. If this reduction has k steps for some k € N, then we also

. k
denote it as w ,— R 2.

If the system R is normalized, then for each w ¢ IRR(R) there exists a unique z € X*
such that w,—pg 2. Hence for normalized systems the process of leftmost reduction is a
deterministic one. If in addition the system R is length-reducing (or weight-reducing) and
confluent, then for each w ¢ IRR(R) there is a unique leftmost reduction from w to its unique
irreducible descendant w.

2.2 Grammars

A grammar is a quadruple G = (N, T, S, P), where N and T are finite disjoint alphabets
of nonterminal and terminal symbols, respectively, S € N is the start symbol and P C
(NUT)*N(NUT)* x (NUT)* is a finite set of productions [Cho59, HU79].

A grammar G = (N, T, S, P) is context-sensitive if the start symbol S does not appear on
the right-hand side of any production of G and each production (a« — ) € P, (« — ) #
(S — ¢), is of the form (zAz — zyz), where z,y,z € (NUT)*, A€ N, and y # €. We denote
the corresponding language class by CSL.

A grammar G = (N, T, S, P) is monotone if the start symbol S does not appear on the
right-hand side of any production of G, and |a| < |3| holds for all productions (o« — ) € P
satisfying oo # S.

The class CSL is characterized by monotone grammars [Cho59].

Definition 2.2.1. A language is called growing context-sensitive if it is generated by a strictly
monotone grammar G = (N, T, S, P), that is, the start symbol S does not appear on the right-
hand side of any production of G, and |a| < |B| holds for all productions (« — () € P
satisfying o # S. By GCSL we denote the class of growing context-sensitive languages.

Note that we refer to this class as growing context-sensitive for historical reasons, although
it is defined by monotone grammars. As shown by Elias Dahlhaus and Manfred Warmuth
[DW86] the membership problem for each growing context-sensitive language can be solved
in polynomial time. The class of context-free languages CFL is strictly contained in GCSL,
and GCSL is strictly contained in the class CSL. We look at some examples to see how some
non-context-free languages can be produced by such grammars.

Example 2.2.2. [Bun96| Lezp, = {a®" : n > 0} € GCSL . CFL. Lexpo 1s produced by
the following growing context-sensitive grammar G = ({S,B,E,M,1},{a}, S, P), where P
consists of the following rules:

S—a, S —aa, S — BE,
B—-BI, IM—-MMI, IE— MME,
B —aa, M — aa, E — aa.

We see that each I produced at some time moves across the sentential form and doubles its
length. Thus L(G) = Legpo-
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Lipue = {w € {0,1}* : 3i € N : h*(0) = w}, where the morphism h: {0,1}* — {0,1}*
is defined by h(0) = 01 and h(1) = 10. Lipye is produced by the following growing context-
sensitive grammar G = ({S, B, E, M, I},{a}, S, P), where P consists of the following rules:

SHO, SH01, SHBoEl,

By — Boly, L1iMy— MiMqly, ItEy — MiMqEy,
LMy — MyMyly, I1Ey— MyMykEy,
IgMy — MoMyIy, IoEy — MoMiEy,
IgMy — MoMyly, Ioky— MoMykEy,

Bo—>01, MO—>01, EOH(H,
My, — 10, Fy — 10.

This grammar works similar to the one for Legy,. We iterate applications of the morphism
h, where the current word is written into the subscripts of the monterminal symbols in the
sentential form. In the last application of h terminal symbols are produced.

The language Leount = {a™b™c™ : n > 1} is also growing context-sensitive [DW86, Bun96].
The idea of the grammar is similar as above. The length of each block is doubled, where an
additional symbol may be added. As more cases have to be considered, this grammar has much
more rules.

We also give some examples of context-sensitive languages that are not growing context-
sensitive.

Example 2.2.3. The Gladkij language Lgiaari; = {w#Hw~#w | w € {a,b}*}, where w”™
denotes the reversal of w, is a context-sensitive language that is not growing context-sensitive
[Gla64, Boo69, BO9S|.

For some other examples we use so-called one-way auxiliary pushdown automata with
a logarithmic space and polynomial time bound, OW-auxPDA[log,pol] for short. A OW-
auxPDAI[log,pol] is a pushdown automaton that never moves its input head to the left and that
has an additional working tape where it is allowed to use logarithmic space, and that works
within polynomial time. For a definition see e.g. [Lau88], [Bun96]. The class of languages
recognized by this model is OW-LOGCFL [Lau88], the class of languages that are reducible to
a langugage from CFL by a function that is computable by a one-way Turing-machine with
logarithmic space bound.

Lemma 2.2.4. [Bun96] GCSL € OW-LOGCFL.

Example 2.2.5. The language Leopy = {ww : w € {a,b}*} is also in CSL ~. GCSL, as it is
not in OW-LOGCFL [Lau88].

Even if we add factors of polynomial length to L., we do not obtain a growing context-
sensitive language.

Lemma 2.2.6. Let ¢;: {0,1}* — I'y and v2: {0,1}* — I be two functions for some alpha-
bets 'y and T'y where there exist polynomial functions p1 and pa such that for each v € {0,1}*
it holds that |¢;(v)| < pi(|v|) for i =1,2. Then the language

L copy-pad(isr wpo) = {01 (w)wipa(w) 1w € {0,137}
18 not 1 GCSL.
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Proof. We assume to the contrary that Lcopy-pad(yp;,p,) € GCSL. Then there exists some OW-
auxPDA[log,pol] M that recognizes this language. We construct a OW-auxPDAM' for L. op,
similar to [Lau88|, Theorem 2.4, as follows.

M’ simulates M on its input step by step until, nondeterministically, at some point M’
chooses to simulate the situation of M when reading the occurence of the first symbol of
¥1(w), where M’ does not move its input head. Then for a number of further simulation
steps, each time when M moves its input head, M’ nondeterministically guesses the next
input symbol of M, without actually moving its input head. When M’ chooses this symbol
to be the last one of ¢;(w), it then proceeds with the direct simulation of M. At some
point M’ nondeterministically chooses to have reached the end of its input and simulates the
situation of M when reading the first symbol of 13(w). Then for the rest of its computation
M’ simulates M, where each time M moves its input head, M’ nondeterministically guesses
the next input symbol of M.

Clearly, L(M') = Lcopy. Now we look at the space bound for the auxiliary tape of M’.
Let ww be an input of M’ with w € {0,1}". M’ on this input uses the same space that M
uses on w1 (w)wie(w), that is not more than ¢ - log(n + p1(n) + n + pa2(n)) for some ¢ € N,
which is in O(log(n)). Finally, we look at the time bound of M’. Again, let ww be an input
of M" with w € {0,1}"™. M’ on this input uses the same time that M uses on w1 (w)wie(w),
that is not more than f(n+ p1(n) +n+ p2(n)) for some polynomial function f, which is still
polynomial. It follows that Lo, € OW-LOGCFL, which is a contradiction [Lau88]. O

The class GCSL has nice closure properties.

Lemma 2.2.7. [BL92, BL94] The class GCSL of growing context-sensitive languages is closed
under union, product, iteration, intersection with reqular languages, e-free morphisms, and
inverse morphisms. Thus, it is an abstract family of languages.

For abstract families of languages see [GGH69]. A detailed presentation of the class GCSL
can be found in Gerhard Buntrock’s Habilitationsschrift [Bun96].

There are several classes of grammars that are less restricted than the strictly monotone
grammars, but that also characterize GCSL. The most general of these is the following.

Definition 2.2.8. A grammar G = (N, T, S, P) is weight-increasing if there exists a weight-
function ¢: (N UT)* — Ny such that p(a) < ¢(B) holds for all productions (a« — () €
P~ {(S—¢)}.

Lemma 2.2.9. [BL92, Bun96|] The class GCSL is characterized by the weight-increasing gram-
mars.

2.3 Two-Pushdown Automata

The following definition is a variant of the one given in [BO9S].

Definition 2.3.1. A two-pushdown automaton (TPDA) with pushdown windows of length
k is a mondeterministic automaton with two pushdown stores. Formally, it is defined as a
9-tuple M = (Q,%,T,0,qo, L, t1,t2, F'), where

- @ s the finite set of states,

— 3 is the finite input alphabet,
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— T is the finite tape alphabet with T 2 ¥ and T NQ = 0,
— qo € Q is the initial state,
- 1 e I'\ X is the bottom marker of the pushdown stores,

— t1,ta € (' N X)* are the preassigned contents of the left/right pushdown store, respec-
tively,

- F C Q is the set of final (or halting) states, and

-0:Q XJ_FSk X I‘Ek — Ppn(Q x I' x I'*) is the transition relation,
where | TSF =TFU{Lu: |u| < k—1}, I‘Ek =T*u{vl : |v| < k—1}, and Pgin(Q xT* xT*)
denotes the set of finite subsets of Q x I'" x I'*.

M is a deterministic two-pushdown automaton (DTPDA), if § is a (partial) function from
Q %, T=F x 5* into Q x T* x T*.

A configuration of a (D) TPDA is described as uqv, where ¢ € @ is the actual state, u € T'™*
is the contents of the first pushdown store with the first letter of u at the bottom and the
last letter of u at the top, and v € I'* is the contents of the second pushdown store with
the last letter of v at the bottom and the first letter of v at the top. For an input string
w € ¥*, the corresponding initial configuration is 1¢1gowte L. The (D)TPDA M induces a
computation relation 3, on the set of configurations, which is the reflexive transitive closure
of the single-step computation relation Fj; (see, e.g., [HUT9]). The (D)TPDA M accepts with
empty pushdown stores, that is,

N(M)={weX": Ltiqowts L 3}, q for some q € F}

is the language accepted by M.

We will also look at subconfigurations of a TPDA. Let M be a (D)TPDA, let €(M) be
the set of configurations of M, that is, the set of all configurations that are reachable from
an initial configuration of M by using computation steps of M. A subconfiguration of M
is a string u/qv’, where u/,v’ € T*, ¢ € @, such that there exist strings u”,v” € T'* such
that u"u/'qu'v"” € €(M). We say that u/qu’ is a proper subconfiguration of M, if it is a
subconfiguration but not a configuration, in other words, for each pair u”,v” € I'* such that

u”u'qu'v” is a configuration of M it holds that u”v” # €.

Definition 2.3.2. A (D)TPDA is called shrinking if there exists a weight function ¢ : QUI' —
N, such that, for all ¢ € Q, u € |T'<F, and v € ka, (p,u/,v") € §(q,u,v) implies that
p(pu'v') < p(quv). By sTPDA and sDTPDA we denote the corresponding classes of shrinking
automata.

A (D)TPDA is called length-reducing if, for allq € Q, u € , T'S*, and v € I‘fk, (p,u/,0") €
d(q, u,v) implies |u'v'| < |uv|. We denote the corresponding classes of length-reducing au-
tomata by IFTPDA and [FDTPDA.

Thus, if M is a shrinking TPDA with weight-function ¢, then @(uiqiv) > @(uagavs)
holds for all configurations u1qiv; and uageve of M that satisfy uiqivi Fas uagove. If M is a
length-reducing TPDA, then |ujqiv1| > |uagave| holds for all configurations u;qiv, and uagove
of M that satisfy uiqiv1 Far ueqove. Obviously, the length-reducing TPDA is a special case
of the shrinking TPDA.
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Observe that the input is provided to a TPDA as the initial contents of its second pushdown
store, and that in order to accept a TPDA is required to empty its pushdown stores. Thus,
it is forced to consume the input completely. Using standard techniques from automata
theory it can be shown that, for a (shrinking/length-reducing) (deterministic) TPDA M =
(Q,%,1,0,q0, L,t1,t2, F'), we may require that the special symbol L can only occur at the
bottom of a pushdown store, and that no other symbol can occur at that place.

From the definition of the transition relation § we see that M halts immediately whenever
one of its pushdown stores is emptied. Because of the above property this happens if and
only if a transition of the form (q,u,vLl) — (¢’,u/,e) or (¢, Lu,v) — (¢’,e,v") is performed.
Thus, we can assume without loss of generality that, if M does accept on input w € ¥*, then
LgowL 3, g for some g € I, and if M does not accept on input w € ¥*, then Lgow L 3, Lg
for some g € F', that is, even in this situation M empties its second pushdown store completely
and only leaves the bottom marker on its first pushdown store before it halts. Hence, all the
halting and accepting configurations of M are of the form ¢, where g € F', and all the halting
and rejecting configurations of M are of the form 1l¢q, where ¢ € F. In addition, we can
assume that M only has a single halting state.

The definition of the (D)TPDA given here differs from that given by Gerhard Buntrock
and Friedrich Otto [BO98], as in the original definition the preassigned contents ¢; and to of
the pushdown stores are always empty, and the (D)TPDA only sees the topmost symbol on
each of its pushdown stores. However, the following result holds.

Lemma 2.3.3. Let M = (Q,%,T,0,qo, L,t1,t2, F) be a TPDA. Then there exists a TPDA
M = (Q,%,1",d,q(, L, e e, F) that accepts the same language as M, and that only sees the
topmost symbols on its pushdown stores. In addition, if M is deterministic, then so is M’,
and if M is shrinking, then so is M’.

Proof. Let M = (Q,%,T,9,qo, L,t1,t2, F) be a TPDA where the length of pushdown windows
is k. We construct a TPDA M’ = (Q',%,1",¢,qp, L, ¢, ¢, F) that works as follows.

First, M’ writes the strings ¢ and ¢y into its pushdown stores. For doing so it uses a new
start state g, two copies {2’ | z € ¥} and {2” | z € X} of the input alphabet, and two
additional states ¢ and ¢,. After writing ¢; into the left-hand pushdown store, the entire
input w is shifted onto the left-hand pushdown store, replacing each letter z by its copy z’,
then to is written into the right-hand pushdown store, and the input is shifted back onto the
right-hand pushdown store, replacing each letter 2’ by the corresponding letter z”.

Then M’ starts simulating M. For each step of M, M’ performs k + 1 steps. For each
state of M, M’ has a number of states that simulate a buffer of size 2k. During the first
k steps, M’ reads the topmost k symbols from each of its pushdown stores into the buffer
associated with the actual state of M, and then it performs the actual step of M, reading the
contents of M’s pushdown windows from the buffer, and erasing the buffer while performing
this step.

If M is deterministic, then so is M’. Finally, assume that M is shrinking with respect to
some weight function ¢. We define a weight function v for M’ as follows:

P(z) = (k+1)- ¢(x) forall z e '\ X,

Y(x) = (k+1) p(x)+ for all x € X,

(') = (k+1) o(x)+ for all x € X3,

(") = (k+1)-¢(x) for all z € &,

P(g) = (k+1)-9(q) for all ¢ € @, and

1/1(61[@ a],bl...b]}) ¢(q> + Z W’(az) + w(bl)) _.] for all qc Qa .7 = 17 ceey k.
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It is easily verified that the simulation of M by M’ is performed in a weight-reducing manner.
Also it is clear that the weights for the states ¢, ¢} and ¢4 can be chosen in such a way that
M’ is shrinking with respect to 1. O

Thus, for shrinking (D)TPDA’s our model is equivalent to the original model. The con-
struction above does not work for length-reducing TPDA’s, but for them we have at least the
following weaker result, shown by Friedrich Otto in [Ott01].

Lemma 2.3.4. Let M = (Q,%,1,6,q0,L,t1,t2, F) be a length-reducing TPDA. Then there
exists a length-reducing TPDA M' = (Q',X,I",0', ¢, L,e,¢, F') that accepts the same language
as M. If M is deterministic, then so is M’.

2.4 Restarting Automata

We do not follow the historical development of the restarting automaton, but instead we
introduce the most general version first and present the other variants as certain restrictions
thereof.

Definition 2.4.1. A restarting automaton with rewriting (shortly RRWW-automaton) is
described by a 9-tuple M = (Q,%,T,0,qo, ¢,$, F, H) and an integer k. Here k is the lookahead
of M, that is, k + 1 is the size of the tape window, and

- @ is a finite set of states,

— X is the finite input alphabet,

— T is the finite tape alphabet containing 3,

- qo € Q 1is the initial state,

- ¢,$ € '\ X are the markers for the left and right border of the work space, respectively,
— F C Q is the set of accepting states,

— H C Q is the set of rejecting states, and

~ 0 (QN(FUH))xTSFL — Pg((Q x ({(MVRIUTSF))U{RESTARTY}) is the transition
relation. Here IS™ = |J T, Psn(S) denotes the set of finite subsets of the set S.
=0

i

The transition relation consists of three different types of transition steps:

1. A move-right step is of the form (¢, MVR) € d(q,u), where ¢ € Q ~ (F U H),
¢ €Q andu € TFI(T*-{$}) oru € {¢} - TSF1L$YUTSF . {$}, u #$, that is,
if M is in state q and sees the string u in its read/write-window, then it shifts its
read /write-window one position to the right and enters state ¢', and if ¢ € FUH,
then it halts, either accepting or rejecting.

2. A rewrite-step is of the form (¢',v) € §(q,u), where ¢ € Q ~ (FUH), ¢ € Q,
u € TR {8$)) oru € {¢}-TSF-1 . {$} UTSF. {8}, and |v| < |ul|, that
is, the contents u of the read/write-window is replaced by the string v which is
strictly shorter than u, and the state ' is entered. Further, the read/write-window
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1s placed immediately to the right of the string v. In addition, if ¢ € F U H, then
M halts, either accepting or rejecting. However, some additional restrictions apply
in that the border markers ¢ and $ must not disappear from the tape nor that new
occurrences of these markers are created. Further, the read/write-window must not
move across the right border marker $, that is, if u is of the form u1$, then v is of
the form v1$, and after execution of the rewrite operation the read/write-window
just contains the string $.

3. A restart-step is of the form RESTART € 6(q,u), where ¢ € Q ~ (F U H) and
u € THHL(T* - {$}) or uw € TSF . {$}, that is, if M is in state q seeing u in its
read/write-window, it can move its read/write-window to the left end of the tape,
so that the first symbol it sees is the left border marker ¢, and it reenters the initial
state qq.

A configuration of M is denoted by agB, where o, 8 € I'* and ¢ € (). Here af is the
contents of the tape, ¢ is the actual state, and the tape-window contains the k + 1 symbols
to the right of ¢. An input w € X* is accepted by M if there exists a computation of M
which starts with the initial configuration gop¢w$ and which finally reaches a configuration
containing an accepting state g, € F. In other words, the language L(M) accepted by M is
defined as follows:

L(M) = {w € X" | qodw$ Hyy '8 with ¢’ € F and o, 3 € I‘*} .

Obviously, each computation of M proceeds in cycles. Starting from an initial configuration
god¢w$, the head moves right, while MVR- and rewrite-steps are executed until finally a
RESTART-step takes M back into a configuration of the form god¢w;$. It is required that in
each such cycle exactly one rewrite-step is executed. By F§, we denote the execution of a
complete cycle, that is, the above computation will be expressed as go¢w$ F5; go¢wi$. As by
a rewrite step the contents of the tape is shortened, only finitely many cycles can be executed
within any computation. That part of a computation of M that follows after the execution
of the last restart is called the tail of the computation.

The following lemma can easily be proved by using standard techniques from automata
theory.

Lemma 2.4.2. Fach RRWW-automaton M s equivalent to an RRWW-automaton M’ that
satisfies the following additional restrictions:

(a) M' enters an accepting or a rejecting state only when it sees the right border marker $
in its read/write-window.

(b) M’ makes a restart-step only when it sees the right border marker $ in its read/write-
window.

This lemma means that in each cycle and also during the tail of a computation the
read/write-window moves all the way to the right before a RESTART is made, respectively,
before the machine halts.

In each cycle an RRWW-automaton shortens the length of the list it is working on. Hence,
given an input of length n, an RRWW-automaton can go through at most n cycles, and so it
makes only a polynomial number of steps. This yields the following inclusion.

Corollary 2.4.3. L(RRWW) C NP.
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By placing certain restrictions on the transition relation of an RRWW-automaton we get
various subclasses. Here we are interested in the following restrictions and the corresponding
language classes:

i) An RRWW-automaton is deterministic if its transition relation is a (partial) function

§:Q x ISk — ((Q x ({MVR}UT=F)) U {RESTART}).

ii) An RWW-automaton is an RRWW-automaton that performs a RESTART immediately
after each rewrite-step.

iii) An R(R)W-automaton is an R(R)WW-automaton for which the tape alphabet I" coincides
with the set ¥ U {¢, $}, that is, such an automaton has no auxiliary tape symbols.
We also say that such an automaton is pure.

iv) An R(R)-automaton is an R(R)W-automaton, that performs no rewriting, that is, v is a
proper scattered substring of u for every rewrite step v € §(q, u).

v) An R(R)W(W)-automaton is monotone, if it satisfies the following condition: whenever
¢zquy$ Far godzvy$ by a rewrite-step v € §(q, u), then in the computation of M starting
with the configuration go¢xvy$ a rewrite-step can occur only after the tape-window has
seen the prefix ¢zv completely.

By combining these restrictions we obtain a rich family of classes of automata.

We will use the prefixes det- and mon- to denote the corresponding subclasses of automata.
For any class A of automata, L(A) denotes the class of languages that are accepted by
automata from A. For example, the class of languages accepted by deterministic monotone
RW-automata is denoted by L(det-mon-RW).

From the above definitions we immediately obtain the inclusions presented in Figure 2.1,
where inclusions achieved by adding determinism and/or montonicity, respectively, are only
indicated by a short dotted line.

The various types of RW-automata were introduced by Jancar et al in [JMPV97b], while
the non-pure types were considered in [JMPV97a]. The rewrite-step and the restart-step
were separated in [JMPV98b, JMPV98al, where also some other kinds of monotonicity are
discussed, see a summary in [JMPV99]. Concerning the languages accepted by the various
types of RW-automata Jancar et al obtained the following results.

Proposition 2.4.4. [JMPV97b, JMPV97a, JMPV98b, JMPV98a, JMPV99]
(a) CFL = L(mon-RRWW) = L(mon-RWW) .

(b) DCFL = L(det-mon-RRWW) = L(det-mon-RRW) = L(det-mon-RR)
= L(det-mon-RWW) = L(det-mon-RW) = L(det-mon-R).

They also show that most of the other inclusions are strict. See Figure 2.2 for an illus-
tration of the inclusion and non-inclusion relations shown. Jancar et al concentrated on the
nondeterministic subclasses of L(RRWW), where they showed that each inclusion except for
L(RWW) C L(RRWW) is proper. In the latter case, the question is left open. They also
showed that among these classes no other inclusion holds except for L(RR) and L(RWW),
where the question is left open. The inclusions marked by dotted lines were not addressed in
the cited papers. We will address them in Chapters 3 and 7.
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Figure 2.1: Obvious inclusions among the family of Restarting Automata

It is immediate that Lemma 2.4.2 also holds for RRW-automata and for RRW(W)-automata
that are deterministic and/or monotonous. Hence, we have two groups of automata: those
that make a RESTART only at the right end of the tape, and those that make a RESTART
immediately after performing a rewrite-step.

It is convinient to use this fact to describe algorithms for restarting automata with meta-

mstructions.
Let M = (Q,%,T,0,q0,¢,%, F, H) be an RRWW-automaton that satisfies the additional

requirements of Lemma 2.4.2. Then each cycle of a computation of M consists of three phases.
Let go¢w$ be the restarting configuration of the actual cycle.

(1.) First M makes a number of move-right steps until it encounters the left-hand side u of
a rewrite step. In this phase M behaves like a finite-state acceptor, checking whether
the prefix ¢w; read belongs to a certain regular language Ry C ¢ - I'™.
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£ (det-RRWW)
det-RWW) £ (det-RRW)

det-RW)  L(det-RR)

DCFL

Figure 2.2: A Taxonomy of Restarting Automata according to [JMPV97b, JMPV97a,
JMPV98b, IMPV98a, JMPV99]

(2.) Now M applies a rewrite step replacing the factor u of w by some shorter string v, and
moving its read-/write-head to the right of this string.

(3.) Finally, M scans the remaining tape inscription until it encounters the right border
marker $, upon which it accepts, rejects, or performs a restart step. Again during this
part of the computation M behaves like a finite-state acceptor, making a restart only
if the suffix wo$ read belongs to a certain regular language Ry C T'* - $.

Hence, the tape contents w can be written as w = wjuws, where ¢w; € Ry, wa$ € Ro,
and w is rewritten into v. To simplify the description of the RRWW-automaton M we will
simply describe the above cycle through the tripel

(Rbu - UvRQ)7

which we call a meta-instruction. The regular languages R; and R will be denoted as the
reqular constraints of this instruction. On trying to execute this instruction M will reject
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starting from the configuration go¢w$, if w does not admit a factorization of the form w =
wiuwsy, where ¢wy € Ry and wy$ € Ry. On the other hand, if w does have a factorization of
this form, then one such factorization is chosen nondeterministically, and go¢w$ is transformed
into go¢wivws$.

In Sections 7.2.2 and 7.2.3 we will describe RRWW-automata through finite collections of
meta-instructions. At the beginning of each cycle the RRWW-automaton will nondetermin-
istically choose the meta-instruction to be executed next. The conditions expressed by the
regular constraints of the meta-instructions will ensure that only the ‘correct choice’ will lead
to a successful execution, while all other choices will lead to rejection.

Meta-instructions for RWW-automata are defined analogously. Here, each cycle is de-
scribed by a pair (R,u — v), as the restart step is performed immediately after the rewrite
step.

In addition, we show that the class GCSL of growing context-sensitive languages is con-
tained in L(RWW) (Lemma 3.2.9), and as we will see in Section 7.2.2, this inclusion is actually
proper. In fact, the class GCSL is characterized by another restricted version of the restarting
automata, the nondeterministic weakly monotonous R(R)WW-automata. In order to describe
this property, we first express the property of being monotonous in another way.

Each computation of M can be described by a sequence of cycles

01)02"' 7C’I’L7

where C starts with an initial configuration of M, and C,, is the last cycle, which is followed by
the tail of the computation. Each cycle C; of this computation contains a unique configuration
of the form ¢zuy$ such that u — v is the rewrite step applied during this cycle. By D, (C;)
we denote the r-distance |y| of this cycle. The sequence of cycles C1,Cy, ... ,C), is called
monotonous if D,(Cy) > D,(Ce) > ... > D,(C,) holds. The R(R)WW-automaton M is

called monotonous if all its computations are monotonous,

Definition 2.4.5. Let M be an R(R)YWW-automaton. We say that M is weakly monotonous
if there is a constant ¢ € N such that, for each computation C1,Co,... ,Cy of M, D, (Ciy1) <
D, (C;) + ¢ holds for alli=1,... ,n—1.

By using the prefix wmon- we denote the corresponding classes of restarting automata.

Let M be a deterministic R(R)WW-automaton, and let Cy,Cs,... ,C, be a computation
of M. If C; contains the rewrite step ¢zuy$ — ¢zvy$, then D, (C;) = |y|. In the next cycle,
Cit1, M reads the tape contents from left to right. As M is deterministic, it cannot perform
another rewrite step before it sees at least the first letter of vy in its tape window. Thus,
D, (Cit1) < |vy] — 1 = D.(C;) + |v| — 1. By taking the constant ¢ := max({|v] —1 | u —
v is a rewrite step of M } U {0}), we see that M is necessarily weakly monotonous.

Thus, for deterministic R(R)WW-automata the above weak monotonicity conditions are
always satisfied. Hence, it is only for the various nondeterministic restarting automata that
these additional restrictions can (and will) make a difference (see Chapter 7).

Instead of requiring that the R(R)WW-automaton considered is weakly monotonous, we
can consider left-most computations of R(R)WW-automata.

Definition 2.4.6. A rewrite step ¢xquy$ by ¢xvg'y$, respectively ¢xquy$ Far qodxvy$, is
left-most, if no rewrite step is applicable to any proper prefix xu; of xu. A computation is
then called left-most if all the rewrite steps it contains are left-most. By Ly, (M) we denote
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the language accepted by M, if only left-most computations are considered. L(Im-RWW) and
L(Im-RRWW) denote the classes of languages that are accepted by RWW-automata or RRWW -
automata, respectively, performing only left-most computations.

It is easily seen that a left-most computation is weakly monotonous. On the other hand,
we will see in Section 4.3 that any weakly monotonous R(R)WW-automaton can be simulated
by an R(R)WW-automaton using only left-most computations.



Chapter 3

Church-Rosser Languages

In the first section we give the definition of the class of Church-Rosser languages and some
closely related classes, namely the generalized Church-Rosser languages (GCRL) and the
Church-Rosser decidable languages (CRDL), as defined in [BO98, MNOSS].

In the next section we show some characterization results for the class CRL. First we
show the equivalence of shrinking and length-reducing two-pushdown automata in both the
nondeterministic and the deterministic case. From this we conclude characterization results
for GCSL and CRL as well as the equality of the three classes CRDL, CRL, and GCRL. Next
we show that CRL is characterized by the deterministic restarting automata with rewriting.
In the next section we address the closure properties of CRL, and in the last section we look
at some example languages to illustrate the power and the limits of CRL.

3.1 Basic Definitions and Properties

First we look at the definitions for the classes CRL, CRDL, and GCRL as given by [MNOSS,
BO98] and restate some known results.

Definition 3.1.1.

(a) A language L C ¥* is a Church-Rosser language (CRL) if there exist an alphabet T 2 X,
a finite, length-reducing, confluent string-rewriting system R on ', two strings t1,ty €
(T N X)*NIRR(R), and a letter Y € (I' ~ X) N IRR(R) such that, for all w € ¥*,
tiwty —5 Y if and only if w € L.

(b) A language L C ¥* is a Church-Rosser decidable language (CRDL) if there exist an
alphabet I 2 3, a finite, length-reducing, confluent string-rewriting system R on I, two
strings t1,ta € ([ NX)*NIRR(R), and two distinct letters Y, N € (I' < X)NIRR(R) such
that, for all w € ¥*, the following statements hold:

— tiwty =% Y if and only if w € L, and
— tywty =% N if and only if w & L.
(c) A language L C ¥* is a generalized Church-Rosser language (GCRL) if there exist an
alphabet I 2 X, a finite, weight-reducing, confluent string-rewriting system R on I, two

strings t1,t2 € (' N X)* NIRR(R) and a letter Y € (I' \ X) N IRR(R) such that, for all
w e X*, tiwty =5 Y if and only if w € L.

29
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Analogously to (b) the class of generalized Church-Rosser decidable languages could be
defined, but the results of Buntrock and Otto [BO98] imply that this class coincides with the
class GCRL of generalized Church-Rosser languages. From [MNO88] and the definition above
we obtain the following sequence of inclusions, where only the first one and the last one are
known to be proper:

DCFL ¢ CRDL C CRL € GCRL c CSL.

Also it is known that CRDL is not contained in the class CFL of context-free languages
[MNOS88]. To see how a non-context-free language can be recognized with a finite length-
reducing confluent string-rewriting system we look at an example given by McNaughton et al
more closely.

Example 3.1.2. [MNOS8S8] Leypo = {a*" : n > 0} (compare Example 2.2.2) is recognized by
the following string-rewriting system. Let ¥ = {a},T' = {a, ¢,$, F, Y}, and R consists of the
following rules:

taaaa — ¢aaF, Faa — aF, F$—$,

¢aa$ — ¢a$, ¢a$ — Y.

Then for each w € {a}* we have w € Legpo if and only if ¢w$ —RrY, and R is finite,
length-reducing, and confluent, as it is an orthogonal system.

Because of Lemma 2.3.3 we know that our definition of the shrinking two-pushdown
automaton model is equivalent to the original one used in [BO98]. Thus the following char-
acterization holds.

Proposition 3.1.3. [BO9§]

(a) A language is accepted by some shrinking TPDA if and only if it is growing context-
sensitive.

(b) A language is accepted by some shrinking DTPDA if and only if it is a generalized
Church-Rosser language.

The above proposition shows that the generalized Church-Rosser languages can be in-
terpreted as the deterministic variants of the growing context-sensitive languages. While
CFL C GCSL, further results of [BO98] show that CFL ¢ GCRL. More precisely, they show
the following. It is known that the Gladkij-language Lgiadrij = {w#Hw™~#w : w € {a,b}*}
is not growing context-sensitive [DW86]. On the other hand, its complement is context-free.
As GCRL is closed under the operation of complementation of languages, this shows that
the complement of Lgigari; is not in GCRL. In particular, this implies that the inclusion
GCRL C GCSL is a proper one. Thus, we have the following inclusions, where the classes
CRDL and CFL are incomparable:

DCFL < CRDL € CRL € GCRL c GCSL < CSL
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3.2 Characterizations of the Class of Church-Rosser Languages

We will see that the class of Church-Rosser languages is characterized by several automaton
models, namely by the deterministic length-reducing as well as by the deterministic shrinking
two-pushdown automata. It is also characterized by the deterministic RWW-automata as well
as by the deterministic RRWW-automata.

For the former two results we first show that length-reducing and shrinking TPDA are
equivalent in both the nondeterministic and the deterministic case. We will see that this
characterization result implies that all three classes GCRL, CRL, and CRDL coincide.

For the latter two results we then show how a (deterministic or nondeterminstic) length-
reducing TPDA can be simulated by a (deterministic or nondeterministic, respectively) RWW-
automaton and how a deterministic RRWW-automaton can be simulated by a deterministic
weight-reducing TPDA.

3.2.1 Equivalence of Shrinking and Length-Reducing TPDA

We start this section with a technical lemma on shrinking TPDA that we will need in the
sequel to prove our equivalence result.

Lemma 3.2.1. Let M be a TPDA that is shrinking with respect to the weight-function .
Then there exists a TPDA M’ accepting the same language as M such that M’ is shrinking
with respect to a weight-function v that satisfies the following condition:

(x) Whenever uiqiv1 and uaqavy are configurations of M’ such that uyqivr bFapr uagave, then
Y(urqivr) — P(uzqave) = 1.

In addition, if M is deterministic, then so is M'.

Proof. Let M = (Q,%,T,0,q0, L,t1,t2, F) be a TPDA that is shrinking with respect to the
weight-function ¢ : Q UT — Ny, that is, p(uqv) — p(u'pv’) > 0 for all ¢ € Q, u € | T'=F,
v E I‘Ek, and (p,u’,v") € 6(q,u,v). We construct a TPDA M’ := (Q', %, T, qo, L, t1,t2, F)
and a weight-function ¢ : Q" UT' — N as follows.
First we number the instructions of M, that is, the lines in the table describing the
transition relation ¢, from 1 to m. For each i € {1,... ,m}, let the i-th instruction of M be
/

denoted as (p;, u;,v}) € 0(qi, us, v;), and let v; := @(uiqivi) — p(ulpivy).

2 1
If v; = 1, then take @} := () and add the transition (g;, u;, v;) — (pi, u},v}) to &'

17 71

If v; > 1, then take Q) := {gi1,-.. ,qiy,—1}, where gi1,... ,¢i~,—1 are 7; — 1 new states,
and add the following transitions to §’:

(qi7uiuvi) - (qi,laui)vi)a
(5,5, ui, v;) — (Gij+1,uivi), j=1,...,% —2,
(Gim—1,ui,v)  —  (pisul,vl).

m
Finally, let Q" :== QU |J @), let ¢’ consist of all the transitions introduced so far, and
i=1

define a preliminary weight-function ¢’ : Q' UT' — Z as follows:

V'(a) = pla) forall a €T,
Va) = ela) for all g € Q,
V'(qij) = @(g)—j forall ¢ e{l,... ,m}andje{l,...,v—1}.
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It is easily verified that ¢'(u1q1v1) — ¥’ (u2gav2) = 1 holds for all configurations ujq;vq
and uaqovs of M’ that satisfy uiqivy Far usqove. Unfortunately, 10’ may not be an acceptable
weight-function, since for some choices of 7 and j, ¢'(¢; ;) could be a number that is smaller
than or equal to zero.

To correct this problem let u := min{¢’(p’) | p’ € Q'}. If u < 0, then choose ¥(¢') :=
V'(¢) + |u] + 1 for all ¢ € @', otherwise, let ¥(q") := ¢'(¢') for all ¢ € Q'. Also choose
Y(a) ;== (a) for all a € T'. Then ¢ : Q" UT" — N is a weight-function such that ¢ (uiqi1v1) —
¥ (u2gov2) = 1 holds for all configurations u1qiv1 and usgove of M’ that satisfy uigivy by
U2q202.

It is easily seen that N(M’) = N(M) and that M’ is deterministic, if M is. O

Thus, in the following we can always assume that in each step of an sTPDA the weight
of the actual configuration decreases by 1. Hence, if ujqiv; and uggove are configurations
of an sTPDA M with weight-function ¢ such that uiqivy '_If\/[ Uuoqovo for some k € N, then
p(urq1v1) — p(u2gave) = k.

Now we come to the announced euqivalence of shrinking and length-reducing TPDA.

Theorem 3.2.2. For each shrinking TPDA M there exists a length-reducing TPDA M’ that
accepts the same language. In addition, M’ is deterministic, if M is.

Proof. Let M = (Q,%,T,6,qo, L, t1,t2, F) be a TPDA that is weight-reducing with respect to
the weight-function ¢, and let L denote the language that is accepted by M. We can assume
the following:

(i) Each non-halting configuration of M is of the form Lugv L for some u,v € (I' \ {L})*
and ¢ € (Q N\ F).

(ii) F' = {qr}, that is, M has a single halting state only.

(iii) Each accepting halting configuration of M is of the form g .

)

)
(iv) Each non-accepting halting configuration of M is of the form Lgy.
(v) If uyqrv1 Far uagave, then o(uiqrvr) — p(u2gove) = 1 (Lemma 3.2.1).
)

(vi) In every step M sees only the topmost symbols of its pushdown stores, and t; = € =t
(Lemma 2.3.3).

Let # be a new letter. We define a morphism h : (T UQ)* — (I'U Q U {#})* by taking
h(a) := a#9@~1 for each a € T UQ. Then |h(w)] = ¢(w) for all w € (I' UQ)*, and
h(TUQ) C (TUQ)-{#}" is a prefix code. Thus, the morphism h: (TUQ)* — (TUQU{#})*
is an injective mapping. Further, let © := max{ ¢(a) | a € TUQ } denote the maximal weight
of a letter from I' U Q.

We now construct a length-reducing TPDA M’ := (Q', X, A, ¢, qf, L', t),th, F') that will
accept the language L and that is deterministic, if M is. Essentially M’ will simulate the
computations of the s(D)TPDA M. However, this simulation cannot be straightforward, as M’
is length-reducing, while M is only shrinking with respect to the weight-function ¢. Therefore
we would like to replace a configuration LugvL of M by the tape contents h(_LuqvLl). As this
replacement increases the length of the string considered, we need to compress the resulting
string by combining several letters into a single new letter. This, however, creates another
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problem. If Lujqivi L Fpp Luggove L, then by (v) |h(LuiqrviL)] — 1 = |h(Luagave)|, but the
compressed forms of the strings h(Lujqiv1 L) and h(Luggave L) may have the same length.
To overcome this problem we choose the fixed rate of compression 4u, and simulate 4u steps
of M through a single step of M'. If LujqiviL I—jl\f; Luggova L, then |h(Lujqruvnl)| —4p =
|h(Luggove L)|, and hence, if 71 and ~2 are the compressed forms of hA(Lujqiuil) and of

[h(Luiqroi L)|—4p | | |h(Luagaval)] _’ ’
i - 4 = 72|

To perform this construction we first determine the working alphabet A of M’. We define
four new alphabets as follows:

h(Luagova L), respectively, then |yi| — 1 = [

Ae = {aw |we (TU{#Y) and 1< [u] <2},
A = {aw |we (TU{#Y)" and jul = 44},

Ag = {augpw |u,ve (TU{#})* and ¢ € Q such that |ugv| =4p}, and
Yo = {[al,ag]\al,ageE}.

Thus, each letter a,, € A<UAUAQ represents a string w € (TU{#})*-Q-(FU{#})*U(TU{#})*
of length at most 4u. Finally, we take

A:=%YU{q, L, L}UA<UAUAQU,,

where we assume that all the subalphabets displayed are pairwise disjoint. We define ¢} :=
Lqo, th := L, and for the length of the pushdown windows of M’ we choose k := 8y + 1. The
set of states @’ consists only of the start state ¢(,, which is also the only final state.

To simplify the following considerations we define a morphism

T (A<cUAUAQ)" —» (TUQU{#})"

through the mapping
w if a=a, €A<UA,
a — ) =
uqu if a = aug € Ag.

Thus, 7 replaces each letter a € A< U AU Ag by the string it represents.
We define the transition relation ¢’ of M’ in four steps.
(0) Step 0 is used to take care of those inputs w € ¥* that are sufficiently short:

8 (g, L' Lgo,wLl L") = (¢f,e,e)  forwe X*, p(wl) <8u, andw € L,
(g, L' Lgo,wLl ") = (¢f, L',e) for we X*, p(wl) < 8u, andw ¢ L.

Obviously, these transitions are length-reducing and deterministic. As p(wl) < 8u is re-
quired, we see that [wl 1’| < @(wl)+1<8u+ 1=k, that is, the given transitions respect
the size of the pushdown windows of M’.

From the transitions above we see that the following holds for all w € X* satisfying

p(w) < 8 —p(L):
1" Lgoqyw Ll L' Fyp gqp if and only if w € L.

(1) In Step 1 the description LgowL of an initial configuration of M is transformed into a
compressed form c € A* - Ag - A*, if w is sufficiently long. This step consists of four phases.

(1.1) First, in a preparation phase, M’ moves the string wl from the right-hand to the
left-hand pushdown store. During this process the input is compressed in order to make these
transitions length-reducing.
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Let aj,a2 € X, let @ € {L'1qo, Lqo,qo,e} - X5 such that |z| < k, and let y; € ¥* and
y2 € {e, L, L 1’} such that |y1y2| < k — 2. Here we require that = ends in a letter from o or
that p(a1agy1) > 8u — ¢(L). Then we include the following transition:

5/(Q(,]7xa ala2y1y2) = (qévx[a17a2]ay1y2) .

(1.2) Then M’ starts the main compression process, working from right to left.

Let wy, ..., wa, € 3,let x € {L' Lgo, Lqo, qo,e}-35 such that |z| < k—n, and let a € XU{e}
such that p(ws...wopal) < 4p < p(w; ... wapal). As the morphism h is injective, there
exist uniquely determined symbols o € A< and a € A satisfying 7(¢/a) = h(w; ... wapal).
Recall that |h(wiws2)| = p(wiwz) < 2u. Accordingly, we include the following transition:

5/(q6, rlwi, wa] ... [won_1,wa],al L) = (qf), r,/al’).

This transition generates the first compression symbol a € A. As 4p < p(wy ... wopal) <
(Jwy ... wan| + 2)pu, we see that n > 2. Hence, this transition is length-reducing. The given
weight restrictions for wi ... ws,al imply that there is only one transition of this kind that is
applicable to any given contents of the pushdown windows. Hence, the computation relation
induced by these transition steps is deterministic.

(1.3) The compression proceeds generating one compression symbol after another.
Let wy, ..., wa, € ¥, let x € {L'Lqo, Lqo, qo,e} 35 such that |z] < k—n,lety € A*-{e, L'}
such that |y| < k — 1, and let o/ € A< such that

|h(ws ... wop) ()| < 4p < |h(wy ... wan)7w(d)].

Then there exist uniquely determined symbols o € A< and a € A satisfying 7(a”«a) =
h(w; ... wapn)m(a'), and we include the following transition:

' (o, x[wi, wa] . . . [wan—1, wan], &'y) = (gp, z, " vy) .

As |m(a)| < 2u, 4p < |h(wy ... wep) ()| = p(wy ... way) + |w(a’)| implies @(wy ... wa,) >
24, which in turn yields n > 2. Hence, this transition is also length-reducing. As above it
follows that the induced computation relation is deterministic.

(1.4) Working from right to left the transitions in steps (1.2) and (1.3) replace suffixes v L of
LgowL by the compressed form ¢ € A<-A* of h(vL). The transitions in (1.4) will enable M’ to
replace the remaining prefix L gou in such a way that the resulting string belongs to A*- Ag-A*,
that is, it is the compressed form of a string z € (I' U Q)* satisfying |h(z)| = 0 mod 4.

Unfortunately, the initial configuration 1 gow 1l may not satisfy this requirement. There-
fore, if |h(LgowL)| = r mod 4 for some r € {1,... ,4u — 1}, then instead of compressing the
initial configuration itself, we determine the compressed form of a configuration luqv_L that
is obtained from Lgow L by executing r steps of M. If M is deterministic, this configuration
is uniquely determined; otherwise, there may exist several such configurations. Then

|h(Lugvl)| = |h(Lgowl)| —r =0 mod 4y,

and hence, h(Lugvl) can be encoded through a string ¢ € A* - Ag - A* satisfying 7(c) =
h(Lugvl).
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In each step the s(D)TPDA M can remove at most one symbol from the top of its second
pushdown store. Thus, the first 4u — 1 steps of the computation of M on input w depend
only on the prefix u of w of length 44 — 1, which is encoded by the topmost p+ 1 compression
symbols of the right-hand pushdown store of M’. The transitions of step (1.4) will encode all
computations of M of this form.

Let wy,...,wo, € X,y € AU{L'}, and o/ € A< such that |h(w; ... wa,)7(a’)| < 4p. Fur-
ther, let aq,...,q;, € A for some m € {2,...,k—2} such that h(w; ... wo,)7(day ... ap) =
h(v)z for some v € ¥£* - {e, L} and some z € (X U {#})* satisfying |z| < p, where m <
k — 2 implies that y = 1/, 2 = ¢ and w(d/a1...ap) € (XU {#})* - h(L). Finally, let
re{0,1,...,4p— 1} satisfying |h(Lgow; ... wao,)w(a’)] = r mod 4u. Then there exist strings
ui,v1 € I'" and a state symbol ¢1 € @ such that Lgov ', uiqiv1, and hence, it follows
that |h(u1gi1v1)z| = 0 mod 4. Thus, there exist symbols v1,...,7j—1,Vj+1,---,7% € A and
v; € Ag such that 7(y1...7p) = h(u1qivi)z. Then we include the following transition:

& (g6, L' Lagolwr,wa] . .. [won—1,w2n], & a1 ... amy) = (g L1 - - =15, Vjt1 - - - WpY) -

From the various restrictions given it follows that p € {m, m+1}. Hence, the above transition
is length-reducing, and it respects the size of the pushdown windows of M’. Further, the new
contents of the pushdown stores is uniquely determined by the contents of the pushdown
windows, if M is deterministic. Hence, the induced computation relation is deterministic, if
M is.

From the definitions given it follows that only one of the steps (1.1) to (1.4) is applicable
to any configuration of M’. That is, as far as the transitions introduced so far are concerned
M’ is deterministic, if M is.

It is easily shown that, for allw € ¥* and r € {0, 1,...,4u—1} satisfying p(w) > 8u—p(L)
and r = p(LgowLl) mod 4y, there exists a string o ... ... € A* - Ag - A* that satisfies
the following conditions:

(i) m(oq ... o) = h(Llugqvl) for some configuration Lugvl of M, where Lgowl Fj,
lugvl , and

(i) L'Lgogowll'F3, Loa .. ajghogpn .. anl’.

Here we exploit the fact that M has only the two halting configurations ¢y and Lgqy, which
implies that M performs at least 4 steps starting from the configuration 1 gowL.

(2) After performing the compression, M’ simulates the computations of the s(D)TPDA M
on strings that represent compressed forms of configurations. Each step of M’ simulates 4u
steps of M. As in 4u steps M sees at most 4 symbols from each of its pushdown stores, it
is sufficient for M’ to touch the topmost i + 1 compression symbols on each of its pushdown
stores in addition to the one that contains the state of M.

Let v € {L',e}- A", let y € A* - {e, L'}, and let avq,...,ap,01,...,0m € A and v € Ag
such that 7(ay...a,Y01 ... 0m) = 21h(uqu)zy for some u,v € T*, g € Q, 21 € {#}*, and
zo € T' - {#}*, where |z1|, |22] < p, z2 ¢ h(T'), and uqv is a subconfiguration of M. Here we
require that n,m < g+ 1, and that

aq) has prefix h(L) and x = 1/,

) has prefix h(L), x = 1" and m > 2,
Bm) has suffix h(L), and y = L', and
) has suffix h(L), y =L/, and n > 2.

1<n<pu implies that 7
n=>0 implies that 7
1<m < p implies that m
m =0 implies that 7

o~ o~~~
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The conditions on the integers n and m imply that n+m > 2. Hence, from the configuration
encoded by the current contents of the pushdown stores of M’, M performs at least another
4 steps, that is, there exist uy,v; € I'" and ¢1 € @ such that u;qiv; is a subconfiguration of
M, and uqv l—%’j u1q1v1. Accordingly, there are v1,...,vj—1,7j+1,---»Yntm € A and 7; € Ag
satisfying 7(71 ... Yn+m) = 2z1h(u1q1v1)2z2. Then we include the following transition:

8 (qpszan .. .any, B1 -+ Bmy) = (40 V1 - - - YVj=1V5> Vi1 - - - Yntm¥) -

This transition is obviously length-reducing. Since the new contents of the pushdown stores is
uniquely determined if M is deterministic, the computation relation induced by the transitions
of this step are deterministic, if M is.

Let Luqul be a configuration of M that is reachable from an initial configuration, where
o(Llugul) = s-4p for some s > 3, and let ai,...,0j-1,a541,...,05 € A and o € Ag
satisfying p(aq ... as) = h(Lugvl). Then it can easily be shown by induction on the number
s that there exist a configuration Lujqivy L of M and letters 51, ..., Bi—1, Bit1,--.,0s—1 € A,
and (3; € Ag such that the following conditions are satisfied:

(i) 7(Br...Bs—1) = h(Lurqrv1l),

(ii) Lugul I—iﬁ; Lluigivi L, and

(111) J_/Oél e aj,lozjq(’)ozj+1 e OéSJ_/ l_M’ J_,,Bl .. .ﬁiflﬁiqéﬂprl e ﬂsJ_/ .

(3) The automaton M’ ends the simulation of M, when only two compression symbols are
left in its pushdown stores by using the following transitions.

Let o, € AU {e}, where a # ¢ if and only if 3 = ¢, and let v € Ag such that
m(ayB) = h(Lugul) for some u,v € I'" and ¢ € Q. If Luqul F}; gy, then we include the
following transition:

&' (qh, L'ary, BL") = (qp, €, €),

and if Luqvl 3, Lqy, then we include the following transition:
&' (g, L'ay, BL') = (g0, L', €) -

Obviously, these transitions are length-reducing, and the computation relation induced by
them is deterministic, if M is.

If Lugul is a configuration of M that is reachable from an initial configuration such that
o(Lugqul) = 8pu, and if oy, ap € AUAQ satisfy aqag € A*- Ag-A* and m(aqaz) = h(Lugul),
then M’ will accept starting from the configuration L'ajaaqLl’ or L'ajqyaeL’, respectively,
if and only if M accepts starting from the configuration luquvl.

If M is deterministic, then to each configuration of M’ at most one of the above transitions
is applicable, which implies that then M’ is also deterministic.

We now verify that M’ does indeed accept the same language as M. Let w € X*. If
o(w) < 8u — (L), then we see from step (0) that L' Lgogyw Ll L' Fpp gf if w € L, and
L' Lgoghw Ll L' Fpp L'qp, if w ¢ L. Assume therefore that ¢(w) > 8 — ¢(L). Then by step
(1) there exist a configuration LuiqiviL of M and letters o, ..., 051, ®j41,...,am € A and
aj € Ag such that
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(i) m(on ... o) = h(Lurqror L),
(ii) Lgowl F3; Luiqrvi L, and
(iii) L'LgoguwlLl’' Fy, Lo .. ojqoajpr - am L.

If m > 2, then step (2) applies. Hence, there are configurations Lu;qv; L of M and
strings 6; € A* - Ag - qp - A*, i = 2,...,m — 1, such that Lu;_jq;—1v;—1L I—ﬁﬁ; Lugivi L,
m(6;) = h(Luigivi L),

J_'al ce ajq(')ajﬂ ce OémJ_/ I_M/ J_/(SQJ_/ |_M’ s '_M/ J_’5m,1J_’ 5

and |6;| = m —i+2foralli =2,... ,m — 1. Here the morphism 7 is extended by simply
mapping the state symbol ¢ to . Finally, |6,,—1] = 3 implies that L'd,,_1L" Fpp ¢} or
L6 —1L" Fap L'q) by step (3). From the definition we see that the former is the case if and
only if w € L. Thus, for w € L, we have

J_/J_qué’LUJ_J_/ F}(\/[/ J_/Odl e ozjq[’)aj_H e OémJ_/ FM/ s FM/ J_/(Sm_lJ_/ FM/ q(,) 5
and for w ¢ L, we have
J_/J_qéquJ_J_, }—7\4/ J_,Ozl e ajq(’)aj+1 e OémJ_, }_M’ s I_M/ J_/(SmflJ_/ '_M’ J_,qé .

This completes the proof of Theorem 3.2.2. U

3.2.2 Characterizations with Two-Pushdown Automata

From the definitions we know that CRDL € CRL C GCRL holds. Here we prove that also
GCRL C CRDL holds, thus showing that the three classes actually coincide. For doing so we
make use of the characterization of the class GCRL by the shrinking DTPDA ([BO98], see
Proposition 3.1.3 b) ) and the equivalence of shrinking and length-reducing (D)TPDA (see
Theorem 3.2.2).

Lemma 3.2.3. If a language is accepted by a length-reducing DTPDA, then it is Church-
Rosser decidable.

Proof. Let M = (Q,%,T,9,qo, L,t1,t2, F) be a length-reducing DTPDA. As observed in the
proof of Theorem 3.2.2 we can assume the following:

(i) Each non-halting configuration of M is of the form Lugvl for some u,v € (I' \x {L})*
and ¢ € (Q N\ F).

(i) F' = {qr}, that is, M has a single halting state only.
(iii) Each accepting halting configuration of M is of the form gy .
(iv) Each non-accepting halting configuration of M is of the form Lgy.

From M we obtain a string-rewriting system R as follows. Let A := ruTu{d4,$}u{y, N},
where I' is a new alphabet in 1-to-1 correspondence to I', and ¢, $, Y and N are new letters.
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By ~ we will also denote the natural isomorphism from I'* onto . The system R contains
the following rules:

aqu — u'q'v',  if §(q,u,v) = (¢, u,v),

¢Iq f$ — N,

¢q f$ —Y.

Then R is finite and length-reducing, and it is confluent, as it is an orthogonal system. For
each w € ¥*, we have the following equivalences:

we NM) iff  Ltigutel Fi, qp iff ¢ Ltigowtal$ ——gdq$ — Y,
and
w¢ N(M) iff  Ltygowtal Fy, Lgp iff ¢ Ltigowtal$ ——rd1gs$ — N.

Thus, N (M) is a Church-Rosser decidable language. O
As an immediate consequence we obtain the following result.
Theorem 3.2.4. CRDL = CRL = GCRL.

Proof. Let L be a generalized Church-Rosser language. Then there exists a shrinking DTPDA
M that accepts L. By Theorem 3.2.2 there is a length-reducing DTPDA M’ that also accepts
L. By Lemma 3.2.3 it follows that L is Church-Rosser decidable. As the converse inclusion
is obvious, this completes the proof. O]

This result immediately yields the following characterization of CRL, while the character-
ization of GCSL is a consequence of Proposition 3.1.3 (a) and Theorem 3.2.2.

Theorem 3.2.5.

(a) A language is Church-Rosser, if and only if if it is accepted by some length-reducing
DTPDA, if and only if it is accepted by some shrinking DTPDA.

(b) A language is growing context-sensitive, if and only if it is accepted by some length-
reducing TPDA, if and only if it is accepted by some shrinking TPDA.

The characterization by length-reducting DTPDA also yields the existence of a connected
reduction for every word in an arbitrary Church-Rosser language.

Definition 3.2.6. [Gla64] Let R be a string-rewriting system on some alphabet ¥. A reduction
wyg —R W] —R W2 —Rg ... s called connected if the following condition holds for each index

(*) If w; = xiliy; and wiyy = xiriy; = Tip1liv1Yit1 for some xi,Yi, Tiv1, Yit1 € L', where
(¢; — r;) € R is the rule applied in the i reduction step, and ((;41 — ri11) € R is the

rule applied in the next step, then the substrings £;+1 and r; of w;y+1 overlap.

. . I SO A S )/ o " S aqn
More precisely, if r; # € then x; = xjxy, i = riry, and vy = Ty 1wy, lipr = Ll
and either x; = xip 1l and Ij Ly = rey; with I # €, or xi1 = x4 and riy; =

liv1yiy1 with r! # ¢, and if r; = €, then x4 is a prefix of x; and y;41 is a suffix of y;.
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Lemma 3.2.7. For each Church-Rosser language L C ¥* there exists a finite, length-reducing,
and confluent string-rewriting system R on T' 2 X, two strings t1,te € ('~ X)*NIRR(R), and
a letter Y € (I' < X) NIRR(R) such that, for all w € ¥*, w € L if and only if tywty =% Y,
and the reduction tywty —3 Y is connected.

Proof. From Theorem 3.2.5 we know there exists a length-reducing DTPDA M that accepts
L. The construction in the proof of Lemma 3.2.3 yields a length-reducing string-rewriting
system S from M such that S has all the required properties, as the S-reductions simply
simulate the computations of the IFrDTPDA M. O

We close this section with a speed-up lemma for length-reducing TPDA.

Lemma 3.2.8. Let M be a length-reducing TPDA, and let d € N. Then there exists a length-
reducing TPDA M’ that accepts the same language as M and that satisfies the following
condition:

(%) Whenever uyqivr and ugqove are configurations of M’ such that uiqivy by uaqave and
u2qav2 s not a final configuration, then |uiqivi| — Juagava| > d.

In addition, if M is deterministic, then so is M’.

Proof. Let k be the length of the pushdown windows of M. We make the same assump-
tions on M as in the proof of Lemma 3.2.3. From M we construct the IFTPDA M’ =
(Q, %, 1,8, qo, L, t1,t2, F) as follows. For the length of its pushdown windows we choose
the number k' = (d + 1)k, and we define ¢ as follows, where u GLI‘Skl, vE I‘Ek/, u' v e T*,
and ¢,p € Q:

8'(q,u,v) = (qf,,e) if uqu is a configuration of M, and ugv F},; agy for
some « € {e, L},

8 (q,u,v) = (p,u’,v") if ugu and u'p’v’ are proper subconfigurations of M
satisfying uqu F‘]i\jl u'pv’, and if §(q,u,v) is not de-
fined in the previous case.

Obviously M’ is length-reducing, and if M is deterministic, then so is M’. Further, it is easily
seen that N(M') C N(M).

The converse inclusion can be seen as follows. Let w € N(M), and let Ltjwte L = wg by
wy Far - B wy = qp be an accepting computation of M on input w. Within d + 1 steps
M can at most see the (d + 1) - k topmost symbols of each pushdown store. Due to the
choice of the size k' of the pushdown windows of M’, M’ can see these symbols all at the
same time. Thus, starting from the initial configuration L¢;wte L, M’ performs the following
computation, where each step of M’ simulates d + 1 steps of M:

d+1 d+1 d+1
J_tlthJ_:wo I—J\/J[r Wd+1 F]\j "J wi(d+1),

where i is chosen such that w;g11) = uiqiv; satisfies |u;v5| < 2(d + 1)k. Since wu;q;v; 3, gy,
we have u;q;v; - g by a transition of the first form.

Finally let ui1qiv1 and usgovs be two configurations of M’ such that uygivy Fap usgovs.
If usqovs is a non-halting configuration, then d + 1 steps of M are simulated by this step of
M’, and thus |uqv| — |[u'pv'| > d + 1. O

As a consequence, for every Church-Rosser language and every positive real number c,
there exists a length-reducing DTPDA that accepts L in time c-n + 1.
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3.2.3 Characterizations with Restarting Automata

We will make use of the characterization results of the previous section to show that CRL is
also characterized by deterministic (R)RWW-automata and that GCSLis included in L(RWW).

Lemma 3.2.9. (a) GCSL C L(RWW). (b) CRL C L(det-RWW) .

Proof. In Theorem 3.2.5 we have seen that GCSL is characterized by the length-reducing
TPDA and that CRL is characterized by its deterministic variant. Hence, for L € GCSL, there
exists a length-reducing TPDA A such that L(A) = L.

This TPDA can be simulated by an RWW-automaton M in the following way. M encodes
a configuration Lugul of A by the tape contents ¢uqu$, where 4 is a copy of u consisting
of marked symbols. M then simply moves its tape-window from left to right across its tape
until it discovers the left-hand side of a transition of A, that is, until it discovers the actual
state of A and the topmost k£ symbols from each pushdown store. Then M can apply the
transition using a restart step. There is, however, a technical problem in that M starts with
a tape contents of the form ¢w$ that does not contain a state symbol of A. But since we can
assume that A reduces the length of the combined contents of its two pushdowns by at least
two in each step (see Lemma 3.2.8), M can print the state symbol while simulating the first
step of A’s computation. Finally, if A is deterministic, then so is M. O

Moreover, we have the following characterization for CRL. Here it can also be seen that
in the case of deterministic RWW-automata separating the restart-step from the rewrite-step
does not add power to the automaton model. In the nondeterminstic case this question is
still open.

Theorem 3.2.10. £(det-RRWW) = L (det-RWW) = CRL .

Proof. Since L(det-RWW) C L(det-RRWW), and since CRL C L(det-RWW) (Lemma 3.2.9),
it remains to prove that L(det-RRWW) C CRL holds.

Let M = (Q,%,T,6,q0,¢,%, F, H) be a deterministic RRWW-automaton with read/write-
window of size k, and let L denote the language accepted by M. By Lemma 2.4.2 we can
make the following assumptions about M: after performing a rewrite-step M continues with
MVR-steps until it scans the right delimiter $, and then it either (1.) halts and accepts, (2.)
halts and rejects, or (3.) makes a RESTART.

Now we simulate the deterministic RRWW-automaton M by a deterministic shrinking
TPDA M’. Essentially a configuration ¢xqy$ of M is encoded through the configuration
L¢xqy$L of M'. Obviously a move-right step of M translates into a step of M’. However, if
M performs a rewrite-step, for example ¢zquw$ -y ¢zvg’w$ and later a restart-step, then
there is a problem, since M’ cannot push the complete contents of its left-hand pushdown
onto its right-hand one. Luckily, as M is deterministic, it cannot make its next rewrite-step
before it sees at least the first letter of v in its tape window. Thus, M’ only needs to push
the top-most k£ symbols from its left-hand pushdown store onto the right-hand one. Also
instead of recomputing the actual state of M at that point, M’ can store the states M enters
while performing MVR-steps together with the symbols read on its left-hand pushdown store.
Thus when pushing the topmost k symbols from its left-hand pushdown store onto the right-
hand one during a simulation of a rewrite-step, M’ can read the actual state of M from the
pushdown-store. Also, M’ can store the information of whether M will halt and accept or
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reject or whether M will perform a restart-step together with the symbols on its right-hand
pushdown store. For this we associate three subsets of @ with each string w € (I \ {¢, $})*:

Q+(w) := {q€Q|From a configuration of the form ¢xqw$ M makes only MVR-
steps until it scans the $-symbol, and halts and accepts then },

Q-(w) := {qe€Q|From a configuration of the form ¢xqw$ M makes only MVR-
steps until it scans the $-symbol, and halts and rejects then },

Qws(w) = {q€Q|From a configuration of the form ¢xquw$ M makes only MVR-

steps until it scans the $-symbol, and then it performs a RESTART }.

Since M is deterministic, Q4 (w), Q—(w), and Qrs(w) are pairwise disjoint.

After performing a rewrite-step M is in a configuration of the form ¢zvqw$. Then by our
assumption on M, g € Q4 (w)UQ_(w)UQys(w). If these three sets were known, then instead
of actually performing the corresponding steps of M, we could simply accept (if ¢ € Q4 (w)),
reject (if ¢ € Q_(w)) or make a RESTART (if ¢ € Qws(w)). Fortunately, these sets can be
calculated in advance during an initialization phase and updated during simulated rewrite-
steps.

Now we will simulate M by an sDTPDA M’ where we will keep track of the sets Q4 (w),
Q- (w), and @Q,s(w) for each suffix w of the actual tape contents. In this way we can combine
the rewrite-steps and the RESTART-steps. Accordingly M”"’s pushdown stores will have 2,
respectively 4, tracks:

right part of M's tape
left part of M’s tape finit .
Iy nite Q+(.) s | L
states of M control @-0)
Qrs ()

The sDTPDA M’ will work in two phases.

Phase 1 (Initialization): From right to left M’ prints encodings of the three sets Q. (w),
Q_(w), and Qs(w) underneath the first letter of w for each suffix w of the given input. This
process is realized in two steps:

(a) First M’ shifts the tape contents of the right-hand pushdown store onto the left-hand
pushdown store (using an appropriate copy alphabet to make this process weight-
reducing), that is:

1L q0 ¢ 210 2m $1

is transformed into

(b) Pushing z back onto stack 2 the corresponding sets Q4 (.), @—(.), and Qys(.) are written
on tracks 2 to 4:
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Phase 2: M’ now simulates M step-by-step. We distinguish between the MVR-steps of M
and the rewrite-steps of M.

(a) MVR-step of M: ¢ugiavw$ iy ¢uagow$, where a € I' \ {¢,$} and |v| = k — 1. For
duqravw$ the corresponding configuration of M’ looks as follows:

a| v w
/ v Q+| Q+(vw)...

L q $L
¢ « Q- Q-(vw)...

Qrs| Qrs(vw) ...

Here Q1 = Q4 (avw), Q- = Q—_(avw), and Qs = Qrs(avw). In a single step M’ transforms
this configuration into the following one, thus simulating the above MVR-step of M:

v w
Y a Q4 (vw)
1 7l $1
¢ i q2 O (vw)
Qrs(vw)

Observe that on the second track of its first pushdown M’ stores the actual state in which
it was when pushing the letter a onto that stack.

(b) REWRITE-step of M: ¢uqiow$ Fy ¢uygaw$, where [v| = k > |y|. Here we distin-
guish between the following three cases:

Case 1. ¢3 € Q4 (w): Then M will accept. Accordingly, M’ enters an ERASE-state, erases
the stack contents, and accepts.

Case 2. ¢ € Q_(w): Then M will reject. Accordingly, M’ enters an ERASE-state, erases
the stack contents, and rejects.

Case 3. ¢2 € Qis(w): Then ¢uyqw$ Fyr ¢uywaes$ FrREsTART Goduyws FHivg ¢u1qauayws$,
where u = ujug, |ug| =k — 1, if |u| > k, or ¢u = uz and no MVR-step is performed after the
RESTART, if |ul < k.

M’ will now simulate this sequence of M-steps by a single step as follows. The configura-
tion of M’ corresponding to ¢ugivw$ is the following:



43

3.3 Closure Properties
v w
U U2 () w
n ¢/ (jl Q+( ) QJr( ) $ 1
o Q_(vw)-.. |Q_(w)
Qrs(vw) Qrs(w)
k—1 | J
k+1
In a single step this configuration is transformed into the following:
U2 Y w
u1 UsYWw) . . . w) ... w)...
Y N Q.+ (u2yw) Q+ (yw) Q+(w) S L
Q_(uayw)...| Q-_(yw)... Q_(w)...
Qus(ugyw) ... | Qus(yw). .. Qus(w) ...

Here the sets Q4 (.), @—(.), and @Q,s(.) underneath the letters of ugy on the second push-
down are computed from Q4 (w), Q—(w), and @Qs(w) based on the transition function of M.

In case |u| < k the first pushdown will only contain the bottom marker L, and M’ will be
in the state that corresponds to the initial state of M.

It is easily verified that L(M') = L(M) = L. Obviously step 2(a) can be realized in a
weight-reducing manner. As |y| < |v|, also step 2(b) can be realized in this manner. Thus,
M’ is indeed an sDTPDA for L, which completes the proof of Theorem 3.2.10. U

The results of this section give the inclusion relations depicted in Figure 3.1, where a solid
line (without question mark) indicates that the corresponding inclusion holds and is proper,
a question mark close to a solid line indicates that the corresponding inclusion holds and it is
an open problem whether it is proper, a question mark close to a dashed line indicates that
it is an open problem whether the corresponding inclusion holds, and a dotted line indicates
that the corresponding inclusion holds and the question whether it is proper will be addressed
in Section 7.2.

3.3 Closure Properties

In this section we summarize the known closure and non-closure properties of the class CRL,
and we also prove some new closure and non-closure properties.

From the characterization of the class CRL through the length-reducing/shrinking DTPDA
we conclude the following closure properties.

The first one follows immediately from the determinism of the characterizing automaton.

Proposition 3.3.1. The class of Church-Rosser languages is closed under complementation,
that is, if L C ¥* is a Church-Rosser language, then so is the language L := ¥* \. L.

Proposition 3.3.2.

(a) The class CRL is closed under intersection with reqular languages, that is, if L € CRL
and L1 € REG, then L N Ly is a Church-Rosser language.



44

Church-Rosser Languages

© L(det-RRW)

det-RW)  L(det-RR)

N\

L(det—ﬁ)

DCFL

Figure 3.1: Relations among the language classes considered as of Section 3.2.3

(b) The class CRL is closed under inverse morphisms, that is, if L C ¥* is a Church-Rosser
language and h : A* — ¥* is a morphism, then h™1(L) is a Church-Rosser language.

Proof. (idea)
To (a): An sDTPDA M can simulate a deterministic finite automaton A stepwise while
processing the input. Whenever M ceases to read new symbols, it can write down the actual
state of A on a second track under the last symbol read, and whenever M goes on to read
new input symbols, it can continue the simulation of A. When the input is read completely,
M will reject, if A does.

To (b): Let L € CRL, let M be a weight-reducing DTPDA, and let h be a morphism. Then
a weight-reducing DTPDA M’ that recognizes h~!(L) can be constructed as follows: In a first
sweep over the input M’ replaces each symbol by its image under h, shifting the contents
of the right-hand pushdown store onto the left-hand one. In a second sweep the complete
content of the left-hand pushdown store is shifted back onto the right-hand one, where each
symbol is replaced by a special copy. Then M is simulated, using a copy of its input alphabet.
Appropriate weights for the symbols can be found easily. O
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Finally, from [MNOS8S8] we recall the following closure properties.

Proposition 3.3.3.

(a) CRL is closed under reversal, that is, if L C ¥* is a Church-Rosser language, then so is
the language L™ = {w™ |w € L}.

(b) CRL is closed under left quotient and right quotient with a single string, that is, if
L C ¥* is a Church-Rosser language and z € ¥*, then L/{z} = {w € ¥* | wz € L} and
{z} N L :={w e ¥* | zw € L} are Church-Rosser languages, too.

In [OKK97] it is shown that the class CRL is a basis for the recursively enumerable lan-
guages, which means that, for each recursively enumerable language L C ¥*, there exist
an alphabet I' 2 ¥ and a Church-Rosser language C' C ¥* such that L = 7x(C), where
7wy [ — ¥* is the natural projection from I'* onto ¥*, that is, it is the morphism that is
induced by the mapping a — a (a € X) and b — ¢ (b € ' \ X). Further, it is shown by
Buntrock [Bun96] that the closure of the class GCRL (= CRL) under e-free morphisms yields
the class GCSL. Hence, we obtain the following non-closure properties.

Proposition 3.3.4.
(a) CRL is not closed under projections.
(b) CRL is not closed under e-free morphisms.

The Gladkij language Lgiqarij := {w#w™~#w : w € {a,b}*} is a context-sensitive language
that is not growing context-sensitive [Gla64, Boo69, BO98] as we already mentioned in Section
2.2. Now Lqiadrij can be written as Lgigari; = L1 N Lo, where Ly = {wH#w™#z : w,z €
{a,b}*} and Ly := {w#z#z"~ : w,z € {a,b}*}. Obviously, L; and Ly are both deterministic

context-free, and hence, they are both Church-Rosser languages. Since Ly N Lo & GCSL, we
have L1 N Ly ¢ CRL. This shows the following.

Proposition 3.3.5.
(a) CRL is not closed under intersection.
(b) CRL is not closed under union.

Part (b) simply follows from part (a) and Proposition 3.3.1. Finally, we establish the
following non-closure property.

Proposition 3.3.6. CRL is neither closed under product nor under iteration.

Proof. Let L and Ly be e-free Church-Rosser languages with L; U Ly ¢ CRL (Proposition
3.3.5). Let ¥ be the minimal alphabet with Ly U Ly C X*, and let # be a new letter. Define

L:={c}U{#IU{#} - LiU{#} L,.
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Note that L is accepted by a length-reducing DTPDA M, as there is a I'[DTPDA for each of
the languages L1 and Lo and the number of occurrences of the letter # in the prefix of the
given input tells M which of them to simulate. Further, L has the following property:

L-LN{#} -2 =L"n{#%) -2 ={#%) - (I, U Ly).

As CRL is closed under intersection with regular languages and under left quotient with a
single string, closure of CRL under product or under iteration would imply that L1 ULy € CRL,
which is a contradiction. Thus, CRL is neither closed under product nor under iteration. [J

Last we address the operation of taking the power of a language, which is defined as
follows.

Definition 3.3.7. Let L C X* be a langugage. The power of L then is defined as follows:
pow(L) = {w'" :w € L,i € N}.
Lemma 3.3.8. Neither CRL nor GCSL is closed under the power operation.

Proof. We look at the language L = {w#w™~# : w € {a,b}*}. As L is deterministic context-
free, it is also a Church-Rosser language, and pow(L) = {(w#w~#)" : w € {a,b}*,i € N}.
Assume, pow(L) is in CRL. Then also

L' =pow(L)N{a,b}" #{a,b}"-# {a,b}" #{a,b}" - # = {wH#w™ #w#w™# : w € {a,b}"}

is a Church-Rosser language, as CRL is closed under intersection with regular sets, see Propo-
sition 3.3.2 (a). However, from Lemma 2.2.6 it follows that L’ ¢ GCSL, as L' = L copy_pad(ysr ,u0)
with ¢ (w) = ¥a(w) = #w™# for each w € {0,1}*. Thus, pow(L) ¢ CRL.

It follows immediately that pow(L) is not in GCSL, either, as GCSL is also closed under
intersection with regular sets [BL92]. O

3.4 Typical Example Languages

In this section we look at some typical example languages to illustrate the power and the
limits of the class CRL. Such example languages can serve to separate CRL quickly from other
language classes.

We have seen in Example 3.1.2 that the language Lezpo = {a®" : n > 1} is a Church-Rosser
language. The language Lcoynt = {a0"¢™ : n > 1} has been shown to be growing context-
sensitive [Bun96], see Section 2.2, and we will see that in fact it is also a Church-Rosser
language. Moreover, we can compare the length of arbitrarily many blocks.

Example 3.4.1. Let ay,as,...,ay be symbols with a; # a;y+1 fori € {1,...,m — 1}. Then
the language

n.n n .
Leountm = {‘11@2 RN KA P 0}

is a Church-Rosser language. We present a string-rewriting system that recognizes Leoyntm -
Basically, each block length is divided by 2 and the parities of all block lengths are compared.
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Let ¥ = {a1,a2,...,an}, I =X U{¢ S, FYYU{[F;, 0, [F,1] :i€{2,...,m—1}}, t1 = ¢,
to = $, and R consists of the following rules fori € {2,...,m} and . € {0,1}:

¢a1a1a1a1 — ¢a1a1F,

FCL1(L1 — alF, FGQCLQ — az[FQ,O] s Fa1a2a2 — CLQ[FQ, 1] s
[Fi, laia; — ai[Fi, ], [Fi,0lait1aiv1 — aiv1[Fig1, 0], [F, 1]aiai10i01 — aip1[Figr, 1],
[Fmab]amam Ham[FmaLL [Fm70]$ - $7 [Fmal}am$ - $7

¢akak .. .ak$ Y, fork=0,1,2,3.

ngne  mg * AT B o P :
Then ¢ai'a3®...apm$—pgtagr *-az?- ...am> 'S if and only if ny mod 2 = ny mod 2 =
<o =y, mod 2. It follows that ¢w$ 25RrY <= w € Leountm.

As R is length-reducing and orthogonal (there are no overlaps between left-hand sides of
rules), R is confluent, and thus we see Leoyntm € CRL.

Of course, we are not limited to the equality of all blocks.

Example 3.4.2. We consider the language L = {a”bmcl :n,m,l >0,n=mVm =1} which
is in CFL~ DCFL. A deterministic shrinking TPDA M that accepts the language L can easily
be constructed. M proceeds as follows.

While detecting the parity of a block length, M works like the string-rewriting system
in Example 3.4.1. While sweeping to the right, two original symbols are replaced by one
copy of that symbol, and while sweeping back to the left, it replaces the copy by its original.
Appropriate weights can be chosen easily, e.q. 2 for the original symbols and 3 for the copies.

The parities of the block lengths can then easily be compared. As long as all three parities
are equal, M continues to detect the parity of every block length, thus proceeding like the
string-rewriting system in Example 3.4.1. In case all block lengths of the input are equal, M
will encounter a tape contents where all block lengths are 1, and accept. In case one block
length differs, M will encounter a tape contents where the parity of one block length differs,
and delete this block. Then it continues to compare the other two block lengths. In case they
are equal, M accepts, in the other case, M rejects.

So M performs the following algorithm.

1. M detects the parity of each of the three block lengths. In the case all block lengths are
1, M accepts.

2. If all block lengths have the same parity, M continues with step (1).

If the length of the a-block has the same parity as the length of the b-block, but the parity
of the c-block is different, M repeatedly compares the parity in the first two blocks and
deletes the third.

If the length of the b-block has the same parity as the length of the c-block, but the parity
of the a-block is different, M repeatedly compares the parity in the last two blocks and
deletes the first.

If none of the cases above applies, that is, the parity of the b-block is different from the
parity of the a- and the c-block, M rejects.

3. If in Step (2) M found the lengths of the first two or the last two blocks to be equal, M
accepts.

We can also recognize other linear dependencies between block lengths.
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Example 3.4.3. With the construction principles from Examples 3.4.1 and 3.4.2 also the
following languages can be shown to be Church-Rosser languages:

{a3nb5nc4n in > 0}’
{a“mbc¥ : c,dyn,m,l >0,(m=nVn=IVc=d)},
similar languages with more blocks .

We can also compare the lengths of blocks to the number of blocks.

Example 3.4.4. Lsguarciength = {(a"b)" : n > 0} is a Church-Rosser language. We build a
deterministic shrinking TPDA that proceeds as follows.

1. Detect the parity of the length of each a-block. Continue with the next block only if the
parities have been equal so far.
While doing so, mark every second unmarked block by marking every symbol in it.

2. When the parity of the length of the last block has been detected, also the parity of the
number of blocks is known. Continue if and only if it is equal to the parity of block
lengths.

3. Mowve the tape contents back to the right-hand pushdown store. If the number of blocks
was odd, mark the rightmost unmarked block (the “remainder”) while doing so.

4. Continue with step (1), if the block-length is greater than 1.

5. If the block length is 1, delete the tape contents and verify that the number of unmarked
blocks is also 1. If so, accept.

To move back to the left-hand end of the tape contents again copies of each symbol are used,
stmilar to Example 3.4.2.

With such a strategy, of course, also other dependencies between block lengths and number
of blocks can be detected.

Example 3.4.5. The languages

{(a®"b)>™ : n > 0},
{(amb" e/ e, fonm, 120, (m=nVn=1Ve=f)},
{(@"0)™ :m >n >0}

all are Church-Rosser languages.

The third language can be recognized using the following method. During the comparison
of block lengths the binary representation of n and m is calculated internally. Let bin(n) =
i1...1, and bin(m) = j1...7. To decide whether m > n it is sufficient to check whether > k
or, if | =k, whether there exists a v € {1,...1} such that (j, > iy, Aj1...Ju—1 =11 ...0p—1).
This can be done easily while calculating the binary representation of n and m. So it can be
checked at the same time whether all block lengths are the same and whether the number of
blocks is greater than its length.

McNaughton and his coauthors showed that under certain conditions Lindenmayer Sys-
tems generate Church-Rosser languages.
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Lemma 3.4.6. [MNOSS8| Let S = (X, P,u) be an OL-system. If for each (I — r) € P it holds
that |r| > 2 and for {r1,...,rn} = range(P) holds r; is not a prefix of r; or of u for any
i,7,1 # j, then L(S) is a Church-Rosser language.

Trivially this result can be extended by replacing the word “prefix” by “suffix”. Due to
the characterization of CRL via weight-reducing systems (Theorem 3.2.4) this result can be
extended further.

Lemma 3.4.7. Let S = (3, P,u) be an OL-system. If for each (I — r) € P holds |r| > 1 and
for {ri,...,r} = range(P) holds r; is not a prefix of r; or of u for any i,j,1 # j, and if
there exists a weight function ¢: ¥ — Ny such that ¢(l) < ¢(r) for each (I — r) € P, then
L(S) is a Church-Rosser language.

Proof. Let S = (X, P,u) be an OL-system that fulfills the conditions of the lemma. Define a
string-rewriting system as follows. I' = X U {¢,$, F, Y}, t1 = ¢, t2 = $, and R consists of the
following rules:

¢r — ¢lF, Fr—IF, forr € range(P),

F$—3%, d¢us—Y.

As 7r; is not a prefix of r; or of u for any 4,j,7 # j, R is an orthogonal system and thus

confluent. Let ¢: ¥ — Ny be a weight function such that ¢(I) < ¢(r) for each (I — r) € P.
Define a new weight function ¢: I' — N, by

P(x)=2-p(x), forzel, F)=1, ¥(¢)=v()=pI)=1.

Then R is weight-reducing with respect to ¢. By the definition of R it follows that for each
w e ¥, ¢w$ — Y if and only if w € L(S). Thus, by Theorem 3.2.4 L is a Church-Rosser
language. O

We illustrate this lemma with an example.

Example 3.4.8. We define Lriponacei = {h'(a) : i > 1}, where h: {a,b}* — {a,b}* is defined
by h(a) = b, h(b) = ab. The sequence of word lengths is the Fibonacci sequence. L piponacci
is generated by the OL-system ({a,b},{a — b,b — ab},a). Lpiponace; s Tecognized by the
following string-rewriting system. Define ¥ = {a,b}, T =X U{¢,$, F,Y}, t1 = ¢, to = $, and
R consists of the following rules:

¢b— ¢aF', Fb—aF, F$—$,
¢ab — ¢bF, Fab— bF, ¢a$—Y.

Then R is confluent, as it is an orthogonal system. Define a weight function ¢: I'* — N by

la) =2, ¢(¢)=1,
eb)=4, %) =1,
p(F)=1, oY)=1.

Then R is weight-reducing with respect to . As R is built like the system in the proof of
Lemma 8.4.7, it follows that R recognizes the language L piponace-

We now look at one of the most typical examples of a context-sensitive language that is
not in CRL.
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Example 3.4.9. The Language Leopy = {ww : w € {a,b}*} is not a Church-Rosser language.
In fact it is not even a growing context-sensitive language. This follows from CRL C GCSL C
LOGCFL and Leopy ¢ LOGCFL [Lau88/.

It is known that the Gladkij-language Lgiaarij = {w#Hw™~#w : w € {a,b}} is not in GCSL
either [DW86]. To the contrary its complement LeoGiadrij = {u#v™#w : u# v Vv # w}is a
growing context-sensitive language, while it is not Church-Rosser [BO98]. At this time there
are only few languages known to be in GCSL~ CRL. Another language is Lpaiindrome = {ww"™ :
w € {a,b}*}, which was conjectured not to be in CRL from the very first [MNOS88] and which
was shown recently [JLO2]. We conjecture that Ladqapowers = {a®" 3" : n > 0}, which easily
can be shown to be growing context-sensitive, also is not a Church-Rosser language. Further
examples remain to be found.

3.5 Concluding Remarks

We have shown that the three language classes CRDL and CRL of [MNOS88] and GCRL of
[BO98] coincide. We also have seen that CRL is characterized by the deterministic shrinking
TPDA and also by the deterministic length-reducing TPDA. So this class of languages can be
considered as the class of ‘deterministic growing context-sensitive languages’. Further by the
characterization of CRL through the deterministic length-reducing TPDA we have obtained
a connectivity result for CRL. Next we have characterized CRL with both the deterministic
RRWW-automata and the deterministic RWW-automata.

Based on these characterizations we have obtained some closure properties and some
non-closure properties for the class of Church-Rosser languages. It remains the question of
whether CRL is closed under the shuffle operation. We recall that the shuffle uw v of two
words u, v € ¥* is the set of words defined by e wu =wvwwe = {u} and uy ... up Wy . ..V, =
up(ug .. U W1 ... Uy) Uvr(ug ... Uy wvy...vy,). This operation is extended to languages
Li,Ls by Ly Ly = leeLl,wgeLg wy wws (see also Section 5.3.2).

Then we have seen some typical example languages inside and outside the language class
CRL. Such example languages may separate CRL quickly from other language classes.

e ETOL is incomparable to CRL under set inclusion.
The class of languages generated by extended table OL-systems ETOL contains the
language Lcopy, whereas the language {(a"b)™ : m > n > 0} is not an ETOL-language
[RS80], Cor. V.2.2, p.248. Leopy is not Church-Rosser (see Example 3.4.9), whereas
{(a"b)™ : m > n > 0} is (Example 3.4.5). The exact relation between the class of
languages generated by OL-Systems, especially the structure of the intersection of both
language classes, remains unsettled.

e The class of indexed languages [Aho68] is incomparable to CRL under set inclusion.
On the one hand, Lcopy is an indexed language [Aho68], on the other, Lsguareiength is n0t
[Hay73, Gil96]. We have seen in Example 3.4.4 that the latter is indeed a Church-Rosser

language.

Finally, based on the fact that the classes CFL and CRL are incomparable under set
inclusion, we obtain the following undecidability result from McNaughton et al [MNOS8S].
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Proposition 3.5.1.

(a) The emptiness and the finiteness problems for Church-Rosser languages are undecidable
i general.

(b) It is undecidable in general whether a given context-free language is a Church-Rosser
language.

(c) It is undecidable in general whether a given Church-Rosser language is context-free.

Further, we conjecture that it is not decidable for a Church-Rosser language L whether
pow(L) is a Church-Rosser language.






Chapter 4

Growing Context-Sensitive
Languages

We have seen the definition, some basic properties, and some characterizations of the class of
growing context-sensitive langugages in Section 2.2.

Long before the class of growing context-sensitive grammars was defined [DW86], and
the corresponding language class was shown to be an abstract family of languages [BL92], a
seemingly much more rigorous restriction of context-sensitive grammars had been introduced
by Rohit Parikh in 1966, namely the acyclic context-sensitive grammars [Par66]. Although it
is counterintuitive, it turns out that these two classes of grammars actually describe the same
language class. As presented in [Woi0O1b] Jens Woinowski showed a normal form for string
rewriting systems that describe Church-Rosser languages (for the detailed construction see
[WoiOla]). In this chapter we adapt his construction for growing context-sensitive grammars,
and so we obtain the named equivalence of acyclic and growing context-sensitive grammars.

The characterization results for CRL (see Chapter 3) also lead to new characterizations of
the class GCSL. As length-reducing and weight-reducing two-pushdown automata are equiv-
alent (Section 3.2.1), GCSL is characterized also by the nondeterministic length-reducing
TPDA (see Theorem 3.2.5(b)). And the simulation of a deterministic RRWW-automaton by
a deterministic weight-reducing TPDA (see the proof of Theorem 3.2.10) can be adapted for
the nondeterministic versions of these models provided the RRWW-automaton is in addition
weakly monotonous. We will give these new characterization results for GCSL in Section 4.3.

The characterization of GCSL by acyclic grammars also yields normal forms for the char-
acterizing automaton models.

4.1 Definition of Acyclic Context-Sensitive Grammars

Acyclic context-sensitive grammars have been defined by Erik Aarts [Aar92]. This class of
grammars equals the class of weight-increasing context-sensitive grammars [Bun96] and the
class of type 14-grammars as defined by Rohit Parikh [Par66].

Definition 4.1.1. A context-free grammar is called acyclic if there exists no nonterminal A
such that A :>g A, that is, if it has no cycle of chain rules. For a context-sensitive grammar
G = (N,T,S,P) the context-free kernel G' = (N, T, S, P’) is defined by P’ = {(A — f) |
dz,y e (NUT)*: (zAy — zBy) € P}.
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Definition 4.1.2. [Aar92] A contest-sensitive grammar G = (N, T, S, P) is acyclic, if its
context-free kernel is acyclic. We denote the set of acyclic context-sensitive grammars by
ACSG and the corresponding set of languages by ACSL.

Lemma 4.1.3. [Bun96] ACSG is the set of weight-increasing context-sensitive grammars.

Definition 4.1.4. [Par66] A context-sensitive grammar G = (N, T, S, P) is said to be of type
14, if there exists a function f: N — N such that if (xAz — zyz) € P withy € N, then

fly) < f(A).
Lemma 4.1.5. ACSG is the set of type 1 4-grammars.

Proof. The proof follows the one of Lemma 4.1.3 in [Bun96]. Let G = (N, T, S, P) be an
ACSG, let G’ = (N, T, S, P') be its context-free kernel. Define a weight function f : N — N
as follows:

f(A) = max {0, max{i | 3X1,...,X; : X1 = Aand (X; —» X;;q) € P'forje{l,...,i—1}} .

As G’ is acyclic, it follows that f fulfills the condition in Definition 4.1.4, and thus G is a
type 14-grammar.

Now let G = (N, T, S, P) be a type 14-grammar, let f be a function fulfilling the condition
in Definition 4.1.4. Let G’ = (N, T, S, P’) be the context-free kernel of G. Then for each chain
rule (A — B) € P’ it holds that f(A) > f(B). Thus G’ contains no cycle of chain rules,
which implies that G is acyclic. O

Gerhard Buntrock introduces the class of growing acyclic context-sensitive grammars,
which is equivalent to the class of 1p-grammars as defined by Rohit Parikh [Par66]. The
latter is equal to the class of context grammars with normal kernel as defined by Franz-Josef
Brandenburg [Bra74].

Definition 4.1.6. [Bun96] A context-sensitive grammar is growing acyclic if it is length-
increasing, that is, |a| < |B| holds for all productions (a« — () € P satisfying a # S.
By GACSG we denote this class of grammars, and by GACSL we refer to the corresponding
language class.

Definition 4.1.7. [Par66] A contezt-sensitive grammar G = (N, T, S, P) is said to be of type
1p, if there are no rules of the form xAz — xBz with A,B € N in P.

Definition 4.1.8. [Bra74] A context-sensitive grammar is a context grammar with normal
kernel if its context-free kernel is in e-free Chomsky normal form. Here, a context-free gram-
mar G = (N, T,S, P) is in e-free Chomsky normal form, if each rule in P is of one of the
following forms: A — BC, A — a for A,B,C € N,acT.

It is immediately seen that the Definitions 4.1.7 and 4.1.8 are equivalent.

Further such a grammar can be transformed easily into a growing acyclic one. On the other
hand for each growing acyclic context-sensitive grammar the kernel does not contain chain
rules. So we see that an equivalent context grammar with normal kernel can be constructed
(see [Bun96]). Franz-Josef Brandenburg [Bra74] and Rohit Parikh [Par66] show that GACSL
contains CFL and is strictly contained in CSL. Gerhard Buntrock [Bun96] and Rohit Parikh
[Par66] give examples for languages in GACSL ~. CFL.
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So the following chain of inclusions holds:
CFL € GACSL C ACSL € GCSL € CSL.

These inclusions obviously raise the question of whether GACSL is strictly contained in
ACSL, and whether ACSL is strictly contained in GCSL. Here we will answer the latter question
in the negative by showing that for each weight-increasing grammar there exists an equivalent
grammar that is weight-increasing and context-sensitive at the same time. It follows that

ACSL and GCSL coincide.

4.2 Characterization by Acyclic Context-Sensitive Grammars

In this section we construct a weight-increasing context-sensitive grammar from an arbitrary
strictly monotone one. Here, we combine two techniques: The well-known construction of
a context-sensitive grammar from a monotone one given by Noam Chomsky [Cho59], and a
new technique given by Jens Woinowski in [Woi0la, Woi0O1b] called weight spreading. Here,
the sentential form is compressed into composition symbols. The weight of these composition
symbols is defined via the length of their contents. In the strictly monotone grammar, each
derivation step increases the length of the sentential form. So the weight of the composition
symbols touched in the simulation increases by a certain amount p. As the compression
symbols touched are not changed all at once but one after another, we divide p into portions
introducing dummy symbols that are inserted into the sentential form. Each compression
symbol receives one of the weight portions when changed (encoded in the length of its contents,
which now also contains dummy symbols), and thus we spread the weight p over the different
composition symbols involved in the simulation of this derivation step.

As by Lemma 2.2.9 for any weight-increasing grammar a strictly monotone grammar can
be constructed, our construction implies that the weight-increasing grammars and the weight-
increasing context-sensitive grammars define the same language class, that is, GCSL = ACSL.

Now we look at the construction of a weight-increasing context-sensitive grammar from a
strictly monotone one in detail. Let G = (N, T, S, P) be a strictly monotone grammar. We
define a set

Wy =#=1 - (NUT)-#)" - (NUT) - #=1,

where # is a dummy symbol not in N UT.
The set of composition symbols is now defined as follows:

Ny ={Co |weWyn2u+1<|w <4p+1},

where p = max {|r| : (¢ — r) € P}. That is, for each composition symbol (,, w stores at
least u letters and we can always store up to 2u letters in w independent of the position
of dummy symbols. We define the natural morphism ~: Wy — (N UT)" that deletes the
dummy symbols # from a word w € Wx. We also define a set of blocking symbols that will
carry the complete information of the derivation step simulated.

t = (w), w], wh,wh, (¢ — r)),
Ny =< ¢ | where w’l,w’l’,wé,w/gSW#, [wi| + |w| < 4p+ 1, |wh| + |wh| < 4p+1,
(¢ = r)e P, and wjw) =4
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Define the set of nonterminals N’ by
N/:N1U{S/}UNt,

where S’ is another new symbol. In the simulation, that is, in the application of a rule from
P, at most 2 composition symbols can be touched. P’ contains the following rules:

Start rules:

S" — v for v e L(GQ), |v| < pu,
S" — Cy for p+1< |0 <2u,w € (NUT)-#)* and S —% @

Simulation rules: If only one composition symbol is touched, that is, w = wywows, ws = £
for some (¢ — r) € P, w; € #SV - (NUT)-#)", wo € (NUT)-#)F, wsy €
(NUT)-#)* - (NUT)-#=tU{e}, and if wy € (NUT) - #)" such that wy = r, then

we have two cases:

1.1 If the resulting content string fits into one composition symbol, that is, |wjwiws| <
4p + 1:

(Cwl’IUng - Cw1w4w3) epP.
1.2 If the resulting content string does not fit into one composition symbol, that is,

\w1w4w3] >4u 4+ 1:
(Curwaws — €1 Cz) € P,

where |z1| =2u 4+ k, |22] = 2u+ 1, k := |wiwgws| — 4p — 1, and 2129 = wwaws.

If two compression symbols are touched, that is, if w1 = wjw{, wy = whw}, w/'l’JQ =/
for some ({ — r) € P, w) € #SY(NUT) -4, wiwh € (NUT)-#)F, vl €
(NUT)-#)*-(NUT)-#=, then let t = (w), w], wh,wy, (¢ — r)). Here we distinguish
the following cases:

2.1 If the encoded left-hand side is split directly after an original symbol, that is, if
wy = 0 # .. Ly and why = #Lp 19 . . . L) #, then the following rule belongs to P":

C’LU1 sz - C’UJ1 Ct .

The encoded right-hand side of the rule is split as follows: r1# ... rp# is put into
the first compression symbol and rg11# ... 7, # is put into the second.

2.1.1 If the first part of the encoded right-hand side fits into one compression
symbol, that is, if |wjri#...rp#| < 4u + 1, then the following rule also
belongs to P’:

Cw1<t - Cw’lrl#..‘rk#g .

2.1.2 On the other hand, if the first part of the encoded right-hand side does not
fit into one compression symbol, that is, if |wiri# ... rk#| > 4u+1, then the
following rule belongs to P’, where w} = wj jw} 5 such that |w} ;| = 2u + 1:

Cwlgt - Cw’Lle’LQH#...Tk#Ct .
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In each of these two cases there are two subcases to consider. We name the
first part of the right-hand side of the rule above by z, that is, z = Cup#..r#
considering Case 2.1.1, and z = erl Iszl ST considering Case 2.1.2. Now,
the respective subcases can be denoted as follows (for i =1,2):
2.1.i.1 If the second part of the encoded right-hand side fits into one compression
symbol, that is, if |rg 17 .. .r‘r|#w’2’\ < 4pu+1, then the following rule belongs
to P’
ZCt - ZCrk+1#...7"‘,«|#w’2' .
2.1.i.2 On the other hand, if the second part of the encoded right-hand side does
not fit into one compression symbol, that is, if |rg 17 .. .T‘T|#wé’| > 4dp +
1, then the following rule belongs to P’, where wy = wy w4 such that
[Tk 1FE - T AWy 4| = 20+ 1

ZCt - ZC’I‘k_'_l#...’I”‘H#U)g’lCwlzl’Q N

2.2 If the encoded left-hand side is split directly in front of an original symbol, that
is, if wy = O1# ... 0 # and why = L 1# . .. £ #, then the following rule belongs
to P’
Cur Gy — Cun Gt -
Here, the encoded right-hand side of the rule is split as follows: r1# ... rp#Friy is
put into the first compression symbol and #7 2% ... 7|, # is put into the second.

2.2.1 If the first part of the encoded right-hand side fits into one compression
symbol, that is, if |wiri#...rg11] < 4p + 1, then the following rule also
belongs to P’:

Cur Gt = Culry .y 1 Gt -

2.2.2 On the other hand, if the first part of the encoded right-hand side does not
fit into one compression symbol, that is, if |wjri1# ... 71| > 4pu+1, then the
following rule belongs to P’, where w} = wj jw} 5 such that |w} | = 2u + 1:

Cwlct - Cw’lylé.w’lgrl#...rwrlgt .

Again, in each of these two cases there are two subcases to consider. We name the
first part of the right-hand side of the rule above by z, that is, 2 = Cu/r4. iy
considering Case 2.2.1, and z = C’wi 1Cw/1 1A Tt considering Case 2.2.2. Now,
the respective subcases can be denoted as follows (for i = 1,2):
2.2.i.1 If the second part of the encoded right-hand side fits into one compression
symbol, that is, if [#rpio# ... rpF#wy| < 4p 4 1, then the following rule
belongs to P’:
ZCt - ZC#Tk+2#...r|T‘#w’2’ .
2.2.1.2 On the other hand, if the second part of the encoded right-hand side does
not fit into one compression symbol, that is, if |#rgio# ... r‘r|#w’2’\ > 4p +
1, then the following rule belongs to P', where wy = wy w4 such that

[#rk2df - Tp FWG 4| = 20+ 1

th - ZC#T]C+2#...T|T‘#’LU/2/71 ngz *
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Ending rules:
Cw—aj...anm for {, € Ny withw =ay...a,, € T*.

Define G’ = (N', T, S’, P").
It is easily seen that G’ is context-sensitive.
By an examination of the rules we see that L(G’) = L(G), as G is simulated step by step in
the compression symbols and ¢ uniquely determines the rule applied and the position where
it is applied.

We define a weight function as follows:

p(8") =1,
o(Cw) =2 |w| for {, € Ny,
() = 2 lwyws| + 1 for t = (wy,wy, wh,wy, (€ — 1)),
la) = foraeT.

It follows that |w| < [v] implies ¢(Cuw) +1 < ©(Cu), P(Cuiws) = #(Cun) + P(Cu,), and
P(Cuguwy) < P(Cluf awtf whawtf (6—ry))- From this it can be seen that G’ is weight-increasing and
thus acyclic as follows.

Start rules: For the first rule we have p(S’) =1 < 6 < p(v) for v # €, and for the second
it follows from 2+ (2u + 2) < p(Cw) < 2 (4p) that 1 < o(Cw)-

Simulation rules: touching only one symbol:
1.1 From |I| < |r| it follows that |ws| < |ws| and thus ¢(Cuwwews) < P(Cwrwaws)-

1.2 Similarly, from [I| < |r| it follows that |wa| < |ws| and thus |wiwows| < |21 22],
and thus @(Cuiwaws) < ©(C21Czo)-

Simulation rules that touch two symbols:

2.1 Here we have ¢(Cy,) = 2 - |wa] < 2 - |wa] +1 = ¢(¢) and thus this rule is
weight-increasing.

2.1.1 Here,
o(Cuw) = 2w
= 2-Jwy|+ 2 [h#ls. .. #]
= 2-|Jwj|+4-k—2
and
@(Cw’ln#...rk#) = 2 ’w/l’ +2- ’Tl#TQ <o #T’k#‘
= 2-|Jwj|+4-k

and thus this rule is weight-increasing.
2.1.2 In this case,
P(Gun) =2 lwi| +4-k —2
and
PGt Gt yratpeomat) = 2 Jwi| +4 -k,

similar to the case above.
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In each of these two cases there are two subcases to consider.

2.1.i.1 Here, .
e(G) = 2-[whwy| +1
= 2 [#lepr- - Hly# 2 Jwy| +1
= 4 flpgr. Ayl 2wy +3
and _ 9 "
W(Crk+1#...r‘r‘#w’2’> - : ‘Tk‘i’l M #T|T‘#’ + : "w2
= A g 2wy
as |l] <|rl.

2.1.i.2 In this case,

and "
(P(CrkJrl#..Arm#w’Q’ylCwé’z) = 4 ’rk+1 cee r\r” +2- ‘w2’

4]lk+1lm]+2\wé’|+4,

v

similar to the case above.
2.2 Again, ©(Cuy) = 2 - [w2| < 2 wa| +1 = ©({).

2.2.1 Here,
P(Cuy) = 2w
= 2-|wi|+2- [h#ly ... #1H#]
= 2-|wy|+4-k
and ,
@(Cw’lrl#...rk#rk_'.l) = 2 |w1| +2- |T1#T2 cee #Tk#rk-&-ﬂ

= 2-|wi|+4-k+2

and thus this rule is weight-increasing.
2.2.2 In this case,
@(Cuy) =2 [wi| +4-k
and
PGy Gt gt ratirags) = 27 [Wh + 4k +2,
similar to the case above.

Again, in each of these two cases there are two subcases to consider.

2.2.i.1 Here,
(&) = 2-|whwy|+1
= 4 lpyr. Ayl +2- wg| +1
and

O(Crpatertiuly) = 2¢ | #rhpa. . Frp#l +2- |wh
= 4 |rpgr.. T+ 2 Jwy| -2
> 4 flggr o gyl 2 Jwy] 42

as || < |r|.
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2.2.i.2 In this case,
O(C) =4 [lpgr - Ayl +2- Jwy| +1

and
@(C#rh+2#...r|r|#w’2”1 Cwé’yz) = 4 : ’Tk‘+1 A T‘T‘H + 2 ' ‘wé/’ - 2

4 flegr - gyl + 2 Jwg] + 2,

Vv

similar to the case above.

Ending rules: For the ending rules it holds that |w|x < m+1. It follows that ¢((y) = 2-
lw| = 2-(Jw|g+m) < 4m+2. Asm > p > 2, it holds that p(Cw) < 6-m = (a1 ...am).

So G’ indeed is weight-increasing and thus by Lemma 4.1.3 G’ is an acyclic context-
sensitive grammar. So, for each growing context-sensitive grammar there exists an equivalent
acyclic context-sensitive grammar, which by the trivial inclusion ACSL C GCSL can be stated
as follows.

Theorem 4.2.1. GCSL = ACSL.

4.3 Characterization by Weakly Monotonous
R(R)WW-Automata

While the class CRL of Church-Rosser languages is characterized by the deterministic RWW-
and RRWW-automata, we will see in Section 7.2.2 that the nondeterministic RWW-automata
are strictly more expressive than the language class GCSL. In Definition 2.4.5 we presented a
new restriction for RWW- and RRWW-automata that will lead to a characterization of GCSL
in terms of restarting automata. We have already seen in Section 2.4 that for deterministic
R(R)WW:-automata the weak monotonicity conditions are always satisfied. Hence, it is only
for the various nondeterministic restarting automata that these additional restrictions can
(and will) make a difference.

Lemma 4.3.1. GCSL C L(wmon-RWW) .

Proof. The class GCSL is characterized by the length-reducing TPDA (see Theorem 3.2.5).
Hence, for L € GCSL, there exists a length-reducing TPDA A such that L = L(A). This TPDA
can be simulated by an RWW-automaton M that encodes a configuration Luqv Ll of A by the
tape contents ¢iqu$, where 4 is a copy of u consisting of marked symbols. The automaton M
simply moves its tape-window from left to right across its tape until it discovers the left-hand
side of a transition of A, which it then simulates by a rewrite step. As this rewrite step
includes the unique state symbol of A contained on the tape, we see that M is indeed weakly
monotonous. O

Lemma 4.3.2. £L(wmon-RRWW) C GCSL.

Proof. In Theorem 3.2.10 it is shown how to simulate a deterministic RRWW-automaton
by an sDTPDA. From that simulation we see that a weakly monotonous computation of an
RRWW-automaton M can be simulated by an sTPDA. Just notice the following two facts:

(i) While performing MVR steps the RRWW-automaton behaves like a finite-state acceptor.
Hence, this first part of each cycle can be simulated deterministically. Nondeterminism
comes in as soon as a rewrite step is enabled.
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(ii) In the proof of Theorem 3.2.10, with each string w € (I'\x{¢, $})*, three subsets Q4 (w),
Q- (w), and Q,s(w) are associated. For the deterministic case these sets are necessarily
disjoint for each string w. If M is nondeterministic, then this is not true anymore.
However, if Q4 (w) is nonempty, then M will accept, and so the simulation simply
accepts, and if Q1 (w) is empty, but Q,s(w) is nonempty, then we must simulate a
restart step.

Thus, as M is weakly monotonous, the sTPDA accepts the language L(M). O

These two lemmata yield the following characterization.
Theorem 4.3.3. GCSL = L(wmon-RWW) = L(wmon-RRWW) .

Instead of requiring that the R(R)WW-automaton considered is weakly monotonous, we
can consider left-most computations of R(R)WW-automata, see Definition 2.4.6.

It is easily seen that a left-most computation is weakly monotonous. On the other hand,
the simulation of a length-reducing TPDA by an RWW-automaton involves only left-most
computations. Thus, we also have the following result.

Corollary 4.3.4. GCSL = L(Im-RWW) = L(Im-RRWW) .

4.4 Concluding Remarks

Although intuitively it seems not to be the case, we have seen that acyclic context-sensitive
grammars and strictly monotone grammars describe the same language class, namely the
class of growing context-sensitive languages GCSL.

As GCSL is recognized by a certain machine model, the shrinking two-pushdown automa-
ton (see Section 2.3, Definition 2.3.1), this characterization will lead to additional restrictions
for this machine model. The similar construction for the class of Church-Rosser languages
CRL in [Woi01b], where a normal form for length-reducing string rewriting systems describing
Church-Rosser languages is obtained, implies similar restrictions also for deterministic two-
pushdown automata. In fact, by rebuilding the construction a normal form for deterministic
as well as for nondeterministic shrinking two-pushdown automata should be obtained.

It remains as an open question whether length-increasing context-sensitive grammars also
characterize GCSL, that is, whether GACSL and GCSL coincide. We conjecture that this is
not the case.

We have also seen that GCSL is characterized by weakly monotonous RRWW-automata,
while we will see in Chapter 7 that it is strictly included in £(RWW). Thus, in the nondeter-
ministic case being weakly monotonous is an effective restriction, while in the deterministic
case the corresponding automaton classes coincide trivially.






Chapter 5

Church-Rosser Congruential
Languages

The class of Church-Rosser congruential languages (CRCL) was defined in the same paper
as the class of Church-Rosser languages CRL [MNOS88]. Here, also finite, length-reducing,
and confluent string-rewriting systems are used (see Section 5.1 for the definition). CRCL is
a proper subclass of CRL. CRCL can be considered as the “pure version” of CRL, as it does
not admit nonterminal symbols. As already mentioned, the membership problem for these
languages is solvable in linear time. In addition, it was shown in [MNOS88| that CRCL and
DCFL are incomparable under set inclusion and that CRCL contains some languages that are
not even context-free.

However it is not known whether the class of regular languages is contained in CRCL.

We give a partial answer to this question showing that at least regular languages with
polynomial density are Church-Rosser congruential. From [Yu97] we know that the regular
languages with polynomial density are exactly those that have only non-nested and non-
branching loops in their presentation (by a regular expression or by a finite automaton). This
characterization is exploited in our proof.

CRCL also contains regular languages of exponential density like X* or the set of all
strings over {a,b} of even length and some others with different internal structures. But it
still remains open whether CRCL contains all regular languages.

5.1 Definition

Definition 5.1.1. A language L C ¥* is a Church-Rosser congruential language if there
exist a finite, length-reducing, and confluent string-rewriting system R on X and finitely many
n

strings wiy, ... ,wy € IRR(R) such that L = | [wi]Rr-

=1

In other words, a language L C ¥* is a Church-Rosser congruential language if it can be
expressed as the union of finitely many congruence classes of a finite, length-reducing, and
confluent string-rewriting system. By CRCL we denote the class of Church-Rosser congruential
languages. CRCL is obviously contained in CRL, and already CRCL contains non-regular
languages. For example, if R = {aabb — ab} and L; = [ab|g, then we see that L; € CRCL is
the non-regular language L; = {a™b" | n > 1}. Further, CRL contains DCFL [MNO&88], the
class of deterministic context-free languages, while CRCL is incomparable to DCFL, as DCFL
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contains the language Lo = L; U {a}*, which is not even congruential, while CRCL contains
some languages that are not even context-free, as shown by the following example.

Example 5.1.2. [MNOS8S8] Consider the non-context-free language Legpo = {a®” | n > 0},
(see Examples 2.2.2, 3.1.2) and let R = {¢acaa — ¢aaF,Faa — aF,F$ — $,¢aa$ —
Y,¢a$ — Y}. Then R is length-reducing and confluent, and for all n > 0, a™ € Legpo iff
¢a"$ —5 Y holds. Thus, Lezpo € CRL.

Now let ¥ = {a, F, ¢,3,Y}, and let Lyizedeapo = [Y]r- Then Lyizedezpo € CRCL. On the
other hand, Lyizedexpo & CFL, as ¢ Leapo - $ = Liizedeapo N ¢ - a* -8, and CFL is closed under
intersection with reqular sets and left and right quotient with a single string (Proposition

Lemma 5.1.3. CRCL C L(det-RW).

Proof. For L € CRCL there exist a string-rewriting system R that is length-reducing and
confluent, and a finite set of irreducible strings {wi,... ,wn} such that L = U~ [wi]g.
Using a tape-window of width & = max({|wi|,..., |wn|} U{|(| | (¢ — r) € R}) + 2, a
deterministic RW-automaton M can be constructed that, given a string w € ¥* as input,
computes a left-most reduction w —7% w, where w is the irreducible descendant of w. M
accepts if and only if @ € {wy,... ,wy}. Since R is confluent, this is the case if and only if
w € L. ]

Thus CRCL can be added to our inclusion graph of different languages defined by restart-
ing automata as given in Figure 5.1, where a solid line (without question mark) indicates
that the corresponding inclusion holds and is proper, a question mark close to a solid line
indicates that the corresponding inclusion holds and it is an open problem whether it is
proper, a question mark close to a dashed line indicates that it is an open problem whether
the corresponding inclusion holds, a dotted line (without question mark) indicates that the
corresponding inclusion holds and the question whether it is proper will be addressed in Sec-
tion 7.2, and a question mark close to a dotted line indicates that the question whether the
corresponding inclusion holds will be addressed in Section 7.2.

5.2 Regular Languages of Polynomial Density are Church-
Rosser Congruential

We will usually describe a regular language by a regular expression (see e.g. [Har78]).

The density function py, for a language L C ¥* tells us how many strings of a given length
are in the language. It is defined by pr(n) = |L N X"|. We say that L has a polynomial
density if pr,(n) € O(n¥) for some integer k > 0.

The lemma below characterizes regular languages of polynomial density by regular ex-
pressions of a specific form (see also [Yu97]).

Lemma 5.2.1. [SYZS92]: A regular language L C ¥* has polynomial density, if and only if
L can be denoted as .
L = U ui71’Uz1ui,2 . Uzmiuiymi+1 y
i=1
where n € N, m; € N fori € {1,...,n}, uj; € * fori e {1,....n}, j € {1,...,m; + 1},
vi; €XT forie{l,...,n}, je{1,...,m}.
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Figure 5.1: Relations among the language classes considered as of Section 5.1

We will refer to the strings v; ; as loop strings. As can be seen from this presentation for
L, there is a finite automaton that recognizes L and that has only non-nested loops and no
branches inside a loop.

We will see that regular languages of this form can also be expressed as the union of
finitely many congruence classes of a finite length-reducing string-rewriting system that is
confluent and thus that regular languages of polynomial density are contained in CRCL.

In order to do so, we have a closer look at the loop strings and their common multiples.

A nonempty string w is primitive if it is not a proper power, that is, if there is no string
uw € ¥* and no integer i > 2 such that w = u!. Every string w possesses a unique primitive
root z: it is the shortest string such that w = 2* for some i € N. Obviously, a nonempty
string is primitive if and only if it is equal to its primitive root.

We will refer to strings v = zy and u = yx as conjugates, denoted by v ~ u. Thus a
conjugate of a string is a cyclic permutation of it. We say that v is a proper conjugate of u if
it is a conjugate and v # w. If z is primitive, then so are its conjugates.
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We refer to the infinite string obtained by repeating a string w as w*. Thus u® is the
unique word for which u’ is a prefix for every i € N.

The following lemma can be shown easily by exploiting that, for z,y € ¥*, (xy)* =
z(yz)*y Ue and that - and U distribute on 3*.

Lemma 5.2.2. If L is a regular language of polynomial density, then L has a presentation of
the form described in Lemma 5.2.1 such that the primitive root of no loop string is a proper
conjugate of the primitive root of another loop string.

We assume L € REG to be given in this form throughout this section.

We recall some fundamental results on combinatorics on strings. The first can be found
in [MS97], whereas the second is known as the Periodicity Theorem by Fine and Wilf and
can be found in [CK97], [Har78].

Lemma 5.2.3. If xy = yx holds for some strings x,y € X*, then there is a string z € X*
and nonnegative integers p and q such that x = zP and y = z9.

Lemma 5.2.4. (Periodicity Theorem) [FW65]: Let x,y € ¥*. Then the strings © and y are
powers of the same string if and only if the strings ¥ and y* have a common prefix (or a
common suffiz) of length |z| + |y| — ged(|z|, |y])-

5.2.1 Definition of the String-Rewriting System

First we sort the loop strings according to their primitive roots.

Definition 5.2.5. Let L C X* be a regular language of polynomial density presented as given
in Lemma 5.2.2. Then a root separating partition of the set V' of all loop strings of L is a
collection of disjoint nonempty sets Vi,..., Vi, C X* for some k > 1 such that

e VIU---UVp, =V,

o for each j € {1,...,k} all elements of V; have a common primitive root, which we
denote by z; ,

o foreachi,j € {l,...,k}, i # j, no element of V; has a common root with any element
of Vj.
We refer to z1, ...,z as the roots of the partition.

From the last condition and Lemma 5.2.2 the following property of the roots of a partition
follows easily.

Lemma 5.2.6. Let L C X* be a reqular language of polynomial density presented as given in
Lemma 5.2.2, let V1, ..., Vi be a root separating partition of the set V' of all loop strings of L,
and let z1, ...,z be the roots of this partition. Then for each i,j € {1,...,k}, 1 # j, 2 o z;
(in particular z; # z;).

Next we choose certain multiples of the loop strings.

Definition 5.2.7. Let L C X* be a regular language of polynomial density presented as given
in Lemma 5.2.2, let Vi,..., Vi be a root separating partition of the set V' of all loop strings
of L, and let z1,...,z, be the roots of this partition. Further let z = max{|z1]|,..., |2k},
u = maz{|uig ... Uim1| i €{1,...,n}t}, and m = maz{m,...,myp}. Then the smart
multipliers for this partition are the smallest natural numbers g; for j € {1,...,k} such that
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e For each j € {1,...,k}, the string z?j is a multiple of each element of Vj .
e Foreachje{l,...,k}, gj >u+(2m+1)-z

The two conditions in this definition can be fulfilled easily, so the smart multipliers always
exist. Next we prove some properties of the smart multipliers that basically follow from the
second condition.

Lemma 5.2.8. Let L C X* be a regular language of polynomial density presented as given in
Lemma 5.2.2, let V1, ..., Vi be a root separating partition of the set V' of all loop strings of
L, let z1,...,z2 be the roots of this partition, and let gi,...,gr be the smart multipliers for
this partition. Then fori,j € {1,...,k}, the following statements hold:

(i) z? = zzly for some x,y € X* implies vy = ¢ and i = j, that is, no z{* is a proper

factor of any zA .

(i1) iL‘ZQ = zj y for i # j and some x,y € LT implies x = z z for some p > g; and

y=gz] f0r50m6q>gl and T,y € ¥*.

(iit) xz; 29i — z; giy for some x,y € T* implies v = 2% and y = §2¥ for some p € N and some

Z,9 € X%, where p = 2g; — 1 implies z; = xx’' = 2’y for some 2’ € ¥* and p < 2g; — 1

implies Ty = €.
Proof. To the first claim: Assume z?j = az)'y for some 2,y € ¥*. Then z = 27 for
some p € N, where T 6 ¥* is a proper prefix of z;. That is, z; = iz/ for some 23 € Xt
This implies z2{'y = z = z:f(:rzj)g7 P = zfx(z]x)gf P lz’ = x(2;7)% - lz , which in turn
implies (25)% P~ 1z 2y, As g; > 3 - max{|z1],. ]zk|} the two strings (z]x)gf —P~1 and
zJ" certainly have a common preﬁx longer than |z w\ + |zi|. By the Theorem of Fine and erf
(see Lemma 5.2.4) it follows that z Z and z; are powers of the same string, and thus they are
equal, as they both are primitive. Frorn Lemma 5.2.6 it follows that = ¢, 2; = z;, and i = j
and thus zy = €.

To prove the second claim, we in fact use the same proof technique: Assume xz2g zjg Ty
for i ;é j and some z,y € X1, If |z| > |2 g]| then there is nothing to prove Otherwise,
T = z Z for some p € N, Where Z € X" is a proper prefix of z;. That is, z; = xz for some z €
xT. Thlb implies szg = z Ty = 25(22 )29i Py = z?m(zjx)zgf Pyl Y= x(z]x)Qgﬂ P 1z’y,
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which in turn 1mphes (z]ac)zgﬂ Pl Y= As g; > 2 -max{|z1|,..., |z|}, the two strings

(zjm)29] —P=1 and zi * certainly have a common prefix longer than |z]:c| +|zi, if 2g;—p—1 > g;.
Then it follows by the Theorem of Fine and Wilf (see Lemma 5.2.4) that 277 and 2; are powers
of the same string, and thus they are equal, as they both are primitive. As ¢ # j implies
zi # zj, it follows that z; is a proper conjugate of z;, which contradicts Lemma 5.2.6. Thus
2g; — p — 1 < g; which implies p > g;.

It follows analogously that y = gz! for some ¢ > g; and some proper suffix § € * of z;.

To the third claim: Assume that xz?gi = zfgiy for some z,y € . If || > |zi29i|, then
there is nothing to prove. Otherwise, x = 2z and y = gz! with p € N, and z,§ € £* a
proper prefix resp. suffix of z;, i.e. z; = ¥z’ = 3/ for some 2/,y’ € ¥, and |Z| = |g|. Then
Ty gz% Pl = :%2291 P = z2-297 Py = 3::):’2'291 P15, Since |#| = |§], we have |2/| = ||, and it
follows that 2’ = ¢/. If p < 2¢; — 1, then additionally & = g, i.e. 2; = T2’ = 2/Z. Lemma
5.2.3 implies that # and 2’ are powers of the same string. Thus as z; is primitive we have
T=gy=c¢. O
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Now we are ready to define the string-rewriting system R.

Definition 5.2.9. Let L C X* be a regular language of polynomial density presented as given
in Lemma 5.2.2, let V1, ..., Vi be a root separating partition of the set V' of all loop strings of
L, let z1,..., 2z, be the roots of this partition, and let g1, ..., gx be the smart multipliers for
this partition. Then the string-rewriting system corresponding to L is defined by

R:{z?gjﬁz]gj:je{l,...,k}}.

Certainly R is finite and length-reducing. Next we show that R is also confluent, where
we exploit the properties derived in Lemma 5.2.8.

Lemma 5.2.10. Let L C X* be a regular language of polynomial density presented as given
in Lemma 5.2.2. Then the corresponding string-rewriting system R as defined in Definition
5.2.9 is confluent.

Proof. As R is length-reducing it suffices to show that R is locally confluent.

From Lemma 5.2.8(i) it follows that the system is normalized. So looking at the critical
pairs of R we have to consider two cases: two different left-hand sides overlap or a left-hand
side overlaps with itself.

To the first case: Assume that xzzgl = z %4 for some z,y € ¥*. From Lemma 5.2.8(ii)

gj gi

we know x = = 2, and y = yz- for some z,y € X*. This implies 727" = z]gjgj. Now we

see that on the one hand z Ty — z y = z Tgzdt = z2)'2)" — Zz]" and on the other hand
:1;2;7;2 I a2l = zf] z2) = z]g] I — z g Thus we see that the critical pairs corresponding

to pairs of dlfferent rules are resolvable
To the second case: Assume that mzizg y for some z,y € X*. Then z = 'z
and y = gz’ with p € N, and Z,§ € ¥* a proper prefix resp. suffix of z;. If p = 2¢; — 1,
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- _ 2
then z; = 72’ = :v’y for some 2’ € ¥ by Lemma 5.2.8(iii). Thus on the one hand z;%y =
2g; ~ 2gi—1 2g;—1 1. 2g;—1 1~ 2g; -1
20z — 2l = 20T :c:c gz = 2T i — 297227 and on the other
29,1~ 29 3gi— L9 — L2011 gi-1 _ _2gi~ gi—1 9~ gi—1
han(% a:zi = z; af = 2 172 S =z za'yz; = z;7'yz; — z;'yz;" . From
2z = 2 yziﬁ we see that the critical pair resulting from this overlap is resolvable.

pr < 2¢; — 1, then from Lemma 5.2.8(iii) we know that & = § = . Then on the one hand
2 'y — 2y = 27"2P, and on the other hand xzf — xz) = 2P2J". Thus critical pairs

correspondlng to pairs of equal rules are resolvable as well.
So each critical pair of R is resolvable. It follows that R is locally confluent, and thus R

is confluent. 0

gi

5.2.2 Application of the String-Rewriting System

In this section we will see that the string-rewriting system R corresponding to a regular
language L of polynomial density has the following property: if w € L, then each ancestor
and each descendant of w mod R is in L as well. Hence, a string w € ¥* belongs to L if and
only if its irreducible descendant belongs to L. Thus, L can be expressed as the union of the
congruence classes of its irreducible members. The following statement then completes the
proof that L is indeed a Church-Rosser congruential language.

Lemma 5.2.11. Let L C X* be a reqular language of polynomial density presented as given in
Lemma 5.2.2, and let R be the corresponding string-rewriting system as defined in Definition
5.2.9. Then LNIRR(R) is finite.
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Proof. The set L NIRR(R) certainly is a subset of the finite set
km; .
S = {Ui,lvf’lluiﬂ-~-Ui,mziui,mi+1 S {1,...,n}, ki,... . km,; € {O,l,...,2-g-z—1}} ,
where g = max{|g1],...,|gx|} and z = max{|z1],...,|zx|}. O

The following technical lemma is quite useful to show the announced property of R.

Lemma 5.2.12. Let z1,...,141 € X* for some |l € N, let z1,...,2,2 € X7 be primitive
strings, and let k1, ..., k;,p € N, where p > |x1...2x01|+|21... 21| +1-|z|. Then the following
statements hold.

(i) If 21282y . .. zfl:zlﬂ = 2P, then z ~ z; for somei € {1,...,1}.
g k1 K _ .2p . . k1 Ky
(ii) If x127 wo ... 2 w11 = 2P, then z ~ z; for some i € {1,...,l} and x120"x2 ... 2 2144
. K/ k]
can also be written as x12, ... 2, ' x 141 for some kY, ..., k; € N such that k > p.

Proof. To the first statement: Assume z o z; for each i € {1,...,l}. It follows by induction
on [ using the same technique as in the proof of Lemma 5.2.8 and the Periodicity Theorem by
Fine and Wilf (see Lemma 5.2.4) that \sz| < |zi| + || for each i € {1,...,l}. By the choice
of p it follows that the string on the left-hand side of the equation a;lzlflmg e zlklle = 2P is
strictly shorter than the string on the right-hand side, which is impossible.

To the second statement: As in the proof of (i) it follows that 2 < || + || for each
i€ {1,...,l} with z; # 2. Let i1,...,is € {1,...,1} be the indices for which 2;; ~ z holds ,
j € {1l,...,s}. Then it follows from the length of the strings on both sides of the equation
that ki, +---+ ki, > p. Define ki, = ki, +---+ki,, ki, =0for j€{2,...,s}, and ki = k; for

. . . k' k! . .
ie{l,...,1}~{i1,...,is}. Then xlzlflxg ... zlk’:clﬂ =12 @2 ... 2 @141, and in this second
presentation z;, ~ z and kj > p. O

We cannot prove equality of the strings z and z; here, as can be seen from a(ba)%b = (ab)®.

Now we are ready to show that L can be expressed as the union of the congruence classes
of its irreducible members by showing the preservation property of the corresponding string-
rewriting system mentioned at the beginning of this section.

Lemma 5.2.13. Let L C X* be a reqular language of polynomial density presented as given in
Lemma 5.2.2, and let R be the corresponding string-rewriting system as defined in Definition
5.2.9. Then

L=|J{lwlr:we LNIRR(R)} .

Proof. 1t suffices to show that, for w € L, every direct descendant of w is in L and every
direct ancestor of w is in L.

Let w € L. Thus w has a presentation w = umvfllui’z .. vf%u@mﬁl with ¢ € {1,...,n},
ki,...,km, € N. Let y;1,...,¥%im;, € X" be the primitive roots of Vil,---,Vim,, respectively,
and ci,...,cn, € Nsuch that yi7 = v;, for r € {1,...,m;}.

First we show that every direct descendant of w is in L. If w is irreducible, there is nothing
to show, so let w be reducible. Then a rule legl — 2] is applicable to w, where [ € {1,...,k}.
Let w = xz?gly — xz{'y be a reduction step using this rule, where z,y € ¥*. As the string

2g; - . )
2] 9t is a factor of w, it can also be written as

200 _ ~ ok, Cp+1-kp1 ' Cptqkpiq~
27 T WipYip " Wip+1Ys pt co Wiptq¥iprq - Wiptgtl
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for some p € {1,...,m;}, ¢ € {0,1,...,m; — p}, where 4;, is a suffix of u;,, and U; p4q+1
is a prefix of w;pyq+1. From the choice of the smart multipliers in Definition 5.2.7 we see
that Lemma 5.2.12 can be applied. From Lemma 5.2.12(ii) and Lemma 5.2.6 it follows that
Yptr = 21 and Cpiy - kpr > g; for some r € {0,..., ¢} or that this presentation at least can
be rewritten such that these two statements apply. Thus the descendant can be written as
29 = w; ki, . Cptrkptr—gi, . kmi .

1Y = W10 1 Ui2 - Wi Y Wi ptr - - Wi, Oy Wi 41 -
As zi‘” is a power of v; p, it follows that this descendant of w is indeed a member of L. As
we did not put any condition on it, it follows that each descendant of w is in L.

Now we turn to the ancestors of w. Assume that the string w is obtained by applying
the rule 21291 — z{" to some string, where [ € {1,...,k}, and let a:z?gly — zz]'y = w be the
corresponding reduction step, where z,y € ¥*. As the string z{" is a factor of w, it can also
be written as

a _ ~ . Cokp Cp+1-kp+1 . Cp+a-kptq -
2l = UipYp  Wip+1Y; pr s Uiptq¥i g Wiptqtl
for some p € {1,...,m;}, ¢ € {0,1,...,m; —p}, with a suffix @; ), of u;p, and a prefix @; p1q+1
of ujpigr1. From Lemma 5.2.12(i) and Lemma 5.2.6 it follows that y,,, = z for some
r € {0,...,q}. Thus the ancestor can be written as
291, _ ... ki, . Cp+r-kptrr+g . X kmi .
le y - uzvlvi,lu%Q e ul7p+ryp+7" Uz,p—H" Tt u/l?miv'i,miuzami"'l :

As zlgl is a power of vj 4, it follows that this ancestor of w is indeed a member of L. As we
did not put any condition on it, it follows that each ancestor of w is in L. ]

Now with Lemmata 5.2.11 and 5.2.13 we have shown our main theorem that can be stated
as follows.

Theorem 5.2.14. Any reqular language of polynomial density is a Church-Rosser congruen-
tial language.

5.3 Other Regular Languages that are in CRCL

In the preceding section a partial answer to the question of whether the class REG of regular
languages is contained in CRCL is given by showing that at least the regular languages with
polynomial density are Church-Rosser congruential. CRCL also contains regular languages of
exponential density like ¥* or the set of all strings over {a,b} of even length.

In this section we introduce some more regular languages of exponential density that are
Church-Rosser congruential. The results of this section evolved in joined work with Johannes
Waldmann.

In Section 5.3.1 we show that if the syntactic congruence of a regular language L distributes
3" over all infinite congruence classes for some natural number n, then L is Church-Rosser
congruential. In the next section we conclude that for regular L C ¥*, the shuffle language
LI is in CRCL, provided the alphabet I' contains at least one letter not in 3. In Section
5.3.3, we show that Level 1 of the Straubing—Therien hierarchy is in CRCL. The syntactic
monoid of such a language is always group-free. In Section 5.3.4 we show that the group
languages (X2)*, for any size of the alphabet ¥, are Church-Rosser congruential, even though
they do not fulfill the condition given in Section 5.3.1.

But it still remains open whether CRCL contains all regular languages.
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5.3.1 Building a CRCL-System from the Syntactic Congruence

For a language L C ¥*, we define the relation ~y, on X* by
ur~pv <= Vr,ye ¥ : (zuy € L < avy € L).
An equivalence relation ~ on ¥* is called stable iff
Yur~v:Ve,y € X5 zuy ~ xvy.

A stable equivalence is called a congruence. The relation ~ defined above is the coarsest
congruence that separates L from ¥* \ L. It is called the syntactic congruence of L.

We let Mon(L) denote the set of congruence classes ¥*/ ~. Indeed Mon(L) is a monoid
under concatenation, called the syntactic monoid of L. It is well known that Mon(L) is finite

iff L € REG.
By the definition of ~j, and CRCL, we get

Proposition 5.3.1. A finite, length-reducing, and confluent string rewriting system R is a
CRCL-system for a language L if and only if

1. the Thue congruence <% is a refinement of the syntactic congruence ~p,, and
2. IRR(R) N L is finite.

We are mainly interested in regular languages L. These induce a syntactic congruence
~p, of finite index. This suggests to look for CRCL rewrite systems R whose Thue congruence
7, has finite index as well.

Definition 5.3.2. A language L C ¥* is a strongly Church—Rosser congruential language iff
there exists a finite, length reducing, and confluent string-rewriting system R on ¥ such that

1. the Thue congruence relation of R is a refinement of the syntactic congruence of L and
2. IRR(R) is finite.

The system R is then called a sCRCL-system for L. The set of strongly Church Rosser
congruential languages is denoted by sCRCL.

It is immediate that sSCRCL C CRCL. The inclusion is strict since sCRCL C REG, due to
the finiteness of the index of «7.

It is an open question whether REG C CRCL implies REG C sCRCL, in other words,
whether a CRCL-system R for a regular language L can be extended to a sCRCL-system for
L.

For some languages L € REG, it is possible to obtain a sCRCL-system for L from the
syntactic monoid Mon(L).

Theorem 5.3.3. If L € REG and there exists a number n such that for each syntactic
congruence class C € Mon(L)

o if C is finite, then Yw € C : |w| <n, and
e if C is infinite, then Jwe € C : |lwe| =n,

then L is strongly Church-Rosser congruential.
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Proof. Assume L and n fulfill the conditions stated in the theorem, and fix a choice of w¢
for each infinite class C' € Mon(L). Define the string-rewriting system

R={(w— wg)|C €Mon(L),w e £ nC}.

We show that R is a sCRCL-system for L.

Obviously, the system R is finite and length reducing, and <7} is a refinement of ~..

Since each word of length n + 1 appears in some infinite class C' € Mon(L), the set of left
hand sides of R is exactly A"t!. Therefore, each w € ¥2"*! is reducible, while each w € £="
is not. It follows that IRR(R) = ¥=", and thus IRR(R) is finite.

We now prove the confluence of R, by showing that each w € %* has exactly one irreducible
descendant. If |w| < n, then it is irreducible. If |w| > n + 1, then let C' € Mon(L) be the
syntactic congruence class of w.

In case |w| = n+1, the only R-reduction starting from w uses the rule w — w¢, and thus
wc is the unique irreducible descendant. Assume |w| > n + 1, and consider an R-reduction
step w = ulv — urv = w' for some rule (¢ — r) € R. Since (¢ — r) € R implies £ ~p, r, we
also have w = wlv ~ urv = w’. Therefore w’ is in the same class C. Since |w'| 4+ 1 = |w|,
the claim follows by induction. OJ

Corollary 5.3.4. All finite languages are in sCRCL.

Proof. 1f L is finite, let n = 1 + max{|w| : w € L}. Then Mon(L) contains some finite classes,
and exactly one infinite class C. This infinite class contains (at least) 3=". For the choice of
we, an arbitrary word of length n (and thus not in L) will do. O

Since sCRCL is closed under complement, this implies
Corollary 5.3.5. All co—finite languages are in CRCL.

Finite and co—finite languages are at Level 1 of the Straubing—Therien hierarchy, and
indeed we will prove in Section 5.3.3 that each language from that level is in sCRCL.

5.3.2 CRCL and the Shuffle Operation

We recall that the shuffle v w v of two words u,v € ¥* is the set of words defined by
ewu = uwe = {u} and ug .. Upp vy ... Uy = U (U .+« U LIVT - .. V) U0 (UL -+« Uy LIV < . . V).
This operation is extended to languages L1, Lo by L1 Ls = leeLl,wzeLg w1 LU Wa.

Proposition 5.3.6. If X and I' are disjoint alphabets, and L C X* is a regular language,
then LwT'™ is strongly Church—Rosser congruential.

Proof. Let L' = LwT*. The syntactic monoids Mon(L) and Mon(L') are isomorphic, because
to each class C' € Mon(L), there corresponds a class C' = C'wI™ € Mon(L’), and vice versa.

Now let n = maxgemon(r) Minwec |w]. (This is well-defined since each C' is non-empty.)
Then each class C' € Mon(L’) contains at least one word of length n, and so Theorem 5.3.3
can be applied. O

Example 5.3.7. For ¥ = {a,b}, it is open whether L = (¥3)* is in CRCL, see Section 5.3.4.
However, by Proposition 5.3.6 we know that L' = L c* is in CRCL. A sCRCL-system for L'
is {3 — 2,33 — 2 Swe? — ac, Y2 we — aa} (where we have abbreviated sets of rules with
common right-hand sides by using reqular expressions for their left-hand sides).
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We can generalize this result as follows.

Proposition 5.3.8. If ¥ and T' are alphabets with T\ ¥ # (), and L C ¥* is a regular
language, then L T is strongly Church—Rosser congruential.

Proof. Let I't = T'NX, and 'y, = '\ ¥. (Note that I'y is non—empty, and I'; and I'y are
disjoint.) We have L wI™ = Lw (I’ UT2)* = Lw (I'f wI%). The shuffle is associative, and
so the claim follows from applying Proposition 5.3.6 to the language L wI'] C (X UT'1)* and
the (now disjoint) alphabet I';. O
5.3.3 Level 1 of the Straubing—Therien Hierarchy is in CRCL

The Straubing—Therien hierarchy is a concatenation hierarchy that exhausts the star-free
regular languages. It is defined inductively, starting from languages with trivial syntactic
monoid, using the operations of polynomial and boolean closure.

Definition 5.3.9. The polynomial closure Pol(F) of a family F of languages over ¥* is the
family of finite unions of languages of the form

L0a1L1a2 e anLn y
where a; € ¥ and L; € F.

Definition 5.3.10. The boolean closure Bool(F) of a family F' of languages over ¥* is the
family of finite boolean combinations (that is, unions, intersections, and complements w.r.t.
¥*) of languages from F.

Definition 5.3.11. The Straubing-Therien hierarchy is the sequence Strauby C Strauby /5 C
Strauby C ... of families of languages given by

Strauby = {0, X"},
Straub,, 11/ = Pol(Straub,,),  Straub,,;; = Bool(Straub,, 1 /5) -

These families are in fact (positive) varieties of languages. The low levels of the hierarchy
have additional characterizations.

Definition 5.3.12. A language L C ¥* is a shuffle ideal iff L ¥* C L.

Note that the language L’ from Example 5.3.7 is not a shuffle ideal because the definition
requires the shuffle with the complete alphabet.

Proposition 5.3.13. [Pin97] L is in Strauby 5 iff L is a shuffle ideal.
Example 5.3.14. The language L = (abbU bba) wi{a,b}* is in Straub /5.

The languages from Straub; are boolean combinations of Straub,/; languages. They are
also called piecewise testable languages.

Example 5.3.15. L' = atba™ is an element of Straub.

Proof. L' = (abaw¥*)\ (bbwX*). O
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Proposition 5.3.16. [Pin97] If L € Straubs )y, then L is a finite union of languages of the
form
YoarXiag ... anXy

where a; € 2 and X; C X.

Lemma 5.3.17. If L € Strauby, then for each congruence class C' € Mon(L), it holds that
C € Straub;.

Proof. In fact this is true for any integer level of the hierarchy. It is an immediate consequence
of Eilenberg’s variety theorem. Since L belongs to the variety Straubi, its syntactic monoid
Mon(L) belongs to the corresponding variety of J—trivial monoids. Since each C'is recognized
by Mon(L), it belongs, in turn, to the variety Straub; of languages that we started with. O

Example 5.3.18. See Fxamples 5.3.14 and 5.5.15. The congruence classes of L are
{e,at,b,ba™, atb,bb" ba™b, L' L} .

All of them are in Strauby. Note that L € Strauby o, but L' € Strauby \ Strauby jo. This is due
to the half-integer levels not being boolean closed.

Lemma 5.3.19. If L € Straubg/y, then there exists a number n such that
LCy<" or Vn'Zn:@#LﬁE"/.

Proof. We use the presentation of L according to Proposition 5.3.16. If at least one of the ¥;
is nonempty, we can ‘pump’ some word w from L at the corresponding position, obtaining,
for each n’ > n = |w|, at least one word w’ € L of length n’. In the case that all 3; are empty,
the language L is finite, and we take n as 1 + max{|w|: w € L}. O

Now we are able to state and prove the main result of this section:

Theorem 5.3.20. Fach language from Level 1 of the Straubing—Therien hierarchy is strongly
Church—Rosser congruential.

Proof. Using the Lemmata 5.3.17 and 5.3.19, Theorem 5.3.3 can be applied by taking the
maximum of the numbers n for the different congruence classes. O

Our method of proof does not seem to extend to higher levels of the hierarchy, because
the ‘pumping property’ corresponding to Lemma 5.3.19 fails. On the other hand, there are
regular languages known to be in CRCL that are not star-free, i.e. completely outside the
Straubing—Therien hierarchy.

One such language is (X2)*, see the following section. Here, X, denotes an alphabet
with m symbols. Its syntactic equivalence classes Cy = £¢V" and €] = %234 obviously do not
admit a selection of w; € C; with |wg| = |wy|. This happens even for L = (a(bUc))* € Straubs.
Its syntactic monoid consists of the classes

{e,2*(@*U(bU))X* L\ ¢, (bUC)L, La, (bUc)La},

where ¥ = {a,b,c}. Here, L and La avoid each other’s word lengths.
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5.3.4 A Family of CRCL Group Languages

In the previous section, we looked at star-free languages. Their syntactic monoids are always
group—free, that is, such a syntactic monoid does not contain a nontrivial sub-monoid that is
a group.

Let us now turn to the opposite direction and consider some group languages. A language
is called group language iff its syntactic monoid is a group. Especially, we look at some
seemingly simple languages L whose syntactic monoid is a cyclic group.

For cycles of order two, we will show that the corresponding languages are in CRCL. The
respective rewrite systems are by no means obvious. We found them by generalizing results
of computer searches. The situation for longer cycles remains unsettled.

Example 5.3.21. Consider L = {w € {a,b}* : |[w| = 0 mod 2}. Define Ry = {(aaa —
a), (aab — b), (baa — b), (bab — b), (bbb — b)}.
Ry is finite, length-reducing, and confluent. Its irreducible words are

IRR(R2) = {&,a,b, aa, ab, ba, bb, aba, abb, bba, abba}. Further
Vu,v € {a,b}" : u <%, v implies |u| = |v| mod 2.

Thus L = \J{[w]r, : w € IRR(R2) A |w| = 0 mod 2}. That is, L is a Church-Rosser congru-
ential language, even L € sCRCL.

This example will now be generalized. The dependency on the alphabet size is nontrivial.

Theorem 5.3.22. For each m > 0, the language
(22)* ={w € %k, : |w| = 0 mod 2}
is Church-Rosser congruential.

Proof. Let ¥, = {a1,a9,...,an}. We define an ordering a1 < az < --- < a,, among the
symbols of ¥,,. Define a string rewriting system R as follows:

R = {(zyz — max(x,z2)): z,y,2 € Xpy,y = min(z,y,2)}.
Claim 1. R is confluent.

Proof of Claim 1. R is terminating, so we show that R is locally confluent. There are two
kinds of overlaps: those involving two symbols and those involving only one.

Case 1: Let (z1y121 — m1) € R and (z2y222 — mo) € R with y; = z9 and 21 = .

That is z1y12122 = x122Y222. By y1 = min(z1,y1,21) = min(x1,y1,y2) and yo =
min(xy, Y2, 22) = min(yi, Y2, 22) it follows that y; = yo.
Thus we have x1y1y122 — mi2z2 on the one hand and x1y1y122 — x1m9. From the
minimality of y; it follows that max(z1,y1,y1) = 1 and max(y1,y1, 22) = z2. This
implies mi1zo = x129 = x1ms. Thus, in fact in the case of an overlap involving two
symbols the critical pair is trivial.

Case 2: Let (z1y121 — mi1) € R and (way2ze — mg) € R with 21 = 1z, that is,
T1Y121Y222 = T1Y1T2Y222. Here we distinguish four sub-cases.
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Case 2.1: If 1 = max(z1,y1,21) and x2 = max(ze,y9,22), then we clearly
have x1y121y222 — T1y222 on the one hand and x1y121Yy222 = T1Y1X2Y220 —
r1y1z1 — w1 on the other. As xo = 2z it follows that xy > xo and thus
(z1y222 — 1) € R. So, the critical pair is resolvable.

Case 2.2: If 1 = max(z1,y1,21) and 22 = max(za, Y2, 22), then we clearly have
T1Y121Y222 — T1Y222 on the one hand and x1y121y222 = T1Y122Y222 — T1Y122
on the other. If x; > 29, then (z1y122 — x1) € R and (z1y220 — z1) € R. If
x1 < 29, then (z1y122 — 22) € R and (z1y222 — 22) € R. In both cases the
critical pair is resolvable.

Case 2.3: If z; = max(x1,y1,21) and zo = max(x2,y2, 22) (note x93 = z1!), then
we have x1y121y220 — 21Y222 = Tay22z2 — T9 on the one hand and z1y121y220 =
T1Y1X2Y2Zzo — X1Y1Ta = X1Yy121 — %1 on the other. Thus, the critical pair is
resolvable.

Case 2.4: If z; = max(x1,y1,21) and zg = max(xe,y2, 22), then it follows simi-
larly to Case 2.1 that this critical pair is resolvable.

Thus R is confluent. |
Claim 2. <7 is a refinement of the syntactic congruence of (X2 )%,
Proof of Claim 2. For v,w € ¥* it follows from v —% w that |v| = |w| mod 2 . O

Claim 3. The set IRR(R) is finite.

Proof of Claim 3. Define a language (compare with IRR(R2) from Example 5.3.21)

Tly-o ey Tmys Y1y - -+ Ymo S Zma
A= L1 TmyYmaYmo—1---Y1 | 21 <+ < Zmy < Yma,
and Ym, > Ymy—1 >0 > Y1

More precisely, we show that IRR(R) C A. Assume v ¢ A. Thus v has a factor ujugus,
Ui, ug,u3 € Ly, where ug > ug < ug. Then (ujugus — max(ug,us)) € R, and thus v is
reducible. So each reducible word with respect to R is in A. As A is finite, so is IRR(R). O

In all, this shows that R is a sCRCL-system for (32,)*, and therefore (32,)* € CRCL. [

Comparing this construction with the method presented in Section 5.3.1, it seems too
simplistic to assume that all L € REG admit a sCRCL-system R that maps each (long enough)
word of a ~, equivalence class C to a unique R-normal form w¢. Indeed the Thue congruence
of the sCRCL-system for (X2)* (see Example 5.3.21) generates 10 infinite congruence classes,
while the syntactic congruence of (¥2)* generates only two.

5.4 Concluding Remarks

We have seen that regular languages without nested loops and without branches inside a loop
in their representation are Church-Rosser congruential. From [Yu97] we know that these are
exactly the regular languages with polynomial density.

So the question whether all regular languages are in CRCL is reduced to the question of
whether there exists a regular language with exponential density that is not in CRCL. We have
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seen that apart from the regular languages of polynomial density also very different families
of regular languages with exponential density are Church-Rosser congruential. So possible
directions for further research include the following questions:

e Is every language of the form L = {w € ¥* : |[w| = 0 mod k} Church-Rosser congruen-
tial 7

e Is every group language in CRCL? A group language is a regular language whose
syntactic monoid is a group.

e Which higher Straubing—Therien levels belong to CRCL ?
e Is each star-free language in CRCL?

e How can nested loops in a regular expression be realized by a finite, length-reducing,
and confluent string-rewriting system ?

e How can branches inside loops in a regular expression be realized by a finite, length-
reducing, and confluent string-rewriting system 7






Chapter 6

Confluent Internal Contextual
Languages

The class CICL of confluent internal contextual languages is introduced. This class, which is
a subclass of CRCL on the one hand and of L£(det-R) on the other is obtained as a restriction
of the class ICL of internal contextual languages (see Definition 6.1.1). CICL is quite ex-
pressive, since it yields simple representations for all recursively enumerable languages. The
proof of this fact is inspired by Ehrenfeucht, Paun, and Rozenberg [EPR9S8], who proved the
corresponding result for ICL.

6.1 Definition and Easy Properties

Definition 6.1.1. An internal contextual grammar is a triple of the form G = (X, A, R),
where X is a finite alphabet, A is a finite set of strings from ¥*, the so-called axioms, and R
is a finite set of rules of the form (r — uzv), where u,v,z € ¥* and uwv # . The language
L(G) generated by G consists of all strings w € ¥* such that w can be derived from some
a € A by a finite sequence of applications of rules in R. By ICL we denote the class of internal
contextual languages, which are the languages that are generated by the internal contextual
grammars.

Lemma 6.1.2. ICL € GCSL.

Proof. Let G = (X, A, R) be an internal contextual grammar. Define G’ = (N, T, S, P) by
N = {S}UX, where ¥ is a new alphabet in 1-to-1-correspondence to ¥ and S is a new
symbol not in YUY/, T'= X, and P consists of the following rules, where ': ¥ — ¥’ denotes
the canonical morphism from X to Y/, extended to X* in the obvious way:

S — for z € A,

S — u' if (¢ - uwv) € Rand € € A,
¥ =gV if (x — uxv) € R,z # ¢,

a —aduv foraeX, if (e — wv) € R,
a —uv'd  foraeX, if (e —»ww) € R,
ad —a for a € 3.

Obviously, G’ is a monotone grammar and L(G’) = L(G). Define a weight-function ¢: (N U
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T) — N as follows.
p(S)=1, p@)=2fora’ €y, px)=3forzex.
Thus, G’ is weight-increasing, and thus L(G) € GCSL [BL92], see Lemma 2.2.9. O

In order to define a confluent counterpart of ICL we turn from grammars to string-rewriting
systems.

Definition 6.1.3. A string-rewriting system R is said to be factor replacing, if r is a proper
factor of ¢ for each rule (¢ — 1) € R.

We can associate a length-reducing string-rewriting system with an internal contextual
grammar by interchanging the left- and right-hand side of each rule. Obviously, the resulting
string-rewriting system is factor replacing. Thus, an internal contextual language can also
be described as the set of ancestors of a finite set of strings with respect to a finite factor
replacing string-rewriting system. In general, this system will not be confluent. We now
consider confluent string-rewriting systems that are factor replacing.

Definition 6.1.4. A language L C X* is a confluent internal contextual language, if there
exist a finite confluent string-rewriting system R on X that is factor replacing, and a finite
set {wi,...,w,} C X* such that L = |J;_,|wi]r. By CICL we denote the class of confluent
internal contextual languages.

Observe that for each irreducible string w the congruence class [w]r coincides with the
set of ancestors of w with respect to the reduction relation induced by R, if R is confluent.
Hence, a confluent internal contextual language is really the set of ancestors of a finite set of
strings with respect to a finite confluent string-rewriting system that is factor replacing.

Obviously CICL C ICL and CICL C CRCL. Further, analogous to the proof of the fact that
each language in CRCL is accepted by some deterministic restarting automaton with rewriting
(Lemma 5.1.3), it can be shown that each confluent internal contextual language is accepted
by a deterministic R-automaton, that is, CICL C L(det-R). In the same way it can be shown
that ICL C L(R).

In [JMPVI7b] it is shown that L = {a™" : n > 0} U {a}* € L(det-R), while L ¢ ICL
[EPRI8]. On the other hand, it is shown in [JMPV97b] that L = {a’s’ : 0 <4 < j < 2i} is not
accepted by any deterministic RW-automaton. If we define an internal contextual grammar
G=(3,AR) by ¥={a,b}, A= {e,ab,abb}, R = {ab — aabb,ab — aabbb}, then L(G) = L.
Hence, we have the following result.

Lemma 6.1.5. The language classes ICL and L(det-RW) are incomparable under set inclu-
S10M.

Moreover, we have the following incomparability.
Lemma 6.1.6. The language classes ICL and CRL are incomparable under set inclusion.

Proof. We define an internal contextual grammar G = (X, A, R) by ¥ = {a, b, #}, A = {e, #},
R = {# — a#a,# — b#b,# — aa,# — bb}. Then L(G) = {w#w"~ : w € {a,b}*} U {ww™ :
w € {a,b}*} = {w#w™ : w € {a,b}*} U Lpgiindrome- As L(G) N {a,b}* = Lyalindrome, CRL
is closed under intersection with regular languages (Lemma 3.3.2), and Lpgiindrome ¢ CRL
[JLO2], it follows that L(G) ¢ CRL.

The converse non-inclusion follows from L(det-R) C CRL. O
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Since also the language classes L(det-R) and CRCL are incomparable under set inclusion
(Lemmata 7.2.2, 7.2.3), it follows that all the above inclusions concerning CICL are proper.

We summarize the inclusion relations obtained so far in Figure 6.1, where a solid line
(without question mark) indicates that the corresponding inclusion holds and is proper, a
question mark close to a solid line indicates that the corresponding inclusion holds and it
is an open problem whether it is proper, a question mark close to a dashed line indicates
that it is an open problem whether the corresponding inclusion holds, a dotted line (without
question mark) indicates that the corresponding inclusion holds and the question whether it
is proper will be addressed in Section 7.2, and a question mark close to a dotted line indicates
that the question whether the corresponding inclusion holds will be addressed in Section 7.2.

£ (det-RRW)

L (det-RR)

Figure 6.1: Relations among the language classes considered as of Section 6.1

We now turn to the representation of all recursively enumerable languages through the
class CICL.
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6.2 CICL presents the r.e. Languages

Definition 6.2.1. A language class € is called a quotient basis for the r. e. languages if, for
each r. e. language L, there exist a language L' € C and a regular set R such that L = R\L'.
Here R\ L' denotes the left-quotient of L’ by R, that is, R\L' = {w : 3z € R with zw € L'}.

Andrzej Ehrenfeucht, Gheorge Piun and Grzegorz Rozenberg showed that ICL presents
the r. e. languages in the following sense [EPR98]. For each r. e. language L over some alphabet
Y, there exist a language L' € ICL over some alphabet I' D X, a symbol ¢ € T' \ X such that
each string w € L’ contains a single occurrence of the symbol ¢, and a regular language
R C ('~ {c})* such that L = cut. (L' N R-c- ('~ {c})*). Here cut, is the operation which
removes the prefix of a string z that ends with the unique occurrence of the symbol c. It is
easily seen that this is the case if and only if L = (R - ¢)\L'. It follows that ICL is also a
quotient basis for the r.e. languages.

From [OKK97] we know that CRL is a quotient basis for the r.e. languages.

In what follows we will prove the following theorem, which strengthens both of these
results.

Theorem 6.2.2. CICL is a quotient basis for the r. e. languages.

Let L C ¥* be a recursively enumerable language, and let M = (Q, %, T, qo, 9, ¢,) be a
deterministic single-tape Turing machine accepting L. Here Q = {qo,q1, ... ,qn} is the set of
states, ¥ C I' is the input alphabet, I' is the tape alphabet, qg is the initial state, g, is the
unique accepting state, and

0: (@~ A{an}) x T = (@~ {g0}) x (T~ {p}) x {2, >}

is the transition function of M. Here < and > denote the move operations to the left and
to the right, respectively, and b € I' \\ ¥ denotes the blank symbol. By uqv we denote a
configuration of M, where uv is the tape contents, ¢ is the actual state, and the first symbol of
v is being read. By F}, we denote the computation relation induced by M (see, e.g., [HU79]
for details).

Note that M never enters its initial state during a computation, M halts immediately
after entering the accepting state ¢,, M moves its head in every step, and M does not print
the blank symbol b. Additionally we require that M starts reading the leftmost symbol on
the tape and that M also halts reading the leftmost symbol on the tape.

In order to show that ICL presents the r. e. sets, Ehrenfeucht, Paun and Rozenberg simulate
an unrestricted phrase structure grammar by an internal contextual grammar. Here we adapt
their ideas to the simulation of the Turing machine M by a confluent string-rewriting system
that is factor replacing. The simulation of a step of the Turing machine will look as follows:

[“new tape contents 4+ new state”] “old tape contents + old state”
— “new tape contents + new state” ,

where [ and | are symbols that are used to mark the string between them as being asleep and
“...7 are descriptions of strings.

Let &,¢,8,#,F,[,], (,) be new symbols not in ' U@, and let A =T UQ U {&,¢,$, #,F,
[L],(,)}. We define a string-rewriting system S on A that consists of the following three
groups of rules:
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(1.) Simulation rules:

(S1)  [wgjlaar — aq; if 0(qi, ax) = (g5, a1, >),
(52) [alqj$]qi$ — alqj$ if 5(qi, /b) = (qj, ap, D),
(83)  [gjamallamqior — qjama;  if 0(qi, ar) = (gj, a1, <),
(S4)  [gjamaSlama$ — giama$ if §(qi, ) = (g5, a1, <),
(85) [dq; bail¢giar, — ¢q; bar  if 6(qi, ar) = (g5, a1, <),
(S6) [¢q; baiS]¢qi$ — dq; bar$  if 8(qi, b) = (g5, a1, <),

where ¢;,q; € Q, and a, ag,anp, €T

(2.) Preparation rules:

(P1) Falvja — alv]

(P2) Fa(blulc)a — a(blu]c)
(P3) (alu)b)[u]ab — a[u]b
(P4) Fatba—akb

(P5) FdS$#d— dS#

Hereae (T~ {p})U{d}, bceT~{p},deB,vel-Q -{S,¢},anduec Q- -I'-T-{$,¢e}.

(3.) Final rules:
(F) &dgqna — &dq, forallaceT.

Then S is a finite string-rewriting system that is factor replacing. Since there are no
overlaps between left-hand sides of rules of S, there are no non-trivial critical pairs, and
hence, S is in addition confluent [BO93].

Further we choose the aziom &d¢¢q,$#. Then the language L' = [&¢¢q,$#]s belongs to the
class CICL.

Finally we define some regular sets as follows:

Ry = ({[u] : wasin (S1)—(S6)} U
{{a[u]b) :a € (T~ {p}HU{d¢},be T ~{b},uasin (S3)—(S6)}U
{Fa:ace (T~ {pHU{d}} )",

Ry ={Fa:a€eX}", and

R = {&} Ro-{¢qo} R {3#}.

We claim that L = R\ L/, that is, for w € ¥*, we have w € L if and only if there exists a
string « € R such that zw —% &¢ g, $#.

The idea behind the construction of S and R is as follows. All symbols surrounded by
[ and ] or by ( and ) as well as the symbols immediately to the right of a i are considered
to be asleep, the others are awake except for & and #, which are seen as meta-symbols that
are neither asleep nor awake. Now awake symbols can move to the left inside a string by
waking up copies of themselves, in the process of which they disappear. In this way, blocks
of sleeping symbols can be crossed (see (P1)-(P4)).

If z € 'NR-A*, then z = zw for some x € R and w € A* such that z = zw —§ &¢¢,$#.
Thus, the suffix w has to cross the final marker # of x completely. However, the input symbols,
and only the input symbols, can actually cross this marker (see (P5)). Hence, w € ¥*, that
is, LNR-A*=L'NR-%*

The axiom &¢g,$# contains a single ¢, a single $ and a single state symbol that are
awake. This is also true for each string from L' N R - ¥*. We will see that each descendant
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modulo S from a string belonging to L’ N R - X* has this property, too, and that all the
symbols between the ¢ and the $ that are awake correspond to a configuration of M. For
z=xw € L'NR-¥* where z € R and w € ¥*, the reduction z = 2w —§ &¢g,3# actually
simulates a computation of M on the input w. During the simulation of a step of M some
awake symbols that represent the actual state and the contents of the tape cells involved
wake up some sleeping symbols while disappearing themselves (see (S1)—(S6)), where the
newly awake symbols represent the new state of M and the new contents of the tape cells
involved in the simulated step.

Since x € R, we see that x = &xzo¢qox19# for some xy € Ry and x; € R;. Here z;
encodes the input that has to cross #, and xy encodes the computation of M on that input.
The operation R\ removes these encodings and the markers.

Now we turn to the formal proof of L = R\ L'.

First we define a function awake: A* — (I' U Q U {¢,$})*, which removes all sleeping
symbols and the markers &, #,[,], (, ), from a string. While awake is not a morphism, it is
a gsm-mapping.

Since we are only interested in strings that are obtained by rewriting modulo S from
strings of the form xw, where x € R and w € ¥*, we can place a technical restriction on those
strings that we will consider in the following. This will then simplify the remaining technical
details.

A string z € A* is called proper if z = &xoy1x1 - - - ynF#xn, where awake(z) = xoxy - 2y
and yi,...,yn € ({[u] v e TUQU{¢,$})* U {(alu]b) : v e TUQU{¢,5$})* a,b €
Fru{d,$}tu{ta:aelT U{d¢}})"

Lemma 6.2.3. Let v € R and w € ¥*, and let zw —§ z. Then z is a proper string.

Proof. Obviously the string zw itself is proper. Now it can be verified easily by induction on
the number of steps in the reduction sequence xw —7§ 2 that z is proper, too. O

Hence, in the following we can restrict our attention to strings that are proper. Next we
give a series of technical lemmas that are rather straight-forward. Lemma 6.2.4 and Lemma
6.2.5 follow by a careful examination of the rules in S.

Lemma 6.2.4. Let 21,20 € A* be proper. strings, and let x1,x2 € (TUQU{¢,$})* such that

x; = awake(z;) for i =1,2. Then z; - zo implies that x1 = xo.
(P1)-(P4)

Lemma 6.2.5. Let z1,20 € A* be proper strings, and let x1,z9 € T - Q - I'" such that

¢x;$ = awake(z;) fori =1,2. Then z2y ————— z9 implies that x1 s 2.
(51)-(S6)

Lemma 6.2.6. If w € Ry, w € ¥*, and v € I'* satisfy wS#w —& v$#, then v = w.

Proof. In this reduction only the rules (P4) and (P5) can be applied. As awake(w$#w) = $w
and awake(v$#) = v$, the claim follows analogous to Lemma 6.2.4. O

Lemma 6.2.7.

(i) For each w € {¢,e} - (' {p})* there exists some W € {Fa :a € T U{¢}}* such that,

hbel , whbw whb. Ifwe X, th S
for eac ~{Ah}, w m f w en w 1-

whH.

(11) For each w € X there is some W € Ry such that w$#w

(P1)-(P5)
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(11i)) Leta € (C~{p})U{¢}, byce T~ {p},vel -Q-{8,e}, anduec Q-T'-T-{$,e}. Then
for each w € {¢,e} - (T ~ {p})* there exists some w € {Fa :a € T U{¢}}* such that
wvjw m wlv] and W (blu|c)w m w(blu]c).

(iv) Let ue Q-T-T-{$,e} and d € T~ {p}. Then for each w € {¢,e} - (T ~{p})* there
exists some w € ({Fa:a € TU{¢}} U {(afulb) :a e (T~ {p})U{¢},b e {p}})*

such that [u)lwd ——— wlu)d.
(P1)~(P5)
Proof. (i) We proceed by induction on the length of w. For |w| =1 define w = Fw. Then

it follows for each b € I' \ { p} that W Fbw = FwFbw E wkb.

Now let w = zg for some x € {¢,e} - (O~ {p})* |z| = k and g € T ~ {p}. By
the induction hypothesis there exists a string € {Fa : @ € I' U {¢}}* such that

FFbx —— xFb for each b € '~ { p}. Define @ = & g Z. Then
(P1)-(P5)

wFbw=TFgTFbxg mil—gaz Fbg
— s atgFbg—— xgtb=wkb.
(P1)-(P5) (P4)

As 1 consists of sleeping copies of symbols from w, it follows that w € Ry if w € ¥7T.

ii) and (iii): As $# in (P5), [v] in (P1), and (bu]c) in (P2) play the same role as b in
Y
(P4), (ii) and (iii) can be shown by induction in the same way as (i), using (i) in the
induction step.

(iv) Again we proceed by induction on the length of w. For |w| = 1 define w = (wu|d).

Then

wlu)wd = (wlu|d) [u]wd E} wluld .
Let w = zg for some = € {¢,e} - (I ~ {p}H*, || = k and g € T~ {p}. By the
induction hypothesis there exists a string £ € ({Fa : a € TU{¢}} U {(afu]db) : a €

(T~ {bHu{d},bel ~{p}})" such that z[u|xg m z[ulg. From (iii) we know

that there exists a string &’ € {Fa:a € T U{¢}}* such that

# (glu]d)a m z(glud) .

Now define w = #'(g[u|d)Z. Then

wlulwd = &' (glu]d)Z[u]zgd m #(g[u]d)x[u]gd

PP z(g[uld)[ulgd

E zgluld = wluld.

The following lemma constitutes the core of our proof that L = R\ L'.
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Lemma 6.2.8. For each w € ¥*, the following statements are equivalent:
(i) we L,
(it) there are y € Ry and w € Ry such that &y¢qowS#w —§ &¢qn$# .
Observe that (ii) is equivalent to the existence of a string z € R such that zw € L.

Proof. “<”: Let y € Ry and w € Ry such that &ydqowd#w —% &¢gn$#. From the form
of the rules of S it is easily seen that to the suffix W$#w only the rules of the form (P4)
and (P5) are applicable. As all the symbols of w must be moved left across the marker #
by applications of rules (P5), it follows from Lemma 6.2.6 that the above reduction sequence
can be rearranged to one of the following form:

& 03 — & $H —E &¢q,5# .
ybaouSitw —-m s Lydaouwit — 5 LanSit

If in the second part of this reduction the final rule (F') can be applied at some point, we
know that the actual string contains the final state ¢, and thus no other rule can be applied
to it and its successors. Thus, this reduction has the form

s
20 = &ybaouS#t e A T Ey S

*

&dq, 54 .
2, " daqnS#

As ¢ can never be interchanged with a symbol that is awake, and since y contains only
sleeping symbols, the symbol ¢ is the leftmost one awake in each z;. Analogously it follows
that $ is the rightmost symbol that is awake. So there exist zg,z1,... ,7; € I'* - Q - I'* such
that ¢x;$ = awake(z;), i € {0,... ,k}. From Lemma 6.2.4 and Lemma 6.2.5 we obtain that
i = Xiq1 OF T bar iy, 1 € {0,...  k}. As 9 = qow and xj, contains ¢, xj is an accepting
final configuration of M, implying that w € L.

“=": Let w € L. Then there exists an accepting computation of M of the form

gow = pow Fpar uip1v1 Far - Far upbrUE = gk ,

where p; € Q and u;,v; € T*, i =0,... k. From Lemma 6.2.7(ii) we see that there exists
some W € Ry such that w$#w —§ w#. Hence, ¢qoud#w —§ ¢qow#.

Claim 1. For each i, there exists some y € Ry such that y¢qowS# —§ ¢uipiviS# .

Proof of Claim 1. For i = 1 there are two cases. If M moves to the left, then define y as (S5)
or (S6) suggests (depending on whether or not w is nonempty). If M moves to the right, then
define ¢’ as (S1) or (S2) suggests (depending on whether or not w # ¢), and take y = F¢ /.
Then we have

y¢powd# = H¢ v’ dpows# o ¢y powS# durprv $# .

(51) or (52)

For the induction step assume that there exists a string ' € Ry such that y'¢pow$# —%
du;p;v;$#. If in step i + 1 M moves to the left, we have two cases. If u; = ¢, define y” as
(S5) or (S6) suggests (depending on whether or not v; # €). Then for y = 3"y’ the statement
applies. If u; # ¢, define y; as (S3) or (S4) suggests (depending on whether or not v; # ).
Let u; = x1...2n, x1,...,25n € I'\ { p}. From Lemma 6.2.7(iv) we know that there exists
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a string § € Ry such that gy;du; ﬁ ¢z1 ... Th_1y17,. Hence, y = gy1y’ satisfies the
P1)—(P5
claim for ¢ + 1.
If in step 7 + 1 M moves to the right, define y; as (S1) or (S2) suggests (depending on

whether or not v; # ). From Lemma 6.2.7(iii) we know that there exists a § € Ry such that

Jy1¢u; ——— dugyy. Hence, y = jy13y/ satisfies the claim for i + 1. O
(P1)-(P5)

Thus, there exists some y € Ry such that y¢qowS# —% ¢gnvi$#. Since &¢qnvi$# %
&¢q,$#, this implies that

&y qowS#w —g &ydqws# —5 &danveS# —5 &dagnd#
thus completing the proof of Lemma 6.2.8. O

Lemma 6.2.8 yields that indeed L = R\ L', which completes the proof of Theorem 6.2.2.

6.3 Concluding Remarks

We have introduced the class CICL of confluent internal contextual languages, and we have
seen that CICL is properly contained in the class of internal contextual languages, in the
class of Church-Rosser congruential languages, and in the class of languages accepted by the
deterministic restarting automata. Further, we have shown that the class CICL is already a
quotient basis for the r.e. languages, which means that this language class is already quite
expressive. On the other hand, we do not even know whether each regular language belongs
to CICL. Also it remains to investigate the closure properties of this class of languages.






Chapter 7

Restarting Automata

7.1 A Language-Theoretical Equivalent to the Use of Nonter-
minals

In this section we will see that for each of the classes of restarting automata introduced the use
of auxiliary tape symbols corresponds to the operation of intersecting the language accepted
with a regular set. This is easily seen for the (deterministic) RRW-automata, while for the
(deterministic) RW-automata the proof will be more involved.

Theorem 7.1.1. A language L is accepted by a (deterministic) RRWW-automaton if and
only if there exist a (deterministic) RRW-automaton My and a regular language R such that
L = L(My)N R holds.

Proof. Let L € L(RRWW), that is, there exists an RRWW-automaton M = (Q, %, T, 4, qo, ¢,
$, F, H) accepting L. Hence, for all w € ¥*, w € L iff go¢w$ F}; ¢ugv$ for some u,v €
I' and q, € F. Let R := ¥*, and let M; denote the RRW-automaton M; = (Q,I' ~
{¢,$},1,0,q0,¢,$, F, H). Then for each w € (I' < {¢,$})* the following statements are equiv-
alent:

we L(M)NR iff we X and w is accepted by M
iff weX*and godw$ j;, ¢ugav$ for some u,v € T*,q, € F
it we L(M)=1L.

Thus, L = L(M;) N R.

Conversely, let My = (Q,I' < {¢,$},T,6,q90,¢,9, F, H) be an RRW-automaton with look-
ahead k, and let R be a regular language. By Lemma 2.4.2 we can assume without loss of
generality that M; moves its read/write-window to the right end of the tape before making
a RESTART-step and before accepting or rejecting. From M; we construct an RRWW-
automaton M as follows. M will have look-ahead k& + 2, and for each rewrite-transition
(¢,u) — (¢',v) of My and all symbols a € T'\ {¢,$}, b € T' < {¢}, M will contain the
transitions of the form (¢, uab) — (¢’,vab) and (q,au$) — (¢, av$), where a is a marked copy
of a.

M behaves essentially like the RRW-automaton M;. However, while reading the tape
contents from left to right it internally simulates a deterministic finite-state acceptor for R.
When it makes a rewrite-step, it marks a letter using the copy a of a letter a, thus indicating
that it has read the tape. It is this marking of symbols that necessitates the extension of
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the size of the look-ahead, as the RRW-automaton M; may replace a string u by the empty
string e. When M’s read/write-window reaches the right border marker $ without having
encountered a marked letter, which means that M is still in the first cycle, then M halts
and rejects if the tape contents read is not in R; otherwise it behaves like M7. When M
encounters a marked symbol while reading the tape, then it ceases to simulate the finite-state
acceptor for this cycle. Further, when rewriting a string u containing a marked symbol, then
also a symbol will be marked in the string v substituted for u. Because of the markers M is
an RRWW-automaton, and it is obvious that L(M) = L(M;) N R.

The proof for the deterministic case is identical. O

For the RW-automaton the corresponding result holds, but its proof is more involved.
This stems from the fact that an RWW-automaton performs a RESTART immediately after
each rewrite-step. Thus, during the first cycle of its computation it will in general not see
the input completely. Hence, it must check membership of the given input in the regular
language R using a different strategy.

Theorem 7.1.2. A language L is accepted by a (deterministic) RWW-automaton if and
only if there exist a (deterministic) RW-automaton My and a regular language R such that
L = L(M;)NR holds.

Proof. The proof that L can be written as L(M;) N R is the same as for Theorem 7.1.1. It
remains to prove the converse implication. So let M; be an RW-automaton, and let R be a
regular language that is accepted by a deterministic finite-state acceptor D. From M; and D
we now construct an RWW-automaton M such that L(M) = L(M;)N R holds. The difficulty
for M comes from the fact that during the first cycle of a computation starting from the initial
configuration go¢w$, M; will in general not see the input completely. As M must simulate
My, it will neither see the complete input during its first cycle. Thus, M will simulate the
finite-state acceptor D not in one cycle, but it will simulate parts of D’s computation in each
cycle until it finally reaches the right border marker $. Accordingly M will operate as follows.

Starting from a configuration of the form go¢w$, M will simulate the RW-automaton
M; and the finite-state acceptor D in parallel, while moving its read/write-window to the
right. Assume that M reaches a configuration of the form ¢x(q, p)uay$, where u is the
contents of M;’s read/write-window, M; is in state ¢, and D is in state p. If M; per-
forms a rewrite/restart-step next, replacing u by the shorter string v, then M perfoms a
rewrite/restart-step, replacing the string ua by the string v|a,p’], where p’ = dp(p,u), that
is, p’ is the state that D enters after reading the input zu. Observe that as in the proof of
the previous theorem, the look-ahead of M is larger than that of M;.

During a cycle of the form above M may encounter a tape symbol of the form [a, p], where
a is a tape symbol of M7, and p is a state symbol of D. Then M continues the simulation of
M as before, but the simulation of D now continues with state p, reading the symbol a.

Thus, during the course of a computation M’s tape inscription may contain several occur-
rences of symbols of the form [a, p|, where p is a state symbol of D. However, the rightmost
occurrence of a symbol of this form satisfies the following conditions:

() M has not yet seen the tape inscription to the right of this symbol.

(8) The state of D contained in this symbol is the actual state of D that D enters after
reading the initial input w up to this position.
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Finally, M accepts if M; accepts and if the simulation of D is in a final state when M
reaches the right border marker $. Observe that in case M reaches the marker $ in a cycle
prior to the final cycle, it can decide whether or not the given input belongs to R. If it does
not belong to R, then it rejects, otherwise it places a special mark on the last symbol before
the $ to indicate that the simulation of D has been finished successfully. Now it should be
clear that M is an RWW-automaton that accepts the language L(M;) N R.

Again, if M; is deterministic, then so is M. (]

7.2 Separation Results

7.2.1 Concerning the Deterministic Subclasses

In Section 2.4 it was left open whether the obvious inclusion relations concerning the classes
L(det-RRW), L(det-RW), L(det-RRWW), and L(det-RWW) are strict and whether any other
inclusion relation concerning these classes holds. In Theorem 3.2.10 we have seen that CRL =
L(det-RWW) = L(det-RRWW). Now we address the remaining inclusion relations concerning
deterministic restarting automata.

Lemma 7.2.1. CRL \ L(RW) # 0.

Proof. Since L = {a"b™c | n,m,l > 0,n = mV m = I} € CRL (see Example 3.4.2), but
L ¢ L(RW) [JMPVOTb]. O

In [JMPVI7b] it is shown that L = {a"b" | n > 0} U{a}* € L(det-R). On the other hand,
it is easily seen that L is not a congruential language. This gives the following result.

Lemma 7.2.2. L(det-R) ~ CRCL # ().

In particular, this means that the inclusion CRCL C L(det-RW) given in Lemma 5.1.3 is
proper.
Further, the following separation result holds.

Lemma 7.2.3. CRCL\ L(RR) # 0.

Proof. Let R be the string-rewriting system R = {aaa$ — ba$,aaab — ba,¢b — ¢} on
{¢,a,b,3}. Since R is confluent and length-reducing, [¢a$]r is a CRCL.

It is easily seen that [¢a$]z N ¢a*$ = {¢a®'$ | k > 0}. In [JMPV97b] it is shown that
L = {w € {a,b}* | ¢w$ € [¢a$]r} ¢ L(R), which carries over to [¢a$]r and L(RR): We
assume that [¢a$]r is accepted by some RR-automaton M. Let k be the window size of M.
Let m € N with m > k. Then M accepts the word ¢a"$. In the first cycle of an accepting
computation of M on this word we have ¢a®"$ 1, ¢a!$ for some I € N, as the markers ¢ and
$ cannot be deleted in this cycle as this would lead to a tape content not in [¢a$]r. Now, [
cannot be a power of 3 as 3™~! < 3™ — k < < 3™. Thus ¢a'$ ¢ [¢a$]r, while M accepts
¢a'$. This is a contradiction. O

Thus, CRCL and L£(RR) are incomparable under set inclusion.
In [JMPV98Db] it is shown that the language

Lg:={a""c|n>0}U{a"b*™d|n>0}

belongs to L(mon-RR) ~. L(RW). Since Lg can obviously be accepted by an sDTPDA, we see
that Lg € CRL = L(det-RWW) ~\ L(det-RW). Further, we have the following negative result.



Restarting Automata

Lemma 7.2.4. Lg ¢ L(det-RRW) .

Proof. Assume that Lg is accepted by a deterministic RRW-automaton M = (Q, %, T, 4, qo, ¢,
$,F,H), where ¥ = {a,b,c,d} and I' = ¥ U {¢,$}. For n > 0, given a"b"c as input, M
performs an accepting computation of the following form:

qo¢a”b"c$ 4 qotun$ FSy qodweS Gy - - FSy qodwm$ By dugav$

for some g, € F. Since wi,...,w,; € X*, and since M accepts starting from the initial
configuration go¢w;$, we see that wy, ... ,w,, € Lg. If n is sufficiently large, then M cannot
rewrite the tape contents ¢a"b"c$ into a string of the form ¢a’b?’d$ within a single cycle.
Hence, wy is of the form w; = a” 7" ¢ for some j > 1.

Now consider the input z := a"b*"d. Starting from the initial configuration goda™b"b"d$,
M will perform the same rewrite-step, that is, go¢a™d"b"d$ %, ¢a™ 76" Jgb™d$ for some
q € Q. Following this rewrite-step M will either reject on encountering the symbol d, or
it will make a RESTART, that is, goda™0*"d$ S, qo¢a™ 7" 7d$. As a"7b*"Id ¢ Lg,
we see that in each case L(M) # Lg. Thus, Lg is not accepted by any deterministic RRW-
automaton. ]

The observations above show that the following inclusions are proper.
Corollary 7.2.5.
(a) L(det-RR) C L(RR).
(b) L(det-RRW) C L(RRW) .
(c) L(det-RR) C L(det-RRW) .
(d) L(det-RW) C L(det-RWW) = CRL.
(e) L(det-RRW) C L(det-RRWW) = L(det-RWW) = CRL.
However, it remains open whether or not the inclusions L(det-R) C L(det-RR) and
L(det-RW) C L(det-RRW) are proper.
Further, since CRL is properly contained in GCSL [BO98], it follows that also the following
inclusion is proper:

£ (det-RWW) = £ (det-RRWW) = CRL C GCSL C L(RWW).

We summarize these results in Figure 7.1, where a solid line (without question mark)
indicates that the corresponding inclusion holds and is proper, a question mark close to a
solid line indicates that the corresponding inclusion holds and it is an open problem whether
it is proper, a question mark close to a dashed line indicates that it is an open problem
whether the corresponding inclusion holds, and a dotted line indicates that the corresponding
inclusion holds and the question whether it is proper will be addressed later in this section.
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csL
L(RRWW)
;
C(RWW)  L(RRW)
‘ [ ‘ 9 GCsL
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L (mon-RRW L(det-RRW)
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L(mon-RW)  L(mon- B(det-RW) + L(det-RR)

1

N

Figure 7.1: Relations among the language classes considered as of Section 7.2.1

7.2.2 Concerning the Relations to GCSL

For the nondeterministic restarting automata we have the following chain of inclusions:
GCSL C L(RWW) C L(RRWW) C CSL.

It is known that GCSL is properly contained in CSL, but it is open which of the intermediate
inclusions are proper.

We look at the Gladkij language Lgiaari; = { w#w™~#w | w € {a,b}* } which is a
context-sensitive language that is not growing context-sensitive [Bun96] (see Section 2.2). We
will show first that this language is accepted by some RRWW-automaton, thus separating the
class GCSL from the class L(RRWW). Then we show by a completely different method that
even LGladkij S L(RVVVV)

Here we will see how the separation of rewriting operation and restarting operation can
be used to check the correctness of choices of previous nondeterministic steps. In each cycle,
a nondeterministic choice is made where and how to rewrite and the correctness of the choice
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of the previous cycle is verified. We call this technique mutual testing. It is due to Friedrich
Otto. We will see in Section 7.2.3 that this technique is quite powerful.

Theorem 7.2.6. Lgiqari; € L(RRWW).

Proof. We will construct an RRWW-automaton M = (Q,X%,T,9,qo,¢,$, F, H) that accepts
the language Lgiqdrij- As by Corollary 7.3.5 L(RRWW) is closed under the operation of
taking intersections with regular languages, we can restrict our attention to inputs of the
form u#v#w, where u,v,w € {a,b}*.

Let ¥ := {a,b,#}, and let T := Y U {¢,$} U{ Ay, By, Cy | u € {a,b}? }. Further, for the
size of M’s read/write-window we choose the number 8. The action of M on an input of the
form u#v#w is described by the following algorithm, where win always denotes the actual
contents of M’s read/write-window:

(1.) if win = ¢x#y#2$ then
(* The window contains the tape inscription completely. *)

if 2#y#2z € Liaarij or © € {a,b,e}, y = x and z = 2C,, for some u € {a, b}?

then ACCEPT else REJECT;
(2.) repeat MVR until win € ' - # . T

or win € {a,b,¢} - {A, B, | u € {a,b}?} - TS5,

(3.) if win = zus#tvey for some ug, vy € I'? then
(3.1) begin if us & {a,b}? or va & {a,b}? or uy # v3 then REJECT;

(3.2) (x Here ug = v5" € {a,b}?, that is, u#v#w = uyus#uiviFw. *)
nondeterministically goto (4.) or goto (5.);

(4.) REWRITE : us#vs — Ay, Buy;

(4.1) repeat MVR until win € T - §;

(4.2) if win ends in up$ then RESTART else REJECT;

(* A RESTART is performed if the tape contents was ujua#u5 viFwius
for some u1,v1,w; € {a,b}* and up € {a,b}?. *)

(5.) (* A substring us#u3 has been discovered, but it is not yet being rewritten. )
repeat MVR until win € I'* - §;
(5.1) if win ends in C,$ for some z € {a, b}>

then REWRITE : C,,$ — $
else REJECT;
(5.2) RESTART;
(* A RESTART is performed if the tape contents was ujus#us vi#wCy
for some u1,vi,w; € {a,b}* and z,us € {a,b}?, and the C, has been
deleted just prior to the RESTART. x)
(5.3) end;
(6.) if win = c- Ay, By, - v’ for some uy € {a,b}?
then nondeterministically goto (7.) or goto (8.);
(7.) repeat MVR until win € I'* - §;
(7.1) if win ends in up$ then REWRITE : us$ — C,,$
else REJECT;
(7.2) RESTART;
(* A RESTART is performed if the tape contents was w1 Ay, By, v1#wius
for some u,v1, w1 € {a,b}* and us € {a,b}?, and usy is replaced by
the nonterminal Cy, just prior to the RESTART. )
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(8.) REWRITE : A,, By, — #;
(8.1) repeat MVR until win € T'™* - §;
(8.2) if win ends in C,,$ then RESTART else REJECT;
(* A RESTART is performed if the tape contents was uj Ay, By, v1#w1Ch,
for some uy,v1,w; € {a,b}* and us € {a,b}?, and in this cycle
Ay, By, has been replaced by the symbol #. x)

In the following we give some example computations of M in order to illustrate how it
works before we turn to proving that indeed L(M) = Lgiadkij- In the description of these
computations we place a bar underneath the important part of the window contents.

Example 1. Consider the input abbb#bbba#abbb:

qo¢ abbb#tbbbadtabbb$ *(53 ¢ abbb#-bbbattabbb$ .

Now we can continue with either (4.) or (5.). However, (5.) will lead to rejection, so let’s
continue with (4.):

¢ abbb#bbba#abbb$ ZS ¢ab Ay, Bypba#abbb$
<T*1> dabAy, Byyba#abbb$
(4’1_2)) Q()(i: abAbbBbbba#abbb$

»é; ¢abAy, Bpyba#abbb$ .

Now we can continue with either (7.) or (8.). However, it is easily seen that (8.) will lead to
rejection, and so we continue with (7.):
¢ ab Ay, Byyba#abbb$ (7; ¢ ab Ay, Byyba#abbb$
(:) ¢abAbbBbbba#abeb$
(7'—>2) qo¢abAbbBbbba#abeb$

(%; dabAy, Byyba#abC$ .

Again we can continue with either (7.) or (8). This time, however, (7.) will lead to rejection,
and we continue with (8.):

¢abAy, Bpyba#abCrp$ '(—8)> dab#baFtabChp$
= dab#battabCry$
(8.1) —c
—  qo¢ab#ba#abChy$
(8.2)

(H;‘) ¢ab#ba#tabCryp$ .

Here we can continue with either (4.) or (5.). This time (4.) will lead to rejection, and we
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continue with (5.):

dab#ba#abCh$ ? ¢ab#ba#abCh$

(5) ¢ab#ba#ab$

—  qo¢ab#batab$ .
(5.2)

Continuing in this way we will finally obtain the configuration go¢##C.$, which leads to
acceptance.

Example 2. Consider the input abbb#bbba#abba:
qo¢ abbb#bbba#abba$ ré; ¢abbb#bbbaF#abba$ .

—
=

We can continue with either (4.) or (5.)

Case 1: ¢abbb#bbatabba$ '(Z; ¢abAp, Byyba#tabba$
(i) ¢ab Ay, Byyba#abba$
— REJECT.
(4.2)

Case 2: ¢ abbb#bbba#abba$ bé; ¢abbb#bbba#abba$
— REJECT.
(5.1)

Thus, this input cannot be accepted by M.
Example 3. Consider the input abbb#baba#abbb:

*

qo¢abbb#babaFabbb$ '(;; ¢abbb#baba#abbb$

— REJECT.
(3.1)

Thus, this input is not accepted either.

Based on these examples we can easily complete the proof of the theorem. From Example 1
we see that each string w € Lgiaarij is accepted by M. On the other hand if w = x#y#z
for some x,y,z € {a,b}* such that w & Lgiadrij, then x # y™~ or & # z. In a computation
it is checked whether or not = y™ in step (3.1), and it is checked whether or not = z
in step (4.2). Hence, it follows that the language L(M) coincides with the Gladkij language
Laiadkij- O

As the Gladkij language does not belong to the class GCSL, we obtain the following
consequence.

Corollary 7.2.7. GCSL is properly contained in the class L(RRWW).
Thus, we see that at least one of the following two inclusions is proper:
GCSL € L(RWW) C L(RRWW) .

We will see that in fact the first one is proper, where we use a completely different technique to
show that the Gladkij language is already contained in the class L(RWW). This construction
is based on an idea due to Tomasz Jurdzinski and Krzysztof Lorys (see [JLNOO1]).

The RWW-automaton that accepts Lgiadri; works in two major steps:
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(1.) It will first transform the input u#v#w, where u,v,w € {a,b}*, into a string of the
form w1 #wv1#w; using nonterminals that allow to encode two terminal symbols into one
nonterminal symbol. This transformation will succeed only if w is a subsequence of v™,
and v™ is a subsequence of u.

(2.) Now M will check whether or not |u1| = |vi| = |wi| holds. If this is the case, then also
|u| = |v| = |w| implying that actually © = v~ and w = v™, that is, the input satisfies

uFVHW = wHFW”H#w € Laiadrij -

In the following we will describe the RWW-automaton M in detail and prove that it
actually proceeds as outlined above. We first give a sequence of meta-instructions (see Section
2.4) that realize step (1.) above. The RWW-automaton M nondeterministically chooses an
instruction from this sequence and tries to execute it. The regular constraints will enforce
that only certain choices will lead to a successful execution.

The input alphabet of M is ¥ := {a, b, #}, and the tape alphabet for the first part of the
computation is I' := X U Ty UT'3, where

Iy :={lc,d,e] | ¢,d € {a,b},c € {0,1} }

and
I's:={[c,d,e,e] | c,d,e € {a,b},e € {0,1} }.

Further, for ¢ € {0,1}, we take € as a shorthand for 1 — ¢.
The first part is executed by an RWW-automaton M; that is defined as follows:

(0.) if (Jw| <17 and w € Lgaari;) then ACCEPT
else choose repeatedly one of the following instructions;
) (¢ -{a,b}*, cd# — [c,d,0|#) for ¢,d € {a,b};
) (¢-{a,b}* cdle, f,e] — [c,d,E]le, f,e]) for c,d,e, f € {a,b},e € {0,1};
) (¢,cld, e e] — [e,d,e,e]) for ¢,d, e € {a,b}, e € {0,1};
) (¢-{a,b}* - [e,d,e] - TS, #de — #]d, c,€]) for ¢,d € {a,b},e € {0,1};
) (¢ ’ {avb}* ’ [C,d,E] 'F§ #F; ’ [e,f,é],dc—> [d,C,E])
for ¢,d, e, f € {a,b},e € {0,1};
) (¢[e,d e e] -T5-# T3 e, d,ele# — [e,d,c,e|#) for ¢,d, e € {a,b},e € {0,1};
(L.7) (¢-{a,b}* - [c,d,e] - TS5 -#-T5-[d,c,e] - {a,b}* - # - {a,b}*, cd$ — [c,d, e]$)
for ¢,d € {a,b},e € {0,1};
(1'8) (¢ ’ {CL, b}* ’ [Cv d, 5] ’ F; “# - F; ’ [d> = 5] ’ {aa b}* - {a> b}*,
cdle, f,&] — [c,d,€][e, f,&]) for ¢,d,e, f € {a,b}, e € {0,1};
(1.9) (¢[c,d,e,e]-T5-#-T%-[e,d,c,e|l#,cld, e ] — [c,d,e,c])
for ¢,d,e € {a,b},e € {0,1}.

The RWW-automaton M; keeps executing instructions from (1.1) to (1.9) until no further
instruction is applicable.

A configuration of the form go¢u#v#w$, where u,v,w € {a,b}*, is called potentially
successful, if M, starting from this configuration, can reach a configuration such that the tape
contents belongs to the regular set

(¢-T3-To-9# T3 - Ta-4-T3-T3-8) U (¢-T5-#-T3-#-15-9).
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If the input w contains more than two occurrences of the symbol # or less than two
occurrences of this symbol, then it is not potentially successful, as M does not delete or
introduce occurrences of #. Hence, we may assume for the following considerations that the
input is of the form u#v#w for some u,v,w € {a,b}*.

Claim 1. Let u,v,w € {a,b}*.
(a) If qo¢u#v#wS is potentially successful, then |u| = |v| = |w| mod 2.

(b) Let w = ajaz...azm, v = bapbon—1...b1, and w = cica ... co, where a;,b;,¢; € {a,b}
and k,m,n € N. The configuration qo¢u#v#w$ is potentially successful if and only if

k <n <m, and there exist strings ug,u1, . .. ,Un, Vo, V1, ..,k € ({a,b}?)* such that
u == uObleU1b3b4U2 e unflbgnflbgnun and
V™ = 09C1CoV1C3C4V2 . . . Vf_1Cok—1CokV -

(¢) The configuration qo¢apay . ..agm#ban ... b1bo#coct ... cop$ is potentially successful if
and only if ag = by = co and qo¢ay . . . aem#ban . . . bi#cy . .. co$ is potentially successful.

Proof of Claim. Let u = apap—1 ...asa1, where p > 3 and a; € {a,b}, i =1,...,p. The rules
of types (1.1) to (1.3) transform the prefix u# = a,ap—1 ...a2a1# into the string

lap, ap—1,1] ... a4, a3, 1][az, a1, 0]#, if p=0mod 4,
W = lap, ap—1,0]...[a4,as, 1]]az, a1, 0]#, if p=2mod 4,
lap, ap—1,ap—2,1][ap—3,ap—4,0] ... a2, a1,0]#, if p=1mod 4,
lap, ap—1,ap—2,0][ap—3,aq-4,1]...[az,a1,0]#, if p=3 mod4.

The rules of types (1.4) to (1.6) transform the infix #v# = #0b1by...b,# into the string

#[b1, b2, €][b3, ba, €] . .. [bg—1, by, E|#, if ¢ =0mod 4,
#Ul#: #[blab2,5”b37b4v ] [bq 1abq76]#7 if q£2m0d 47
#[b1,b2, €] ... [bg—a,b q 3,€][bg—2,04-1,bg,E]#, if ¢ =1mod4,
[ ] [q 47 q— 37§][bq—27bq—17bQ75]#7 if qE3mOd 47

where € € {0,1}. However, the regular constraints of these rules imply that in the prefix u#,
a corresponding symbol from I's (or I's) has just been generated. Finally, the rules of types
(1.7) to (1.9) transform the suffix #w in an analogous manner, while the regular constraints
imply that u# and #v# had just undergone corresponding transformations. From these
observations we see that the various statements of the claim above hold. o

If the initial configuration god¢u#v#w$ is potentially successful, then there is a computa-
tion of M, that transforms it into a configuration of the form go¢u;#v1#w1$ that belongs to
the set

(¢-T3-Io-#-I5-I's-#-I's-15-8) U (¢-Ty-#-T5-#-T5-9).

In order to verify that the initial configuration go¢u#v#w$ corresponds to an element of
LGiadri; it remains to check that the configuration go¢ui#vi#w:$ satisfies the requirement
that |u1| = |vi| = |w1|. So now we turn to the second step of our construction.

The set Ty := (5 -# -5 - #-T%5) U (I -5 - #-T%-T's-#-T'3-I'%) is regular, and
the set Ty = {wi#ni#w1 € T1 | || = |vi] = |wi|} is growing context-sensitive. As
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GCSL C L(RWW), and as GCSL is closed under intersection with regular languages, there
exists an RWW-automaton M, that accepts the set 75. By using an appropriately chosen
set of additional nonterminals we can combine the RWW-automata M; and My in such a
way that once a step of My has been executed, no step of M is ever enabled again. The
RWW-automaton M thus accepts an input u#v#w, u,v,w € {a,b}*, if and only if M; can
successfully transform u#v#w into a string ui#vi#w, € 11, and for this string we have
|ui| = |vi| = |wi]. By Claim 1 (b) and (c) this means that u#v#w € Lgiadrij, that is,
L(M) = LgGiadrij- Hence, we have the following result.

Theorem 7.2.8. The Gladkij language Lgiqdri; belongs to the class L(RWW).
This yields the following consequence.
Corollary 7.2.9. GCSL C L(RWW) .

As the closure of L(RW) under the operation of taking the intersection with a regular
language is equal to L(RWW) (Theorem 7.1.2) and GCSL is closed under this operation, it
also follows that L(RW) Z GCSL.

Hence, in summary we have the situation depicted in Figure 7.2, where a question mark
close to a solid line indicates that it is an open problem whether the corresponding inclusion
is proper, and a question mark close to a dashed line indicates that it is an open problem
whether the corresponding inclusion holds.

So in contrast to the situation in the deterministic case (see Theorem 3.2.10) and in the
monotone case (see Proposition 2.4.4(a)), it is still open whether the separation of the restart
from the rewrite operation does increase the power of the nondeterministic RWW-automaton.
Also we would like to point out that using the same technique of mutual testing as for the
Gladkij language it can be shown that L(RRWW) and even L(RWW) contain some rather
complicated languages, as we will see in the next section.

7.2.3 L(RRWW) Contains NP-Complete Languages

Here we will show that also some other quite complex languages are accepted by RRWW-
automata. In fact, L(RRWW) contains NP-complete languages. But first we look at another
language not in GCSL.

We consider the language L guadratic-copy = {ww#‘w‘k'w' | w e {a,b}*}.

Lemma 7.2.10. Lgyadratic-copy ¢ GCSL.

Proof. As Lguadratic-copy = Lcopy-pad(ur o) With 91 (w) = € and Po(w) = #'“"2_‘“", the claim
follows from Lemma 2.2.6. O

We prove the following result. Again, mutual testing is used to recognize this language.
Here, we have an arbitrary number of blocks.

Theorem 7.2.11. The language L gyadratic-copy 5 accepted by some RRWW-automaton.

Thus, we see that Lguadratic-copy 1S another example of a language from the difference
L(RRWW) ~ GCSL.
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Figure 7.2: Summary of the relations among the language classes considered

Proof. Below we will present an RRWW-automaton M for the language L gyadratic-copy- Essen-
tially this RRWW-automaton will proceed as follows:

Step 1. Check that the input is of the form w#"™ for some string w € {a,b}* and some
integer n > 0.

Step 2. Place a special marker to divide the string w into two parts w; and ws, and place
m occurrences of a special marker D to divide the suffix #™ into factors #™ D, ... ,#" D,
where n = > (n; + 2).

Step 3. Verify that wy and wsy coincide, that all the exponents n;, 1 < i < m, coincide
with |wi| — 3, and that the number of factors m equals the length of w;. Accept if all these
conditions are met.

The verification process in Step 3 follows the idea of the proof that the Gladkij language
is accepted by some RRWW-automaton as given in the proof of Theorem 7.2.6. The two
factors wy and wo and the m factors #™, 1 < ¢ < m, are reduced in parallel. In each round,
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which consists of a number of cycles, the last two letters of w; are compared to the last two
letters of we, and if they coincide, they are erased, and two symbols # are deleted from each
factor #™D. Also in each round the last two occurrences of the symbol D are replaced by
the symbol D.

Each of these rounds is simulated by a sequence of 2- (m+ 2) cycles. From left to right we
first mark the two-letter subfactor of each factor that is to be erased, which takes m+2 cycles,
and then we erase these subfactors, again from left to right, replacing the last two occurrences
of D by D in the process. To achieve this two additional special symbols D’ and D" are used.
The regular constraints of the meta-instructions describing these cycles ensure that the cycles
of a round are executed in the correct order, that is, if a particular cycle is chosen at the
wrong moment, then its regular constraints will ensure that the RRWW-automaton rejects.

The input alphabet of the RRWW-automaton M is ¥ := {a, b, #}, and the tape alphabet
is

[ =3 U{[slt],[rs]t],[st] | r,s,t € {a,b} }U{C,D,D',D",D}.

Below we give the description of the program for M in terms of meta-instructions (see Section
2.4), where w € T'* denotes the actual tape contents at the beginning of the current cycle.

(1) if (|w| <20 and w € Lquadmtic—copy)

or w = ajaslaz|ai]azaz DD’ D" - D*

or w = ajasaslas|ar]asazasFDH#DH#D'#D" - (#D)F

for some ay,as,as,a4 € {a,b} and k > 2

then ACCEPT
else if |w| > 20 then choose one of the following instructions;
(¢ -{a,b}* - #*, ##8 — D"$,¢);
(¢ - {a, b} - #*, ## — D', 4 - D" - §);
(¢ -{a, b} - #*, #4 — D, (#*D)* - 4" - D' - 4 - D" - §);
(¢ {a,b}", st — [s]t], {a,b}" - (#*D)* - #* - D' - #* - D" - §)

for some s,t € {a,b};

Comment: Instructions (2.1) to (2.4) realize Step (2.) from above
from right to left.
(3.1) (¢ -{a,b}",r[slt] — [rs[t], {a,b}" - (#*D)* - 4" - D" - #* - D" - §)

for some r, s,t € {a,b};

A~~~ /S
N R
S N N

(32) (- {ab} - rlsl] - {0, b}, 0] — 4, )
for some r,s,t,8',t' € {a,b};
(3.3) (¢ -{a,b}" - r[slt] - {a,b}", [s'V]C — C,
D-(#"-CD)*-#*-CD' - #*-CD" - (#*-CD)* - §)
for some r,s,t,8',t' € {a,b};
(3.4) (¢ -{a,b}* -r[s|t] - {a,b}* - (#* - D)*-#*,CD — D, )
(#*'CD)*.#*‘CD,‘#*.CD/,‘(#*.CD)*‘$)
for some r,s,t € {a,b};
(35) (- {ab} - rlsl] - {a,b}" - (4 - D) - #°,CD — D, )
45 .CD .45 .CD -4 .CD" - (#* - CD)* - §)
for some r, s,t € {a,b};
(36) (- {ab) - rlsl] - {a, b} - (4 D) -4 D/ - 4,CD — D",
#*.CD' - #*-CD" - (#*-CD)*-$) for some r,s,t € {a,b};
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(B7) (- {ab}* rlsl]- {a, b} - (4 DY - 4 D/ - 4 D' -4, CD — D,
#*-CD" - (#*-CD)*-8) for some 7, s,t € {a,b};
(38) (¢ -{aby -rlsl]-{a.b} - (#° - D) -4 D" D" D4
CD" — D, (#"-CD)* - §) for some r,s,t € {a,b};
(39) (¢ {a,b} rlsl] - {a, b} - (47 D) -4 D/ = D" (4 D)* - 4,
CD — D, (#*-CD)*-8$) for some r,s,t € {a,b};
(3.10) (¢ -{a, b}, g[rslt] — [gt], .
{a,b}" - glrs]- (3" - CD)* -3 CD' -4 - CD"- (4" - CD)" - §)
for some g,r,s,t € {a,b};
(3.11) (¢ - {a,b} - [rslt] - {a, b}, st — [,
(#*-D)*-#*- D' -#*-D". (#*-D)*-8) for some r,s,t € {a,b};
(3.12) (¢ -{a,b}" - [rs[t] - {a,b}" - [rs] - (#* - CD)* - #*, #4D — CD,
(#*- D) -#*- D' -#*- D" (#*-D)*-$) for some r,s,t € {a,b};
(3.13) (¢ -{a,b}* - [rs|t] - {a,b}* - [rs] - (#* - OD)* - #*,#4D" — CD/,
#*.D" . (#*-D)*-$) for some r,s,t € {a,b};
(3.14) (¢ -{a,b}* - [rslt] - {a,b}" - [rs] - (#* - CD)* - #* - CD" - #*,
##D" — CD" (#* - D)*-8$) for some r,s,t € {a,b};
(3.15) (¢ a0} - [rsft] - {a, b} - [rs] - (#° - CD)* -4 CD"- #* - CD" - (#" -
CD)* - #* ##D — CD, (#* - D)* - $) for some r,s,t € {a,b};
Comment: Instructions (3.1) to (3.15) realize Step (3.).

From the regular constraints it is obvious that the instructions (2.1) to (2.4) have to be
executed in this order, and that afterwards only instructions (3.1) to (3.15) are applicable.
By checking the regular constraints of these instructions we see that they verify indeed that
the given input belongs to the language L gyadratic-copy-

We complete this proof with an example illustrating the way in which the RRWW-
automaton M works. We present the sequence of restarting configurations of an accepting
computation of M given the string w := abbababbab - #2° as input:

qd¢w$ = ¢abbababbab - #° - ##8

== qodabbababbab - #'* - ###>D"$
qo¢ abbababbab#* #H#H> HH#H#> ###° D'#* D"$
=% qodabbababbab#? D#2D#2D#2D'#2D"$

2y qodabbalblalbbab#> D#> D42 D#>D'#>*D"$
(3.1) qo¢abblab|albbab#t# D#> DH>DH#H2 D' #2D"$
G godabblablalbblabl#2D #2D #2DH#2D'#2 DS
G godabblabla]bblablC DCDCDH2D'#2D"S
G ot abblablalbblablCDCDCDCD'#2D"$
G jodabblabla]bblablC DCDCDCD'CD"$
P go¢abblalbblablCDCDCDOD'CDS
(3.3)

[bla]b
=2 qo¢ablbla)bbCDCDCDCD'CD"$
[bla]

——  qo¢ablbla]bbDCDCDCD'CD"$
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B3 sodab[bla]pbDD'CDCD'CD"$
B9 podabbla]pbDD' D"CD'CD"$
BT godabblalbbD D' D" DCD"$
B8 qodablblalbbD D' D" DD$
@, ACCEPT .

Instead of applying instruction (3.5) also instruction (3.4) could be applied again, but it
is easily seen that this would lead to rejection in the next cycle. Thus, the above is the only
accepting computation for the given input string w.

This completes the proof of Theorem 7.2.11. O

The next language we are interested in is a particularly encoded version of the satisfiability
problem SAT of Boolean formulas in conjunctive normal form with clauses of degree 3. Let
V :={wv; | 1 > 0} be a set of Boolean variables, and let ¥y := {—, A, V}, where - is the
symbol for negation, A denotes conjunction, and V denotes disjunction. A literal is a variable
from v; or a negated variable —wv;. A clause is a disjunction x1 V o V - -+ V x,, of literals
T1,...,Tm, and the number m of literals is called the degree of this clause. Finally a formula
in conjunctive normal form is a conjunction C1 A Cy A --- A Cp, of clauses. A formula « is
satisfiable if there exists a truth assignment ¢ : V' — {0,1} such that ¢(«) evalutes to 1
using the standard interpretation for the operator symbols in ¥y. By 3SAT we denote the set
of satisfiable formulas in conjunctive normal form containing only clauses of degree 3. The
language Lisat will be a particular encoding of this set.

Let ¥ := Yo U {x,a,#,&,A,B}, and let ¢ : V — {x,a}* denote the unary encoding
v; — z2a’ (i > 0). For a € (V UXg)*, c(a) denotes the string from X* that is obtained
from « by replacing each variable occurrence v; by its unary encoding c¢(v;). The encoding
¥ (VUXg)* — X* is now defined by choosing () as

() := ABx?#ABx?a# - - - #ABx*a*&c(a),
where k is the maximal index such that vy occurs in a. The language L3saT is defined as
Lsgar :={¢Y(a) |a € 3SAT }.
Example 7.2.12. The formula
a:=v3VvV v A-vgV vV -ovg

belongs to the set 3SAT, as ¢ : v1 — 1,v3 — 0 already shows that « is satisfiable. As vs is
the variable with maximal index occurring in o, we see that the language LisaT contains the
string

ABx*#ABz?a# ABz?a*# ABx*a®&a?a® v 2%a v —z2a® A ~2?a® v —xPa v —a?ad.

It is obvious that the language LzsaT belongs to the complexity class NP. On the other
hand from the proof of the NP-hardness of SAT (see, e.g. [HU79]) and the reduction from
SAT to 3SAT as given in [GJ79], we see that this language is actually NP-complete under
log-space reductions. Below we will establish the following result.
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Theorem 7.2.13. The language Lssat is accepted by some RRWW-automaton.

We have seen in Section 2.4 that L(RRWW) C NP (Corollary 2.4.3). Now the fact that
L(RRWW) contains the NP-complete language Lssar means that each language from NP is
reducible to a member of L(RRWW) by a log-space reduction. Thus, we obtain the following
consequence, where LOG-RRWW denotes the closure of L(RRWW) under log-space reductions,
that is, a language belongs to LOG-RRWW if and only if it is reducible by a log-space reduction
to a language that is accepted by some RRWW-automaton.

Corollary 7.2.14. NP = LOG-RRWW ..

It remains to prove Theorem 7.2.13.

Proof of Theorem 7.2.13. We describe an RRWW-automaton M = (Q,%,1,6,q0,¢,%, F, H)
for the language L3sar, where

- Y ={ NV, z,a,#,&, A, B},

-I':=%Xu{0,1,y},

- and Q, F', H, and ¢ are given implicitly by the following description.
The RRWW-automaton M works as follows.

Step 1. A value t € {0,1} is chosen for the variable currently encoded by the string 22 or
the string y2. Moving from left to right each occurrence of z2¢c or y?c, where ¢ is a symbol
from A := {A,V,#,&,$} is replaced by tc. For doing so a number of cycles is necessary, but
the regular constraints of the corresponding meta-instructions will ensure that this is done
correctly.

Step 2. Again moving from left to right each occurrence of the factor x%a (or y%a) is replaced
by y? (or x2, respectively). In this way the index of each remaining variable is decreased by
one.

Step 3. Once all variables have been eliminated by steps 1 and 2, that is, a truth assignment
has been specified for the Boolean formula encoded by the original input, it is checked whether
the formula considered is in conjunctive normal form with clauses of degree 3, and it is verified
whether it evaluates to 1 under the chosen assignment. If so, M accepts.

For formulating the regular constraints of the meta-instructions for M we will be using
the following auxiliary regular languages:

0, = {0,1,-0,-1}U{=2? 2%} a*,
e, = {0,1,-0,-1}U{-z% 2%} a",
F, = (0,-V-0,-V-0,-N)*-0,-V-0,-V-0,,
F! = (©,-v-0e,.v-e,. N0, v, Vv -0,
LF, = ©,U{V,A},
RFE, = ©,U{V,A},

— 2,2 *
TR i Ay S
y = {0,1,70,- Y5,y tat,
F, = (0,-V-0,-V-0,-N)"-0,-V-0,-V-0,,
F, = (©,-V-0,-V-0,-N)"-0, V-0, V-0,
LF, := ©,U{V,A},and

RF, := ©,U{V,A}.
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Below we give a description of the program for the RRWW-automaton M in terms of
meta-instructions:

(0)
(1.1)
(1.2)
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w
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© 00 ~J O Ot i~
— O — — —
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= © 00 J O O i W N
O —

—
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(3.2)

Nondeterministically choose one of the following instructions;
(4 AB, 224 — t#,(AB2? -at - #)* - ABz? -at - & - F, - $) for some t € {0,1};
(4 ABt# - (ABx? -at - #)* - ABx? -at - & - LF},2®>V — tV, RE} - §)

for some ¢t € {0,1};
(4ABt# - (ABx? -at - #)* - ABx? -at - & - LF}, 2°\ — tA\, RE} - $)

for some ¢t € {0,1};
(4 ABt# - (ABz?-at - #)* - ABx?-at - & - LE}, 2% — t$,¢) for some t € {0, 1};
(¢4AB, 2%& — t& F, -$) for some t € {0,1};
(¢ABt& - LF},2?>V — tV, RE} - $) for some t € {0, 1};
(¢ ABt& - LF* 22N\ — tA, RF} - $) for some t € {0,1};
(¢ABt& - LF}, 2?$ — 8, ¢) for some t € {0,1};
(e,¢ ABt# — d;A#, (ABx?-at-#)*- ABz?-at - & - F!-$) for some t € {0,1};
(e,¢ ABt& — ¢ A&, F - $) for some t € {0,1};
(dAB, y2# — t#, (ABy T ABy? at & - F, - $) for some t € {0,1};
(4 ABt# - (ABy? - a™ - #)* -ABy2 -at - & LE},y*V — tV,RF; - §)

for some ¢ € {0,1};
(¢ABt# - (ABy? -a™ - #)* - ABy? - a™ - & - LE} >N — tA, RF} - §)

for some t € {0,1};
(¢ABt# - (ABy?-at-#)* - ABy?-at - & - LF;‘,y2$ — t$, ) for some t € {0,1};
(¢AB,y*& — t&, F, - $) for some t € {0,1};
(¢ ABt& - LF*,y V — tV, REy - §) for some t € {0,1};
(¢ ABt& - LF* JYPA = EA, RF* $) for some t € {0,1};
(¢ ABt& - LF, ,y2$ — t$,¢) for some t € {0,1};
(e,¢ ABt# — ¢B# (ABy?-a™ - #)*- ABy*-at - & - F - $) for some t € {0,1};
(6,4ABt& — ¢ B&, F) - 8) for some t € {0,1};
Comment: Instructions (1.1) to (1.20) realize Step (1.).
(dA# - (ABy? - a* - #)*, ABx?a — ABy? a* - (#AB2? - a™)* - & - F.. - $);
(¢ A# - (ABy? - a* - #)* -ABy?-a* - & - RF},2%a — y* LF} - $);
(e,¢A# — ¢, (ABy® - a* - #)* - ABy* -a* - & - F - §);
(¢A& - RE;, @ a,—>y2 LF}-9%);
(c, ¢ Ak —'¢, F, -5):
(¢ B# - (ABz* - a* - #)*, ABy*a — ABz? a* - (#ABy* - a™)* - & - F}, - $);
(4B# - (ABz? - a* - #)* - ABz?-a* - & - RF},y*a — x* LF} - §);
(e ¢B#—>¢ (ABx L) ABx?-a* - & - Fy - 9);
(¢B& - RE},y%a — 22 LF* $);
(6,4 B& — 4, F. - 5);
Comment: Instructions (2.1) to (2.10) realize Step (2.).
(e,d4t1 Vta VitsA — ¢,{0,1,7,V,A}* - 8), where t1,t2,t3 € {0,1,-0,-1} such
that at least one of them is 1 or —0;
if w = ¢ty Vo V133, where t1,t9,t3 € {0,1, 70,1} such that at least one of
them is 1 or =0, then halt and ACCEPT.

In instruction (1.1) a value tp € {0,1} is chosen for the variable vg. Then in instructions
(1.2) to (1.4) each occurrence of ¢(vp) in the encoded formula is replaced by ¢y from left to
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right. Instruction (1.9) ends this part.

Next using instructions (2.1) to (2.2) each occurrence of z2a is replaced by %2. In this way
each remaining variable v; is renamed into v;_1. Then a value is chosen for the new variable
vo (the former vy), which is now encoded as y?. This continues until a value has been chosen

for all variables.

Finally, instructions (3.1) and (3.2) check whether the formula evaluates to 1 under the
chosen assignment. The regular constraints ensure that the instructions are executed in the
intended order, and also they are used to check that the input is of the correct syntactic form.

Also this proof is completed by an example computation of M, for which we choose the

input from Example 7.2.12:

qodw$

q0¢ ABx*# ABz?a# ABr?a*# ABx?a*&x?a® V - - - V —a?a’$
ngﬁABan#ABJ:ZaQ#ABx2a3&x2a3 V-V z2ad$
qod A#ABz?a# ABx*aa# ABx*aa*&x?a® v - - -V —12a3$
qod A# ABy?# ABy?a# ABy?a*&x?aa® V - - - V ~z%aa’$

Q¢ A#ABY*#ABy*a# ABy*a*&y®a® V - - - V ~y*a$

q0¢ ABy*#ABy*a# ABy*a*&y*a® V - - V —ya’$

qo¢ AB1# ABy*a# ABy?a*&y?a® V y?V - - V —y?V—y2a?$

@ AB1#ABy*a# ABy*a*&y?a® V 1V -+ V =1V —y%a?$

qod B# ABy?a# ABy?aad&y?a® v 1V ~y?a A —y?a® vV -1 V —4%a?$

qo¢ B#ABx?#ABz?a&y?aa V 1V —ya A —~y*aa V =1V —y*aa$
QQM;#ABII}'Q#AB.%2Q&¢T2G V1V -z?A-z?aV-lV-2?a$
Q¢ ABx*#ABa*a&a?a Vv 1V —a? A —a?a V -1V —z?a$

qo¢ ABO#ABx?a&z?a Vv 1V -2’ A-x?a V =1V ~22a$
qOMﬁABan&an V1V =0A-z?aV -1V -22a$

qod A#ABz?a&x?a VvV 1V -0 A =22a vV =1V —z2a$

qod A#ABy?&x?a vV 1V =0 A —z2a VvV =1V ~2%a$

Q¢ A#ABY*&y? V1V =0 A —y* vV =1V —y?$

q0¢ ABy*&y* V1V =0 A —y? Vv =1V —y%$

g4 ABO&y*V1V =0 A —y*V-1V —y%$

Q¢ ABO&OV 1V =0 A =0V =1V —y*$

q0¢ ABO&LOV 1V =0A =0V =1V -0$
q¢B&LOV 1V -0A =0V -1V -0$

q040 VvV 1V =0A=0V =1V =0%

qo¢—0V =1V =03

ACCEPT .
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In the last but third derivation step, instead of rule (1.20) also rule (1.10) could be applied
here. Then the next step would use (2.5) instead of (2.10). Thus, there are two accepting
computations on w, that only differ in the above two steps.

We see how, by alternating Steps 1 and 2, the truth assignment for each variable is
chosen and the index of all variables is decremented in each round. Finally, the formula is
evaluated. O

Thus we see that from the complexity point of view nondeterministic RRWW-automata are
equivalent to nondeterministic polynomially time bounded Turing-machines under log-space
reductions.

In fact, a different encoding of the problem 3SAT can also be recognized by an RWW-
automaton. In the encoding above, we added a prefix containing all variables to the encoding
of each formula. Here, we will attach in addition the reversal of this prefix as a suffix. The
checking of previous nondeterministic choices of rewrite-steps can only be done before the
rewrite-step of the actual cycle. So, the suffix is used to force a rewrite-step at the end of
the input after each complete execution of Step 2 in the algorithm. In this way, each round
is complete if the replacements in the suffix are all correct. This is checked by symmetry to
the prefix at the end of the program.

Now let ¥ := Yo U {x,a,#,&,8, A, B}. The encoding 9 : (V U Xy)* — X* is now defined
by choosing ¥ (a) as

V(o) ;== ABx?#ABa?a# ... #ABx?a"&c(a)§ABx*a 4 . .. # ABx a4t ABx?
where k is the largest index such that vy occurs in .. The language Lig .1 is defined as

gar = {¢¥(a) | @ € 3SAT }.

Example 7.2.15. The formula o := vgV —v1 Vva A —vg V —w1 V =g belongs to the set 3SAT.
Hence, Ligap contains the string

ABz*#ABz?a# ABx?a?&x? V —x?a v 2%a® A 2% V ~zPa V —x?a®§ABxa* # ABaa# ABa? .

Obviously, Ligap belongs to the complexity class NP. In fact, it follows again from the
proof of the NP-hardness of SAT (see, e.g., [HU79]) and the reduction of SAT to 3SAT as
given in [GJ79] that also Liq,p is NP-complete under log-space reductions. Below we will
establish the following result.

Theorem 7.2.16. The language Lig,p is accepted by some RWW-automaton.

As L(RWW) is contained in NP, we obtain the following consequence, where LOG-RWW
denotes the closure of the class L(RWW) under log-space reductions.

Corollary 7.2.17. NP = LOG-RWW .

Above it was shown that another variant of 3SAT is accepted by some RRWW-automaton,
showing that NP coincides with the closure LOG-RRWW of the class L(RRWW) under log-
space reductions. Hence, we see that LOG-RWW and LOG-RRWW coincide. It remains to
prove Theorem 7.2.16.
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Proof of Theorem 7.2.16. We describe an RWW-automaton M := (Q,%,1,6,q0,¢,%, F, H)
for the language Ligp, where

Y ={-,\,V,x,a,#,&,8, A, B},

~-T:=xu{0,1,y, A, B},

—and @, F, H and ¢ are given implicitly by the following description.

The RWW-automaton M works as follows.

Step 1. A value t € {0,1} is chosen nondeterministically for the variable that is currently
encoded by the string z? or the string y>. Moving from left to right each occurrence of zc
or y%c, respectively, is replaced by tc, where c is a symbol from A := {A,V, #,&,§,$}. For
doing so a number of cycles is necessary. The regular constraints of the corresponding meta-
instructions will ensure that the replacement is done properly from left to right. Should it
happen that a factor of the form 22# or 2$, respectively y2# or y*$, in the suffix §ABx2a” . ..
is not replaced, then this fact will be discovered in a later step and lead to rejection. Further,
if in the process of replacing x2c (y2c) by tc an occurrence of y? (x2) is encountered, then M
halts and rejects, as this indicates that in a previous execution of Step 2 the factor y? (z?)
has been overlooked.

Step 2. Each occurrence of the factor x%a (y2a) is replaced by 32 (22, respectively), in this

way decrementing the index of each remaining variable by one. The regular constraints of the
corresponding meta-instructions will ensure that these replacements are performed strictly
from right to left. If in this process an occurrence of z%c (or y?c) is encountered for some
¢ € A, then M halts and rejects, as this means that Step 1 has not been executed properly.
Further, during this process the factor AB corresponding to the actual variable to which a
truth value has just been assigned in the previous execution of Step 1 is replaced by A or by
B, depending on whether currently z2a is being replaced by y? or y%a is being replaced by
x2. This ensures via the regular constraints that the next execution of Step 1 cannot start

successfully before Step 2 is completed.

Step 3. Once all variables have been eliminated by Steps 1 and 2, a truth assignment has
been chosen for the Boolean formula encoded by the original input. By this process the input
has been transformed into the form

ABA.. BA&p(a)§AB... ABA or ABA.. AB&yp(a)sBA... ABA.

It is now verified that the formula is in conjunctive normal form with clauses of degree 3, and
it is checked whether it evaluates to 1 under the chosen assignment. If these tests succeed,
then the factor ¢(«) is replaced by the empty string; otherwise, M halts and rejects.

Step 4. Finally, it is checked whether the suffix following the § symbol is the mirror image
of the prefix preceding the & symbol. This is done in order to check that in Steps 1 and 2 all
possible replacements were performed, and that they were performed correctly. The RWW-
automaton M accepts if this test is successful.

Below the RWW-automaton M is described through a sequence of meta-instructions.
For formulating the regular constraints of these meta-instructions, we will make use of the
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following regular languages, where € denotes the empty string:

0, = {0,1,-0,-1}U{-2% 2%} a*,

e, = {0,1,-0,-1}U{-z% 22} -a*,

F, = (04:V-0,-V-Ou-N)"-0z-V-05-V-0y,

F, = (©,-v-0,-vV-0,-N)*-0, .v-0.,.v e,

LF, = (6{1‘ ) {\/7 /\})* ’ {_'ag}a

611 = {071,_‘0,_‘1}U{_'y2,y2} a

e, = {0,1,-0,-1}U{-y*y?} -a"

F, = (©y-V-0y-V:-0,-N)"-0y-V-0,-V-0,,

iy = o i oy
: Y , JE}.

The program for the RWW-automaton M is now given by the following sequence of meta-

instructions, where ¢ € {0, 1}:

(0) Nondeterministically choose one of the following instructions until
a REJECT or an ACCEPT is reached;

(1.1) (¢ - (AB)*, ABz*# — ABt#);

(1.2) (¢ -(AB)*, ABx?& — ABt&);

(1.3) (¢-(AB)*- ABt- (#ABz?-a*)* - & - LF,,2%d — td) for de{V,A 8}

(1.4) (¢-(AB)*- ABt- (#ABz?-a*)* - & - F.-§- (ABz? - at - #)*, ABx*# — ABt#);
(1.5) (¢-(AB)*-ABt- (#ABx?-at)* - & - F.-§- (ABz?- a+ : #)*,AB:L'2$ — ABt$);
(1.6) (¢-(AB)*- A ABy*# — ABt#);

(1.7) (¢ (AB)*- A, ABy*& — ABt&);

(1.8) (¢-(AB)*- AABt- (#ABy*-a™)* - & - LF, y, yd — td) for de{V,A 8}

(1.9) (¢-(AB)*- AABt- (#ABy* - a™)* - & - F §- (ABy? - at - #)*, ABy*# — ABt#);
(1.10) (¢-(AB)*- AABt- (#ABy*-a™)* - & - F!-§- (ABy*- #)*,ABy2$ — ABt$);
Comment: Instructions (1.1) to (1.10) realize Step (1);

(2.1) (¢ -(AB)*- ABt- (#ABz?-a*)* - & - F.-§- (ABz? - a*4#)*, ABt$ — A$);

(2.2) (¢-(AB)*-ABt- (#ABz?-at)* - & - F.-§- (ABz? - at#)*, ABt# — A);

(2.3) (¢-(AB)*-ABt- (#ABz?-a*)*-& - F.-§- (ABz? - a*#)*, ABz?a — ABy?);
(2.4) (¢-(AB)*- ABt- (#ABx?-at)* - & - LF,, 2% — y?);

(2.5) (¢-(AB)*- ABt- (#ABx?-at)* - #, ABx?a — ABy?);

(2.6) (¢ (AB)*, ABt# — A);

(2.7) (¢-(AB)*, ABt& — A&);

(2.8) (¢-(AB)*- AABt- (#ABy?-a%)* - & - F)-§- (ABy? - a™#)*, ABt# — B);

(2.9) (¢-(AB)*- AABt- (#ABy*-a%)* - & - F,-§- (ABy* - a™#)*, ABy’a — ABx?);
(2.10) (¢ - (AB)*- AABt- (#ABy*-a™)* - & - LF,,y*a — 2?);

(2.11) (¢-(AB)*- AABt- (#ABy?-a™)* - #, ABy?a — ABz?);

(2.12) (¢ - (AB)*, AABt# — AB);

(2.13) (¢-(AB)*, AABt& — AB&);

Comment: Instructions (2.1) to (2.13) realize Step (2);
(3.1) (¢-(AB)*, & -t1 Vita Vizh — &)

if t1,to,t3 € {0,1,-0, -1} such that {t1,t2,t3} N {1, -0} # 0;

(3.1 (¢-(AB)*, & -t1 Vita V13§ — &8)
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if t1,to,t3 € {0,1,-0, -1} such that {t1,te,t3} N {1, -0} # 0;
(32) (¢-(AB)* - A& -t; Vita Vizsh — &)
if t1,t9,t3 € {0,1,-0, =1} such that {t1,ts,t3} N {1, -0} # 0;

(3.2) (¢ (AB)*- A& -t Vita V3§ — &8)
if t1,t9,t3 € {0, 1,0, —|1} such that {tl, to, tg} N {1, ﬂO} + (;
Comment: Instructions (3.1) and (3.2) realize Step (3);
(4.1)  (¢-(AB)", ALEA — &8);
(4.2) (¢-(AB)*- A, B&SB — &8);
(4.3)  (¢,&§$ — ACCEPT).
Comment: Instructions (4.1) to (4.3) realize Step (4).

As the class L(RWW) is closed under intersection with regular sets (Corollary 7.3.5), we
can assume that the input w of M is of the form

w€ ABx?- (#AB2?-at)* - & - ({-x,2}-a* -V -{-x,x}-a* -V -{-z,2}-a* - A)*
{-~z,z}-a*-V-{-z,2}-a* V- -{-z,2}-a*-§- (ABx?-at - #)* - AB2?,

that is,
w = ABz*#ABz?a" # .. . #ABz?d'™ - & - c(a) - § - ABx?a/n# .. . #ABx?al' #ABz?

where « is a formula in conjunctive normal form of degree 3, m,n > 0, and i1,... ,%m,
Jis--o s Jn > 0. If w € Lig,p, then it is easily seen that M accepts w. Instead of proving this
fact formally, we present a simple example.

Example 1. We take w := ¢(«), where « is the formula considered in Example 3.1. Given
w as input, M can execute the following computation:
godw$ = qo¢ ABx?#ABx?a#ABx?a*&x? vV —xa Vv 2%a® A —~2? vV ~2%a V ~2?a?§
ABI'QCLZ#AB:E a#AB:L‘2$
’ 1)!—_4( qo¢ AB1#ABx?a# ABx?a?&1 Vv —~x%a v 22a® A -1V —22a V —x2a?§
' ABx2a2#ABa: a#AB1$
o1 5 qo¢AABy #ABy?a&lV —y? V yla A =1V —y? V ~y2a§ABy?a#t ABy*# A$

10

(2.7
» )w(i qod:AABO#ABy a&lV =0V y2a A=1V -0V —y2a8ABy>a# ABO#AS

6

(2.1

4

s (213 qo(tZEAB%’Q&l V0V a2 A1V -0V -22§AB2?# 5 A%

( 1)% ( ) qo¢ABAB1&1V -0V 1A-1V -0V -1§AB1#B A$
1.
q¢ABA&IV-0V1A-1V -0V 1§48 A$

(2.1)- (2 7)

2 ABA&SABAS
ooy O 34

3

(4. 1) (4.2) q0¢ §$

= ACCEPT.

(4.3)

Hence, it remains to prove the following claim.

Claim 1. If w is accepted by M, then w € Ligp -
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Proof of Claim 1. Using the instructions (2.1), (2.2), (2.6), (2.7), (2.8), (2.12) and (2.13) each
factor AB is rewritten into A or B, and these instructions together with (4.1) to (4.3) ensure
that A and B alternate, and that m = n holds. The regular constraints of the rules of the
groups (1) and (2) ensure that the factors from ABz? - a* in the prefix of w are strictly
rewritten from left to right, and those in the suffix of w are strictly rewritten from right to
left. Further, they ensure that ip11 =iy + 1 and that j, = iy hold for all indices ¢. Also c¢(«)
must not contain variables with indices exceeding the number m. Finally, the rules of types
(3.1) and (3.2) verify that the formula « is indeed satisfied by the assignment that has been
guessed for the variables vo, ... ,v,,. Hence, if M accepts w, then w € Lig,p . |

Thus, we see that the RWW-automaton M accepts the language Lq,r, which completes
the proof of Theorem 7.2.16. ]

Thus, it does not seem to be easy to separate the classes L(RWW) and L(RRWW) from
the class CSL of context-sensitive languages. The class CSL contains the language

Les :={z#w | =z is a binary encoding of a context-sensitive grammar, and w
is a binary encoding of a string from the language generated by
the grammar encoded by z. } .

This language is complete for the complexity class PSPACE under log-space reductions
(see, e.g., [HU79] Theorem 13.11). Thus, PSPACE coincides with the closure of CSL under
log-space reductions, that is, PSPACE = LOG-CSL. Thus we have the following implication.

Corollary 7.2.18. If CSL is contained in LOG-RRWW, then NP = PSPACE .

Thus, it is highly unlikely that each context-sensitive language is log-space reducible to
some language that is accepted by an RRWW-automaton. However, we do not even have a
candidate for a context-sensitive language that is not accepted by any RRWW-automaton.
It may be the case that L(RRWW) = CSL is a consequence of the equality NP = PSPACE,
showing that these two equalities are equivalent, but we do not have a proof for this, either.

On the other hand it is known that GCSL is contained in LOGCFL [DW86]. As CFL is
contained in GCSL, this yields that LOG-GCSL = LOGCFL holds. Thus, by applying the
closure under log-space reductions to the chain of inclusions

CFL € GCSL € L(RRWW) C CSL,
we obtain the following chain of well-known complexity classes:
LOGCFL = LOG-GCSL € LOG-RRWW = NP C LOG-CSL = PSPACE,

where the strictness of each inclusion is a well studied, open problem in Complexity Theory.

7.3 Closure Properties

We have seen in Theorem 6.2.2 that CICL, and thus L(det-R), is a quotient basis for the
r.e. languages. Of course, so is every class containing L(det-R), which means that any
language class characterized by a non-monotonous restarting automaton model represents
the r.e. languages. This implies the following.

Proposition 7.3.1. The classes L(RWW) and L(RRWW) are not closed under projections.
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Here, we establish some closure properties for the classes L(RWW) and L(RRWW).
Proposition 7.3.2. The classes L(RWW) and L(RRWW) are closed under union.

Proof. Let M; (i = 1,2) be RWW-automata accepting the language Ly C ¥* and Ly C X*,
respectively. An RWW-automaton M for the language L := L1 U Lo would proceed as follows:
in its first step M guesses whether to simulate M; or Ms. In order to fix this guess for
later cycles, M replaces the prefix ajas of length 2 of the input by a symbol [aj,az,1] or
[a1,a2,2]. In subsequent steps the indicator i € {1,2} is preserved, and on seeing i, M
simulates the automaton M;. Hence, M accepts the language L. For the RRWW-automata
the same construction works. O

Recall from Lemma 3.3.5 that the class CRL, which coincides with the deterministic classes
L(det-RWW) and L(det-RRWW), is not closed under union.

Proposition 7.3.3. The classes L(RWW) and L(RRWW) are closed under product.

Proof. Let M; (i = 1,2) be RRWW-automata accepting the languages L; and Lo, respectively.
An RRWW-automaton M for the language L := L - Lo is obtained as follows.

First, starting from the initial configuration go¢w$, M guesses a factorization w = wwv.
In order to fix this guess, M combines the last letter a of u and the first letter b of v into
a special symbol [a,b]. The regular constraints are used here to make sure that w does not
already contain a special symbol of this form. Then in subsequent cycles M simulates M;
on u, and if M accepts, then it continues with simulating Ms on v. The regular constraints
can always be used to ensure the correctness of the simulation. Thus, M accepts the product
Ly Lo.

For the RWW-automata the situation is slightly more complicated, as there are no regular
constraints that restrict the form of the suffix to the right of the position of a rewrite step.
However, as we can assume that an RWW-automaton always accepts at the right end of
its tape, it can determine whether two or more factorization steps have been performed, in
which case M would reject. Hence, we see that from RWW-automata for L; and Lo, an
RWW-automaton M for L; - Ly can be obtained. O

Again it is known that the corresponding deterministic classes are not closed under prod-
uct, as CRL is not closed under product, Proposition 3.3.6.

Proposition 7.3.4. The class L(RRWW) is closed under reversal.

Proof. Let M be an RRWW-automaton accepting the language L. The transition relation of
M can be described by a finite sequence of meta-instructions of the form (Ri,u — v, Rg),
where Rj, Ry are regular languages, and u and v are strings such that |u| > |v|. By replacing
each meta-instruction of this form by the meta-instruction (R3, v~ — v™, R)’), where R} :=
{w™ | w € R;}, i =1,2, we obtain an RRWW-automaton that accepts the language L™~. [

It is currently open whether or not the class L(RWW) is closed under reversal.

From the Theorems 7.1.2 and 7.1.1 and the fact that the inclusions L(RW) C L(RWW)
and L(RRW) C L(RRWW) as well as the inclusions L(det-RW) C L(det-RWW) = CRL and
L(det-RRW) C L(det-RRWW) = CRL are proper, we obtain the following consequences.

Corollary 7.3.5.
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(a) L(RWW) and L(RRWW) are closed under the operation of taking the intersection with
a reqular language.

(b) L(RW) and L(RRW) are not closed under this operation.
Corollary 7.3.6.

L(det-RW) and L(det-RRW) are not closed under the operation of taking the intersection
with a reqular language.

7.4 Concluding Remarks

The most important questions concerning restarting automata that remain open here are:

e Does the separation of the restarting from the rewriting operation increase the power
of nondeterministic non-monotonous RWW-automata ?
Recall that this is not the case for the monotonous variant (Proposition 2.4.4) and
neither for the deterministic variant (Theorem 3.2.10).

e Does the separation of the restarting from the rewriting operation increase the power
of deterministic RW-automata or of deterministic R-automata ?
From [JMPV97b, JMPV98b] it is known that this indeed is the case for the nondeter-
ministic versions, both the monotonous and the non-monotonous variants (see Section

2.4).

Instead of working directly with the various types of restarting automata in order to try
to answer the remaining questions concerning the strictness of inclusions, it may be easier to
work with characterizations of the corresponding language classes through certain types of
prefix-rewriting systems. For details see [NO99].

It also remains to determine the expressive power of the various classes of weakly mono-
tonous restarting automata that do not have nonterminal symbols. Recall from [JMPV98b]
that without the use of nonterminals the various notions of monotonicity yield different classes
of languages for the nondeterministic restarting automata.
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