

= â~ëëÉä= =

= ìåáîÉêëáíó=

= éêÉëë=

=

=

=

=

=

=

båíïáÅâäìåÖ=ÉáåÉê=pçÑíï~êÉJ^êÅÜáíÉâíìê=ÑΩê=póëíÉãÉ=

òìã=áåíÉÖêáÉêíÉå=ëáãìä~íáçåëÄ~ëáÉêíÉå=^ëëÉëëãÉåí=

ÇÉë=ÖäçÄ~äÉå=t~åÇÉäë=

Marcel Boris Endejan

Die vorliegende Arbeit wurde vom Fachbereich Elektrotechnik - der Universität Kassel

als Dissertation zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-

Ing.) angenommen.

Erster Gutachter: Prof. Dr. Joseph Alcamo

Zweiter Gutachter: Prof. Dr. Heinrich Werner

 3. Prof. Dr. Werner Kleinkauf

 4. Prof. Dr. Andreas Ernst

Tag der mündlichen Prüfung 22. September 2003

Bibliografische Information Der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen

Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über

http://dnb.ddb.de abrufbar

Zugl.: Kassel, Univ., Diss. 2003

ISBN 3-89958-046-X

© 2003, kassel university press GmbH, Kassel

www.upress.uni-kassel.de

Umschlaggestaltung: M. B. Endejan, unter Verwendung einer Zeichnung von Wolfram

Gothe, Hamburg (Wolfram.Gothe@architektur-zeichnung.de) / 5 Büro für Gestaltung,

Kassel

Druck und Verarbeitung: Unidruckerei der Universität Kassel

Printed in Germany

Danksagung

Die vorliegende Arbeit entstand im Rahmen meiner Tätigkeit als wissen-
schaftlicher Mitarbeiter am wissenschaftlichen Zentrum für Umweltsystemfor-
schung der Universität Kassel. Dem Direktor des Zentrums, Herrn Prof. Dr.
Joseph Alcamo, danke ich für seine Unterstützung während der Anfertigung
der Dissertation und für die Übernahme des Gutachtens. Für die freundli-
che Bereitschaft zur Anfertigung des Zweitgutachtens danke ich Herrn Prof.
Dr. Heinrich Werner. Für die Bereitschaft zur Mitwirkung in der Promotions-
kommission danke ich Herrn Prof. Dr. Werner Kleinkauf und Herrn Prof. Dr.
Andreas Ernst.

Meinen Kolleginnen und Kollegen am Wissenschaftlichen Zentrum für Um-
weltsystemforschung danke ich für die gute Arbeitsatmosphäre, die stete Dis-
kussionsbereitschaft und die Möglichkeit, einige in der Arbeit vorgestellte Kon-
zepte in der Praxis erproben zu dürfen. Herrn Rüdiger Schaldach danke ich für
die Diskussionen sowie für die Durchsicht des Manuskripts und seine kritischen
Anmerkungen. Für die Unterstützung bei der Realisierung einiger Programme
danke ich Herrn Stephan Lauer. Herrn Achim Manche sei gedankt für die vie-
len Hilfestellungen bei technischen Fragen und Problemen. Ein ganz besonderer
Dank geht an Frau Dr. Martina Flörke und Herrn Dr. Michael Märker, die mit
ihren Anmerkungen und Vorschlägen und ihrem unermüdlichen Interesse einen
entscheidenden Beitrag zur Gestalt der vorliegenden Arbeit geleistet haben.

Meinen Mitbewohnerinnen Vesna Jokić, Meike Siebert und Helena Siebert
sowie meinem Mitbewohner Ljubomir Adžić danke ich für die sehr schöne At-
mosphäre während der letzten zwei Jahre. Herrn Ljubomir Adžić danke ich
auch dafür, dass er mir bei einigen Realisierungsfragen mit Rat und Tat zur
Seite stand.

Der Weg zur Anfertigung dieser Arbeit war nicht immer klar. Daher möchte
ich mich bei all jenen bedanken, die mich – bewusst oder unbewusst – auf die-
sen Weg gebracht haben und mich ermutigten, ihn weiterzugehen. So danke ich
meinen Eltern Frau Karin Ritter und Herrn Heinz Josef Endejan für ihre Un-
terstützung und für die Möglichkeit der freien Wegwahl. Mein innigster Dank
geht an Frau Klara Raas und Herrn Jakob Raas, die mich von den ersten Schrit-
ten an begleitet und ihnen Halt gegeben haben. Sehr herzlich danken möchte
ich meiner Freundin Dagmar Ritterbusch, die selbst in der Abschlussphase der
Arbeit viel Geduld und Verständnis gezeigt hat und – trotz der räumlichen
Entfernung – immer unterstützend an meiner Seite war.

i

ii

Inhaltsverzeichnis

1 Einleitung 1
1.1 Hintergrund . 1
1.2 Rahmen und Ziel der Arbeit . 3
1.3 Struktur der Arbeit . 4

2 Grundlagen 7
2.1 Integriertes Assessment . 7

2.1.1 Globaler Wandel . 7
2.1.2 Assessment des globalen Wandels 11

2.2 Modellierung . 14
2.3 Software-Entwicklung . 16

2.3.1 Entwicklungsphasen . 16
2.3.2 Software-Architektur . 18

3 Stand der Technik 25
3.1 Integrierte Modelle . 25

3.1.1 Definitionen . 25
3.1.2 Systeme . 28
3.1.3 Frameworks . 31
3.1.4 Entwicklungsumgebungen 38

3.2 Standards . 41
3.2.1 Standardisierungs-Organisationen 41
3.2.2 High Level Architecture (HLA) 47
3.2.3 NIST/ECMA-Referenz-Modell 52
3.2.4 Open Distributed Processing – Reference Model 52
3.2.5 OpenGIS Service Architecture 55

3.3 Fazit . 63

4 Systemdefinition 69
4.1 OOA-Modell . 69

4.1.1 Gesamtmodell . 70
4.1.2 SISA-Ressourcen . 72

iii

iv INHALTSVERZEICHNIS

4.2 Anforderungsdefinition . 75
4.2.1 Allgemeine Anforderungen 75
4.2.2 Ziele und Funktionen . 78
4.2.3 System-Einsatz . 80
4.2.4 System-Umgebung . 82
4.2.5 System-Daten . 84
4.2.6 System-Leistungen . 88
4.2.7 Benutzungsschnittstellen 89
4.2.8 Qualitäts-Zielbestimmung 89
4.2.9 Testszenarien . 93
4.2.10 Entwicklungs-Umgebung 93

4.3 Fazit . 94

5 Architektur-Entwicklung 95
5.1 Komponenten-Übersicht . 96
5.2 Komponenten-Entwicklung . 96

5.2.1 Katalogmanager . 96
5.2.2 Metadaten-Sammler . 116
5.2.3 Dokumentation . 119
5.2.4 Simulationslaufmanager 128
5.2.5 Simulationssystem . 131
5.2.6 Datenzugriff und Datenbanksystem 134
5.2.7 Geodatenverarbeitung 138
5.2.8 Datenverarbeitung . 141
5.2.9 Aufgabensteuerung . 142
5.2.10 Ergebnisanalyse . 144
5.2.11 Modellanalyse . 145

5.3 Gesamtarchitektur . 148
5.3.1 Komponenten . 149
5.3.2 Interaktionen . 154

5.4 Fazit . 160

6 Realisierung 165
6.1 Beispielmodell GLASS . 165
6.2 Komponenten-Übersicht . 168
6.3 Komponenten-Realisierung . 169

6.3.1 Dokumentation . 169
6.3.2 Katalogmanager . 173
6.3.3 Simulationssystem . 183
6.3.4 Simulationslaufmanager 187
6.3.5 Datenzugriff und Datenbasis 190
6.3.6 Datenverarbeitung . 198

6.4 Fazit . 199

INHALTSVERZEICHNIS v

7 Zusammenfassung und Ausblick 205
7.1 Zusammenfassung . 205
7.2 Ausblick . 211

Literaturverzeichnis 213

A Glossar 229

B Datenmodelle und Schnittstellen 233
B.1 Datenmodell zu Personen und Organisationen 234
B.2 Zusammenfassung des SISA-Datenmodells 235
B.3 Zusammenfassung der SISA-Schnittstellen 236

C Standards 237
C.1 Übersichten . 237
C.2 HLA-Regeln . 243

D Programm-Quelltexte 245
D.1 PHP-Beispiel . 245
D.2 Metadaten-Datei . 247
D.3 Metadaten-Sammler . 249
D.4 Simulationseinstellungen und Datenzugriff 250
D.5 Simulationssystem . 254
D.6 Datenzugriff . 257
D.7 Geodatenverarbeitung . 257

vi INHALTSVERZEICHNIS

Abbildungsverzeichnis

2.1 Grundstruktur des globalen Beziehungsgeflechts 9
2.2 Erstellung eines Simulationsmodells 15

3.1 Architektur des Systems GLOBESIGHT 30
3.2 Architektur Object Modeling System 32
3.3 Schematische Modellstruktur von PRISM 34
3.4 Systemarchitektur von DANUBIA 37
3.5 Architektur der Modellumgebung M 39
3.6 High Level Architekture – Übersicht 50
3.7 HLA-Prinzip der Daten- und Interaktionsweitergabe 51
3.8 NIST/ECMA Referenz-Architektur 53
3.9 Statisches Modell des Dienste-Konzepts der ISO/DIS 19119 . . 57
3.10 Logische Vier-Schichten-Architektur der ISO/DIS 19119 62
3.11 Physikalische Mehrschichten-Architektur der ISO/DIS 19119 . 63

4.1 OOA-Modell eines Systems zum simulationsbasierten integrier-
ten Assessments (SISA) . 73

4.2 Ressourcen eines SISA . 76
4.3 Anwendungsfalldiagramm des SISA 83
4.4 Anforderung an die System-Daten 85

5.1 Übersicht der SISA-Komponenten 97
5.2 Verbindung zwischen SISA-Komponenten und SISA-Zielen . . . 99
5.3 Georäumliche Ressourcen im Sinne des OpenGIS-Konsortiums 101
5.4 Von den OpenGIS Catalog Services genutzte Klassen 102
5.5 Schnittstellen-Software zum Einsatz von OpenGIS Services . . 104
5.6 Schnittstellen des Katalogmanagers 107
5.7 Datenmodell des Katalogs und der Katalogeinträge 108
5.8 Minimaler Elementsatz der ISO/DIS 19115 112
5.9 Datenmodell zur Speicherung von Metadaten 117
5.10 Prinzip des Metadaten-Sammlers 118
5.11 Schnittstelle des Metadaten-Sammlers 119

vii

viii ABBILDUNGSVERZEICHNIS

5.12 Datenmodell des Metadaten-Sammlers 120
5.13 Schnittstellen der Dokumentationskomponente 121
5.14 Datenmodell für Personen/Organisationen 123
5.15 Datenmodell für Projekte u. Simulationsstudien 124
5.16 Datenmodell für Szenario-Informationen 126
5.17 Datenmodell für Simulationsläufen 126
5.18 Datenmodell für Aufgaben-Informationen 127
5.19 Datenmodell für Anmerkungen 128
5.20 Simulationsmodelle und deren Einstellungen 129
5.21 Schnittstellen des Simulationslaufmanagers 130
5.22 Zusammenhang Simulationsmodell u. Modelleinstellungen . . . 131
5.23 Datenmodell des Simulationslaufmanagers 132
5.24 Schnittstellen des Simulationssystems 134
5.25 Komponenten zum Datenzugriff und zur Datenhaltung 136
5.26 Schnittstelle des Datenbanksystems 137
5.27 Schnittstelle der Datenzugriffskomponente 138
5.28 Datenmodell der Datenzugriffskomponente 138
5.29 Schnittstellen der Komponente zur Geodatenverarbeitung . . . 141
5.30 Schnittstelle zur allgemeinen Datenverarbeitung 142
5.31 Schnittstelle zur Aufgabensteuerung 144
5.32 Schnittstelle der Analyse-Komponente 145
5.33 Prinzip der Modellanalyse . 147
5.34 Schnittstellen zur Modellanalyse 148
5.35 Einfaches Datenmodell zur Modellanalyse 148
5.36 Komponenten der Architektur 151
5.37 Architektur-Dynamik – Erzeugung von Simulationsergebnissen 155
5.38 Architektur-Dynamik – Sammlung von Metadaten 157
5.39 Architektur-Dynamik – Analyse eines Modells 159

6.1 Struktur des GLASS-Modells 167
6.2 Tabelle zur Speicherung der Anmerkungen 170
6.3 Übersicht zum Realisierungsbeispiel der SISA-Komponenten . . 171
6.4 Datenbankzugriff über Web-Browser 172
6.5 Dokumentation der Daten über Personen/Organisationen . . . 173
6.6 Anzeige der Daten über Personen/Organisationen 174
6.7 Uniform Resource Identifiers 175
6.8 Web-Seite zur Generierung eindeutiger Namen 178
6.9 Anzeige der Ressourcen-Liste 180
6.10 Web-Seite zur Metadaten-Erfassung 181
6.11 Web-Seite zur Anzeige von Metadaten 184
6.12 Basisklasse der Simulationsmodelle 185
6.13 Prinzip eines Adapters . 186
6.14 Kommunikation über Sockets 188

ABBILDUNGSVERZEICHNIS ix

6.15 Realisierung des Simulationslaufmanagers 190
6.16 Prinzip der Mediatoren . 192
6.17 Funktionsbeispiel zur Geodatenverarbeitung 199

B.1 Datenmodell zu Personen und Organisationen 234
B.2 Übersicht des SISA-Datenmodells 235
B.3 Übersicht der SISA-Koponenten und Schnittstellen 236

C.1 OpenGIS Abstract Spezifikations – Abhängigkeiten 237

x ABBILDUNGSVERZEICHNIS

Tabellenverzeichnis

2.1 Qualitätsmerkmale und Qualitäts-Teilmerkmale der ISO/IEC 9126 23

3.1 Sichtweise auf ein Software-System nach ISO/RM-ODP 54

4.1 Arbeitsschritte einer Simulationsstudie 72
4.2 Grundlegende SISA-Ziele . 81
4.3 Grundlegende SISA-Funktionen 81
4.4 Grundlegende SISA-Datenbestände 88
4.5 Anforderungen des SISA an die Software-Qualität. 90
4.6 Vorrangige nicht-funktionale Anforderungen an das SISA . . . 93

5.1 Komponenten und ihre Verantwortlichkeiten 98
5.2 Die primären Funktionen der OpenGIS Catalog Services 103
5.3 Schnittstellen und Operationen der Katalog-Komponente . . . 106
5.4 Pakete des Metadaten-Standards ISO/DIS 19115 109
5.5 Kern-Metadaten der ISO/DIS 19115 110
5.6 Übersicht zum Content Standard for Computational Models . . 114
5.7 Metadaten-Elementsatz der ISO 15836 (Dublin Core) 116

6.1 ISO-Standards zur Datenkodierung 198

C.1 Beipieldienste der ISO/DIS 19119 Taxonomie, Teil I 238
C.2 Beipieldienste der ISO/DIS 19119 Taxonomie, Teil II 239
C.3 Arbeitsprogramme des ISO/TC 211 240
C.4 OpenGIS Abstract Spezifications 241
C.5 OpenGIS Implementation Spezifications 242

xi

xii TABELLENVERZEICHNIS

Abkürzungsverzeichnis

ADEPT Alexandria Digital Earth Prototype

ADO Active Data Objects

API Application Programming Interface

ASCII American Standard Code for Information Interchange

CSCM Content Standard for Computational Models

DCMES Dublin Core Metadata Element Set

DBMS Datenbank-Managementsystem

DIN Deutsches Institut für Normung

DOM Document Object Model

FGDC Federal Geographic Data Committee

GIS Geo-Informationssystem

GLASS Global Assessment of Security

GML Geographical Markup Language

GUI Graphical User Interface

HLA High Level Architecture

HYDE Hundred Year Database for Integrated Environmental Assessments

HTML Hyper-Text Markup Language

HTTP Hyper-Text Transport Protocol

IEEE Institute of Electrical and Electronics Engineers

xiii

xiv TABELLENVERZEICHNIS

IMAGE Integrated Model to Assess the Greenhouse Effect

IPCC Intergovernmental Panel on Climate Change

ISO International Organization for Standardization

ISO/DIS ISO Draft International Standard

ISO/TC ISO Technical Committee

ODBC Open Database Connectivity

ODP Open Distributed Processing

OGC Open GIS Consortium

OMS Object Modeling System

OOA Objekt-orientierte Analyse

PHP PHP: Hypertext Preprocessor (rekursive Abkürzung)

RDBMS Relationales Datenbank-Managementsystem

RDF Resource Description Framework

RIVM Rijksinstituut voor Volksgezondheid en Milieu (staatliches Institut für
Gesundheit und Umwelt der Niederlande)

RM-ODP Open Distributed Processing – Reference Model

SI International System of Units

SISA System zum integrierten simulationsbasierten Assessment

SOF Service Organizer Folder

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

W3C World Wide Web Consortium

WWW World Wide Web

XML Extensible Markup Language

Kapitel 1

Einleitung

1.1 Hintergrund

Die Zunahme der Weltbevölkerung, die langfristig veränderte Zusammenset- globaler
Wandelzung der Atmosphäre, der Rückgang der biologischen Vielfalt sowie die Dege-

neration und der Verlust von Böden sind nur Beispiele der Veränderungen, die
unter dem Begriff des ‘globalen Wandels’ zusammengefasst werden. Die mit
dem globalen Wandel einhergehenden Veränderungen und die daraus resultie-
renden Probleme bedürfen zu ihrer Analyse und Lösung detaillierter und in
sich konsistenter Bewertungen (Luiten, 1999). Die Rolle der Informationstech-
nik bei der Unterstützung umweltpolitischer Entscheidungen wurde bereits bei
der ersten Konferenz der Vereinten Nationen für Umwelt und Entwicklung in
Rio de Janeiro 1992 erkannt. Im Kapitel 40 (Informationen für die Entschei-
dungsfindung) des aus der Rio-Konferenz hervorgegangenen Aktionsprogramms
Agenda 21 (UN, 1992) wird die ‘Überbrückung der Datenlücke’ und die ‘Ver-
besserung der Verfügbarkeit von Informationen’ gefordert. Dies soll u. a. durch
die Nutzung geographischer Informationssysteme (GIS) und die Verwendung
von Expertensystemen und Modellen erreicht werden.

Der Einsatz von GIS und Modellen hat sich bereits in unterschiedlichen Inte-
grierte
Modelle

Disziplinen und Problembereichen (Sektoren) etabliert – beispielsweise in der
Ökologie sowie den Forst- und Agrarwissenschaften. Darüber hinaus werden seit
Mitte der 1980er Jahre auch Modelle entwickelt, die eine sektorübergreifende
Problemanalyse erlauben. Diese so genannten integrierten Modelle stellen ei-
ne interdisziplinäre Abbildung von Ursache-Wirkungs-Ketten dar (vgl. Parson,
1995; van der Sluijs, 1996). Integrierte Modelle bieten aufgrund der Integration
der wichtigsten, für eine Fragestellung relevanten Disziplinen einen Mehrwert
gegenüber disziplinären Studien und sollen lösungsrelevante Informationen für
Entscheidungsträger bereitstellen. Die Modelle RAINS (Alcamo u. a., 1990) und

1

2 KAPITEL 1. EINLEITUNG

IMAGE2 (Alcamo, 1994) stellen zwei wichtige Vertreter solcher Simulations-
modelle dar (vgl. Weyant u. a., 1996). Integrierte Modelle unterscheiden sichBeson-

derhei-
ten

von anderen Simulationsmodellen nicht nur durch die Berücksichtigung meh-
rerer Fachdisziplinen, sondern auch durch den großen räumlichen Maßstab der
abgebildeten Prozesse, der sich üblicherweise zwischen dem nationalen und glo-
balen befindet, sowie durch den simulierten Zeitraum, der sich von Dekaden bis
hin zu mehr als einem Jahrhundert erstrecken kann (vgl. Parson, 1995; Weyant
u. a., 1996; Bakkes u. a., 2000).

Aufgrund der sich stetig verbessernden digitalen Datengrundlage und Rech-Kom-
plexität nerleistungen und dem vermehrten Aufkommen quantitativer Systembeschrei-

bungen einzelner Komponenten des Systems Erde, werden die integrierten Mo-
delle – umfassender ausgedrückt: Systeme zum simulationsbasierten integrier-
ten Assessment – immer detailgetreuer, komplexer und leistungsfähiger und
gewinnen zunehmend an Bedeutung. Schneider (1997) sieht die integrierten
Modelle gar als die primären Werkzeuge für Analysen im Rahmen des globalen
Wandels.

Durch die erhöhte Komplexität und Größe von integrierten Modellen erge-Anforde-
rungen ben sich Herausforderungen bezüglich der Transparenz, der Nachvollziehbarkeit

und der Reproduzierbarkeit von Analysen und Ergebnissen sowie der Erweiter-
barkeit von Modellen und der Wiederverwendbarkeit und Austauschbarkeit von
Modellteilen. Eine weitere Anforderung – die der Interoperabilität – ergibt sich
aus der notwendigen Zusammenarbeit mit anderen Software-Systemen (wie bei-
spielsweise GIS), die zur Vorverarbeitung oder Nachbearbeitung von Daten
benötigt werden. All diese Aspekte bestimmen die Qualität eines integrierten
Modells und müssen daher bei der Entwicklung eines solchen Software-Systems
berücksichtigt werden.

Trotz der gestiegenen Anforderungen sind vorhandene Modelle zumeist un-Problem

zureichend dokumentiert und modularisiert (Jaeger u. a., 2002) und folgen
i. d. R. keinen anderenorts bereits etablierten Standards. Die Austauschbarkeit,
Wartbarkeit und Wiederverwendbarkeit von Modellteilen und Daten ist daher
sehr gering und der Arbeits- und Kostenaufwand zur Erstellung neuer Modelle
sehr hoch. Benz u. a. (1997) führen das Fehlen einwandfreier Modelldokumen-
tationen darauf zurück, dass deren Erstellung sehr zeitaufwendig ist und dass
Wissenschaftler für eine Dokumentation weder ‘belohnt’ noch für eine fehlende
‘bestraft’ werden. Jaeger u. a. (2002) sehen als Grund für die mangelhafte Do-
kumentation und Transparenz den Umstand, dass Modellentwickler in erster
Linie Wissenschaftler und keine Software-Ingenieure sind.

Aufgrund der Hürden, die zur Wiederverwendung vorhandener Modellteile
überwunden werden müssen, wird es bei neuen Projekten oft vorgezogen, die
Modelle von Grund auf neu zu entwickeln (Rizzoli und Davis, 1999). Dieser Weg
der Software-Entwicklung ist weder zeitgemäß noch genügt er den gestiegenen

1.2. RAHMEN UND ZIEL DER ARBEIT 3

Anforderungen integrierter Modelle und bedarf daher einer richtungsweisenden
Korrektur.

1.2 Rahmen und Ziel der Arbeit

Um die Komplexität und die damit einhergehenden Probleme integrierter Mo- Konzept

delle in den Griff zu bekommen, werden Prinzipien und Methoden der Software-
Technik angewendet. Da die Qualität großer Software-Systeme mit deren Ar-
chitektur steht und fällt (Foegen und Battenfeld, 2001), ist das grundlegend
anzuwendende Prinzip das der Modularisierung – ein integriertes Modell muss
also in seine grundlegenden Module (Komponenten) zerlegt werden. Die grund-
legenden Komponenten ergeben, zusammen mit einer Definition der Verant-
wortlichkeiten der einzelnen Komponenten im Gesamtsystem und einer Spe-
zifikation der Schnittstellen, über die die Komponenten angesprochen werden,
die Software-Architektur.

Ziel der Arbeit ist eine allgemein anwendbare Software-Architektur für Sys- Ziel

teme zum integrierten simulationsbasierten Assessment, die die Wiederbenutz-
barkeit und Wiederbenutzung von Modellen, Modellteilen, Daten und ande-
ren notwendigen Betriebsmitteln unterstützt, die Zusammenarbeit mit anderen
Programmen begünstigt und die Qualität der Ergebnisse sichern hilft.

Um dieses Ziel zu erreichen, stellen sich – unter der Annahme, dass sich Fragen

integrierte Modelle in einzelne Komponenten aufteilen lassen – die folgenden
Forschungsfragen:

• In welche generellen Komponenten sollte ein System zum integrierten
simulationsbasierten Assessment aufgeteilt werden?

• Welche Komponenten können unabhängig von einem konkreten System
realisiert und damit für unterschiedliche Modelle wieder verwendet wer-
den?

• Welche Daten sollten zur Unterstützung der Transparenz von Analyse-
und Simulationsergebnissen vorgehalten werden?

• Welche Standards können zur Erhöhung der Qualität integrierter Modelle
beitragen?

Da es keine etablierten Architekturen für integrierte Modelle gibt (vgl. Jae- Methode

ger u. a., 2002), bilden veröffentlichte Modellübersichten und detaillierte Modell-
beschreibungen den Rahmen für die Komponentenbildung und die Beantwor-
tung der Forschungsfragen. Mit Hilfe der Modellbeschreibungen werden Funk-
tionalitäten und Strukturen integrierter Modelle identifiziert, die als existenti-
ell für jedes integrierte Modell angesehen werden können. Basierend auf diesen
Informationen erfolgt eine ‘Systemdefinition’, die die grundlegenden Anforde-
rungen und Ziele eines integrierten Modells formal definiert. Für dieses ‘all-
gemeine’ integrierte Modell wird dann eine Software-Architektur entwickelt.

4 KAPITEL 1. EINLEITUNG

Die Entwicklung der Architektur erfolgt, aus Gründen der Austauschbarkeit
und Interoperabilität, unter Berücksichtigung relevanter Standards. Die Über-
prüfung der Architektur erfolgt durch eine prototypische Implementierung der
Komponenten im Rahmen der Entwicklung eines ‘konkreten’ integrierten Mo-
dells.

1.3 Struktur der Arbeit

Das folgenden Kapitel der Grundlagen beginnt mit einigen Ausführungen zumGrund-
lagen thematischen Hintergrund der hier betrachteten Software-Systeme und definiert

die zentralen Begriffe ‘globaler Wandel’ und ‘integriertes Assessment’. Zur Ent-
wicklung von Software-Systemen gibt es Phasenmodelle, die den Prozess zum
fertigen Produkt hin beschreiben – die Software-Architektur ist das Ergeb-
nis einer dieser Phasen (der Entwicklungsphase). Um die einzelnen Schritte
der vorliegenden Arbeit in diesen Prozess einordnen zu können, wird ein sol-
ches Phasenmodell vorgestellt. Anschließend folgen weitere Erklärungen zum
Begriff der Software-Architektur. Für die Erstellung von Simulationsmodellen
gibt es ebenfalls Phasenmodelle. Anhand eines dieser Phasenmodelle werden
einige grundlegende Begriffe der Modellierung erklärt.

Kapitel 3 (Seite 25) gibt einen Überblick über den Stand der Technik im Be-Stand
der
Technik

reich der integrierten Modellierung und über Arbeiten, die im Zusammenhang
mit der Erstellung der Software-Architektur relevant sind. Es werden einige in-
tegrierte Modelle und Hilfsmittel (Frameworks und Entwicklungsumgebungen)
vorgestellt, die im Rahmen der integrierten Modellierung entwickelt wurden.
Darüber hinaus werden einige Standards angesprochen, deren Berücksichtigung
die Interoperabilität integrierter Modelle steigern kann.

Die Basis für die Entwicklung eines Software-Systems ist die Definition derSystem-
defini-
tion

Ziele und Leistungen sowie der gewünschten Qualitätsmerkmale des Systems.
Die Systemdefinition in Kapitel 4 (Seite 69) beginnt mit einer objektorientierte
Analyse eines integrierten Modells und dessen Systemumgebung. Das daraus
resultierende Objekt-Modell dient dem besseren Verständnis der Gesamtzusam-
menhänge eines simulationsbasierten Assessments und der Einordnung und De-
finition wichtiger Begrifflichkeiten. Anschließend folgt eine Anforderungsdefini-
tion, in der u. a. die grundlegenden Ziele und Funktionen eines Systems zum
integrierten simulationsbasierten Assessment aufgeführt werden.

Aufbauend auf der Systemdefinition wird in Kapitel 5 (Seite 95) eine Soft-Archi-
tektur ware-Architektur für das spezifizierte System entwickelt. Das Gesamtsystem

wird hier in einzelne Komponenten gegliedert, wobei die einzelnen Komponen-
ten eine definierte Zuständigkeit innerhalb des Gesamtsystems erhalten. Neben
der Festlegung der Verantwortlichkeit der Komponenten werden wichtige Da-
tenstrukturen der Komponenten definiert sowie die Schnittstellen, über die sie
miteinander verbunden sind. Die sich aus den einzelnen Komponenten und de-

1.3. STRUKTUR DER ARBEIT 5

ren Zusammenspiel ergebenden statischen und dynamischen Zusammenhänge
der Architektur werden abschließend zusammengefasst und liefern damit eine
Gesamtübersicht über die entwickelte Architektur.

Eine prototypische Realisierung zentraler Komponenten der entwickelten Realisie-
rungArchitektur folgt in Kapitel 6 (Seite 165). Das Kapitel beginnt mit einer kur-

zen Beschreibung des integrierten Modells GLASS, anhand dessen die Imple-
mentierung der zentralen Teile der Architektur beschrieben wird. Anschließend
wird die Realisierung der Architektur-Komponenten im Einzelnen beschrie-
ben. Das Fazit dieses Kapitels fasst die wichtigsten Punkte der Komponenten-
Realisierung zusammen und stellt die in der Systemdefinition aufgestellten An-
forderungen den erzielten Resultaten gegenüber.

Das letzte Kapitel (Kapitel 7, Seite 205) liefert eine Zusammenfassung der Zusam-
menfas-
sung

wichtigsten Erkenntnisse dieser Arbeit und zeigt Möglichkeiten der Erweiterung
und Verfeinerung der Architektur auf.

6 KAPITEL 1. EINLEITUNG

Kapitel 2

Grundlagen

Dieses Kapitel beschreibt einige Grundlagen, die zum Verständnis des Problem-
bereichs und der Entwicklung der Software-Architektur hilfreich sind.

Systeme zum simulationsbasierten integrierten Assessment werden zur Ana- Über-
sichtlyse von Problemstellungen des globalen Wandels eingesetzt. Das Kapitel be-

ginnt daher mit einer Definition und Abgrenzung dessen, was als globaler Wan-
del verstanden wird. Anschließend wird die Bedeutung des Begriffs Assessment
genauer beleuchtet, der im Zusammenhang mit Studien zum globalen Wandel
eine besondere Bedeutung besitzt. Da die Arbeitsgrundlage für ein simulations-
basiertes integriertes Assessment die Ergebnisse von Simulationsmodellen sind,
werden in Abschnitt 2.2 (Seite 14), anhand einer Vorgehensweise zur Erstellung
von Simulationsstudien, wichtige Grundbegriffe der Modellierung erklärt. Die
zum besseren Verständnis der weiteren Ausführungen notwendigen Grundla-
gen der Software-Entwicklung sind Thema des letzten Abschnitts dieses Kapi-
tels (Abschnitt 2.3, Seite 16). Hier werden u. a. die einzelnen Phasen beschrie-
ben, die bei der Entwicklung eines Software-Systems zu durchlaufen sind. Die
Aspekte, die bei der Entwicklung einer Software-Architektur eine Rolle spielen,
werden zum Abschluss des Kapitels behandelt.

2.1 Integriertes Assessment

2.1.1 Globaler Wandel

Im Juli 1992 fand in Rio de Janeiro die erste Konferenz der Vereinten Nationen Agenda
21für Umwelt und Entwicklung statt. Aus dieser Konferenz ist ein Aktionspro-

gramm für das 21. Jahrhundert hervorgegangen: die so genannte Agenda 21
(UN, 1992). In der Präambel der Agenda 21 heißt es:

7

8 KAPITEL 2. GRUNDLAGEN

Die Menschheit steht an einem entscheidenden Punkt in ihrer Ge-
schichte. Wir erleben eine zunehmende Ungleichheit zwischen Völ-
kern und innerhalb von Völkern, eine immer größere Armut, immer
mehr Hunger, Krankheit und Analphabetentum sowie eine fort-
schreitende Schädigung der Ökosysteme, von denen unser Wohl-
ergehen abhängt. Durch eine Vereinigung von Umwelt- und Ent-
wicklungsinteressen und ihre stärkere Beachtung kann es uns jedoch
gelingen, die Deckung der Grundbedürfnisse, die Verbesserung des
Lebensstandards aller Menschen, einen größeren Schutz und eine
bessere Bewirtschaftung der Ökosysteme und eine gesicherte, ge-
deihlichere Zukunft zu gewährleisten.

Die angeführten zunehmenden Ungleichheiten und Probleme sind nur einigeglobaler
Wandel der weltweit zu beobachtenden Veränderungen, die oft unter dem Begriff des

globalen Wandels zusammengefasst werden.
Das Bundesministerium für Bildung und Forschung definiert den Begriff

des ‘globalen Wandels’ recht eingängig als die ”... Veränderungen in Natur und
Gesellschaft, die die Menschheit als Ganzes und auf längere Sicht hin betreffen“
(Krück u. a., 2001).

Um das Ziel der ‘Vereinigung von Umwelt- und Entwicklungsinteressen’ zu
erreichen, müssen die vielfältigen Ursachen und Wirkungen, die mit den Ver-
änderungen verknüpft sind, berücksichtigt werden. Als Ausgangspunkt für sys-
tematische Untersuchungen der Veränderungen ist eine ausführliche Definition
dessen, was unter dem globalen Wandel zu verstehen ist, notwendig.

Der im Vorfeld der Konferenz von Rio de Janeiro von der Deutschen Bun-WBGU

desregierung berufene Wissenschaftliche Beirat Globale Umweltveränderungen
(WBGU) definiert in seinem ersten Jahresgutachten (WBGU, 1993) den Begriff
des globalen Wandels wie folgt:

Der Beirat versteht unter globalen Veränderungen der Umwelt sol-Def.
globaler
Wandel

che, die den Charakter des Systems Erde zum Teil irreversibel mo-
difizieren und deshalb direkt oder indirekt die natürlichen Lebens-
grundlagen für einen Großteil der Menschheit spürbar beeinflussen.
Globale Veränderungen der Umwelt können sowohl natürliche als
auch anthropogene Ursachen haben. Um diesen Gesamtzusammen-
hang zu kennzeichnen, wird der Begriff des globalen Wandels ver-
wendet.
Umwelt selbst wird dabei definiert als die Gesamtheit aller Prozes-
se und Räume, in denen sich die Wechselwirkung zwischen Natur
und Zivilisation abspielt. Somit schließt ‘Umwelt’ alle natürlichen
Faktoren ein, welche von Menschen beeinflusst werden oder diese
beeinflussen.

2.1. INTEGRIERTES ASSESSMENT 9

Das System Erde wird vom WBGU als Kombination aller Komponenten der System
ErdeNatursphäre und Anthroposphäre verstanden. Abbildung 2.1 gibt einen Über-

blick über die einzelnen Komponenten dieser beiden Sphären, wie sie der WB-
GU sieht.

Atmosphäre Hydrosphäre

Biosphäre Lithosphäre /
Pedosphäre

Wissenschaft /
Technik

gesellschaft-
liche

Organisation

Psychosoziale
Sphäre

Wirtschaft

Anthroposphäre

Natursphäre

Bevölkerung Verkehr

Abbildung 2.1: Grundstruktur des globalen Beziehungsgeflechts. Quelle: WB-
GU (1993).

Im Rahmen des globalen Wandels werden für die verschiedenen, in der Ab- Prozesse

bildung dargestellten Komponenten, u. a. die folgenden Prozesse angegeben:

Atmosphäre Reduktion stratosphärischen Ozons, verstärkter Treibhausef- Natur-
sphärefekt, Troposphärenverschmutzung

Hydrosphäre Meeresspiegelanstieg, Abflussänderungen und Verlagerung von
Strömungen, Senkung des Grundwasserspiegels

Biosphäre Änderung ökologischer Struktur und Leistung, Artenschwund, Re-
duktion von Wäldern und Feuchtgebieten, Übernutzung

Lithosphäre/Pedosphäre Erosion, Kontamination, Überdüngung, Struk-
turzerstörung

10 KAPITEL 2. GRUNDLAGEN

Bevölkerung Bevölkerungswachstum, Altersstruktur, Urbanisierung, Migra-Anthro-
posphäre tion

Wirtschaft Wirtschaftswachstum, Globalisierung der Märkte, Tertiärisierung
der Produktion1, sektoraler Strukturwandel

Verkehr Verkehrsaufkommen, Emissionsänderung, Verkehrsträgermix

Psychosoziale Sphäre Anspruchsleistung, Emanzipation, Individualisie-
rung, wachsendes Umweltbewusstsein

Gesellschaftliche Organisation Separatismus, Fundamentalismus, Aus-
breitung der Marktwirtschaft, Föderalismus, Demokratisierung

Wissenschaft/Technik Automatisierung/Mechanisierung, Effizienzsteige-
rung, medizinischer Fortschritt, Agrartechnologie/Biotechnologie

Neben diesen Prozessen, die direkt den einzelnen Komponenten (Hauptkom-
partimenten) der Natursphäre und Anthroposphäre zugeordnet werden können,
werden noch Prozesse angeführt, die zwischen den Hauptkompartimenten zu
finden sind. Ein Beispiel für einen solchen Prozess mit Querschnittscharakter
ist die Expansion/Intensivierung der Landwirtschaft, die sowohl in enger Bezie-
hung zum Kompartiment der Biosphäre als auch zu dem der Bevölkerung und
der Wirtschaft steht.

Die am dringlichsten anzugehenden globalen Probleme und HaupttrendsHand-
lungs-
bedarf

sind laut WBGU (1993): die Zunahme der Bevölkerung der Erde, die lang-
fristig veränderte Zusammensetzung der Atmosphäre, der Rückgang der bio-
logischen Vielfalt und die Degeneration und der Verlust von Böden. Darüber
hinaus gehören Probleme durch immer größer werdende Städte und die Versor-
gung mit sauberem Trinkwasser – vor allem in den Entwicklungsländern – zu
den wichtigsten Herausforderungen (Krück u. a., 2001).

Zur Verminderung globaler Umweltveränderungen sieht das WBGU (1993)
drei Handlungsprinzipien:

• Berücksichtigung der Konsequenzen für das ganze System Erde bei jeder
Einzelentscheidung

• Beachtung der Einheit von Umwelt und Entwicklung bei jeder politischen
Entscheidung

• Ausweitung der ökonomischen Bewertungssysteme auf Naturgüter

Für eine umfassende Bewertung in diesem Sinne sind vielschichtige Aus-
wirkungsanalysen notwendig. Verschiedene Methoden zur Erstellung solcher
Analysen sind Thema des folgenden Abschnitts.

1Vom Schwerpunkt der Erzeugung von Nahrungsmitteln und Rohstoffen (Primärsektor)
bzw. des Handwerks und der Industrie (Sekundärsektor) hin zu Dienstleistungen (Tertiär-
sektor).

2.1. INTEGRIERTES ASSESSMENT 11

2.1.2 Assessment des globalen Wandels

Die Analyse der vielfältigen Zusammenhänge und der Auswirkungen von Än-
derungen innerhalb des Systems Erde ist aufgrund der komplexen Wirkzusam-
menhänge eine nicht-triviale Aufgabe. Eine Organisation, die sich mit der Er- IPCC

forschung der vielfältigen Ursache-Wirkungs-Ketten eines der oben angeführten
Hauptprobleme, nämlich der langfristig veränderten Zusammensetzung der At-
mosphäre, beschäftigt, ist das zwischenstaatliche Gremium für Klimawandel
(Intergovernmental Panel on Climate Change, IPCC)2. Das IPCC wurde 1988
von der meteorologischen Weltorganisation (World Meteorological Organizati-
on, WMO) und dem Umweltprogramm der Vereinten Nationen (United Nations
Environmental Programme, UNEP) gegründet. Ziel des IPCC ist die Analyse
wissenschaftlicher, technischer und sozio-ökonomischer Informationen, die re-
levant sind zum Verständnis des durch den Menschen verursachten Klimawan-
dels, dessen potentiellen Auswirkungen und der Optionen zur Verminderung
und Anpassung (IPCC, 2001).

Das IPCC ist in drei Arbeitsgruppen unterteilt. Schwerpunkt der ersten WG II

Gruppe (Working Group I, WG I) ist die Beobachtung und Projizierung des
Klimawandels. Die zweite Arbeitsgruppe (WG II) beschäftigt sich mit der Un-
tersuchung von Vulnerabilität, Auswirkungen und Anpassungen im Zusammen-
hang mit dem Klimawandel. Thema der dritten Arbeitsgruppe (WG III) sind
die möglichen Optionen zur Minderung des Klimawandels. Die WG II muss
aufgrund ihres Arbeitsschwerpunktes in besonderem Maße das gesamte System
Erde, also sowohl die Natursphäre als auch die Anthroposphäre und deren Ver-
bindungen, betrachten. Zu diesem Zweck setzt die Arbeitsgruppe u. a. das so
genannten ‘integrierte Assessment’ ein.

In der Literatur sind unterschiedliche Definitionen des Begriffs ‘integriertes inte-
griertes
Assess-
ment

Assessment’ (englisch: integrated assessment)3 zu finden (s. z. B. Alcamo, 2002;
Easterling, 1997; IPCC, 2001; Parson, 1995; Peirce, 1998; Rotmans, 1998; Tol
und Vellinga, 1998; van der Sluijs, 1996; Weyant u. a., 1996).

Das IPCC sieht das integrierte Assessment als einen interdisziplinären Pro- Defini-
tionenzess, der das Ziel verfolgt, komplizierte Systeme besser zu verstehen und defi-

niert den Begriff wie folgt (IPCC, 2001):

Integrated assessment is an interdisciplinary process that combi-
nes, interprets, and communicates knowledge from diverse scientific
disciplines from the natural and social sciences to investigate and

2Startseite im Internet: http://www.ipcc.ch
3Für das englische Wort assessment gibt es kein deutsches Wort, das dem Bedeutungsum-

fang des englischen gerecht wird. Das Wort wird daher als Assessment stehen gelassen und
nicht durch einen deutschen Begriff übersetzt. Assessment im hier betrachteten Zusammen-
hang kann als Abschätzung, Einschätzung, (Be-)Wertung, Auswertung oder Begutachtung
verstanden werden.

http://www.ipcc.ch

12 KAPITEL 2. GRUNDLAGEN

understand causal relationships within and between complicated
systems.

Alcamo (2002) definiert den Begriff – im Zusammenhang mit der Abgren-
zung von den integrierten Modellen (s.u.) – folgendermaßen:

”Integrated assessment“ is the assembling, analysis, and communi-
cation of knowledge from different disciplines and areas of expertise
to assist policymaking; it may or may not involve models, integrated
or otherwise.

Bei van der Sluijs (1996) werden Definitionen verschiedener Autoren aufge-
führt, die sich durch die folgenden Merkmale charakterisieren lassen:Merk-

male

• Sektorübergreifende Abbildung der gesamten Ursache-Wirkungs-Kette
des Klimawandel-Problems

• Informationsbereitstellung für Entscheidungsträger
• Verwendung und Integration eines breiten Spektrums von Untersuchungs-

bereichen, Methoden und Analysetechniken
• Projektion zukünftiger ökonomischer Aktivität als Ausgangspunkt der

Wirkungsketten
• Kombination, Interpretation und Kommunikation von Wissen unter-

schiedlicher wissenschaftlicher Disziplinen
• Zusammenschluss formaler Modelle oder Studien ohne Modellierungsun-

terstützung in einem in sich schlüssigen, konsistenten Framework
• Bearbeitung von Fragestellungen zum globalen Wandel
• Bearbeitung von Fragestellungen zu Umweltproblemen
• Berücksichtigung von Informationen über physikalische, chemische, biolo-

gische, psychologische, sozio-ökonomische und institutionelle Phänomene,
inklusive relevanter Entscheidungsfindungsprozesse

Parson (1995) sieht bei Projekten zur integrierten Analyse des Klimawandels
die folgenden charakteristischen Merkmale:

• Nutzung eines nationalen bis globalen räumlichen Maßstabes, wobei die
Welt in letzterem Fall typischerweise in so genannte Weltregionen einge-
teilt wird

• Verwendung eines zeitlichen Maßstabes zwischen einigen Dekaden und
etwa einem Jahrhundert

• Nutzung von Interpolations-, Parametrisierungs- und Näherungsverfah-
ren zur Beschreibung von Prozessen, die auf einer feineren räumlichen
oder zeitlichen Auflösung ablaufen

• eine eher grobe sektorale Auflösung, d. h. beispielsweise eine vereinfachte
Darstellung der unterschiedlichen Bereiche im ökonomischen Sektor

2.1. INTEGRIERTES ASSESSMENT 13

Die herausgestellten Definitionen und Merkmale setzen unterschiedliche
Schwerpunkte, z. B. auf den Prozess, die Zielgruppe oder die zu betrachten-
den Disziplinen. Auf einige der angeführten Merkmale wird im Kapitel der
Systemdefinition (Kapitel 4, Seite 69) noch einmal eingegangen. Im Rahmen
der vorliegenden Arbeit soll der Begriff des ‘integrierten Assessments’ zusam-
menfassend wie folgt verstanden werden:

Das integrierte Assessment ist ein Prozess, in dem Wissen unter- Def.

schiedlicher Fachdisziplinen über das ‘System Erde’ in einem kon-
sistenten Rahmen kombiniert und interpretiert wird und der das
Ziel verfolgt, den Zustand und mögliche langfristige Änderungen
des Systems einzuschätzen und zu bewerten sowie die Ergebnisse
politischen Entscheidungsträgern zu vermitteln.

Integrierte Assessments können mit verschiedenen methodischen Ansätzen Metho-
dendurchgeführt werden. Das (IPCC, 2001) nennt hier: 1) computerunterstützte

Modellierung, 2) Szenarienanalyse, 3) interaktive Computersimulation (Pla-
nungsspiele)4, 4) teilnehmende integrierte Analyse5 und 5) qualitative Analy-
sen, die auf bereits existierenden Analysen und auf Expertise basieren.

Die Möglichkeit der in sich konsistenten Abbildung der gesamten Wirkungs- Simula-
tionkette eines betrachteten Problems (die so genannte ‘end-to-end integration’)

macht integrierte Assessments so bedeutsam (Parson, 1995). Das nach Parson
(1995) vorherrschende Mittel bei dieser ‘end-to-end integration’ ist die vom
IPCC unter Punkt 1 genannte Methode der computerunterstützten Modellie-
rung. Die sich stetig verbessernden Rechner-Leistungen, das steigende diszi-
plinäre Verständnis einzelner Glieder der Ursache-Wirkungs-Ketten und die
Verfügbarkeit sektoraler Modelle machen diese Art des Assessments immer
praktikabler (Weyant u. a., 1996). Schneider (1997) sieht die hierzu verwen-
deten Simulationsmodelle, die so genannten integrierten Modelle, sogar als die
primären Werkzeuge für Analysen im Rahmen des globalen Wandels an. Inte-
grierte Modelle werden entweder durch die Kopplung existierender sektoraler
Modelle erstellt oder durch die Neukonstruktion einfacherer und konsistenterer
Modelle. Bei der Kopplung sektoraler Modelle bildet jedes Modell einen Teil
der Ursache-Wirkungs-Kette ab, während die einfacheren Modelle die Ursache-
Wirkungs-Kette von Anfang bis Ende abbilden und evtl. sogar Rückkopplungen
implementieren (Parson, 1995). Es gibt aber auch komplexe integrierte Model-
le, bei denen Rückkopplungen realisiert sind – z. B. das Modell IMAGE2 (s.
Alcamo u. a., 1998b).

Integrierte Modelle bilden den grundlegenden Bestandteil der in dieser Ar-
beit betrachteten Software-Systeme. Informationen zum Stand der Technik und
den Charakteristiken dieser Modelle finden sich in Abschnitt 3.1 ab Seite 25.

4Simulation gaming.
5Teilnehmer des ‘participatory integrated assessment’ sind z. B. Wissenschaftler, Politiker

und andere Entscheidungsträger bzw. Interessierte (Tol und Vellinga, 1998).

14 KAPITEL 2. GRUNDLAGEN

2.2 Modellierung

Das simulationsbasierte integrierte Assessment basiert auf Ergebnissen von be-Simula-
tions-
studie

rechenbaren Modellen (Simulationsmodellen) der Umwelt. Die Erstellung und
Nutzung von Simulationsmodellen geschieht in mehreren Schritten. Steinhau-
sen (1994) schlägt zur Durchführung von Simulationsstudien eine Vorgehens-
weise vor, die aus sieben Schritten besteht:

1. Problemformulierung und -analyse
2. Modellbildung
3. Datenerhebung
4. Erstellung des Computerprogramms
5. Modellvalidierung
6. Planung und Durchführung von Simulationsläufen
7. Auswertung und Implementierung der Ergebnisse

Im ersten Schritt wird das Untersuchungsproblem identifiziert und geprüft, obProb-
lem-
analyse

die Methode der Simulation die angemessene Herangehensweise zur Lösung
darstellt. Nach der Klärung dieses Punktes wird das Problem näher beschrie-
ben und das Simulationsziel spezifiziert. Zur Problembeschreibung werden die
Bestandteile des Problembereichs sowie deren Eigenschaften und Beziehungen
untereinander erfasst. Außerdem werden in diesem Schritt die Systemgrenzen
definiert, das System wird hier also von seiner Umgebung klar getrennt.

Der zweite Schritt, die Modellbildung, beschäftigt sich mit der Redukti-Modell-
bildung on und Abstraktion der Elemente des zu analysierenden Problems. In diesem

Schritt werden die wichtigsten systembeeinflussenden Elemente ausgewählt und
durch entsprechende Symbole und Regeln (Verknüpfungen zwischen den Ele-
menten) wiedergegeben. Auf diese Weise entsteht das so genannte konzeptio-
nelle Modell, das beispielsweise über ein System mathematischer Gleichungen
ausgedrückt wird. Die Basiskonzepte der Software-Entwicklung (z. B. die ob-
jektorientierte Analyse) können in diesem Schritt ebenfalls sinnvoll eingesetzt
werden (vgl. Unterabschnitt 2.3.1, Seite 16).

Für den Betrieb eines Simulationsmodells werden unterschiedliche DatenDatener-
hebung benötigt: 1) Daten für Modellgrößen, die während eines Simulationslaufes kon-

stant bleiben (Systemparameter6), 2) Daten über systembeeinflussende exogene
Größen (Modellumwelt-Größen), 3) Optionen zur Simulationssteuerung und 4)
evtl. benötigte stochastische Daten (falls es sich um ein stochastisches Modell
handelt, also ein Modell, das Zufallsverteilungen berücksichtigt).

Da manuelle Lösungsverfahren in den meisten Fällen zu aufwendig sind,Pro-
gramm-
erstel-
lung

muss das konzeptionelle Modell durch ein Computerprogramm realisiert wer-
den. Die Realisierung des Modells kann über verschiedene Simulationsverfahren

6Bossel definiert den Begriff ‘Parameter’ etwas genauer als Größen,
”
... die nicht durch

Veränderungen im System selbst beeinflusst sind, die oft konstant sind, aber möglicherweise
auch von der Zeit abhängen.“ (Bossel, 1994).

2.2. MODELLIERUNG 15

Kommunikation

Benutzungsschnittstelle

Objekt-

Verwaltung

Reale Welt
 konzeptionelles Modell
 Simulationsmodell

Abbildung 2.2: Erstellung eines Simulationsmodells: Von der Beschreibung ei-
nes Ausschnitts der realen Welt werden die wichtigsten, systembeeinflussenden
Faktoren und deren Zusammenhänge herausgenommen und im konzeptionellen
Modell beschrieben. Zur Umsetzung in ein Simulationsmodell sind aus softwa-
retechnischer Sicht Elemente hinzuzufügen um anschließend Simulationsergeb-
nisse zu erlangen. Abbildung nach Cook und Daniels (1994).

erfolgen: die ausschließliche Nutzung von Standard-Programmiersprachen (z. B.
FORTRAN, C, C++, Pascal); die zusätzliche Nutzung spezifischer Simulations-
Bibliotheken (z. B. SIMPAS für Pascal); die Verwendung spezieller Simula-
tionssprachen (z. B. CSMP); die Nutzung von Simulationsumgebungen (z. B.
STELLA)7. Die Erstellung des Simulationsmodells erfordert neben der Imple-
mentierung der Elemente des konzeptionellen Modells die Einführung neuer
softwaretechnischer Elemente (beispielsweise um Daten zu lesen und zu spei-
chern oder zur Realisierung der Benutzungsoberfläche). Die Aufgaben bis zur
Erstellung des Simulationsmodells werden in Abbildung 2.2 noch einmal ver-
deutlicht.

Im Schritt der Modellvalidierung wird die Gültigkeit des Modells geprüft: Validie-
rungdas Systemverhalten wird einer logischen Prüfung unterzogen und die Simu-

lationsergebnisse werden mit evtl. vorhandenen (gemessenen) Daten aus der
Realität verglichen. Wenn sich bei der Validierung herausstellt, dass die Simu-
lationsergebnisse die Realität nicht in ausreichendem Maße widerspiegeln, ist
eine Überarbeitung des Modellkonzepts vorzunehmen. Sofern das Simulations-

7Zu den Vor- und Nachteilen der verschiedenen Simulationsverfahren siehe Bossel (1994).

16 KAPITEL 2. GRUNDLAGEN

modell freie Parameter enthält, muss eine Anpassung dieser Parameter durch
eine Modellkalibrierung erfolgen.

Wenn die Modellvalidierung ein zufriedenstellendes Ergebnis geliefert hat,Simula-
tion ist der nächste Schritt die Planung und Durchführung von Simulationsläufen

(Simulationen). Grundlage für die Simulationsläufe sind i. d. R. so genannte
‘Szenarien’, die auf ”in sich konsistenten und plausiblen Annahmen über die
zukünftige Entwicklung systembeeinflussender exogener Größen“ (Bossel, 1994)
basieren. Weitere Festlegungen betreffen die Auswahl der Anfangszustände des
Simulationsmodells sowie die Anfangs- und Endzeitpunkte für die Simulationen
(Laufzeitparameter). Bei stochastischen Modellen ist zusätzlich die Anzahl der
Simulationsdurchläufe pro Szenario zu bestimmen. Nach der Festlegung und
Beschaffung der benötigten Daten und Parameter werden die Simulationsläufe
durchgeführt.

Um die Auswirkungen von Unsicherheiten der Modelleingabegrößen aufUnsi-
cher-
heits-
analysen

die Modellergebnisse bzw. den Einfluss einzelner Eingabegrößen auf die Mo-
dellergebnisse zu untersuchen, sollten Unsicherheits- bzw. Sensitivitätsanalysen
durchgeführt werden.

Im letzten Schritt zur Durchführung einer Simulationsstudie werden die be-Auswer-
tung rechneten Simulationsergebnisse ausgewertet und die Ergebnisse (sofern mög-

lich) umgesetzt bzw. Entscheidungsträgern vermittelt, wobei die Analyse und
Dokumentation der Simulationsergebnisse stets im Zusammenhang mit den ge-
troffenen Annahmen zu erfolgen hat.

Die einzelnen Phasen werden in der Regel nicht einfach nacheinander abge-Ablauf

arbeitet; eine Änderung der Reihenfolge der Schritte kann ebenso sinnvoll sein
wie der Rücksprung zu bereits bearbeiteten Phasen. Beispiele sind die bereits
angeführte Notwendigkeit der Überarbeitung des Modellkonzepts im Zuge der
Modellvalidierung oder eine Modellkonzeptänderung, wenn sich herausstellt,
dass benötigte Daten nicht verfügbar sind.

Eine ausführliche Beschreibung der Schritte findet sich bei Steinhausen
(1994). Eine detaillierte Vorgehensweise zur Entwicklung von Modellkonzepten
und Simulationsmodellen sowie der Analyse von Modellsystemen liefert Bossel
(1994).

2.3 Software-Entwicklung

2.3.1 Entwicklungsphasen

Die Entwicklung eines Software-Systems geschieht in verschiedenen Entwick-
lungsphasen. Jede Entwicklungsphase hat ihre spezifizierte Aufgabe, verwen-
det strukturell definierte Eingabedokumente und liefert festgelegte Ergebnis-
dokumente. An dieser Stelle wird ein Überblick über die einzelnen Phasen der

2.3. SOFTWARE-ENTWICKLUNG 17

Software-Entwicklung gegeben, um die Arbeit der Architekturentwicklung ein-
ordnen zu können.

Balzert (1996) teilt die Gesamtentwicklung eines Software-Systems in sechs
Phasen ein:

1. Planungsphase
2. Definitionsphase
3. Entwurfsphase
4. Implementierungsphase
5. Abnahme- und Einführungsphase
6. Wartungs- und Pflegephase

Die Planungsphase beschäftigt sich mit einer Voruntersuchung und einer Planung

Durchführbarkeitsstudie unter Berücksichtigung fachlicher, ökonomischer und
personeller Aspekte. Ein Ergebnis dieser Phase ist das so genannte Lastenheft
– eine Zusammenfassung aller fachlichen Basisanforderungen aus der Sicht des
Auftraggebers. In diesem Dokument sollen z. B. das Einsatzgebiet des Software-
Systems und die hauptsächlichen Funktionen und Daten beschrieben werden.
Besondere Leistungsanforderungen (z. B. an den Datenumfang und die Genau-
igkeit oder Zuverlässigkeit des Systems) werden ebenfalls in diesem Dokument
aufgeführt. Neben dem Lastenheft sind eine Projektkalkulation und ein Pro-
jektplan Ergebnis der Planungsphase. Am Ende dieser Phase steht die Durch-
führbarkeitsstudie und damit die Entscheidung, ob das System entwickelt wer-
den soll oder nicht.

Die Definitionsphase beschäftigt sich mit der Analyse und Definition der Defini-
tionAnforderungen, die vom Auftraggeber an das System gestellt werden. Durch

die Befragung der Auftraggeber und der zukünftigen Benutzer sollen vollständi-
ge, konsistente, eindeutige und durchführbare Produktanforderungen definiert
werden. Zur Unterstützung der Systemanforderungsanalyse (Systemanalyse)
können verschiedene Basiskonzepte der Software-Entwicklung eingesetzt wer-
den (z. B. Datenflussdiagramme, ER-Diagramme8, Klassendiagramme). Ergeb-
nis der Definitionsphase ist die Produktdefinition, die in der Regel ein verbal
beschriebenes Pflichtenheft, ein eher formell beschriebenes Produktmodell und
ein Konzept für die Benutzungsoberfläche beinhaltet.

Basierend auf den Ergebnissen der Definitionsphase geht es in der Entwurfs- Entwurf

phase (Designphase) um die Entwicklung einer softwaretechnischen Lösung für
das Software-Produkt. Das Ergebnis dieser Phase ist die Software-Architektur
des Systems und die Spezifikation der Systemkomponenten. Da diese Phase bei
der vorliegenden Arbeit einen Hauptbestandteil ausmacht, wird sie im folgen-
den Unterabschnitt (2.3.2) separat und ausführlicher als die anderen Phasen
betrachtet.

8Entity-Relationship-Diagramm; werden vornehmlich zur Beschreibung permanent zu
speichernder Daten und derer Beziehungen untereinander eingesetzt.

18 KAPITEL 2. GRUNDLAGEN

Die in der Entwurfsphase spezifizierten Systemkomponenten werden in derImple-
mentie-
rung

Implementierungsphase durch Programme realisiert. Ergebnisse der Implemen-
tierungsphase sind neben dem ablauffähigen Produkt (Objektprogramm) die
Quellprogramme (inklusive integrierter Dokumentation) und Testplanungen
mit zugehörigen Testprotokollen.

Innerhalb der Abnahme- und Einführungsphase geschieht die Übergabe desAbnah-
me u.
Einfüh-
rung

Gesamtprodukts (alle Produkte und Teilprodukte der vorausgegangenen Pha-
sen) an den Auftraggeber, die in der Regel auch mit einem Abnahmetest einher-
geht. Das Ergebnis der Abnahmephase ist ein Abnahmeprotokoll, in dem die
Tests und Ergebnisse dokumentiert werden. Während der Einführungsphase
wird das Produkt beim Auftraggeber installiert, die Benutzer werden geschult
und das Produkt wird in Betrieb genommen. Die Ergebnisse dieses Schrittes
werden im Einführungsprotokoll festgehalten. Ab diesem Zeitpunkt unterliegt
das Produkt der Wartung und Pflege.

In die Wartungs- und Pflegephase fällt die Lokalisierung von Restfehlern,Wartung

die Optimierung des Produkts sowie das Vornehmen von Anpassungen, Ände-
rungen und Erweiterungen.

Der Gesamtprozess der Software-Entwicklung ist eingebettet in die Aktivi-Gesamt-
prozess täten des Software-Managements und der Qualitätssicherung, auf die hier nicht

eingegangen wird und für die an dieser Stelle z. B. auf Balzert (1998) verwie-
sen wird. Die zu berücksichtigenden Anforderungen bei der Entwicklung der
Software-Architektur sind, aufgrund der Relevanz für die vorliegende Arbeit,
ebenfalls im folgenden Unterabschnitt genauer aufgeführt.

2.3.2 Software-Architektur

Der Architektur-Begriff

Ziel der Entwurfsphase ist, wie im vorigen Abschnitt bereits erwähnt, die Ent-
wicklung einer Software-Architektur. Trotz der Wichtigkeit der Architektur in
der Software-Entwicklung wird der Begriff in der Literatur unterschiedlich und
oft nur vage definiert (Foegen und Battenfeld, 2001). Oestereich (1998) bezeich-
net beispielsweise die Spezifikation der grundlegenden Struktur eines Systems
als Architektur. Nach Buschmann u. a. (1998) beschreibt die Architektur die
Subsysteme und Komponenten eines Software-Systems und die Beziehungen
zwischen ihnen – die grundlegende Struktur wird in dieser Sichtweise also be-
reits unterteilt. Die Object Management Group (OMG) definiert in der Unified
Modeling Language Specification (OMG, 1999) den Begriff der Architektur noch
detaillierter:

Architecture: The organizational structure and associated behavior
of a system. An architecture can be recursively decomposed into
parts that interact through interfaces, relationships that connect

2.3. SOFTWARE-ENTWICKLUNG 19

parts, and constraints for assembling parts. Parts that interact
through interfaces include classes, components and subsystems.

Die Definition der OMG berücksichtigt die wesentlichen Merkmale vieler
anderer Definitionen (vgl. Boosch u. a., 1999; Foegen und Battenfeld, 2001;
Oestereich, 1998; Poetzsch-Heffter, 2001; Shaw und Garlan, 1996):

• die Aufteilung des Gesamtsystems in mehrere Teile (Subsysteme, Kom-
ponenten, Klassen)

• die Kommunikation der einzelnen Teile über Schnittstellen
• die Beziehungen der einzelnen Teile untereinander

Im Rahmen der vorliegenden Arbeit soll der Begriff der ‘Software-Architek-
tur’ daher wie folgt verstanden werden:

Eine Software-Architektur ist die grundsätzliche Strukturierung ei- Def.

nes Software-Systems. Sie beschreibt eine Menge definierter Kom-
ponenten, die über Schnittstellen miteinander kommunizieren, spe-
zifiziert deren jeweiligen Zuständigkeitsbereich und beschreibt die
Beziehungen zwischen den Komponenten.

Der Begriff der ‘Komponente’ (auch als ‘Halbfabrikat’ bezeichnet) soll hier Kompo-
nenteverstanden werden als ”... ein abgeschlossener, binärer Software-Baustein, der

eine anwendungsorientierte, semantisch zusammengehörende Funktionalität be-
sitzt, die nach außen über Schnittstellen zur Verfügung gestellt wird.“ (Balzert,
2000)

Sichtweisen auf ein System

Die Betrachtung von Software-Systemen kann aus unterschiedlichen Blickwin-
keln und auf verschiedenen Abstraktionsniveaus erfolgen. Der Benutzer des
Systems ist beispielsweise daran interessiert, welche Funktionen die Software
bereitstellt; den Entwickler hingegen interessiert wie das System diese Funk-
tionen bereitstellt – beide betrachten dasselbe Software-System also aus un-
terschiedlicher Sicht. Die Betrachtung der Funktionen des Systems kann bei
beiden Sichtweisen mehr oder weniger abstrakt sein: der Benutzer kann die Ge-
samtfunktion betrachten, die das Systems für seine Arbeit hat oder aber die
einzelnen Funktionen, die er zur Lösung des Gesamtproblems benötigt; der Ent-
wickler kann (z. B. im Rahmen eines Tests oder der Fehlersuche) eine Funktion
als Ganzes untersuchen oder die einzelnen Anweisungen der Funktion.

In der Literatur gibt es unterschiedliche Kategorisierungen von Sichtwei-
sen auf ein System (s. z. B. Foegen und Battenfeld, 2001; Boosch u. a., 1999;
Poetzsch-Heffter, 2001; Farooqui u. a., 1995). Eine Einteilung, die auch im Laufe
dieser Arbeit eine Rolle spielen wird, ist diejenige des internationalen Standards
ISO/IEC 10746, dem so genannten ISO Reference Model for Open Distributed

20 KAPITEL 2. GRUNDLAGEN

Processing (ISO, 1998; Farooqui u. a., 1995). Das Referenz-Modell unterschei-
det fünf Sichtweisen:
• enterprise viewpoint (Beschreibung der Einsatzumgebung des Systems)
• information viewpoint (Beschreibung der Informationen des Systems und

deren Verarbeitung)
• computational viewpoint (Beschreibung der funktionalen Zerlegung des

Systems)
• engineering viewpoint (Beschreibung der Aspekte zur Verteilung des Sys-

tems auf mehrere Rechner)
• technology viewpoint (Beschreibung der zur Implementierung verwende-

ten Technologien)

Diese Sichtweisen werden innerhalb des Standards als nicht komplett unab-Abhän-
gigkeiten hängig voneinander angesehen; Schlüsselelemente einer Sicht treten in anderen

Sichten in untergeordneter Form wieder auf. Dennoch gelten die Sichten als
ausreichend unabhängig, um Entwurfsentscheidungen für das Gesamtsystem
auf Sichtenebene zu treffen. Die Architektur des Gesamtsystems wird über den
kompletten Satz miteinander verbundener Sichten ausgedrückt.

Die vorliegende Arbeit konzentriert sich auf die Entwicklung der Software-Verwen-
dung Architektur und damit auf den information viewpoint und den computational

viewpoint (vgl. Definition des Architekturbegriffs). Aspekte des enterprise view-
point werden allerdings in der Systemdefinition (Kapitel 4, Seite 69) behandelt
und das Kapitel der Realisierung (Kapitel 6, Seite 165) geht auf den enginee-
ring viewpoint sowie den technology viewpoint ein. Die einzelnen Sichtweisen der
ISO/IEC 10746 werden aufgrund des Schwerpunktes der Arbeit nicht separat
spezifiziert.

ISO/IEC 10746 ist u. a. die Grundlage eines wichtigen Standards im Bereich
der Geodatenverarbeitung (ISO 19119). Eine kurze Erklärung der ISO/IEC
ds10746 und der einzelnen Sichtweisen findet sich daher an späterer Stelle in
dieser Arbeit (Unterabschnitt 3.2.4, Seite 52).

Anforderungen an die Architektur

Bei der Entwicklung der Architektur sind vielfältige Faktoren zu berücksichti-
gen. Balzert (1996) teilt diese Einflussfaktoren in drei Gruppen ein:
• Einsatzbedingungen
• Grundsatzentscheidungen
• Rand- und Umgebungsbedingungen

Die Einsatzbedingungen ergeben sich aus dem Produkteinsatz und bestim-Einsatz

men, ob das Produkt sequentiell oder nichtsequentiell ablaufen soll. Im se-
quentiellen Fall werden Programmanweisungen (Schritte) hintereinander aus-
geführt; im nichtsequentiellen Fall können Anweisungen auch nebenläufig (Be-
arbeitung mehrerer Schritte unabhängig voneinander), parallel (Bearbeitung

2.3. SOFTWARE-ENTWICKLUNG 21

mehrerer Schritte gleichzeitig und unabhängig voneinander) oder in Echtzeit
(unter Berücksichtigung von Schritt-Terminierungen und Zeitanforderungen)
ausgeführt werden.

Bei der Entwicklung eines Software-Systems müssen gewisse Grundsatzent- Grund-
satzent-
schei-
dungen

scheidungen hinsichtlich zu verwendender Hilfssysteme getroffen werden. Zu
diesen Hilfssystemen und Hilfsdienstleistungen zählt Balzert (1996) Systeme
zur Datenhaltung (relationale oder objektorientierte Datenbanken), Hilfesys-
teme (z. B. Hypertext-basierte Systeme), Expertensystem-Shells und Funkti-
onsbibliotheken zur Erstellung von Benutzungsoberflächen. Das generelle Ziel
bei bei Entwicklungsentscheidungen sollte laut Balzert (1996) sein, möglichst
viele Dienstleistungen auf hohem Abstraktionsniveau von anderen Systemen in
Anspruch zu nehmen.

Die Umgebungs- und Randbedingungen beziehen sich auf die Zielplattform Bedin-
gungenbzw. Zielplattformen, für die das Software-System entwickelt werden soll, also

auf die Hardware-, Software- und Anwendungs-Software-Umgebung. Darüber
hinaus spielen die nicht-funktionalen Anforderungen an das Software-System an
dieser Stelle eine wichtige Rolle. Diese Anforderungen beschreiben die Qualität
eines Systems und sind, im Gegensatz zu den funktionalen Anforderungen, nicht
direkt aus der Anforderungsdefinition der Definitionsphase ersichtlich.

Wichtige nicht-funktionale Eigenschaften sind nach Buschmann u. a. (1998): nicht-
funktio-
nale
Eigen-
schaften

Änderbarkeit (Wartbarkeit, Erweiterbarkeit, Restrukturierbarkeit, Portierbar-
keit), Interoperabilität, Effizienz, Zuverlässigkeit (Fehlertoleranz, Robustheit),
Testbarkeit und Wiederverwendbarkeit.

Einen umfassenden Kriterien-Katalog zur Beurteilung von Software-Quali-
tät, der nicht nur bei der Entwicklung der Software-Architektur, sondern auch
in den anderen Phasen der Software-Entwicklung berücksichtigt werden sollte,
liefert die international Norm ISO/IEC 9126 (übernommen in DIN 66272), die
im weiteren Verlauf dieser Arbeit verwendet wird. Eine kurze Erklärung der
einzelnen Kriterien dieses Katalogs findet sich in Tabelle 2.1 (Seite 23).

Das in der Tabelle 2.1 (Seite 23) aufgeführte Qualitätsmerkmal ‘Interope- Inter-
operabi-
lität

rabilität’ spielt in dieser Arbeit eine wichtige Rolle. ISO 2382-1 (ISO, 1993)9

definiert und erklärt den Begriff wie folgt:

Die Fähigkeit zur Kommunikation, Programmausführung oder Da- Def.
Intero-
perabili-
tät

tenübertragung über verschiedene funktionale Einheiten hinweg, in
einer Art, die vom Nutzer geringe oder keine Kenntnisse der speziel-
len Charakteristiken dieser Einheiten verlangt. Zwei Komponenten
X und Y können interoperieren (sind interoperabel), wenn X Anfra-
gen R für Dienste an Y senden kann, basierend auf einem gemeinsa-
men Verständnis von R durch X und Y, und wenn Y entsprechend
gemeinsam verständliche Antworten S an X zurückliefern kann.

9Zitiert nach ISO/DIS 19119 (Percivall, 2002).

22 KAPITEL 2. GRUNDLAGEN

Für Systeme zur Verarbeitung geographischer Informationen gibt es eine
weitergehende Definition. Die ‘geographische Interoperabilität’ umfasst laut ISO
19119 (Percivall, 2002) zwei Fähigkeiten von Informationssystemen: 1) dieje-
nige zum freien Austausch jeglicher räumlicher Informationen über die Erde
und die Objekte und Phänomene auf, über und unter der Erdoberfläche und 2)
die Fähigkeit zum (netzwerkbasierten) kooperativen Betrieb von Software zur
Manipulation solcher Informationen. ISO 19119 (Percivall, 2002) unterscheidet
darüber hinaus noch zwischen syntaktischer Interoperabilität, die eine techni-
sche Verbindung, also einen Datenaustausch zwischen Systemen sicherstellt,
und semantischer Interoperabilität, die sicherstellt, dass der Inhalt von beiden
Systemen (inklusive interagierenden Personen) gleich interpretiert wird.

Die verschiedenen Gesichtspunkte der Interoperabilität werden in den kom-
menden Kapiteln noch mehrfach angesprochen.

2.3. SOFTWARE-ENTWICKLUNG 23

Merkmal (Name:Erklärung) Teilmerkmal (Name:Erklärung)

Funktionalität: Vorhandensein
einer Menge von Funktionen

Angemessenheit: Vorhandensein und Eignung einer
Menge von Funktionen für spezifizierte Aufgaben

und deren festgelegte Merkmale.
Die Funktionen sind jene, die

Richtigkeit: Liefern der richtigen oder vereinbarten Er-
gebnisse oder Wirkungen

die festgelegten oder vorausge-
setzten Erfordernisse erfüllen

Interoperabilität: Eignung, mit vorgegebenen Systemen
zusammenzuwirken

Ordnungsmäßigkeit: Erfüllung anwendungsspezifischer
Normen, Vereinbarungen, gesetzlicher Vorschriften oder
ähnlicher Bestimmungen

Sicherheit: Eignung, unberechtigten Zugriff, sowohl ver-
sehentlich als auch vorsätzlich, auf Programme und Daten
zu verhindern

Zuverlässigkeit: Fähigkeit der
Software, ihr Leistungsniveau

Reife: Häufigkeit von Versagen durch Fehlzustände in der
Software

unter festgelegten Bedingungen
über einen festgelegten Zeitraum
zu bewahren

Fehlertoleranz: Eignung, ein spezifisches Leistungsni-
veau bei Software-Fehlern oder Nicht-Einhaltung ihrer
spezifischen Schnittstellen zu bewahren

Wiederherstellbarkeit: Möglichkeit, bei einem Versa-
gen das Leistungsniveau wiederherzustellen und die di-
rekt betroffenen Daten wiederzugewinnen, unter Berück-
sichtigung der dafür benötigten Zeit und des benötigten
Aufwands

Benutzbarkeit: Aufwand, der
zur Benutzung erforderlich ist

Verständlichkeit: Aufwand für den Benutzer, das Kon-
zept und die Anwendung zu verstehen

Erlernbarkeit: Aufwand für den Benutzer, die Anwen-
dung zu erlernen

Bedienbarkeit: Aufwand für den Benutzer bei der Be-
dienung und Ablaufsteuerung

Effizienz: Verhältnis zwischen
dem Leistungsniveau der Soft-

Zeitverhalten: Antwort- und Verarbeitungszeiten und
Durchsatz bei der Funktionsausführung

ware und dem Umfang der einge-
setzten Betriebsmittel unter fest-
gelegten Betriebsbedingungen

Verbrauchsverhalten: Aufwand an Betriebsmitteln bei
der Funktionserfüllung

Änderbarkeit: Aufwand, der
zur Durchführung vorgegebener
Änderungen notwendig ist

Analysierbarkeit: Notwendiger Aufwand, um Mängel
oder Ursachen von Versagen zu diagnostizieren oder um
änderungsbedürftige Teile zu bestimmen

Modifizierbarkeit: Notwendiger Aufwand zur Ausfüh-
rung von Verbesserungen, zur Fehlerbeseitigung oder zur
Anpassung an Umgebungsänderungen

Stabilität: Risiko unerwarteter Wirkungen von Änderun-
gen

Prüfbarkeit: Aufwand zur Prüfung der geänderten Soft-
ware

Übertragbarkeit: Eignung der
Software, von einer Umgebung in
eine andere übertragen zu wer-
den

Anpassbarkeit: Möglichkeit, die Software an verschiede-
ne festgelegte Umgebungen anzupassen, wenn nur Schritte
unternommen oder Mittel eingesetzt werden, die für die-
sen Zweck für die Software vorgesehen sind

Installierbarkeit: Notwendiger Aufwand zur Installation
der Software in einer festgelegten Umgebung

Konformität: Merkmale, die bewirken, dass die Software
Normen oder Vereinbarungen zur Übertragbarkeit erfüllt

Austauschbarkeit: Möglichkeit und Aufwand die Soft-
ware anstelle einer spezifizierten anderen Software in der
Umgebung jener Software zu verwenden

Tabelle 2.1: Qualitätsmerkmale und Qualitäts-Teilmerkmale der ISO/IEC 9126
(DIN 66272) – Bewertung von Softwareprodukten (DIN, 1994).

24 KAPITEL 2. GRUNDLAGEN

Kapitel 3

Stand der Technik

Dieses Kapitel gibt einen Überblick über den Stand der Technik im Bereich der Ziel

integrierten Modellierung und über Arbeiten, die im Zusammenhang mit der
Erstellung der Software-Architektur relevant sind.

Der erste Abschnitt beschäftigt sich mit Software-Systemen zur integrierten Über-
blickModellierung. Um den Rahmen der relevanten Systeme abzugrenzen, werden

zunächst verschiedene Definitionen des Begriffs ‘integriertes Modell’ gegenüber-
gestellt. Im Anschluss wird ein kurzer Überblick über existierende Software-
Systeme zum ‘integrierten simulationsbasierten Assessment’ gegeben und es
werden einige Frameworks und Entwicklungsumgebungen für derartige Syste-
me vorgestellt. Da die Wiederbenutzbarkeit und Interoperabilität im Zusam-
menhang mit integrierten Assessments eine wichtige Rolle spielt, werden in
Abschnitt 3.2 (Seite 41) einige Standards vorgestellt, die bei der Entwicklung
der Software-Architektur von Interesse sind.

3.1 Integrierte Modelle

3.1.1 Definitionen

In der Literatur sind – analog zur Definition des integrierten Assessments – Definiti-
onenverschiedenen Definitionen und Auffassungen des Begriffs ‘integriertes (Assess-

ment-) Modell’ (IAM)1 zu finden. Alcamo (2002) charakterisiert integrierte
Modelle wie folgt:

Although there is no widely accepted definition of integrated mo-
dels, most researchers would agree that they: (i) include information

1Die Begriffe ‘integriertes Modell’ (engl. integrated model) und ‘integriertes Assessment-
Modell’ (engl. ‘integrated assessment model’) werden in dieser Arbeit synonym verwendet.

25

26 KAPITEL 3. STAND DER TECHNIK

from at least two disparate disciplines, (ii) represent this informa-
tion in the form of discrete programming modules or submodels,
and (iii) explicitly or implicitly link scientific findings with policy
analysis.

Diese Definition bezieht sowohl das Hauptmerkmal des integrierten Assess-
ments – den Beitrag mehrerer Disziplinen – mit ein als auch den Hinweis auf
die Verwendung von Simulationsmodellen sowie die Politikrelevanz. Die Beant-
wortung politischer Fragestellungen spielt auch bei der Definition von van der
Sluijs (1996) eine zentrale Rolle2:

In this paper we define an integrated assessment model as a ma-
thematical representation of a coupled natural system and a socio-
economic system, modeling one or more cause-effect chains inclu-
ding feedback loops, and explicitly designed for the purpose of ad-
dressing policy questions, mostly by means of scenario analysis.

Die charakteristische Wichtigkeit der Integration verschiedener Fachdisziplinen
wird in dieser Definition, laut van der Sluijs (1996), über die Kopplung des
natürlichen und sozio-ökonomischen Systems zum Ausdruck gebracht. Im Rah-
men des IPCC wird die folgende Definition vorgeschlagen (Weyant u. a., 1996):

Integrated Assessment Models (IAMs) use a computer program to
link an array of component models based on mathematical repre-
sentations of information from the various contributing disciplines.

Während van der Sluijs (1996) von einer mathematischen Repräsentation des
Systems Erde und damit vom konzeptionellen Modell (siehe Abschnitt 2.2,
Seite 14) spricht, bezieht sich die Definition von Weyant u. a. (1996) (ebenso
wie die von Alcamo, 2002) bereits auf die Umsetzung als Computer-Programm,
also auf das Simulationsmodell. Darüber hinaus heißt es: ein IAM nutzt ein
Computer-Programm, was impliziert, dass IAMs aus mehr bestehen, als aus
den einzelnen Teilmodellen. Aus der Sicht der Software-Entwicklung ist diese
Unterscheidung durchaus wichtig, da es hiernach Komponenten innerhalb eines
IAM geben könnte, die unabhängig von einem konkreten System entworfen und
wieder verwendet werden können. Diese Interpretation spiegelt sich auch in der
Definition von Rotmans (1998) wider:

Integrated Assessment models are computer simulation (including
optimisation) frameworks that try to describe quantitatively as
much as possible of the cause-effect relationship of a specific issue,
and of the interlinkages and interactions among different issues.

2Über die Politikrelevanz grenzt van der Sluijs (1996) auch die integrierten Assessment-
Modelle von den so genannten ‘Earth-System Models’ ab, die nach seiner Auffassung primär
für wissenschaftliche Zwecke erstellt werden.

3.1. INTEGRIERTE MODELLE 27

Ein IAM wird von Rotmans also als ganzes ‘Framework’3 zur Quantifizierung
von Ursache-Wirkungs-Ketten gesehen und beinhaltet demnach mehr als die
reinen Simulationsmodelle. Der zusammenfügende Charakter eines Frameworks
spielt auch bei der Definition von Toth (1995) eine Rolle:

In this paper, and throughout the collection that follows, the terms
‘integrated model’ and ‘integrated assessment’ refer to a set of for-
mal models or studies without modeling support that are combined
into a consistent framework to address one or more issues in the
problem of global climate change.

Wie zu sehen ist, gibt es unterschiedliche Blickwinkel auf ein integriertes Blick-
winkelModell: es kann – wie bei van der Sluijs (1996) und Toth (1995) – vom konzep-

tionellen Standpunkt aus gesehen werden oder – wie bei den anderen Beispielen
– als Simulationsmodell. Bei der Betrachtung des Modells kann darüber hinaus
noch unterschieden werden zwischen dem ‘reinen’ Modell oder einer Umgebung
(Framework), in die das Modell eingebettet ist.

Im Rahmen dieser Arbeit wird ein integriertes Modell als die softwaretech- SISA

nische Realisierung des konzeptionellen Modells, also als Software-System, an-
gesehen. Wie in den folgenden Unterabschnitten zu sehen sein wird, bestehen
die Software-Systeme integrierter Modelle i. d. R. aus mehr als nur den gekop-
pelten Simulationsmodellen. Um dies zu verdeutlichen und um den integrieren-
den Charakter des Gesamtsystems hervorzuheben, wird fortan statt von ‘in-
tegrierten Modellen’ von ‘Systemen zum simulationsbasierten integrierten As-
sessment’ (SISAs) gesprochen. In Anlehnung an den Begriff des ’integrierten
Assessments’ (s. S. 13) soll der Begriff SISA wie folgt verstanden werden:

Ein System zum integrierten simulationsbasierten Assessment (SI- Defini-
tionSA) ist ein Software-System, das von unterschiedlichen Fachdiszipli-

nen stammende Daten und Simulationsmodelle zum ‘System Erde’
in einem konsistenten Rahmen kombiniert und neue Daten über den
Zustand und mögliche langfristige Änderungen des ‘Systems Erde’
– vornehmlich zur Unterstützung politischer Entscheidungsträger –
berechnet und bereitstellt.

Neben der Bezeichnung ‘SISA’ wird der Begriff des ‘integrierten Modells’ im
weiteren Verlauf der Arbeit dann benutzt, wenn die gekoppelten Simulations-
modelle im Mittelpunkt stehen.

3Rotmans führt als Beispiele für IAM die ablauffähigen Systeme RAINS (Alcamo u. a.,
1990) und IMAGE (Alcamo, 1994) an. Aus diesem Grund kann davon ausgegangen werden,
dass er die Bezeichnung ‘Framework’ für ein weit gefasstes System verwendet und nicht – wie
aus der Sicht der Informatik üblich – für ein auszubauendes Rahmenwerk zur Entwicklung
lauffähiger Systeme (vgl. ‘Framework’-Definition im Glossar, Seite 229).

28 KAPITEL 3. STAND DER TECHNIK

Zur Entwicklung einer Software-Architektur für ein SISA müssen über eineArchi-
tektur System-Definition u. a. die wichtigsten Ziele und Funktionen sowie die System-

Umgebung definiert werden. Ausgangspunkt für die System-Definition und die
Architektur-Entwicklung sind Veröffentlichungen integrierter Modelle, die Auf-
schluss darüber geben sollen, welche generellen Funktionen, Ziele und unter-
stützenden Programme zu berücksichtigen sind. Die folgenden Unterabschnitte
geben einen Überblick über diese Anforderungen und geben gleichzeitig Infor-
mationen zur Strukturierung aktueller Systeme.

3.1.2 Systeme

Überblick

Kickert u. a. (1999) liefern einen Statusbericht über Simulationsmodelle zur
Evaluierung möglicher ökologischer, umweltbezogener und sozialer Konsequen-
zen des globalen Wandels.4 Der Bericht beschreibt eine sehr umfangreiche Aus-
wahl unterschiedlichster (integrierter) Modelle. Die Beschreibungen der ein-
zelnen Modelle beschränken sich in den meisten Fällen auf Angaben zu den
konzeptionellen Modellen in Form von Flussdiagrammen. Erklärungen zu soft-
waretechnischen Aspekten finden sich i. d. R. nicht – und wenn, dann unter
Verwendung uneinheitlicher Darstellungsformen und unterschiedlichster Ab-
straktionsniveaus: angefangen von der sehr groben Einteilung eines Modells
in drei Komponenten (Model, Control, Show) über Objekte eines objektorien-
tiert programmierten Systems bis hin zu Dateistrukturen. Angaben über den
grundsätzlichen Aufbau gesamter Software-Systeme sind hier nicht zu finden.
Die Autoren sprechen in diesem Bericht allerdings die Wichtigkeit der Offen-offener

Quell-
code

heit und freien Verfügbarkeit des Quellcodes von Simulationsmodellen an, da
Ergebnisse nur über diesen Weg von Dritten reproduzierbar seien. Als weiteren
wichtigen Punkt bezüglich der Reproduzierbarkeit von Ergebnissen nennen sie
die Versionierung von Programmen.

Peirce (1998) liefert in seinem Bericht über ‘Computer-basierte Modelle imAnforde-
rungs-
über-
sicht

integrierten Umwelt-Assessment’ Kurzbeschreibungen von insgesamt 27 Soft-
ware-Systemen, die im Rahmen des integrierten Assessments benutzt werden.
Diese Liste enthält unterschiedliche Systeme, angefangen von Simulationsmo-
dellen über Entwicklungsumgebungen bis hin zu GIS. Auf die einzelnen Systeme
soll an dieser Stelle nicht eingegangen werden. Die Analyse der aufgeführten
Systeme zeigt allerdings das Funktionsspektrum, das im Rahmen des integrier-
ten Assessments benötigt wird und das an dieser Stelle nur stichpunkthaft dar-
gestellt werden soll: Visualisierung von Ergebnissen, Datenbank-Schnittstellen,
GIS-Funktionen, Datenanalyse, Optimierung, Graphische Benutzungsschnitt-
stelle (GUI), Unsicherheitsmodellierung (Latin Hypercube, Monte-Carlo Si-

4Der Bericht legt seinen Schwerpunkt allerdings auf die ökologischen Aspekte des globalen
Wandel.

3.1. INTEGRIERTE MODELLE 29

mulation), Statistische Berechnungen, Internet-Zugriff von Informationen, Un-
terstützung bei der Verfassung von Berichten, Datenbasis, Wissensbasis mit
Checklisten, Regeln, Hintergrundinformationen für den Analysten, Inferenz-
Maschine5, Summary-Report-Generator, Animation, GUI-Design Tool, Inte-
griertes Web-Publishing, Zeitserien-Analyse, Hilfesystem.

Nicht jedes System zur Unterstützung des integrierten Assessments muss all
diese Funktionalitäten bereitstellen. Die Auflistung zeigt allerdings das Leis-
tungsspektrum der verwendeten Systeme.

Aufschlussreiche Informationen über einen grundsätzlichen Aufbau von SI- Archi-
tekturenSAs, also der Software-Architektur solcher Systeme, finden sich bei Peirce

(1998) ebenso wenig wie bei Kickert u. a. (1999). Dieses Phänomen kann nicht
alleine darauf zurückzuführen sein, dass die zugrunde liegenden Software-Kon-
zepte im Rahmen derartiger Berichte nicht von Interesse wären – die Beschrei-
bungen von Programmobjekten und Dateistrukturen zielen schließlich auf die
softwaretechnische Umsetzung. Die Ursache für fehlende Beschreibungen von
Software-Architekturen in solchen Berichten ist vielmehr darin zu suchen, dass
die Architektur-Konzepte – falls überhaupt vorhanden – nicht bzw. nicht für
die Öffentlichkeit dokumentiert sind. Selbst in ausführlichen Beschreibungen
wie den Büchern zu den integrierten Modellen IMAGE2 (Alcamo, 1994) und
AIM (Kainuma u. a., 2003) finden sich keine ausdrücklichen Beschreibungen der
Architektur-Konzepte. Die angeführte Literatur stützt die Aussagen von Jae-
ger u. a. (2002), dass integrierte Modelle i. d. R. nur unzureichend dokumentiert
und modularisiert sind.

Wie aufschlussreich eine Beschreibung der Teile des Gesamtsystems sein
kann, wird an der ‘Architektur’-Beschreibung des Systems ‘GLOBESIGH’ ge-
zeigt – eine der wenigen Beschreibungen dieser Art.

Beispiel GLOBESIGHT

Mesarovic u. a. (1996) stellen ein ‘integrated assessment support system’ na-
mens GLOBESIGHT (global insight) vor. Das System besteht aus vier Kom-
ponenten (Abbildung 3.1): der information base, der model (algorithms) base,
der functionalities base (tools base) und der issues base (s. Abb. 3.1, Seite 30).

Die information base enthält Daten und Informationen, die während der infor-
mation
base

Untersuchung einer bestimmten Fragestellung für den Nutzer hilfreich sind.
Hierzu können z. B. textuelle Hintergrundinformationen über die Geographie
oder sozio-ökonomische Daten (Zeitreihen der Bevölkerungszahlen, des Brutto-
sozialprodukts, des Ressourcen-Verbrauchs etc.) eines Landes oder einer Region
gezählt werden.

5In wissensbasierten Systemen benutzt, um aus Fakten und Regeln neues Wissen abzu-
leiten.

30 KAPITEL 3. STAND DER TECHNIK

Die model base enthält Modelle einzelner Sub-Systeme (vergleichbar mit denmodel
base Sphären aus Kapitel 2.1.1): Simulationsmodelle zur Bevölkerung/Demographie,

zur Ökonomie und zum Ressourcen-Verbrauch sind hier beispielsweise vorhan-
den. Über Szenarien können mit Hilfe der in der Modell-Basis enthaltenen Si-
mulationsmodelle mögliche zukünftige Entwicklungen und Konsequenzen poli-
tischer Entscheidungen analysiert werden. Je nach Fragestellung und betrachte-
ter Region bzw. betrachteten Regionen können für ein Sub-System Modelle mit
unterschiedlichem Abstraktionsniveau ausgewählt werden. So stehen z. B. drei
unterschiedliche Modelle für den Bereich der Bevölkerungsentwicklung bereit
(angefangen von einer einfachen Wachstumsrate über die Gesamtbevölkerung
bis hin zu einem Kohorten-Modell, das Geburten- und Sterblichkeitsraten be-
rücksichtigt). Darüber hinaus können Simulationsergebnisse für die nationale,
regionale oder globale Ebene berechnet werden.

Die functionality (tools) base stellt Funktionen zur Dateneingabe, Daten-tools
base ausgabe und zur Datenverarbeitung zur Verfügung. Sie unterstützen die Mo-

dellverwaltung, den Datenbank-Import und -Export und die Anzeige von Daten
über Diagramme und Karten. Darüber hinaus bietet die functionality (tools)
base Routinen zur Interpolation von Eingabedaten sowie zur Erreichung vor-
gegebener Ziele (z. B. Emissionsziele).

Die issue base ist eine Ansammlung aller Analysen und enthält sowohl dieissue
base Ergebnisse als auch die zugrunde liegenden Szenario-Annahmen. Diese Informa-

tionssammlung dient als Referenz und Ausgangspunkt für zukünftige Analysen.

Information
Base

Models
Base

Issues
Base

Functionalities
Base

ANALYSIS
SUPPORT
SYSTEM

Human

GLOBESIGHT Architecture

Abbildung 3.1: Architektur des Systems GLOBESIGHT. Erklärungen finden
sich im Text. Quelle der Abbildung: http://genie.cwru.edu/globesight.
htm.

http://genie.cwru.edu/globesight.htm
http://genie.cwru.edu/globesight.htm

3.1. INTEGRIERTE MODELLE 31

GLOBESIGHT verfolgt einen interaktiven Ansatz und ermöglicht es, z. B. inter-
aktiver
Ansatz

im Rahmen von Workshops, Planspiele durchzuführen: Szenarien werden da-
bei nicht zu Beginn der Simulation, sondern interaktiv bestimmt – nach einer
kurzen Simulation erfolgt eine Rückfrage bei den anwesenden Experten. Diese
Vorgehensweise erlaubt es, Entscheidungsträger mit in den Erzeugungsprozess
von Simulationsergebnissen einzubeziehen.

Aufgrund fehlender Gesamtbeschreibungen integrierter Modelle (bzw. SI-
SAs) wird im Folgenden auf Veröffentlichungen über die Struktur von Frame-
works und Entwicklungsumgebungen zurückgegriffen.

3.1.3 Frameworks

Object Modeling System (OMS)

Das Object Modeling System (OMS) (Busch u. a., 2002) ist ein Framework
zur interaktiven Entwicklung und Anwendung dynamischer Simulationsmodel-
le. Das System ist eine Gemeinschaftsentwicklung vom U.S. Geological Sur-
vey (USGS), dem U.S. Department of Agriculture (USDA) und der Friedrich-
Schiller-Universität in Jena.

OMS ist modular aufgebaut (s. Abb. 3.2, Seite 32): die Funktionen zur Ab-
bildung des konzeptionellen Modells sind getrennt von den so genannten ‘Ba-
sisfunktionen’. Über die Basisfunktionen werden z. B. die Dateneingabe und -
ausgabe, die Kommunikation zwischen Modellteilen und die Anwendung einzel-
ner Modellkomponenten implementiert. OMS bietet den Entwicklern den Vor-
teil einer einheitlichen Programmierschnittstelle (engl. Application Program-
ming Interface, API). Modellnutzern wird über OMS eine einheitliche Benut-
zungsschnittstelle (engl. User Interface, UI) bereitgestellt.

OMS besteht aus Systemkomponenten und Modellkomponenten. Zu den Sys-
temkomponenten gehören: der Systemkern, der Modellersteller, der Skript-In-
terpreter, der GIS-Client, das Anwendungs-Framework, das Update-Center und
Komponenten für die Benutzungsschnittstelle.

Der Systemkern bietet Basisfunktionalitäten für andere Komponenten und System-
kernist die Laufzeit-Umgebung für die Entwicklung und Ausführung von Modellen

und Komponenten. Der Systemkern stellt auch einfache und komplexe Daten-
objekte bereit. Diese Datenobjekte können neben dem Wert zusätzliche Infor-
mationen halten: einen Namen für das Objekt, die Einheit des Wertes sowie
den erlauben Zahlenbereich. Alle OMS-Datentypen besitzen Funktionen zum
Lesen und Schreiben der Werte. Über ein integriertes Funktionspaket zur Ein-
heitenverarbeitung6 ist es möglich, die Kompatibilität von Variablen innerhalb
von Formeln zu prüfen und Werte von einer Einheit in eine andere, kompa-
tible umzurechnen. Zur Integration neuer Modellkomponenten müssen deren

6Integriert wurde das UCAR.UNITS Package der University Corporation for Atmospheric
Research. Internet-Startseite: http://www.ucar.edu

http://www.ucar.edu

32 KAPITEL 3. STAND DER TECHNIK

Schnittstellen bestimmten Konventionen entsprechen. Die Entwicklung neuer
Modellkomponenten wird durch vorgefertigte Oberklassen erleichtert, die eben-
falls Teil des Systemkerns sind.

Abbildung 3.2: Architektur des Object Modeling System (OMS). Quelle: Busch
u. a. (2002).

Aufgabe des Modellbilders ist es, die einzelnen OMS-Komponenten zu einemModell-
bilder komplexen Modell zusammenzufügen. Über eine GUI-Komponente können z. B.

die Modellausgaben einer OMS-Komponente mit den Eingaben einer anderen
Komponente verbunden und verschiedene Modellkonfigurationen erstellt und
verwaltet werden.

Die Modellentwicklung und -anwendung wird unterstützt durch einen inte-Skript-
Interpre-
ter

grierten Skript-Interpreter. Über diesen Interpreter können z. B. Modelle oder
Modellkomponenten gesteuert werden. Eine Interpreter-Konsole zur Ausfüh-
rung von Befehlen und Änderung von Variablenwerten während der Simulation
ist ebenfalls integriert. Als Skript-Sprache wurde Python gewählt.

Räumliche Daten können mit dem GIS-Client bearbeitet und visualisiertGIS-
Client werden. Neben einer Benutzungsschnittstelle stellt der GIS-Client eine Pro-

grammierschnittstelle bereit, die über den Python-Interpreter ansprechbar ist.
Als Anwendungsplattform wird das Open-Source-Produkt7 NetBeans be-Net-

Beans nutzt. NetBeans8 ist eine modulare, auf Standards basierte integrierte Entwick-

7Die Lizenzen von Open-Source-Produkten gewähren grundlegende Rechte. So dürfen
Open-Source-Programme beispielsweise weitergegeben werden und Quelltexte dürfen ana-
lysiert und auch in geänderter Form weitergegeben werden. Einen Überblick über die wich-
tigsten Open-Source-Lizenzen geben Roehrl und Schmiedl (2002).

8Startseite im Internet: http://www.netbeans.org

http://www.netbeans.org

3.1. INTEGRIERTE MODELLE 33

lungsumgebung. Das Framework ist in der Programmiersprache JAVA imple-
mentiert und unterstützt zurzeit auch nur die Entwicklung mit dieser Sprache.

Über das so genannte Update Center können existierende Komponenten Update
Centeraktualisiert und neue Komponenten in das OMS integriert werden. Die OMS-

Komponenten müssen für diesen Zweck als NetBeans-Module gekapselt sein.
OMS stellt Komponenten für die Benutzungsschnittstelle bereit, die z. B.

Daten-Visualisierungsmöglichkeiten in Form von Diagrammen bereitstellen.
Die Integration weiterer Komponenten ist in Form von NetBeans-Modulen
möglich.

Die OMS-Modellkomponenten sind die Bausteine aller Modelle, die mit dem Modell-
kompo-
nenten

Framework erstellt werden. Der Prototyp einer solchen Komponente ist Teil von
OMS – er gibt die Methoden vor, die implementiert werden müssen: register,
init und run. Die register- und init-Methoden enthalten Anweisungen, die zur
Initialisierung benötigt werden. Die run-Methode enthält die Anweisungen der
eigentlichen Funktionalität des Moduls, die bei jedem Aufruf des Moduls aus-
geführt werden.

Die Modellkomponenten sind als JAVA-Klassen implementiert. Die Imple-
mentierung der oben genannten Funktionen kann aber nicht nur in JAVA er-
folgen; der Code anderer Sprachen, wie beispielsweise FORTRAN oder C++,
kann automatisch über das JAVA Native Interface (JNI) in die Module inte-
griert werden.

PRISM

PRISM (programme for integrated earth system modelling) ist ein Infrastruk- Ziel

turprojekt für die Klima- und Erdsystem-Forschung in Europa.9 Ziel des von
der Europäischen Union geförderten Programms ist die Errichtung eines ver-
teilten europäischen Netzwerks für die Erdsystem-Modellierung. Um dieses Ziel
zu erreichen, will PRISM

• eine europäische Dienstleistungs- und Verwaltungsstruktur zur Entwick-
lung, Koordination und Durchführung langfristiger, europaweiter und
multi-institutionaler Klima- und Erdsystem-Simulationen aufbauen

• ein europäisches System portabler, leistungsfähiger und benutzungs-
freundlicher Modelle aus dem Erdsystem- und Klimabereich und damit
zusammenhängender Diagnose- und Visualisierungs-Software unter stan-
dardisierten Codierungskonventionen entwickeln, die für alle europäischen
Wissenschaftler zugänglich sind

Ein erwartetes Produkt der Aktivitäten ist eine flexible, effiziente, portable
und benutzungsfreundliche Infrastruktur für die Modellierung des Erdsystems
und die Klimavorhersage.

9Startseite im Internet: http://www.prism.enes.org

http://www.prism.enes.org

34 KAPITEL 3. STAND DER TECHNIK

PRISM konzentriert sich auf die Modellierung des Erdsystems und zielt aufSchwer-
punkte den vermehrten Einsatz von Super-Computern für die Simulationsberechnun-

gen. Die Komponenten haben die folgenden Schwerpunkte: Atmosphäre, atmo-
sphärische Chemie, Landnutzung, Ozean, Meeres-Eis, marine Bio-/Geochemie,
regionale Klimamodelle. Abbildung 3.3 zeigt die schematische Modellstruk-
tur von PRISM. Die explizite Berücksichtung sozioökonomischer Faktoren und
Auswirkungen durch eine separate Komponente ist hier nicht zu finden.

Atmospheric
Chemistry

Atmospheric
GCM

Land-Surface
Processes

Regional Climate
Model Coupler

Oceanic
GCM

Sea-Ice Model

Marine
Biogeochemistry

Abbildung 3.3: Schematische Modellstruktur von PRISM.

Die Modellteile werden über eine standardisierte Schnittstelle und einen Mo-Modell-
koppler dellkoppler interagieren. Als Koppler wird OASIS (Ocean Atmosphere Sea Ice

Soil) verwendet, der durch das CERFACS10 bereitgestellt wird. OASIS wurde
1991 vom CERFACS-Team Klimamodellierung und globaler Wandel entwickelt
um existierende global circulation models (GCMs) zu koppeln. OASIS besitzt
vier Hauptaufgaben:

1. Modell-Synchronisation
2. Modell-Kopplung
3. Datenaustausch11

10European Centre for Research and Advanced Training in Scientify Computation.
11Zur Synchronisation und zum Datenaustausch werden vier verschiedene Kommunikati-

onswege bereitgestellt: (1) Pipes (CRAY pipes) zur Synchronisation der Modelle und des
Datenaustauschs über Binärdateien, (2) die so genannte CLIM-Technik zur Synchronisati-
on und zum Datenaustausch unter Nutzung der Message-Passing-Standards PVM (Parallel
Virtual Machine) und MPI (Messaga Pasing Interface) und (3/4) SIPC (basierend auf Unix
V Inter Process Communication) bzw. GMEM (basierend auf NEC global memory concept),

3.1. INTEGRIERTE MODELLE 35

4. Interpolation

OASIS ist stark auf die Möglichkeiten der Parallelisierung und die Archi- Technik

tektur von Super-Computern bzw. Skalar-Computern ausgerichtet und nutzt
zur Effizienzsteigerung alle verfügbaren Betriebssystem-Mittel aus (z. B. von
den Modellen gemeinsam genutzte Speicherbereiche zum Datenaustausch). Die
Kopplung findet also auf einem relativ niedrigen Abstraktionsniveau statt.

Integrating Modelling Architecture (IMA)

Die Integrating Modelling Architecture (IMA) (Villa, 2001) verfolgt die Inte-
gration unterschiedlicher Modellierungsparadigmen12 und besteht aus einem
deklarativen Framework und einem Paket von Software-Werkzeugen (Integra-
ted Modelling Toolkit, IMT).

Das grundlegende Element innerhalb des IMT ist das ‘Modul’. Ein solches Module

Modul (Objekt einer zuvor spezifizierten Klasse) greift bei seiner Ausführung
(z. B. der Berechnung von Gleichungen) auf einen gemeinsamen Datenraum zu,
wobei der Datenraum wiederum als Modul (Datenmodul) spezifiziert ist. Um
die Verbindung von Modulen zu vereinfachen, erhält jedes Modul eine inter-
ne Beschreibung (‘DNA’) seiner eigenen Struktur. Für die Beschreibung der
Struktur wird die Extensible Markup Language (XML) genutzt. Das IMT sieht
u. a. Module vor für die Simulationsunterstützung, für Optimierungsrechnun-
gen, die Integration von GIS13 und Analysewerkzeugen, den Import und Export
von Daten sowie die Visualisierung.

Die Integration von Teilmodellen, die sich nicht direkt in das System ein- Integra-
tionbetten lassen, soll über Funktionen realisiert werden, die Teilmodelle als ex-

terne Programm starten, deren Zeitschritt fortschreiben und Variablen des
Teilmodells abfragen. Zu diesem Zweck wird die Nutzung weiterer Software-
Werkzeuge, wie dem ‘Simulation Network Interface’ (s. u.), vorgeschlagen.

Simulation Network Interface (SNI)

Das Simulation Network Interface (SNI) (Villa und Costanza, 2000) ist ein Kom-
mando-
zeilen-
Ansatz

Software-Paket zur netzwerkbasierten Integration von Simulationsmodellen.
Beim Design von SNI wurde Wert darauf gelegt, dass für die Modellkopp-
lung nur ein geringer Implementierungsaufwand seitens der zu integrierenden
Teilmodelle notwendig ist – im einfachsten Fall der Modellkopplung ruft ein
koordinierendes Programm ein als ausführbares Programm vorliegendes Teil-

die die Synchronisation und den Datenaustausch über Semaphoren und gemeinsam genutzte
Speicherbereiche erreichen.

12Genannt werden bei Villa (2001) z. B.: prozessbasierte vs. agentenbasierte, nicht-
räumliche vs. räumliche explizite, deterministische vs. stochastische Modellierung.

13Geplant ist die Integration der GIS ArcInfo und GRASS.

36 KAPITEL 3. STAND DER TECHNIK

modell über die Kommandozeile auf und wertet dessen Bildschirmausgaben als
Simulationsergebnis aus (Kommandozeilen-Ansatz).

SNI unterscheidet zwischen ‘master’-Anwendungen, die für die Planung undMaster
vs. Slave Koordination einer Simulation zuständig sind, und ‘slave’-Simulationsprogram-

men, die durch entfernte Aufrufe über die Kommandozeilen-Schnittstelle kon-
trolliert werden. Während der ‘master’ die Funktionsbibliotheken von SNI be-
nutzt, müssen auf der ‘slave’-Seite keinerlei Anpassungen vorgenommen werden
– abgesehen von der Erweiterung um eine Kommandozeilen-Schnittstelle, falls
eine solche nicht vorhanden ist.

Implementiert wird SNI durch zwei Software-Komponenten: dem SNI-Ser-Client
vs.
Server

ver und dem SNI-Client. Auf allen Hosts, auf denen ein Simulationsmodell
laufen soll, muss der SNI-Server gestartet werden. Das ‘master’-Programm (die
koordinierende Instanz) spricht die einzelnen Simulationsmodelle dann über
ein eigens definiertes Protokoll und mit Hilfe des SNI-Client an.14 Dem SNI-
Server muss hierbei lediglich mitgeteilt werden, wie er ein Simulationsmodell
ausführen, initialisieren und einen Simulationslauf starten kann.

Die Simulationsmodelle können über die Verbindung SNI-Server/SNI-ClientBeispiel-
Dienste auch andere Server ansprechen und mit ihnen Daten austauschen. Auf diese

Weise können verschiedene Dienste angeboten werden – als Beispiele werden ein
Daten-Server angeführt, ein Server, der GIS-Funktionen zur Verfügung stellt
sowie ein Dienst zur Kalibrierung von Simulationsmodellen. Bei der automa-
tischen Modell-Kalibrierung werden die Parametersätze unter Angabe eines
eindeutigen Bezeichners gespeichert, so dass für spätere Simulationen darauf
zurückgegriffen werden kann.

DANUBIA

DANUBIA (Hennicker u. a., 2003) ist ein integriertes Simulationssystem, das
im Rahmen des Projektes GLOWA-Danube15 entwickelt wird.

Das dem System zugrunde liegende objektorientierte Framework basiert aufFrame-
work Internet-Technologien und ist in JAVA realisiert. Im Zentrum eines Systems

steht der Time Controller, der für die Koordination von Teilmodellen, die auch
unterschiedliche Zeitschritte verwenden können, verantwortlich ist.

Die Teilmodelle können untereinander über definierte Schnittstellen DatenDaten-
aus-
tausch

austauschen. Durch die Implementierung eines Zustands-Übergangs-Modells
wird dabei sichergestellt, dass nur auf gültige Werte anderer Teilmodelle zuge-
griffen werden kann.16

Die Kommunikation zwischen Teilmodellen wird über JAVA Remote MethodVertei-
lung Invocation (RMI) abgewickelt. Auf diese Weise können sowohl die Teilmodelle

14Zur Verbindung von Server und Client wird das Internet-Protokoll (TCP/IP) genutzt.
15Startseite im Internet: http://www.glowa-danube.de
16‘Gültig’ heißt, dass sich die abgefragten Daten nicht in einem undefinierten, gerade in

der Berechnung begriffenen Zustand befinden.

http://www.glowa-danube.de

3.1. INTEGRIERTE MODELLE 37

als auch der Time Controller auf unterschiedlichen Hosts (Rechnern) laufen.
Durch die Nutzung von Adaptern (wrappers) werden die technischen Details
der Netzwerk-Kommunikation vor den Teilmodellen versteckt. Abbildung 3.4
zeigt als Beispiel die Architektur eines Systems mit zwei Teilmodellen.

In der nächsten Phase des Projektes sollen weitere Komponenten zur Ent- Erweite-
rungscheidungsunterstützung zur Verfügung gestellt werden. Hierzu gehören Funk-

tionen zur Erstellung, Beurteilung und Verwaltung komplexer Szenarien. Dar-
über hinaus ist eine Web-basierte Benutzungsschnittstelle vorgesehen.

local test environment has been developed which
provides dummy implementations for all the needed
interfaces of a single test model which can simply be
plugged in and tested on a local computer as if it would
run within the whole DANUBIA network. For the
validation of coupled simulations an appropriate
approach will be investigated, based on sensitivity
analysis techniques, in the second phase of the
GLOWA-Danube project.
The ultimate goal of DANUBIA is to provide an
integrated decision support system that will be able to
simulate water-related issues under ecological and
economical aspects, to analyse global change scenarios
and to support a sustainable environmental management
of water in the Upper Danube basin. An important step
towards this goal has been done with the development
of the integrated simulation system realised by the
current version of DANUBIA. In the second phase of
GLOWA-Danube the system will be enhanced by
components for decision support which, in particular,
include components for the construction, evaluation and
administration of complex scenarios. A Web-based user
interface for DANUBIA will be constructed using novel
Web Engineering methods [3], [4].

References

1. BOOCH, G., RUMBAUGH, J., JACOBSON, I.

(1999): The Unified Modeling Language User
Guide. Addison-Wesley, Object Technology Series.

2. BRUEGGE, B., DUTOIT, A. H. (2000): Object-
oriented Software Engineering: Conquering
Complex and Changing Systems, Prentice-Hall.

3. HENNICKER, R., KOCH, N. (2001): Systematic
Design of Web Applications with UML. In: K. Siau,
T. Halpin (eds.): Unified Modeling Language:
Systems Analysis, Design and Development Issues,
Hershey, PA (USA), London (UK): Idea Group
Publishing.

4. KRAUS, A., KOCH, N. (2002): Generation of Web
Applications from UML Models Using an XML
Publishing Framework. Conf. Proc. Integrated
Design and Process Technology.

B

BToA
<<proxy>>

AToB

BWrapper

AWrapper

AToB
<<proxy>>

BToA

TCModelClient

TCModelClient

TimeControllerSimulation

init()
compute()
...

A

DANUBIA
Database

init()
compute()
...

Fig. 4: System architecture with time controller and network wrappers
 Abbildung 3.4: Systemarchitektur von DANUBIA. Beispiel eines Systems mit

zwei Teilmodellen (A und B) und einem gemeinsamen ‘Time Controller’ zur Ko-
ordinierung der Zeitschritte. Der Time Controller und die beiden Teilmodelle
können auf unterschiedlichen Hosts laufen. Die Kommunikation der Teilmodelle
geschieht über definierte Schnittstellen (AToB, BToA). Durch die Verwendung
von Adaptern (A/B Wrapper) ist die Netzwerk-Kommunikation für die Modelle
transparent. Zur Integration eines Teilmodells muss der Entwickler die Metho-
den init() und compute() realisieren. Während der Initialisierung der Modelle
greifen diese beispielsweise auf die für das Gesamtsystem konsistenten Daten
innerhalb der DANUBIA Database zu. Die über den TimeController gesteuer-
ten TCModelClients veranlassen die Berechnung neuer Ergebnisse. Quelle der
Abbildung: Hennicker u. a. (2003).

38 KAPITEL 3. STAND DER TECHNIK

3.1.4 Entwicklungsumgebungen

Modellentwicklungssystem M

Im Rahmen der Entwicklung und Anwendung komplexer integrierter Model-
le in den Bereichen Gesundheitswesen und Klimawandel wurde am staatlichen
Institut für Gesundheit und Umwelt der Niederlande (RIVM)17, mit Unterstüt-
zung der niederländischen Energy Research Foundation ein Werkzeug mit dem
Namen M entwickelt (de Bruin u. a., 1996).18 M ist eine integrierte Software-
Umgebung zur Entwicklung, Visualisierung und Anwendung von interaktiven,
dynamischen Modellen, die auf algebraischen Gleichungen, Differenzengleichun-
gen oder gewöhnlichen Differenzialgleichungen basieren.

Das Prinzip des Systems ist die klare Trennung zwischen dem mathemati-Prinzip

schen Modell, den Lösungsmethoden, den Daten, der Datenverwaltung und der
Benutzungsschnittstelle. Dem Modellentwickler soll dadurch die Möglichkeit
gegeben werden, sich auf die Spezifikation der Gleichungen, der Eingabedaten
und der Modell-Dokumentation zu konzentrieren.

Die M-Umgebung besteht nach de Bruin u. a. (1996) aus neun unabhängigenKompo-
nenten Komponenten (s. auch Abb. 3.5):

• dem M compiler zur Übersetzung von Gleichungen in ausführbare Pro-
gramme bzw. Objektdateien (den so genannten Simulatoren)

• dem visualizer zum Entwurf und zur Nutzung interaktiver Präsentationen
(in Abbildung 3.5 als graphical interface bezeichnet)

• dem command line interface zum Simulator als Schnittstelle für Testzwe-
cke und zur Ausführung vordefinierter Aufgaben, der so genannten batch
jobs

• dem tracer zur Verfolgung von Abhängigkeiten zwischen Variablen

• dem table editor zur alphanumerischen Bearbeitung mehrdimensionaler
Daten (nicht in Abbildung 3.5 aufgeführt)

• dem scenario manager zum Sichern und Vergleichen verschiedener Mo-
dell-Eingaben (scenarios)

• dem documentation system zur HTML-basierten Modelldokumentation

• dem online help system zur Bedienung und zum Verständnis des Modells
(HTML browser)

• dem application programmers interface zum direkten Zugriff auf den Si-
mulator (API)

17Rijksinstituut voor Volksgezondheid en Milieu. Startseite im Internet: http://www.rivm.
nl

18Startseite des Projektes im Internet: http://www.m.rivm.nl.

http://www.rivm.nl
http://www.rivm.nl
http://www.m.rivm.nl

3.1. INTEGRIERTE MODELLE 39

Abbildung 3.5: Architektur der Modellumgebung M. Erklärungen finden sich
im Text. Quelle: de Bruin (1996).

Die Visualisierungs-Komponente wird von de Bruin u. a. (1996) als die ent- Visuali-
sierungscheidende Komponente für die Entwicklung eines integrierten Modells angese-

hen und erfüllt daher auch vielfältige Funktionen: von der dynamischen Visua-
lisierung der modellierten Phänomene mit Diagrammen und Karten und dem
Vergleich der Ergebnisse mehrerer Szenarien über direkte Manipulationen von
Modell-Daten innerhalb der graphischen Visualisierungen (unter Nutzung des
Model-View-Controller-Musters19) bis hin zur strukturierten Darstellung von
Graphen für alle Modell-Variablen reichen die Möglichkeiten dieser Komponen-
te.

Zur Erzeugung eines ausführbaren Modells muss ein bestimmtes Verfah- Modell-
erstel-
lung

ren eingehalten werden: Die Gleichungen eines Modells sind in einer nicht-pro-
zeduralen mathematischen Sprache (der M-Programmiersprache) zu beschrei-
ben und über einen einfachen Text-Editor im ASCII-Format abzuspeichern.
Die so spezifizierten Modelle sind dann mit Hilfe eines Konverters in die Pro-
grammiersprache C zu übersetzen und anschließend mit einem handelsübli-
chen C-Compiler zu kompilieren. Die resultierenden Objekt-Dateien können
dann entweder direkt in andere Programme eingebunden oder mit einer gra-
phischen bzw. alphanumerischen Benutzungsoberfläche zu einem ausführbaren
Programm verbunden werden. Die Definition der Benutzungsschnittstelle ist

19Beim Model-View-Controller-Muster (MVC-Muster) werden die Funktionen zur Visua-
lisierung von denen zur Manipulation der Daten getrennt; zum MVC-Muster s. Gamma u. a.
(1996) oder Buschmann u. a. (1998).

40 KAPITEL 3. STAND DER TECHNIK

durch so genannte ‘view definition files’ zu beschreiben. Die Prozeduren zur
numerischen Integration, Datenverwaltung und Datenspeicherung werden beim
Linken automatisch hinzugefügt.

Unter UNIX ist es auch möglich, den Simulator und die GUI als einzel-Pipes

ne Prozesse zu starten. Die Kommunikation der Prozesse erfolgt dann über
den ‘Pipe’-Mechanismus von UNIX.20 Nähere Informationen zu dieser Art der
Simulator-GUI-Verbindung finden sich bei van Wijk (1994).

Um auch umfangreiche Modelle mit M verwalten zu können, erlaubt MModu-
larisie-
rung

die Aufteilung des Gesamtsystems in Module sowie die Definition von Ma-
kros, die Mehrfachverwendung von Dateien und die Integration von C- und
FORTRAN-Funktionen. Die bereits oben angesprochene Verwaltung der Da-
ten in unterschiedlichen Dateien (zur Beschreibung der Modellgleichungen, der
Nutzungsschnittstelle und der unterschiedlichen Prozeduren) erleichtert eben-
falls die Handhabung eines in M entwickelten Modells.

Seit der Geburtsstunde des Systems im Jahr 1992 wurde M zur Realisie-Einsatz

rung mehrerer Projekte eingesetzt. Am RIVM selbst wurden das integrierte
Modell TARGETS (Tool to Assess Regional and Global Environmental and
health Targets for Sustainability) (Rotmans u. a., 1994) und das user support
system (USS) des integrierten Modells IMAGE (Alcamo u. a. 1998b; Alcamo
1994) mit M entwickelt. Das USS nutzt allerdings hauptsächlich die Funktio-
nalitäten zur Visualisierung der Modellstruktur und der Modellergebnisse für
unterschiedliche Szenarien – die Ergebnisse selbst wurden zuvor über ein nicht
mit M entwickeltes Modell berechnet. Die Programmiersprache von M wird
im USS lediglich für kleinere zusätzliche Berechnungen benutzt. Neben diesen
Systemen gibt es weitere, die sowohl innerhalb als auch außerhalb des RIVM
mit M entwickelt wurden. Eine aktuelle Übersicht über diverse Projekte ist auf
der Internet-Seite des M-Projektes (http://www.m.rivm.nl) zu finden.

ECOBAS

ECOBAS (Benz u. a., 2001; Hoch u. a., 1998) ist ein Software-System zur Er-
stellung und integrierten Dokumentation von Simulationsmodellen und wurde
im Bereich der ökologischen Modellierung entworfen. Ziel des Systems ist die
engere Verzahnung von Modellerstellung und Dokumentation. Das System er-
laubt die Eingabe von Modellgleichungen und überprüft diese gleichzeitig unter
Verwendung der anzugebenden Einheiten für die einzelnen Variablen. Zu den
Modellvariablen werden ausführliche Informationen wie Akronyme, Einheiten,
Bedeutungen, Typ-Informationen, Werte-Bereiche und allgemeine Beschreibun-
gen gespeichert. Basierend auf den Modellgleichungen kann ECOBAS Source-
Code verschiedener Formate erzeugen: FORTRAN, SIMPLEX, EXTEND und

20Pipes bieten die Möglichkeit der Interprozesskommunikation zwischen Prozessen, die auf
ein und demselben Rechner laufen und die gemeinsame Vorfahren haben. Nähere Einzelheiten
zum Thema Pipes finden sich z. B. in Gulbins und Obermayr (1995) und Herold (1999a).

http://www.m.rivm.nl

3.2. STANDARDS 41

SciLab (die Anbindung an andere Programme ist in Planung). Beachtenswert
ist an diesem System, neben der ausführlichen Modelldokumentation, die Ver-
waltung von Referenzen auf Literatur und auf Personen, die an der Modellent-
wicklung beteiligt sind bzw. waren.21

3.2 Standards

3.2.1 Standardisierungs-Organisationen

Bei der Erstellung von interoperablen, offenen Software-Systemen ist die Ver- Nor-
mungwendung von allgemein anerkannten Methoden, Verfahren, Konzepten und No-

tationen hilfreich. Die formale Vereinheitlichung des allgemein anerkannten –
oder anzuerkennenden – erfolgt durch Normungen. Otto Kienzle, Mitbegrün-
der des Deutschen Instituts für Normung (DIN), beschrieb Normung als ”...
die einmalige, bestimmte Lösung einer sich wiederholenden Aufgabe unter den
jeweils gegebenen wissenschaftlichen, technischen und wirtschaftlichen Möglich-
keiten.“22 Etwas formeller ist die ‘genormte’ Form der Definition: ”Normung ist
die planmäßige, durch die interessierten Kreise gemeinschaftlich durchgeführte
Vereinheitlichung von materiellen und immateriellen Gegenständen zum Nut-
zen der Allgemeinheit.“ (DIN 820 Teil 1)

Normen (Standards23) können unterteilt werden in nationale Normen, in- Norm-
Artenternationale Normen und Fachnormen. Für die Normierung sind länder- und

fachspezifische Normungsorganisationen zuständig. Zu den nationalen Normie-
rungsorganisationen gehören beispielsweise das American National Standards
Institute (ANSI) und das bereits erwähnte Deutsche Institut für Normung
(DIN). Die International Organization for Standardization (ISO) ist eine inter-
nationale Organisation. Das Institute of Electrical and Electronics Engineers
(IEEE) ist ein Beispiel für eine fachliche Standardisierungsorganisation.

Die hinsichtlich der Entwicklung eines SISA wichtigsten Normungsorganisa-
tionen werden nachfolgenden kurz vorgestellt. Einige für die Entwicklung eines
SISA relevante Normen werden in den folgenden Abschnitten kurz beschrieben.

21Einen ähnlichen Ansatz zur Beschreibung von Modellen verfolgt Maxwell (1999) mit
seinem ‘parsi-model approach’. Ein Modell besteht hier aus einer Modellbeschreibung und
dem ablauffähigen Programm. Modelle setzten sich aus Modulen zusammen, die eine dekla-
rative Beschreibung des Verhaltens beinhalten; das dynamische Verhalten übernimmt eine
Modellumgebung. Zur Modellbeschreibung wurde die so genannte modular modeling language
entwickelt.

22Quelle: http://www.din.de/portrait/definiti.html
23Die Begriffe ‘Norm’ und ‘Standard’ werden in dieser Arbeit synonym verwendet. Zur

Abgrenzung der Begriffe s. z. B. Bartelme (2000).

http://www.din.de/portrait/definiti.html

42 KAPITEL 3. STAND DER TECHNIK

ISO

Die International Organization for Standardization (ISO)24 ist ein weltweiter
Zusammenschluss der nationalen Standardisierungsinstitute von mehr als 140
Ländern. Die ISO wurde 1947 gegründet und ist eine Nicht-Regierungsorgani-
sation.

Die Mission der ISO ist die Unterstützung der Entwicklung von Standardi-Ziel

sierungen und damit zusammenhängender Aktivitäten in der Welt im Hinblick
auf die Unterstützung des internationalen Austauschs von Gütern und Dienst-
leistungen, und der Entwicklung von Kooperationen im Bereich der geistigen,
wissenschaftlichen, technologischen und ökonomischen Aktivitäten. Die Arbeit
der ISO resultiert in internationalen Vereinbarungen, die in internationalen
Standards veröffentlicht werden.

Während die strategischen Entscheidungen von den ISO-Mitgliedern (alsoOrgani-
sation den nationalen mit der Standardisierung beauftragten Organisationen) getrof-

fen werden, wird die technische Arbeit der ISO auf fast 3000 technische Aus-
schüsse, Unterausschüsse und Arbeitsgruppen verteilt. Diese Gremien setzen
sich zusammen aus gleichberechtigten Repräsentanten aus Industrie, Verbrau-
cherverbänden, internationalen Organisationen, wissenschaftlichen Institutio-
nen und Regierungsbehörden. Die Hauptverantwortlichkeit für die Administra-
tion eines Ausschusses wird von einem der nationalen Standardisierungsorga-
nisationen (z. B. der DIN) übernommen. Die Koordination des Netzwerks und
die Veröffentlichung fertiggestellter Standards übernimmt das in Genf ansässige
ISO-Zentralbüro.

Die Entwicklung eines internationalen Standards verläuft in sechs SchrittenEntwick-
lungs-
phasen

(Rehesaar, 1996):25

• Vorbereitungsphase (Phase 0)
• Vorschlagsphase (Phase 1)
• Vorbereitungsphase (Phase 2)
• Ausschussphase (Phase 3)
• Genehmigungsphase (Phase 4)
• Veröffentlichungsphase (Phase 5)

Die Vorbereitungsphase (preparation stage) ist eine optionale Phase für die ers-
te Vorbereitung eines Standards. (Die Dauer der Phase ist nicht festgelegt.)
In der Vorschlagsphase (proposal stage) wird ein so genannter ‘new work item
proposal’ (NP) an die Mitglieder der Vollversammlung gesendet, die über den
Vorschlag annehmend oder ablehnend entscheiden. Sofern der NP angenommen
wurde, wird er allen Mitgliedern zur Abstimmung zugesandt. Die Phase endet
mit der Genehmigung des Projektes. (Dauer der Phase: etwa neun Monate.)

24Startseite im Internet: http://www.iso.ch
25Dargestellt sind die vom ISO/IEC JTC1 Subcommittee Software Engineering verwende-

ten Phasen.

http://www.iso.ch

3.2. STANDARDS 43

Die Vorbereitungsphase dient der Entwicklung eines ‘working draft’ (WD). Dem
endgültigen WD gehen i. d. R. mehrere Entwurfs-Versionen voraus, die an einen
möglichst großen Leserkreis verteilt werden. Der endgültige WD erhält dann,
meist im Rahmen einer Vollversammlung, den Status eines so genannten ‘com-
mittee draft (CD)’. (Dauer der Phase: 1 bis 3 Jahre.) In der Ausschussphase
wird der CD zur Diskussion an den zuständigen Unterausschuss verteilt. Sofern
der CD entsprechende Unterstützung durch die Mitglieder erhält, wird der Sta-
tus auf den so genannten ‘draft international standard’ (DIS) erhöht.26 (Dauer
der Phase: ein bis vier Jahre.) Während der Genehmigungsphase wird über den
DIS brieflich abgestimmt. Zur Akzeptanz ist eine Zwei-Drittel-Mehrheit erfor-
derlich sowie maximal 25% ablehnender Stimmen und eine Wahlbeteiligung von
mindestens 50% der Stimmberechtigten (d. h. der nationalen Standardisierungs-
Organisationen)27. (Dauer der Phase: max. vier Monate zur Abstimmung.) Ein
genehmigter Standard wird dann in der letzten Phase, der Veröffentlichungs-
phase, publiziert.

Über dieses Verfahren soll gewährleistet werden, dass die Standards erst
nach ausführlichen Diskussionen auf internationaler Ebene und nachfolgender
Genehmigung über eine internationale Abstimmung publiziert werden.

Aufgrund der Wichtigkeit von Geoinformationen wurde 1994 das Technical TC 211

Committee Geographic information/Geomatics (ISO/TC 211)28 gebildet. Das
Mandat für diesen Ausschuss ist die Entwicklung eines integrierten Satzes an
Standards für geographische Informationen (die Standard-Reihe 19100).

ISO/TC 211 arbeitet eng mit anderen Standardisierungsorganisationen zu-
sammen; es existieren beispielsweise Kooperationen mit dem OpenGIS Con-
sortium (s. u.), dem gemeinsamen technischen Ausschusses der ISO und der
International Electrotechnical Commission (ISO/IEC JTC1)29 sowie der ge-
meinnützigen Organisation Global Spatial Data Infrastructure30, die ihrerseits
eng mit den Vereinten Nationen zusammenarbeitet.

Die auf dem Arbeitsprogramm des ISO/TC 211 stehenden Standards rei- Stan-
dardschen von einem allgemeinen Referenzmodell (ISO 19100) bis hin zu Sensor- und

Datenmodelle für Bilder und Rasterdaten (ISO 19130) und Implementierungs-
Spezifikationen für Metadaten (ISO 19139). Ein Standard dieser Reihe ist auch
für die Entwicklung der SISA-Architektur relevant (19119), der daher im Ab-
schnitt 3.2.5 (Seite 55) näher beschrieben wird. Einen Überblick über die der-

26Fehlt der Konsens über den CD, kann das JTC1 die Veröffentlichung als so genannten
‘type 1 technical report’ (TR1) erbitten.

27Bei Ablehnung kommt auch hier die Überarbeitung des DIS oder die Veröffentlichung als
TR1 in Frage.

28Startseite im Internet: http://www.isotc211.org
29Startseite im Internet: http://www.jtc1.org. Eine kurze Beschreibung der Struktur, Mit-

glieder und Produkte des JTC1 findet sich bei Rehesaar (1996).
30Startseite im Internet: http://www.gsdi.org

http://www.isotc211.org
http://www.jtc1.org
http://www.gsdi.org

44 KAPITEL 3. STAND DER TECHNIK

zeitigen Standardisierungsthemen liefert die im Anhang befindliche Tabelle C.3
(Seite 240). Der Bezug von ISO-Standards ist i. d. R. kostenpflichtig.

IEEE

Das Institute of Electrical and Electronic Engineers (IEEE)31 ist ein gemein-
nütziger, technischer Berufsverband mit mehr als 377000 Mitgliedern aus über
150 Ländern. Ziel des IEEE ist die Unterstützung der Entwicklung, Integra-Ziel

tion, gemeinsamen Nutzung und Anwendung elektro- und informationstechni-
schen Wissens. Eine Aktivität des IEEE ist die IEEE Standards Assosiation
(IEEE-SA), die zur Formulierung und Förderung der international anerkann-
ten IEEE-Standards bevollmächtigt ist. Mitglieder im IEEE-SA sind sowohl
Einzelpersonen als auch Firmen.

Von den fast 900 verabschiedeten Standards kann einer beim Aufbau einesStan-
dards SISA besonders relevant werden: der IEEE Standard for Modeling and Simu-

lation (M&S) High Level Architecture (HLA) (IEEE 1516). Dieser Standard
wurde als eine Referenz-Architektur für die verteilte Modellierung und Simu-
lation entwickelt. Abschnitt 3.2.2 (Seite 47) widmet sich diesem Standard. Der
Bezug von IEEE-Standards ist, ebenso wie der von ISO-Standards, i. d. R. kos-
tenpflichtig.

W3C

Das World Wide Web Consortium (W3C)32 ist die Organisation, in der die
Kerntechnologien des World Wide Web (WWW) entwickelt werden. Das W3C
wurde 1994 am Labratory for Computer Science des Massachusetts Institut of
Technology (MIT) von Tim Berners-Lee (dem ‘Erfinder’ des WWW) in Ko-
operation mit seinem ehemaligen Arbeitgeber und Ursprungsort des WWW,
dem Europäisches Kernforschungszentrum CERN (Conseil Européen pour la
Recherche Nucléaire), gegründet.

Das W3C hat sich zur Aufgabe gesetzt, die technische WeiterentwicklungZiel

des WWW durch die Förderung von Interoperabilität und offenen Diskussions-
foren zu leiten. Auf langfristige Sicht strebt das W3C ein WWW an, auf das alle
Menschen unter Berücksichtigung der vielen Unterschiede in Sprache, Ausbil-
dungsstand, materiellen Ressourcen usw. zugreifen können (universal access),
das jedem Benutzer die bestmögliche Nutzung der verfügbaren Web-Ressourcen
erlaubt (semantic web) und dessen Entwicklung die vielfältigen rechtlichen,
kommerziellen und sozialen Fragen berücksichtigt, die durch die Technologie
aufkommen (web of trust). Das W3C sieht seine Rolle darin, Visionen des
zukünftigen WWW zu erstellen, Web-Technologien zu deren Realisierung zu
entwickeln und sich an Standardisierungsbemühungen zu beteiligen.

31Startseite im Internet: http://www.ieee.org
32Startseite im Internet: http://www.w3.org/Consortium

http://www.ieee.org
http://www.w3.org/Consortium

3.2. STANDARDS 45

Das W3C besteht aus dem so genannten W3C-Team und derzeit etwa 450 Organi-
sationweiteren Mitgliedern und ist in Gruppen organisiert: Die technischen Entwick-

lungen liegen in der Hand von Working Groups, während Interest Groups für
allgemeinere Arbeiten zuständig sind und die Verbindung miteinander in fach-
licher Beziehung stehender Gruppen Aufgabe der Coordination Groups ist. Die
einzelnen Gruppen sorgen auch für die Koordination ihrer Arbeit mit anderen
Standardisierungsorganisationen.

Die Resultate des W3C sind technische Berichte, Open Source Software und
Dienstleistungen. Zu den technischen Berichten gehören auch die technischen
Spezifikationen, die so genannten Recommendations. Entwickler Web-basierter
Anwendungen kommen um diese Spezifikationen nicht herum – sie sind die
Bausteine des WWW.

Zu den wichtigsten der zurzeit etwa 40 Empfehlungen zählen diejenigen Stan-
dardszur hyper-text markup language (HTML), zum uniform resource locator (URL)

und zum hyper-text transport protocol (HTTP). Der URL-Standard legt den
Aufbau von Web-Adressen fest, der HTTP-Standard definiert das Protokoll,
mit dem Web-Seiten von einem Rechner zum anderen übertragen werden und
der HTML-Standard definiert die Beschreibungssprache für Web-Seiten und
erlaubt damit deren Aufbau (inhaltlich und darstellerisch).

Neben diesen Standards sind für die Realisierung des SISA weitere Spezifi-
kationen des W3C relevant: der uniform resource identifier (URI), die exten-
sible markup language (XML) und die mit der XML in Verbindung stehenden
Standards zum XML Schema, resource description framework (RDF) und do-
cument object model (DOM). Nähere Informationen zu diesen Empfehlungen
finden sich im weiteren Verlauf der Arbeit. Die Empfehlungen des W3C sind Verfüg-

barkeitkostenfrei und online verfügbar (http://www.w3.org).

OGC

Das Open GIS Consortium (OGC)33 ist ein internationales Industrie-Konsorti-
um von mehr als 230 Firmen, Regierungsorganisationen und Forschungseinrich-
tungen. Ziel dieses 1994 gegründeten Zusammenschlusses ist die Entwicklung
frei verfügbarer Spezifikationen im Bereich der Geodatenverarbeitung. Die offe-
nen Schnittstellen und Protokolle, die in so genannten OpenGIS Specifications Spezifi-

kationendefiniert werden, unterstützen interoperable Lösungen; die Informationstechno-
logie soll ‘geofähig’ gemacht werden und Entwickler befähigen komplexe räum-
liche Informationen und Dienste für alle denkbaren Anwendungen zugreifbar
zu machen.

Das OGC unterscheidet zwischen OpenGIS Abstract Specifications und Abstract
vs. Im-
plemen-
tation

OpenGIS Implementation Specifications. Erstere spezifizieren die konzeptionel-
le Basis für Entwicklungsaktivitäten und stellen ein Referenzmodell für die

33Startseite im Internet: http://www.opengis.org

http://www.w3.org
http://www.opengis.org

46 KAPITEL 3. STAND DER TECHNIK

Entwicklung der Implementation Specifications bereit. Die OpenGIS Imple-
mentation Specifications sind technische Spezifikationen, die Teile der Abstract
Specification für spezielle Plattformen zur Entwicklung verteilter Anwendun-
gen (z. B. OLE/COM oder CORBA) spezifizieren. Hier finden sich Program-
mierrichtlinien für Software-Entwickler zur Integration und Nutzung der OGC-
Schnittstellen und OGC-Protokolle.

Die Abstract Specifications sind in Themengebiete (topics) eingeteilt. Der-Abstract
Specifi-
cations

zeit existieren 16 themenzentrierte Abstract Specifications, die jeweils bestimm-
te Funktions- oder Technologiebereiche betreffen: angefangen von der Definition
geographischer Merkmale über die Beschreibung geographischer Referenzsyste-
me bis hin zu Diensten für die Koordinaten-Transformation von Bildern. Eine
Auflistung der OpenGIS Abstract Specifications findet sich im Anhang (Tab.
C.4, Seite 241). Auf die in der Liste zu findenden Spezifikationen der Cata-
log Services sowie die Spezifikationen von Metadaten (die das OGC im Mai
2001 von der ISO (ISO/DIS 19115) übernahm) wird im Abschnitt 5.2.1 (Sei-
te 96) näher eingegangen. Eine Übersicht über die Abhängigkeiten der OGC-
Spezifikationen untereinander findet sich ebenfalls im Anhang (Abb. C.1, Sei-
te 237).

Die Akzeptanz und Anwendbarkeit der OGC-Spezifikationen zeigt sich so-Verbrei-
tung wohl im wissenschaftlichen Bereich – im Rahmen der Umweltinformatik z. B.

bei Voges (2001), Senkler (2001) und Fitzke und Müller (2000) – als auch im
kommerziellen Bereich – z. B. durch die Umsetzung von OGC-Spezifikationen34

innerhalb des Produkts ArcGIS der Firma ESRI35.

Weitere Organisationen

Neben den angeführten Organisationen gibt es weitere, wie die Simulation In-
teroperability Standards Organization (SISO)36 und die Object Management
Group (OMG)37, deren Arbeiten bei der Entwicklung eines SISA ebenfalls zu
Rate gezogen werden können. Einige internationale Normen werden vom Deut-
schen Institut für Normung (DIN)38 in die deutsche Sprache übersetzt und in
die eigene Normenreihe aufgenommen.

Sofern Internet-Technologien für die Realisierung eines SISA eingesetzt wer-IETF

den sollten, sind die Veröffentlichungen der Internet Engineering Task Force
(IETF) von besonderer Bedeutung. Die IETF ist ein internationaler und of-
fener Verbund aus Netzwerk-Entwicklern, -Betreibern, -Anwendern und Wis-
senschaftlern, die sich mit der Entwicklung der Internet-Architektur und deren

34OpenGIS Simple Features Specification for OLE/COM 1.1 und OpenGIS Simple Featu-
res Specification for SQL 1.1.

35Startseite im Internet: http://www.esri.com
36Startseite im Internet: http://www.sisostds.org
37Startseite im Internet. http://www.omg.org
38Startseite im Internet: http://www.din.de

http://www.esri.com
http://www.sisostds.org
http://www.omg.org
http://www.din.de

3.2. STANDARDS 47

Betrieb beschäftigen. Alle Spezifikationen des IETF werden im Internet als so
genannte Requests for Comments (RFCs) veröffentlicht.39 Zu den wichtigen RFC

Standards gehört z. B. der RFC 791, der das Internet-Protokoll spezifiziert. Im
Rahmen der Realisierung der SISA-Architektur (Kapitel 5, Seite 95) bekommen
weitere RFCs eine besondere Bedeutung.

Weitere Informationen zum Thema Interoperabilität und Normung finden
sich bei Bartelme (2000). Eine Übersicht über Standardisierungs-Organisatio-
nen im Bereich der Geoinformation gibt Carson (2000).

3.2.2 High Level Architecture (HLA)

Die High Level Architecture (HLA) (Kuhl u. a., 1999) ist eine Architektur zur
Verbindung von interagierenden Teilmodellen zu Gesamtmodellen und verfolgt
das Ziel, die Interoperabilität von Simulationsmodellen zu erhöhen. Entwi-
ckelt im militärischen Umfeld40, hält die Architektur zunehmend im zivilen
Bereich Einzug (s. z. B. Schulze u. a., 1999) und wurde im Jahr 2000 zum IEEE-
Standard (IEEE, 2000a)41.

Die grundlegenden Elemente der HLA sind die so genannten Federates und
Federations: ein Federate ist eine Anwendung, die sich an einer Federation be-
teiligt und kann mit einem Teilmodell verglichen werden42. Eine Federation
besteht – vergleichbar mit einem Gesamtmodell – aus einer Menge interagie-
render Federates, einer formalen Beschreibung des gemeinsamen Objektmodells
und einer Infrastruktur, die für die Kommunikation zwischen den Federates zu-
ständig ist (vgl. Abb. 3.6, Seite 50).

Die formale Definition der Modeling and Simulation High Level Architecture
– so der offizielle Name der Architektur – umfasst drei Hauptkomponenten:

• HLA Rules (IEEE, 2000a)
• HLA Object Model Template (OMT) (IEEE, 2000c)
• HLA Federate Interface Specification (IEEE, 2000b)

Die HLA Rules beschreiben die Hauptbestandteile einer Federation und de- Rules

finieren über insgesamt zehn Regeln das Zusammenspiel zwischen Federate und
Federation. Hier wird beispielsweise festgelegt, dass sich die Federates auf ein
gemeinsames Objektmodell – das Federation Objekt Model (FOM) – beziehen
müssen und dass jeglicher Datenaustausch zwischen den Federates über eine

39Die Spezifikation der Standardisierungsprozesses selbst ist ebenfalls ein RFC und findet
sich unter http://www.ietf.org/rfc/rfc2026.txt?number=2026.

40Die HLA ist seit 1996 die Standard-Architektur für Simulationsanwendungen im Depart-
ment of Defence der USA. Siehe http://www.dod.mil.

41Grundlage für die Beschreibung der HLA in diesem Unterabschnitt liefert die HLA Tech-
nical Specification, Version 1.3, die die Vorlage für den IEEE-Standard 1516 darstellt u. über
https://www.dmso.mil/public/transition/hla/techspecs erhältlich ist.

42Ein Federate kann aber auch jedes andere beteiligte Programm sein, wie z. B. ein Sensor
zur Datenerfassung oder eine passive Anwendung zur Datenvisualisierung.

http://www.ietf.org/rfc/rfc2026.txt?number=2026
http://www.dod.mil
https://www.dmso.mil/public/transition/hla/techspecs

48 KAPITEL 3. STAND DER TECHNIK

Instanz namens Run-Time Infrastructure (RTI) ablaufen muss. Weiterhin wird
in den Regeln festgelegt, dass es zu jedem Federate eine formale Beschreibung
seiner Objekte in Form eines Simulation Object Model (SOM) geben muss. Die
einzelnen Regeln sind in Anhang C.2 (Seite 243) dokumentiert.

Im Object Model Template (OMT) werden die Formate und die Syntax de-OMT

finiert, die zur formalen Definition von Objekten, Attributen, Interaktionen
und Parametern – also zur Erstellung von FOMs und SOMs – benutzt werden
müssen.

Die HLA Federate Interface Specification definiert die Schnittstelle zwischenInterface
Specifi-
cation

den Federates und der Run-Time Infrastrukture (RTI). Die Dienste der RTI
werden eingeteilt in sechs Gruppen:

1. Federation-Management (federation management)
2. Deklarations-Management (declaration management)
3. Objekt-Management (object management)
4. Eigentum-Management (ownership management)
5. Zeit-Management (time management)
6. Datenverteilungs-Management (data distribution management)

Die Gruppe für das Federation-Management umfasst Dienste zur ErzeugungFedera-
tion und zum Löschen so genannter Federate Executions (Objekte, die eine Federa-

tion zur Laufzeit repräsentieren) sowie zur dynamischen An- und Abmeldung,
zur Sychronisationssteuerung und zum Speichern und Wiederherstellen von Fe-
derates. Bevor ein Federate in eine Federation Execution eintreten kann, muss
die Federation Execution existieren. Die Dienste des Deklarations-ManagementsDeklara-

tion bieten die Möglichkeit Objekt-Klassen und Interaktions-Klassen zu veröffent-
lichen und Klassen oder einzelne Attribute zu ‘abonnieren’ – die HLA funk-
tioniert nach dem Publisher-Subsciber-Prinzip: Objekte, die die Werte ihrer
Attribute anderen Objekten mitteilen wollen, ‘veröffentlichen’ diese Attribu-
te, während Objekte, die Interesse an diesen Attribut-Werten haben, die At-
tribute ‘abonnieren’ können. Die Änderung eines Attributwertes wird dann
automatisch (über die RTI) allen interessierten Objekten bekannt gegeben43.
Für das Objekt-Management werden Dienste bereitgestellt zur RegistrierungObjekte

von Objekt-Instanzen bei einer Federation, zur Aktualisierung von Attribut-
Werten und Versendung von Interaktionen sowie zur Steuerung des Transpor-
tes von Attribut-Werten und Interaktionen. Über die Dienste des Eigentum-
Managements44 können die Eigentumsrechte einzelner Objekt-Attribute ver-Eigen-

tum waltet werden. Es gibt Dienste zur Abfrage der Eigentumsverhältnisse, zur

43Zum ‘Publisher-Subscriber-Muster’ s. z. B. Gamma u. a. (1996) oder Buschmann u. a.
(1998).

44Der Eigentümer eines Objekt-Attributes hat mehr Möglichkeiten bei der Verwaltung des
Attributes und das Recht Attributwerte zu ändern. Die Verwaltung der Rechte geschieht in
der HLA dynamisch.

3.2. STANDARDS 49

Weitergabe des Eigentumsrechtes (inklusive der Anfrage das Eigentum zu er-
langen). Die Zeit des modellierten Systems wird in der Federation als Punkt Zeit

auf einer Federation-Zeitachse repräsentiert. Die Zeit innerhalb der Federa-
tes läuft entweder eingeschränkt oder uneingeschränkt entlang dieser Zeitachse
ab. Die Dienste des Zeit-Managements bieten einen Mechanismus zur Kon-
trolle des Zeitverlaufes jedes Federates entlang der Federation-Zeitachse. Fe-
derates können time regulated oder time constrained sein: im ersteren Fall
assoziiert ein Federate über ‘Zeitstempel’ Aktivitäten mit Punkten auf der
Federation-Zeitachse, im zweiten Fall ist ein Federate interessiert am Empfang
von Benachrichtigungen über solche Aktivitäten.45 Während das Deklarations- Daten-

vertei-
lung

Management den Datenaustausch auf der Ebene von Klassen-Attributen regelt,
stellt das Datenverteilungs-Management Dienste zur Verfügung, die von den
Federates benutzt werden können, um den Datenaustausch zu reduzieren. Die
Dienste erlauben es, so genannte nutzerdefinierte Räume (user defined spaces)
zu definieren. Die RTI gibt Daten und Interaktionsanfragen dann nur an die-
jenigen Federates weiter, die sich für diesen Ausschnitt interessieren.

Die Einteilung in die sechs Gruppen sollte es Entwicklern ermöglichen, nur
die für sie relevanten Dienste zu implementieren und die anderen ignorieren zu
können (Kuhl u. a., 1999).

Die grundlegenden statischen und dynamischen Prinzipien der HLA werden
in den Abbildungen 3.6 (Seite 50) und 3.7 (Seite 51) noch einmal zusammen-
fassend dargestellt.

Neben den drei Standards zur Beschreibung des allgemeinen Rahmens (IE- Entwick-
lungs-
prozess

EE, 2000a), der Schnittstellen (IEEE, 2000b) und der Modell-Beschreibungs-
sprache (IEEE, 2000c) enthält die Standard-Serie IEEE 1516 noch ein Doku-
ment, das einen Entwicklungsprozess beinhaltet, der für die Erstellung HLA-
konformer Simulationsmodelle empfohlen wird (IEEE, 2003).

Die HLA ist eine Architektur und stellt damit lediglich die Prinzipien bereit,
die zur Erhöhung der Interoperabilität von Simulationsmodellen beiträgt. Um
diese Prinzipien einzusetzen, ist es notwendig, die RTI zu implementieren. Bis
September 2002 stellte das Defense Modeling and Simulation Office (DMSO)
der USA46 eine Implementierung kostenfrei zur Verfügung. Seither wird auf
kommerzielle Implementierungen der RTI verwiesen. Eine Liste aktueller RTI-
Software – die derzeit für die Programmiersprachen C++ und JAVA verfügbar
ist – ist auf den Internet-Seiten des DMSO zu finden47.

45Standardmäßig sind Federates weder time regulated noch time constrained. Sofern keine
Änderungen vorgenommen werden, machen die Federates keinen Gebrauch von den Zeit-
Management-Diensten.

46Startseite im Internet: https://www.dmso.mil
47https://www.dmso.mil/public/transition/hla/rti/statusboard

https://www.dmso.mil
https://www.dmso.mil/public/transition/hla/rti/statusboard

50 KAPITEL 3. STAND DER TECHNIK

objects & interactions

federation

RTI
RTI

ambas-
sador

IEEE Standard for Modeling and
Simulation (M&S) High Level
Architecture (HLA) - Federate
Interface Specification
(IEEE 1516.1-2000)

IEEE Standard for Modeling and Simulation
(M&S) High Level Architecture (HLA) -
Object Model Template (OMT) Specification
(IEEE 1516.2-2000)

FOM SOM

OMT

gem
äß

ge
m

äß

IEEE Standard for Modeling and
Simulation (M&S) High Level
Architecture (HLA) - Framework
and Rules
(IEEE 1516-2000)

liefert Daten- und

Interaktions-Info

Definiert:
- object classes
- interaction classes

sendet und empfängt
interactions bestimmter

Klassen

Repräsentiert das allgemeine,
vereinbarte Vokabular
(objects & interactions)
zwischen den Mitgliedern
einer federation

R1

Austausch von FOM-
Daten ausschließlich

über RTI (R3)

R6

Beschreibung der Simulations-
Funktionalitäten und der zur Verfügung
gestellten federate-Daten (R6) sowie der
Eigentumsverwaltung (R8) und der
Bedingungen zum Attribut-Update (R9)

Zusicherung der RTI-
Unterstützung (update/
reflect) für alle Attribute
und Interaktionen im
SOM (R7)

Schnittstellen-Gruppen:
- federation management
- declaration management
- object management
- ownership management
- time management
- data distribution management

federate
ambassador

federate n

federate ...

federate
ambassador federate 1

federate
ambas-
sador

simulations-bezogene
Objekt-Instanzen (R2)

R4

Instanz-Attribut (R5/8)
lokale Zeit (R10)

besc
hrie

ben

über

Abbildung 3.6: High Level Architekture – Übersicht. Eine federation (das ‘Ge-
samtmodell’) besteht aus mehreren federates (Teilmodellen) und der run-time
infrastructure (RTI), über die der gesamte Datenaustausch abgewickelt wird.
Das Gesamtmodell wird über das federation object model (FOM) beschrieben;
die dem Gesamtmodell zur Verfügung gestellten Daten und Funktionen der
einzelnen Teilmodelle werden im simulation object model (SOM) definiert. Die
formale Spezifikation der High Level Architecture besteht aus drei Teilen: IEEE
1516 beschreibt den allgemeinen Rahmen und die zehn Regeln (R1-R10), die
das Zusammenwirken der Federates (Teilmodelle) innerhalb einer Federation
(Gesamtmodell) definieren; IEEE 1516.1 spezifiziert die Schnittstelle zwischen
der RTI und den einzelnen Teilmodellen; IEEE 1516.2 definiert die Beschrei-
bungssprache, die für das FOM und das SOM benutzt werden muss. Die Regeln
finden sich im Anhang C.2 (Seite 243). Weitere Informationen finden sich im
Text.

3.2. STANDARDS 51

RTIFederate 1 Federate 2

start federation execution()

join federation execution()
join federation execution()

get object class handel()

get attribute handle()

publish object class()

get object class handle()

register object instance()

subscribe object class attributes()

discover object instance()

start registration()

update attribute value()
reflect object attribute()

delete object instance()
remove object instance()

get attribute handle()

resign federation execution()
resign federation execution()

destroy federation execution()

get interaction class handle()

get interaction class handle()
publish interaction class()

subscribe interaction class()
turn interactions on()

send interaction()
receive interaction()

Abbildung 3.7: HLA-Prinzip der Daten- und Interaktionsweitergabe. Die In-
stantiierung einer Federation wird durch den Aufruf start federation execution()
bei der RTI veranlasst. Im Anschluss daran können sich Federates dieser Fede-
ration durch Aufruf von join federation execution() anschließen – im abgebilde-
ten Beispiel sind es zwei Federates (Federate1 und Federate2). Bevor Federates
Daten über Objekte und deren Attribute austauschen können, müssen sie sich
zunächst über get object/attribute handle() geeignete Identifizierungsnummern
besorgen. Federate1 kann nun die ‘Veröffentlichung’ von Objekten anmelden.
Diese Anmeldung geschieht über publish object class(). Ist Federate2 an derar-
tig veröffentlichten Attributen dieses Objektes interessiert, kann es dies über
subscribe object class attribute() der RTI bekannt geben. Ab dann erfolgt ei-
ne automatische Benachrichtigung von Federate2, sobald neue Objekte von
Federate1 registriert werden oder sich die Attributwerte registrierter Objek-
te ändern (update/reflect object()). Die Registrierung von Interaktionen findet
ebenfalls nach dem Muster publish/subscribe statt. Eine Federation existiert
so lange, bis sich alle Federates über resign federation execution() abgemeldet
haben. Die endgültige Zerstörung der Federation geschieht über den Aufruf der
Funktion destroy federation execution().

52 KAPITEL 3. STAND DER TECHNIK

3.2.3 NIST/ECMA-Referenz-Modell

Das NIST/ECMA-Referenz-Modell48 wurde ursprünglich als Architektur zur
Integration verschiedener Systeme (Anwendungen) im Rahmen des Computer
Aided Software Engineering (CASE) entwickelt. Neben der Verfolgung des ZielsZiel

verschiedene Datenquellen einheitlich zugreifbar zu machen, stellt die Architek-
tur einen erweiterbaren Rahmen bereit, der für die Kommunikation der einzel-
nen Anwendungen zuständig ist und der eine einheitliche Benutzungsoberfläche
und Repräsentation der Daten bietet. Abbildung 3.8 zeigt die Übersicht dieses
Modells.

Die einzelnen Komponenten besitzen nach Hering u. a. (2000) die folgendenKompo-
nenten Verantwortlichkeiten: Repository Services sind zuständig für die Speicherung

der Entwicklungsdaten; die Data-integration Services sind für die Versions- und
Konfigurationsverwaltung zuständig und erlauben einen transparenten Zugriff
auf die Entwicklungsdaten; die Process-management Services sind als Abstrak-
tionsebene zu den Werkzeugen (Tools) und als Schicht zwischen Benutzungs-
schnittstelle und den eigentlichen Werkzeugen zuständig für die Verwaltung
der Zugriffsmöglichkeiten der Anwender; die User-interface Services stellen ei-
ne einheitliche Benutzungsschnittstelle für alle Werkzeuge bereit; die Message
Services erlauben den Informationsaustausch zwischen den einzelnen Diensten
und den zwischen den Werkzeugen.

Die Problemstellung, die zur Entwicklung dieser Architektur geführt ha-
ben – der konsistenten Integration von Daten und Programmen (vgl. Shaw
und Garlan, 1996) – ist vergleichbar mit den Integrationsproblemen, die bei
integrierten Modellen auftreteten. Da das NIST/ECMA-Referenz-Modell zur
Entwicklung der Referenz-Architektur des Open-GIS-Konsortiums, die in Un-
terabschnitt 3.2.5 (Seite 55) genauer vorgestellt wird, herangezogen wurde, sei
für weitere Ausführungen zum NIST/ECMA-Modell auf Chen und Norman
(1992) verwiesen.

3.2.4 Open Distributed Processing – Reference Model

Die Komponenten eines SISA sollten nicht zwangsläufig auf einem Host (Rech-
ner) laufen müssen. Eine Verteilung des Systems ist bei der Architekturent-
wicklung daher zu berücksichtigen.

Ein verteiltes System stellt besondere Anforderungen an die Software-Archi-
tektur.49 Der gemeinsame technische Ausschuss der ISO und der IEC (JTC1)
(siehe Abschnitt 3.2.1, Seite 41) hat daher ein Rahmenwerk geschaffen, das die
Erstellung von Standards für solche Systeme erleichtern und fördern soll: den

48NIST = National Institute of Standards and Technology, ECMA = European Computer
Manufacturers Association.

49Zum Beispiel Anforderungen bezüglich der Synchronisation von Komponenten und der
Fehlerbehandlung. Zu den Besonderheiten verteilter Systeme s. ISO (1998).

3.2. STANDARDS 53

User-interface services

File Edit Compute Debug

Cut
Paste

Main()
|
|
Hello World
|
|

Process-management services

Message services

Data-integration services

Repository services

Horizontal tools
Open
tool
slotsPl

ug
a
nd

us
e

a
ne

w
to

ol

Ve
rti

ca
l t

oo
ls

Tool layer

Abbildung 3.8: NIST/ECMA Referenz-Architektur. Erklärungen finden sich im
Text. Quelle: Chen und Norman (1992).

Standard ISO/IEC 10746 Information Technology – Open Distributed Proces-
sing – Reference Model (ISO, 1998). Der Standard, der auch als ISO RM-ODP
oder kurz RM-ODP bezeichnet wird, besteht aus vier Teilen:

ISO/IEC 10746-1 Overview

ISO/IEC 10746-2 Foundations

ISO/IEC 10746-3 Architecture

ISO/IEC 10746-4 Architectural Semantics

Der erste Teil motiviert die Anwendung offener, verteilter Systeme, zeigt de- Over-
viewren Möglichkeiten auf, erklärt Schlüsselkonzepte und skizziert die ODP-Archi-

tektur. Darüber hinaus enthält dieser Teil Beispiele zur Anwendung des Stan-
dards für potentielle Nutzer, d. h. für Autoren von abgeleiteten Standards und
für Entwickler von ODP-Systemen. Der zweite Teil enthält die Definitionen Founda-

tionder Konzepte und des analytischen Rahmenwerks zur normalisierten Beschrei-
bung beliebiger verteilter Systeme. Der dritte Teil des Standards benutzt die

Archi-
tectureBeschreibungstechniken des zweiten Teils und beschreibt die Eigenschaften, die

ein verteiltes System aufweisen muss, um als offen zu gelten. Abgeleitete ODP-
Standards müssen die hier aufgeführten Kriterien erfüllen. Der vierte Teil be- Seman-

ticsschreibt eine Vereinheitlichung einiger Modellierungskonzepte des zweiten Teils
unter Verwendung standardisierter formaler Beschreibungssprachen.

54 KAPITEL 3. STAND DER TECHNIK

Zur Standardisierung offener verteilter Systeme werden vier grundlegende
Elemente gefordert:

• ein objektorientierter Modellierungsansatz zur Systembeschreibung
• die Systembeschreibung über fünf gesonderte, aber in wechselseitiger Be-

ziehung stehende Sichtweisen (viewpoints)
• die Definition einer System-Infrastruktur zur Verteilungstransparenz für

System-Anwendungen
• ein Rahmenwerk zur Feststellung, ob ein System standardkonform ist

Der objektorientierte Ansatz wird wegen der etablierten Entwurfsmetho-
den der Abstraktion und Kapselung gewählt. Durch die Abstraktion kann die
Systemfunktionalität beschrieben werden, ohne dass auf die Details der Im-
plementierung eingegangen werden muss (die Kapselung erlaubt beispielsweise
die Heterogenität oder die Implementierung von Sicherheitskonzepten zu ver-
bergen). Als weiterer Pluspunkt der Objektorientierung wird die allgemeine
Bekanntheit ihrer Konzepte betrachtet.

Im ersten Teil des Standards wird eine Architektur-Beschreibung eingeführt,fünf
Sicht-
weisen

die auf fünf unterschiedlichen Sichtweisen auf ein System beruht: den enter-
prise viewpoint, den computational viewpoint, den information viewpoint, den
engineering viewpoint und den technology viewpoint. Eine zusammenfassende
Beschreibung der einzelnen Sichtweisen findet sich in Tabelle 3.1. Eine Anwen-
dung des Standards ist die im folgenden Unterabschnitt vorgestellte Dienste-
Architektur des OpenGIS-Konsortiums. Für weitere Details sei an dieser Stelle
direkt auf den Standard verwiesen (ISO, 1998); eine Einführung in den Stan-
dard liefern Farooqui u. a. (1995) und Schürmann (1995).

Sichtweise Beschreibung

Enterprise
Viewpoint

Sichtweise auf ein ODP-System und seine Umgebung, die sich auf
den Zweck, den Bereich und die Grundsätze für dieses System kon-
zentriert.

Computational
Viewpoint

Sichtweise auf ein ODP-System und seine Umgebung, die durch
eine funktionale Zerlegung des Systems in über Schnittstellen in-
teragierende Objekte eine Verteilung erlaubt.

Information
Viewpoint

Sichtweise auf ein ODP-System und seine Umgebung, die sich auf
die Semantik der Informationen und der Informationsverarbeitung
konzentriert.

Engineering
Viewpoint

Sichtweise auf ein ODP-System und seine Umgebung, die sich auf
die Mechanismen und Funktionen konzentriert, die zur Unterstüt-
zung für verteilte Interaktionen zwischen den Objekten des Sys-
tems benötigt werden.

Technology
Viewpoint

Sichtweise auf ein ODP-System und seine Umgebung, die sich auf
die Auswahl von Technologien innerhalb des Systems konzentriert.

Tabelle 3.1: Sichtweise auf ein Software-System nach ISO/RM-ODP (ISO,
1998).

3.2. STANDARDS 55

3.2.5 OpenGIS Service Architecture

Das Open GIS Consortium schlägt in seinen Abstract Specifications (s. S. 45)
die OpenGIS Service Architecture (Percivall, 2002) vor. Diese Architektur wird
als eine von vielen möglichen technischen Referenzmodellen angesehen. Der
Architektur liegen die Annahmen zugrunde, dass die Zielsysteme 1) verteilte
Systeme und 2) objektorientiert aufgebaut sind.

Bis zur Version 4 definierte die OpenGIS Service Architecture im Sinne
der ISO RM-ODP (s. Unterabschnitt 3.2.4) die wesentlichen Teile der compu-
tational view eines Informationssystems für georäumliche Verarbeitungen; die
Architektur stellte also lediglich einen Rahmen (engl. framework) der Dienste
bereit, die für die Entwicklung und Ausführung georäumlich orientierter An-
wendungen benötigt werden.

Im April 2001 wurde über das OGC Technical Committee die Übernahme
der Arbeiten zum ISO-Standard 19119 (Geographic information – Services)
als OGC Service Architecture beschlossen. Die derzeit verfügbare Version 4.3
der OGC Service Architecture (Percivall, 2002)50 beinhaltet den Entwurf zum
Internationalen Standard (ISO/DIS 1911951).

ISO 19119 liefert eine Taxonomie für geographische Dienste und schreibt Inhalt

vor, wie plattformneutrale Spezifikationen für Dienste zu erzeugen und hierzu
konforme plattformspezifische Spezifikationen abzuleiten sind.

Die durch den Architektur-Standard für geographische Dienste verfolgten Ziele

Ziele sind:

• ein abstraktes Rahmenwerk bereitzustellen, das eine abgestimmte Ent-
wicklung spezifischer Dienste erlaubt

• durch eine Schnittstellen-Standardisierung interoperable Daten-Dienste
zu ermöglichen

• durch die Definition von Metadaten über Dienste die Entwicklung von
Dienste-Katalogen zu unterstützen

• die Trennung einzelner Daten und Dienste zu ermöglichen
• die Nutzung der Dienste eines Anbieters auf den Daten eines anderen

Anbieters zu ermöglichen
• ein abstraktes Rahmenwerk zu definieren, das unterschiedlich implemen-

tiert werden kann

Zur Erreichung dieser Ziele erweitert der Standard das architektonische Re-
ferenzmodell, das in ISO 19101 definiert ist (ISO 19101 definiert das so genannte
Extended Open Systems Environment (EOSE) model for geographic services).

50OpenGIS AS Topic 12. Alle Verweise auf die ISO 19119 in der vorliegenden Arbeit
beziehen sich auf diese Veröffentlichung.

51DIS heißt Draft International Standard und bezieht sich auf den Status des Dokuments.
Ein DIS wird den Mitgliedern der ISO zur Abstimmung vorgelegt um zu einem International
Standard zu werden.

56 KAPITEL 3. STAND DER TECHNIK

ISO/DIS 19119 betrachtet die Service-Architektur aus vier der insgesamtView-
points fünf Blickrichtungen der RM-ODP und beschreibt den computational view-

point, den information viewpoint, den engineering viewpoint und den technolo-
gical viewpoint. Der enterprise viewpoint wird in anderen Teilen der ISO-19100-
Serie beschrieben (z. B. im Referenzmodell ISO 19101). Die in ISO/DIS 19119
behandelten Sichtweisen werden im Folgenden kurz beschrieben.

Computational Viewpoint

Bei der Beschreibung des computational viewpoint wird die Basis für die Ver-Compu-
tational
View-
point

kettung von Diensten gelegt. Dieser Abschnitt des Standards

• definiert die Konzepte der Dienste (Services), Schnittstellen und Opera-
tionen sowie deren Beziehungen untereinander

• definiert ein Modell für die Verkettung von Diensten, um größere Aufga-
ben lösen zu können (service chaining)

• definiert ein Metadaten-Modell für Dienste, um das Auffinden von Diens-
ten über Kataloge zu unterstützen

• stellt einen Ansatz für die physikalische Verteilung von Diensten (durch
die Nutzung einer n-Tier-Architektur) vor

Die einzelnen Punkte werden im Folgenden kurz erläutert.

Dienste-Konzept

Das zentrale Element des Dienste-Konzepts (s. Abb. 3.9) ist die Schnittstel-Schnitt-
stelle le: Eine Schnittstelle wird definiert als benannte Menge von Operationen, die

das Verhalten einer Entität charakterisiert. Schnittstellen sind abstrakte, von
der späteren Realisierungsplattform unabhängige Spezifikationen und werden
über Operationen definiert. Eine Operation ist die abstrakte BeschreibungenOpera-

tion einer über die Schnittstelle angebotenen Aktion zur Datentransformation oder
Datenabfrage.

Damit Schnittstellen von Software-Agenten oder Personen (den Nutzern)Port

benutzt werden können, müssen sie, unter Berücksichtigung plattformabhängi-
ger Spezifikationen, implementiert werden. Eine solche Implementierung wird
als Port bezeichnet.

Am Ende dieser Definitionskette steht der Dienst, der den eigentlichen WertDienst

für den Nutzer darstellt. Der Dienst besteht aus mehreren Ports, d. h. aus
den Implementierungen mehrerer Schnittstellen. Ein Dienst, der auf einem be-
stimmten Rechner läuft und der über ein Netzwerk zugreifbar ist, wird als
Instanz eines Dienstes bezeichnet. Die Implementierung eines Dienstes kann
mit einem für diesen Dienst spezifischen Datensatz verbunden sein oder mit
mehreren, unspezifischen Datensätzen arbeiten. Im ersten Fall spricht man von

3.2. STANDARDS 57

ISO/DIS 19119

© ISO 2001 — All rights reserved 9

These terms are related to each other as depicted in Figure 3. Figure 3 shows that services are specified by set of
interfaces that are a set of operations. Interfaces are implemented as ports that make services available to users.

SV_PortSpecification

+ binding : DCPList
+ address : URI

SV_Service

SV_Port

SV_ServiceSpecification

+ name : CharacterString
+ opModel : SV_OperationModel

SV_Interface

+ typeName : TypeName

1..n

1..n

SV_Operation

+ operationName : MemberName

operationName : MemberName

1..n

1

+interface

+operation

Figure 3 — Service definition relationships

The aggregation of interfaces in a service shall be for the purpose of defining functionality of value to the users.
Users in this context are either software agents or human users. A service provides functionality that adds value.
The value is apparent to the user who invoked the service.

The aggregation of operations in an interface, and the definition of interface, shall be for the purpose of software
reusability. Interfaces shall be defined in order to be reusable for multiple service types. The syntax of an interface
may be reused with multiple services with different semantics.

Services of multiple types may be aggregated. The service types shall be defined consistent with the service
taxonomy of 8.3. When a service provides functionally beyond that of a single category in the service taxonomy it
shall be an aggregate service. Services chaining results in aggregate services as defined in 7.3.5.

Interfaces are abstract specifications separate from the concrete deployment or data format bindings. The
specification of an interface shall include a static portion that includes definition of the operations. The specification
of an interface shall include a dynamic portion that includes any restrictions on the order of invoking the operations.

An implementation of an interface is a port. The implementation includes implementation of the platform-specific
specification and a method to identify the service, e.g., an address.

An implementation of a service may be associated with a specific dataset or it may be a service that can be used to
operate on multiple, unspecified datasets. The first case is referred to as tightly-coupled service. The second case
is referred to as a loosely-coupled service. (See 7.4.1).

Interfaces are defined through operations. An operation specifies a transformation on the state of the target object
or a query that returns a value to the caller of the operation. An operation shall be an abstract description of an
action supported by the interface. Operations contain parameters.

Abbildung 3.9: Statisches Modell des Dienste-Konzepts der ISO/DIS 19119 in
UML-Notation. Dienste (Services) basieren auf der plattformabhängigen Imple-
mentierung (Ports) von Schnittstellen (Interfaces). Die Schnittstellen werden in
einer Dienste-Spezifikation (Service Specification) zusammengefasst und beste-
hen ihrerseits aus Operationen (Operations). Quelle: ISO/DIS 19119 (Percivall,
2002).

einem eng gekoppelten Dienst (tightly-coupled service), im zweiten Fall von ei-
nem lose gekoppelten Dienst (loosely-coupled service). Welche Schnittstellen ein
Dienst implementiert, wird in der Dienst-Spezifikation festgelegt.

Abbildung 3.9 fasst die Beziehungen der Konzepte in graphischer Form zu-
sammen.

Dienste-Verkettung

Um auch größere Aufgaben über Dienste lösen zu können, wird das Modell Dienste-
Ketteder so genannten Dienste-Ketten (service chains) definiert. Eine Dienste-Kette

wird als gerichteter Graph aufgefasst und definiert als eine Folge von Diensten,
in der bei allen miteinander verbundenen Diensten die Durchführung der ersten
Aktion für die Durchführung der zweiten Aktion notwendig ist.

ISO/DIS 19119 definiert drei Muster für Dienste-Ketten: nutzerdefinierte Muster

Verkettung, Workflow-verwaltete Verkettung und aggregierte Dienste. Bei der

58 KAPITEL 3. STAND DER TECHNIK

nutzerdefinierten Verkettung wird die Dienste-Kette vom Nutzer definiert und
kontrolliert. Die Workflow-Variante setzt voraus, dass die Kette vordefiniert
ist; der Nutzer muss lediglich die Kenntnis von der Kette als Ganzes haben
(die Steuerung der einzelnen Dienste übernimmt ein Workflow Service). Bei
einem aggregierten Dienst tritt die Kette als ein einzelner Dienst auf, der die
Koordination der einzelnen Dienste übernimmt. Im Gegensatz zum Workflow-
Muster werden die einzelnen Aktionen des aggregierten Dienstes vor dem Nut-
zer versteckt – ein aggregierter Dienst wird daher auch als ‘undurchsichtige
Verkettung’ (opaque-chaining) bezeichnet. Aggregierte Dienste erlauben eine
rekursive Zusammensetzung von Diensten: Eine Dienste-Kette kann zu einem
Dienst werden, was die Skalierbarkeit eines Systems fördert.

Ein System stellt oft viele unterschiedliche Dienste bereitstellt. Da für dieDienste-
Organi-
sation

Erledigung einer bestimmten Aufgabe aus dieser Gesamtmenge oft nur wenige
Dienste anwendbar sind, schlägt ISO/DIS 19119 die Einrichtung so genannter
services organizer folder (SOF) vor. Ein SOF ist eine Datenstruktur, die Re-SOF

ferenzen auf Dienste enthält, die in bestimmten Situationen anwendbar sind.
Nutzer eines Systems können ein aufgabenbezogenes SOF erstellen und ande-
ren Nutzern, für die Suche nach Diensten in vergleichbaren Situationen, zur
Verfügung stellen.

Metadaten-Modell für Dienste

ISO/DIS 19119 stellt ein Metadaten-Modell für Dienste (genauer: für die In-
stanzen von Diensten) bereit. Die über die Metadaten-Elemente bereitgestellten
Informationen sollen ausreichen, damit ein Nutzer den Dienst verwenden kann.

Zur Definition des Metadaten-Schemas werden Elemente der ISO 19115
(Geographic information – Metadata) verwendet. Die Metadaten zu einer
Dienst-Instanz bestehen aus einer allgemeinen Beschreibung der Funktiona-
lität des Dienstes und aus den Beschreibungen der Operationen, die durch die
Dienst-Instanz aufgerufen werden können. Sofern es sich um eine eng gekoppel-
te Dienst-Instanz handelt, sind weitere Metadaten gemäß ISO/DIS 19115 für
die Daten anzugeben.

Dienste-Architektur (simple service architecture)

Für die Implementierung einer nachrichtenbasierten Architektur zur Verket-
tung von Diensten wird die so genannte ‘einfache Dienste-Architektur’ (simple
service architecture) vorgeschlagen. Damit sich ein System als Instanz dieser
Architektur bezeichnen darf, müssen bei der Implementierung fünf Punkte be-
rücksichtigt werden, die bei Percivall (2002) mit den folgenden, unten näher
erklärten Stichpunkten zusammengefasst werden:

• Nachrichten-Operationen
• Trennung von Kontrolle und Daten

3.2. STANDARDS 59

• Zustandsbehaftete vs. zustandslose Dienste
• Bekannter Dienst-Typ
• Zugewiesene Hardware (adequate hardware)

Operationen sollten aus Vereinfachungsgründen über Nachrichten model- Nach-
richten-
Opera-
tion

liert werden. Eine Nachrichten-Operation (‘message operation’) sollte aus einer
Anfrage und einer Antwort bestehen. Anfragen und Antworten führen Para-
meter mit sich, die unabhängig vom Kontext in einer einheitlichen Weise über-
tragen werden. Bei den Anfrage-Antwort-Interaktionen einfacher Anwendun-
gen gibt es charakteristische Nachrichtenaustausch-Muster, wie den unidirek-
tionalen (Ereignis) und den bidirektionalen Austausch. Eine Dienstspezifikation
sollte die Erzeugung und Nutzung von Anwendungen so einfach wie möglich
machen.

Trennung von Kontrolle und Daten. Ein Client, der auf einen Dienst zu- Kontrol-
le &
Daten

greift (ihn kontrolliert), benötigt eventuell nicht die gesamten Resultate eines
Dienstes; im Falle einer Dienste-Kette benötigt er beispielsweise nur das End-
ergebnis, nicht aber die gegebenenfalls zur Verfügung stehenden Teilergebnisse.
Aus diesem Grund sollten die Operationen einer Schnittstelle die Kontrolle ei-
nes Dienstes vom Zugriff auf die Ergebnisdaten des Dienstes trennen. Ein Client
sollte die Option haben, nur den Status einer Operation zu empfangen und auf
die Daten separat über eine andere Operation zuzugreifen.

Aus Vereinfachungsgründen sollte ein Dienst zustandslos sein, d. h. der Auf- Zu-
ständeruf eines Dienstes besteht aus einer Aufruf-Antwort-Sequenz und es gibt keine

Abhängigkeit von vorhergehenden und zukünftigen Interaktionen. Dies ist nicht
immer möglich: für einige Dienste müssen Vorbedingungen gesetzt werden, für
andere sind Interaktionen notwendig. In solchen Fälle, sind die möglichen Zu-
stände des Dienstes mit Hilfe eines Zustandsdiagramms zu modellieren. Die
Zustandsübergänge werden dann durch Operationen ausgelöst.

Alle Dienst-Instanzen sind von spezifischen Dienst-Typen und der Client bekann-
ter
Dienst

kennt den Typ vor der Laufzeit. Clients sollen Software enthalten, die den
Dienst-Typ feststellt, bevor sie in Verbindung mit einer Dienst-Instanz treten.

Die in ISO/DIS 19119 beschriebenen Dienste sind Software-Implementie- zugewie-
sene
Hard-
ware

rungen, die auf Hardware-Hosts laufen. Der Standard nimmt an, dass die mit
dem Hardware-Hosting verbunden Software-Fragen transparent gegenüber dem
Nutzer sind – in anderen Worten: um die Zuweisung eines Hardware-Hosts zu
einem Dienst muss sich der Nutzer nicht kümmern.

Information Viewpoint

Ziel der Festelegungen zum information viewpoint ist die Interoperabilität52 des
Informationsmodells. Zwei Systeme werden nach ISO 19119 dann als interope-
rabel angesehen, wenn sie sowohl syntaktisch als auch semantisch interoperabel

52Zum Begriff der Interoperabilität siehe Unterabschnitt 2.3.2, Seite 21.

60 KAPITEL 3. STAND DER TECHNIK

sind, d. h. sie müssen nicht nur die gleiche Struktur für den Datenverkehr ver-
wenden, sondern auch ein gemeinsames Verständnis der Bedeutung der Daten
haben.

Das Modell für den information viewpoint wird in ISO 19101 definiert. ISO
19101 definiert für den information viewpoint ein Modell namens Extended
Open Systems Environment (EOSE) für geographische Informationen. Das Mo-
dell erweitert das Open System Environment Model (ISO/IEC TR 14252)53 und
definiert sechs Dienstkategorien:Dienst-

katego-
rien Interaktionsdienste für Nutzer (human interaction services) Dienste zur

Verwaltung von Benutzungsschnittstellen, Graphiken, Multimedia und
für die Präsentation zusammengesetzter Dokumente

Modell-/Informations-Verwaltungsdienste (model/information manage-
ment services) Dienste zur Verwaltung der Entwicklung, Manipulation
und Speicherung von Metadaten, konzeptuellen Schemata und Datensät-
zen

Arbeitsablauf-/Aufgabenverwaltungsdienste (workflow/task manage-
ment services) Dienste zur Unterstützung von speziellen, von Personen
kontrollierten Aufgaben

Verarbeitungsdienste (processing services) Dienste zur Ausführung von um-
fangreichen Berechnungen mit beträchtlichem Datenaufwand (weiter un-
terteilt in Dienste zur Verarbeitung räumlicher, thematischer, zeitlicher
und Metadaten-betreffender Aspekte)

Kommunikationsdienste (communication servcies) Dienste zur Verschlüs-
selung und Übertragung von Daten über Kommunikationsnetzwerke

Systemverwaltungsdienste (system management services) Dienste zur Ver-
waltung von Systemkomponenten, Anwendungen und Netzwerken sowie
Nutzerkonten und Zugriffsrechten

Jede dieser Kategorien repräsentiert Dienste für einen bestimmten, seman-Taxo-
nomie tisch unterscheidbaren Zweck. ISO/DIS 19119 führt Beispiel-Dienste für die

Dienste-Kategorien an und definiert damit eine Dienst-Taxonomie. In dieser
Klassifizierung findet sich unter den Interaktionsdiensten für Nutzer beispiels-
weise ein catalogue viewer zum Auffinden und Verwalten von Metadaten. Ein
Beispiel für einen Modell-/Informations-Verwaltungsdienst ist der feature ac-
cess service, der für den Datenzugriff und die Verwaltung gespeicherter Daten
zuständig ist.

Ein System muss diese Beispiel-Dienste nicht implementieren – sofern einNamens-
gebung Dienst innerhalb eines Systems allerdings einen der aufgeführten Namen hat,

sollte dieser Dienst auch die vordefinierte Funktionalität bereitstellen. Umge-
kehrt gilt Gleiches: ein Dienst mit der Funktionalität einer der Beispiel-Dienste

53ISO/IEC TR 14252: Information Technology – Guide to the POSIX Open System Envi-
ronment (OSE).

3.2. STANDARDS 61

sollte auch den in der Taxonomie vorgeschlagenen Namen haben. Die Namen
aller Beispiel-Dienste der ISO/DIS 19119 sind im Anhang zu finden (Tabel-
len C.1/C.2, Seite 238/239). Die Definitionen der Funktionalität dieser Dienste
sind gegebenenfalls in ISO/DIS 19119 (Percivall, 2002) nachzulesen.

Die Mehrzahl der Standards der 19100-Reihe fallen in die Klasse der Modell-
/Informations-Verwaltungsdienste und der Verarbeitungsdienste. Für die Berei-
che Arbeitsablauf-/Aufgabendienste, Kommunikationsdienste und Systemver-
waltungsdienste gibt es in der 19100-Serie keine Standards. Das Kapitel der
Architekturentwicklung (Kapitel 5, Seite 95) nimmt die Beispieldienste noch
einmal auf.

Engineering Viewpoint

Um die Entwicklung eines flexiblen Systems zu unterstützen, werden die Diens- 4
logische
Schich-
ten

te der oben genannten sechs Dienst-Kategorien in eine vierschichtige logische
Architektur integriert (siehe Abbildung 3.10, Seite 62). Die erste (obere) Schicht
ist zuständig für die physikalische Interaktion mit dem Nutzer und enthält da-
her alle Interaktionsdienste (human interaction services). Unter dieser Schicht
liegen die Verarbeitungsdienste: in Schicht zwei die vom Nutzer geforderten
Funktionen (user processing services) und in Schicht drei diejenigen Funktio-
nen, die von mehreren Nutzern sowohl aus dem gleichen Anwendungskreis
als auch bereichsübergreifend verwendbar sind (shared processing services).
Die unterste Schicht beinhaltet die Dienste zur physikalischen Datenspeiche-
rung und Datenverwaltung, also die Modell-/Informations-Verwaltungsdienste
(model/information management services). Die Arbeitsablauf-/Aufgabendienste
(workflow/task services) werden als spezialisierte Verarbeitungsdienste angese-
hen und stehen daher auf der Ebene der Prozessdienste. Die Systemverwal-
tungsdienste (system management services) können in jeder der vier Schichten
auftreten (auch wenn sie in Abbildung 3.10 neben den Verarbeitungsdiensten
platziert sind). Für die Verbindungen zwischen den Schichten sind die Kom-
munikationsdienste (communication services) zuständig.

Zur Implementierung dieser logischen Architektur wird eine physikalische 2 oder 3
physika-
lische
Schich-
ten

Architektur benötigt, d. h. eine Zuordnung der Dienste zu Komponenten und
deren Schnittstellen. ISO/DIS 19119 schlägt eine zweischichtige und eine drei-
schichtige physikalische Architektur vor. Die zweischichtige besteht aus einer
Komponente, die als Daten-Server dient, und aus einer Komponente, die den
Clients und die Benutzungsschnittstelle implementiert. Bei der dreischichtigen
physikalischen Architektur werden einige bzw. alle Verarbeitungsdienste aus
der Client-Komponente entfernt und in einen Anwendungsserver verlagert. So-
fern alle Verarbeitungsdienste vom Client in den Anwendungsserver überführt
werden, wird der Client als thin client bezeichnet. Werden nur die von mehre-
ren Nutzern verwendeten Funktionen in den Anwendungsserver verlagert und
enthält der Client noch einen großen Funktionsanteil, handelt es sich um einen

62 KAPITEL 3. STAND DER TECHNIK

ISO/DIS 19119

© ISO 2001 — All rights reserved 35

 Migration transparency – masks the relocation of an object

 Resource transparency - masks passivation and reactivation

 Persistence transparency – hides the actual activation and deactivation of objects from a persistent store, and
the actual storage mechanisms and representation format used.

 Transaction transparency – hides coordination for achieving the transactional properties

 Security transparency – hides the mechanisms that are being used for authentication and authorisation

In order to achieve interoperability between different platforms it is necessary to have mappings between the
platforms’ support for these transparencies. This can be done through a higher abstraction layer that maps to the
implementation and representation of these services in various platforms.

Some of these transparencies are being addressed in the current market-development around Application Server
technologies and underlying infrastructures such as Enterprise Java Beans, Microsoft Transaction Server (MS
MTS) and CORBA Components. Once these are established it is a natural step to specify an abstraction layer for
addressing distribution transparencies. This is currently in development at OMG in the context of “UML profile and
human readable language for EDOC – Enterprise Distributed Object Computing”.

9.2 Distributing components using a multi-tier architecture model

To support flexible deployment, IT architectures are structured as multi-tiered distributed architectures. As a
reference model, a logical 4-tier architecture is presented with discussion on variations in different physical
architectures. The logical architecture is the arrangement of services and associated interfaces that are present in
the system (see Figure 10). The physical architecture is the arrangement of components and associated interfaces
that implement the services. The components are hosted on hardware computing resources or nodes.

Human interaction
services

Model/Information
management

services

Communication
services

Workflow/Task
services

System
management

services

User processing
services

Shared processing
services

Figure 10 — Logical multi-tiered architecture

The OSE model, as defined in ISO 19101, structures the types of services of an IT system. Each tier can contain
both IT-general services and GIS-extended services for that tier.

Abbildung 3.10: Logische Vier-Schichten-Architektur. Die Erklärung der Ab-
bildung findet sich im Text. Quelle: ISO/DIS 19119 (Percivall, 2002).

thick client. Abbildung 3.11 zeigt die Zuordnung der logischen Schichten zu den
physikalischen Schichten im Überblick.

Technology Viewpoint

Damit die Komponenten der physikalischen Architektur in einer verteilten
Umgebung miteinander kommunizieren können, ist eine entsprechende Infra-
struktur notwendig: eine so genannte Distributed Computing Platform (DCP).Vertei-

lungs-
platt-
form

DCPs erlauben die Zusammenarbeit der Komponenten über Rechnergren-
zen, Hardware-Plattformen, Betriebssysteme und Programmiersprachen hin-
weg. Wichtige DCPs sind die Common Request Broker Architecture (COR-
BA) der Object Management Group (OMG), das (Distributed) Common Object
Model ((D)COM) der Firma Microsoft und Java Remote Message Invocation
(JAVA RMI) der Firma Sun Microsystems. Die Kommunikation zwischen Sys-
temen, die mit unterschiedlichen DCPs realisiert wurden, kann mit spezieller
Software (bridges) erfolgen.

Da die verschiedenen DCPs unterschiedliche Vorgehensweisen zur Vertei-Platt-
form-
(un)ab-
hängig

lungsunterstützung verwenden, müssen die genauen Dienste-Spezifikationen ab-
hängig von der DCP entwickelt werden – auf diese Weise entstehen die so
genannten plattformspezifischen Dienste-Spezifikationen. Die Basis für die Ent-
wicklung einer plattformspezifischen Spezifikation bildet eine plattformneutrale
Spezifikation, die unabhängig von der verwendeten DCP ist.

Ein Beispiel für dieses Vorgehen sind die Spezifikationen zu den geographi-Beispiel

schen Informationseinheiten (Features) des OpenGIS-Konsortiums: die platt-

3.3. FAZIT 63

ISO/DIS 19119

36 © ISO 2001 — All rights reserved

 The Human interaction services tier is responsible for physical interaction with the user, through display and
input media and an appropriate dialogue. This might be separated into a presentation tier and a dialogue tier.

 The User processing services tier is a part of the processing services responsible for the functionality required
by the user.

 The Shared processing services tier is part of the processing services responsible for common services (both
domain specific and general) that can be used by multiple users.

 The Model/Information management services tier is responsible for physical data storage and data
management.

 The Workflow/Task services are a set of services that can be viewed as a specialized processing service.

 The Communication services are responsible for connecting the various tiers together (The communication
services are present as the connections between the other service tiers).

 The System management services are orthogonal to the multi-tiered architecture and might be introduced in
multiple tiers.

The logical architecture can be mapped to multiple physical architectures. All tiers could be mapped into one
monolithic application or could be mapped using different physical client-server architectures. Figures 12 and 13
shows mappings to various physical architectures.

Human intercation services

User processing services

Shared processing services

Model/Information
management services

Data server Data server

User interface
client

User interface client

Application server

Logical2-tier physical 3-tier physical

Figure 11 — From Logical 4-tier to Physical 2-tier or 3-tier architecture

In Figure 11, a Data server contains the logic which interfaces either with a data storage system or with some other
type of external data source such as a data feed or an external application system. The Data server provides
Model/Information management services.

An Application server contains components that are responsible for processing services. An Application server may
provide both User processing services and Shared processing services.

A User interface client provides interaction services, contains the logic that presents information to an external
source and obtains input from that source. In most cases the external source is a human end user working at their

Abbildung 3.11: Physikalische Mehrschichten-Architektur. Die Erklärung der
Abbildung findet sich im Text. Quelle: ISO/DIS 19119 (Percivall, 2002).

formneutrale Spezifikation findet sich in der abstract specification mit dem Titel
‘The OpenGIS Feature’, während sich die plattformspezifischen Definitionen für
unterschiedliche DCPs in den implementation specifications befinden – unter
ihnen beispielsweise eine Spezifikation für CORBA (OpenGIS Simple Features
Specification for CORBA).54

3.3 Fazit

Integrierte Modelle

Für den Begriff des ‘integrierten Modells’ gibt es keine einheitliche Definiti- inte-
griertes
Modell

on. Mit dem Begriff wird in der Literatur sowohl die Verbindung mehrerer
konzeptioneller Modelle zu einem Gesamtmodell verstanden als auch die Um-
setzung der konzeptionellen Modelle in Simulationsmodelle, d.h. in ablauffähige
Software-Systeme. Einige Definitionen gehen noch einen Schritt weiter, indem
sie ein integriertes Modell als ein umfangreiches Software-System ansehen, das
einen konsistenten Rahmen für die Simulationsmodelle bereitstellt und das ne-
ben der Simulation weitere Funktionalitäten anbietet. Eine Analyse existieren-
der integrierter Modelle zeigt das Leistungsspektrum ihrer Software-Systeme,
das sich nicht in der Berechnung neuer Simulationsergebnisse erschöpft: viele
Systeme bieten Funktionen zur Visualisierung und statistischen Auswertung
von Ergebnissen, Kopplungsmöglichkeiten zu Datenbanksystemen und GIS so-
wie weitere Leistungsmerkmale. Einige Systeme sind demnach weit mehr als

54Zum OpenGIS-Konsortium siehe Seite 45; eine Spezifikations-Übersicht findet sich in den
Tabellen C.4 (Seite 241) und C.5 (Seite 242).

64 KAPITEL 3. STAND DER TECHNIK

gekoppelte Teilmodelle und stellen in der Tat den angesprochenen Rahmen für
die Simulationsmodelle bereit.

Um die unterschiedlichen Sichtweisen voneinander zu unterscheiden, wirdinte-
griertes
Modell
vs. SISA

in der vorliegenden Arbeit der Begriff des ‘integrierten Modells’ dann verwen-
det, wenn primär die miteinander gekoppelten Simulationsmodelle angespro-
chen werden. Wenn die Rahmen-Eigenschaft eines Systems betont werden soll,
wird hingegen nicht von einem integrierten Modell gesprochen, sondern von ei-
nem ‘System zum simulationsbasierten integrierten Assessment’, das wie folgt
charakterisiert wird: Ein System zum integrierten simulationsbasierten Assess-Defini-

tion
SISA

ment (SISA) ist ein Software-System, das von unterschiedlichen Fachdisziplinen
stammende Daten und Simulationsmodelle zum ‘System Erde’ in einem kon-
sistenten Rahmen kombiniert und neue Daten über den Zustand und mögliche
langfristige Änderungen des ‘Systems Erde’ – vornehmlich zur Unterstützung
politischer Entscheidungsträger – berechnet und bereitstellt.

In Bezug auf die Qualität von Assessment-Ergebnissen spielt der ‘konsistente
Rahmen’ eine entscheidende Rolle, da er zur Steigerung und Sicherstellung der
Transparenz und Nachvollziehbarkeit der Ergebnisse beiträgt.

Architektur

Eine einheitliche Architektur der vorgestellten Systeme ist nicht zu finden. DieProblem

gestiegenen Leistungsanforderungen an SISAs (GIS-Integration, Kopplung ver-
teilter Modelle etc.) spiegeln sich zwar in den einzelnen Systemen wider, eine
Komponentenbildung im Sinne einer Software-Architektur (Einteilung des Ge-
samtsystems in die Hauptbestandteile und Definition von Verantwortlichkeiten
und Schnittstellen) ist aber nicht zu finden. Die Systeme werden hingegen zu-
meist in Module eingeteilt, die sich aus der Realisierung der Systeme ergeben
(z. B. in Klassen-Bibliotheken). Aufgrund der unterschiedlichen Funktionali-
täten der Module, lassen sich diese nicht ohne weiteres unter den Systemen
austauschen. Eine Interoperabilität zwischen den Systemen ist wegen der un-
einheitlichen Einteilung der Gesamtsysteme sowie der unterschiedlichen Imple-
mentierungsmethoden bei der Funktionsrealisierung ebenfalls nicht gegeben.

Der Schlüssel zur Wiederverwendbarkeit und Interoperabilität sowie zu qua-Ansatz

litativ hochwertigen Systemen befindet sich in der Definition einer Software-
Architektur. Informationen zu den Leistungsmerkmalen, System-Aufteilungen
und Implementierungen existierender Modelle und Werkzeuge können als
Grundlage für die Architektur-Entwicklung für SISAs herangezogen werden.
Zur Steigerung der Interoperabilität von Systemen zum simulationsbasier-
ten integrierten Assessment sollten bei deren Entwicklung auch Architektur-
Standards berücksichtigt werden. Aufgrund der Komplexität der Standards
werden standardkonforme Realisierungen von SISAs i. d. R. nicht zu erwarten
sein. Die Architektur eines SISA sollte sich dennoch an diesen Standards orien-
tieren, da bereits die Umsetzung ihrer Prinzipien eine verbesserte Qualität der

3.3. FAZIT 65

Systeme verspricht. Darüber hinaus erlaubt die Berücksichtigung der grundle-
genden Prinzipien der Standards eine schrittweise Migration zu standardkon-
formen Systemen.

Die Entwicklung einer an Standards orientierten Architektur ist Inhalt des
Kapitels 5 (Seite 95). Grundlage für die Entwicklung der Architektur sind u. a.
die allgemeinen Ziele und Anforderungen eines SISA, die im folgenden Kapitel
definiert werden.

Wesentliche Aspekte zu Standards, den Leistungsmerkmalen sowie der Auf-
teilung und Implementierung existierender Systeme werden zum Abschluss die-
ses Kapitels in den folgenden Absätzen noch einmal zusammengefasst.

Leistungsmerkmale

Die folgenden zentralen Leistungsmerkmale bzw. Funktionalitäten gehören, ne-
ben der Berechnung neuer Simulationsergebnisse, zum Leistungsumfang der in-
tegrierten Modelle und sind daher bei der Erstellung der Software-Architektur
für ein SISA zu berücksichtigen:
• Bereitstellung und Nutzung von GIS-Funktionalitäten
• Unterstützung bei der Analyse von (Ergebnis-)Daten
• Visualisierung von Modellergebnissen
• Unterstützung bei der Modellanalyse
• Verwaltung von Szenarien
• Bereitstellung und Erstellung von Dokumentationen (Modelldokumenta-

tion, Metadaten, Hilfesystem)
• Verwaltung von Datenbeständen

Die GIS-Funktionalitäten werden für die geographisch explizite Modellie- GIS

rung des ‘Systems Erde’ benötigt und werden entweder direkt im Rahmen des
integrierten Modells, also im SISA, implementiert oder durch die Kopplung
mit einem eigenständigen GIS in das System integriert. Die Verwendung bzw.
Integration von GIS-Funktionen finden sich sowohl bei vielen der von Kickert
u. a. (1999) und Peirce (1998) beschriebenen Modelle wieder als auch bei den
Systemen OMS, IMA und SNI.

Zur Unterstützung der Analyse von Daten und Ergebnissen werden von Daten-
analyseden Systemen beispielsweise Funktionen zur statistischen Auswertung bereit-

gestellt. Die bei Peirce (1998) aufgeführten Systeme stellen Funktionen zur Be-
rechnung von Standard-Statistiken (Mittelwert, Standardabweichung, kumula-
tive Wahrscheinlichkeit etc.) und zur Analyse von Zeitreihen bereit. Die Mög-
lichkeit zur Visualisierung von Ergebnissen in unterschiedlicher Form (Tabellen,
Graphen, Karten) kann als einfache Art der Analyseunterstützung angesehen
werden und wird sowohl bei den Systemen DANUBIA, IMA, M und OMS
als auch bei vielen weiteren Systemen (vgl. Kickert u. a., 1999; Peirce, 1998)
erwähnt.

66 KAPITEL 3. STAND DER TECHNIK

Neben der Analyse von Modellergebnissen werden von einigen SystemenModell-
analyse auch Funktionen zur Analyse und zum Betrieb des Modells bereitgestellt. Hier-

zu gehören insbesondere Funktionen zur Unsicherheitsanalyse aber auch Mög-
lichkeiten zur Modellkalibrierung und Modelloptimierung (vgl. die Ziele von
PRISM sowie Kickert u. a., 1999; Peirce, 1998).

Die Verwaltung von Szenarien bzw. Simulationsläufen wird – trotz der Wich-Szena-
rien-Ver-
waltung

tigkeit für die Nachvollziehbarkeit und Transparenz von Simulationsergebnissen
– bei den meisten Systembeschreibungen nicht erwähnt. Für das Modellierungs-
system M wird hingegen eine separate Komponente hierfür vorgeschlagen (der
‘scenario manager’), über die verschiedene Szenario-Einstellungen gesichert und
miteinander verglichen werden können. Für das System DANUBIA steht eben-
falls eine Komponente zur Verwaltung komplexer Szenarien auf dem Entwick-
lungsplan.

Die Dokumentation von Modellen bzw. Ergebnissen, die für die Wiederver-Doku-
menta-
tion

wendbarkeit äußerst relevant ist, spielt eine sehr unterschiedliche Rolle bei den
betrachteten Systemen: während die meisten Systembeschreibungen nicht auf
dieses Thema eingehen, beschäftigen sich bei GLOBESIGH gleich zwei der vier
Komponenten mit der Dokumentation von Hintergrund- und Ergebnisinforma-
tionen (die ‘information base’ und die ‘issues base’). Bei ECOBAS fußt die (au-
tomatische) Modellgenerierung sogar auf einer detaillierten Beschreibung der
Modellelemente. Hier ist die Dokumentation also direkt mit den Modellen ge-
koppelt. Darüber hinaus besitzt ECOBAS zur Steigerung der Wiederverwend-
barkeit von Modellen ein sehr detailliertes Metadaten-Konzept. Die Integration
von Metadaten spielt bei den Systemen ansonsten – wenn überhaupt – eine
sehr untergeordnete Rolle. Peirce (1998) führt in seiner Übersicht auch Syste-
me an, die die Generierung von Ergebnis-Berichten unterstützen. Das System
M bietet, neben einem Hilfesystem, die Möglichkeit der Hypertext-basierten
Berichterstattung.

Bei den Beschreibungen integrierter Modelle spielt die Verwaltung von Da-Daten-
verwal-
tung

tenbeständen zumeist eine untergeordnete Rolle. Die Integration von Daten in
die Systeme geschieht mit unterschiedlichen Mitteln: während GLOBESIGH
ein Datenbank-Managementsystem verwendet, stellt das System IMA eigene
Funktionen zum Datenimport und -export bereit und kapselt Daten in so ge-
nannten ‘Datenmodulen’. OMS kapselt die Daten in Bibliotheken und separiert
die Parameter in einer eigenen Bibliothek. Die Notwendigkeit der Integration
von Datenbanken hängt laut Peirce (1998) von der Höhe des Entwicklungs-
standes eines Modells ab. Während einige Modelle Datenbanken lediglich als
Datenlieferanten nutzen, stellen bei anderen Modellen ausgereifte Datenbank-
Managementsysteme den Kern des Systems dar.

3.3. FAZIT 67

Komponenten

Bei den Systemen, die mehr als die Simulationsmodelle beinhalten, lassen sich Kompo-
nentendie folgenden Systemkomponenten abgrenzen:

• Simulationsmodell
• Dokumentation
• Datenhaltung
• Datenverwaltung
• Datenintegration
• Ablaufsteuerung

Die Trennung des Simulationsmodells von den übrigen Teilen des Systems
wird sowohl bei GLOBESIGHT und M als auch bei OMS und IMA vorgenom-
men. Die Funktionen zur Dokumentation können insbesondere bei den Syste-
men GLOBESIGHT, M und ECOBAS als separate Komponenten betrachtet
werden. Eine klare Trennung von Datenhaltung und Datenverwaltung (inkl. ei-
nem Szenario-Manager) findet sich insbesondere beim Modellentwicklungssys-
tem M. Separierte Funktionen zum Datenexport und -import (Datenintegrati-
on) sind bei den Systemen OMS, GLOBESIGHT und IMA vorhanden. OMS
und M bieten zur Verarbeitung von Daten außerdem eine Art ‘Ablaufsteue-
rung’, mit der die Funktionen des Systems programmgesteuert angesprochen
werden können.

Die größte Aufmerksamkeit bei der Beschreibung integrierter Modelle erhält Modell-
kopp-
lung

die Kopplung von Modellteilen. Hier existieren die unterschiedlichsten Ansätze:
angefangen von relativ einfach zu realisierenden Konzepten (wie bei SNI) bis
zu sehr spezialisierten Modellkopplern (wie bei PRISM).

Implementierung

Bei den eingesetzten Mitteln zur Implementierung integrierter Modelle zeigt
sich eine Tendenz zur Verwendung objektorientierter Technologien sowie zur
Nutzung von Internet-Technologien. So ist das OMS beispielsweise in JAVA
implementiert und nutzt Remote Message Invocation (RMI) zur Verteilung so-
wie die JAVA-NetBeans zur Komponentenkapselung. DANUBIA ist ebenfalls in
JAVA implementiert. Da über das Java Native Interface (JNI) die Integration
von Programmen möglich ist, die in anderen Programmiersprachen geschrie-
ben sind, wird die Integration von in C geschriebenen Programmen erlaubt
(auch FORTRAN-Programme lassen sich über den Umweg über C-Programme
einbinden).

Die Nutzung von Internet-Browsern als Benutzungsschnittstelle findet sich
sowohl in aktuellen Entwicklungen wie DANUBIA als auch von den ‘älteren’
Systemen M und ECOBAS. Das System IMA verwendet darüber hinaus die
extensible markup language (XML).

68 KAPITEL 3. STAND DER TECHNIK

Standards

Im Zusammenhang mit der Entwicklung einer Software-Architektur sind ins-
besondere die Arbeiten des technischen Komitees 211 (TC211) der internatio-
nalen Organisation für Standardisierung (ISO) sowie die Arbeiten des Open
GIS Consortium (OGC) von Bedeutung. Sowohl das TC211 als auch das OGC
liefern Standards zum Aufbau von Systemen zur Geodatenverarbeitung. Den
gemeinsamen Rahmen für diese Standards bildet der ISO/DIS 19119. Dieser
Standard beschreibt den grundsätzlichen architektonischen Aufbau, den geo-
datenverarbeitende Systeme aufweisen sollten. Für die Kopplung komplex mit-
einander verknüpfter Teilmodelle sollte die High-Level Architecture (HLA) des
Institute of Electrical and Electronic Engineers (IEEE) in Betracht gezogen
werden. Die Verwendung von Standards des World Wide Web Consortium
(W3C) bei der Realisierung von SISAs verspricht ebenfalls eine gesteigerte
Interoperabilität der Systeme.

Kapitel 4

Systemdefinition

Ziel der vorliegenden Arbeit ist die Entwicklung einer Software-Architektur, die
als Referenz bei der Erstellung und Erweiterung von Systemen zum integrierten
simulationsbasierten Assessment (SISAs) verwendet werden kann. Eine Vorun-
tersuchung und Durchführbarkeitsstudie, wie sie in der Planungsphase einer
Software-Entwicklung vorgesehen ist1, kann an dieser Stelle aufgrund der ge-
wünschten Anwendbarkeit der Architektur auf unterschiedliche Systeme nicht
vorgenommen werden (die genauen Funktionen eines SISA sind projektabhän-
gig). Dieses Kapitel beschäftigt sich daher mit der Definition allgemeiner An-
forderungen an ein System zum integrierten simulationsbasierten Assessment
und dient damit als Grundlage für die Architekturentwicklung in Kapitel 5
(Seite 95).

Grundlage für das Verständnis der Anforderungsdefinition ist das in Ab- Über-
sichtschnitt 4.1 spezifizierte Produktmodell, das wichtige Aspekte des Anwendungs-

bereichs erklärt. Abschnitt 4.2 (Seite 75) definiert anschließend das Einsatz-
gebiet und die Hauptfunktionen und Hauptdaten des SISA sowie die grund-
legenden Anforderungen an das System. Die wichtigsten Eigenschaften und
Anforderungen des spezifizierten SISA werden in Abschnitt 4.3 noch einmal
zusammengefasst.

4.1 OOA-Modell

Inhalt dieses Abschnitts ist die Darstellung und Erklärung des Produktmo-
dells, das aus einer objektorientierten Analyse des Problembereichs resultiert
(OOA-Modell). Der erste Unterabschnitt (4.1.1) beschäftigt sich mit den wich-
tigsten Elementen eines SISA und mit der Umgebung, in die das System im

1Vergleiche Unterabschnitt 2.3.1, Seite 16.

69

70 KAPITEL 4. SYSTEMDEFINITION

Einsatz eingebettet ist (Gesamtmodell). Die Identifizierung verschiedener, wie-
der verwendbarer ‘Betriebsmittel’ (Ressourcen), die im Rahmen eines simulati-
onsbasierten Assessments benötigt werden, erfolgt aufgrund ihrer Wichtigkeit
ausführlicher im anschließenden Unterabschnitt (4.1.2, Seite 72).

4.1.1 Gesamtmodell

Die in Abbildung 4.1 (Seite 73) dargestellten Objekte geben einen ersten Über-
blick über wichtige Bestandteile und Konzepte, die im Rahmen eines SISA von
Bedeutung sind. Die folgenden Absätze dienen der Erklärung der Abbildung.

Das zentrale Element in einem SISA (s. Abb. 4.1, Seite 73) ist das integrierteSimula-
tions-
modell

Simulationsmodell, das sich i. d. R. aus mehreren Teilmodellen zusammensetzt.
Die Teilmodelle repräsentieren dabei die verschiedenen Sphären, die zur Pro-
blembetrachtung notwendig sind. Oft werden bereits vorhandene Modelle oder
vereinfachte Versionen bereits entwickelter Modelle (so genannte Metamodelle)
innerhalb eines integrierten Modells als Teilmodell eingesetzt. Die Modellteile
sind dabei nicht zwangsläufig von einem Entwickler oder einem Entwicklungs-
team innerhalb einer Organisation erstellt worden – bedingt durch die hohe
Komplexität der Modellteile werden diese oft weltweit von unterschiedlichen
Organisationen wieder verwendet.

Die Implementierung der Teilmodelle eines integrierten Modells kann gene-Imple-
mentie-
rung

rell mit Hilfe verschiedener Simulationsansätze erfolgen. Im Bereich der inte-
grierten Modellierung wird i. d. R. die Eigenentwicklung unter Verwendung von
Standard-Programmiersprachen, wie FORTRAN, C, C++, oder speziell ent-
wickelten Simulationsumgebungen bevorzugt. Ein Grund für dieses Vorgehen
sind die unzureichenden Möglichkeiten kommerzieller Simulationsumgebungen
und Simulationssprachen zur geographisch expliziten Repräsentation von Vor-
gängen. Die Kopplung der Teilmodelle erfolgt über einen Kommunikationsme-
chanismus; im einfachsten Falle mit Hilfe von Dateien (lose Kopplung) oder
durch direkte Funktionsaufrufe (enge Kopplung) der beteiligten Teilmodelle.

Integrierte Modelle benötigen zur Kalibrierung und zum Betrieb große Da-Daten

tenmengen; vornehmlich Zeitreihen von Daten mit räumlichem Bezug (Geoda-
ten). Die Datensätze liegen meist in Form von Dateien vor, die zur Simulations-
zeit direkt vom Simulationsmodell gelesen werden. Bei den verwendeten Daten-
formaten kommen sowohl Standardformate als auch proprietäre Formate vor.
Die Speicherung der Daten kann auch über Datenbank-Managementsysteme
erfolgen. Bei den Geodaten kann unterschieden werden zwischen solchen mit
primärem Raumbezug und solchen mit sekundärem Raumbezug2.

2Zum primären Raumbezug werden primäre Metriken verwendet, bei denen zwei- oder
dreidimensionale Koordinaten anzugeben sind. Die Angabe geographischer Koordinaten (x-
und y-Wert) ist ein Beispiel für einen primären Raumbezug. Der primäre Raumbezug erlaubt
eine sehr genaue und eindeutige Ortsangabe. Sekundäre Metriken, wie beispielsweise die
Postleitzahl-Bereiche oder Länderkennungen, werden für Ortsangaben verwendet, die eine

4.1. OOA-MODELL 71

Datensätze können ferner durch ihre Herkunft differenziert werden: Die Da-
tensätze, die von einem Datenlieferanten kommen, für deren Inhalt also nicht
der Modellbetreiber oder Modellentwickler verantwortlich ist, können als ‘Pri-
märdatensätze’ bezeichnet werden. Daten, die von Primärdatensätzen abgelei-
tet (z. B. modifiziert oder umformatiert) sind, können als ‘Sekundärdatensätze’
bezeichnet werden.

Simulationen (Simulationsläufe) basieren auf in sich konsistenten Annah- Szena-
rienmen über zukünftige Entwicklungen (den Szenarien), die über Datensätze und

weitere Modelleinstellungen (z. B. bezüglich der Modellkonfiguration) quantifi-
ziert werden3.

Die Vor- und Nachbearbeitung von Daten geschieht sowohl über eigens für Werk-
zeugediesen Zweck geschriebene Programme (Individualsoftware) als auch über Stan-

dardsoftware (Textverarbeitung, Tabellenkalkulation etc.). Das Simulations-
programm nutzt i. d. R. lediglich die Individual-Software zur Erledigung seiner
Aufgabe; ein Trend zur Integration der Funktionalität von Geo-Informations-
systemen (GIS) ist allerdings zu erkennen.

An einem integrierten Assessment ist nicht nur eine Person beteiligt. Es kann Perso-
nenunterschieden werden zwischen: Modellentwickler, Modell-Implementierer, Mo-

dell-Betreiber, Entscheidungsträger und Ressourcenlieferant. Der Modellent-
wickler ist zuständig für die Formulierung des konzeptionellen Modells und
die Analyse des Simulationsmodells; die Umsetzung des konzeptionellen Mo-
dells in ausführbaren Computercode, d. h. die Erstellung des Simulationsmo-
dells, ist Angelegenheit des Modell-Implementierers; für die Bereitstellung von
Daten und anderen Ressourcen (z. B. Teilmodelle oder Hilfsprogramme) sind
verschiedene Ressourcen-Lieferanten zuständig und der Modellbetreiber führt
die Simulationsstudie durch und vermittelt die Ergebnisse den Entscheidungs-
trägern. Die beschriebenen Aufgaben können auch von weniger Beteiligten in
Personalunion erledigt werden. Aufgrund der Komplexität integrierter Model-
le sind an deren Entwicklung oft Personen aus unterschiedlichen Institutionen
(Organisationen) beteiligt.

Die an einem Assessment beteiligten Personen erzeugen verschiedene Do- Doku-
mentekumente. Bei den Dokumenten kann unterschieden werden zwischen formlosen

Beschreibungen, kurzen Anmerkungen und umfangreicheren Berichten. Bei den
für die Publikation von Ergebnissen erzeugten Dokumenten kann unterschieden
werden zwischen Präsentationen (z. B. in Form von ‘Vortragsfolien’), Postern,
Karten und veröffentlichter Literatur.

Das Assessment selbst beinhaltet eine Simulationsstudie, zu der die Durch- Assess-
mentführung mehrerer Simulationsläufe und deren Analyse gehört. Die Simulations-

größere Unschärferelation aufweisen dürfen. Näheres zu diesem Thema findet sich z. B. in
Bill und Fritsch (1994).

3Der Begriff des ‘Szenarios’ wird aus Gründen der Einfachheit auch bei der Zusammenfas-
sung von Daten der Vergangenheit (die beispielsweise zur Modellvalidierung benötigt werden)
benutzt.

72 KAPITEL 4. SYSTEMDEFINITION

läufe basieren auf definierten Szenarien. Eine Modellanalyse (beispielsweise zur
Untersuchung der Modellunsicherheiten oder -sensitivität) gehört ebenfalls zu
einem simulationsbasierten integrierten Assessment.

4.1.2 SISA-Ressourcen

Die Erstellung einer Studie mit Hilfe eines SISA erfordert die VerwendungRessour-
cen vieler unterschiedlicher ‘Betriebsmittel’ (Ressourcen4). Die Erzeugung dieser

Betriebsmittel ist aufgrund der Komplexität eines integrierten Assessments sehr
aufwendig – eine Wiederverwendung der Ressourcen ist also anzustreben. Die
Frage ist daher: Welche Ressourcen können innerhalb des SISA identifiziert
werden und wie kann die Wiederverwendbarkeit dieser Ressourcen erreicht oder
gesteigert werden?

Die Identifizierung der Ressourcen wird anhand des OOA-Modells in Abb.Identifi-
zierung 4.1 unter Berücksichtigung der Arbeitsschritte erfolgen, die zur Erstellung einer

Simulationsstudie notwendig sind (vgl. Abschnitt 2.2, Seite 14). Tabelle 4.1
zeigt die zur Erstellung einer Simulationsstudie erforderlichen Arbeitsschritte
und deren Resultate in einer Übersicht.

Arbeitsschritt Resultat

Problemformulierung und -analyse Systemgrenzen, Zielbeschreibung

Modellbildung Modellkonzept

Datenerhebung Datenbasis

Erstellung des Computerprogramms Simulationsmodell

Modellvalidierung validiertes Simulationsmodell

Planung und Durchführung von Simulationsläufen Simulationsergebnisse

Auswertung und Implementierung der Ergebnisse Analysen, Berichte

Tabelle 4.1: Arbeitsschritte einer Simulationsstudie (vgl. Abschnitt 2.2, Sei-
te 14) und deren Resultate. Die Resultate können als wieder verwendbare
Ressourcen angesehen werden. Weitere Ressourcen sowie deren Unterteilung
werden im Text aufgeführt.

Zur Durchführung einer Simulationsstudie (Studie) ist demnach zunächstModell-
entwick-
lung

ein Modellkonzept zu erstellen. Dieses Modellkonzept ist bereits eine Ressour-
ce, die (bei entsprechend guter Dokumentation) in anderen Projekten sinnvoll
wieder verwendet werden kann. Auf der Grundlage des Modellkonzepts wird
das Simulationsmodell erstellt. Dieses Gesamt-Simulationsmodell besteht im
Rahmen des integrierten Assessments i. d. R. aus unterschiedlichen, dem Mo-
dellkonzept folgenden Teilmodellen. Sowohl das Gesamt-Simulationsmodell als

4
”
Bestand von etwas, was für einen bestimmten Zweck benötigt wird.“ (Duden, 1996)

4.1. OOA-MODELL 73

D
ok

um
en

t
In

te
gr

ie
rte

s
A

ss
es

sm
en

t

D
at

en
ha

ltu
ng

W
er

kz
eu

g

In
te

gr
ie

rte
s

S
im

ul
at

io
ns

-
m

od
el

l

A
ss

es
sm

en
t-

M
et

ho
de

n
P

er
so

n

E
rd

sy
st

em

ko
nz

ep
tio

ne
lle

s
M

od
el

l (
D

ok
)

Sy
st

em
 E

rd
e

 re
pr

äs
en

tie
rt

Si
m

ul
at

io
ns

m
od

el
l (

M
D

,D
O

K
)

Te
ilm

od
el

l

im
pl

em
en

tie
rt

al
s

In
te

gr
ie

rt
es

 A
ss

es
sm

en
t

Sz
en

ar
io

 (D
,D

ok
)

Si
m

ul
at

io
ns

la
uf

 (D
,D

ok
)

Si
m

ul
at

io
ns

er
ge

bn
is

-A
na

ly
se

 (D
ok

)

M
et

ho
de

nu
tz

t

co
m

pu
te

ru
nt

er
tü

tz
te

 M
od

el
lie

ru
ng

nu
tz

t

Sz
en

ar
ie

na
na

ly
se

Pl
an

sp
ie

l

Ex
pe

rt
en

w
or

ks
ho

p

qu
al

ita
tiv

e
A

na
ly

se

Pe
rs

on
 (D

)

En
ts

ch
ei

du
ng

st
rä

ge
r

M
od

el
le

nt
w

ic
kl

er

M
od

el
l-B

et
re

ib
er

M
od

el
l-I

m
pl

em
en

tie
re

r

R
es

so
ur

ce
nl

ie
fe

ra
nt

B
et

ei
lig

te
r

Si
m

ul
at

io
ns

st
ud

ie
 (D

,D
ok

)

D
ok

um
en

t (
M

D
)

Se
ns

iti
vi

tä
ts

an
al

ys
e

U
ns

ic
he

rh
ei

ts
an

al
ys

e
M

od
el

la
na

ly
se

 (D
ok

)

G
IS

Ta
be

lle
nk

al
ku

la
tio

n
G

ra
fik

pr
og

ra
m

m

D
at

en
ba

nk
D

at
ei

O
rg

an
is

at
io

n
(D

)

 g
eh

ör
t z

u

B
et

rie
bs

sy
st

em

Ei
ge

ne
nt

w
ic

kl
un

g

Si
m

ul
at

io
ns

an
sa

tz

Po
st

er

 im
pl

em
en

tie
rt

üb
er

En
tw

ic
kl

un
gs

um
ge

bu
ng

Sp
hä

re

in
te

ra
gi

er
t

So
ftw

ar
e

St
an

da
rd

so
ftw

ar
e

In
di

vi
du

al
so

ftw
ar

e

 im
pl

em
en

tie
rt

fü
r

H
ilf

sp
ro

gr
am

m
 (M

D
,D

ok
)

Pr
im

är
da

te
n

Se
ku

nd
är

da
te

n

D
at

en
sa

tz
 (D

)
D

at
en

ha
ltu

ng
sa

rt

nu
tz

t

ta
us

ch
t D

at
en

 a
us

fü
hr

t d
ur

ch

 S
pe

ic
he

ru
ng

 ü
be

r

B
es

ch
re

ib
un

g
fü

hr
t d

ur
ch

Si
m

ul
at

io
ns

sp
ra

ch
e

Si
m

ul
at

io
ns

bi
bl

io
th

ek

nu
tz

t

Pr
äs

en
ta

tio
n

D
at

en
fo

rm
at

pr
op

rie
tä

re
s

D
at

en
fo

rm
at

St
an

da
rd

fo
rm

at

nu
tz

t

G
eo

da
te

n
Ze

itr
ei

he

R
au

m
be

zu
g

be
si

tz
en

Pr
im

är
be

zu
g

Se
ku

nd
är

be
zu

g

A
nm

er
ku

ng

B
er

ic
ht

Ve
rö

ffe
nt

lic
hu

ng

 e
rz

eu
gt

 re
pr

äs
en

tie
rt

K
om

m
un

ik
at

io
ns

m
ec

ha
ni

sm
us

nu
tz

t

K
ar

te

Pr
oj

ek
t (

D
,D

ok
)

ge
hö

rt
zu

Pr
og

ra
m

m

lie
st

/s
ch

re
ib

t

In
te

re
ss

en
t

re
fe

re
nz

ie
rt

ba
si

er
t a

uf

Abbildung 4.1: OOA-Modell eines Systems zum simulationsbasierten integrier-
ten Assessments (SISA). Zur besseren Übersicht sind nicht alle Beziehungen
zwischen den Klassen aufgeführt (vgl. auch Abb. 4.4, Seite 85).

74 KAPITEL 4. SYSTEMDEFINITION

auch die Teilmodelle stellen Ressourcen dar, deren Wiederverwendung aufgrund
des Entwicklungsaufwandes in besonderem Maße anzustreben ist.

Die Simulation des Systemverhaltens erfordert die Bereitstellung von Da-Daten u.
Szena-
rien

ten für das Simulationsmodell: Initialisierungsdaten für das Simulationsmo-
dell, Eingabedaten zur Beschreibung exogener, systembeeinflussender Größen
(Modellumwelt-Daten), Parametersätze zur Festlegung der Systemparameter
sowie Angaben über Simulationsmodell-Optionen5. All diese Daten sind, eben-
so wie die Ausgabedaten des Simulationsmodells, als wichtige SISA-Ressourcen
zu betrachten. Die Simulationsläufe basieren auf Szenarien; um Ergebnisse ver-
schiedener Assessments vergleichen zu können, werden für unterschiedlicher
Studien und Projekte oft die gleichen Szenarien benutzt6 – ein Grund, auch
diese als SISA-Ressourcen zu betrachten.

Zur Erzeugung und Vorbereitung der Eingabedaten für die Simulations-Hilfspro-
gramme modelle werden sowohl Standardprogramme (Anwendungen wie GIS oder Ta-

bellenkalkulationsprogramme) als auch eigens für diesen Zweck geschriebene
Programme (Individualsoftware) eingesetzt. Die mehr oder weniger komplexen
eigens entwickelten Programme können als Hilfsprogramme betrachtet und als
Ressource innerhalb anderer Projekte wieder verwendet werden. Gleiches gilt
für Funktionen, die z. B. in Form von ‘Diensten’ (s. Seite 56) angeboten werden.

Die Anwendungen und Werkzeuge werden auch bei der Analyse der Simu-Doku-
mente lationsergebnisse eingesetzt – zunächst für die Validierung des Modells im Mo-

delltest und anschließend für die Szenarien-Analyse. Endergebnis einer Studie
sind dann verschiedene Dokumente wie Berichte und Veröffentlichungen (vgl.
Abb. 4.1, Seite 73). Diese Dokumente sollten, ebenso wie die Beschreibung
der Modellziele und der Modellgrenzen aus dem ersten Arbeitschritt, möglichst
einfach zugreifbar und wieder verwendbar sein.

Während der Erstellung des Modells und der Durchführung der Studie tre-
ten zahlreiche Fragen und Probleme auf, deren Lösungen eventuell auch für
weitere Arbeiten hilfreich sind; kurze, formlose Anmerkungen können hier eine
entscheidende Erleichterung bei der Wiederbenutzung der anderen Ressourcen
bieten. Aus diesem Grund wird die Anmerkung explizit als Ressource angese-
hen.

Zur Beschreibung von Simulationsläufen, Studien, Projekten etc. sind Do-abstrak-
te Res-
sourcen

kumente zu erstellen. Diese Dokumente können, ebenso wie Daten oder Soft-
ware, unmittelbar für andere Zwecke wieder verwendet werden. Ein Simulati-
onslauf an sich kann aber auch eine Ressource darstellen; eine Ressourcen, von
denen Teile (z. B. Ausgabedaten) wieder verwendet werden können oder auf die
an anderen Stellen verwiesen werden kann. Um solche Verweise zu erlauben,
werden für das SISA so genannte ‘abstrakte Ressourcen’ eingeführt.

5Beispielsweise zur Steuerung des Umfangs oder Formats der Ausgabedaten.
6Beispielsweise kann im Rahmen der Klimafolgenforschung die Berücksichtigung von Sze-

narien des IPCC Special Report on Emission Scenarios (IPCC, 2000) als obligatorisch an-
gesehen werden.

4.2. ANFORDERUNGSDEFINITION 75

Die (abstrakten) Ressourcen, die sich teilweise auch im objektorientierten
Analysemodell des SISA auf Seite 73 wiederfinden, sind in Abbildung 4.2 (Sei-
te 76) als Übersicht dargestellt.

4.2 Anforderungsdefinition

Im Folgenden werden die funktionalen und nicht-funktionalen Anforderungen
an ein SISA beschrieben. Die Form der Anforderungsdefinition orientiert sich
am Vorschlag zum Aufbau eines Pflichtenheftes aus Balzert (1996). Da die funk-
tionalen Anforderungen an ein SISA von System zu System variieren, werden
an dieser Stelle lediglich die Grundfunktionalitäten aufgeführt, die für jedes
SISA angenommen werden können.

Der folgende Unterabschnitt (4.2.1) beschreibt zunächst allgemeine Anfor- Über-
sichtderungen an das SISA, wie sie in der einschlägigen Literatur zu finden sind. Dar-

aufhin erfolgt die Definition der Ziele und Funktionen des SISA (Unterabschnitt
4.2.2, Seite 78). Der Anwendungsbereich, die Zielgruppen und die Betriebsbe-
dingungen werden im Unterabschnitt System-Einsatz (4.2.3, Seite 80) beschrie-
ben. Anschließend erfolgt die Beschreibung der System-Umgebung (4.2.4, Sei-
te 82) und der grundlegenden System-Daten (4.2.5, Seite 84). Besondere Anfor-
derungen an zeit- und umfangbezogene Leistungen des SISA werden im Unter-
abschnitt der System-Leistungen (4.2.6, Seite 88) behandelt. Anforderungen an
die Benutzungsschnittstelle finden sich im folgenden Unterabschnitt (4.2.7, Sei-
te 89). Ein SISA hat nicht nur funktionale Anforderungen zu erfüllen, sondern
auch nicht-funktionale (qualitative); diese werden im Abschnitt Qualtitätsziel-
Bestimmung (4.2.8, Seite 89) aufgeführt. Im Anschluss folgen Unterabschnitte
zur Beschreibung der Testszenarien und der Entwicklungs-Umgebung sowie ein
kurzer Abschnitt zu Ergänzungen.

4.2.1 Allgemeine Anforderungen

Das in einem SISA verwendete Simulationsmodell ist i. d. R. kein monolithisches
Programm, sondern ist aus unterschiedlichen (oft über Institutionsgrenzen hin-
weg erstellten) Einzelmodellen zusammengesetzt. Selbst Modelle, die bereits im Modell-

ände-
rungen

Einsatz sind, werden alle drei bis sechs Monate verfeinert und auf einen neuen
Stand gebracht (Weyant u. a., 1996), d. h. ein SISA bzw. das Simulationsmodell
innerhalb des SISA muss gut änderbar sein.

McCarthy u. a. (2001) fordern die Nutzung prozessorientierter Modelle mit Geo-
Datenhoher räumlicher und zeitlicher Auflösung, was die Nutzung entsprechend auf-

gelöster (geographischer) Daten nach sich zieht. Zur Vorbereitung dieser Daten
für die Simulationsmodelle, die anschließende Analyse der Simulationsergeb-
nisse und die Analyse von Hintergrunddaten ist der Einsatz von Geo-Infor-

76 KAPITEL 4. SYSTEMDEFINITION

Ressource

Studie

Szenario

Modellkonzept

Simulationsmodell

Sekundärdatensatz

Simulationsmodell-Datensatz Modellumwelt-Daten

Ausagedaten

Systemparameter-Daten

Optionsdaten

Analyse

Dokument

Anmerkung

Szenario-Analyse

Bericht

Anwendung

Hilfsprogramm

Datensatz

Gesamtmodell

Teilmodell

Dienst

Präsentation

Modellanalyse

Beschreibung

Datensatz-Serie

Primärdatensatz

Programm

Datenanalyse

Veröffentlichung

Klassen-/Funktionsbilbliothek

Abstrakte Ressource

Projekt

Simulationslauf

Poster

Karte

Initialisierungsdaten

Abbildung 4.2: Ressourcen eines Systems zum simulationsbasierten integrierten
Assessment. Erklärungen finden sich im Text. (s. auch Abb. 4.1, Seite 73 u. Abb.
4.4, Seite 85).

4.2. ANFORDERUNGSDEFINITION 77

mationssystemen sinnvoll bzw. notwendig (s. z. B. Luiten, 1999; Peirce, 1998;
Schneider, 1997).

Da nicht alle Daten sinnvoll in einem GIS angezeigt werden können, müs- Visuali-
sierungsen entsprechende Visualisierungsmöglichkeiten vorhanden sein (Alcamo, 2002;

Peirce, 1998; Rotmans und Dowlatabadi, 1998)7. Zur Darstellung sollten nicht
nur Diagramme, Graphen, Tabellen und Histogramme genutzt werden, sondern
auch innovative Techniken, z. B. zur dynamischen Präsentation von Information
(Rotmans und Dowlatabadi, 1998).

Zur Erstellung simulationsbasierter Assessments werden umfangreiche Da- Daten-
verwal-
tung

tenbestände benötigt und erzeugt. Die Organisation und Verwaltung dieser Da-
ten (inklusive dazugehöriger Datendokumentationen) spielt eine wichtige Rolle
im integrierten Assessment (Luiten, 1999; Parson, 1995) und sollte daher vom
SISA unterstützt werden. Je nach Komplexität der konkreten Anwendung ist
auch die Anbindung an ein Datenbank-Managementsystem sinnvoll bzw. not-
wendig (Luiten, 1999).

Alcamo (2002) fordert im Hinblick auf die Anwendbarkeit von integrierten Nach-
vollzieh-
barkeit

Modellen eine gute Modelldokumentation. Eine umfangreiche Dokumentation
ist auch notwendig zur von Toth (1995) geforderten Modell-Verifikation durch
den Vergleich von Ergebnissen unterschiedlicher Modelle: um einen solchen Ver-
gleich auch über Institutionsgrenzen hinweg zu ermöglichen, müssen sowohl die
einem Simulationslauf zugrunde liegenden Szenarien als auch die verwendeten
Basisdaten vergleichbar und gut dokumentiert sein. Die Dokumentation aller
für einen Simulationslauf verwendeten Daten erhöht darüber hinaus die von
Dowlatabadi (1995) und Rotmans und Dowlatabadi (1998) geforderte Trans-
parenz des Modells.

Als weiteren Weg zur Modell-Überprüfung schlägt Toth (1995) den Aus- Aus-
tausch-
barkeit

tausch von Modellteilen mit anschließendem Ergebnisvergleich vor. Neben der
Notwendigkeit einer ausreichenden Dokumentation bedarf es für diesen Schritt
einer guten ‘Austauschbarkeit’ von Teilmodellen.

Die Modell-Validierung sollte sich nach Rotmans und Dowlatabadi (1998) Modell-
Analysenicht nur auf den Ergebnis-Vergleich unterschiedlicher integrierter Modelle für

einen definierten Satz von Szenarien beschränken. Die Autoren fordern auch
einen Vergleich endogener und exogener Modellannahmen und die Durch-
führung umfassender Sensitivitäts- und Unsicherheitsanalysen. Auch, wenn
Weyant u. a. (1996) sagen, dass eine Sensitivitäts-Analyse über ein gesamtes
integriertes Modell aus Komplexitätsgründen nicht möglich ist und Alcamo
(2002) anmerkt, dass sich die Unsicherheiten einzelner Teilmodelle unter ge-
wissen Umständen auch kompensieren können, werden umfassende Untersu-
chungen zur Sensitivität und Unsicherheit an vielen Stellen gefordert (Alcamo,
2002; Cocks u. a., 1998; Dowlatabadi, 1995; Rotmans und van Asselt, 2001;

7
”
Readers will prefer it if tools that generate data provide their own visualisation functions

suited to the data.“ (Peirce, 1998)

78 KAPITEL 4. SYSTEMDEFINITION

Schneider, 1997; Shlyakhter u. a., 1995; Toth, 1995; Tol und Vellinga, 1998).
Eine Unterstützung der Modellanalyse durch das SISA ist daher vorzusehen.

Unter Berücksichtigung dieser allgemeinen Anforderungen werden im fol-
genden Unterabschnitt die vom SISA verfolgten Ziele genauer definiert.

4.2.2 Ziele und Funktionen

Das übergeordnete Ziel des Systems zum integrierten simulationsbasierten As-
sessment ist die konsistente Verwaltung von Daten unterschiedlicher Fachdis-
ziplinen und die Erzeugung neuer Daten mit Hilfe von Simulationsmodellen.

Im Folgenden werden die Ziele des Systems sowie die Funktionen, die not-/Zxx/
/Fxx/ wendig sind, um das SISA-Ziel zu erreichen, genauer definiert. Um im weiteren

Verlauf der Arbeit einfacher auf diese Definitionen zurückgreifen zu können,
werden die einzelnen Ziele und Funktionen – dem Vorschlag von Balzert (1996)
folgend – bezeichnet: Die Ziele werden mit /Zxx/ bezeichnet, Funktionen mit
/Fxx/. Die Nummerierung (xx) erfolgt dabei in 10er-Schritten, um nachträgli-
che Änderungen zu vereinfachen.

Um die geforderte Nachvollziehbarkeit von Modellergebnissen und StudienSimula-
tions-
laufver-
waltung

zu gewährleisten, muss das SISA in der Lage sein, Simulationsläufe (Simulatio-
nen) zu verwalten (/Z10/). Zur Simulationsverwaltung muss das System eine
Funktion zur Beschreibung neuer Szenarien bereitstellen (/F10/). Einem Sze-
nario werden i. d. R. mehrere Datensätze zugeordnet (z. B. über den Verlauf
wichtiger Indikatoren; vgl. Abb. 4.1, Seite 73). Das System muss daher in der
Lage sein, eine solche Zuordnung aufzunehmen (/F20/). Weitere, zur Berech-
nung von Modellergebnissen notwendige Daten (z. B. zur Parametrisierung des
Modells) müssen den einzelnen Simulationsläufen zugeordnet werden können.
Entsprechende Funktionen zur Beschreibung von Simulationsläufen (/F35/)
und der Datenzuordnung (/F30/) müssen daher vom SISA bereitgestellt wer-
den. Um die Auswahl von Daten zu unterstützten, sollte das SISA Informatio-
nen (Metadaten) über vorhandene bzw. anwendbare Datensätze bereitstellen
(/F40/).

Über die Verwaltung der Simulationsläufe hinaus soll das SISA in der LageProjekt-
Ressour-
cen

sein, alle Ergebnisse einer Simulationsstudie (inkl. der auf den Modellrechnun-
gen basierenden Analysen) zu verwalten (/Z20/). Zu diesem Zweck ist eine
Funktion bereitzustellen, die eine Zuordnung von Ressourcen zu Simulations-
studien und Projekten erlaubt (/F50/).

Die Verwaltung der Ressourcen selbst wird ebenfalls als ein Ziel des SISARessour-
cenliste definiert (/Z30/). Zur Steigerung der Wiederverwendbarkeit von Ressourcen

sollte zumindest eine Funktion zur Auflistung aller vorhandenen Ressourcen
durch das System bereitgestellt werden (/F60/).

4.2. ANFORDERUNGSDEFINITION 79

Um der Anforderung der Nachvollziehbarkeit und Dokumentation des As- Hinter-
grundin-
forma-
tionen

sessments nachzukommen, sollte das SISA für das ganze Assessment umfassen-
de Hintergrundinformationen bereitstellen (/Z40/). Informationen sind insbe-
sondere bereitzustellen über die eingesetzte Software (/F70/) und die verwen-
deten bzw. erzeugten Daten (/F80/) sowie über die verwendeten und erzeugten
Dokumenten (/F90/) und die an einer Studie beteiligten Personen und Orga-
nisationen (/F100/). Eine Funktion zur Bereitstellung von Informationen über
durchgeführte Projekte und Studien (/F110/) sollte ebenfalls vorhanden sein.

Das SISA sollte zur Verbesserung der Nachvollziehbarkeit und Transparenz Pro-
blemver-
ständnis

von Ergebnissen auch Hilfestellungen zum Verständnis des Problembereichs
liefern (/Z50/). Die Bereitstellung eines Glossars, das die Kernbegriffe des Pro-
blemfeldes und des Assessments beinhaltet, wird hier als Minimalanforderung
angesehen (/F120/).

Eine zentrale Aufgabe eines Systems zum simulationsbasierten integrierten Simu-
lationAssessment ist die Erzeugung neuer Simulationsergebnisse (/Z60/). Zu diesem

Zweck sollte das System eine Funktion zum Start neuer Simulationsläufe bereit-
stellen (/F130/). Da die Berechnungen von integrierten Simulationsmodellen
sehr zeitaufwendig sein können, sollte das System jederzeit Informationen über
deren Verlauf liefern können (/F140/). Diese Informationen sollten z. B. Auf-
schluss geben über den Fortschritt der Simulationen und über möglicherweise
aufgetretene Fehler.

Zur Berechnung neuer Simulationsergebnisse sind umfangreiche Datensätze Daten-
importnotwendig. Da die Daten oft aus unterschiedlichen Quellen stammen und keine

homogene Datenstruktur aufweisen, ist eine Integration der Daten in das Sys-
tem notwendig. Die Unterstützung des Nutzers bei der Datenintegration wird
daher ebenfalls als Ziel des SISA aufgenommen (/Z70/). Zur Erfüllung dieses
Zieles ist zumindest eine Funktion zum Import von Datensätzen in das Sys-
tem bzw. zur Konvertierung von Datensätzen in ein bekanntes Systemformat
vorzusehen (/F150/).

Aufgrund der Vielfältigkeit der benötigten Daten für ein integriertes Simula- Daten-
vorver-
arbei-
tung

tionsmodell, müssen einige Datensätze neu erstellt werden. Zur Vorverarbeitung
von Daten wird i. d. R. sowohl eigens für diesen Zweck geschriebene Softwa-
re (Individualsoftware) als auch Standardsoftware eingesetzt (vgl. den Bereich
‘Werkzeug’ in Abb. 4.1, Seite 73). Die genauen Funktionen zur Datenvorverar-
beitung sind projektabhängig und können nicht allgemein angegeben werden.
Gleiches gilt für evtl. notwendige Nachbearbeitungen der Ausgabedaten des
integrierten Simulationsmodells. Die Unterstützung der Vorverarbeitung und
Nachbearbeitung von Daten sollte dennoch als ein Ziel bei der Entwicklung der
Architektur berücksichtigt werden (/Z80/) – ihm kann beispielsweise durch ei-
ne entsprechende Offenheit gegenüber Standardsoftware oder standardisierten
Datenformaten Rechnung getragen werden.

80 KAPITEL 4. SYSTEMDEFINITION

Die vom integrierten Simulationsmodell berechneten Ergebnissen sollen vomDaten-
bereit-
stellung

SISA bereitgestellt werden (/Z90/). Hierzu soll das System mindestens zwei
Funktionen bieten: eine zur Visualisierung der Daten (/F160/) und eine zum
Export der Daten in Formate, die von anderen Anwendungen direkt verwendet
werden können (/F170/).

Die Analyse der über das Simulationsmodell berechneten (und evtl. nachbe-Daten-
analyse arbeiteten) Daten soll ebenfalls vom SISA unterstützt werden (/Z100/). Welche

Analysen genau anzubieten sind, hängt – wie bei bereits bei der Vorverar-
beitung und Nachbearbeitung der Daten des integrierten Simulationsmodells
– vom konkret zu realisierenden System ab. Eine Funktion zur statistischen
Analyse von Daten (Mittelwert, Median, Standardabweichung etc.) dürfte al-
lerdings für jedes System interessant sein und wird daher als SISA-Funktion
gefordert (/F180/).

Neben der Berechnung neuer Simulationsergebnisse und der Hilfe bei derModell-
analyse Analyse dieser Ergebnisse sollte das SISA auch die Analyse des Simulations-

modells selbst unterstützen (/Z110/). Die genauen Funktionen und Möglichkei-
ten (beispielsweise zur Durchführung von Sensitivitätsanalysen) hängen stark
vom konkret verwendeten Simulationsmodell und dessen Teilmodellen sowie
von der gewünschten Ausbaustufe des SISA ab und werden in dieser Arbeit
nicht spezifiziert.

Nachdem nun die Ziele und Funktionen des SISA angegeben wurden, folgenAbgren-
zungs-
kriterien

einige Abgrenzungskriterien, die angeben, welche Anforderungen explizit nicht
an das SISA gestellt werden.

Ziel des SISA ist es nicht, ein Simulationswerkzeug bereitzustellen, in dem
neue Simulationsmodelle, -modellteile oder Werkzeuge erstellt werden können.
Das SISA ist auch keine Simulationsumgebung zur dynamischen Auswahl oder
Integration von Simulationsmodellen oder -modellteilen. Weiterhin ist das SI-
SA nicht dafür zuständig, alle Funktionen zur Simulationsergebnis-Analyse
bereitzustellen (zur Unterstützung von Analysen sollen die oben genannten
Export-Funktionen bereitgestellt werden). Ziel des Systems ist auch nicht, als
Plattform eingesetzt zu werden, auf die verschiedene Organisationen verteilt
zugreifen um an einem Projekt zu arbeiten.

Eine Übersicht der einzelnen Ziele und Funktionen ist in den Tabellen 4.2Über-
sicht und 4.3 zu finden.

4.2.3 System-Einsatz

Das SISA wird angewendet im Rahmen von Untersuchungen der Auswirkun-Anwen-
dungs-
bereich

gen des globalen Wandels, insbesondere im Bereich der Klimafolgenforschung.
Die aufbereiteten Ergebnisse des Systems sollen politischen Entscheidungsträ-
gern als Informationsgrundlage dienen und darüber hinaus zur Identifizierung
offener Fragestellungen innerhalb der beteiligten wissenschaftlichen Fachdiszi-
plinen beitragen.

4.2. ANFORDERUNGSDEFINITION 81

Name des Ziels Kennzeichnung

Verwaltung von Simulationsläufen /Z10/

Verwaltung von Assessment-Ergebnissen /Z20/

Verwaltung von Ressourcen /Z30/

Bereitstellung von Hintergrundinformationen /Z40/

Förderung des Problemverständnisses /Z50/

Erzeugung neuer Simulationsergebnisse /Z60/

Integration von Daten /Z70/

Unterstützung bei der Vorverarbeitung und /Z80/

Nachbearbeitung von Simulationsmodell-Daten

Bereitstellung von Daten /Z90/

Unterstützung der Datenanalyse /Z100/

Unterstützung der Modellanalyse /Z110/

Tabelle 4.2: Übersicht der grundlegenden Ziele des Systems zum simulations-
basierten integrierten Assessment. Erklärungen zu den Zielen finden sich im
Unterabschnitt 4.2.2 (Seite 78).

Name der Funktion Kennzeichnung Ziel

Beschreibung eines Szenarios /F10/ /Z10/

Zuordnung von Daten zu einem Szenario /F20/ /Z10/

Beschreibung eines Simulationslaufes /F35/ /Z10/

Zuordnung von Daten zu einem Simulationslauf /F30/ /Z10/

Bereitstellung von Metadaten /F40/ /Z10/

Zuordnung von Ressourcen zu Projekten /F50/ /Z20/

Bereitstellung einer Ressourcen-Liste /F60/ /Z30/

Bereitstellung von Assessment-bezogenen Informationen zu: /Z40/

- verwendeter Software /F70/

- verwendeten/erzeugten Daten /F80/

- verwendeten/erzeugten Dokumenten /F90/

- beteiligten Personen/Organisationen /F100/

- durchgeführten Projekten/Studien /F110/

Bereitstellung eines Glossars /F120/ /Z50/

Start eines Simulationslaufes /F130/ /Z60/

Bereitstellung von Informationen zum Simulationsverlauf /F140/ /Z60/

Import/Konvertierung von Datensätzen /F150/ /Z70/

Visualisierung von Daten /F160/ /Z90/

Export von Daten /F170/ /Z90/

Statistische Auswertung von Daten /F180/ /Z100/

Tabelle 4.3: Übersicht der grundlegenden Funktionen des Systems zum simula-
tionsbasierten integrierten Assessment. Erklärungen zu den Zielen finden sich
im Unterabschnitt 4.2.2 (Seite 78).

82 KAPITEL 4. SYSTEMDEFINITION

Betrieben wird das SISA von Wissenschaftlern; sie erzeugen szenarienbe-Ziel-
gruppen zogene Simulationsergebnisse, werten diese aus und vermitteln die Ergebnisse

den Entscheidungsträgern und anderen Wissenschaftlern.8 Entscheidungsträ-
ger und andere interessierte Personen oder Personengruppen sollen das System
nutzen können, um sowohl die Ergebnisse von Studien als auch Hintergrundin-
formationen zu den Berechnungen direkt abrufen zu können.

Eine Übersicht der vorgesehenen Nutzung des SISA ist in Abb. 4.3 in Form
eines Anwendungsfalldiagramms zu finden.

Das System soll in der Umgebung wissenschaftlicher Einrichtungen einge-
Betriebs-
bedin-
gungen

setzt werden; hier werden neue Simulationsergebnisse erzeugt, Analysen erstellt
und interessierten Personengruppen bereitgestellt.

Der Einsatz des SISA zur Berechnung neuer Simulationsergebnisse macht
nur einen geringen Anteil an der Gesamteinsatzzeit des Software-Systems aus.
Während dieser Zeit findet eine intensive Rechnernutzung durch die Simulati-
onsmodelle statt. Die anderen Funktionen des SISA verursachen eine geringe
Rechnerlast und können im Hintergrund ablaufen.

4.2.4 System-Umgebung

Das SISA sollte auf einem Arbeitsplatzrechner ablauffähig sein. Die Verteilung
des Systems auf mehrere Rechner (z. B. die Auslagerung einer Datenbank) ist
wünschenswert.

Die Software-Umgebung setzt sich zusammen aus den standardmäßig ver-Software

wendeten Büroprogrammen (Textverarbeitung, Tabellenkalkulation), einem
Internet-Browser, einem Datenbank-Managementsystem (DBMS) und einem
Geo-Informationssystem (GIS). Zur Datenanalyse werden z. B. Statistikpro-
gramme eingesetzt. Der Einsatz des SISA sollte sowohl unter den aktuellen
Betriebssystemen der Firma Microsoft möglich sein als auch unter dem Be-
triebssystems Linux.

Schnittstellen zur oben angeführten Software-Umgebung sollten bereitge-Schnitt-
stellen stellt werden. Insbesondere Schnittstellen zum DBMS und zu den Daten und

Funktionen des GIS sind, falls diese Systeme eingesetzt werden, notwendig.
Die Anforderungen an die Hardware hängen vom konkret zu realisierendenHard-

ware SISA ab und reichen von standardmäßig ausgerüsteten Personal Computern
(PC) bis hin zu sehr leistungsstarken Rechnern.

8Die Vermittlung von Ergebnissen kann nach Tol und Vellinga (1998) auf zwei grundsätz-
lich verschiedenen Wegen geschehen; erstens über die direkte Kommunikation (Präsentati-
on der Analysen und Ergebnisse für die Entscheidungsträger), zweitens über eine indirekte
Kommunikation (Ergebnisse werden über die wissenschaftliche Literatur verbreitet und von
unabhängigen Kommentatoren oder Beratern zusammengefasst und in ein für Entscheidungs-
träger angepasstes Format gebracht). Zu den Vor- und Nachteilen beider Wege siehe Tol und
Vellinga (1998).

4.2. ANFORDERUNGSDEFINITION 83

System zum integrierten simulationsbasierten
Assessment (SISA)

Daten auswerten

Simulationsdaten
verwalten

Projektergebnisse
verwerten

Projektergebnisse
verwalten

Simulationsläufe
durchführen

Projektdaten
verwalten

Projektüberblick
verschaffen

Modell-Entwickler

Modell-Betreiber
Entscheidungsträger

Interessent

Modell-Entwickler sind nicht nur für
die Entwicklung des Systems zuständig,
sondern auch (und evtl. ausschließlich)
für die Modellwartung und -pflege.

Modell analysieren

Abbildung 4.3: Anwendungsfalldiagramm des SISA. Zu sehen sind die einzel-
nen Nutzer des Systems (die Akteure) und die einzelnen Anwendungsfälle, für
die das System Funktionen bereitzustellen hat. Der Modell-Betreiber nutzt das
SISA zur Verwaltung von Projektdaten, Simulationsdaten und Projektergeb-
nissen sowie zur Durchführung von Simulationsläufen und der Analyse der
vorhandenen Daten. Die Projektergebnisse werden dem Modell-Betreiber und
dem Entscheidungsträger vom System zur Verwertung bereitgestellt. Die Funk-
tionen zur Analyse des Modells werden vom Modell-Betreiber und/oder vom
Modell-Entwickler verwendet. Allgemeine (Hintergrund-)Informationen sind al-
len Akteuren (inkl. allgemeiner ‘Interessenten’) vom System bereitzustellen.
Ausführlichere Angaben zu den Zielen und Funktionen finden sich im Text.

84 KAPITEL 4. SYSTEMDEFINITION

Das SISA muss organisatorisch in den Betrieb des Modellbetreibers einge-Orgware

bettet werden. Folgende organisatorische Randbedingungen (Orgware) werden
gesetzt: Die Verwaltung und Pflege der benötigten Daten und der evtl. vor-
handenen Datenbank wird von fachkundigen Mitarbeitern übernommen. Zur
Integration neuer Simulationsmodelle oder -modellteile stehen Mitarbeiter zur
Verfügung, die sich mit der Software-Architektur des Systems auskennen und
notwendige Änderungsarbeiten anleiten oder selber durchführen.

4.2.5 System-Daten

Zur Erfüllung der spezifizierten Ziele und Funktionen sind vom SISA unter-Eintei-
lung schiedlich detaillierte Informationen (Dokumente, Daten, Metadaten) vorzu-

halten. Bei den zu speichernden Informationen kann unterschieden werden zwi-
schen den Daten und Metadaten, die vom Nutzer für die Verwaltung der Res-
sourcen und des Assessments selbst sowie zum Verständnis von Studien benö-
tigt werden (Hintergrunddaten), den Daten, die als Primär-, Sekundär- und
Simulationsmodell-Daten benötigt werden (Assessment-Daten) und Daten, die
zur Konfiguration von Simulationsläufen notwendig sind (Konfigurationsda-
ten).

Zu den Hintergrunddaten gehören Informationen über Projekte, über be-Hinter-
grund-
daten

teiligte Personen und deren Organisationszugehörigkeit sowie über verwende-
te Szenarien und durchgeführte Simulationsstudien und Simulationsläufe (vgl.
Abb. 4.4). Eine Liste mit vorhandenen Ressourcen und die Speicherung von
Metadaten zu den Ressourcen wird ebenfalls zur Erfüllung der Funktionen und
Ziele aus Unterabschnitt 4.2.2 benötigt. Die Daten zum Glossar fallen ebenfalls
in die Kategorie der Hintergrunddaten. Für Simulationsstudien, Simulations-Doku-

mente läufe, Szenarien und Projekte sind detaillierte Beschreibungen in Form von
Dokumenten zu erstellen. Da alle Dokumente zu den SISA-Ressourcen gehören
(vgl. Abb. 4.2, Seite 76), sind diese auch in der Ressourcenliste aufzuführen
und über Metadaten zu beschreiben.

Eine detaillierte Spezifikation der Hintergrunddaten erfolgt im Rahmen der
Architekturentwicklung (Kapitel 5, Seite 95). Zusammenfassend kann aber fest-
gehalten werden, dass das SISA die folgenden Hintergrunddaten zur Verfügung
zu stellen hat (Referenzierungen erfolgen über die Kurzform /Dxx/): Kurzinfor-
mationen über Personen und Organisationen (/D10/), Kurzinformationen über
die abstrakten Ressourcen (/D20/), Metadaten für die Ressourcen (/D30/) und
Glossar-Einträge (/D40/).

Informationen über die Zuordnung von Datensätzen zu den einzelnen Simu-Konfigu-
rations-
daten

lationsläufen/Szenarien bilden die Konfigurationsdaten (/D50/) des Systems.
In die Gruppe der Assessment-Daten gehören alle weiteren, in Abb. 4.2

Assess-
ment-
daten

(Seite 76) aufgeführten Datensätze (mit Ausnahme der Systemparameter- und
Optionsdaten, die für die Konfiguration zuständig sind). Die Auswahl wichtiger
Assessment-Daten erfolgt in den folgenden Absätzen.

4.2. ANFORDERUNGSDEFINITION 85

Hintergrunddaten

Konfigurationsdaten

Szenario (D,Dok)Simulationslauf (D,Dok)

Assessment-Daten

1..*

1..*

referenziert4

Metadatensatz (D)

Simulationsstudie (D,Dok)

*

1..*

Projekt (D,Dok)

Ressourcenliste (D)

Glossar (D)

Person (D)
1..* 1..*

beteiligt an4

Organisation (D)
0..1 1..*

3 gehört zu

1..*

1..*

3 gehört zu

1..* 1

3 beschrieben über

1..*

1..*

referenziert4

0..*

1

basiert auf4

Datensatz (D)

Simulationslauf-Spezifikation (D)

1
1

1 0..1

nutzt4

Abbildung 4.4: Anforderung an die System-Daten. Für die dargestellten Klas-
sen müssen zur Erfüllung der Systemziele und -funktionen Daten innerhalb
des SISA verwaltet werden (Kennzeichnung ‘D’). Die Attribute der einzelnen
Klassen werden im Kapitel der Architekturentwicklung (Kap. 5, Seite 95) spe-
zifiziert. Für einige Klassen werden i. d. R. detaillierte Beschreibungen in Form
von Dokumenten erzeugt (Kennzeichnung ‘Dok’). Die Metadaten dieser Doku-
mente sind – genauso wie die Metadaten zu allen anderen Ressourcen – über
die Ressourcenliste zu integrieren (vgl. auch Abb. 4.1, Seite 73 und Abb. 4.2,
Seite 76).

86 KAPITEL 4. SYSTEMDEFINITION

Assessment-Daten

Die Assessment-Daten sind abhängig von konkreten Projekten. Eine Auswahl
von grundlegenden Daten, die bei integrierten Assessments im Rahmen von
Fragestellungen des globalen Wandels häufig benötigt werden, soll in diesem
Unterabschnitt dennoch getroffen werden.

Grundlegende Daten des SISA sind diejenigen Daten, die die Grundcha-Über-
blick rakteristiken der einzelnen, wichtigen Komponenten der Natur- und Anthropo-

sphäre beschreiben (zu den einzelnen Komponenten siehe Kapitel 2.1.1, Seite
7). Aus dem Bereich der Hydrosphäre sind Daten über Fluss-Einzugsgebiete,
Flüsse, Flussrichtungen, Seen und anderen Feuchtgebieten notwendig. Inner-
halb der Biosphären-Komponente ist die Landnutzung und die Landbedeckung
(die natürliche Vegetation) von Interesse. In den Bereich der Lithosphäre/Pedo-
sphäre fallen Angabe über Bodentypen. Die wichtigsten Informationen aus der
Bevölkerungs-Komponente sind die Gesamtbevölkerung und die Bevölkerungs-
struktur. Wichtige Daten zum Thema Verkehr sind Angaben über vorhande-
ne Transportwege (Straßen, Schienen, Flüsse, Kanäle). Im Wirtschaftsbereich
spielt das Brutto-Sozialprodukt eine ausgesprochen wichtige Rolle beim inte-
grierten Assessment. Darüber hinaus ist die Einkommensverteilung ein wichti-
ger Indikator bei einigen Auswirkungsanalysen. Aus dem Bereich der Wissen-
schaft/Technik sind grundlegende Angaben über den Stand der Agrartechnolo-
gie von Interesse (z. B. was die Düngernutzung oder die Bewässerung landwirt-
schaftlicher Flächen angeht). Daten aus dem Bereich der gesellschaftlichen Or-
ganisation beschreiben beispielsweise (Wirtschafts-)Regionen – auch die i. d. R.
benötigten Ländergrenzen können hier eingeordnet werden. Die Sammlung re-
levanter Daten aus der psychosozialen Sphäre ist – ebenso wie die Modellierung
der zugehörigen Prozesse – noch nicht so weit fortgeschritten wie diejenige aus
den anderen Komponenten, so dass für diesen Bereich keine grundlegenden
Datensätze angegeben werden.9

Das staatliche Institut für Gesundheit und Umwelt der NiederlandeHYDE

(RIVM10) hat zur Validierung von Simulationsmodellen eine Umfangreiche
Datenbank erstellt; die Hundred Year Database for Integrated Environmen-
tal Assessments (HYDE) (Klein Goldewijk und Battjes, 1997). HYDE ent-
hält Daten zu folgenden Themen: 1) Grundlegende Triebkräfte (Bevölkerung,
Bruttosozialprodukt, Wertschöpfung durch Industrie und Dienstleistungen,
Privat-Konsum, Anzahl PKW, Temperatur und Niederschlag), 2) Ökonomie
des Energie- und Industriesektors (beispielsweise Energieverbrauch, Elektrizi-
tätserzeugung, Brennstoffpreise, Produktion von Kohle, Öl, Eisen und anderen
Metallen), 3) Emissionen des Energie- und Industriesektors (beispielsweise für

9Zu Daten aus der psychosozialen Sphäre können z. B. Beschreibungen der Wahrnehmung
der Umwelt und Beschreibung von Handlungszielen und -mitteln gezählt werden.

10RIVM = Rijksinstituut voor Volksgezondheid en Milieu, engl. National Institute of Public
Health and the Environment.

4.2. ANFORDERUNGSDEFINITION 87

Kohlendioxid, Methan und Schwefeldioxid), 4) Terrestrische Umwelt (beispiels-
weise historische Landbedeckung, Nahrungs- und Futtermittelverbrauch, Feld-
fruchtproduktion, Anzahl Tiere, Handel landwirtschaftlicher Produkte, Dün-
gerverbrauch), 5) Atmosphäre und Ozean (beispielsweise Konzentrationen von
Kohlendioxid und anderen klimarelevanten Gasen, Landbedeckung, Ozean-
Temperatur und Eisbedeckung des Meeres).

Da nicht alle angeführten Daten für jedes Assessment benötigt werden, wer-
den im Folgenden einige wichtige Datensätze ausgewählt, die als Grundlage für
jedes SISA dienen sollen.

Auswahl der Assessment-Daten

Modelle zum integrierten Assessment sind oft nach dem so genannten DPSIR-
Prinzip aufgebaut: die Abbildung der Wirkungskette eines betrachteten Pro-
blems beginnt mit den treibenden Faktoren (Driving forces), die dann zu einem
bestimmten Druck (Pressure) auf das System und einem bestimmten Zustand
(State) innerhalb des Systems führen. Dieser Zustand führt dann zu verschiede-
nen Auswirkungen (Impacts), auf die mit bestimmten Antworten (Responses)
reagiert wird. Näheres zu diesem Prinzip findet sich z. B. in Peirce (1998) und
Luiten (1999).

Um die Konsistenz und Vergleichbarkeit der Ergebnisse unterschiedlicher Grund-
lagenStudien und Projekte zu ermöglichen, sollten die treibenden Faktoren, d. h.

die exogenen Einflussfaktoren bzw. Modellumweltdaten, möglichst unabhän-
gig vom konkreten Projekt sein. Zu den grundlegenden Daten, die für vie-
le Assessments benötigt werden, gehören Angaben über die ökonomischen
und demographischen Zustände und Entwicklungen von Regionen. Daten über
die Einwohnerzahl von Regionen (/D60/) und das oft als Indikator benutzte
Brutto-Sozialprodukt pro Einwohner (/D70/) sollten daher zu den grundlegen-
den Assessment-Daten eines SISA gehören. Eine Liste vorhandener Regionen11

(/D80/) muss ebenso vorhanden sein, wie Geo-Datensätze, die die Regionen
voneinander abgrenzen: ein hoch aufgelöster (Vektor-)Datensatz zur Beschrei-
bung der Regionengrenzen (/D90/) ist ebenso notwendig wie ein (Raster-)Da-
tensatz (/D100/), der die Regionen in der Fläche darstellt. Mit der Darstellung
der Regionenfläche verbunden, ist ein weiterer grundlegender Datensatz: die
Landmaske (/D110/). Die Landmaske, die abhängig ist von der geographischen
Auflösung des Assessments, legt fest, für welche Teile der Erde landbezogene
Berechnungen durchzuführen sind. Untersuchungen im Rahmen des globalen
Wandels benötigen darüber hinaus i. d. R. Klimadaten (/D120/).

Die aufgeführten Daten stellen – wie bereits angemerkt – lediglich eine
Grundausstattung dar. Die tatsächlich zu speichernden Daten sind abhängig

11Eine Region kann sowohl ein Land als auch ein Teil eines Landes oder eine Zusammen-
setzung mehrerer Länder sein.

88 KAPITEL 4. SYSTEMDEFINITION

vom konkreten Systemziel des SISA. Eine Übersicht der vorzuhaltenden Daten
ist in Tab. 4.4 zu finden.

Bezeichnung der Datensätze Kennzeichnung

Kurzinformationen über Personen/Organisationen /D10/

Kurzinformationen über ‘abstrakte Ressourcen’ /D20/

Metadaten zu Ressourcen /D30/

Glossar-Einträge /D40/

Konfigurationsdaten /D50/

grundlegende Assessment-Daten /D60-D120/

Tabelle 4.4: Übersicht der grundlegenden Datenbestände des Systems zum si-
mulationsbasierten integrierten Assessment. Erklärungen zu den Datensätzen
finden sich im Text.

4.2.6 System-Leistungen

Es es nicht vorgesehen, dass Entscheidungsträger interaktiv neue Simulati-zeitliche
Anforde-
rung

onsergebnisse erzeugen. Simulationsläufe werden hingegen von den modellbe-
treibenden Wissenschaftlern (Modell-Betreibern) erzeugt. Aufgrund der Wich-
tigkeit von Unsicherheits- und Sensitivitätsanalysen und der damit verbun-
denen Notwendigkeit mehrere Simulationsläufe mit sich ändernden Modell-
Eingangsgrößen durchzuführen, sollte sich die Berechnung neuer Simulationser-
gebnisse in einem akzeptablen, vom konkreten SISA abhängigen Rahmen hal-
ten. Eine generelle Aussage über die Performanz des Systems kann an dieser
Stelle allerdings nicht getroffen werden.

Eine Leistungsanforderung wird allerdings als Wunschanforderung angege-Simula-
tions-
dauer

ben: Für einen gestarteten Simulationslauf sollte noch am gleichen Tag geprüft
werden können, ob die Berechnungen verwertbar sind oder nicht. Berücksich-
tigt man eine gewisse Arbeitszeit zur Vorbereitung und Nachbearbeitung einer
Simulation, so kann die folgende Leistungsanforderung formuliert werden: Die
Dauer eines Simulationslaufes sollte sechs Stunden nicht überschreiten (Leis-
tungsanforderung /L10/).

Der Umfang und die Genauigkeit der zu speichernden Daten hängt eben-Daten-
auflö-
sung u.
-ab-
deckung

falls von der konkreten Anwendung des SISA ab. Ein Charakteristikum von
integrierten Assessments im Rahmen des globalen Wandels ist die geographisch
explizite Abbildung von Prozessen. Die Produktdaten müssen daher auch einen
definierten geographischen Bereich abdecken. Im Rahmen der Klimafolgenfor-
schung umspannt dieser Bereich i. d. R. die gesamte Erde. Die geographische
Auflösung variiert anwendungsspezifisch, beläuft sich für viele flächenbezoge-
ne Datensätze aber auf 0.5 Grad mal 0.5 Grad geographischer Länge/Breite

4.2. ANFORDERUNGSDEFINITION 89

(vgl. z. B. Alcamo u. a., 1998a, Döll u. a., 2003; Klein Goldewijk, 2001; Klein
Goldewijk und Battjes, 1997, New u. a., 1999; New u. a., 2000). Regionenbezo-
gene Daten beziehen sich auf Länder oder Zusammenfassungen von Ländern.
Die Anzahl der Regionen variiert von etwa einem Dutzend bis zu über 200
(vgl. Dowlatabadi, 1995; Weyant u. a., 1996). Die zeitliche Auflösung der Da-
ten variiert ebenfalls von Anwendung zu Anwendung und ist oft durch die zur
Verfügung stehenden Daten begrenzt (s. o. g. Zitate). Für die grundlegenden
Daten kann als Leistungsanforderung lediglich definiert werden, dass die Daten
in einer den konkreten Anforderungen genügenden geographischen und zeitli-
chen Auflösung und Abdeckung vorzuliegen haben.

4.2.7 Benutzungsschnittstellen

Dieser Abschnitt legt die Anforderungen an die Benutzungsschnittstelle (refe-
renziert über /Bxx/) fest, die sowohl die Schnittstelle zu den einzelnen Akteu-
ren, als auch die Schnittstelle zu anderen Software-Systemen beinhaltet.

Aus Gründen der einfachen Bedienbarkeit sollte die Nutzung des SISA über
einen Internet-Browser möglich sein (/B10/).

Zur Arbeit mit dem SISA sind den Akteuren (Modellbetreiber, Modellent-
wickler, Entscheidungsträger) verschiedene ‘Sichten’ auf die Daten und Leistun-
gen bereitzustellen (/B20/). Die Sichten und die mit ihnen verbundenen Mög-
lichkeiten des Datenzugriffs und der Funktionsausführung ergeben sich aus dem
Anwendungsfalldiagramm (Abb. 4.3, Seite 83). Modellentwickler und Modell-
betreiber dürfen auf alle gespeicherten Daten zugreifen. Entscheidungsträgern
sollte der Zugriff auf die Analyseergebnisse und auf Hintergrundinformationen
erlaubt werden. Außenstehenden (Interessenten) sollte der Zugriff auf allgemein
beschreibende Daten und Ansprechpartner gestattet werden.

Anderen Software-Systemen sollte eine Programmierschnittstelle (Applica-
tion Programming Interface, API) zur Verfügung gestellt werden, die es erlaubt,
einen Simulationslauf zu starten und bereits berechnete Ergebnisse abzufragen
(/B30/).

4.2.8 Qualitäts-Zielbestimmung

Die anzustrebende Qualität des SISA wird über die Merkmale und Teilmerk-
male der ISO/IEC 9126 (vgl. Tabelle 2.1, Seite 23) angegeben. Eine Übersicht
der nachfolgend beschriebenen Qualitätsziele liefert Tabelle 4.5 (Seite 90).

Das Qualitätsmerkmal der Funktionalität umfasst fünf Teilmerkmale: Ange- Funktio-
nalitätmessenheit, Richtigkeit, Interoperabilität, Ordnungsmäßigkeit und Sicherheit.

Die Anforderungen an die Angemessenheit und die Sicherheit können als nor-
mal eingestuft werden (sie sind relevante Merkmale, aber es werden an sie
keine besonderen oder außergewöhnlichen Anforderungen gestellt). Aufgrund

90 KAPITEL 4. SYSTEMDEFINITION

Merkmal Teilmerkmal Produktqualität

sehr gut gut normal nicht rel.

Funktionalität Angemessenheit X

Richtigkeit X

Interoperabilität X

Ordnungsmäßigkeit X

Sicherheit X

Zuverlässigkeit Reife X

Fehlertoleranz X

Wiederherstellbarkeit X

Benutzbarkeit Verständlichkeit X

Erlernbarkeit X

Bedienbarkeit X

Effizienz Zeitverhalten X

Verbrauchsverhalten X

Änderbarkeit Analysierbarkeit X

Modifizierbarkeit X

Stabilität X

Prüfbarkeit X

Übertragbarkeit Anpassbarkeit X

Installierbarkeit X

Konformität X

Austauschbarkeit X

Tabelle 4.5: Anforderungen des SISA an die Software-Qualität. Qualitätsmerk-
male angelehnt an ISO/IEC 9126 (DIN 66272). Erklärungen zu den Merkmalen
finden sich im Text und in Tabelle 2.1 (Seite 23).

4.2. ANFORDERUNGSDEFINITION 91

der Komplexität der Simulationsmodelle und der damit nicht einfach nachzu-
vollziehende Ergebnisberechnungen und Ergebnisse ist an die Richtigkeit, ins-
besondere der Ausgaben des Simulationsmodells und seiner Teile, eine hohe
Anforderung zu stellen (ein Modellteil ist oftmals nur von einem Fachexper-
ten – der i. d. R. auch selbst der Autor des Programms ist – nachvollziehbar).
Die Interoperabilität, also die Eignung, mit anderen Systemen zusammenzu-
wirken, spielt aufgrund der Komplexität und der Umgebungsbedingungen bei
der Erstellung und dem Einsatz des Gesamtsystems eine wichtige Rolle. Die
Produktqualität sollte diesbezüglich daher sehr gut sein. Das Teilmerkmal der
Ordnungsmäßigkeit beschreibt die Erfüllung anwendungsspezifischer Normen
und Vereinbarungen. Auch wenn es für die in Kapitel 72 (Seite 87) angeführten
wichtigsten Daten des SISA keine Bestimmungen gibt, sollte bei der Auswahl
der Produktdaten darauf geachtet werden, dass es sich um allgemein akzep-
tierte Daten handelt. Hierzu zählen z. B. Angaben der Weltbank und der Ver-
einten Nationen oder ihrer Unterorganisationen (wie etwa der Welternährungs-
und Landwirtschaftsorganisation (FAO) oder der Weltgesundheitsorganisation
(WHO)). Das Qualitätsziel in Bezug auf das Teilmerkmal der Ordnungsmäßig-
keit wird aufgrund dieser Anforderung auf gut gesetzt.

Die Qualitätsanforderungen hinsichtlich der Zuverlässigkeit des SISA, die Zuver-
lässig-
keit u.
Benutz-
barkeit

über die Teilmerkmale Reife, Fehlertoleranz und Wiederherstellbarkeit ausge-
drückt werden, werden als normal eingestuft. Die Qualitätsanforderungen an
die Benutzbarkeit mit ihren Teilmerkmalen Verständlichkeit, Erlernbarkeit und
Bedienbarkeit werden ebenso als normal festgelegt.

Das Qualitätsmerkmal der Effizienz dient der Beurteilung des Verhältnis- Effizienz

ses von erreichter Leistung zu eingesetzten Betriebsmitteln. Das SISA stellt an
beide Teilmerkmale der Effizienz, das Zeitverhalten und das Verbrauchsverhal-
ten, besondere Anforderungen: Die Durchführung von Simulationen, also die
Berechnung neuer Modellergebnisse mit Hilfe des Simulationsmodells, fordert
sehr komplexe Berechnungen. Das Zeitverhalten spielt hier eine besondere Rolle
– und wurde daher auch als explizite Leistungsanforderung (/L10/) im Kapitel
4.2.6 (Seite 88) aufgeführt. Die geforderte Qualität des SISA (insbesondere des
Simulationsmodells) hinsichtlich des Zeitverhaltens wird daher auf gut gesetzt.

Das Teilmerkmal des Verbrauchsverhaltens dient der Beschreibung des Auf-
wandes an Betriebsmitteln. Diese Betriebsmittel können sowohl andere Soft-
ware-Produkte, Hardware-Einrichtungen und Materialien (wie Druckerpapier
oder Disketten) als auch Dienstleistungen von Bedienungs-, Wartungs-, oder
Unterstützungspersonal einschließen (DIN, 1994). An dieser Stelle ist eine Ab-
wägung zu machen zwischen dem Verbrauchsverhalten und der Erreichung
der anderen qualitativen und funktionalen Ziele: So ist beispielsweise der Ein-
satz eines Datenbankmanagementsystems (DBMS) hilfreich bei der Verwaltung
von Projektdaten und der Auswertung von Simulationsergebnissen; zur Pflege
DBMS bedarf es aber eines erhöhten Personaleinsatzes. Das Zeitverhalten des

92 KAPITEL 4. SYSTEMDEFINITION

Systems kann, als zweites Beispiel, durch den Einsatz einer besseren Hardware-
Ausrüstung erreicht werden; die beiden Teilmerkmale der Effizienz stehen sich
hier also direkt gegenüber. Da das SISA in der Umgebung wissenschaftlicher
Einrichtungen eingesetzt wird (siehe Kapitel 4.2.4, Seite 82) ist aufgrund der
oft vorherrschenden angespannten Ressourcenlagen eine gute Qualität bezüg-
lich des Verbrauchsverhaltens an das Produkt zu stellen.

Das SISA integriert unterschiedliche Daten und Teilmodelle. Während derÄnder-
barkeit Einsatzzeit des SISA sollten die verwendeten Daten und Simulationsmodel-

le stets den neuesten Stand der wissenschaftlichen Erkenntnisse widerspiegeln.
Diese Anforderung bedingt die Notwendig ständiger Korrekturen, Verbesserun-
gen und Anpassungen des Software-Systems. Das entsprechende Qualitätsmerk-
mal innerhalb der ISO/IEC 9126 ist die Änderbarkeit mit ihren Teilmerkmalen
Analysierbarkeit, Modifizierbarkeit, Stabilität und Prüfbarkeit.

Änderungen am SISA sind oft von Personen durchzuführen, die nicht an der
Entwicklung des Gesamtkonzeptes oder eines bestimmten Teilmodells des SISA
mitgearbeitet haben. Die Analysierbarkeit des Systems, die den notwendigen
Aufwand zur Identifizierung änderungsbedürftiger Teile einschließt, muss daher
sehr gut sein. Hinsichtlich der Modifizierbarkeit des Systems wird, analog zu
den vorhergehenden Überlegungen, ebenfalls eine sehr gute Qualität gefordert.
An die Stabilität des Gesamtsystems (Risiko unerwarteter Wirkungen) im Zu-
sammenhang mit durchgeführten Änderungen werden keine außergewöhnlichen
Anforderungen gestellt. Eine gute Prüfbarkeit des geänderten Software-Systems
wird allerdings als Qualitätsziel aufgenommen.

SISA und SISA-Teile (insbesondere das Simulationsmodell bzw. Teile des Si-Über-
tragbar-
keit

mulationsmodells) werden zunehmend zwischen verschiedenen Organisationen
ausgetauscht. Die Systemumgebungen können dabei nicht als homogen ange-
nommen werden: Es werden unterschiedliche DBMS, GIS und andere Software-
Produkte eingesetzt, und auch die Betriebssysteme können unterschiedlich sein.
Darüber hinaus ist die Systemumgebung innerhalb einer Organisation auch
nicht stabil. Die Übertragbarkeit des SISA von einer Umgebung in eine an-
dere spielt daher eine Rolle bei dessen Entwicklung. Die Anpassbarkeit des
Systems an neue Umgebung und die Installierbarkeit innerhalb einer vorgege-
benen Umgebung sollte daher gut sein. Die Einhaltung von Normen führt zu
einer besseren Übertragbarkeit – dies gilt sowohl für Teile des SISA als auch
für die erzeugten und verwendeten Daten. Das System sollte daher eine gute
Konformität mit solchen Normen aufweisen. Um den bereits oben angesproche-
nen, wichtigen Austausch von Modellteilen des Simulationsmodells mit anderen
Organisationen zu ermöglichen und zu erleichtern, sollte bei der Entwicklung
des Software-Systems eine sehr gute Austauschbarkeit (zumindest von Modell-
Teilen) explizit angestrebt werden.

Aufgrund der in Unterabschnitt 4.2.1 (Seite 75) angeführten Wichtigkeit
einer guten Dokumentation wird die Erfüllung einer weitere nicht-funktionale

4.2. ANFORDERUNGSDEFINITION 93

Anforderung als sehr wichtig eingestuft: die der Transparenz, Nachvollziehbar-
keit und Reproduzierbarkeit von Assessment-Ergebnissen.

Die vorrangig zu berücksichtigenden nicht-funktionalen Anforderungen sind
in Tabelle 4.6 noch einmal zusammengefasst und mit referenzierbaren Kenn-
zeichnungen (/NFxx/) versehen.

Name des nicht-funktionalen Anforderung Kennzeichnung

Interoperabilität /NF10/

Analysierbarkeit /NF20/

Modifizierbarkeit /NF30/

Austauschbarkeit /NF40/

Transparenz, Nachvollziehbarkeit, Reproduzierbarkeit /NF50/

Tabelle 4.6: Übersicht der vorrangigen nicht-funktionalen Anforderungen an
das SISA. Erklärungen zu den nicht-funktionalen Anforderungen finden sich
im Text. Eine ausführlichere Auflistung zur Wichtigkeit der einzelnen nicht-
funktionalen Anforderungen findet sich in Tabelle 4.5 (Seite 90).

4.2.9 Testszenarien

In Anlehnung an die Zielbestimmungen in Kapitel 4.2.2 (Seite 78) sind zum
Test eines SISA die Funktionen zu den folgenden, als vorrangig betrachteten
Zielen zu prüfen: die Verwaltung von Simulationsläufen (Testszenario /T10/),
Assessment-Ergebnissen (/T20/) und Ressourcen (/T30/), die Bereitstellung
von Hintergrundinformationen (/T40/), die Erzeugung neuer Simulationser-
gebnisse (/T60/), die Integration von Daten in das System (/T70/) und die
Datenbereitstellung (/T90/).

4.2.10 Entwicklungs-Umgebung

Die Umgebung für die Entwicklung des SISA ist abhängig von der konkre-
ten Ausprägung der im Kapitel 4.2.4 (Seite 82) skizzierten System-Umgebung
(z. B. dem tatsächlich eingesetzten GIS oder einem vorhanden DBMS). Bei der
Auswahl der Software-Entwicklungsumgebung ist auf die geforderte Übertrag-
barkeit des Systems auf andere Umgebungen zu achten. Programmiersprachen
sollten aus diesem Grund nur in einem Umfang verwendet werden der standar-
disiert ist; die Verwendung betriebssystemspezifischer Software-Komponenten
(wie der Microsoft Foundation Classes) ist zu vermeiden.

94 KAPITEL 4. SYSTEMDEFINITION

4.3 Fazit

Ziel des Systems zum integrierten simulationsbasierten Assessment (SISA) istZiel

die Unterstützung des integrierten Assessments durch die Bereitstellung eines
konsistenten Rahmens für Daten und Simulationsmodelle zum System Erde
und zur Durchführung von Simulationsläufen sowie die Bereitstellung grundle-
gender Informationen zu durchgeführten oder in der Durchführung begriffenen
Projekten.

Um dieses Ziel zu erreichen, müssen verschiedene Betriebsmittel (Ressour-Ressour-
cen cen) durch das SISA verwaltet werden. Zu diesen Ressourcen gehören sowohl die

Simulationsmodelle und die ihnen zugeordneten Daten als auch andere Software
(z. B. zur Vorverarbeitung oder Nachbearbeitung von Daten) und Dokumen-
te (z. B. Modellbeschreibungen oder Ergebnisberichte). Darüber hinaus mussDaten

das SISA Informationen über Projekte, Analysen, Szenarien, beteiligte Per-
sonen und andere Hintergrundinformationen bereitstellen. Die Daten, die für
die Simulationsmodelle benötigt werden, sollten ebenfalls über das SISA zur
Verfügung stehen. Die Durchführung und Verwaltung von SimulationsläufenSimula-

tionen und die Bereitstellung der Simulationsergebnisse gehören darüber hinaus eben-
so zur Aufgabe des SISA wie die Bereitstellung von Simulationsergebnissen.
Die Sicherstellung der Konsistenz wird unterstützt durch die DokumentationKonsis-

tenz der Simulationsergebnisse, der verwendeten Simulationsmodelle, der zugrunde
liegenden Simulationslauf-Spezifikation und des Simulationslaufes selbst.

Das SISA sollte in eine Software-Umgebung eingebettet werden können.Umge-
bung Insbesondere zu Geo-Informationssystemen (GIS) und zu Datenbank-Manage-

mentsystemen (DBMS) sollten Schnittstellen vorhanden sein.
Neben der gewünschten Interoperabilität mit GIS und DBMS stellt das SI-Qualität

SA weitere Anforderungen an die Qualität der Software-Architektur: Wegen des
zunehmend notwendigen Austausches von Modellteilen zwischen unterschiedli-
chen Organisationen sollte das Qualitätsmerkmal der Austauschbarkeit (zumin-
dest von Modellteilen) bei der Entwicklung der Architektur besonders berück-
sichtigt werden. Die Modifizierbarkeit des Systems (insbesondere von Modelltei-
len) sollte wegen der oft notwendigen Änderungen und Aktualisierungen eben-
falls sehr gut sein. Darüber hinaus wird die Transparenz, Nachvollziehbarkeit
und Reproduzierbarkeit von Assessment-Ergebnissen als wichtiges Qualitäts-
Merkmal eines SISA definiert. Um die Anforderung der Nachvollziehbarkeit
von Assessment-Ergebnissen zu erfüllen, ist die Erfüllung des Qualitätsmerk-
mals der Analysierbarkeit ebenfalls besonders zu berücksichtigen.

Nachdem die Ziele und Funktionen des SISA in diesem Kapitel spezifiziert
wurden, erfolgt im nächsten Kapitel die Entwicklung einer Software-Architek-
tur für ein solches System.

Kapitel 5

Architektur-Entwicklung

In Kapitel 4 wurden allgemeine, projektunabhängige Anforderungen an ein Sys- Archi-
tekturtem zum integrierten simulationsbasierten Assessment definiert. Um die nicht-

funktionalen (qualitativen) Anforderungen des Systems (wie die Modifizierbar-
keit, Austauschbarkeit und Interoperabilität) zu erfüllen, muss das System in
seine grundlegenden Bestandteile gegliedert werden. Die Einteilung des Ge-
samtsystems in seine Bestandteile (Komponenten) ergibt, in Verbindung mit
einer Definition der ‘Verantwortlichkeiten’ jeder Komponente, die Software-
Architektur des Systems.

Die folgenden Abschnitte beschäftigen sich mit der Abgrenzung der einzelnen Spezifi-
kationenKomponenten sowie der Definition der Verantwortlichkeiten, Schnittstellen und

grundlegenden Datenstrukturen. Die Gesamtfunktionalität des Systems ergibt
sich aus der Interaktion der einzelnen Komponenten. Durch die Schnittstellen
werden die Operationen beschrieben, mit denen der Datenaustausch zwischen
den Komponenten koordiniert wird. Die grundlegenden Datenstrukturen spezi-
fizieren die wichtigsten Daten, die zur Erfüllung der definierten Anforderungen
im Rahmen der entwickelten Architektur benötigt werden.

Das Kapitel beginnt mit einem Abschnitt, in dem die einzelnen Komponen- Über-
sichtten kurz und übersichtlich vorgestellt werden. Die Übersicht dient lediglich als

Rahmen für die detaillierten Spezifikationen, die in Abschnitt 5.2 (Seite 96) fol-
gen. Das Zusammenspiel aller Komponenten ergibt die Gesamtarchitektur des
Systems zum integrierten simulationsbasierten Assessment. Um die Funktions-
weise der entwickelten Architektur zu verdeutlichen, werden die wichtigsten
statischen und dynamischen Aspekte in Abschnitt 5.3 (Seite 148) noch einmal
graphisch dargestellt und erläutert.

95

96 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

5.1 Komponenten-Übersicht

Ausgangsbasis für die Abgrenzung der Architektur-Komponenten sind die Zie-Aus-
gangs-
basis

le, Funktionen und Anforderungen, die in der Systemdefinition (Kapitel 4, Sei-
te 69) bestimmt wurden sowie die im Kapitel 3 (Seite 25) vorgestellten Modelle
und Standards.

Um die Entwicklung der einzelnen Komponenten des SISA besser verfol-Kompo-
nenten gen und in das Gesamtsystem einordnen zu können, zeigt Abbildung 5.1 die

einzelnen Komponenten in einer Übersicht. Jede Komponente in Abbildung
Verant-
wortlich-
keit

5.1 besitzt innerhalb des Gesamtsystems eine definierte Verantwortlichkeit und
kooperiert zur Erfüllung ihrer Aufgaben mit anderen Komponenten (in dieser
Abbildung sind zur Vereinfachung nur die wichtigsten Verbindungen zwischen
den Komponenten eingetragen). Eine kurze Erklärung der Verantwortlichkei-
ten und Kooperationen findet sich in Tabelle 5.1 (Seite 98). Abbildung 5.2Ziel-Zu-

ordnung (Seite 99) veranschaulicht die Verbindungen der einzelnen Komponenten mit
den definierten Funktionen und Zielen des SISA.

Die Begründungen zu den Abgrenzungen der Komponenten sowie die ge-
nauen Spezifikationen der Komponenten, d. h. die Definition der Schnittstellen
und Datenstrukturen, finden sich im folgenden Abschnitt.

5.2 Komponenten-Entwicklung

In diesem Abschnitt erfolgt die Spezifikation der einzelnen Komponenten. Die
Unterabschnitte spezifizieren jeweils eine der Komponenten und sind ihrerseits
in drei Teile gegliedert: im ersten Teil, der Komponenten-Abgrenzung, wird die
Verantwortlichkeit der Komponente innerhalb des Gesamtsystems festgelegt;
der zweite Teil spezifiziert die Dienste, die von der Komponente zur Erfüllung
ihrer Aufgaben anzubieten sind; die Spezifizierung wichtiger Datenstrukturen
der Komponente erfolgt im dritten Teil jedes Unterabschnitts.

Da die Verwaltung und Bereitstellung von Metadaten eine zentrale Aufgabe
innerhalb der SISA-Architektur besitzt, beginnt die Beschreibung der Kompo-
nenten mit dem Katalogmanager.

5.2.1 Katalogmanager

5.2.1.1 Komponenten-Abgrenzung

Eine Funktion des SISA ist die Bereitstellung von Metadaten über vorhandeneMeta-
daten Datensätze (/F40/). Werden Metadaten nicht nur für vorhandene Daten vorge-

halten, sondern auch für alle anderen SISA-Ressourcen1, so können über die Be-
reitstellung von Metadaten auch die Funktionen zur Ressourcen-Liste (/F60/)

1Vergleiche Abb. 4.2, Seite 76.

5.2. KOMPONENTEN-ENTWICKLUNG 97

Metadaten-
Sammler

Metadaten-
Sammler

Datenbasis
Metadaten Daten

Datenbanksystem

ErgebnisanalyseDokumentation Simulationslauf-
manager

SimulationssystemKatalog-
manager

Modell-
analyse

Metadaten-
Sammler

allgemeine
Datenverarbeitung

Aufgabensteuerung

Geodaten-
verarbeitung

Datenzugriff

Abbildung 5.1: Übersicht der SISA-Komponenten. Kern des Systems ist das
Simulationssystem. Zur Berechnung neuer Ergebnisse verwendet das Simulati-
onssystem Daten aus der Datenbasis, die es über die Datenzugriffskomponente
bezieht. Welche Datensätze und Einstellungen für einen Simulationslauf ver-
wendet werden sollen, erfährt das Simulationsmodell vom Simulationslaufmana-
ger. Die für einen Datenzugriff notwendigen Informationen (z. B. Dateinamen)
erhält die Datenzugriffskomponente über den Katalogmanager. Metadaten, die
nicht über die Benutzungsoberfläche des Katalogmanagers eingegeben wurden,
können vom Metadaten-Sammler automatisch in die Komponente übernommen
werden. Grundlegende Funktionen zur Geodatenverarbeitung werden von einer
gesonderten Komponente angeboten, so dass sowohl das Simulationsmodell als
auch der Nutzer des Systems über die Dienste der Aufgabensteuerung auf die-
se Funktionen zugreifen können. Weitere Datenverarbeitungsfunktionen, die
unabhängig von einem konkreten System realisiert und wieder verwendet wer-
den können, werden über die Komponenten der allgemeinen Datenverarbeitung
angeboten. Bei einer Modellanalyse (z. B. einer Unsicherheitsanalyse) wendet
sich das Simulationssystem nicht direkt an die Datenzugriffskomponente. In
diesem Fall bezieht das Simulationssystem alle Daten über die Modellanalyse-
Komponente. Die Verbindung der Komponenten mit den funktionalen Anfor-
derungen des SISA können der Übersicht in Abb. 5.2 entnommen werden.

98 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

Komponente Verantwortlichkeit

Katalogmanager Verwaltung und Bereitstellung von Metadaten über SISA-
Ressourcen.

Metadaten-Sammler Durchsuchung eines Rechners nach Dateien mit Metadaten
und automatische Weitergabe der gefundenen Informationen
an den Katalogmanager.

Simulationssystem Berechnung, Speicherung und Weitergabe von Simulationser-
gebnissen.

Datenzugriff Lesender und schreibender Zugriff auf Daten und Transforma-
tion zwischen verschiedenen Daten-Formaten.

Datenbanksystem Verwaltete Speicherung von Assessment-Daten.

Simulationslauf-
manager

Verwaltung simulationslaufbezogener Einstellungen und Be-
reitstellung dieser Informationen für die Simulationssystem-
Komponente.

Geodatenverarbeitung Verarbeitung geographischer Daten und die Bereitstellung ei-
ner Schnittstelle zu eigenständigen GIS.

Datenverarbeitung Bereitstellung allgemeiner, wieder verwendbarer Datenverar-
beitungsdienste.

Aufgabensteuerung Programmgesteuerter Aufruf anderer Dienste des SISA (z. B.
Dienste zur Datenvorverarbeitung und Datennachbearbei-
tung).

Ergebnisanalyse Unterstützung bei der Analyse von Simulationsergebnissen
(z. B. bei der Visualisierung und der statistischen Auswertung
von Datensätzen).

Modellanalyse Unterstützung bei der Analyse des Simulationsmodells (insbe-
sondere bei einer Sensitivitäts- oder Unsicherheitsanalyse).

Dokumentation Dokumentation und Verwaltung wichtiger Assessment-
Informationen (z. B. Angaben über Projekte und Hinweise
zum Verständnis von Assessments).

Tabelle 5.1: Komponenten und ihre Verantwortlichkeiten.

5.2. KOMPONENTEN-ENTWICKLUNG 99

funktionale
Ziele

Ergebnis-
verwaltung

/Z20/

Ergebnisbereitstellung
/Z90/

Projekt-
Ressourcen-
Zuordnung

/F50/

Daten-
visualisierung

/F160/

Daten-
export
/F170/

Statistische
Datenauswertung

/F180/

Ressourcen-
Information
/F70/-/F90/

Verständnis-
förderung

/Z50/

Ressourcen-
Verwaltung

/Z30/

Daten-
Vorverarbeitung,
Nachbearbeitung

/Z80/

Glossar
/F120/

Modell-
Analyse
/Z110/

Daten-
Integration

/Z70/

Daten-
Import
/F150/

Simulationslauf-
Beschreibung

/F35/
Metadaten-

Bereitstellung
/F40/

Simulationslauf-
Daten-

Zuordnung
/F30/

Szenario-
Daten-

Zuordnung
/F20/

Szenarien-
beschreibung

/F10/

Simulations-
verwaltung

/Z10/

Ressourcen-
Liste
/F60/

Simulationslauf-
manager

Katalog-
manager

Simulationssystem

Datenzugriff

Aufgabensteuerung

Dokumentation

Modellanalyse Ergebnisanalyse

Hintergrundinfo-
Bereitstellung

/Z40/

Assessment-
Information

/F100/-/F110/

Geodaten-
verarbeitung /

allgemeine
Datenverarbeitung

Analyse-
Unterstützung

/Z100/

Simulations-
verlauf-

Information
/F140/

Simulations-
Start /F130/

Simulations-
ergebnis-

Erzeugung
/Z60/

Metadaten-
sammler

Datenbasis

Abbildung 5.2: Übersicht der Verbindung zwischen SISA-Komponenten und
SISA-Zielen. Eine kurze Erklärung zentraler Komponenten findet sich in der
Beschreibung zu Abbildung 5.1 (Seite 97). Nähere Informationen finden sich
im Abschnitt der Komponenten-Entwicklung (5.2, Seite 96).

100 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

und zur Bereitstellung grundlegender Informationen zu eingesetzter Software
(/F70/), erzeugten Daten (/F80/) und vorhandenen Dokumenten (/F90/) rea-
lisiert werden. Die Bereitstellung von Metadaten für alle Ressourcen unterstützt
daher auch die Verwaltung von Ressourcen (/Z30/) und die Bereitstellung von
Hintergrundinformationen (/Z40/). Die Zuordnung von Projekten zu Ressour-
cen (/F50/) im Rahmen der Ergebnis-Verwaltung (/Z20/) kann ebenfalls über
die Speicherung von Metadaten erreicht werden.

Die Katalogisierung von Ressourcen kann als weitgehend unabhängig reali-
sierbarer Teil der SISA-Funktionalität betrachtet werden, für den darüber hin-
aus spezielle Dienste innerhalb der Spezifikationen des OpenGIS-KonsortiumsOGC

Dienste (OGC) definiert sind. Aus diesen Gründen wird ein Katalogmanager als Kom-
ponente in die SISA-Architektur aufgenommen, der für die Verwaltung und

Verant-
wortlich-
keit

Bereitstellung von Metadaten über SISA-Ressourcen zuständig ist.

5.2.1.2 Dienst-Spezifikation

OpenGIS Catalog Services

Ausgangspunkt für die Entwicklung der Dienste des Katalogmanagers sind
die Spezifikationen des OpenGIS-Konsortiums, genauer: die in Topic 13 der
Abstract Specifications definierten Catalog Services (Kottmann, 1999c). Diese
Katalogdienste sollen die Organisation von und die Suche nach georäumlichen
Ressourcen2 sowie den Zugriff auf diese Ressourcen unterstützen.

Der zentrale Begriff des Katalogs wird bei Kottmann (1999c) wie folgt de-Def.
Katalog finiert:

A Catalog is simply a collection of Catalog Entries that is organized
to assist in the discovery, access, and retrieval of geospatial resources
that are of interest to the user, especially when the existence or
whereabouts of the resource are not known to the user.

Welche Ressourcen als georäumliche Ressourcen (geospatial resources) ange-geo-
räum-
liche
Ressour-
cen

sehen werden, verdeutlicht Abbildung 5.3. Demnach gehören sowohl Geodiens-
te als auch Geodaten zu den georäumlichen Ressourcen. Unter den Diensten
finden sich die Katalogdienste selbst, die Zugriffsdienste auf Daten und alle
weiteren Dienste mit georäumlichem Bezug. Die Geodaten sind in Geodata
Collections zusammengefasst und beinhalten sowohl die bereits angesproche-
nen Features3 als auch Feature Collections. Der Katalog besteht aus einzelnen
Katalog-Einträgen (Catalog Entries), die den Inhalt georäumlicher Datensätze
beschreiben. Diese Einträge stellen i. d. R. eine Untermenge eines kompletten
Metadatensatzes zu einem georäumlichen Datensatz dar und sind so konstru-
iert, dass Abfragen auf ihnen durchgeführt werden können. Bei den Catalog

2Ressourcen mit Raumbezug.
3Repräsentationen realer oder imaginärer Dinge oder Phänomene der realen Welt.

5.2. KOMPONENTEN-ENTWICKLUNG 101

Entries handelt es sich also um Metadaten, die zum Auffinden von Ressourcen
genutzt werden.

The OpenGIS™ Abstract Specification Page 6

Volume 13: Catalog Services (99-113.doc)

The answer depends on the application and the role an actor plays in an information community. To
a “producer,” the Feature Collection may be the primary unit of geodata management and
commerce. To a “consumer,” a Service (“I need to know the fastest route to the nearest courier
drop-box”) may be the unit of interest as well as the unit on which transactions are based. To
“librarian” or “data broker” actors, Catalogs and Catalog Entries may be the primary units for
organizing geodata resources and advertising their availability.

The following diagram depicts the basic relationships that exist between common types of
georesources and the catalogs that reference them.

GeoService GeodataCollection

Access Service

Other GeoServices ... Geospatial Analysis Service Catalog

CatalogEntry

GeoResource

1

0..*

Feature

FeatureCollection

0..*

1

<- is referenced by

Figure 2-2. Geospatial Resources

In essence, Catalogs contain Catalog Entries and Catalog Entries reference GeoResources. Since
Catalog is a type of GeoService, and GeoService is a type of GeoResource, Catalog Entries in one
Catalog may reference other Catalogs. They may also reference other types of GeoServices,
including geodata access services, shown in Figure 2-2 as Access Service.

More frequently, Catalog Entries will reference various flavors of geospatial data, including
individual features and collections thereof.

2.3.1. Features
Features model or represent real or imaginary things or phenomena on the earth. In general, a
Feature has:

1. A type,

Abbildung 5.3: Georäumliche Ressourcen im Sinne des OpenGIS-Konsortiums.
Erklärungen finden sich im Text. Quelle: Kottmann (1999c).

Die Dienste der OpenGIS Catalog Services werden in drei Kategorien ein- Dienste

geteilt (s. auch Abb. 5.4, Seite 102):

• georesource discovery services

• geodata access services

• other data access services

Die georesource discovery services dienen dem Auffinden von georäumlichen
Ressourcen und nutzen Metadaten-Repositories, die georäumliche Ressourcen
beschreiben und auf diese verweisen. Die geodata access services bieten den
Zugriff auf georäumliche Daten, die in zugehörigen Daten-Repositories abgelegt
sind. Die georesource disovery services können auch Datensätze referenzieren,
die keine georäumlichen Daten beinhalten; für den Zugriff auf diese Daten sind
die Dienste der Kategorie other data access services zuständig.

Abbildung 5.4 (Seite 102) zeigt die wichtigsten Klassen, die an der Bereit- primäre
Klassenstellung der Dienste der drei Kategorien beteiligt sind und verdeutlicht die

Zusammenhänge zwischen den Klassen.

102 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

The OpenGIS™ Abstract Specification Page 12

Volume 13: Catalog Services (99-113.doc)

GeoResource
Discovery Service

Geodata Access
Service

Other Data Access
Service

C

Catalog

Catalog
Entry

Metadata
Entity

Geospatial
Dataset

Collection

Geospatial
Dataset

Feature
Collection

Feature (or
Coverage)

Metadata
Set

Other
Dataset

Collection

Other
Dataset

KEY TO ROLES
C = Contains
D = Describes

C

C

C

D

D

D

C

DD

Metadata
Entity

C

Metadata
Set

Metadata
Entity

C

(unspecified)

C

C

DD

Figure 3-1. The Primary Data Structure Classes of OpenGIS Catalog Services.
Abbildung 5.4: Primäre, von den OpenGIS Catalog Services genutzte Klassen.
Erklärungen finden sich im Text. Quelle: Kottmann (1999c).

Der Katalog beinhaltet demnach einzelne Katalog-Einträge, wobei jederdis-
covery
services

Eintrag aus einzelnen Metadaten-Entitäten besteht – einer der Katalog-Ein-
träge kann auch den Katalog selbst beschreiben. Die Metadaten-Entitäten sind
Sammlungen so genannter Metadaten-Elemente. Jedes dieser Elemente besteht
aus einem Name-Wert-Paar, das eine spezielle Eigenschaft eines Objektes be-
schreibt – das Paar: Name=”Datum“; Wert=”2003-03-31“ ist ein Beispiel für
ein solches Metadaten-Element. Die Auswahl konkreter Metadaten-Elemente
zur Objektbeschreibung hängt davon ab, welche Metadaten genau gewünscht
sind. Aus diesem Grund ist die Klasse als abstrakte Klasse definiert. Die ein-
zelnen Elemente sollten allerdings dem Element-Satz der OpenGIS Abstract
Specifications, Topic 11: Metadata (Kottmann, 2001) entnommen werden.

Für die Katalog-Klasse und die Klassen der Katalog-Einträge und der Meta-
daten-Entitäten wird eine Vielzahl mehr oder weniger umfangreicher Funktio-
nen gefordert – angefangen von Funktionen zur Erzeugung und Modifikation
der Objekte der einzelnen Klassen bis hin zu genau spezifizierten Abfragen
von Katalog-Einträgen. Eine Übersicht der nach Kottmann (1999c) primären
geodata discovery services findet sich in Tabelle 5.2.

5.2. KOMPONENTEN-ENTWICKLUNG 103

Die Katalog-Einträge können sowohl georäumliche als auch andersartige Da- access
servicestensätze beschreiben. Bei den georäumlichen Datensätzen wird davon ausgegan-

gen, dass es sich um OpenGIS Feature Collections oder einzelne Features (oder
Coverages) handelt. Die ebenfalls durch das OGC definierten Schnittstellen
dieser Klassen (s. Kottmann, 1999e; Kottmann, 2000; Kottmann, 1999b) kön-
nen also von den geodata access services zur Erfüllung ihrer Aufgaben benutzt
werden. Die Features und Feature Collections werden über Metadatensätze
beschrieben, wobei die Metadaten den Spezifikationen aus Kottmann (2001)
entsprechen müssen. Die primären Funktionen der geodata access services sind
ebenfalls in Tabelle 5.2 aufgeführt.

Bei den other datasets findet sich eine vergleichbare Strukturierung bei der
Assoziation von Metadaten. Eine genaue Spezifikation der Datensätze selbst
kann natürlich nicht vorgenommen werden – die entsprechende Klasse bleibt
daher unbestimmt. Trotz der nicht näher spezifizierten Klasse gelten für die
other data access services die gleichen primären Funktionen wie bei den geodata
access services (vgl. Tab. 5.2).

Geodata Access Service & Geodata Discovery Service

Other Data Access Service

Copy complete dataset Query catalog service

Retrieve partial dataset Add catalog entry

Add dataset Remove catalog entry

Remove dataset Modify catalog entry

Modify dataset Copy selected catalog entry

Create iterator through datasets Create iterator through catalog entries

Query access service Get catalog entry schema

Get dataset schema Get service properties

Get service properties Set service properties

Get service property schema Get service property schema

Tabelle 5.2: Die primären Funktionen der OpenGIS Catalog Services. Eine aus-
führliche Beschreibung dieser und weiterer Funktionen findet sich in Kottmann
(1999c). Spezifikationen zur Implementierung können Nebert (2002) entnom-
men werden. Quelle der Tabelle: Kottmann (1999c).

Neben den Funktionen, die sich direkt den drei Kategorien (discovery, geoda- Daten-
transfor-
mation

ta access, other data access) zuordnen lassen, werden bei Kottmann (1999c) zu-
sätzliche Funktionen aufgeführt, die für alle oder mehrere Dienste wichtig sind.
Die Liste enthält u. a. Funktionen zur Bearbeitung von Objekt-Ansammlungen
(collections) und zur Behandlung umfangreicher Anfrage-Ergebnisse sowie ei-
nen Eintrag, der die Transformation von Daten betrifft. Funktionen zur Da-
ten-Transformation können notwendig werden, wenn die Nutzer gespeicherte

104 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

Daten in einem Format benötigen, das von den geodata discovery services oder
den geodata access services nicht angeboten wird. Als Beispiele für Datentrans-
formationen werden angeführt:
• Konvertierungen des Datenformats (sowohl bezüglich der Werte als auch

der Namen von Datenelementen)
• Transformation räumlicher Koordinaten
• semantische Transformation von Datenelementen

Während zur Umsetzung der ersten beiden Punkte bereits Vorschläge der
OGC existieren (s. z. B. Kottmann, 1999d), wird die semantische Transformati-
on, also die Umformung der Bedeutung von Daten, aufgrund ihrer Komplexität
(noch) nicht durch OGC-Spezifikationen beschrieben.

Zur Realisierung der Datentransformation wird der Weg über eine Schnitt-
stellen-Software nach Abbildung 5.5 vorgeschlagen. Die Schnittstellen-Software
(oder ‘Middleware’) ist für alle Datentransformationen zuständig, die für den
Datenaustausch zwischen der Anwendungssoftware und den OpenGIS-Diensten
notwendig sind. Bei der Erfüllung ihrer Aufgaben nimmt die Schnittstellen-
Software Dienste (Data Transformation Services) in Anspruch. Diese Diens-
te transformieren die Daten in das jeweils benötigte Format: Anwendungsda-
ten des Formats A werden zur Inanspruchnahme eines OpenGIS-Dienstes über
einen Transformationsdienst in ein Format B überführt; die Ergebnisse des
OpenGIS-Dienstes werden dann von einem anderen Transformationsdienst vom
Ergebnisformat C zum Format D gewandelt, das von der Anwendungssoftware
erwartet wird.

The OpenGIS™ Abstract Specification Page 26

Volume 13: Catalog Services (99-113.doc)

One possible way to handle data transformation is to use interface software that operates between
the OpenGIS Catalog Services software and the user application software, as indicated in Figure
3-2. In this diagram, the arrows represent data transfers between software components. (This is not
a class or object diagram.) Multiple variations and/or copies of all the software elements shown as
boxes are expected to exist simultaneously.

User
Application
Software

Interface
Software

(Middleware)

OpenGIS
Service

Data
Transformation

Services

Request

Request

Result

Result

Format D

Format C

Data
Transformation

Services

Format A

Format B

Figure 3- . Interface Software Connects User Applications to Services.

The interface software, or middleware, performs any needed data transformation on each request

calls any data transformation services software needed to transform request data from one format
(or form) to another. The needed data transformation services are shown on the left side of the

Similarly, the middleware also performs any needed data transformation on each result going from
the service software to the user application software. That is, this middleware calls any data

another. The needed data transformation services are shown on the right side of the diagram.

The middleware could be thought about in several different ways. The middleware could be treated

shown in the above diagram. Alternately, the middleware could be treated as part of, or an
extension of, any of the other three types of software. For some purposes, the middleware would

middleware should provide to the user application software almost the same Application
Programming Interfaces (APIs), as are provided by the underlying OpenGIS services.

 References for Section 3
 OpenGIS Features for ODBC (SQL) Implementation Specification, Open GIS Consortium,

[2]
Massachusetts, 1997.

[3] OpenGIS Features for CORBA Implementation Specification, Open GIS Consortium, Wayland,
Massachusetts, 1997.

Abbildung 5.5: Nutzung einer Schnittstellen-Software zur Anbindung von
OpenGIS Services an die Anwendungssoftware. Erklärungen finden sich im
Text. Quelle: Kottmann (1999c).

Zur Umsetzung dieses Middleware-Prinzips werden in Kottmann (1999c)
verschiedene Möglichkeiten aufgeführt: die Middleware kann, wie in Abbildung

5.2. KOMPONENTEN-ENTWICKLUNG 105

5.5 dargestellt, als eigenständige Software implementiert werden oder Teil bzw.
Erweiterung einer der anderen drei Software-Typen (OpenGIS-Dienste, Trans-
formationsdienste, Anwendungssoftware) sein. Es wird allerdings vorgeschla-
gen, die Middleware als Erweiterung der OpenGIS-Dienste zu sehen und ihr
eine Programmierschnittstelle (API) mitzugeben, die sich anlehnt an die APIs,
die von den OpenGIS-Diensten angeboten werden.

Um die Geschwindigkeit beim Zugriff auf Daten erhöhen zu können, ist Zugriffs-
kompo-
nente

es sinnvoll, die entsprechenden Funktionen von denen des Katalogmanagers
zu trennen.4 Aus diesem Grund wird die Verantwortlichkeit für den Zugriff
auf Daten innerhalb der SISA-Architektur einer gesonderten Komponente, der
Datenzugriffskomponente, übertragen. Weitere Ausführungen zur Datentrans-
formation und zu den data access services (vgl. Tab. 5.2, Seite 103) finden sich
daher erst im entsprechenden Unterabschnitt (5.2.6, Seite 134).

Anpassung und Erweiterung der Dienste

Die oben angeführten Prinzipien, Klassen, Dienste und Funktionen bieten einen Dienst-
AuswahlRahmen, der beim Entwurf der Katalog-Komponente aus Gründen der Offen-

heit und Interoperabilität berücksichtigt werden sollte. Eine OGC-konforme
Realisierung der Komponente kommt in den meisten Fällen der Entwicklung
eines SISA nicht in Frage: die Einhaltung aller Spezifikationen erfordert einen
zu hohen Einarbeitungs- und damit Zeit- und Kostenaufwand, der im Rah-
men von Modell-Entwicklungen i. d. R. nicht gedeckt werden kann. Aus diesem
Grund werden im Folgenden die wichtigsten Dienste und Funktionen spezifi-
ziert, die als Minimal-Ausstattung der Komponente angesehen werden. Hierzu
werden zunächst die wichtigsten Katalog-Funktionen identifiziert. Im Anschluss
werden die Metadaten-Elemente, die vom Katalog verwaltet werden sollen, spe-
zifiziert.

Spezifikation der Dienste

Die Schnittstellen-Definition der Katalog-Komponente orientiert sich an der
implementation specifikation (IS-CAT) der Katalog-Dienste des OGC (Nebert,
2002). In der IS-CAT werden vier Schnittstellen definiert:

Catalog Service Schnittstelle auf Server-Ebene, die den Zugriff auf die Diens-
te zur Einrichtung und Verwaltung von Sitzungen (user sessions) bereit-
stellt

Discovery Operationen, die es dem Nutzer erlauben, Daten, Dienste und an-
dere Ressourcen ausfindig zu machen

4Für die Zugriffsdienste kann so beispielsweise eine andere Verteilungsplattform verwendet
werden als für die Katalogdienste.

106 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

Access Operationen, die den Nutzer beim Zugriff auf die Ressourcen unter-
stützen, die wiederum über die Operationen des Discovery-Dienstes ge-
funden werden

Catalog Manager Operationen zur Verwaltung und Aktualisierung von Ka-
talogen (die Spezifikation der Operationen dieser Schnittstelle ist in Ne-
bert (2002) vorläufig und noch nicht abgeschlossen)

In Anlehnung an die primären Funktionen aus Tabelle 5.2 (Seite 103) und die
in Nebert (2002) spezifizierten Operationen werden für die SISA-Architektur
die in Tabelle 5.3 zusammengefassten Operationen definiert.

Schnittstelle Operation Beschreibung

Catalog Service initSession Initialisiert eine Nutzer-Sitzung

terminateSession Beendet eine Nutzer-Sitzung

Discovery query Abfrage des Kataloges nach bestimm-
ten Kriterien

Access getAccessInformation Liefert Informationen zum Zugriff auf
eine eindeutig identifizierte Ressource

Catalog Manager createCatalog Erzeugt einen neuen Katalog

createMetadata Fügt dem Katalog neue Metadaten-
Entitäten hinzu

updateCatalog Aktualisiert den Inhalt eines gegebe-
nen Kataloges

deleteCatalog Löscht den Inhalt des gegebenen Kata-
loges

addCatalogEntry Erzeugt einen neuen Katalogeintrag

removeCatalogEntry Entfernt einen Katalogeintrag

modifyCatalogEntry Ändert einen Katalogeintrag

Tabelle 5.3: Schnittstellen und Operationen der Katalog-Komponente. Die
Schnittstellenbezeichnungen richten sich nach denen von Nebert (2002), die
Operationen orientieren sich an Nebert (2002) und Kottmann (1999c) (add-,
remove-, modifyCatalog). Weitere Informationen finden sich im Text.

Die Operationen initSession und terminateSession der Catalog-Service-Catalog
Service Schnittstelle dienen der Koordination verschiedener Nutzer-Sitzungen. Die IS-

CAT sieht bei der Initialisierung die Rückgabe einer eindeutigen Identifizie-
rungsnummer für die Sitzung vor, die vom Nutzer fortan verwendet werden
muss.

Die zentrale Funktion des geodata discovery service ist nach KottmannDis-
covery
Service

(1999c) die Anfrage-Funktion (query function). Diese Funktion muss alle Ka-
talog-Einträge innerhalb eines Kataloges finden, die nutzerdefinierten Krite-
rien entsprechen. Die Syntax und die Semantik von Abfragen wird in den
OGC-Spezifikationen zu den Katalog-Diensten (Kottmann, 1999c u. Nebert,

5.2. KOMPONENTEN-ENTWICKLUNG 107

2002) genau festgelegt. Die Berücksichtigung dieser Spezifikationen kann als
Maximal-Anforderung an die Funktion angesehen werden. Im Rahmen eines
SISA sollte als Minimal-Anforderung eine Anfrage-Funktion bereitgestellt wer-
den, die einen Katalog-Eintrag aufgrund eines eindeutigen Ressourcen-Namens
ausfindig macht.

Die Ausgestaltung der Schnittstelle zum Zugriff auf Daten findet hauptsäch- Access

lich in der Datenzugriffskomponente statt. Der Katalogmanager sollte allerdings
diejenigen Informationen zur Verfügung stellen, die für einen Zugriff durch die
Datenzugriffskomponente benötigt werden (beispielsweise Informationen über
das Datenformat oder das Zugriffsprotokoll). Zu diesem Zweck wird – in An-
lehnung an die in Nebert (2002) nicht weiter spezifizierte Operation zum direct
access – eine Operation mit dem Namen getAccessInformation eingeführt. Um
eine eindeutige Referenzierung von Ressourcen zu gewährleisten, sollte jede
Ressource mit einem eindeutigen Namen, dem so genannten uniform resource
name (URN) versehen werden (ausführliche Informationen zum Konzept des
URN finden sich ab Seite 173 im Kapitel der Realisierung). Für die Erzeugung
eines solchen Namens wird ebenfalls eine Operation bereitgestellt.

Die Operationen der ‘Catalog-Manager’-Schnittstelle dienen der Verwaltung Catalog
Managerdes Katalogs. Die in Tabelle 5.3 aufgeführten Operationen erlauben es, neue

Kataloge zu erstellen, vorhandene Kataloge zu aktualisieren und nicht mehr
benötigte Kataloge zu löschen. Darüber hinaus stellt die Schnittstelle Opera-
tionen zur Erstellung, Entfernung und Änderung von Katalog-Einträgen sowie
zum Hinzufügen neuer Metadaten bereit.

Abbildung 5.6 zeigt die Schnittstellen des Katalogmanagers im Überblick.

Catalog Manager
ICatManager

ICatAccess

ICatDiscovery

ICatService

+initSession()
+terminateSession()

«interface»
ICatService

+query()

«interface»
ICatDiscovery

+getAccessInformation()
+getURN()

«interface»
ICatAccess

+createCatalog()
+updateCatalog()
+deleteCatalog()
+createMetadata()
+addCatalogEntry()
+modifyCatalogEntry()
+removeCatalogEntry()

«interface»
ICatManager

Abbildung 5.6: Schnittstellen und zugehörige Operationen des Katalogmana-
gers (Catalog Manager).

108 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

5.2.1.3 Daten-Spezifikation

Die grundlegende Datenstruktur zur Speicherung des Katalogs besteht aus drei
Klassen (vgl. Abb. 5.4, Seite 102); je einer zur Beschreibung der Kataloge,
der Katalogeinträge und der Metadateneinträge. Abbildung 5.7 zeigt die für
die SISA-Architektur vorgeschlagenen Klassen für den Katalog und die Ka-
talogeinträge. Jeder Katalog erhält einen Namen und besteht aus den einzel-
nen Katalogeinträgen. Für jede Ressource innerhalb des SISA sollte genau ein
Katalog-Eintrag existieren, der über den URN identifizierbar ist.

-name[1] : String
-resourceId[1] : SISA_URN
-catalogEntry[1] : SISA_CatalogEntry

«DataType»
SISA_Catalog

-resourceId[1] : SISA_URN
-metadataEntry[0..*] : SISA_MetadataEntry
-accessInfo[1] : SISA_AccessInformation

«DataType»
SISA_CatalogEntry

-catalog[1..*] : SISA_URN

«DataType»
SISA_CatalogManager

Abbildung 5.7: Datenmodell des Katalogs und der Katalogeinträge.

Für die Spezifikation der Metadateneinträge müssen zunächst die Metada-
ten-Elemente ausgewählt werden, die für jede SISA-Ressource zu erheben sind.

Spezifikation der Metadaten

Ein Katalogeintrag sollte nach Kottmann (1999c) auf einer relativ hohen Ab-Ziel

straktionsebene Antworten auf die folgenden sechs Frageworte geben:

1. Wo – Region der Erde, die der Datensatz abdeckt
2. Was – thematische Schlüsselwörter, Maßstab etc. des Datensatzes
3. Wer – verantwortlicher Ansprechpartner zum Datensatz
4. Wann – Datum der Erzeugung des Datensatzes und evtl. Datum genutzter

Ursprungsdaten
5. Wie – Hinweise bezüglich des Zugriffs auf den Datensatz
6. Warum – Informationen zur beabsichtigten Nutzung des Datensatzes

Mittels welcher Metadaten-Elemente diese Fragen zu beantworten sind, legtElemen-
te Kottmann (1999c) nicht fest – die Elemente sollten aus Gründen der Inter-

operabilität und der breiten Anwendbarkeit aber kompatibel zu Metadaten-
Standards sein.

Abgesehen von der Frage nach dem ‘wo’, also den räumlichen Aspekten,Ressour-
cen sollten die oben genannten Fragen nicht nur für Geodaten, sondern für alle

Ressourcen eines SISA (s. Abb. 4.2, Seite 76) beantwortet werden können. Hier
stellt sich die Frage nach den Metadaten-Elementen, die zur Beschreibung einer
Ressource verwendet werden sollten. Im Folgenden werden wichtige Metadaten-
Standards kurz beschrieben.

5.2. KOMPONENTEN-ENTWICKLUNG 109

Metadaten für Geodatensätze –ISO/DIS 19115

Das OGC bezieht sich bei den Metadaten für georäumliche Daten auf die Doku-
mente der ISO – genauer: auf die Arbeiten des technischen Ausschusses für geo-
graphische Informationen der ISO (ISO/TC 211, s. Seite 42). Aus diesem Grund
beinhaltet Topic 11 der OpenGIS Abstract Specifications (Kottmann, 2001),
das sich mit der Spezifikation von Metadaten beschäftigt, den ISO-Standard
ISO/DIS 19115.

ISO/DIS 19115 definiert die Metadaten-Elemente in einem data dictiona- Elemen-
tery, das insgesamt 409 Einträge enthält. Die Metadaten-Elemente werden zu

Entitäten verbunden, welche dann in thematisch getrennten ‘Paketen’ (Ab-
schnitte im Data Dictionary) verwendet werden. Eine Übersicht der insgesamt
15 definierten Pakete findet sich in Tabelle 5.4. Das Paket ‘Constraint Informa-
tion’ beinhaltet beispielsweise Elemente zur Beschreibung rechtlicher, sicher-
heitsbezogener oder sonstiger Einschränkung bezüglich des Zugriffs oder der
Nutzung der Ressource; die Elemente zum Paket ‘Data Quality Information’
betreffen Informationen über die ‘Abstammung’ eines Datensatzes, einzelne
Verarbeitungsschritte bei der Generierung des Datensatzes und evtl. verwende-
te Evaluierungsmethoden und deren Ergebnisse. Für die Implementierung der
Metadaten stellt die ISO/DIS 19115 insgesamt 27 Tabellen mit Kodierungs-
informationen bereit. Darüber hinaus wird innerhalb der Norm auf zahlreiche
andere ISO-Standards verwiesen (insbesondere im Paket units of measure).

Metadata entity set information Portrayal catalogue information

Identification information Distribution information

Constraint information Metadata extension information

Data quality information Application schema information

Maintenance information Extent information

Spatial representation information Citation and responsible party

Reference system information information

Content information Units of measure

Tabelle 5.4: Pakete des Metadaten-Standards ISO/DIS 19115. Weitere Infor-
mationen finden sich im Text. Quelle: Kottmann (2001).

ISO/DIS 19115 unterscheidet bei den Elementen im Data Dictionary zwi- Ver-
pflich-
tung

schen zwingend, bedingt und optional auszufüllenden Elementen. Nur die zwin-
gend erforderlichen Elemente müssen für jeden Datensatz angegeben werden;
bei den bedingten Elementen hängt die Notwendigkeit der Angabe von der Art
des Datensatzes, d. h. vom Inhalt eines anderen Elementes ab; die Belegung
optionaler Elemente ist hingegen freigestellt.

ISO/DIS 19115 definiert einen sehr umfangreichen Satz an Metadaten-Ele- Kernsatz

menten, von denen i. d. R. nur eine Untermenge genutzt wird. Zur Dokumen-

110 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

tation georäumlicher Datensätze definiert ISO/DIS 19115 aber einen Satz von
Metadaten-Elementen, die auf jeden Fall berücksichtigt werden sollen: die so ge-
nannten Kern-Metadaten (core metadata). Diese Metadaten dienen nach Kott-
mann (2001) der Beantwortung der folgenden Fragen:

• Gibt es einen Datensatz zu einem bestimmten Thema (‘was’)?
• ... für einen bestimmten Ort (‘wo’)?
• ... für einen bestimmten Zeitpunkt bzw. Zeitraum (‘wann’)?
• Welchen Kontaktpunkt gibt es, um mehr über den Datensatz zu erfahren

bzw. ihn zu bestellen (‘wer’)?

Eine Übersicht der zu den Kern-Metadaten gehörenden Daten ist in Tabelle
5.5 zu finden. Einige der dort aufgeführten Daten werden direkt durch ein Meta-
daten-Element repräsentiert: der dataset title ist beispielsweise ein Metadaten-
Element, dessen Wert mit einem frei wählbaren Text (Freitext) belegt werden
kann. Andere Daten müssen unter Berücksichtigung von spezifizierten Kodie-
rungsvorschriften eingetragen werden: dataset language ist ein Beispiel für ein
solches Datenelement, dessen Wert einer anderen Norm (der ISO 639-2) fol-
gen muss. Wieder andere Daten werden durch mehrere Werte repräsentiert:
so kann geographic location durch insgesamt vier Werte implementiert werden
(westliche und östliche Begrenzung der geographischen Länge sowie nördliche
und südliche Begrenzung der geographischen Breite).

Dataset title (M) Spatial representation type (O)

Dataset reference date (M) Reference system (O)

Dataset responsible party (O) Lineage statement (O)

Geographic location of the dataset (C) Online resource (O)

Dataset language (M) Metadata file identifier (O)

Dataset character set (C) Metadata standard name (O)

Dataset topic category (M) Metadata standard version (O)

Spatial resolution of the dataset (O) Metadata language (C)

Abstract describing the dataset (M) Metadata character set (C)

Distribution format (O) Metadata point of contact (M)

Additional extent information Metadata date stamp (M)

for the dataset (O)

Tabelle 5.5: Kern-Metadaten der ISO/DIS 19115 für georäumliche Datensätze.
Die mit einem ‘M’ (mandatory) gekennzeichneten Daten müssen angegeben
werden, unter gewissen Umständen verpflichtende Daten sind mit einem ‘C’
(conditional) gekennzeichnet und mit einem ‘O’ (optional) markierte Daten
sind optional. Nähere Informationen finden sich im Text. Quelle: Kottmann
(2001).

5.2. KOMPONENTEN-ENTWICKLUNG 111

Abbildung 5.8 (Seite 112) zeigt alle Datenelemente der Kern-Metadaten, die Abhän-
gigkeitenfür einen Datensatz zwingend ausgefüllt werden müssen. Bereits die Einschrän-

kung auf die zwingenden Elemente zeigt die vielfältigen Verknüpfungen der in
ISO/DIS 19115 definierten Klassen, Elemente und Kodierungsspezifikationen:
Die Beschreibung des Themas des Datensatzes (Element ‘topicCategory’) muss
beispielsweise unter Verwendung der genormten Kodierungsliste erfolgen, die
Sprache muss nach ISO 693-25 kodiert werden und die Kodierung des Daten-
satzes selbst sollte möglichst nach ISO 10646-16 erfolgen.

Die vielfältigen Abhängigkeiten und Spezifikationen machen die Metadaten Kom-
plexitätauf der einen Seite sehr gut austauschbar und abfragbar (d. h. sehr interopera-

bel). Die Metadaten für georäumliche Ressourcen sollten daher, sofern möglich,
gemäß ISO/DIS 19115 erfasst werden. Auf der anderen Seite ist die Implemen-
tierung und Erhebung der Metadaten recht aufwendig. Die Implementierung
des Standards ist auch aufgrund der hohen Anzahl möglicher Datenelemen-
te sehr arbeitsintensiv und kann nur bei entsprechend vorhandenen personel-
len Ressourcen gewährleistet werden. Aus diesem Grund sollte ein alternativer
und weniger komplexer Satz an Metadaten-Elementen an die Seite des ISO-
Standards gestellt werden, der mit weniger Aufwand implementiert und erfasst
werden kann. Ein solcher Standard ist z. B. der Dublin Core Metadata Element
Set, der an späterer Stelle (Seite 114) beschrieben wird.

Metadaten für Geodatensätze – weitere Normen

Ein weiterer, weit verbreiteter Metadaten-Standard ist der content standard for FGDC

digital geospatial metadata (CSDGM) des Federal Geographic Data Committee
(FGDC)7. Der CSDGM (FGDC, 1998) bietet mit etwa 200 Elementen einen
ähnlich umfangreichen Satz an Metadaten-Elementen wie ISO/DIS 19115. Die
Angabe einiger Dutzend dieser Elemente ist zwingend vorgeschrieben und etwa
100 gelten als verpflichtend, sofern sie in einem bestimmten Kontext angege-
benen werden können. Der Element-Satz ist sehr verbreitet, da die Dokumen-
tationen aller durch öffentliche Mittel der USA bezuschussten Daten diesem
Standard folgen müssen. Das weit verbreitete Geo-Informationssystem ArcGIS
der Firma ESRI unterstützt den CSDGM in seiner Katalog-Software (ArcCa-
talog) ebenfalls (Vienneau, 2001).

Da die Entwicklung der ISO/DIS 19115 innerhalb des ISO/TC 211 mit den
Arbeiten des FGDC koordiniert ist, bestehen viele Ähnlichkeiten zwischen die-

5ISO 693-2: Codes for the representation of names of languages – Part 2: Alpha-3 code.
6ISO 10646-1: Information technology – Universal Multiple-Octet Coded Character Set

(UCS) – Part 1: Architecture and Basic Multilingual Plane.
7Das FGDC ist ein Ausschuss mit Repräsentanten aus 19 US-amerikanischen Behör-

den (z. B. dem Landwirtschaftsministerium, dem Verteidigungsministerium und der Um-
weltschutzbehörde), der in Kooperation mit anderen Organisationen für die Entwicklung
der nationalen räumlichen Dateninfrastruktur (National Spatial Data Infrastructure, NSDI)
zuständig ist.

112 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

m
in

de
st

en
s e

in
s d

er

dr
ei

 E
le

m
en

te

no
tw

en
di

g

ei
ns

 d
er

 b
ei

de
n

El
em

en
te

no

tw
en

di
g

M
D

_M
et

ad
at

a

co
nt

ac
t

da
te

St
am

p
id

en
tif

ic
at

io
nI

nf
o

C
I_

R
es

po
ns

ib
le

Pa
rty

D
at

e

ci
ta

tio
n

ab
st

ra
ct

(F

re
ite

xt
)

C
I_

C
ita

tio
n*

**

tit
le

(F
re

ite
xt

)
da

te

C
I_

D
at

e

da
te

da
te

Ty
pe

C
I_

D
at

eT
yp

eC
od

e

C
od

e
Li

st
:

- c
re

at
io

n
- p

ub
lic

at
io

n
- r

ev
is

io
n

D
at

e

K
od

ie
ru

ng
 n

ac
h

IS

O
 8

60
1

/ I
SO

TS

 1
91

03
(c

ha
ra

ct
er

en

co
di

ng
)

M
D

_I
de

nt
ifi

ca
tio

n

ro
le

in
di

vi
du

al
N

am
e

(F
re

ite
xt

)or
ga

ni
sa

tio
nN

am
e

(F
re

ite
xt

)

po
si

tio
nN

am
e

(F
re

ite
xt

)
C

I_
R

ol
eC

od
e

C
od

e
Li

st
:

- r
es

ou
rc

eP
ro

vi
de

r
- c

us
to

di
an

- o
w

ne
r

- u
se

r
- d

is
tri

bu
to

r
- o

rig
in

at
or

- p
oi

nt
O

fC
on

ta
ct

- p
rin

ci
pa

lIn
ve

st
ig

at
or

- p
ro

ce
ss

or
- p

ub
lis

he
r

au
sz

uf
ül

le
nd

es

El
em

en
t

El
em

en
tn

am
e,

K

la
ss

en
na

m
e

bz
w

. F
or

m
at

K
od

ie
ru

ng
s-

sp
ez

ifi
ka

tio
ne

n

M
D

_D
at

aI
de

nt
ifi

ca
tio

n

la
ng

ua
ge

*K
od

ie
ru

ng
 n

ac
h

IS
O

 6
39

-2

(I
nt

er
na

tio
na

l
St

an
da

rd
s f

or

La
ng

ua
ge

 C
od

es
)

to
pi

cC
at

eg
or

y

M
D

_T
op

ic
C

at
eg

or
yC

od
e

C
od

e
Li

st
:

- f
ar

m
in

g
- b

io
ta

- b
ou

nd
ar

ie
s

- A
tm

os
ph

er
e

- e
co

no
m

y
- e

le
va

tio
n

- e
nv

iro
nm

en
t

- g
eo

sc
ie

nt
ifi

cI
nf

or
m

at
io

n
- i

m
ag

er
yB

as
eM

ap
sE

ar
th

C
ov

er
- i

nt
el

lig
en

ce
M

ili
ta

ry
- i

nl
an

dW
at

er
s

- l
oc

at
io

n
- o

ce
an

s
- p

la
nn

in
gC

ad
as

tre
- s

oc
ie

ty
- s

tru
ct

ur
e

- t
ra

ns
po

rta
tio

n
- u

til
iti

es
C

om
m

un
ic

at
io

n

ge
og

ra
ph

ic
B

ox
ge

og
ra

ph
ic

D
es

cr
ip

tio
n

EX
_G

eo
gr

ap
hi

cB
ou

nd
in

gB
ox

EX
_G

eo
gr

ap
hi

cD
es

cr
ip

tio
n

w
es

tB
ou

nd
Lo

ng
itu

de

ea
st

B
ou

nd
Lo

ng
itu

de

so
ut

hB
ou

nd
La

tit
ud

e

no
rth

B
ou

nd
La

tit
ud

e

ge
og

ra
ph

ic
Id

en
tif

ie
r

R
S_

Id
en

tif
ie

r

co
de

(F
re

ite
xt

)
au

th
or

ity

C
I_

C
ita

tio
n*

**

tit
le

(F
re

ite
xt

)
da

te
Ty

pe
da

te

K
od

ie
ru

ng
 n

ac
h

IS

O
 8

60
1

/ I
SO

TS

 1
91

03
(c

ha
ra

ct
er

en

co
di

ng
)

la
ng

ua
ge

*
ch

ar
ac

te
rS

et

**
K

od
ie

ru
ng

 n
ac

h

A
uf

lis
tu

ng
 m

it
24

Ze

ic
he

ns
at

z-
K

od
ie

ru
ng

en
 in

IS
O

 1
91

15
 (n

ur

no
tw

en
di

g,
 w

en
n

ni
ch

t I
SO

 1
06

46
-1

ve

rw
en

de
t w

ird
)

ch
ar

ac
te

rS
et

**

Le
ge

nd
e

Abbildung 5.8: Minimaler Elementsatz der ISO/DIS 19115 und der mit diesen
Elementen in Beziehung stehenden Klassen und Kodierungsspezifikationen.

5.2. KOMPONENTEN-ENTWICKLUNG 113

sen beiden Standards. Aufgrund der Ausrichtung der OGC-Spezifikationen auf
die Elemente der ISO/DIS 19115 wird dem ISO-Standard hier allerdings der
Vorzug gegeben. Aus den gleichen Gründen wird ISO/DIS 19115 dem ebenfalls ANZLIC

etablierten Satz der ANZLIC-Metadaten-Elementen (ANZLIC, 2001) vorgezo-
gen, die vom Australia New Zealand Land Information Council8 – dem austra-
lischen/neuseeländischen Pendant zum US-amerikanischen FGDC – entwickelt
wurden.

Metadaten für Simulationsmodelle

Im Rahmen des Projektes Alexandria Digital Earth Prototype (ADEPT)9 wur- CSCM

de ein Ansatz zur Beschreibung berechenbarer Modelle entwickelt: der Content
Standard for Computational Models (CSCM) (Hill u. a., 2001; ADEPT, 2001).

Primäres Ziel des CSCM ist die Bereitstellung von Informationen, die es Ziel

potentiellen Modellnutzern erlauben, das Modell in einem verteilten, digitalen
Katalog zu finden, die Möglichkeit der Anwendung für den eigenen Einsatz
zu evaluieren, es zu bekommen, es erfolgreich mit entsprechenden Datensätzen
laufen zu lassen und die Ergebnisse zu verstehen (Hill u. a., 2001).

Der CSCM, der unter Berücksichtigung der Arbeiten zum ISO/DIS 19115 Elemen-
teund des CSDGM erstellt wurde (ADEPT, 2001), enthält rund 160, in zehn

‘Abschnitte’ gegliederte Elemente. Die Elemente der einzelnen Abschnitte be-
schreiben ein Modell mit zunehmendem Detaillierungsgrad: angefangen von
Elementen zur Identifizierung des Modells (Titel und Version des Modells, ver-
antwortliche Personen etc.) über Informationen zur Verfügbarkeit des Modells
bis hin zu Beschreibungen der Modellkalibrierung und -validierung. Tabelle 5.6
(Seite 114) beinhaltet eine kurze Beschreibung der einzelnen Abschnitte.

Nicht alle Elemente müssen für jedes Modell angegeben werden: auch bei Ver-
pflich-
tung

diesem Standard wird unterschieden zwischen verpflichtend anzugebenden Ele-
menten und solchen, die unter gewissen Bedingungen oder optional auszufüllen
sind. Einige Elemente können bzw. müssen auch mehrfach verwendet werden
– z. B. Elemente zur Beschreibung einzelner Modellvariablen oder Parameter.
Für ein Modell mit einer Eingangsvariablen, die aus einer Datei gelesen werden
muss, sind etwa 50 Elementen verpflichtend auszufüllen.

Neben den einzelnen Elementen liefert der CSCM für einige Elemente Kodie-
rungsvorschriften. So gibt es beispielsweise Kodierungslisten zur Beschreibung
der Modell-Typologie (Differentialgleichungen, Stochastik, zelluläre Automaten
etc.) und zur Klassifizierung des Themas, mit dem sich das Modell beschäftigt
(Biologie, Physiologie, Ökologie etc.).

8Startseite im Internet: http://www.anzlic.org.au
9Startseite im Internet: http://www.alexandria.ucsb.edu

http://www.anzlic.org.au
http://www.alexandria.ucsb.edu

114 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

Abschnitt Beschreibung

Identification
Information

Basisinformationen zur Identifizierung des Modells (z. B. Mo-
dellname, -version, Identifizierungsnummer, Ansprechpart-
ner).

Indented Use Beabsichtigte Nutzung des Modells (Thema des Modells) so-
wie Informationen über das geforderte Wissen (den ‘Bildungs-
stand’) zum Verständnis und zur Anwendung des Modells.

Description Beschreibung des Modells, inkl. des Modellierungsprozesses
und der Funktionalität des Modells.

Access & Availabi-
lity

Informationen zur Verfügbarkeit des Modells (inkl. Zugriffs-
und Nutzungseinschränkungen und Angaben zu Bestellung
und Kosten).

System Require-
ments

Anforderungen an das Rechnersystem und den Nutzer zur
Durchführung von Modellrechnungen.

Input Data Requi-
rements

Beschreibung der Eingabedaten und ihrer Formate (z. B. An-
gaben über zeitliche und räumliche Auflösung und Abdeckung
der Daten).

Data Processing Erklärung der auf die Eingabedaten angewendeten Verarbei-
tungen zur Erzeugung der Ausgabedaten (Angabe zugrunde
liegender Formeln und verwendeter Programmiersprachen).

Model Output Beschreibung der Modellausgaben (Daten bzw. visuelle Aus-
gaben) (inkl. Angaben über evtl. notwendige Nachbearbeitun-
gen von Ausgabedaten).

Calibration Efforts
& Validation

Informationen über Anstrengungen, die zur Modellvalidierung
und -kalibrierung unternommen wurden (z. B. Angaben zu
Tests, Fallstudien, Validierungsexperimenten).

Metadata Source Angabe der Person oder Organisation, die für die Generierung
der Metadaten verantwortlich ist.

Tabelle 5.6: Übersicht der Abschnitte des Content Standard for Computational
Models. Quellen: Hill u. a. (2001); ADEPT (2001).

Metadaten für alle Ressourcen – ISO 15836 (Dublin Core)

Der Dublin Core Metadata Element Set ist ein Metadaten-Standard zur Be-Info-
Res-
sourcen

schreibung von Informationsressourcen unterschiedlichster Bereiche.10 Ziel bei
der Erstellung des Standards waren eine einfache Erzeugung und Wartung der
Metadaten, eine allgemein verständliche Semantik der Metadaten-Elemente,
ein internationaler Gültigkeitsbereich und die Erweiterbarkeit der Elemente.

Die Entwicklungs- und Standardisierungsbemühungen des ElementsatzesHinter-
grund gehen zurück auf einen Workshop, der 1995 in Dublin, Ohio (USA) stattfand

10Als ‘Informationsressource’ wird in diesem Standard ‘alles’ verstanden, ‘was eine Identität
besitzt’. Dies ist die Definition, die auch im RFC 2396 (Uniform Resource Identifiers (URI):
Generic Syntay) der Internet Engineering Task Force (http://www.ietf.org) benutzt wird.

http://www.ietf.org

5.2. KOMPONENTEN-ENTWICKLUNG 115

und aus dem sich die Dublin Core Metadata Initiative (DCMI)11 bildete. Die-
ser Workshop brachte Bibliothekare, Wissenschaftler aus dem Bereich digitaler
Bibliotheken, Informationsbereitsteller und Experten aus dem Bereich der Aus-
zeichnungssprachen12 zusammen, um die Standards zur Suche nach Informati-
onsressourcen zu verbessern. Mittlerweile wurde der Elementsatz von mehreren
Standardisierungsorganisationen (CEN, W3C, ANSI) übernommen und ist seit
Februar 2003 auch im ISO-Standardwerk als ISO 15836 (ISO, 2003) zu finden.

Der Dublin Core Metadata Element Set (DCMES) besteht aus 15 Elemen- Ele-
mentsatzten. In ISO (2003) werden die einzelnen Elemente über einen Element-Namen,

eine Kennzeichnung (label) und eine Definition spezifiziert und darüber hinaus
mit einem kurzen Kommentar versehen – die Element-Namen sollten ja allge-
mein verständlich sein. Tabelle 5.7 (Seite 116) gibt eine Übersicht der Elemente
des DCMES.

Jedes der Elemente aus dem DCMES ist optional und kann für die Beschrei- Ver-
pflich-
tung

bung einer Ressource beliebig oft wiederholt werden. Die Metadaten-Elemente
können darüber hinaus in jeder beliebigen Reihenfolge auftreten.

Für einige Elemente werden in den Kommentaren Vorschläge zur Belegung Abhän-
gigkeitender Werte gemacht: zur Angabe des Verfassers/Urhebers (creator) und des Ver-

legers/Herausgebers (publisher) wird beispielsweise die Angabe eines Namens
empfohlen. Um eine globale Interoperabilität zu fördern, werden darüber hin-
aus für einige Elemente kontrollierte Vokabulare vorgeschlagen: zur Angabe der
Sprache (language) wird beispielsweise die Verwendung des bereits im Rahmen
der Beschreibungen zur ISO/DIS 19115 angesprochenen Standards ISO 639
(Codes for the representation of names of languages) empfohlen.

Grundlegende Metadaten-Elemente

Die vorgestellten Elementsätze für Metadaten über georäumliche Daten und Si-
mulationsmodelle bieten eine sehr ausführliche Beschreibungsmöglichkeit dieser
Ressourcen. Auf der anderen Seite ist das Ausfüllen der Elemente sehr zeitauf-
wendig und grenzt bereits an eine Dokumentation dieser Ressourcen an (die
nicht das primäre Ziel des Katalogmanagers ist). Für den Katalogmanager wird
daher vorgeschlagen, den einfach implementierbaren und ausfüllbaren DCMES
als Grundlage für alle SISA-Ressourcen zu verwenden und ISO/DIS 19115 so-
wie CSCM als optionale Erweiterung zu betrachten. Abbildung 5.9 zeigt die
Klassen zur Speicherung der Metadateneinträge.

11Startseite im Internet: http://www.dublincore.org
12XML, SGML etc.

http://www.dublincore.org

116 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

Element-Name Beschreibung

Title Ein der Ressource gegebener Name.

Creator Eine Entität (z. B. Person, Organisation, Dienst), die primär
für die Erstellung des Inhalts der Ressource verantwortlich ist.

Subject Thema des Inhalts der Ressource (z. B. ausgedrückt durch
Schlüsselwörter, kodierte Klassifikationen).

Description Eine Erklärung des Inhalts der Ressource (z. B. eine Zusam-
menfassung, ein Inhaltsverzeichnis oder eine Referenz auf eine
graphische Repräsentation des Inhalts).

Publisher Eine Entität, die für die Veröffentlichung/Verfügbarkeit der
Ressource verantwortlich ist.

Contributor Eine Entität, die einen Beitrag zum Inhalt der Ressource ge-
leistet hat.

Date Datum eines Ereignisses (z. B. der Erzeugung oder Veröffent-
lichung/Verfügbarkeit) im Lebenszyklus der Ressource.

Type Die Beschaffenheit oder das Genre des Inhalts der Ressource
(Beispiele sind: Datensatz, Dienst, Software).

Format Die physikalische oder digitale Manifestation der Ressource
(z. B. Angabe des Medientyps oder einer Formatkennzeich-
nung).

Identifier Eine Referenz auf die Ressource, die innerhalb eines gegebenen
Kontextes eindeutig ist.

Source Eine Referenz auf eine Ressource, von der die vorliegenden
Ressource abgeleitet ist.

Language Die Sprache des geistigen Inhalts der Ressource.

Relation Eine Referenz auf eine Ressource, die mit der vorliegende Res-
source in Beziehung steht.

Coverage Gültigkeitsbereich des Inhalts der Ressource (z. B. die räum-
liche und die zeitliche Abdeckung).

Rights Informationen über die Rechte innerhalb oder an der Ressour-
ce (z. B. Angaben zu Kopierrechten).

Tabelle 5.7: Die Metadaten-Elemente der ISO 15836 (Information and docu-
mentation – The Dublin Core metadata element set) (ISO, 2003).

5.2.2 Metadaten-Sammler

5.2.2.1 Komponenten-Abgrenzung

Die zentrale Verwaltung der Metadaten über das Metadaten-Repository inner-zentral
vs. de-
zentral

halb des Katalogmanagers bringt Vorteile bei der Suche nach Ressourcen. An-
dererseits ist es oft von Vorteil, wenn die Beschreibung von Daten an dem Ort
gespeichert ist, wo auch die Daten selbst gespeichert sind (z. B. in Form einer
zusätzlichen Datei). Die Informationen zu einem Datensatz sind dann direkt
dort, wo der Datensatz beim ‘Durchsuchen’ von Verzeichnissen gefunden wird

5.2. KOMPONENTEN-ENTWICKLUNG 117

«DataType»
SISA_MetadataEntry

-Title[*] : String
-Creator[*] : String
-Subject[*] : String
-Description[*] : String
-Publisher[*] : String
-Contributor[*] : String
-Date[*] : String
-Type[*] : String
-Format[*] : String
-Identifier[*] : String
-Source[*] : String
-Language[*] : String
-Relation[*] : String
-Coverage[*] : String
-Rights[*] : String

«DataType»
SISA_MetadataDCMES

«DataType»
SISA_MetadataISO19115

«DataType»
SISA_MetadataCSCM

-URL[1] : String
-format[1] : String

SISA_AccessInformation

Abbildung 5.9: Datenmodell zur Speicherung von Metadaten. Als Grundlage
sollen die Elemente des Dublin Core Metadata Element Set (ISO, 2003) ver-
wendet werden. Die Erweiterung um die Sätze der ISO/DIS 19115 (ISO, 2000)
und des CSCM (ADEPT, 2001) sollten bei Bedarf als Unterklasse von SI-
SA MetadataEntry einfügt werden (deren Elementsätze werden aufgrund ihrer
Komplexität nicht im Diagramm dargestellt).

und sofort einsehbar13; werden die Daten kopiert, in ein anderes Verzeichnis
(oder auf einen anderen Rechner) verschoben oder anderen Personen überreicht,
können die Metadaten sehr einfach mit kopiert werden. Einige Anwendungen
(z. B. Programme zur Textverarbeitung oder Tabellenkalkulation, aber auch
GIS) bieten auch die Möglichkeit, Metadaten direkt als Teil des Arbeitsergeb-
nisses (z. B. ein Text-Dokument) zu integrieren. Die dezentrale Speicherung von
Metadaten besitzt also auch einige Vorteile.

Damit der Nutzer des Systems dezentral angelegte Metadaten nicht zu- Harves-
tersätzlich in den Katalogmanager eintragen muss, wird die Verwendung von

Metadaten-Sammlern vorgeschlagen. Ein Metadaten-Sammler (engl. Metada-
ta Harvester) ist ein Programm, das die Verzeichnisse eines Rechners nach
Metadaten durchsucht und diese sammelt (‘erntet’). Die zusammengetragenen
Metadaten sind darüber hinaus einer zentralen Stelle – in Falle des SISA ist
dies der Katalogmanager – mitzuteilen. Eine solcher Sammler sollte auf allen

13Sofern ein einfaches Datenformat verwendet wird bzw. die Software zum Lesen kompli-
zierterer Formate bereitsteht.

118 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

Rechnern installiert sein, die an der Erzeugung von Daten für ein Projekt be-
teiligt sind. Abbildung 5.10 verdeutlicht diese Vorgehensweise in graphischer
Form.

Host X

Katalogmanager

Host 1

Harvester 1

Suche nach
lokal gespeicherten

Metadaten

1

2

Host n

Harvester n

Suche nach
lokal gespeicherten

Metadaten

1
2Bericht an

Katalogmanager

Abbildung 5.10: Prinzip des Metadaten-Sammlers. Dezentral an einem Host
erfasste und gespeicherte Metadaten werden vom Metadaten-Sammler (Har-
vester) gesucht und zusammengetragen (Schritt 1). Im Anschluss an die Suche,
die regelmäßig oder auf Anforderung stattfinden kann, werden die Daten dem
Katalogmanager zur Verfügung gestellt (Schritt 2). Auf jedem Host, der an
einem Projekt beteiligt ist (Host 1 bis Host n), sollte für diese Zwecke ein
Harvester installiert sein.

Ein mit dem Katalogmanager zusammenarbeitender Metadaten-SammlerVerant-
wortlich-
keit

ist damit verantwortlich für die Durchsuchung eines Rechners nach Dateien mit
Metadaten und die automatische Weitergabe der gefundenen Informationen an
den Katalogmanager.

5.2.2.2 Dienst-Spezifikation

Die von einem Metadaten-Sammler anzubietenden Operationen ergeben sich di-
rekt aus den beiden in Abb. 5.10 erklärten Schritten: der Suche und Zusammen-
tragung von Metadaten und dem Bericht der gefundenen Informationen an den
Katalogmanager. Über diese beiden Funktionen des Sammlers hinaus, kann es
sinnvoll sein, die auf einem Host – ebenfalls dezentral – vorhandenen Metadaten
in einem lokalen Verzeichnis (Repository) vorzuhalten. Ein solches Repository
erleichtert den Überblick über die auf einem Host vorhandenen Daten, ohne
die Notwendigkeit mit dem Katalogmanager in Verbindung zu treten. Entspre-
chende Operationen zur Einrichtung und Abfrage eines solchen Verzeichnisses

5.2. KOMPONENTEN-ENTWICKLUNG 119

sind daher ebenfalls von der Komponente anzubieten. Abbildung 5.11 zeigt die
Schnittstellenspezifikation des Metadaten-Sammlers als UML-Diagramm.

Metadata Harvester

+harvest()
+report()
+setRepository()
+queryRepository()

«interface»
IMDHarvester

IMDHarvester

Abbildung 5.11: Schnittstelle des Metadaten-Sammlers. Die Komponente be-
sitzt lediglich eine Schnittstelle (IMDHarvester), die sowohl die Operation zum
Einsammeln von Metadaten (harvest) als auch die Operation zur Versendung
der gesammelten Metadaten an den Katalogmanager (report) bereitstellt. Falls
die Speicherung der gesammelten Daten in einem lokalen Verzeichnis (Repo-
sitory) gewünscht ist, kann ein solches über zusätzliche Operationen gesetzt
(setRepository) und abgefragt (queryRepository) werden.

5.2.2.3 Daten-Spezifikation

Das Datenmodell für die Sammlung und den Bericht der Metadaten ist ab- Meta-
datenhängig vom lokal verwendeten Metadaten-Elementsatz. Um eine nahtlose In-

tegration der Metadaten in den Katalog des Katalogmanagers zu ermöglichen,
sollten sich die Metadaten-Elemente an denen orientieren, die im Katalogma-
nager verwendet werden (s. Unterabschnitt 5.2.1, Seite 108).

Da der Metadaten-Harvester mit dem Katalogmanager kooperiert, benötigt Attri-
buteer einen Verweis auf diese Komponente. Zum Zugriff auf das evtl. vorhandene

Repository ist ebenfalls ein entsprechender Verweis (z. B. auf den Namen einer
Datei oder einen verantwortlichen Dienst) notwendig. Abbildung 5.12 zeigt die
resultierende Klasse in UML-Notation.

5.2.3 Dokumentation

5.2.3.1 Verantwortlichkeit

Zu den Zielen eines SISA gehört es, Simulationsläufe zu verwalten (/Z10/), Abgren-
zungHintergrund-Informationen zu Assessments bereitzustellen (/Z40/) sowie Hilfe-

stellungen zum Verständnis des Problembereichs zu geben (/Z50/). Die Verwal-
tung der in diesem Zusammenhang notwendigen Informationen über verwen-
dete Software und verwendete bzw. erzeugte Daten und Dokumente (/F70/-
/F90/) wird bereits vom Katalogmanager übernommen (s. Unterabschnitt

120 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

-katalogManager[1..*]
-repositoryName[0..*]

«DataType»
SISA_MetadataHarvester

Abbildung 5.12: Datenmodell des Metadaten-Sammlers. Neben einem – im-
plementierungsabhängigen – Verweis auf den Katalogmanager muss der
Metadaten-Sammler noch den Namen eines optional anzulegenden Verzeich-
nisses (Repository) speichern können. Die Datentypen der Attribute sind ab-
hängig von der konkreten Realisierung und werden daher an dieser Stelle nicht
spezifiziert.

5.2.1, Seite 96). Während diese Informationen in Form von Metadaten verwaltet
werden, ist für die Bereitstellung von Informationen über durchgeführte Simula-
tionsläufe (/F35/), zugrunde liegenden Szenarien (/F10/), beteiligte Personen
(/F100/) und durchgeführte Projekte und Studien (/F110/) sowie das gefor-
derte Glossar (/F120/) eine direkte Datenhaltung notwendig (s. ‘Hintergrund-
daten’ in Abb. 4.4, Seite 85). Die Verantwortlichkeit für diese Funktionen und
Daten wird einer separaten Komponente übertragen: der Dokumentationskom-
ponente. Über die genannten Informationen hinaus sollte die Dokumentations-
komponente Modellbetreibern Hintergrundinformationen über die Bedienung
des Systems bereitstellen. Aus dieser Abgrenzung heraus ergibt sich die nach-
stehende Verantwortlichkeit der Komponente. Die DokumentationskomponenteVerant-

wortlich-
keit

ist verantwortlich für die Bereitstellung und Verwaltung grundlegender Infor-
mationen über durchgeführte bzw. in Bearbeitung befindliche Assessments, den
Problembereich des modellierten System sowie die Bedienung des Systems.

5.2.3.2 Dienst-Spezifikation

Einige Dienste, die die Dokumentationskomponente zur Verfügung zu stellen
hat, ergeben sich direkt aus den ihr zugeordneten funktionalen Anforderungen
(vgl. Abb. 5.2, Seite 99). Neben der Bereitstellung eines Glossars (/F120/) sind
Daten vorzuhalten für:Klassen

• beteiligte Personen/Organisationen (/F100/)
• durchgeführte Projekte/Studien (/F110/)
• durchgeführte Simulationsläufe (/F35/)
• verwendete Szenarien (/F10/)

Diese Daten müssen über die Komponente aufgenommen, abgefragt, modi-
fiziert und gelöscht werden können.

5.2. KOMPONENTEN-ENTWICKLUNG 121

Die einzelnen Datensätze können als Einträge in entsprechenden Katalogen
betrachtet werden. Aus diesem Grund orientierten sich die Schnittstellende-
finitionen der Dokumentationskomponente (s. Abb. 5.13) an den definierten
Schnittstellen des Katalogmanagers (Unterabschnitt 5.2.1, Seite 96).

Neben Katalogen für Personen, Organisationen, Projekte, Studien, Szenari-
en, Simulationsläufe und das Glossar, werden zwei zusätzliche Kataloge vorge-
schlagen: einer zur Dokumentation von Arbeitsschritten und einer zur Aufnah-
me kurzer Anmerkungstexte. Weitere Informationen zu den Katalogen finden
sich in den Absätzen der folgenden Daten-Spezifikation.

Documentation

+createCatalog()
+deleteCatalog()
+addCatalogEntry()
+modifyCatalogEntry()
+deleteCatalogEntry()

«interface»
IDocManager

+query()

«interface»
IDocDiscovery Kataloge sind bereitzustellen

für:
- Personen & Institutionen
- Projekte & Simulationsstudien
- Simulationsläufe & Szenarien
- ein Glossar
- einen Service Organizer Folder
- Anmerkungen

IDocManager

IDocDiscovery

Abbildung 5.13: Schnittstellen der Dokumentationskomponente. Die Na-
men der Operationen orientieren sich an den Spezifikationen des OpenGIS-
Konsortiums (vgl. Schnittstellen-Spezifikation des Katalogmanagers, Abb. 5.6,
Seite 107). Erklärungen zu den Informationen, die für die einzelnen Kataloge
zu speichern sind, finden sich in den Absätzen zur Daten-Spezifikation.

5.2.3.3 Daten-Spezifikation

Zur Erfüllung der SISA-Anforderungen müssen einige Daten innerhalb des Sys-
tems verwaltet und vorgehalten werden. Einige der Klassen, für die Informa- Über-

sichttionen gespeichert werden müssen, wurden bereits bei der Systemdefinition in
Unterabschnitt 4.2.5 (Seite 84) identifiziert und in Abb. 4.4 (Seite 85) darge-
stellt. Demnach sind Attribute zu den folgenden Klassen zu spezifizieren:

• Person
• Organisation
• Projekt
• Simulationsstudie
• Simulationslauf
• Szenario

122 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

Zur Steigerung der Nachvollziehbarkeit von Assessments werden über diese
Klassen hinaus zwei weitere Klassen definiert. Die erste Klasse orientiert sich
am so genannten ‘Service Organizer Folder’ (Percivall, 2002) und erlaubt die
Dokumentation von Arbeitsschritten, die zur Lösung einer bestimmten Aufgabe
notwendig sind. Die zweite Klasse dient zur Speicherung einfacher Notizen, die
verwendet werden können, um ein Assessment oder einzelne Ressourcen mit
Anmerkungen zu versehen. Die entsprechenden Klassennamen sind:

• Arbeitsschritt
• Anmerkung

Die folgenden Absätze spezifizieren die Attribute der aufgeführten Klassen.

Personen und Organisationen

Die über Personen und Organisationen zu speichernden Daten (/F100/) sollten
nach den Richtlinien der ISO/DIS 19115 (Kottmann, 2001) kodiert werden, umISO/DIS

19115 eine nahtlose Integration von Projektdaten und Metadaten zu ermöglichen. Der
Standard schlägt zur Verwaltung von Personen und Organisationen eine Klasse
mit dem Namen ‘responsible party’ (verantwortliche Instanz) vor, die Angaben
zum Namen und zu Kontaktinformationen vorsieht. Die genaue Klassendefini-
tion wird im Anhang B.1 (Seite 234) in UML-Notation wiedergegeben.

Zur Beschreibung der Rolle, die einer Person/Organisation im Rahmen derRollen

Metadaten-Erfassung zugeschrieben werden kann, bietet ISO/DIS 19115 eine
Kodierungsliste (s. Abb. B.1, Seite 234). Da sich diese Liste auf mögliche Rol-
len im Zusammenhang mit Metadaten beschränkt, muss sie an dieser Stelle
erweitert werden.

Die zentralen Rollen von Personen im Rahmen des simulationsbasierten
Assessments können direkt dem OOA-Modell des SISA (Abb. 4.1, Seite 73)
entnommen werden: Modellentwickler, -implementierer, -betreiber, Entschei-
dungsträger, Ressourcenlieferant und Interessent. Als weitere Rolle kommt noch
der Kapitalgeber hinzu. Abbildung 5.14 zeigt das resultierende Datenmodell im
Überblick.14

Projekte und Simulationsstudien

Innerhalb des SISA sollten die wichtigsten, auf das Assessment bezogenen In-Projekte

formationen zu Projekten gespeichert werden (/F110/). In ISO 9000 (DIN,
2000) wird der Begriff des Projektes definiert als: ”Einmaliger Prozess, der aus
einem Satz von abgestimmten und gelenkten Tätigkeiten mit Anfangs- und

14ISO/DIS 19115 verwendet den Namen ‘responsible party’ nicht nur für die verantwortli-
chen Instanzen, sondern auch für die Nutzer oder Eigentümer von Ressourcen (s. CI RoleCode
in Abb. B.1, Seite 234). In Anlehnung an ISO/DIS 19115 – und mit der gleichen Anmerkung
versehen – wird auch für den SISA-Datentyp der Name ‘responsible party’ gewählt.

5.2. KOMPONENTEN-ENTWICKLUNG 123

«DataType»
CI_ResponsibilityParty

«DataType»
SISA_ResponsibilityParty

-modelDeveloper
-modelCoder
-modelCarrier
-decisionMaker
-resourceProvider
-interestedParty
-investor

«CodeList»
SISA_RoleCode

-urn[1] : SISA_URN
-title[1] : String
-aim[1] : String
-description[1] : String
-responsibleParty[1..*] : SISA_ResponsibilityParty
-contributor[0..1] : SISA_ResponsibilityParty
-furtherInfoResource[0..*] : SISA_Resource
-begin[1] : SISA_Date
-end[0..*] : SISA_Date

«DataType»
SISA_Project

«DataType»
SISA_Resource

«DataType»
SISA_Date

«DataType»
SISA_URN

-urn[1] : SISA_URN
-title[1] : String
-description[1] : String
-furtherInfoResource[0..*] : SISA_Resource
-responsibiliteParty[1] : SISA_ResponsibilityParty

«DataType»
SISA_Storyline

-urn[1] : SISA_URN
-title[1] : String
-description[1] : String
-furtherInfoResource[0..*] : SISA_Resource
-responsibiliteParty[1] : SISA_ResponsibilityParty
-indicatorChangeDescription[1] : String
-drivingForces[1] : String
-baseYear[1] : Integer
-timeHorizon[1] : Integer
-timeStep[1] : Integer
-furtherInfoResource[0..*] : SISA_Resource
-responsibleParty[1] : SISA_ResponsibilityParty
-storyline[1] : SISA_Storyline

«DataType»
SISA_Scenario

-relatedProject[1..1] : SISA_Project

«DataType»
SISA_SimulationStudy

Abbildung 5.14: Datenmodell zur Speicherung von Informationen über Per-
sonen und Organisationen. Die Klasse zur Speicherung von Informationen zu
Personen und Organisationen (SISA ResponsibleParty) leitet sich direkt von
der entsprechenden Klasse der ISO/DIS 19119 (CI ResponsibleParty) ab. Die
Kodierungsliste zur Angabe der Rolle, die eine Person oder Organisation ein-
nimmt, wird für das SISA entsprechend erweitert (SISA RoleCode). Die diesbe-
züglichen Definitionen der ISO sind im Anhang zu finden (Abb. B.1, Seite 234).

Endtermin besteht und durchgeführt wird, um ein Ziel zu erreichen, das spe-
zifische Anforderungen erfüllt, wobei Zeit-, Kosten- und Ressourcenbeschrän-
kungen eingeschlossen sind.“

Das Datenmodell des Umweltdatenkatalogs15 (Swoboda u. a., 1998; Swobo- UDK

da u. a., 2000) beschreibt Projekte über die Datenelemente Projektleiter, Be-
teiligte und Erläuterung.16 Über diese Angaben hinaus sollte das SISA, in An- Erweite-

runglehnung an die ISO-Definition, auf jeden Fall Informationen über den Anfangs-
und Endtermin sowie das Ziel des Projektes bereitstellen. Die Angabe eines
Projekt-Titels sowie der Verweis auf weitere Informationsquellen – Dokumente
mit detaillierten Angaben zu Kosten, Ressourcen usw. – sollten ebenfalls über
das SISA bereitgestellt werden.

Um eine getrennte Verwaltung von Personen und Organisationen zu erleich-
tern, sollte zur Aufnahme der Daten jeweils ein separater Katalog erzeugt und
verwendet werden.

Für Projekte werden Simulationsstudien mit Simulationsläufen und Ergeb- Studien

nis-Analysen durchgeführt (vgl. Abb. 4.1, Seite 73). Studien sind ”wissenschaft-
liche Untersuchungen über eine Einzelfrage“ (Duden, 1996). In diesem Sin-
ne können Simulationsstudien als ‘kleine’ Projekte (Unterprojekte) betrachtet
werden (Ziele von Simulationsstudien können neben der Erstellung eines Assess-

15Der Umweltdatenkatalog (UDK) ist ein Metadaten-Informationssystem zum Auffinden
umweltrelevanter Datenquellen, die in den öffentlichen Verwaltungen vorhanden sind. Start-
seite im Internet: http://www.umweltdatenkatalog.de

16Im Umweltdatenkatalog werden die gleichen Elemente auch für ‘Vorhaben’ und ‘Pro-
gramme’ benutzt.

http://www.umweltdatenkatalog.de

124 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

ments z. B. die Durchführung einer Modellvalidierung oder Sensitivitätsanalyse
sein). Aus dieser Überlegung heraus entspricht die Datenstruktur zur Beschrei-
bung von Simulationsstudien – erweitert um die Zuordnung zu Projekten –
der Datenstruktur für die Projekte. Abbildung 5.15 zeigt die UML-Diagramme
beider Klassen.

Projekte und Studien sollten, genauso wie Personen und Organisationen, in
jeweils getrennten Katalogen verwaltet werden.

«DataType»
CI_ResponsibilityParty

«DataType»
SISA_ResponsibilityParty

-modelDeveloper
-modelCoder
-modelCarrier
-decisionMaker
-resourceProvider
-interestedParty
-investor

«CodeList»
SISA_RoleCode

-urn[1] : SISA_URN
-title[1] : String
-aim[1] : String
-description[1] : String
-responsibleParty[1..*] : SISA_ResponsibilityParty
-contributor[0..1] : SISA_ResponsibilityParty
-furtherInfoResource[0..*] : SISA_Resource
-begin[1] : SISA_Date
-end[0..*] : SISA_Date

«DataType»
SISA_Project

«DataType»
SISA_Resource

«DataType»
SISA_Date

«DataType»
SISA_URN

-urn[1] : SISA_URN
-title[1] : String
-description[1] : String
-furtherInfoResource[0..*] : SISA_Resource
-responsibiliteParty[1] : SISA_ResponsibilityParty

«DataType»
SISA_Storyline

-urn[1] : SISA_URN
-title[1] : String
-description[1] : String
-furtherInfoResource[0..*] : SISA_Resource
-responsibiliteParty[1] : SISA_ResponsibilityParty
-indicatorChangeDescription[1] : String
-drivingForces[1] : String
-baseYear[1] : Integer
-timeHorizon[1] : Integer
-timeStep[1] : Integer
-furtherInfoResource[0..*] : SISA_Resource
-responsibleParty[1] : SISA_ResponsibilityParty
-storyline[1] : SISA_Storyline

«DataType»
SISA_Scenario

-relatedProject[1..1] : SISA_Project

«DataType»
SISA_SimulationStudy

Abbildung 5.15: Datenmodell zur Speicherung von Informationen über Projekte
und Simulationsstudien.

Szenarien

Zur Speicherung von Informationen zu Szenarien stellt sich die Frage, was ein
Szenario genau ist bzw. ausmacht. Szenarien wurden, in einer auf die Mo-
dellierung gerichteten Sichtweise, in Abschnitt 2.2 (Seite 14) definiert als die

”in sich konsistenten und plausiblen Annahmen über die zukünftige Entwick-
lung systembeeinflussender exogener Größen“ (Bossel, 1994). Eine weniger tech-
nisch ausgerichtete Definition gibt das IPCC in einem Bericht über Emissions-
Szenarien: ”Scenarios are images of the future, or alternative futures. They are
neither predictions nor forecasts. Rather, each scenario is one alternative image
of how the future might unfold.“ (Nakicenovic u. a., 2000)

Die Beschreibung solcher Szenarien erfolgt aufgrund ihrer KomplexitätDoku-
mente i. d. R. in Form von Berichten oder anderen Publikationen (s. z. B. Nakicenovic

u. a., 2000). Innerhalb des SISA sollen als Hintergrundinformation dennoch die
wichtigsten Merkmale der verwendeten Szenarien vorgehalten werden.

Zur Frage welche Hintergrundinformationen für die ‘möglichen Zukünfte’ im5 Ele-
mente SISA zu speichern sind, können die ‘fünf prinzipiellen Elemente’ herangezogen

werden, aus denen nach Alcamo (2001) ein typisches Szenario im Rahmen von
Umweltstudien besteht:

5.2. KOMPONENTEN-ENTWICKLUNG 125

Beschreibung schrittweiser Änderungen Beschreibung des sich schritt-
weise ändernden, zukünftigen Status von Gesellschaft und Umwelt (Be-
schreibung über Indikatoren)

exogene Einflussfaktoren (driving forces) Schlüsselfaktoren bzw. Deter-
minanten, die den Gang der schrittweisen Änderungen hauptsächlich be-
einflussen

Basisjahr Markierung des Beginns des Szenarios (in quantitativen Szenarien
oft das aktuellste Jahr, für das Daten vorhanden sind)

Zeithorizont und Schrittweite Markierung des am weitesten in der Zu-
kunft liegenden Jahres, das vom Szenario abgedeckt wird (Zeithorizont)
sowie das Zeitintervall zwischen zwei Beschreibungsschritten

Entwicklungsgeschichte (storyline) Erzählende Beschreibung des Szenari-
os, die die zentralen Punkte und Trends des Szenarios sowie deren Bezie-
hung zu den exogenen Einflussfaktoren enthält

Im SISA sollten demnach Angaben zu Basisjahr, Zeithorizont und Schritt-
weite vorhanden sein sowie zusammenfassende Beschreibungen der exogenen
Einflussfaktoren, der Entwicklungsgeschichte und der sich schrittweise vollzie-
henden Änderungen. Ein Verweis auf weiterführende Informationsquellen sollte
ebenfalls möglich sein.

Um die Ergebnisse von Simulationsstudien richtig einschätzen und bewer- Erweite-
rungten zu können, sollte das SISA, neben den Angaben zu den fünf prinzipiellen

Elementen, weitere Informationen über die zugrunde liegenden Szenarien be-
reitstellen.

Für Fink (2002) ist die Entwicklung von Szenarien u. a. mit zwei zentralen
Fragen verbunden: Was soll mit Hilfe der Szenarien gestaltet werden? Was soll
durch die erstellten Szenarien erklärt werden? Zumindest eine kurze, zusam-
menfassende Antwort auf diese Fragen nach dem Ziel eines Szenarios sollte
das SISA speichern können. Eine weitere wichtige Frage, die nach Fink (2002)
vor dem Beginn der Szenarienentwicklung beantwortet werden sollte, ist die
nach dem räumlichen Fokus eines Szenarios; auch diese Information sollte im
SISA vorhanden sein. Abbildung 5.16 zeigt das resultierende Datenmodell zur
Speicherung von Szenarien-Informationen.

Simulationsläufe

Zu einer Simulationsstudie gehören i. d. R. mehrere Simulationsläufe. Jeder die-
ser Läufe wird mit einem bestimmten Ziel und unter Verwendung genau festge-
legter Randbedingungen durchgeführt. Zur Sicherstellung der Nachvollziehbar-
keit und Reproduzierbarkeit von Simulationsergebnissen sollten alle Simulati-
onsläufe dokumentiert sein. Zu dieser Dokumentation gehören zumindest Anga-
ben zum Ziel eines Simulationslaufes, zum Verantwortlichen (d. h. dem Modell-

126 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

-urn[1] : SISA_URN
-title[1] : String
-description[1] : String
-furtherInfoResource[0..*] : SISA_Resource
-responsibleParty[1] : SISA_ResponsibilityParty

«DataType»
SISA_Storyline

-urn[1] : SISA_URN
-title[1] : String
-description[1] : String
-furtherInfoResource[0..*] : SISA_Resource
-indicatorChangeDescription[1] : String
-drivingForces[1] : String
-baseYear[1] : Integer
-timeHorizon[1] : Integer
-timeStep[1] : Integer
-furtherInfoResource[0..*] : SISA_Resource
-responsibleParty[1] : SISA_ResponsibilityParty
-storyline[1] : SISA_Storyline

«DataType»
SISA_Scenario

Abbildung 5.16: Datenmodell zur Speicherung von Szenario-Informationen. Da
die Erzeugung einer neuen Storyline sehr zeit- und arbeitsaufwendig ist, schlägt
Alcamo (2001) die Wiederverwendung bereits vorhandener und akzeptierter
Storylines vor. Aus diesem Grund wird die ‘Storyline’ als eigenständiger Da-
tentyp definiert.

betreiber) und zu Randbedingungen, also den zugehörigen Simulationsmodell-
Daten, die evtl. über ein zugeordnetes Szenario definiert sein können.

Die Zuordnung von Daten zu Simulationsläufen und Szenarien liegt in der
Verantwortung des Simulationslaufmanagers, so dass innerhalb der Dokumen-
tationskomponente nur die in Abb. 5.17 dargestellten Informationen vorzuhal-
ten sind.

«DataType»
CI_ResponsibilityParty

«DataType»
SISA_ResponsibilityParty

-modelDeveloper[1]
-modelCoder[1]
-modelCarrier[1]
-decisionMaker[1]
-resourceProvider[1]
-interestedParty[1]
-investor[1]

«CodeList»
SISA_RoleCode

-urn[1] : SISA_URN
-title[1] : String
-aim[1] : String
-description[1] : String
-responsibleParty[1..*] : SISA_ResponsibilityParty
-contributor[0..1] : SISA_ResponsibilityParty
-relatedDocument[0..*] : SISA_Document
-begin[1] : SISA_Date
-end[0..*] : SISA_Date

«DataType»
SISA_Project

«DataType»
SISA_Resource

«DataType»
SISA_Date

«DataType»
SISA_URN

-urn[1] : SISA_URN
-title[1] : String
-description[1] : String
-relatedDocument[0..*] : SISA_Document
-responsibiliteParty[1] : SISA_ResponsibilityParty

«DataType»
SISA_Storyline

-urn[1] : SISA_URN
-title[1] : String
-description[1] : String
-furtherInfoResource[0..*] : SISA_Resource
-responsibiliteParty[1] : SISA_ResponsibilityParty
-indicatorChangeDescription[1] : String
-drivingForces[1] : String
-baseYear[1] : Integer
-timeHorizon[1] : Integer
-timeStep[1] : Integer
-relatedDocument[0..*] : SISA_Document
-responsibleParty[1] : SISA_ResponsibilityParty
-storyline[1] : SISA_Storyline

«DataType»
SISA_Scenario

-relatedProject[1..1] : SISA_Project

«DataType»
SISA_SimulationStudy

-urn[1] : SISA_URN
-title[1] : String
-aim[1] : String
-simulationStudy[1] : SISA_SimulationStudy
-responsibleParty[1..*] : SISA_ResponsibilityParty
-relatedDocument[0..*] : SISA_Document

«DataType»
SISA_Simulationrun

«DataType»
SISA_Document

Abbildung 5.17: Datenmodell zur Speicherung von Simulationsläufen.

Service Organizer Folder

Das OpenGIS-Konsortium führt in der Definition der Service Architecture (ISODienst-
Referenz /DIS 19119, Percivall, 2002), neben der Dienste-Taxonomie und den zugeord-

neten Beispieldiensten, den so genannten service organizer folder (SOF) ein.

5.2. KOMPONENTEN-ENTWICKLUNG 127

Ein SOF ist eine Datenstruktur, die Referenzen auf Diensten beinhaltet, die in
bestimmten Situationen sinnvoll eingesetzt werden können. Über diese Struk-
tur können von den Nutzern eines Systems selbst Dienste gruppiert werden,
die sie zur Erfüllung einer bestimmten Aufgabe benötigen. Diese Gruppierung
kann dann von anderen Nutzern bei der Bearbeitung vergleichbarer Aufgaben
eingesetzt werden. Ein SOF stellt also eine Art Dokumentation vorhandener
Lösungsmöglichkeiten für bestimmte Problembereiche dar.

Bei der Durchführung eines Assessments sind vielfältige Aufgaben zu bear- Ressour-
cenbeiten: Modellteile müssen angepasst, Daten in das richtige Format gebracht

und Informationen aufbereitet werden. Die hierzu notwendigen Funktionen
(Dienste) werden oft über speziell für diesen Zweck geschriebene Werkzeuge
bereitgestellt. Da die oben beschriebenen Aufgaben oft nicht automatisiert sind
– und sich teilweise auch nicht mit einem vertretbaren Aufwand automatisie-
ren lassen – sollten alle in einer bestimmten Situation anwendbaren Werkzeuge
und notwendigen Schritte dokumentiert sein. Eine solche Dokumentation kann
erleichtert werden, indem die ursprüngliche Beschränkung des SOF auf Dienste
aufgehoben und die Angabe aller Ressourcen, die bei der Lösung einer Aufgabe
herangezogen werden können, erlaubt wird.17

Ein SOF, der alle SISA-Ressourcen aufnehmen kann, unterstützt sowohl Aufga-
bendie Daten-Vorverarbeitung (/Z80/) als auch die Ergebnis-Analyse (/Z100/)

und fördert darüber hinaus die Nachvollziehbarkeit von Assessment-Ergebnis-
sen. Abbildung 5.18 zeigt die innerhalb des SOF für die Aufgaben-Dokumen-
tation zu speichernden Attribute. Alle Angaben sollten innerhalb eines eigenen
Katalogs, dem SOF-Katalog, verwaltet werden.

«DataType»
CI_ResponsibilityParty

«DataType»
SISA_ResponsibilityParty

-modelDeveloper
-modelCoder
-modelCarrier
-decisionMaker
-resourceProvider
-interestedParty
-investor

«CodeList»
SISA_RoleCode

-urn[1] : SISA_URN
-title[1] : String
-aim[1] : String
-description[1] : String
-responsibleParty[1..*] : SISA_ResponsibilityParty
-contributor[0..1] : SISA_ResponsibilityParty
-furtherInfoResource[0..*] : SISA_Resource
-begin[1] : SISA_Date
-end[0..*] : SISA_Date

«DataType»
SISA_Project

«DataType»
SISA_Resource

«DataType»
SISA_Date

«DataType»
SISA_URN

-urn[1] : SISA_URN
-title[1] : String
-description[1] : String
-furtherInfoResource[0..*] : SISA_Resource
-responsibiliteParty[1] : SISA_ResponsibilityParty

«DataType»
SISA_Storyline

-urn[1] : SISA_URN
-title[1] : String
-description[1] : String
-furtherInfoResource[0..*] : SISA_Resource
-responsibiliteParty[1] : SISA_ResponsibilityParty
-indicatorChangeDescription[1] : String
-drivingForces[1] : String
-baseYear[1] : Integer
-timeHorizon[1] : Integer
-timeStep[1] : Integer
-furtherInfoResource[0..*] : SISA_Resource
-responsibleParty[1] : SISA_ResponsibilityParty
-storyline[1] : SISA_Storyline

«DataType»
SISA_Scenario

-relatedProject[1..1] : SISA_Project

«DataType»
SISA_SimulationStudy

-title[1] : String
-description[1] : String
-utilizedResources[0..*] : SISA_Resource

«DataType»
SISA_Task

-urn : SISA_URN
-title : String
-aim : String
-study : SISA_SimulationStudy
-responsibleParty : SISA_ResponsibilityParty
-relatedDocument : SISA_Document

«DataType»
SISA_SimulationRun

«DataType»
SISA_Document

Abbildung 5.18: Datenmodell zur Speicherung von Informationen über die Be-
arbeitung von Aufgaben.

Anmerkungen

Neben der Nutzung des SOF kann es für Modellbetreiber und Modellentwickler
sehr hilfreich sein, kurze Anmerkungen zum SISA direkt innerhalb des System

17Die grundsätzliche Möglichkeit die innerhalb des SOF aufgeführten Dienste automatisch
abarbeiten zu lassen wird durch die Erweiterung nicht eingeschränkt, sofern die einzelnen
Einträge als ‘Dienst’ bzw. ‘Nicht-Dienst’ gekennzeichnet sind.

128 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

abzulegen, z. B. Anmerkungen zur Verbesserung des SISA oder zu aufgetrete-
nen Problemen. Um diese Möglichkeit zu bieten wird ein Datentyp für Anmer-
kungen vorgeschlagen, der als Eintrag in einem weiteren Katalog (dem Anmer-
kungskatalog) verwendet werden kann. Um die Einträge des Katalogs einfacher
auflisten zu können, muss jede Anmerkung mit einem Titel versehen werden.
Da sich Anmerkungen auf SISA-Ressourcen beziehen können, wird zusätzlich
ein entsprechender Eintrag bereitgestellt. Abbildung 5.19 zeigt die resultierende
Klasse zur Speicherung von Anmerkungen.

«DataType»
CI_ResponsibilityParty

«DataType»
SISA_ResponsibilityParty

-modelDeveloper
-modelCoder
-modelCarrier
-decisionMaker
-resourceProvider
-interestedParty
-investor

«CodeList»
SISA_RoleCode

-urn[1] : SISA_URN
-title[1] : String
-aim[1] : String
-description[1] : String
-responsibleParty[1..*] : SISA_ResponsibilityParty
-contributor[0..1] : SISA_ResponsibilityParty
-furtherInfoResource[0..*] : SISA_Resource
-begin[1] : SISA_Date
-end[0..*] : SISA_Date

«DataType»
SISA_Project

«DataType»
SISA_Resource

«DataType»
SISA_Date

«DataType»
SISA_URN

-urn[1] : SISA_URN
-title[1] : String
-description[1] : String
-furtherInfoResource[0..*] : SISA_Resource
-responsibiliteParty[1] : SISA_ResponsibilityParty

«DataType»
SISA_Storyline

-urn[1] : SISA_URN
-title[1] : String
-description[1] : String
-furtherInfoResource[0..*] : SISA_Resource
-responsibiliteParty[1] : SISA_ResponsibilityParty
-indicatorChangeDescription[1] : String
-drivingForces[1] : String
-baseYear[1] : Integer
-timeHorizon[1] : Integer
-timeStep[1] : Integer
-furtherInfoResource[0..*] : SISA_Resource
-responsibleParty[1] : SISA_ResponsibilityParty
-storyline[1] : SISA_Storyline

«DataType»
SISA_Scenario

-relatedProject[1..1] : SISA_Project

«DataType»
SISA_SimulationStudy

-title[1] : String
-description[1] : String
-utilizedResources[0..*] : SISA_Resource

«DataType»
SISA_Task

-urn : SISA_URN
-title : String
-aim : String
-study : SISA_SimulationStudy
-responsibleParty : SISA_ResponsibilityParty
-relatedDocument : SISA_Document

«DataType»
SISA_SimulationRun

«DataType»
SISA_Document

-title[1] : String
-author[1] : SISA_ResponsibilityParty
-date[1] : SISA_Date
-text[1] : String
-relatedResource[0..*] : SISA_Resource

«DataType»
SISA_Annotation

Abbildung 5.19: Datenmodell zur Speicherung von Anmerkungen. Neben dem
eigentlichen Anmerkungstext (text) müssen die Einträge einen Verweis auf den
Autor (author) sowie das Datum des Eintrages (date) enthalten. Der Titel
(title) dient dem einfachen Zugriff auf Anmerkungen; die Zuordnung einer An-
merkung zu SISA-Ressourcen wird ebenfalls durch ein Attribut unterstützt
(relatedResource).

5.2.4 Simulationslaufmanager

5.2.4.1 Komponenten-Abgrenzung

Zur Berechnung neuer Simulationsergebnisse werden vom Simulationsmodell
verschiedene Daten benötigt: Systemparameter, Initialisierungsdaten, Modell-
umweltdaten und Optionen (vgl. Abb. 4.2, Seite 76). Die Auswahl dieser Daten
wird durch einen Satz von Einstellungen im entsprechenden Simulationsmodell
bestimmt. Welche Werte den einzelnen Einstellungen für einen bestimmten
Simulationslauf zugeordnet werden, hängt von der Spezifikation des Simulati-
onslaufes ab (s. Abb. 5.20).

Die Werte der einzelnen Einstellungen können sowohl Daten als auch Ver-
weise auf Daten oder andere Ressourcen repräsentieren (z. B. die Angabe einer
Jahreszahl zur Spezifizierung des Beginns eines Simulationslaufes oder ein Ver-
weis auf einen Datensatz).

Zur Steigerung der Nachvollziehbarkeit und Reproduzierbarkeit von Simula-Ziele u.
Funktio-
nen

tionsläufen wurde in der Systemdefinition die Verwaltung der Simulationsläufe
und Szenarien als ein Ziel definiert (/Z10/). Zu dieser Verwaltung gehören die

5.2. KOMPONENTEN-ENTWICKLUNG 129

SISA_SimulationModel -urn[1] : SISA_URN
-model[1] : SISA_URN
-simulationRun[1] : SISA_URN

«DataType»
SISA_SimulationRunSettings

ModelSettings

-name[1] : String
-value[1] : String

«DataType»
SISA_SettingAllocation

«DataType»
SISA_SimulationRun

1 *

1

1..*

1

* 1 1

SimulationRun

1..* 1

«DataType»
SISA_Scenario

* *

Simulationsspezifische
Parametereinstellung oder
Verweise auf Ressourcen
(insbes. auf Datensätze)

-name[1]
-value[1]

ModelSettingEntity

1

*

1 1

+getSettingAllocation()

Simulationslaufmanager

Simulationsmodell

SISA_SimulationModel

-urn[1] : SISA_URN
-model[1] : SISA_URN
-simulationRun[1] : SISA_URN

«DataType»
SISA_SimulationRunSettings

SISA_SimulationRun

-name[1] : String
-value[1] : String

«DataType»
SISA_SettingAllocation

11..*

Simulationsmodell

integriertes Modell Teilmodell

Modelleinstellungssatz
1..* *

Simulationslauf-Spezifikation

Simulationslauf

1
1

* *

Szenario

0..1

*basiert auf

Die Einstellungen des Simulations-
modells spezifizieren die Simulationsmodell-
Daten (Systemparameter, Initialisierungs-
daten, Modellumweltdaten und Optionen).

Integriertes Simulationsmodell

Simulationsmodell

Einstellungen
- Einstellung1 = Wert1
- Einstellung2 = Wert2
 ...
- EinstellungN = WertN

Simulationsmodell

Einstellungen
- Einstellung1 = Wert1
- Einstellung2 = Wert2
 ...
- EinstellungN = WertN

Einstellungssatz
- Einstellung 1 = Wert 1
- Einstellung 2 = Wert 2
 ...
- Einstellung n = Wert n

Teilmodell

Einstellungssatz
- Einstellung a = Wert a
- Einstellung b = Wert b
 ...
- Einstellung n = Wert n

Simulationslauf-
Spezifikation

Abbildung 5.20: Simulationsmodelle und deren Einstellungen. Jedes Simulati-
onsmodell besitzt einen eigenen Satz an Einstellungen. Die Einstellungen spezi-
fizieren die Simulationsmodell-Daten (Systemparameter, Initialisierungsdaten,
Modellumweltdaten und Optionen) und sind vom Modellbetreiber für jeden
Simulationslauf festzulegen.

geforderten Funktionen zur Beschreibung von Szenarien und Simulationsläu-
fen (/F10/ u. /F35/) und zur Daten-Zuweisung (/F20/ u. /F30/). Für die
Beschreibung der Szenarien und Simulationsläufe ist bereits die Dokumentati-
onskomponente (s. Unterabschnitt 5.2.3, Seite 119) zuständig. Die Zuordnung
von Daten (allgemeiner: Ressourcen) zu Szenarien kann über die Einträge des
Katalogmanagers vorgenommen werden.

Die Verantwortlichkeit der Simulationslauf-Komponente beschränkt sich da- Verant-
wortlich-
keit

mit auf die Verwaltung der Simulationslauf-Spezifikation, d. h. simulationslauf-
bezogener Einstellungen sowie auf die Bereitstellung dieser Informationen für
die Simulationssystem-Komponente.

5.2.4.2 Dienst-Spezifikation

Die Dienste der Simulationslauf-Komponente können unterteilt werden in sol-
che zur Verwaltung von Simulationsläufen (insbesondere durch den SISA-Nut-
zer) und solche zum lesenden Zugriff auf die Einstellungen (z. B. durch das
Simulationsmodell oder durch andere Komponenten).

Die erste Schnittstelle (ISimRunManager) sollte Operationen zur Verfügung ISim-
Run-
Manager

stellen, mit denen neue Simulationslauf-Spezifikationen erzeugt werden können
sowie Operationen, über die Modelleinstellungen innerhalb einer Spezifikation
gesetzt, geändert oder gelöscht werden können. Da sich die Modelleinstellungen
zwischen den Simulationsläufen einer Simulationsstudie teilweise nur geringfü-
gig ändern, sollte die Komponente eine Operation bereitstellen, über die eine

130 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

komplette Spezifikation inkl. aller damit verbundenen Einstellungen kopiert
werden kann.

Der Zugriff auf die Modelleinstellungen seitens der Simulationsmodelle wirdISim-
Run-
Specifi-
cation

in einer separaten Schnittstelle (ISimRunSpecification) angeboten. Um sicher-
zustellen, dass alle Einstellungen, die ein Modell für einen Simulationslauf be-
nötigt, innerhalb der Simulationslauf-Komponente vorhanden sind, sollte die
Komponente eine Operation anbieten, die eine Überprüfung der Simulations-
lauf-Spezifikation erlaubt. Von dieser Operation sollten sowohl fehlende Ein-
träge als auch die Überschreitung von Wertebereichen erkannt werden. Die für
eine derartige Überprüfung notwendigen Informationen können entweder direkt
beim Aufruf der Validierungsoperation übergeben oder über eine zusätzlich an-
gebotene Operation bekannt gegeben werden.

Abbildung 5.21 zeigt die Schnittstellen und die ihnen zugeordneten Opera-
tionen im Überblick.

Simulation-Run Manager

+getSetting()
+validateSpecification()
+setModelSettingsSpecification()

«interface»
ISimRunSpecification

+createSpecification()
+copySpecification()
+addSetting()
+modifySetting()
+deleteSetting()

«interface»
ISimRunManager

ISimRunManager

ISimRun
Specification

Abbildung 5.21: Schnittstellen des Simulationslaufmanagers. Der Simulations-
laufmanager (Simulation-Run Manager) bietet eine Schnittstelle zur Verwal-
tung von Simulationslauf-Spezifikationen an (ISimRunManager) sowie eine
Schnittstelle zur Abfrage der Werte von Modelleinstellungen und der Validie-
rung von Spezifikationen (ISimRunSpecification).

5.2.4.3 Daten-Spezifikation

Abbildung 5.22 zeigt die bereits in Abb. 5.20 (Seite 129) skizzierten Zusam-
menhänge zwischen Simulationsmodell, Modelleinstellungen und Simulations-
läufen in Form eines Klassen-Diagramms. Für die Zuordnung von Daten und
Ressourcen-Referenzen zu Simulationsläufen müssen nicht alle Klassen durch
entsprechende Datenstrukturen repräsentiert werden: eine Zuordnung des ‘Si-
mulationslaufes’ zu einer ‘Simulationslauf-Spezifikation’ und die Angabe der
zugehörigen ‘Wertzuweisungen’ reicht zur Erfüllung der Aufgabe des Simula-

5.2. KOMPONENTEN-ENTWICKLUNG 131

tionslaufmanagers aus. Die entsprechenden Klassen hierzu finden sich in Abb.
5.23 (Seite 132). Eine Klasse zur Speicherung der Struktur von Modelleinstel-
lungssätzen ist ebenfalls in Abb. 5.23 zu finden. Da die Speicherung und Verar-
beitung dieser Strukturinformationen von System zu System sehr unterschied-
lich realisiert werden kann, wird für das Spezifikationsattribut kein Datentyp
angegeben.18

Simulationsmodell

integriertes Modell Teilmodell

Modelleinstellungssatz
1 1

Simulationslauf-Spezifikation

Simulationslauf

1
1

* *

Modelleinstellung

1
1..*

Wertzuweisung

1
1..*

1 1

 spezifiziert

Abbildung 5.22: Zusammenhang zwischen Simulationsmodell, Modelleinstel-
lungen und Simulationslauf. Ein Simulationsmodell besitzt einen fest defi-
nierten Modelleinstellungssatz, bestehend aus mehreren Modelleinstellungen
(Einstellungsmöglichkeiten). Für jeden Simulationslauf gibt es genau eine
Simulationslauf-Spezifikation, die über ihre Wertzuweisungen allen notwendi-
gen Modelleinstellungen einen Wert zuweist. Die Zusammenhänge gelten sowohl
für das integrierte Simulationsmodell als auch für die integrierten Teilmodelle.

5.2.5 Simulationssystem

5.2.5.1 Komponenten-Abgrenzung

Die zentrale Aufgabe des SISA ist die Erzeugung neuer Simulationsergebnisse
(/Z60/). Die hierzu notwendigen Simulationsmodelle müssen in das Gesamtsys-
tem integriert werden. Bei dieser Integration sollten möglichst viele Funktionen
des Gesamtsystems wieder verwendet werden (Anforderung der Austauschbar-
keit: /NF40/). Die in Abschnitt 3.1.2 (Seite 28) vorgestellten Systeme schlagen
hierzu eine Abgrenzung des Simulationsmodells innerhalb des Gesamtsystems
vor: das Prinzip der Modellierungsumgebung M (s. Seite 38) ist die klare Tren-
nung zwischen dem mathematischen Modell, den Lösungsmethoden, den Daten,

18Die Strukturinformation könnte beispielsweise über XML (DTD oder XML Schema)
realisiert werden. In diesem Fall wäre das Attribut als String definierbar.

132 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

-urn[1] : SISA_URN
-simulationRun[1] : SISA_URN
-modelSetting[1..*] : SISA_ModelSettingAllocation

«DataType»
SISA_SimulationSpecification

-model[1] : SISA_URN
-setting[1] : String
-value[1] : String

«DataType»
SISA_ModelSettingAllocation

-model[1] : SISA_URN
-spezification[1]

«DataType»
SISA_ModelSettingsSpezification

Abbildung 5.23: Datenmodell des Simulationslaufmanagers. Jedem
Simulationslauf wird eine eindeutige Spezifikation zugeordnet (SI-
SA SimulationSpecification). Innerhalb der Spezifikation werden den Mo-
delleinstellungen Werte zugewiesen (SISA ModelSettingAllocation). Zur
Speicherung der Struktur von Einstellungssätzen dient eine weitere Klasse
(SISA ModelSettingsSpecification).

der Datenverwaltung und der Benutzungsschnittstelle; im Object Modeling Sys-
tem (OMS) (s. Seite 31) gibt es getrennte Bibliotheken für Simulations-Module,
Daten und die Visualisierung; GLOBESIGHT (s. Seite 29) unterscheidet zwi-
schen der Informations-, der Funktions- und der Modellbasis. Die Erzeugung
neuer Simulationsergebnisse wird daher in die Verantwortlichkeit einer Kompo-
nente gelegt: die Simulationsmodell-Komponente. Zur Steigerung der Wieder-
verwendbarkeit und Interoperabilität sollte die Komponente, über die Berech-
nung neuer Simulationsergebnisse hinaus, in der Lage sein, zuvor berechnete
Ergebnisse über einen Dienst zur Verfügung zu stellen. Die Simulationsmodell-Verant-

wortlich-
keit

Komponente ist damit verantwortlich für die Berechnung, Speicherung und
Weitergabe von Simulationsergebnissen.

5.2.5.2 Dienst-Spezifikation

Dienste

Die Erzeugung von Simulationsergebnissen integrierter Modelle erfolgt i. d. R.Start

für Szenarien, die sich über mehrere Jahre erstrecken. Die zur Berechnung not-
wendigen Informationen über Modelloptionen etc. stellt der Simulationslaufma-
nager zur Verfügung. Für die Lieferung der Modellumweltdaten ist die Datenzu-
griffskomponente – in Verbindung mit dem Datenbanksystem – verantwortlich.
Alle zum Start eines Simulationslaufes notwendigen Informationen und Daten
sollten vor dem Start einer Simulation in einer Simulationslauf-Spezifikation
(über den Simulationslaufmanager) festgelegt sein, so dass die Simulationssys-

5.2. KOMPONENTEN-ENTWICKLUNG 133

temkomponente mit dem Aufruf einer Operation (run) die Simulation beginnen
kann.

Zur Berechnung der Modellergebnisse für das erste Jahr eines Simulati- Initiali-
sierungonszeitraums sind i. d. R. Anfangswerte innerhalb der Simulationsmodelle zu

belegen: Optionen müssen gesetzt/eingelesen und Startwerte von Modellvaria-
blen gesetzt oder berechnet werden, Teilmodelle müssen Kontakt mit anderen
Teilmodellen oder dem Gesamtmodell aufnehmen etc. Die Phase dieser Initia-
lisierung eines Simulationssystems wird im Allgemeinen von der Berechnung
der Simulationsergebnisse getrennt. Die Modellkomponenten von OMS (vgl.
Unterabschnitt 3.1.3, Seite 31) besitzen stets die drei Methoden register (zur
Registrierung von Modellteilen), init (zur Initialisierung) und run (zum Aufruf
der eigentlichen Funktionalität). Auch die HLA (vgl. Unterabschnitt 3.2.2, Sei-
te 47) sieht einen eigenen Zustand (initialization) für die Initialisierung eines
Modellteils vor (IEEE, 2000b).

Die Aufteilung in eine Initialisierungs- und eine Berechnungsphase hat den Vorteil

Vorteil, dass das Simulationssystem Szenarien schrittweise, also in vorgege-
benen Intervallen, berechnen kann und dadurch Interventionen durch Dritte
(Modellnutzer oder Software) möglich werden.

Auch wenn die Unterteilung in eine Initialisierungs- und eine Berechnungs- Nachteil

phase den Nachteil mit sich bringt, dass die Komponente zustandsbehaftet ist19,
sollte sie wegen des angeführten Vorteils eine entsprechende Operation zur In-
itialisierung eines Simulationslauf (init) anbieten. Da die für einen Simulations-
lauf notwendigen Daten vom Simulationslaufmanager verwaltet werden, sollten
zur Initialisierung die dort eingeführten eindeutigen Simulationslaufnamen ver-
wendet werden.

Um die Interoperabilität zwischen verschiedenen SISAs zu erhöhen und den Ergeb-
nisab-
frage

Zugriff auf Simulationsergebnisse von anderer Software zu vereinfachen, sollte
die Simulationskomponente selbst eine Schnittstelle zur Abfrage von Simulati-
onsergebnissen bereitstellen.

Abbildung 5.24 zeigt die resultierenden Schnittstellen und Operationen
der Simulationssystemkomponente in der Übersicht. Dynamische Aspekte der
Komponente sind in Abb. 5.37 (Seite 155) zusammengefasst.

5.2.5.3 Daten-Spezifikation

Für das Simulationssystem wird keine Daten-Spezifikation vorgenommen. Für
konkrete Systeme müssen für diese Komponente die Klassen für mögliche Er-
gebnisrückgaben definiert werden, die die Resultate der Operation getResult()
bestimmen.

19Was nach der simple service architecture zu vermeiden ist (vgl. Seite 58).

134 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

Simulation System

+init()
+run()

«interface»
ISimControl

+getResult()

«interface»
ISimResultAccess

ISimResult
Access

ISimControl

Abbildung 5.24: Schnittstellen des Simulationssystems. Die Operationen der
Schnittstelle zur Simulationskontrolle (ISimControl) dienen der Initialisierung
(init) und dem Start (run) von Simulationsläufen. Die Schnittstelle zum Ergeb-
niszugriff (ISimResultAccess) besitzt lediglich eine abstrakte Operation, die für
die Rückgabe von Simulationsergebnissen verantwortlich ist (getResult).

5.2.6 Datenzugriff und Datenbanksystem

5.2.6.1 Komponenten-Abgrenzung

Für ein integriertes simulationsbasiertes Assessment ist die Verwendung vielfäl-
tiger Datensätze notwendig (vgl. Abb. 4.2, Seite 76 und Unterabschnitt 4.2.5,
Seite 84): Daten zur Initialisierung und zum Betrieb der Simulationsmodelle,
Primärdaten zur Erzeugung dieser Eingabedaten, Hintergrunddaten für weitere
Analysen usw. Die Daten werden demnach nicht nur vom integrierten Simu-
lationsmodell verwendet, sondern auch von anderen Komponenten des SISA
(beispielsweise den Komponenten zur Datenvorverarbeitung und Ergebnisana-
lyse).

Ein Ziel des SISA ist die Integration von Daten (/Z70/). Ziel einer solchenIntegra-
tion Datenintegration ist es nach Thomas und Nejmeh (1992), sicherzustellen, dass

alle Daten innerhalb des Systems als ein konsistentes Ganzes verwaltet werden,
unabhängig davon, wie auf die Teile des Ganzen eingewirkt wird. In diesem2 Fragen

Zusammenhang stellen sich zwei Fragen bezüglich der Datenhaltung:

• Wo (in welcher Komponente/an welchem Ort) werden die Daten gehal-
ten?

• Wie (in welchem Format) werden die Daten gespeichert?

Bei der Frage nach dem Speicherort von Daten gibt es zwei grundsätzlicheOrt

Alternativen: die Datensätze werden in derjenigen Komponente verwaltet, in
der sie (am meisten) benötigt werden oder in einer zentralen Datenhaltungs-
komponente (Datenbanksystem20). Gegen die dezentrale Datenhaltung spricht

20Siehe Erklärung des Begriffs im Glossar, Seite 229.

5.2. KOMPONENTEN-ENTWICKLUNG 135

der bereits angesprochene Umstand, dass dieselben Daten in verschiedenen
Komponenten benötigt werden und damit jede an einem Datenaustausch betei-
ligte Komponente entsprechende Schnittstellen zum Datenaustausch mit den
anderen Komponenten zur Verfügung stellen müsste. Ein weiterer Grund gegen
die dezentrale Datenhaltung ist der hohe Aufwand, der mit einer Implementie-
rung der Funktionen zur Datenverwaltung verbunden ist. Bei einer zentralen
Datenverwaltung benötigt jede Komponente hingegen nur eine Schnittstelle
zum Datenaustausch. Darüber hinaus fördert die zentrale Datenhaltung die Si-
cherstellung der Konsistenz der eingesetzten Daten und erlaubt die einfachere
Wiederverwendung von Datensätzen beim Austausch des integrierten Modells.
Gegen die zentrale Datenhaltung sprechen evtl. notwendige Änderungen in den
zugreifenden Komponenten und evtl. auftretende Geschwindigkeitseinbußen bei
der Datenübertragung.

Die Speicherung aller Daten in einem einheitlichen Format wäre aus ver- Format

waltungstechnischer Sicht und aus Gründen der Interoperabilität die beste Lö-
sung. Die Verwendung eines einheitlichen Formats ist aber nicht immer reali-
sierbar, da die Teilmodelle innerhalb eines integrierten Modells i. d. R. unter-
schiedliche Datenformate verwenden – sowohl zur persistenten Datenspeiche-
rung (z. B. in Form von Textdateien, Datenbanktabellen oder Binärdateien)
als auch zur internen Repräsentation von Daten (z. B. in ein- oder zweidimen-
sionalen Arrays, Containern oder Listen). Die gleichen Anmerkungen gelten
für Software-Werkzeuge von Drittanbietern, deren Zugriffsoperationen i. d. R.
überhaupt nicht geändert werden können, womit die Datenformate zwingend
vorgeschrieben sind.

Das SISA sollte demnach eine zentrale Datenhaltung unter Verwendung Folge-
rungeinheitlicher Datenformate anbieten, gleichzeitig aber offen sein gegenüber ei-

ner dezentralen Datenspeicherung unterschiedlicher (nicht vorbestimmter) Da-
tenformate. Aus Gründen der Interoperabilität und der Austauschbarkeit von
Daten sollte der Datenzugriff auf die zentral und dezentral gespeicherten Da-
ten transparent sein, d. h. die zugreifenden Komponenten sollten weder ‘wissen
müssen’ wo sich die angeforderten Daten befinden, noch in welchem Format
diese Daten gespeichert sind.

Aus diesen Überlegungen ergibt sich die in Abb. 5.25 (Seite 136) darge- Prinzip

stellte Strukturierung zur Datenhaltung und zum Datenzugriff: wenn Kom-
ponenten, wie beispielsweise die Simulationskomponente, Daten benötigen, so
greifen sie über die Datenzugriffskomponente auf die Daten in der Datenba-
sis zu. Die Transformationen von Datenformaten (vgl. die Ausführungen zum
Katalogmanager in Unterabschnitt 5.2.1, Seite 96) wird ebenfalls von dieser
Komponente angeboten. Innerhalb der Datenbasis sollten möglichst alle Daten
im Datenbanksystem gespeichert sein. Zur Verwaltung der Daten innerhalb des
Datenbanksystems bietet die Komponente, die z. B. durch ein eigenständiges
Datenbank-Managementsystem realisiert werden kann, entsprechende Funktio-

136 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

nen an. Daten, die sich aus technischen Gründen nicht im Datenbanksystem
integrieren lassen, werden ebenfalls von der Datenzugriffskomponente zur Ver-
fügung gestellt. Die Informationen, die für einen Zugriff auf die Daten not-
wendig sind, werden vom Katalogmanager zur Verfügung gestellt. Lassen sich
die Operationen zum Datenzugriff innerhalb einer Komponente (z. B. in einem
Teilmodell) nicht ändern, kann sie – an der Datenzugriffskomponente vorbei
– direkt auf die Daten zugreifen. Die Integration dieser Daten geschieht dann
lediglich über die zugehörigen und im Katalogmanager verwalteten Metadaten.

Datenzugriffskomponente

Datenbasis
MetadatenDaten

Datenbank-
system

Simulationssystem Katalog-
Manager

Abbildung 5.25: Komponenten zum Datenzugriff und zur Datenhaltung (Da-
tenbanksystem). Erklärungen finden sich im Text.

Das Datenbanksystem ist damit für die Verwaltung und persistente Speiche-Verant-
wortlich-
keiten

rung von Daten verantwortlich. Die Datenzugriffskomponente ist zuständig für
die transparente Bereitstellung von Daten. Die Datenbasis ist keine Kompo-
nente im eigentlichen Sinne; sie kann als eine Ansammlung von Daten gesehen
werden.

Das Datenbanksystem trägt somit zur Datenintegration (/Z70/) und Ergeb-SISA-
Ziele nisbereitstellung (/Z90/) bei. Die der Datenzugriffskomponente zugeordneten

Dienste zur Transformation von Daten können nicht nur von den Simulations-
modellen zur Laufzeit verwendet werden: der Datenimport (/F150/) und Da-
tenexport (/F170/) kann ebenfalls über diese Komponente abgewickelt werden.
Sofern die Komponente auch Dienste zur Transformation der Daten in For-
mate bereitstellt, die einfach zur Visualisierung benutzt werden können (z. B.
die Abbildung von Rasterdaten in Bilder), wird damit ebenfalls das Ziel der
Ergebnisbereitstellung unterstützt (/Z40/ und /F160/). Darüber hinaus tra-
gen beide Komponenten in hohem Maße zu den geforderten nicht-funktionalen
Anforderungen der Interoperabilität (/ZN10/) und Austauschbarkeit (/ZN40/)
bei.

5.2. KOMPONENTEN-ENTWICKLUNG 137

5.2.6.2 Dienst-Spezifikation

Datenbanksystem

In Anlehnung an die vom OpenGIS-Konsortiums vorgeschlagenen und bereits
im Unterabschnitt des Katalogmanagers aufgeführten primären Funktionen
zum Datenzugriff (vgl. Tab. 5.2, Seite 103), enthält die Schnittstelle des Da-
tenbanksystems (IDBSystem) Operationen, um neue Datensätze zu erzeugen
(addDataset), abzufragen (retrieve), zu modifizieren (modify) und zu entfer-
nen (removeDataset). Um einen gleichzeitigen Zugriff mehrerer Komponenten
(oder Teilmodelle) auf die Datensätze zu erlauben, werden die in Nebert (2002)
aufgeführten Funktionen zur Abfrage des Zugriffsstatus (check/modify/get-
DatabaseStatus) ebenfalls in die Schnittstelle aufgenommen (s. Abb. 5.27).
Damit ein Metadaten-Sammler auch Zugriff auf die Metadaten hat, die di-
rekt im Datenbanksystem gespeichert sind, bietet die Komponente über eine
zusätzliche Schnittstelle (IDBDiscovery) eine weiter Operation zur Abfrage von
Datensätzen (query).

Database System

+retrieveDataset()
+addDataset()
+removeDataset()
+modifyDataset()
+checkDatasetStatus()
+modifyDatasetStatus()
+getDatasetStatus()

«interface»
IDBSystem

IDBSystem

+query()

«interface»
IDBDiscovery

IDBDiscovery

Abbildung 5.26: Schnittstelle des Datenbanksystems. Erklärungen finden sich
im Text.

Datenzugriffskomponente

Die Datenzugriffskomponente kann als Middleware zwischen der Datenbasis
und den anderen Komponenten angesehen werden (vgl. Abb. 5.5, Seite 104).
Zur Gewährleistung eines transparenten Datenzugriffs bietet sie daher, Kott-
mann (1999c) folgend, die gleiche Schnittstelle zur Datenhaltung an wie das Da-
tenbanksystem (IDBSystem). Die Operation zur Format-Transformation eines
Datensatzes (transformDataset) wird in einer zusätzlichen Schnittstelle (IDa-
taTransform) angeboten (s. Abb. 5.27).

138 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

Data Access

+transformDataset()
+getFormatInfo()

«interface»
IDataTransform

IDBSystem

IDataTransform

Abbildung 5.27: Schnittstelle der Datenzugriffskomponente. Erklärungen finden
sich im Text.

5.2.6.3 Daten-Spezifikation

Datenhaltungskomponente

Das Datenmodell des Datenbanksystems ist abhängig von der Realisierung der
Komponente.

Datenzugriffskomponente

Die Datenzugriffskomponente benötigt zur Realisierung ihrer Schnittstelle zu-
mindest ein entsprechendes Attribut zur Beschreibung der unterstützten Trans-
formationsformate (formatInfo, s. Abb. 5.28).

Die unterstützten Datenformate sollten sich aus Gründen der Interopera-
bilität allerdings an Standards orientieren. Als wichtige, vielerorts eingesetzte
Standards sind die Implementierungs-Spezifikationen des OGC zu den Simple
Features zu betrachten (Kottmann, 1999e).

-formatInfo[*] : String

«DataType»
SISA_DataAccess

Abbildung 5.28: Datenmodell der Datenzugriffskomponente. Erklärung findet
sich im Text.

5.2.7 Geodatenverarbeitung

5.2.7.1 Komponenten-Abgrenzung

Die georäumliche Auflösung ist wichtig, da sie eine verbesserte Repräsentation
globaler dynamischer Prozesse (inkl. Rückkopplungen) erlaubt und detaillierte-

5.2. KOMPONENTEN-ENTWICKLUNG 139

re Informationen für Auswirkungs-Analysen ermöglicht (Alcamo u. a., 1998a).
Auf die Wichtigkeit georäumlicher Daten und die zunehmende Integration von
GIS bzw. GIS-Funktionalität in simulationsbasierte Systeme wurde bereits in
der Systemdefinition hingewiesen. Aktuelle Entwicklungen berücksichtigen die-
se Anforderung: OMS (s. Seite 31) durch die Bereitstellung eines GIS-Clients
zur Bearbeitung und Visualisierung georäumlicher Daten und das System von
Villa und Costanza (2000) durch eine GIS-Komponente als zentrales System-
Element.

Die Integration typischer GIS-Funktionen21 kann auf zwei verschiedene Ar- Integra-
tionten erfolgen: einerseits durch eine direkte Implementierung der geforderten

Funktionen durch das SISA und andererseits durch die Anbindung eines ei-
genständigen (evtl. kommerziellen) GIS.

Welche der beiden Möglichkeiten in einem System verwendet wird hängt Trans-
parenzu. a. von Komplexitäts- und Effizienzfragen ab. Der Aufwand zur Implemen-

tierung einer sehr komplexen Funktion innerhalb des SISA kann zu groß sein,
so dass nur eine Anbindung an ein eigenständiges GIS in Frage kommt. Zur
Steigerung der Ausführungsgeschwindigkeit kann es aber sinnvoll sein, einfache
Funktionen direkt im SISA zu realisieren. Welche der beiden Möglichkeiten in
einem System verwendet wird, sollte für den Aufrufer einer Funktion allerdings
irrelevant (und der Aufruf damit transparent) sein.

Zur Steigerung der Transparenz und Wiederverwendbarkeit sowie zur besse- Verant-
wortlich-
keit

ren Austauschbarkeit GIS-typischer Funktionen, sollten diese Funktionen über
eine weitere Indirektion in Form einer Komponente zur Geodaten-Verarbeitung
angeboten werden. Diese Komponente ist verantwortlich für die Verarbeitung
geographischer Daten und die Bereitstellung einer Schnittstelle zu eigenstän-
digen GIS. Sie liefert damit einen Beitrag zur Vorverarbeitung und Nachbear-
beitung von Simulationsmodell-Daten (/Z80/) sowie zu den nicht-funktionalen
Zielen der Interoperabilität (/ZN10/), Modifizierbarkeit (/ZN30)/) und Aus-
tauschbarkeit (/ZN40/).

Da im Umfeld eines SISA i. d. R. eigenständige GIS verwendet werden, be- Abgren-
zungschränkt sich die Verantwortlichkeit der Komponente bewusst auf das Anbieten

von Funktionen zur Datenverarbeitung und übernimmt keine weiteren GIS-
Aufgaben wie z. B. die Visualisierung oder Datenhaltung.

5.2.7.2 Dienst-Spezifikation

Die geographischen Komponenten von Modellen zum integrierten Assessment
arbeiten meist mit Rasterdaten (vgl. Bakkes u. a., 2000). Die Komponente der
Geodatenverarbeitung sollte daher zumindest typische Raster-GIS-Funktionen
zur Verfügung stellen. Zu den elementaren Operationen der Rasterdatenverar-
beitung gehören nach Bartelme (2000) die radiometrischen Transformationen

21Beispielsweise die Verschneidung von Datenschichten (Layers), die Pufferbildung und die
Reklassifizierung.

140 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

sowie arithmetische und logische Kombinationen von Rasterbildern. Bei radio-
metrischen Transformationen wird eine Transferfunktion auf die Werte (Grau-
werte) der Rasterzellen angewendet (z. B. eine Multiplikation aller Werte mit
einer Konstanten oder die Anwendung von Schwellwerten zur Unterdrückung
oder Hervorhebung bestimmter Zellen). Bei arithmetischen und logischen Ope-
rationen werden die Grauwerte von zwei Rasterbilder miteinander kombiniert
(z. B. addiert, multipliziert oder UND-verknüpft).

In der Dienste-Taxonomie der OpenGIS Service Architecture (ISO/DISISO/DIS
19119 19119) (vgl. Abschnitt 3.2.5, Seite 55; Percivall, 2002) werden die geographi-

schen Verarbeitungsdienste in Dienste eingeteilt, die sich auf den Raum, das
Thema, die Zeit oder die Metadaten beziehen.

Dienste, die den Raumbezug von Daten ändern, werden (wenn überhaupt)Raum

vornehmlich zur Datenvorverarbeitung benötigt – Beispiele sind die Koordina-
tentransformation, die Änderung der Größe von Rasterzellen oder die Raste-
rung von Vektordaten.

Zu den Diensten zur Änderung thematischer Aspekte gehören die oben an-Thema

gesprochenen elementaren Operationen, die in der Taxonomie unter dem Begriff
geographic calculation service22 zusammengefasst sind.

Die Dienste zur Verarbeitung von Geodaten, die zeitliche Aspekte berück-Zeit

sichtigen, umfassen sowohl Operationen zur Transformation zwischen zeitlichen
Referenzsystemen als auch Operationen, um aus Zeitreihen Stichproben zu neh-
men sowie Funktionen zur Datenselektion aufgrund von Zeitpunkten oder Zei-
tintervallen.

Zu den Diensten, die sich auf die Metadaten von geographischen Daten be-Meta-
daten ziehen, gehört der statistical calculation service. Dieser Dienst ist zur statisti-

schen Auswertung von Datensätzen gedacht, dessen Operationen beispielsweise
den Mittelwert, den Modalwert oder die Standardabweichung eines Datensat-
zes berechnen oder ein Histogramm erstellen. Ein solcher Dienst kann daher
als Ausgangspunkt für die Realisierung der gewünschten SISA-Funktion zur
statistischen Auswertung (/F180/) genutzt werden.

Die zur Taxonomie aufgeführten Dienste sollen laut ISO/DIS 19119 ledig-Auswahl

lich als Beispiele gesehen werden. Einige der angeführten Dienste können auch
im Rahmen eines SISA sehr gut eingesetzt werden (die oben genannten Diens-
te sind ebenfalls nur Beispiele). Eine Auswahl und Spezifikation der einzelnen
Dienste ist an dieser Stelle allerdings wenig sinnvoll, da sie vom konkret zu
realisierenden SISA abhängt. Die Schnittstellendefinition zeigt daher lediglich
die beiden Operationen zur Transformation (transformGrid) und Kombination
(combineGrid) von Rasterdatensätzen und eine Funktion zur statistischen Ana-
lyse eines Rasterdatensatzes (gridStatistics). Abbildung 5.29 fasst die Schnitt-
stellen und Operationen der Komponente zusammen.

22
”
Dienste zur Ableitung anwendungsorientierter, quantitativer Ergebnisse, die nicht von

den Rohdaten selbst verfügbar sind.“ Percivall (2002)

5.2. KOMPONENTEN-ENTWICKLUNG 141

Geographic Processing

+transformGrid()
+combineGrid()

«interface»
IGeoParameterCalculation

+gridStatistics()

«interface»
IStatisticalCalculatoin

IGeoParamter
Calculation

IStatistical
Calculation

Abbildung 5.29: Schnittstellen der Komponente zur Geodatenverarbeitung.

5.2.7.3 Daten-Spezifikation

Die Spezifikation der unterstützten Datenmodelle sollte sich an den eingesetz-
ten Klassen der Datenzugriffskomponente orientieren und wird an dieser Stelle
nicht weiter ausgebaut.

5.2.8 Datenverarbeitung

5.2.8.1 Komponenten-Abgrenzung

In einem SISA gibt es Funktionen, die unabhängig von einem konkreten Pro-
jekt realisiert und innerhalb verschiedener Systeme eingesetzt werden können;
die im vorigen Unterabschnitt (5.2.7, Seite 138) erwähnten Dienste zur Verar-
beitung von Geodaten sind wichtige Vertreter dieser Funktionen. Neben den
Funktionen zur Bearbeitung geographischer Daten gibt es weitere Funktionen,
die im Rahmen eines SISA oft benötigt werden. Als Beispiele seien die Erzeu-
gung von Zufallszahlen, die bei Simulationen oft eine wichtige Rolle spielt (s.
z. B. Bratley u. a., 1987; Grams, 1992; Steinhausen, 1994) oder die Interpolati-
on und numerische Integration von Werten (s. z. B. Bossel, 1994; Grams, 1992;
Liebl, 1995) genannt. Die Berechnung statistischer Daten (Minimal-, Maximal-,
Mittelwert, Standardabweichung etc.) fällt ebenfalls in die Kategorie oft benö-
tigter Funktionen (insbesondere zur Ergebnisanalyse).

Zusammen mit den Diensten zur Geodatenverarbeitung können derartige Shared
ServicesFunktionen als ‘shared processing services’ im Sinne der Dienste-Architektur

des OpenGIS (ISO/DIS 19119) angesehen werden (vgl. Unterabschnitt 3.2.5,
Seite 55), die verantwortlich für die Bereitstellung von allgemeinen, durch meh-
rere Nutzer verwendbaren Funktionen sind (s. Percivall, 2002). Die ”Shared
Domain Services“, zu denen auch die Geodienste gehören, können als ”toolbox“
oder ”building blocks of Applications“ angesehen werden (Kottman, 1999). In Verant-

wortlich-
keit

diesem Sinne ist die Datenverarbeitungskomponente, die im Folgenden auch
als ‘Utility’-Komponente bezeichnet wird, verantwortlich für die Bereitstel-

142 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

lung allgemeiner Datenverarbeitungsdienste. Die Komponente dient im SISA
der Unterstützung bei der Erzeugung von Simulationsergebnissen (/Z60/), der
Datenvorverarbeitung und Nachbearbeitung (/Z80/) und der Ergebnisanalyse
(/Z100/).

5.2.8.2 Dienst-Spezifikation

Die Funktionen der Komponente sind abhängig von den Anforderungen eines
konkret zu realisierenden SISA, so dass auf eine detaillierte Spezifikation an
dieser Stelle verzichtet wird. Die Schnittstelle der Komponente (IUtility) ent-
hält daher lediglich eine exemplarische Operation zur Berechnung statistischer
Größen.

Utility
IUtility

+calculateStatistics()

«interface»
IUtility

Abbildung 5.30: Schnittstelle zur allgemeinen Datenverarbeitung. Eine Spezi-
fikation der Schnittstelle (IUtility) findet an dieser Stelle nicht statt.

5.2.8.3 Daten-Spezifikation

Das Datenmodell der Dienste sollte sich – wie bereits das Modell der Kompo-
nente zur Geodatenverarbeitung – an den eingesetzten Klassen der Datenzu-
griffskomponente orientieren und, soweit möglich, Standards berücksichtigen.

5.2.9 Aufgabensteuerung

5.2.9.1 Komponenten-Abgrenzung

Die einzelnen Komponenten der SISA-Architektur stellen in ihren Schnittstel-
len grundsätzlich wieder verwendbare Operationen bereit. Die Operationen der
Komponente zur Geodatenverarbeitung stehen beispielsweise nicht nur dem Si-
mulationssystem zur Verfügung, sondern auch allen anderen Komponenten und
anderen Systemen. Bei der Vorverarbeitung und Nachbearbeitung von Daten
können SISA-Betreiber und Modellentwickler daher ebenfalls diese Dienste in
Anspruch nehmen. Um die Nutzung der Dienste zu vereinfachen, sollte das SI-
SA daher Funktionen zum Aufruf und zur Kontrolle von Diensten bereitstellen.

5.2. KOMPONENTEN-ENTWICKLUNG 143

Die Aufgabensteuerung ist somit verantwortlich für den programmgesteuerten Verant-
wortlich-
keit

Aufruf anderer Dienste des SISA.

5.2.9.2 Dienst-Spezifikation

Eine Vielzahl von Aufgaben wird nicht durch den Aufruf nur eines Dienstes zu Dienste-
kettelösen sein (zur Konvertierung eines Datensatzes kann beispielsweise eine räum-

liche und eine thematische Verarbeitung notwendig sein). Dienste sollten also
verkettet und als Ganzes aufgerufen werden können. In der ISO/DIS 19119
(Percivall, 2002) wird bei der Verkettung von Diensten (vgl. Seite 57, Unterab-
schnitt 3.2.5) unterschieden zwischen nutzerdefinierten Ketten, bei denen der
Nutzer den Arbeitsablauf innerhalb der Kette selbst definiert und kontrolliert,
Workflow-verwalteten Ketten, die vom Nutzer über einen Verwaltungsdienst
aufgerufen werden, der dann die einzelnen Dienste der Kette kontrolliert und
aggregierten Diensten, bei denen der Nutzer eine Kette als einfachen Dienst
aufruft und sich nicht darüber bewusst ist, dass es sich um eine Dienstekette
handelt.

Das von der ISO/DIS 19119 vorgestellte Konzept zur Verkettung von Diens-
ten sieht einen umfangreichen Dienstekatalog vor. In diesem Katalog sind bei-
spielsweise Dienste zur Definition, Kontrolle und zur Abfrage des Status von
Diensteketten zu finden, Dienste zur Anzeige/Verwaltung von Metadaten über
Dienste, Dienste zur Validierung von Diensteketten sowie Dienste zur Autorisie-
rung und Authentifizierung. Zur Verkettung von Diensten müssen die Dienste
selbst einige Voraussetzungen erfüllen: sie müssen genau definierte Schnittstel-
len aufweisen, müssen miteinander verbunden und mit Daten gekoppelt werden.

Über die reine Zusammensetzung von Diensten zu Diensteketten hinaus wä- Kon-
troll-
struktu-
ren

re es sinnvoll, wenn die Komponente einfache Steuerungsmechanismen (Kon-
trollstrukturen) bereitstellen würden. Beim Object Modeling System (vgl. Un-
terabschnitt 3.1.3, Seite 31) wird diese Funktionalität beispielsweise über die
Integration eines Skript-Interpreters realisiert.

Da die dynamische Zusammenstellung von Diensteketten ausdrücklich nicht abstrak-
te
Opera-
tionen

zu den Hauptaufgaben des SISA gehört (s. Systemdefinition, Seite 80), wird
an dieser Stelle keine detaillierte Spezifikation der Komponenten-Schnittstellen
vorgenommen. Die Umsetzung des gesamten Dienstekonzepts der ISO/DIS
19119 wird im Rahmen einer SISA-Entwicklung nur selten realisierbar sein.
Das Grundkonzept der dokumentierten Zusammenstellung vorhandener Diens-
te sollte dennoch in die Architektur einfließen. Der Komponente werden daher
zwei abstrakte, für eine konkrete Realisierung weiter auszuführende Operatio-
nen zugeordnet (s. Abb. 5.31, Seite 144): eine für die Definition von Aufgaben
(defineTask) und eine zur aggregierten Ausführung vordefinierter Aufgaben (in-
vokeTask).

144 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

Task Manager

+defineTask()
+invokeTask()

«interface»
ITaskManager

ITaskManager

Abbildung 5.31: Schnittstelle zur Aufgabensteuerung. Die Komponente stellt
lediglich zwei abstrakte Operationen bereit, um Aufgaben zu definieren (defi-
neTask) und durchzuführen (invokeTask).

5.2.9.3 Daten-Spezifikation

Die Metadaten für Dienste sollten in den Katalogmanager aufgenommen wer-
den.23 Informationen über die Verwendbarkeit von Diensten zur Bearbeitung
häufig wiederkehrender Funktionen sollten im Service Organizer Folder aufge-
nommen werden. Weitere Spezifikationen werden an dieser Stelle nicht vorge-
nommen.

5.2.10 Ergebnisanalyse

5.2.10.1 Komponenten-Abgrenzung

Das SISA soll, neben der Erzeugung neuer Simulationsergebnisse (/Z60/), auch
Funktionen vorhalten, die bei der Bereitstellung (/Z90/) und Analyse (/Z100/)
der Simulationsergebnisse helfen. Einige der vorgestellten Komponenten des
SISA unterstützen diese Ziele bereits: bei den Komponenten für die geogra-
phische bzw. allgemeine Datenverarbeitung wird beispielsweise eine Operation
zur Berechnung statistischer Werte vorgeschlagen (vgl. Unterabschnitt 5.2.7,
Seite 138 bzw. 5.2.8, Seite 141) und bei der Datenzugriffskomponente wird
die Transformation in Datenformate vorgeschlagen, die eine Visualisierung der
Daten erleichtert.

Aufbauend auf den Datenverarbeitungsdiensten und den Diensten der Da-Verant-
wortlich-
keit

tenzugriffskomponente ist die Analysekomponente verantwortlich für die Un-
terstützung des Modellbetreibers bei der Analyse von Simulationsergebnissen.

5.2.10.2 Dienst-Spezifikation

Alle vom Modellbetreiber zur Analyse eines Problems gewünschten Dienste und
Operationen sollten über diese Komponente angeboten werden. In Anlehnung

23ISO/DIS 19119 stellt hierzu ein eigenes Metadaten-Schema zur Verfügung.

5.2. KOMPONENTEN-ENTWICKLUNG 145

an die geforderten Funktionen zur Visualisierung (/F160/) und statistischen
Auswertung von Daten (/F180/) enthält die Schnittstelle der Analysekompo-
nente (IAnalysis) zunächst zwei entsprechende Operationen (s. Abb. 5.32). Da
die Operationen der Analysekomponente von den konkreten Anforderungen
eines SISA abhängig sind, werden über die beiden angegebenen Operationen
hinaus an dieser Stelle keine weiteren Operationen spezifiziert.

Um die Analyse von Daten zu erleichtern, sollten für alle Assessment-Daten Darstel-
lungfor-
men

des SISA (bzw. deren Formate/Klassen) entsprechende Visualisierungsopera-
tionen bereitgestellt werden, wobei die Operationen in der Lage sein sollten,
Daten in unterschiedlichen Formen (z. B. als Karte, Diagramm oder Tabelle)
darzustellen.

Analysis
IAnalysis

+viewDataset()
+viewStatistics()

«interface»
IAnalysis

Abbildung 5.32: Schnittstelle der Analysekomponente. Die Analysekomponente
enthält zwei exemplarische Operationen: eine zur Visualisierung von Datensät-
zen (viewDataset) und eine zur Visualisierung statistischer Werte eines Daten-
satzes (viewStatistics). Da die Komponente verantwortlich ist für die Bereit-
stellung von Simulationsergebnissen für den Modellbetreiber, beschränken sich
die Operationen auf die Visualisierung der entsprechenden Daten.

5.2.10.3 Daten-Spezifikation

Für die Analysekomponente werden keine gesonderten Daten-Spezifikationen
vorgenommen. Die von den Diensten unterstützten Datenmodelle sollten sich
allerdings an den eingesetzten Klassen der Datenzugriffskomponente orientie-
ren, um eine nahtlose Datenverarbeitung zu ermöglichen.

5.2.11 Modellanalyse

5.2.11.1 Komponenten-Abgrenzung

Die Wichtigkeit der Durchführung von Unsicherheits- und Sensitivitätsanaly- Modell-
analysesen für die verwendeten Simulationsmodelle wurde bereits in der Systemde-

finition (Kapitel 4, Seite 69) herausgestellt. In diesen Analysen werden ge-
zielte Veränderungen der Eingangsdaten der Simulationsmodelle vorgenom-

146 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

men und in Beziehung zur Änderung der Ausgangsgrößen gesetzt. Die Tren-
nung der Verantwortlichkeiten für die Erzeugung von Simulationsergebnissen
(Simulationsmodell-Komponente) und die Verwaltung bzw. Bereitstellung von
Modelleingabedaten (Simulationslaufmanager-Komponente) erlaubt eine einfa-
che Änderung der Eingabedaten (z. B. die Änderung von Modellparametern).
Diese Änderungen sollten von einer separaten Komponente, der Modellanalyse-
Komponente, durchgeführt werden. Die Modellanalyse-Komponente ist damitVerant-

wortlich-
keit

verantwortlich für die Unterstützung bei der Analyse des Simulationssystems,
insbesondere bei der Durchführung von Sensitivitäts- und Unsicherheitsanaly-
sen.

5.2.11.2 Dienst-Spezifikation

Die Modellumweltgrößen sowie die Parameterwerte von Modellen könnenUn-
sicher-
heiten

i. d. R. nicht genau angegeben werden. Die Unsicherheiten dieser Werte müs-
sen daher stets berücksichtigt werden. Im Zusammenhang mit den Eingabe-
daten eines Modells können Unsicherheiten zwei Ursachen haben: Zum einen
Unsicherheiten bei den Messungen und zum anderen inhärente stochastische
Schwankungen bei den gemessenen Werten. Diese Unsicherheiten können z. B.
berücksichtigt werden, indem die Eingabewerte zufällig im Rahmen der Unsi-
cherheit des Parameters verändert werden (s. z. B. Clark u. a., 1975).

Das Simulationsmodell bekommt seine Eingabedaten von der Datenzugriffs-gezielte
Wert-
ände-
rungen

komponente. Zur Analyse der Sensitivität und Unsicherheit sind die Einga-
bedaten allerdings gezielt zu verändern. Diese Veränderungen könnten direkt
innerhalb des Simulationssystems vorgenommen werden. Hierzu müsste das Si-
mulationssystem entsprechende Methoden bereitstellen und die Eingabedaten
dann gezielt (z. B. über interne Faktoren) manipulieren. Ein anderer Weg ist
die Veränderung der Eingabedaten bevor sie dem Simulationssystem übermit-
telt werden. Diese Art der Veränderung von Eingabewerten hat den Vorteil,
dass die Modelle selbst keine entsprechenden Vorkehrungen zur Manipulation
der Daten treffen müssen. Da die Wahl der zu verändernden Parameter und
die Kombinationen bei der gleichzeitigen Veränderung mehrerer Parameter ei-
ne nicht-triviale Aufgabe ist, sollte diese Verantwortlichkeit in eine separate
Komponente gelegt werden.

Um ihre Aufgabe der Manipulation von Eingangsdaten erfüllen zu können,Zwi-
schen-
schicht

befindet sich die Modellanalyse-Komponente als Schicht zwischen Simulations-
system und Datenzugriffskomponente (s. Abb. 5.33). Alle Daten, die das Simu-
lationssystem während eines Simulationslaufes (Analyselaufes) benötigt, wer-
den von der Modellanalyse-Komponente zur Verfügung gestellt; ein direkter Zu-
griff des Simulationssystems auf die Datenzugriffskomponente findet während
eines solchen Analyselaufes nicht statt. Auf diese Weise können alle Eingabe-
daten vor der Weitergabe an das Simulationssystem gezielt verändert werden.

5.2. KOMPONENTEN-ENTWICKLUNG 147

Die zur Modellanalyse benötigten Ausgabedaten des Simulationssystems gehen
ebenfalls den Weg über die Modellanalyse-Komponente.

Datenzugriffskomponente

Modell-
analyse

Simulationssystem

Abbildung 5.33: Prinzip der Modellanalyse. Die Modellanalyse-Komponente
wird als Schicht zwischen das Simulationssystem und die Datenzugriffskompo-
nente gelegt. Alle Modelleingabedaten und Modellausgabedaten passieren die
Modellanalyse-Komponente und können auf diese Weise verändert und ausge-
wertet werden.

Für eine Modellanalyse sind i. d. R. eine ganze Reihe an Simulationsläufen
durchzuführen. Die grundlegenden Einstellungen für die Simulationsläufe sind
wiederum über eine Simulationslauf-Spezifikation, also über den Simulations-
laufmanager, festzulegen. Die speziell für eine Modellanalyse benötigten Para-
meter (z. B. die maximale Veränderung von Eingabedaten) sind direkt von der
Modellanalyse-Komponente vorzuhalten.

Die Modellanalyse-Komponente muss verschiedene Schnittstellen implemen- Schnitt-
stellentieren. Da der Datenzugriff für das Simulationssystem transparent sein soll-

te, muss die Modellanalyse-Komponente zunächst die gleichen Schnittstellen
bereitstellen wie die Datenzugriffskomponente (IRepositor und IDataAccess).
Darüber hinaus muss sie eine Schnittstelle bereitstellen, die die Analyseopera-
tionen – zumindest eine abstrakte Operation zum Start der Analyse (analyse)
– aufnimmt (ISimModelAnalysis). Die Schnittstellen der Komponente sind in
Abb. 5.34 (Seite 148) zusammengefasst.

5.2.11.3 Daten-Spezifikation

Die für die Durchführung von Modellanalysen notwendigen Daten hängen von
den gewünschten Analysemethoden ab und können daher an dieser Stelle nicht
spezifiziert werden. Als Ausgangsbasis kann die in Abb. 5.35 dargestellte Klasse
(SISA ModelAnalysis) dienen, die neben dem Simulationslauf-Namen eine Liste
von Datensatzänderungen enthält. Die Änderungen können über die Angabe

148 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

Model Analysis

+analyse()

«interface»
ISimModAnalysis

ISimModAnalysis

IDBSystem
IDataTransform

Abbildung 5.34: Schnittstellen zur Modellanalyse. Neben den Schnittstellen,
die für einen transparenten Datenzugriff notwendig sind, bietet die Kompo-
nente eine Modellanalyse-Schnittstelle zur Aufnahme der eigentlichen Analyse-
Operationen. Die Spezifikation der Schnittstellen IRepository und IDataTrans-
form finden sich in den in Abb. 5.26 (Seite 137) und 5.27 (Seite 138).

des Datensatzes und die minimale und maximale Abweichung der Werte des
Datensatzes (Klasse SISA DatasetChange) spezifiziert werden24.

-simulationRun[1] : SISA_URN
-datasetChange[1..*] : SISA_DatasetChange

«DataType»
SISA_ModelAnalysis

-dataSet[1] : SISA_URN
-changeMin[1]
-changeMax[1]

«DataType»
SISA_DatasetChange

Abbildung 5.35: Einfaches Datenmodell zur Modellanalyse.

5.3 Gesamtarchitektur

Dieser Abschnitt liefert eine zusammenfassende Darstellung der entwickelten
SISA-Architektur. Hierzu werden in Unterabschnitt 5.3.1 zunächst die stati-
schen Aspekte der Architektur in Form eines Komponenten-Diagramms dar-
gestellt und erklärt. Der anschließende Unterabschnitt (5.3.2, Seite 154) be-
schreibt die wichtigsten dynamischen Aspekte über Sequenzdiagramme.

24Auf die Angabe eines Datentyps für die Abweichungsangaben wird verzichtet, da hier
sowohl Absolutwerte unterschiedlicher Typen als auch andere Datensätze vorgesehen werden
könnten.

5.3. GESAMTARCHITEKTUR 149

5.3.1 Komponenten

Die in diesem Kapitel entwickelte Gesamtarchitektur des SISA besteht aus ins-
gesamt zwölf Komponenten – den Client nicht mitgezählt. Abbildung 5.36 zeigt
die Komponenten und ihre gegenseitigen Abhängigkeiten als Komponentendia-
gramm. Die Schnittstellen und Verantwortlichkeiten jeder Komponente werden
– wenn notwendig, ergänzt durch Anmerkungen über vorgeschlagene Daten-
strukturen – im Folgenden zusammenfassend erklärt (ausführlichere Erläute-
rungen finden sich in den entsprechenden Unterabschnitten der Komponenten-
Entwicklung ab Seite 96).

Die Dokumentationskomponente (Documentation) ist verantwortlich für die Docu-
menta-
tion

Dokumentation und Verwaltung grundlegender Hintergrundinformationen über
durchgeführte bzw. in der Durchführung befindliche Assessments. Zu den Hin-
tergrundinformationen gehören Angaben über durchgeführte Projekte und Stu-
dien, beteiligte Personen und Organisationen, durchgeführte Simulationsläufe
und verwendete Szenarien. Neben diesen Informationen stellt die Dokumenta-
tionskomponente auch ein Glossar bereit sowie einen Katalog, in dem Arbeits-
schritte erklärt werden können, die häufig mit dem SISA durchgeführt werden
(der so genannte ‘Service Organizer Folder’). Ein Katalog, in dem die Nutzer
des SISA nicht weiter spezifizierte Anmerkungen eintragen können, ist ebenfalls
in dieser Komponente angesiedelt. Die Dokumentationskomponente bietet zwei
Schnittstellen an: eine zur Verwaltung der internen Kataloge (IDocManager)
und eine zur Abfrage der Kataloge nach bestimmten Kriterien (IDocDiscove-
ry). Die Dokumentationskomponente enthält projektbezogenen Informationen
über Ressourcen vom Katalogmanager und ist somit von dieser Komponente
abhängig. Benutzt wird die Komponente lediglich vom Client.

Der Katalogmanager (Catalog Manager) ist für die Verwaltung und Be- Catalog
Managerreitstellung von Metadaten über SISA-Ressourcen verantwortlich. Die Daten-

struktur zur Speicherung von Metadaten orientiert sich an Standards: Grund-
lage für alle Ressourcenbeschreibungen ist der Dublin Core Metadata Element
Set (DCMES) (ISO, 2003), dessen 15 Elemente mit relativ wenig Aufwand für
jede Ressource ausgefüllt werden können. Detaillierte Beschreibungen zu Geo-
daten sollten sich am ISO-Standard 19115 (ISO, 2000) orientieren, genaue-
re Angaben zu Simulationsmodellen am Content Standard for Computational
Models (ADEPT, 2001). Die Schnittstellen richten nach den Catalog Services
des OpenGIS-Konsortiums und bieten Operationen zur Verwaltung und Abfra-
ge von Katalogen (durch die Schnittstellen ICatManager und ICatDiscovery)
sowie zur Abfrage von Zugriffsinformationen und zur Generierung eindeuti-
ger Ressourcen-Namen (Schnittstelle ICatAccess). Der Katalogmanager wird
sowohl vom Client benutzt als auch von der Dokumentations- und der Daten-
zugriffskomponente. Der Katalogmanager selbst ist unabhängig von anderen
Komponenten.

150 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

Der Metadaten-Sammler (Metadata Harvester) ist verantwortlich für dieMeta-
data
Har-
vester

Durchsuchung eines Rechners (Hosts) nach Dateien mit Metadaten und die au-
tomatische Weitergabe der gefundenen Informationen an den Katalogmanager.
Die Datenstruktur des Metadaten-Sammlers orientiert sich an der Spezifikation
der Metadaten des Katalogmanagers. Über seine Schnittstelle (IMDHarvester)
bietet der Metadaten-Sammler die Möglichkeit, die Sammlung von Metadaten
zu starten und die gefundenen Informationen an den Katalogmanager weiterzu-
leiten. Um seine Aufgabe zu erfüllen, benötigt der Metadaten-Sammler Zugriff
auf die Dateien des zu durchsuchenden Rechners. Für die Übermittlung der
Metadaten greift er auf den Katalogmanager zu. Der Aufruf der Operationen
kann durch den Client erfolgen oder in regelmäßigen Abständen durch einen
entsprechenden Prozess.

Das Paket der Datensätze (Datasets) ist eine lose, nicht direkt durch dasDatasets

SISA verwaltete Sammlung von Dateien und bietet keine über die SISA-Archi-
tektur definierten Schnittstellen an. Die Datenstrukturen sind ebenfalls nicht
vorbestimmt. Daten, die für das SISA verwendet werden sollen und nicht im
Datenbanksystem (s. u.) gespeichert werden, sollten aus Gründen der Inter-
operabilität etablierten Daten-Standards folgen. Zu jedem Datensatz sollte ein
entsprechender Metadatensatz existieren. Bei der Verwendung neuer, für das
SISA unbekannter Formate sollten der Datenzugriffskomponente entsprechende
Operationen zum lesenden und schreibenden Zugriff auf Dateien dieses Formats
hinzugefügt werden.

Der Weg der direkten Datenintegration in das SISA geht über das Daten-Data-
Base
System

banksystem (Database System). Das Datenbanksystem ist verantwortlich für
die verwaltete Speicherung von Assessment-Daten (vgl. ‘System-Daten’, Un-
terkapitel 4.2.5, Seite 84). Zur Verwaltung der Daten bietet die Komponente
in ihrer Schnittstelle (IDBSystem) Operationen zum Einfügen, Modifizieren,
Abfragen und Löschen von Datensätzen. Die Komponente kann über ein eigen-
ständiges Datenbank-Managementsystem oder einen Geodaten-Server realisiert
werden.

Die Datenzugriffskomponente (Data Access) ist für den lesenden und schrei-Data
Access benden Zugriff auf Daten verantwortlich sowie für die Transformation zwischen

verschiedenen Datenformaten. Die Komponente erlaubt einen transparenten
Zugriff sowohl auf die Daten im Datenbanksystem als auch auf die Daten,
die in den Dateien der Datenbasis gespeichert sind. Um einen transparenten
Datenzugriff zu gewährleisten, muss die Datenzugriffskomponente die gleiche
Schnittstelle implementieren wie das Datenbanksystem (IDBSystem). Werden
Daten in einem anderen als dem gespeicherten Format angefordert, übernimmt
die Komponente automatisch die Umformatierung. Für die automatische Um-
wandlung sind entsprechende Transformationsfunktionen in der Komponente
bereitzustellen. Die zur Transformation von Formaten verwendeten Funktio-
nen sollten über eine gesonderte Schnittstelle (IDataTransform) auch expli-

5.3. GESAMTARCHITEKTUR 151

S
im

u
la

tio
n

 S
ys

te
m

C
at

al
o

g
 M

an
ag

er
IC

at
M

an
ag

er
IC

at
A

cc
es

s

IC
at

D
is

co
ve

ry
IC

at
S

er
vi

ce

M
et

ad
at

a
H

ar
ve

st
er

D
at

a
A

cc
es

s

D
at

ab
as

e
S

ys
te

m

D
at

as
et

s

C
lie

n
t

us
es

us
es

A
na

ly
si

s
D

o
cu

m
en

ta
ti

o
n

ID
B

S
ys

te
m

IM
D

H
ar

ve
st

er

ID
oc

M
an

ag
er

ID
oc

D
is

co
ve

ry

IS
im

R
es

ul
t

A
cc

es
s

IS
im

C
on

tr
ol

IA
na

ly
si

s

ID
B

S
ys

te
m

ID
at

aT
ra

ns
fo

rm

S
im

u
la

ti
o

n
-R

u
n

 M
an

ag
er

IS
im

R
un

M
an

ag
er

IS
im

R
un

S
pe

ci
fic

at
io

n

M
o

d
el

 A
n

al
ys

is
ID

B
S

ys
te

m

IS
im

M
od

A
na

ly
si

s

ID
at

aT
ra

ns
fo

rm

U
ti

lit
y

G
eo

g
ra

p
h

ic
 P

ro
ce

ss
in

g

T
as

k
M

an
ag

er

P
ro

ce
ss

in
g

 S
er

vi
ce

s

IT
as

kM
an

ag
er

IU
til

ity

IG
eo

P
ar

am
te

r
C

al
cu

la
tio

n
IS

ta
tis

tic
al

C
al

cu
la

tio
n

«S
ys

te
m

»
D

B
M

S
«S

ys
te

m
»

G
IS

ca
n

ac
ce

ss

ca
n

ac
ce

ss

ID
B

D
is

co
ve

ry

Abbildung 5.36: Komponenten der Architektur. Pfeile, die direkt auf Kompo-
nenten verweisen und nicht auf einzelne Schnittstellen, drücken die Abhängig-
keit von allen Schnittstellen der entsprechenden Komponente aus. Erklärungen
zu den Komponenten finden sich im Text.

152 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

zit aufrufbar sein (z. B. um Formate beim Datenaustausch unter Teilmodellen
transferieren zu können). Der Zugriff auf Daten sollte stets über einen eindeu-
tigen Bezeichner erfolgen; notwendige Zugriffsinformationen erhält die Daten-
zugriffskomponente über den Katalogmanager (genauer: über die Schnittstelle
ICatAccess). Werden Daten geschrieben, sollten der Datenzugriffskomponente
die entsprechenden Metadaten direkt mitgegeben werden, um eine konsistente
Dokumentation der Datensätze zu gewährleisten. Beim Zugriff auf Daten aus
dem Paket der Datensätze benötigt die Datenzugriffskomponente entsprechen-
de Rechte, außerdem ist die Komponente zur Erfüllung ihrer Aufgaben vom
Datenbanksystem abhängig. Alle Komponenten, die Zugriff auf die Assessment-
Daten benötigen, sollten zur Sicherstellung der Datenintegrität und Nachvoll-
ziehbarkeit die Schnittstellen der Datenzugriffskomponente verwenden.

Der Simulationslaufmanager (Simulation Run Manager) ist verantwortlichSimula-
tion-Run
Manager

für die Verwaltung und Bereitstellung von Simulationslauf-Spezifikationen (Ein-
stellungen, durch die sich ein Simulationslauf von einem anderen unterscheidet).
Der Simulationslaufmanager bietet zwei Schnittstellen an: die erste (ISimRun-
Manager) dient der Verwaltung von Simulationslauf-Spezifikationen, die zweite
(ISimRunSpecification) der Abfrage einzelner Einstellungen und der Überprü-
fung, ob alle für ein Modell benötigten Spezifikationen vorhanden sind. Da Si-
mulationsläufe (abstrakte) SISA-Ressourcen darstellen und daher durch einen
eindeutigen Bezeichner zu repräsentieren sind, ist der Simulationslaufmanager
zur Erfüllung seiner Aufgaben vom Katalogmanager (der für die Vergabe der
Bezeichner zuständig ist) abhängig. Darüber hinaus gehören zu den Einstellun-
gen für Simulationsmodelle, die ebenfalls über ihre eindeutigen Bezeichner zu
referenzieren sind, auch Verweise auf Datensätze, deren Auswahl ebenfalls mit
Hilfe der Dienste des Katalogmanagers erleichtert werden kann.

Die Simulationssystem-Komponente (Simulation System) ist verantwortlichSimula-
tions-
system

für die Berechnung, Speicherung und Weitergabe von Simulationsergebnissen
und stellt hierzu zwei Schnittstellen zur Verfügung: eine Schnittstelle (ISim-
Control), über die das Simulationssystem initialisiert wird und Simulationsläu-
fe gestartet werden können und eine weitere Schnittstelle (ISimResultAccess),
über die Simulationsergebnisse direkt abgefragt werden können. Die Möglich-
keit auf – auch bereits gespeicherte – Simulationsergebnisse direkt über die
Simulationssystem-Komponente zugreifen zu können, erhöht die Interoperabi-
lität und Wiederverwendbarkeit der Modelle und Daten. Zur Erfüllung ihrer
Aufgaben ist die Komponente von der Datenzugriffskomponente abhängig. Bei
der Erstellung neuer Simulationsergebnisse benutzt die Komponente darüber
hinaus die Dienste des Simulationslaufmanagers und Dienste aus dem Paket
der Verarbeitungsdienste. Im Zuge von Modellanalysen wird der Datenzugriff
über die Modellanalyse-Komponente abgewickelt.

Die Komponente zur Modellanalyse (Model Analysis) ist verantwortlich fürModel
Analysis die Unterstützung bei der Analyse des Simulationssystems, insbesondere bei

5.3. GESAMTARCHITEKTUR 153

der Durchführung von Sensitivitäts- und Unsicherheitsanalysen. Beim Start
einer Modellanalyse (über die Schnittstelle ISimModAnalysis) übernimmt die
Modellanalyse-Komponente die Kontrolle über die Durchführung von Simulati-
onsläufen. Außerdem schaltet sie sich zwischen das Simulationssystem und die
Datenzugriffskomponente, so dass alle Modelleingabedaten und Modellausga-
bedaten vor der Weitergabe kontrolliert und gezielt verändert werden können.
Um den Datenzugriff für das Simulationsmodell transparent zu halten, muss die
Modellanalyse-Komponente über ihre eigene Schnittstelle hinaus die gleichen
Schnittstellen implementieren wie die Datenzugriffskomponente (IDBSystem
und IDataTransform).

Die Analyse-Komponente unterstützt den Modellbetreiber und Modellent- Analysis

wickler bei der Analyse von Simulationsergebnissen. Zu den Operationen, die
diese Komponente (über die Schnittstelle IAnalysis) anbietet, sollte auf jeden
Fall eine zur Visualisierung von Datensätzen bereitgestellt werden. Für weiter-
gehende Analysen kann die Komponente auf das Paket der Verarbeitungsdiens-
te zurückgreifen. Abhängig ist die Analyse-Komponente von der Datenzugriffs-
komponente, die die zu analysierenden Daten bereitstellt, und vom Katalogma-
nager, der umfassende Ressourceninformationen liefert (z. B. über die Formate
der Datensätze, die analysiert werden). In der Analysekomponente können die
Operationen implementiert werden, die für ein konkretes SISA gewünscht sind
– also Dienste, die im Sinne der OGC-Dienstearchitektur (ISO/DIS 19119) zu
den ‘user processing services’ zählen.

Die im Paket der Verarbeitungsdienste (Processing Services) zusammen- Proces-
sing
Services

gefassten Komponenten bieten allgemeine Verarbeitungsdienste, die von den
anderen Komponenten, unabhängig von einem speziellen SISA, verwendet wer-
den können. Das Paket beinhaltet die Komponente zur Aufgabensteuerung
(Task Manager) sowie die Komponenten zur (Geo-) Datenverarbeitung (Geo-
graphic Processing u. Utility). Die Komponente der Geodatenverarbeitung ist Geo Pro-

cessingverantwortlich für die Bereitstellung von Diensten zur Verarbeitung geographi-
scher Daten sowie den transparenten Zugriff auf die Funktionen eigenständiger
Geo-Informationssysteme. Die von ihr angebotenen Schnittstellen (IGeoPara-
meterCalculation und IStatisticalCalculation) sollten zumindest Operationen
zur Transformation, Kombination und statistischen Auswertung von Rasterda-
ten bereitstellen. Weitere im Rahmen eines SISA nützliche Dienste, die Funk- Utility

tionen ohne georäumlichen Bezug anbieten, werden in der Komponente zur
allgemeinen Datenverarbeitung (Utility) angeboten. Die Dienste dieser Kompo-
nente werden nicht weiter spezifiziert. Die Komponente der Aufgabensteuerung Task

Managerist verantwortlich für die Bereitstellung von Diensten zum programmgesteuer-
ten Aufruf anderer Dienste. Sie sollte über ihre Schnittstelle (ITaskManager)
Operationen zur Definition und zum Ausführen von Diensten und Diensteket-
ten bereitstellen.

154 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

Die Dienste der Komponenten zur Geodatenverarbeitung und zur allgemei-Wieder-
ver-
wendung

nen Datenverarbeitung können als ‘shared processing services’ im Sinne der
OGC-Dienstearchitektur (ISO/DIS 19119) aufgefasst werden, also als Dienste,
die nicht nur für ein spezielles SISA, sondern bereichsüberschreitend (beispiels-
weise für andere SISA oder zur Erstellung von Hilfsprogrammen) eingesetzt
werden können.

5.3.2 Interaktionen

Die Interaktionen der Komponenten werden im Folgenden über Sequenzdia-
gramme verdeutlicht. Die als ‘Client’ bezeichneten Objekte in den Sequenzdia-
grammen können sowohl menschliche Nutzer (Modellbetreiber, Modellentwick-
ler etc.) als auch andere Software-Systeme (z. B. ein den Metadaten-Sammler
anstoßender Hintergrundprozess) sein.

5.3.2.1 Simulationslauf

Das Sequenzdiagramm in Abb. 5.37 zeigt die Interaktionen der Komponenten
bei der Erzeugung neuer Simulationsergebnisse (Testszenario /T60/).

Der Client startet die Initialisierung des Simulationssystems (Simulationinit

System) für einen – zuvor durch eine Simulationslauf-Spezifikation definierten
– Simulationslauf unter Angabe des eindeutigen Simulationslauf-Bezeichners
über die Operation init().25 Während der Initialisierungsphase werden grund-
legende Einstellungen des Systems vorgenommen. Die von den Simulationsmo-
dellen benötigten simulationslaufspezifischen Einstellungen bezieht das Simu-
lationssystem über die Operation getSetting() des Simulationslaufmanagers.

Nachdem die Initialisierung abgeschlossen ist, startet der Client den Simula-run

tionslauf über die Operation run(). Die im Laufe der Simulation benötigten Da-
tensätze erhält das Simulationssystem von der Datenzugriffskomponente (Data
Access). Hierzu nutzt das Simulationssystem die Operation retrieveDataset().retrieve

Der angeforderte Datensatz sollte über einen eindeutigen Bezeichner referen-
ziert werden.

Die Datenzugriffskomponente selbst benötigt für den Zugriff auf den Daten-access
info satz zusätzliche Informationen über den angeforderten Datensatz (z. B. einen

Datenbank-Namen oder das Format und den Speicherort einer Datei). Die-
se Informationen erhält die Datenzugriffskomponente – unter Verwendung des
eindeutigen Datensatz-Bezeichners – über die Operation getAccessInfo() des
Katalogmanagers (Catalog Manager).

Die Datenzugriffskomponente bezieht den angeforderten Datensatz durchdatabase
system den Aufruf der Operation retrieveDataset() des Datenbanksystems (Database

System) und gibt ihn dann direkt weiter an das Simulationssystem.
25Ein noch nicht initialisiertes Simulationssystem kann beim Eintreffen der Nachricht run

die Initialisierung auch selbständig vornehmen.

5.3. GESAMTARCHITEKTUR 155

:Client :Simulation System

run()

:Simulation-Run Manager

getSetting()

getSetting()

:Data Access

retrieveDataset()

:Catalog Manager

getAccessInfo()

:Database System

retrieveDataset()

getAccessInfo()

external data
transformData()

:Geographic Processing

anyService()

init()

retrieveDataset()

addDataset()

addDataset()

getDataAccessInfo()

anotherService()

GIS

Abbildung 5.37: Architektur-Dynamik bei der Erzeugung von Simulationser-
gebnissen. Erklärungen finden sich im Text.

156 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

Der zweite Aufruf von retrieveDataset() zeigt eine Aufruf-Sequenz für dendatasets

Fall, dass die Daten weder im angeforderten Format noch im Datenbanksystem
gespeichert sind. Nachdem die Datenzugriffskomponente durch getDataAccess-
Info() festgestellt hat, dass die Daten nicht im Datenbanksystem zur Verfü-
gung stehen, greift die Datenzugriffskomponente jetzt direkt auf den spezifi-
zierten Datensatz – der sich im Paket Datasets befindet – zu. Danach ruft dietrans-

form Datenzugriffskomponente die interne Operation transformData() auf, um den
Datensatz in das angeforderte Format umzuwandeln. Der Datensatz wird dem
Simulationssystem dann im angeforderten Format übergeben.

Benötigt das Simulationssystem im SISA verfügbare Dienste für die (Geo-)services

Datenverarbeitung, so ruft es die entsprechenden Dienste auf. Dieser Vorgang
wird durch den Aufruf der fiktiven Operation anyService() der Komponente
Geographic Processing verdeutlicht. Der Aufruf der (ebenfalls fiktiven) Ope-
ration anotherService() verdeutlicht die Transparenz beim Aufruf einer GIS-
Funktion: das Simulationssystem ruft die Operation der Komponente auf, die
diesen Aufruf allerdings zur Bearbeitung an ein eigenständiges GIS weiterleitet
und das Ergebnis anschließend zurückliefert – von der Weiterleitung erfährt der
Aufrufer (in diesem Fall das Simulationssystem) nichts.

Die Speicherung von Simulationsergebnissen erfolgt analog zum oben be-add
dataset schriebenen lesenden Zugriff: das Simulationssystem ruft die entsprechende

Zugriffs-Operation, also addDataset() auf. Daraufhin werden die für den Zugriff
notwendigen Informationen über getAccessInfo() bezogen und der Datensatz (in
diesem Fall) im Datenbanksystem ebenfalls über addDataset() gespeichert.

5.3.2.2 Metadaten-Sammlung

Die Integration von Metadaten in das System (Testszenario /T70/) geschieht
u. a. über den Metadaten-Sammler. Die Interaktionen der Komponenten, die
an der Sammlung von Metadaten beteiligt sind, werden über das Sequenzdia-
gramm in Abb. 5.38 verdeutlicht.

Die Daten, die für ein Assessment von Interesse sind, können sich auf unter-Bsp.:
2 Hosts schiedlichen Rechnern (Hosts) befinden. Um die Daten dem System bekannt zu

geben, ohne dass der Nutzer des Hosts explizit entsprechende Einträge im Ka-
talogmanager vornehmen muss, werden Metadaten-Sammler (Harvester) ein-
gesetzt. Auf jedem Rechner, der Daten für das SISA bereitstellt, sollte da-
her ein Metadaten-Sammler installiert sein26. Im Sequenzdiagramm in Abb.
5.38 sind zwei Hosts mit jeweils einem Harvester zu sehen (H1:Harvester und
H2:Harvester).

Wie in Beispiel (a) der Abb. 5.38 zu sehen ist, wird die Sammlung von Me-harvest

tadaten durch den Aufruf der Operation harvest() eines Metadaten-Sammlers

26Es ist auch möglich Metadaten über Rechnergrenzen hinweg zu sammeln; dies erfordert
allerdings entsprechende Zugriffsrechte auf lokale Speichermedien, die nicht immer gewährt
werden können.

5.3. GESAMTARCHITEKTUR 157

:Catalog ManagerH1:HarvesterC1:Client

Datasets H1

H2:Harvester

Datasets H2

:Repository

query()

updateCatalog()

updateCatalog()

Datasets H1

updateCatalog()

MD
Repository

C2:Client

harvest()

report()

harvest()

report()

setRepository()

harvest()

report()

queryRepository()

MD
Repository

(a)

(b)

(c)

(d)

Abbildung 5.38: Architektur-Dynamik bei der Sammlung von Metadaten. Er-
klärungen finden sich im Text.

158 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

(Harvester) gestartet. Der Metadaten-Sammler durchsucht darauf hin die loka-
len Dateien nach Metadaten und sammelt die gefundenen Metadaten intern.

Durch den Aufruf der Operation report() werden die gefundenen Metadatenreport

dem Katalogmanager übermittelt. Hierzu verwendet der Metadaten-Sammler
die Operation updateCatalog() des Katalogmanagers.

Die beschriebene Aufruf-Sequenz aus harvest() und report() wird für jedenharvest

Host durchlaufen, der Daten speichert, die für das SISA von Interesse sind.
Der Metadaten-Sammler auf dem zweiten Host (H2:Harvester) durchsuchtDaten-

bank-
system-
Suche

nicht nur die lokalen Dateien nach Metadaten: über die Operation query() des
Datenbanksystems (Database System) sucht und sammelt er auch Metadaten,
die sich evtl. im Datenbanksystem befinden. Beispiel (b) verdeutlicht die ent-
sprechenden Aufruf-Sequenzen.

Sofern die Metadaten für die Daten eines Hosts auch auf dem Host selber ge-internes
Reposi-
tory

sammelt zur Verfügung stehen sollen, ist dies dem Harvester vor der Sammlung
mitzuteilen. Wie in Beispiel (c) zu sehen ist, geschieht diese Mitteilung über
die Operation setRepository(). Nach der Sammlung der Metadaten schreibt
der Sammler ein eigenes (lokales) Repository. Auf ein lokales Repository kön-
nen dann auch andere Clients zugreifen (z. B. der Nutzer des Rechners, auf dem
das Repository gespeichert ist). Beispiel (d) zeigt den Aufruf der hierzu not-
wendigen Operation queryRepository() durch einen zweiten Client (C2:Client).

Der Aufruf zum Starten der Metadaten-Sammlung kann sowohl durch einenAktuali-
sierung menschlichen Nutzer als auch durch eine andere Software erfolgen. Um die Me-

tadaten aktuell zu halten, ist es ratsam, die Sammlung regelmäßig durchzu-
führen. Dies kann z. B. durch die Aufnahme des Aufrufs in einen regelmäßig
ablaufenden Betriebssystem-Prozess sichergestellt werden.

5.3.2.3 Modellanalyse

Abbildung 5.39 zeigt das Sequenzdiagramm für einen Analyselauf. Im Fall der
Modellanalyse schaltet sich die Modellanalyse-Komponente (Model Analysis)
zwischen das Simulationssystem (Simulation System) und die Datenzugriffs-
komponente (Data Access) und kann damit die lesenden und schreibenden Da-
tenzugriffe des Simulationssystems kontrollieren und manipulieren.

Eine Modellanalyse wird über die Operation analyse() der Modellanalyse-analyse

Komponente gestartet, die daraufhin die Kontrolle für Simulationsläufe über-
nimmt und zunächst das Simulationssystem über init() initialisiert. Nach der
Initialisierung startet die Modellanalyse-Komponente den (ersten) Simulations-
lauf.

Alle Datenzugriffe des Simulationssystems werden nun über die Modellana-Transpa-
renz lyse-Komponente abgewickelt. Diese Komponente bietet die gleichen Schnitt-

stellen zum Datenzugriff an wie die Datenzugriffskomponente, der Zugriff auf
die Daten bleibt daher für das Simulationssystem transparent und im Modell
selbst müssen keine Änderungen für den Analyselauf vorgenommen werden.

5.3. GESAMTARCHITEKTUR 159

:Model Analysis:Client :Simulation System

init()

run()

retrieveDataset()

:Data Access

retrieveDataset()

:Database System

retrieveDataset()

Processing Services

anyService()

anyService()

addDataset()

addDataset()

addDataset()

anyAnalysis()

init()

analyse()

run()

Abbildung 5.39: Architektur-Dynamik bei der Analyse eines Simulationssys-
tems. Erklärungen finden sich im Text.

160 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

Das Lesen und Schreiben von Datensätzen erfolgt – wie bereits zu Abb. 5.37
(Seite 155) erklärt – über die Operationen retrieveDataset() und addDataset().

Zur evtl. notwendigen Analyse oder gezielten Veränderung von Eingabeda-services

ten kann die Modellanalyse-Komponente, ebenso wie das Simulationssystem,
die allgemein verfügbaren Dienste (Processing Services) nutzen.

Nach einem Simulationslauf werden die Simulationsergebnisse ausgewertet,analysis

was durch den Aufruf der Operation anyAnalysis() angedeutet wird.
Für Sensitivitäts- und Unsicherheitsanalysen müssen eine Vielzahl von Si-

mulationsläufen durchgeführt werden. Bei jedem Simulationslauf werden die
Eingabedaten durch die Modellanalyse-Komponente gezielt und nach einem
bestimmten Verfahren geändert und danach die Ausgabedaten analysiert. Die
Sequenz ‘Initialisierung–Simulationsstart–Eingabedatenveränderung–Ausgabe-
datenanalyse’ wird so lange wiederholt, bis ein definiertes Abbruchkriterium
(z. B. die Anzahl durchgeführter Simulationen) erfüllt ist.

5.4 Fazit

Ziel dieses Kapitels war die Entwicklung einer Software-Architektur für einZiel

System zum integrierten simulationsbasierten Assessment (SISA), die als Aus-
gangsbasis für die Realisierung neuer Systeme herangezogen werden kann.

Den Rahmen für die Architektur-Entwicklung lieferten die in Kapitel 4Aus-
gangsba-
sis

(Seite 69) definierten allgemeinen Anforderungen an ein SISA. Grundlage für
die Abgrenzung der Architektur-Komponenten waren die in Kapitel 3 (Sei-
te 25) identifizierten Komponenten existierender Systeme sowie die Dienste-
Architektur des OpenGIS-Konsortiums (ISO/DIS 19119).

Zur Erfüllung der definierten Systemziele teilt die entwickelte ArchitekturErgeb-
nisse das Gesamtsystem eines SISA in insgesamt zwölf Komponenten.

Die in der Systemdefinition geforderte Verwaltung verschiedener Betriebs-
mittel (Ressourcen) liegt in der Verantwortung des so genannten Katalogma-
nagers, der Metadaten zu allen SISA-Ressourcen (vgl. Abb. 4.2, Seite 76) be-
reithält. Für die Bereitstellung weiterer Hintergrundinformationen, z. B. über
Projekte oder an einem Projekt beteiligte Personen, ist die Dokumentations-
komponente verantwortlich. Die Verantwortlichkeit für die Berechnung neu-
er Simulationsergebnisse wird der Simulationssystem-Komponente übertragen.
Diese Komponente konzentriert sich auf die Umsetzung des konzeptionellen Mo-
dells in ausführbaren Programmcode und nutzt zur Erfüllung ihrer Aufgabe die
Dienste weiterer Komponenten, insbesondere die Dienste der Datenzugriffskom-
ponente (um auf Datensätze zuzugreifen) und die des Simulationslaufmanagers
(um die für einen Simulationslauf notwendigen Einstellungen zu erfragen). Häu-
fig von Simulationsmodellen benötigte Funktionen zur Geodatenverarbeitung
sowie zur allgemeinen Datenverarbeitung werden über separate Komponenten
angeboten.

5.4. FAZIT 161

Die Einbettung des SISA in eine Software-Umgebung wird einerseits über
den Austausch persistenter Daten erreicht, für die die Datenzugriffskomponen-
te zuständig ist, und andererseits über die Möglichkeit der direkten Kopp-
lung einzelner SISA-Komponenten mit externen Programmen über Program-
mierschnittstellen. Die Komponente zur Geodatenverarbeitung ist beispiels-
weise verantwortlich für die Kopplung des SISA mit eigenständigen Geo-In-
formationssystemen (GIS), die Datenzugriffskomponente für die Anbindung
an externe Datenbanksysteme. Die in der Systemdefinition geforderte Inter-
operabilität mit solchen ‘externen’ Systemen (nicht-funktionale Anforderung
/NF10/) wird damit explizit berücksichtigt. Die Austauschbarkeit von Sys-
temteilen (/NF40/) sowie die Modifizierbarkeit (/NF30/) und Analysierbar-
keit (/NF20/) des Systems wird insbesondere durch die klare Trennung der
definierten Verantwortlichkeit der einzelnen Komponenten unterstützt. Der ho-
hen Anforderung an das Qualitätsmerkmal der Austauschbarkeit wird insbe-
sondere durch die Schnittstellendefinition der Simulationssystemkomponente
Rechnung getragen. Die ebenfalls als wichtiges Qualitätsmerkmal eines SI-
SA geforderte Transparenz, Nachvollziehbarkeit und Reproduzierbarkeit von
Assessment-Ergebnissen (/NF50/) wird durch das Zusammenwirken der Do-
kumentationskomponente, des Simulationslaufmanagers, des Katalogmanagers
und der Metadaten-Sammler sichergestellt.

Eine graphische Übersicht aller SISA-Komponenten sowie deren Verbindun- Über-
sichtgen mit den SISA-Zielen und -Funktionen findet sich in den Abbildungen 5.1

(Seite 97) und 5.2 (Seite 99). Die Übersicht der spezifizierten Datenstruktu-
ren und Schnittstellen ist im Anhang dokumentiert (Abbildung B.2, Seite 235
bzw. Abbildung B.3, Seite 236). Zum Abschluss des Kapitels folgt eine kurze
Beschreibung der zwölf Komponenten der SISA-Architektur.

Die zentrale Komponente des Simulationssystems kapselt die Teilmodelle Simula-
tions-
system

des Gesamtsystems und ist für die Berechnung neuer Simulationsergebnisse zu-
ständig. Zur Erhöhung der Integrierbarkeit des Simulationsmodells bzw. dessen
Teilmodelle, sollten diese in der Lage sein, zuvor berechnete Ergebnisse über
eine entsprechende Schnittstelle zur Verfügung zu stellen.

Um die Nachvollziehbarkeit und Reproduzierbarkeit der Simulationsergeb- Simula-
tions-
lauf-
Manager

nisse zu gewährleisten, werden alle für einen Simulationslauf benötigten Ein-
stellungen von einer separaten Komponente verwaltet: dem Simulationslauf-
manager. Er versorgt das Simulationssystem auf Anfrage mit den notwendigen
Informationen über Parametrisierungen, Optionen oder Eingangsdaten.

Der Ort der Speicherung von Eingangsdaten ändert sich in der Praxis von
Zeit zu Zeit (z. B. im Zuge der Erweiterung oder des Austausches eines Daten-
Servers). Um die Nachvollziehbarkeit und Reproduzierbarkeit von Ergebnis-
sen dennoch zu gewährleisten, wird dem Simulationslaufmanager nicht der Ort
(Pfad/Dateiname) der Speicherung eines Datensatzes angegeben, sondern ein
Ressourcen-Name, der den Datensatz eindeutig identifiziert.

162 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

Das Simulationssystem greift auf einen derart referenzierten Datensatz nichtDaten-
zugriff direkt zu. Stattdessen wendet sich das Simulationssystem an die Datenzugriffs-

komponente, die für die Bereitstellung von Datensätzen zuständig ist. Hierzu
muss ihr lediglich der Ressourcen-Name des gewünschten Datensatzes sowie das
Format, in dem der Datensatz geliefert werden soll, mitgeteilt werden. Diese Art
des Datenzugriffs ermöglicht einen transparenten Datenzugriff sowie eine auto-
matische Transformationen von Datenformaten. Das Format der Datenspeiche-
rung wird somit von der ‘internen’ Repräsentation für das Simulationssystem
getrennt. Dieser Zugriffsmechanismus erlaubt eine schrittweise Migration hin
zu offenen Datenformaten. Die Schnittstelle zum Datenzugriff orientiert sich
an den Spezifikationen der OpenGIS Service Architecture (ISO/DIS 19119).

Die Informationen, die die Datenzugriffskomponente zum Zugriff auf einenKatalog-
manager Datensatz benötigt (z. B. ein Pfad/Dateiname), werden vom Katalogmanager,

der für die Verwaltung von Metadaten zuständig ist, bereitgestellt. Die Anga-
be der Zugriffsinformationen ist – außer für abstrakte Ressourcen – für jede
Ressource zwingend erforderlich. Obligatorisch sind ebenfalls die Angabe eines
eindeutigen Ressourcen-Namens und eines Kurztitels. All diese Informationen
werden in die Ressourcen-Liste des SISA aufgenommen. Die Beschreibung jeder
Ressource über die 15 Elemente des Dublin Core Metadata Element Set (ISO
15836) wird als Minimal-Anforderung angesehen. Weitergehende Beschreibun-
gen zu Geodaten sollten sich nach dem Metadaten-Standard der ISO-19100-
Reihe richten (ISO/DIS 19115), Metadaten zu Simulationsmodellen nach dem
Content Standard for Compulational Models. Die Schnittstellendefinition sowie
die Datenstruktur orientiert sich an den Spezifikationen der OpenGIS Service
Architecture (ISO/DIS 19119).

Die Datenzugriffskomponente greift auf die Daten innerhalb der DatenbasisDaten-
basis zu. Die Datenbasis besteht aus einem Datenbanksystem, das eine verwaltete

Datenspeicherung zulässt, und kann durch eine lose Sammlung von Dateien er-
gänzt werden. Die Integration der Dateien in das SISA erfolgt über Metadaten,
die zu jeder Datei vorhanden sein sollten.

Die in der Datenbasis vorhandenen Metadaten, die nicht direkt vom Nut-Meta-
daten-
Sammler

zer über den Katalogmanager eingegeben werden, werden von Metadaten-
Sammlern eingesammelt und dem Katalogmanager übermittelt. Ein Metada-
ten-Sammler sollte auf jedem Rechner installiert sein, der Ressourcen für das
SISA bereitstellt.

Projektbezogene Kurz-Informationen werden direkt im SISA vorgehalten,Doku-
menta-
tion

genauer: in der Dokumentationskomponente. In diesem ‘Auskunftssystem’ wer-
den u. a. Daten über durchgeführte Simulationsläufe, beteiligte Personen und
verwendete Szenarien hinterlegt und den Akteuren des SISA (Modellbetreiber,
Modellentwickler, Entscheidungsträger, Interessenten) bereitgestellt.

5.4. FAZIT 163

Zur Steigerung der Wiederverwendbarkeit von Software sollten häufig wie- Daten-
verarbei-
tung

derkehrende Funktionen nicht direkt in der Komponente des Simulationssys-
tems implementiert, sondern in andere Komponenten ausgelagert werden. Zur
Erhöhung der Interoperabilität und Austauschbarkeit sollte sich die Modu-
larisierung von Funktionen an der Dienste-Taxonomie der OpenGIS Service
Architecture (ISO/DIS 19119) orientieren. Im Rahmen des SISA lassen sich
diesbezüglich drei relevante Bereiche (Komponenten) abgrenzen: Funktionen
zur Bearbeitung geographischer Informationen, allgemeine Datenverarbeitungs-
funktionen und Funktionen, die der Steuerung anderer Funktionen dienen. In
der Architektur sind die Funktionen in den Komponenten Geodatenverarbei-
tung, Datenverarbeitung und Aufgabensteuerung lokalisiert. Die Komponente
zur Geodatenverarbeitung sollte auch die Schnittstelle zu eigenständigen GIS
darstellen.

Zur Sensitivitäts- und Unsicherheitsanalyse von Simulationsmodellen ist ei- Modell-
Analysene gesonderte Komponente vorgesehen: die Modellanalyse-Komponente. Diese

Komponente schaltet sich zur Modellanalyse als Schicht zwischen das Simula-
tionssystem und die Datenzugriffskomponente. Auf diese Weise kann die Kom-
ponente die Eingabedaten für das Simulationsmodell gezielt verändern und die
Ausgabedaten analysieren. Zur Modellanalyse müssen daher keine Änderungen
innerhalb des Simulationssystems vorgenommen werden.

Funktionen, die speziell für konkrete Assessments benötigt werden, werden Ergeb-
nisana-
lyse

der Komponente der Ergebnisanalyse zugeordnet.

164 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

Kapitel 6

Realisierung

Nachdem im vorigen Kapitel das Software-System eines SISA in seine wich- Ziel

tigsten Komponenten gegliedert wurde, beschäftigen sich die folgenden Ab-
schnitte mit der Realisierung dieser abstrakten Komponenten, also mit deren
Implementierung für ein konkretes System. Die prototypischen Implementie-
rungen der Komponenten sollen die Anwendbarkeit der entwickelten Konzepte
belegen. Unterschiedliche Realisierungsmöglichkeiten (z. B. über verschiedene
Verteilungsplattformen) werden nicht gegenübergestellt.

Die Implementierungen der Komponenten erfolgten im Rahmen des GLASS- Über-
sichtModells; ein Modell zum Assessment der Auswirkungen des globalen Wan-

dels auf die Nahrungsmittelproduktion und Wasserverfügbarkeit. Die beiden
folgenden Abschnitte liefern zunächst eine kurze Beschreibung des Simulati-
onssystems von GLASS sowie eine Übersicht zur Implementierung der SISA-
Architektur, in die das GLASS-Simulationssystem eingebettet wird. Detaillierte
Erklärungen zur Realisierung der einzelnen Architektur-Komponenten finden
sich in Abschnitt 6.3 ab Seite 169. Das Fazit in Abschnitt 6.4 (Seite 199) fasst
die wichtigsten Punkte der Komponenten-Realisierung zusammen.

6.1 Beispielmodell GLASS

Das integrierte Modell GLASS (Global Assessment of Security; Alcamo u. a., Modell-
Ziel2001) ist ein Simulationssystem zur Quantifizierung der Beziehungen zwischen

globalem Wandel und menschlicher Sicherheit unter Berücksichtigung natur-
und sozialwissenschaftlicher Aspekte. Das politisch relevante Ziel ist die Dar-
stellung umweltbezogener Bedrohungspotentiale für die menschliche Sicherheit
und die Identifizierung von Strategien zur Risikominimierung. Die derzeitigen
Prioritäten des GLASS-Modells liegen in der Verbindung extremer Klimaereig-
nisse (z. B. Dürren) mit Risiken bei der Wasserversorgung und Nahrungsmit-

165

166 KAPITEL 6. REALISIERUNG

telproduktion. Die folgenden Unterabschnitte erklären kurz das Modellkonzept
und die Rahmenbedingungen für die Realisierung des SISA.

Modellkonzept

Die Klimavariabilität spielt bei der Analyse der Nahrungsmittelproduktion undBerech-
nungs-
prinzip

Wasserverfügbarkeit eine wichtige Rolle. Aus diesem Grund werden über den
Klimavariabilitäts-Generator (s. Abb. 6.1) szenarienbasierte Daten zu Tem-
peratur und Niederschlag berechnet. Dieses Teilmodell berücksichtigt sowohl
Daten zum historischen Klima (u. a. Angaben über Temperaturen und Nie-
derschläge der letzten 100 Jahre auf einer monatlichen Basis) als auch Daten
über mögliche Klimaänderungen, die von Klimamodellen für verschiedene Sze-
narien berechnet wurden. Die auf diese Weise generierten Klima-Daten wer-
den anschließend vom Modell WaterGAP (Alcamo u. a., 2003a) zur Berech-
nung jährlicher Wasserverfügbarkeiten und vom Modell GAEZ (Fischer u. a.,
2000) zur Berechnung möglicher Erträge wichtiger Feldfrüchte genutzt. Diese
von Jahr zu Jahr schwankenden Indikator-Werte werden vom Wasserstress-
Modell bzw. vom Nahrungsmittelstress-Modell zur Berechnung von ‘Stresswer-
ten’ benutzt.1 Bei der Berechnung des Nahrungsmittelstresses werden zusätz-
lich sozio-ökonomische Daten berücksichtigt (beispielsweise Angaben darüber,
welche Feldfrucht in einer Region besonders wichtig ist oder wie hoch der Anteil
an importierten Nahrungsmitteln in einer Region ist). Das Sicherheitsmodell
verknüpft diese Stresswerte schließlich mit demographischen Angaben (z. B.
der regionalen Altersstruktur und Einkommensverteilung), um Aussagen über
die Wahrscheinlichkeit des Auftretens von Krisen und die potentiell von einer
Krise betroffene Bevölkerung zu treffen.

Das GLASS-Konzept wird sowohl für Studien mit globaler als auch für Stu-Verwen-
dung dien mit regionaler Abdeckung verwendet. Für eine erste globale Studie wur-

den 160 verschiedene Länder (Regionen) berücksichtigt (Alcamo u. a., 2001).
Eine erste regionale Studie wurde für das Gebiet der russischen Föderation
erstellt (R-GLASS; Alcamo u. a., 2003c) – in diesem Fall wurden 89 verschie-
dene Regionen unterschieden. Die Teilmodelle arbeiten auf unterschiedlicher
räumlicher Auflösung. Geographisch explizite Berechnungen beruhen zumeist
auf einer Auflösung von 0.5◦ * 0.5◦ geographischer Länge und Breite.

Rahmenbedingungen

GLASS verwendet sowohl Modelle, die sich bereits im Rahmen globaler Um-Teil-
modelle weltforschung etabliert haben, als auch Modelle, die im Rahmen der GLASS-

Entwicklung erstellt wurden. Die Modelle WaterGAP2 (Alcamo u. a., 2003a;

1Die Stresswerte ergeben sich aus dem Verhältnis der jährlich schwankenden Wasserver-
fügbarkeiten bzw. Feldfruchterträge zu deren langjährigen Mittelwerten.

2Water – Global Assessment and Prognosis.

6.1. BEISPIELMODELL GLASS 167

GLASS V1.0

KrisenpotentialUmweltveränderungen UmweltstressTreibende
Faktoren

Bevölkerungs-
profil-

Generator

Klima-
variabilitäts-
Generator

Klima-
variabilität
/ Extrem-
ereignisse

Wasser-
Stress potentiell

betroffene
Bevölkerung

Krisensignal

WaterGAP-
Modell

GAEZ-
Modell

jährliche
Wasser-

verfügbar-
keit

Ertrags-
Stress

historisches
Klima

demo-
graphische

Daten

Wasserstress-
Model

Nahrungs-
mittelstress-

Modell

jährlicher
Ernteertrag

Klima-
Szenario

Krisen-
daten

Be-
völkerungs-

profil

Sicherheits-
Modell

vorhandener
Datensatz

neu erstellter
Datensatz

vorhandenes
Modell

neu erstelltes
Modell

sozio-
ökonomi-

sche Daten

Legende:

Abbildung 6.1: Struktur des GLASS-Modells. Ausgangsbasis für die Überprü-
fung der entwickelten SISA-Architektur ist ein loser Verbund von Teilmodellen,
die zusammen das GLASS-Modell ausmachen. Die Teilmodelle wurden teilwei-
se von anderen Projekten (Modell WaterGAP) bzw. Organisationen (Modell
GAEZ) übernommen und teilweise neu erstellt. Die Kopplung erfolgt in die-
sem ‘Gesamtmodell’ lediglich über die von Teilmodellen gemeinsam genutzten
Datensätze, beispielweise dem Datensatz zur jährlichen Wasserverfügbarkeit,
der von WaterGAP berechnet und vom Wasserstress-Modell verwendet wird.
Die Einstellungen, die von den einzelnen Modellteilen für die Simulation be-
nötigt werden (z. B. Informationen über Datensätze) werden in dieser Form
des Modells von jedem Modell separat verwaltet, was zu Inkonsistenzen führen
kann (z. B. der Nutzung unterschiedlicher Versionen grundlegender Datensät-
ze). Gemeinsam genutzte Datensätze müssen stets in dem Format vorliegen, das
von den Modellen genutzt wird, so dass einige Datensätze (inhaltlich) redun-
dant vorliegen müssen. Die Anwendung der Prinzipien der entwickelten SISA-
Architektur sollen helfen, diese Nachteile zu überwinden.

168 KAPITEL 6. REALISIERUNG

Alcamo u. a., 2003b; Döll u. a., 2003) und GAEZ 3 (Fischer u. a., 2000) gehören
zu den etablierten Modellen, während die anderen Modellteile im Rahmen der
GLASS-Entwicklung entworfen wurden. WaterGAP wurde in C und C++ im-
plementiert und GAEZ in FORTRAN, während die neu erstellten Teilmodelle
in C++ realisiert wurden.

Aufgrund der Verwendung bereits existierender Simulationsmodelle müs-Daten-
formate sen im GLASS-Modell unterschiedliche Datenformate berücksichtigt werden.

Zu den Datenformaten gehören sowohl Textdateien im ASCII-Format als auch
Geodatensätze im Binärformat des integrierten Modells IMAGE2 (Alcamo u. a.,
1998b) in der Version2.2 (eingesetzt in WaterGAP) sowie Geodatensätze im
ASCII-Austauschformat, im Raster-Format und im Polygon-Format des GIS
ArcView4. Da GLASS rasterbasiert arbeitet, werden die letztgenannten Arc-
View-Daten im Polygon-Format nicht direkt vom Simulationsmodell verwen-
det. Sachdaten können aber als Tabelle behandelt werden. Sofern der geogra-
phische Bezug der Daten bei der Simulation explizit berücksichtigt werden soll
(primärer Raumbezug), sind die polygonbezogenen Daten in rasterbasierte zu
überführen. Die anderen angeführten Formate sind direkt bei der Konzeption
der Implementierung der Datenzugriffskomponente zu berücksichtigen.

Bereits bei der prototypischen Implementierung der SISA-Architekturkon-Ver-
brauchs-
verhal-
ten

zepte sollte die Anforderung an das Verbrauchsverhalten berücksichtigt werden
(s. Qualitätsziel-Bestimmung, Unterabschnitt 4.2.8, Seite 89). Einfache und ef-
fiziente Lösungen sind evtl. technisch ‘schöneren’ Lösungen vorzuziehen, um die
Wiederverwendbarkeit der Software zu erhöhen. Bei der Betrachtung des Ver-
brauchsverhaltens spielt neben technologischen Gesichtspunkten auch die ver-
wendete Software bzw. Middleware eine Rolle. Da das GLASS-Modell evtl. an
Dritte weitergegeben werden soll (z. B. an die russischen Projektpartner der R-
GLASS-Studie), sollte auf den Einsatz kostenintensiver Programme möglichst
verzichtet und die Verwendung frei verfügbarer Software bevorzugt werden.

6.2 Komponenten-Übersicht

Im Rahmen des GLASS-Projektes wurden die zentralen Konzepte der SISA-
Architektur getestet. Die Implementierung erfolgte prototypisch für ausgewähl-
te Modellteile und Datensätze: Für einige Teilmodelle von GLASS (die Stress-Teil-

modelle modelle und das Sicherheitsmodell sowie WaterGAP) wurde die Schnittstel-
le implementiert, die für die Simulationssystem-Komponente definiert wurde
(Operationen init und run). Auf diese Weise kann der Einfluss der Schnitt-
stelle auf die Wiederverwendbarkeit, Austauschbarkeit und Interoperabilität
verdeutlicht werden.

3Global Agro-Ecological Zones.
4Verwendet wurde die Version 3.2.

6.3. KOMPONENTEN-REALISIERUNG 169

Das Gesamtmodell von GLASS, d.h. die Verbindung aller GLASS-Teilmo-
delle zu einem Software-System innerhalb der Simulationssystem-Komponente,
wurde im Rahmen der Überprüfung der SISA-Architektur nicht realisiert. Die Daten-

sätzeImplementierung der Konzepte, die sich auf den Datenzugriff beziehen, kon-
zentrieren sich auf Geodaten des Modells WaterGAP.

Die Realisierung der Konzepte und Komponenten erfolgte unter Nutzung Über-
sichtverschiedener Programmiersprachen, Formate und Software-Systeme. Abbil-

dung 6.3 (Seite 171) zeigt einige der Realisierungsaspekte in der Übersicht. Die
Abbildung dient als Rahmen für die detaillierten Erklärungen der Realisierung
des folgenden Abschnitts.

6.3 Komponenten-Realisierung

6.3.1 Dokumentation

Die Dokumentationskomponente ist verantwortlich für die Bereitstellung Daten

grundlegender Hintergrundinformationen. Zu diesen, in Katalogform vorzuhal-
tenden Informationen, gehören Angaben über Personen/Organisationen, Pro-
jekte, Simulationsstudien, Simulationsläufe und Szenarien sowie ein Glossar,
Beschreibungen zu typischen Arbeitsabläufen und kurze Anmerkungstexte (vgl.
Unterabschnitt 4.2.5, Seite 84 u. Abschnitt 5.2.3, Seite 119).

Die Daten der Dokumentationskomponente müssen dauerhaft und konsis- Anforde-
rungtent gespeichert werden und sollten einfach zu verwalten und abzufragen sein.

Darüber hinaus muss die Dokumentationskomponente je nach Nutzer unter-
schiedliche ‘Sichten’ auf die Daten bereitstellen. Um allen Beteiligten an einem
Assessment einen einfachen Zugang zu aktuellen Informationen zu bieten, soll-
ten die Daten über ein Netzwerk (z. B. das Internet) abrufbar sein.

Aufgrund der Anforderungen an die Datenhaltung und Datennutzung bie- DBS

tet sich die Verwendung eines Datenbanksystems an. Im Rahmen des GLASS-
MySQLProjektes wurde das Datenbank-Managementsystem (DBMS) MySQL der

schwedischen Firma MySQL AB5 eingesetzt. MySQL ist ein Open-Source-
Produkt im Sinne der GNU General Public License6 und besitzt damit den
Vorteil, dass keine Lizenzgebühren anfallen. Das fertige System kann somit auch
ohne Probleme an andere Organisationen weitergegeben werden. Darüber hin-
aus ist MySQL – im Gegensatz zu sehr umfangreichen kommerziellen Systemen
wie ORACLE oder IBM/DB2 – relativ einfach zu installieren und zu warten
und bietet eine Vielzahl von Programmierschnittstellen (u. a. für die Sprachen
C, C++, JAVA, Perl und PHP). Einige Leistungsmerkmale von DBMS werden
von MySQL zwar (noch) nicht unterstützt (Transaktionen, Stored Procedures,

5Startseite im Internet: http://www.mysql.com
6Startseite im Internet: http://www.gnu.org/licenses

http://www.mysql.com
http://www.gnu.org/licenses

170 KAPITEL 6. REALISIERUNG

Trigger, referenzielle Integrität), für den Einsatz in der Dokumentationskom-
ponente des SISA kann auf diese aber verzichtet werden.7

MySQL ist ein relationales DBMS, d. h. die Daten werden in TabellenformTabellen

gespeichert.8 Die in Kapitel 5 definierten SISA-Daten müssen daher in eine
‘normalisierte’ Tabellenform gebracht werden.9 Abbildung 6.2 zeigt als Bei-
spiel die Tabellen, über die die ‘Anmerkungen’ (engl. annotations) gespeichert
werden (vgl. Abb. 5.19, Seite 128).

annotation

PK annotationId

title
author
date
text

annotationResource

PK id

FK2 annotationId
FK3 resourceId

resource

PK resourceId

title
url
format

Abbildung 6.2: Tabelle zur Speicherung der Anmerkungen und deren Bezie-
hung zu anderen Tabellen.

Die im Rahmen der Architekturentwicklung definierte Datenstruktur fürBeispiel

Anmerkungen wird umgesetzt durch das Zusammenspiel von drei Tabellen: die
erste Tabelle (‘annotation’) enthält Titel und Inhalt der Anmerkung sowie die
Angaben zu Autor und Datum. Jede Anmerkung wird – genauso wie jede Res-
source – darüber hinaus durch eine eindeutige Bezeichnung, den Primärschlüs-
sel (engl. primary key, PK), gekennzeichnet. Die Verbindung von Anmerkungen
zu Ressourcen wird über eine dritte Tabelle (‘annotationResource’) realisiert.
Jede Zeile dieser Tabelle enthält den Primärschlüssel einer Anmerkung und
einer Ressource (die Primärschlüssel werden hier als ‘Fremdschlüssel’ (engl.
foreign key, FK) bezeichnet, da sie sich auf die Schlüssel anderer (fremder)
Tabellen beziehen).

MySQL selbst besitzt keine graphische Benutzungsoberfläche. Die Definiti-SQL

on und Abfrage von Tabellen und die Verwaltung von Datenbanken geschieht
über ein Kommandozeilen-Werkzeug und die Anweisungen der Structured Que-
ry Language (SQL). Da die Nutzung eines Datenbanksystems über Kommando-
zeilen wenig komfortabel ist, werden zusätzliche Werkzeuge zur Bedienung vonWerk-

zeuge MySQL angeboten. Ein Werkzeug zur Verwaltung von MySQL-Datenbanken ist
beispielsweise phpMyAdmin10, das auch im Rahmen der GLASS-Entwicklung

7Zu den Vor- u. Nachteilen von MySQL gegenüber anderen DBMS siehe z. B. Greenspan
und Bulger (2001).

8Nähere Informationen zum Prinzip relationaler Datenbanksysteme und einen Vergleich
mit objektorientierten Systemen findet sich in Balzert (1996).

9Zur Normalisierung s. z. B. Balzert (1996) oder Schwinn (1992).
10Startseite im Internet: http://phpmyadmin.sourceforge.net

http://phpmyadmin.sourceforge.net

6.3. KOMPONENTEN-REALISIERUNG 171

Metadaten-
Sammler

Metadaten-
Sammler

 Datenbasis
Metadaten Daten

Datenbanksystem

ErgebnisanalyseDokumentation
Simulationslauf-

manager

Simulationssystem
(GLASS-Modelle)

Katalog-
manager

Metadaten-Sammler

allgemeine
Datenverarbeitung

Geodaten-
verarbeitung

Datenzugriff

MySQL, PHP, Web-Browser

C++-Klassenbibliothek

Server, C++, TCP/IP
XML, DTD, DOM

MySQL, MS Access
ODBC, ADO

ASCII, UNF, GeoTIFF, GML, ArcView

Server, C++, TCP/IP, Mediatoren
XML/RDF, DCMES

bash-Skript, PHP, DOM

XML/RDF, DCMES

DCMES, MySQL
PHP, Web-Browser

Stress-, Sicherheits-Modell,
WaterGAP, C++

Aufgabensteuerung

Modell-
analyse

Abbildung 6.3: Übersicht zum Realisierungsbeispiel der SISA-Komponenten.
Die für das Simulationssystem definierte Schnittstelle wird durch einige Teil-
modelle von GLASS, z. B. vom Modell WaterGAP, unter Verwendung der Pro-
grammiersprache C++ realisiert. Die Datenzugriffskomponente ist ebenfalls
in C++ implementiert und läuft als Server auf einem Host unter Microsoft
Windows 2000. Die Anforderung zum transparenten Zugriff auf Datensätze ge-
schieht über das Internet-Protokoll (TCP/IP). Zur Datenspeicherung stehen
sowohl Datenbanksysteme (MySQL und MS Access) als auch verschiedene pro-
prietäre (UNF) und standardisierte (z. B. GeoTIFF) Dateiformate zur Verfü-
gung. Der Katalogmanager nutzt zur Speicherung von Zugriffsinformationen
und Metadaten (ebenso wie die Dokumentationskomponente) eine MySQL-
Datenbank, die über einen Web-Browser bedient werden kann. Als Metadaten-
Elementsatz werden die 15 Elemente des Dublin Core Metadata Element Set
(DCMES) verwendet. Die Speicherung lokaler Metadaten erfolgt über die Ex-
tensible Markup Language (XML) in Verbindung mit dem Resource Description
Framework (RDF). XML wird ebenfalls zur Speicherung der Simulationslauf-
spezifikationen innerhalb des als Server implementierten Simulationslaufmana-
gers verwendet. Wiederverwendbare Datenverarbeitungsfunktionen wurden in
Form von C++-Klassenbibliotheken implementiert.

172 KAPITEL 6. REALISIERUNG

eingesetzt wurde. Die Eingabe neuer Daten in das System ist aber auch mit
diesem Werkzeug noch recht rudimentär.

Für die Eingabe und Anzeige von Daten wurde daher ein anderer WegPHP u.
Browser gewählt: die Verbindung von MySQL mit der Programmiersprache PHP11

und einem Web-Browser. Daten, die über ein Formular in einen Web-Browser
(beim Client) eingegebenen werden, können über den Web-Server direkt an
einen PHP-Interpreter weitergeleitet werden, der sie seinerseits in eine MySQL-
Datenbank schreibt.

Um diesen Weg der Datenverwaltung zu gehen, muss lediglich ein Web-Voraus-
setzung Server (z. B. der frei verfügbare ‘Apache’-Server12), MySQL und ein PHP-

Interpreter (ebenfalls frei verfügbar13) auf dem Server installiert sein. Abbil-
dung 6.4 verdeutlicht das Prinzip der Zusammenarbeit dieser Systeme noch
einmal. Weitere Informationen hierzu finden sich z. B. bei Greenspan und Bul-
ger (2001).

MySQLPHPWeb-Server
(Apache)

Internet

Web-Browser

Abbildung 6.4: Datenbankzugriff über Web-Browser. Bei der gewählten Rea-
lisierung greift der Nutzer über den Web-Browser und das Internet auf den
Web-Server zu. Der Web-Server (in diesem Falle ‘Apache’) sendet die Daten
weiter an den PHP-Interpreter, der sie auswertet und über die API von MyS-
QL lesend bzw. schreibend auf die Datenbank zugreift.

Eine einfache Maske zur Erfassung von Personen/Organisationen (‘respon-Erfas-
sung u.
Anzeige

sible party’, vgl. Abb. 5.14, Seite 123) über einen Web-Browser ist in Abbildung
6.5 zu sehen. Die Anzeige des Datenbank-Inhalts über den Web-Browser zeigt
Abb. 6.6 (Seite 174).

Der in Unterabschnitt 4.2.7 (Seite 89) aufgestellten Forderung zur Verwen-Sichten

dung von Web-Technologien (/B10/) wird durch dieser Vorgehensweise Rech-

11PHP ist eine rekursive Abkürzung und steht für ‘PHP: Hypertext Processor’.
12Startseite im Internet: http://httpd.apache.org
13Startseite im Internet: http://www.php.net

http://httpd.apache.org
http://www.php.net

6.3. KOMPONENTEN-REALISIERUNG 173

Abbildung 6.5: Dokumentation der Daten über Personen/Organisationen. Der
Nutzer (Client) braucht im Web-Browser lediglich eine entsprechende (PHP-)
Seite aufzurufen, um die Daten eingeben und an den Web-Server senden zu
können. Betätigt der Nutzer die Schaltfläche zum Absenden des Formulars
(‘insert’), so wird dessen Inhalt automatisch zum Web-Server und über den
PHP-Interpreter an die MySQL-Datenbank gesendet.

nung getragen. Die Bereitstellung unterschiedlicher ‘Sichtweisen’ auf die Daten
des Systems (/B20/) kann über unterschiedliche Web-Seiten realisiert werden:
Modellbetreibern und Entwicklern, die sich im lokalen Netz (Intranet) der Do-
kumentationskomponente befinden, können Seiten zur Verfügung gestellt wer-
den, die alle Daten einer Tabelle anzeigen, Interessenten außerhalb des Intranet
bekommen hingegen nur eine Auswahl aller verfügbaren Informationen über
den Web-Server zugesendet. Darüber hinaus kann der Zugriff auf Web-Seiten
relativ einfach durch Passwörter geschützt werden.

6.3.2 Katalogmanager

6.3.2.1 Ressourcen-Identifizierung

Der Katalogmanager ist verantwortlich für die Verwaltung und Bereitstellung
von Metadaten über SISA-Ressourcen (s. Abschnitt 5.2.1 (Seite 96)). Zu den

174 KAPITEL 6. REALISIERUNG

Abbildung 6.6: Anzeige der Daten über Personen/Organisationen. Ruft der
Nutzer die Web-Seite zur Anzeige der Daten auf, so wird über den Web-Server
und den PHP-Interpreter eine Datenbank-Anfrage ausgeführt. Die Ergebnisse
werden dann automatisch an den Browser zurück gesendet und dort angezeigt.
Ein Ausschnitt des Quelltextes dieser PHP-Seite ist im Anhang D.1 (Seite 245)
dokumentiert.

Metadaten gehören ein eindeutiger Identifikator jeder Ressource sowie Infor-
mationen, die für den technischen Zugriff auf die Ressource benötigt werden.

Für die Lokalisierung und Identifizierung von Ressourcen hat die InternetIETF

Engineering Task Force (IETF)14 einige Vorschläge (RFCs15) erarbeitet: den
Uniform Resource Identifier (RFC 2396, Berners-Lee u. a., 1998), den Uniform
Resource Locator (RFC 1738, Berners-Lee u. a., 1994) und den Uniform Re-
source Name (RFC 2141, Moats, 1997).

Ein Uniform Resource Identifier (URI) ist definiert als ”a compact string ofURI

characters for identifying an abstract or physical resource.“ (Berners-Lee u. a.,
1998) Das ‘Einheitliche’ an diesen Identifikatoren ist die generische Syntax, mit
der die identifizierenden Zeichenketten zusammengesetzt werden. Als ‘Ressour-
ce’ wird alles verstanden, was eine Identität hat; das können nicht nur elek-

14Startseite im Internet: http://www.ietf.org
15Requests for Comments. Siehe Grundlagenkapitel.

http://www.ietf.org

6.3. KOMPONENTEN-REALISIERUNG 175

tronische Ressourcen wie beispielsweise Dateien sein, sondern auch Menschen,
Dienstleistungen oder Firmen. Der Identifikator wird als Objekt betrachtet,
das als Referenz auf etwas dienen kann, das eine Identität hat – im Falle des
URI ist dieses Objekt eine Zeichenkette, die bestimmten Regeln zu folgen hat.
URIs können16 klassifiziert werden in solche zur Lokalisierung und solche zur
Bezeichnung von Ressourcen (vgl. Abb. 6.7).

Uniform Resource Identifiers

Uniform
Resource Locators

ftp:
http:
file:
...

Uniform
Resource Names

urn:

Abbildung 6.7: Uniform Resource Identifiers. Zu den Uniform Resource Iden-
tifiers (URIs) zählen sowohl die Uniform Resource Locators (URLs) als auch
die Uniform Resource Names (URNs). Ziel aller Identifizierer ist die Identifi-
zierung abstrakter und physikalischer Ressourcen in Form einer Zeichenkette.
Zu den URLs gehören WWW-Adressen und Adressen von Datei-Servern (ftp-
Servern). URNs werden u. a. zur Beschreibung von Buchtiteln benutzt (z. B.
url:isbn:3-8266-0805-4).

Ein Uniform Resource Locator (URL) verweist (zeigt) auf eine Ressource URL

eher durch den Mechanismus des Zugriffs auf diese Ressource, als durch andere
Attribute wie dem Ressourcen-Namen. Eine WWW-Adresse ist ein Beispiel für
einen URL. URLs sind sowohl Grundlage für das World Wide Web (WWW) als
auch entscheidend für andere Internet-Technologien (z. B. XML). Der Aufbau
eines URL folgt einer generischen Syntax der Form:

<scheme>‘:’<scheme-specific-part>

Der erste Teil (scheme) stellt das Schema der URL dar, dem, durch einen Dop-
pelpunkt getrennt, eine Zeichenkette (scheme specific part) folgt und dessen
Interpretation vom Schema abhängt (Berners-Lee u. a., 1994). Schemata kön-
nen bei der Internet Assigned Numbers Authority (IANA)17 registriert werden.

16Zu unterschiedlichen Sichtweisen und Interpretationen des URI-Konzepts s. Mealling und
Denenberg (2002).

17Startseite im Internet: http://http://www.iana.org

http://http://www.iana.org

176 KAPITEL 6. REALISIERUNG

Unter den derzeit etwa 40 registrierten Schemata sind, neben dem bereits er-
wähnten Schema ‘http’ (das für ‘Hyper-Text Transfer Protocol’ steht), z. B. ‘ftp’
(zum Austausch von Dateien), ‘telnet’ (für den entfernten Zugriff auf Rechner)
und ’file’ (zur Angabe des Speicherortes von Dateien).18 Bei der Registrierung
der Schemata wird auch die genaue Syntax festgelegt, der die schemaspezifi-
schen Zeichenketten folgen müssen.

Zur Steigerung der Nachvollziehbarkeit und Überprüfbarkeit von Assess-URL-Zu-
weisung ment-Ergebnissen und zum einfachen Zugriff auf die Ressourcen über die Da-

tenzugriffskomponente sollten allen digital zugreifbaren SISA-Ressourcen URLs
zugewiesen werden. Der folgende URL kann beispielsweise die Datei mit den
Länderinformationen für das das Simulationsmodell IMAGE2 referenzieren:

file://Usf-ws14/grid/data/general/modelInput/GCOUNTRY.UNF2

Die Länderinformationen sind demnach in Form einer Datei (Schema ‘file’) ge-
speichert und befinden sich auf dem Rechner Usf-ws14 unter dem angegebenen
Pfad.

Ein Uniform Resource Name (URN) stellt, im Gegensatz zu einem URL, kei-URN

nen Verweis auf den Ort einer Ressource bereit, sondern einen (global) eindeu-
tigen und beständigen (persistenten) Namen. Die genaue Definition des IETF
lautet wie folgt: ”Uniform Resource Names (URNs) are resource identifiers with
the specific requirements for enabling location independent identification of a
resource, as well as longevity of reference.“ (Daigle u. a., 2002)

URNs bestehen, wie die URLs, aus Zeichenketten und müssen einer vorge-
gebenen Syntax entsprechen (Moats, 1997):

‘urn:’<NID>‘:’<NSS>

‘NID’ ist der so genannte ‘Namespace Identifier’, der – vergleichbar mit dem
‘scheme’ beim URL – die syntaktische Interpretation des ‘Namespace Specific
String’ (NSS) festlegt. Die Registrierung der Namensräume ist ebenfalls über
die IANA möglich.19 Unter den derzeit knapp 20 registrierten Namensräumen
findet sich beispielsweise auch derjenige zur Angabe der internationalen Stan-
dardbuchnummer (ISBN). Die Angabe eines Buchtitels in Form eines URN
sieht, obiger Syntax folgend, so aus: urn:isbn:3-8266-0805-4.

Im Rahmen des integrierten Assessments werden viele Ressourcen zwischenSISA
Namens-
raum

unterschiedlichen Organisationen ausgetauscht: Daten, Modelle, Teilmodelle
etc. Um die Wiederverwendbarkeit der Ressourcen zu erhöhen und Assessment-
Ergebnisse besser nachvollziehbar und vergleichbar zu machen, wäre die Ein-
führung eines definierten, einheitlichen und bei der IANA registrierten Na-
mensraumes für diese Interessensgemeinschaft sicherlich erstrebenswert. Die

18Die offizielle Liste der Schemata wird unter http://www.iana.org/assignments/

uri-schemes veröffentlicht.
19Die offizielle Liste der Namensräume wird unter http://www.iana.org/assignments/

urn-namespaces veröffentlicht.

http://www.iana.org/assignments/uri-schemes
http://www.iana.org/assignments/uri-schemes
http://www.iana.org/assignments/urn-namespaces
http://www.iana.org/assignments/urn-namespaces

6.3. KOMPONENTEN-REALISIERUNG 177

für eine formale Registrierung notwendige Koordination unterschiedlicher In- x-name

teressensschwerpunkte ist allerdings sehr aufwendig. Ein formal bei der IANA
registrierter Namensraum für SISA-Ressourcen ist daher (vorerst) nicht zu er-
warten. Für solche Fälle wurden in den Spezifikationen der URN so genannte
‘experimentelle’ Namensräume eingeführt. Für die Bezeichnung dieser nicht bei
der IANA registrierten Namensräume wird die folgende Form vorgeschrieben:

‘x-’<NID>

‘NID’ steht hier wieder für ‘Namespace Identifier’, also für die Bezeichnung des
Namensraumes. Bezeichnungen dieser Art sind für ‘interne oder eingeschränkte
experimentelle Kontexte’ gedacht, für die – im Gegensatz zu den formell regis-
trierten URNs – keine Vorkehrungen zur ‘Vermeidung von Kollisionen’ mit
anderen Namensräumen getroffen werden (Daigle u. a., 2002).

Für die Bezeichnung von SISA-Ressourcen am wissenschaftlichen Zentrum x-wzusf

für Umweltsystemforschung (WZ-USF) wurde ein experimenteller Namensraum
mit dem NID ‘wzusf’ eingeführt; URNs für SISA-Ressourcen beginnen daher
immer mit der Zeichenfolge

‘urn:x-wzusf:’

Zu einem URN gehört, neben der Bezeichnung des Namensraumes, auch Syntax

die Definition der Syntax für die spezifische Zeichenkette (NSS). Die Definition
dieser Syntax für ‘x-wzusf’ fußt auf der Analyse der unterschiedlichen SISA-
Ressourcen aus Unterabschnitt 4.1.2 (Seite 72) und hat die folgende Form:

<resTyp>-<resUTyp>.<kTitel>-V<verNr>.<relNr>.<for>.<med>

Die Zeichenkette wird damit definiert über den Typ und den evtl. vorhande-
nen Untertyp der Ressource (resTyp, resUTyp), einen Kurztitel (kTitel), eine
Versions- und Releasenummer (verNr, relNr) sowie das Format der Ressource
(format) und das Medium, auf dem sie gespeichert ist (med). Als Ressourcen- Beispiel

Typen sind derzeit definiert: Datensatz (resTyp = ‘ds’), Datensatz-Sammlung
(dsc), Dokument (doc), Software (sw) sowie die abstrakten Ressourcen (ares).
Zu den Untertypen gehören z. B. Simulationsmodell-Eingabedaten (ds-min)
und -Ausgabedaten (ds-mout), Präsentationen (doc-prs) sowie Simulationsmo-
delle (sw-mod). Der URN

urn:x-wzusf:ds-min.image22countryGrid-V1,0.unf.hd

identifiziert beispielsweise den bereits erwähnten Datensatz (ds) mit den Län-
derinformationen für IMAGE2.2 (Kurztitels ‘image22countryGrid’), der primär
als Eingabedatensatz für Simulationsmodelle (min) genutzt wird und in der
Version ‘1.0’ sowie im Format ‘unf’ an einem hier nicht spezifizierten Ort (vgl.
URL-Bsp.) auf der Festplatte (‘hd’) gespeichert ist.

178 KAPITEL 6. REALISIERUNG

Allen SISA-Ressourcen sollte ein derartiger URN zugewiesen werden. ZurURN-
Erzeu-
gung

Generierung neuer URNs auf Basis der beschriebenen Syntax wurde im Rah-
men des GLASS-Projektes die in Abb. 6.8 dargestellte Web-Seite entwickelt, die
auch eine Übersicht über die derzeit definierten Ressourcen-Untertypen gibt.
Um zu gewährleisten, dass der URN noch nicht vergeben ist, müsste, über die
derzeitige Funktion der Web-Seite hinaus, ein Abgleich mit der Ressourcen-
Liste des Katalogmanagers vorgenommen werden (vgl. die Schnittstellendefini-
tion des Katalogmanagers in Abb. 5.6, Seite 107).

Abbildung 6.8: Web-Seite zur Generierung eindeutiger Namen. Die Bezeich-
nung von Ressourcen erfolgt über Uniform Resource Names (URNs). Zur Gene-
rierung eines solchen Namens ist jede Ressource mit einer Kurzbezeichnung zu
versehen. Weiterhin müssen Angaben zum Typ der Ressource gemacht werden
sowie zum verwendeten Speicherformat und Speichermedium. Wird die Schalt-
fläche ‘Ressourcen-Name generieren’ betätigt, erscheint im entsprechenden Feld
der URN.

6.3. KOMPONENTEN-REALISIERUNG 179

6.3.2.2 Ressourcen-Liste

Die im Projekt verwendeten Ressourcen können über eine Ressourcen-Liste zur URN u.
URLVerfügung gestellt werden (/F60/). Zur Identifizierung der Ressourcen besitzt

jeder Listeneintrag auf jeden Fall einen URN und – sofern es sich nicht um eine
‘abstrakte’ Ressource handelt – einen URL. Der URN dient der eindeutigen
Bezeichnung und der URL der eindeutigen Lokalisierung der Ressource.

Der Katalogmanager ist auch für die Bereitstellung von Informationen zu- Zugriffs-
infoständig, die die Datenzugriffskomponente für den Zugriff auf Ressourcen benö-

tigt. Diese Zugriffsinformationen sollten sich bereits aus dem ‘Format’-Teil des
URN ergeben (in obigem Beispiel war das die Zeichenkette ‘unf’). Werden über
diese Angabe hinaus zusätzliche Informationen für den Zugriff benötigt, soll-
ten sie ebenfalls in der Ressourcenliste zur Verfügung stehen. Im angeführten
Beispiel der Daten mit der Länderkennung wurde das Format als ‘unf’-Format
angegeben. Dieses Format lässt sich aber weiter unterteilen, so dass die ent-
sprechende Information mit in die Ressourcen-Liste aufgenommen wurde. Um
die Ressourcen-Liste lesbarer zu gestalten und um einfacher nach Ressourcen Titel

suchen zu können wird noch ein weiteres Feld mit in die Liste aufgenommen:
der ‘Titel’ (Name) der Ressource. Abbildung 6.9 zeigt die resultierenden Ein-
träge, die für jede Ressource gemacht werden sollen, anhand eines Ausschnitts
einer Ressourcen-Liste.

6.3.2.3 Metadaten

Zur Beschreibung der SISA-Ressourcen in GLASS wurde der in Unterabschnitt DCMES

5.2.1 auf Seite 83 vorgestellte Dublin Core Metadata Element Set (DCMES)
verwendet (vgl. Tab. 5.7, Seite 116).

Zur Eingabe der insgesamt 15 Metadaten-Elemente des DCMES wurde die Eingabe

in Abb. 6.10 (Seite 181) dargestellte Web-Seite erstellt. Neben der Eingabe der
Elemente des DCMES sind drei weitere Felder zu füllen: eins für den URN, eins
für den Datei-Namen (falls es sich um eine Ressource handelt, deren Inhalt sich
in einer Datei befindet) und eins für die Angabe einer Datei, in der die Meta-
daten gespeichert werden können. Die URN-Angabe und der evtl. eingetragene
Dateiname werden durch die Web-Seite automatisch in das Element ‘Identifier’
übernommen.

Die eingegebenen Metadaten können direkt in die Datenbank des Katalog- DBMS

managers übernommen werden. Die Verbindung der Web-Seite mit dem Ein-
gesetzten DBMS (MySQL) geschieht, wie bereits in Unterabschnitt 6.3.1 ab
Seite 172 beschrieben, über den Web-Server und PHP. Bei der Eingabe von
Metadaten wird gleichzeitig auch die Ressourcen-Liste der Dokumentations-
komponente aktualisiert.

Ist eine direkte Übertragung der Metadaten an den Katalogmanager nicht XML/
RDFgewünscht oder nicht möglich (z. B. weil die Eingabe auf einem nicht vernetz-

180 KAPITEL 6. REALISIERUNG

Abbildung 6.9: Anzeige der Ressourcen-Liste.

ten Rechner stattfindet), können die Metadaten auch in eine separate Datei
geschrieben werden. Die Speicherung der Metadaten-Dateien erfolgt dann über
die Kombination des Resource Description Framework (RDF) und der Extensi-
ble Markup Language (XML)20, die an vielen Stellen für diese Zwecke gefordert
wird (s. z. B. Anderson u. a., 2000). Der Inhalt einer solchen Metadaten-Datei
ist in Anhang D.2 (Seite 247) kommentiert dargestellt.

Damit der Inhalt derartiger Metadaten-Dateien einfach und übersichtlichXSL

angezeigt werden kann, sind die Dateien mit einem so genannten ‘XML-Style-
sheet’ (XSL) verknüpft. Ein solches Stylesheet enthält Anweisungen zur Trans-
formation von XML in HTML; die Metadaten-Dateien können somit einfach in
einem Web-Browser dargestellt werden.

Um eine spätere Sammlung der Metadaten-Datei durch den im RahmenKonven-
tion des GLASS-Projektes entwickelten Metadaten-Sammler (s.u.) zu vereinfachen,

enden die Namen der Dateien mit den Metadaten auf ‘.dc.xml’. Wird die Datei
mit den Metadaten im gleichen Verzeichnis wie die Daten gespeichert, erhält

20XML ist eine Empfehlung des W3C. Startseite im Internet: http://www.w3.org/XML.
Ausgiebige Erklärungen zu dieser Sprache und ihrer Anwendung finden sich z. B. bei Anderson
u. a. (2000) u. Goldfarb und Prescod (2000).

http://www.w3.org/XML

6.3. KOMPONENTEN-REALISIERUNG 181

Abbildung 6.10: Web-Seite zur Erfassung der Metadaten nach dem Dublin
Core Metadata Element Set (Ausschnitt des oberen und unteren Teils der Ein-
gabemaske). Die Eingabe des Titels und einer URN ist obligatorisch für jede
Ressource. Sofern es sich bei der beschriebenen Ressource nicht um eine ‘ab-
strakte’ Ressource handelt (s. Seite 74), muss zusätzlich der URL angegeben
werden (z. B. file://meineRessource.txt). Die Seite bietet zwei grundsätzlich
unterschiedliche Möglichkeiten der Metadaten-Speicherung: 1. die direkte Ein-
tragung der Metadaten in die Datenbank der Katalogkomponente und 2. die
Speicherung in einer XML/RDF-Datei.

der Metadaten-Sammler auch noch die Möglichkeit, den URL der Ressource
(im ‘file’-Schema, s. o.) automatisch den Metadaten hinzuzufügen.

6.3.2.4 Metadaten-Sammler

Die dezentrale Erfassung und Speicherung der Metadaten innerhalb der XML- Samm-
lungDateien hat den Vorteil, dass die Metadaten genau dort liegen, wo auch die

Ressourcen selbst gespeichert sind. Damit alle Metadaten aber auch zentral

182 KAPITEL 6. REALISIERUNG

eingesehen werden können, müssen die Einzelinformationen gesammelt und in
einem zentralen Repository gespeichert werden. Für dieses ‘Einsammeln’ der
Metadaten ist der Metadaten-Sammler (engl. metadata harvester) zuständig
(vgl. Abb. 5.10, Seite 118).

Im Rahmen des GLASS-Projektes wurde ein einfacher Harvester implemen-Prinzip

tiert und auf mehreren Rechnern installiert. Das Programm durchsucht zu-
vor eingestellte Verzeichnisse nach Metadaten (XML-Dateien mit der Endung
‘.dc.xml’), legt für die gefundenen Metadaten ein lokales Repository an und
kopiert dieses – sofern gewünscht/möglich – anschließend an einen dafür vor-
gesehenen, zentralen Ort. Die auf diese Weise zusammengetragenen Informa-
tionen werden anschließend vom Katalogmanager in dessen eigene Datenbank
integriert.

Um die spätere Bearbeitung der Metadaten zu erleichtern, folgt die Spei-Umset-
zung cherung des lokalen Repositorys ebenfalls dem XML/RDF-Format. Der Har-

vester wurde als Skript für die Bourne-Again Shell (bash) unter Unix (Linux)
erstellt und benutzt die standardmäßig auf Unix-Maschinen verfügbaren Werk-
zeuge awk und sed.21 Da die bash-Shell inklusive der Werkzeuge auch unter
Microsoft-Windows verfügbar ist, kann der Harvester ohne Änderungen auch
auf Rechnern mit diesem Betriebssystem installiert werden.22

Auf dem Projekt-Server von GLASS wurde der Harvester in die Liste derAktuali-
sierung Programme aufgenommen, die regelmäßig vom System selbst aufgerufen wer-

den.23 Auf diese Weise ist gewährleistet, dass die Repositories täglich aktuali-
siert werden.

Die Integration der im XML-Format vorliegenden Repository-Daten in dieIntegra-
tion Datenbank des Katalogmanagers wurde über ein PHP-Skript realisiert. Dieses

Skript benutzt das Document Object Model (DOM) des W3C – eine plattform-
und sprachneutrale Schnittstelle, um auf XML-Dokumente zuzugreifen und de-
ren Inhalt zu manipulieren (s. z. B. Anderson u. a., 2000)24 – und überträgt alle
Metadaten des Repositorys über SQL in die Datenbank.

6.3.2.5 Metadaten-Anzeige

Das über den Metadaten-Harvester erzeugte Repository besteht aus XML-TagsStyle-
sheet und kann daher auch direkt in einem Web-Browser angezeigt werden. Damit

die Anzeige in einer ansprechenden Form erfolgt, wurde vom Harvester eine
Stylesheet-Angabe in die XML-Datei geschrieben (s. Erklärungen zum Harves-
ter im Anhang D.3, Seite 249). Durch das verwendete Stylesheet erfolgt die
Anzeige im Web-Browser in Tabellenform. Abbildung 6.11 (Seite 184) zeigt die
Anwendung des Stylesheets mit einem Eintrag aus dem automatisch erzeugten
Metadaten-Repository für das R-GLASS-Projekt.

21awk ist ein Programm zur Bearbeitung von Textmustern, sed ein zeilenorientierter Texte-
ditor. Nähere Informationen über diese Werkzeuge finden sich z. B. bei Herold (1999b). Eine

6.3. KOMPONENTEN-REALISIERUNG 183

Die Metadaten, die sich direkt in der Datenbank des Katalogmanagers be- Daten-
bankfinden, können über phpMyAdmin (s. o.) abgefragt, angezeigt und manipuliert

werden.

6.3.2.6 Automatische Metadaten-Generierung

Der verwendete Satz an Metadaten-Elementen (DCMES) beinhaltet ein Ele- Bezie-
hungenment namens ‘Source’. Der Wert dieses Elementes sollte eine Referenz auf ei-

ne Ressource beinhalten, die mit der beschriebenen Ressource in Beziehung
steht (vgl. Tab. 5.7, Seite 116). Für Simulationsmodell-Ergebnisse enthält die-
ses Feld sinnvollerweise den Namen (URN) des verantwortlichen Simulations-
modells sowie den Namen (URN) des Simulationslaufes, in dessen Rahmen die
Berechnung stattfand. Ein Blick in die Metadaten eines Simulationsmodell-
Ergebnisses gibt dann direkt Aufschluss über dessen Herkunft (Simulations-
modell) sowie über die verwendeten Modelleinstellungen, da diese über den
Simulationslaufnamen eindeutig bestimmt werden. Auf diese Weise kann die
Berechnungsgrundlage für Ergebnisse transparenter und nachvollziehbarer ge-
macht und damit die Qualität eines Assessments erhöht werden.

Um die direkte Speicherung von Metadaten durch das Simulationssystem Klasse

zu unterstützten, wird durch die Komponente der ‘allgemeinen Datenverar-
beitung’ eine Funktion bereitgestellt, die Metadaten in der oben beschriebe-
nen Form (DCMES und XML/RDF) als Datei speichern und Daten aus einer
solchen Datei wieder lesen kann. Realisiert wurde diese Funktion durch eine
in C++ implementierte Klasse, die von den neu erstellten Simulationsmodell-
Teilen (vgl. Abb. 6.1, Seite 167) direkt verwendet wird. Eine Erweiterung dieser
Klasse zu einem Dienst würde es ermöglichen, dass auch die nicht über C++
realisierten Teilmodelle die Funktionalität verwenden können.

6.3.3 Simulationssystem

6.3.3.1 Modellteile

Die Simulationssystem-Komponente ist verantwortlich für die Berechnung,
Speicherung und Weitergabe von Simulationsergebnissen. Zur Erfüllung die-
ser Aufgaben wurden in Unterabschnitt 5.2.5 (Seite 131) zwei Schnittstellen

zusammenfassende Darstellung der Standard-Programme unter Unix findet sich bei Herold
(1999a), ausführlichere Informationen hierzu geben Gulbins und Obermayr (1995).

22Getestet wurde der Harvester für MS-Windows-Rechner unter ‘Cygwin’ – einer Linux-
ähnlichen Umgebung, die unter http://www.cygwin.com/ kostenfrei zur Verfügung gestellt
wird.

23Unter Unix können regelmäßig zu startende Programme in eine Tabelle (‘crontab’) auf-
genommen werden. Für den Start dieser Programme sorgt der so genannte ‘cron’-Prozess des
Systems (s. z. B. Welsh u. a., 2000).

24Die Spezifikation des DOM ist als ‘Recommendation’ auf den Internet-Seiten des W3C
zu finden (http://www.w3.org/DOM/DOMTR).

http://www.cygwin.com/
http://www.w3.org/DOM/DOMTR

184 KAPITEL 6. REALISIERUNG

Abbildung 6.11: Web-Seite zur Anzeige von Metadaten.

definiert: eine zur Kontrolle von Simulationsläufen (ISimControl) und eine zur
Abfrage von Ergebnissen (ISimResultAccess). Während die erste Schnittstelle
zwei konkret zu realisierende Operationen enthält (init und run), besitzt die
zweite Schnittstelle lediglich eine abstrakte Operation (getResult) – die genau-
en Operationen sind abhängig von konkreten Simulationsmodellen.

Im Rahmen der GLASS-Entwicklung wurde eine C++-Klasse erstellt (SI-Basis-
Klasse SA ModelBase), die als Basisklasse für die neu erstellten Simulationsmodell-

Teile dient und die einen Rahmen für die Kontrolle von Simulationsläufen bil-
det. Diese Basisklasse besitzt neben den Operationen init() und run() eine Ope-

6.3. KOMPONENTEN-REALISIERUNG 185

ration, über die abgefragt werden kann, ob für eine bestimmte Simulationslauf-
Spezifikation bereits Ergebnisse berechnet wurden: resultsAvailable().

Simulationsmodelle, die auf der Basis dieser Klasse realisiert sind, bieten vier vier
Dienstegenerelle Dienste an: 1) die Abfrage, ob bestimmte Ergebnisse bereits berechnet

wurden (AvailabilityRequest), 2) die Erzeugung von Ergebnis-Datensätzen für
eine komplette Simulationszeit-Periode (DataSetGeneration), 3) die Abfrage
bereits berechneter Ergebnisse (DataSetRequest) und 4) die Erzeugung neuer
Ergebnisse zur Laufzeit (RunTimResult)25.

Die Operationen zur Abfrage von Simulationsergebnissen sind abhängig Konkre-
tisierungvon konkreten Simulationsmodellen. Für das Wasserstressmodell und das Nah-

rungsmittelstressmodell von GLASS wurde beispielsweise die Operation get-
Stress() definiert, die für eine gegebene Region und einen gegebenen Zeitpunkt
den Stresswert liefert. Abbildung 6.12 zeigt die Operationen der Basisklasse
und des Nahrungsmittelstressmodels zur Verdeutlichung in Form eines UML-
Klassendiagramms.

+resultsAvailable(in simRunURN : SISA_URN)
+init(in simRunURN : SISA_URN, in modelService : SISA_GeneralModelService)
+run(in simRunURN : SISA_URN, in simulationTime : SISA_Time)

-modelName : String
-modelVersion : String
-modelURN : SISA_URN
-currentSimulationRunName : SISA_URN

SISA_ModelBase

-AvailabilityRequest
-DataSetGeneration
-DataSetRequest
-RunTimeResult
-NN

«enumeration»
SISA_GeneralModelService

+resultsAvailable(in simRunURN : SISA_URN)
+init(in simRunURN : SISA_URN, in modelService : SISA_GeneralModelService)
+run(in simRunURN : SISA_URN, in simulationTime : SISA_Time)
+getStress(in regionId : GLS_Region, in year : GLS_Date)

GLS_FoodStressModel

Abbildung 6.12: Basisklasse der Simulationsmodelle. Die Basisklasse der Si-
mulationsmodelle (SISA ModelBase) enthält die virtuellen Operationen results-
Available() (zur Abfrage, ob ein Simulationslauf bereits durchgeführt wurde),
init() (zur Initialisierung eines Dienstes) und run() (zum Starten der Berech-
nung neuer Ergebnisse). Das von der Basisklasse abgeleitete Simulationsmodell
zur Berechnung des Nahrungsmittelstresses (GLS FoodStressModel) realisiert
die rein virtuellen Funktionen der Basisklasse und fügt eine weitere zur Abfra-
ge von Ergebnissen hinzu: getStress(). Die Umsetzung des Wasserstressmodells
erfolgt analog.

25Da oft aufwendige Initialisierungen zur Berechnung eines Wertes notwendig sind, ist die
direkte Berechnung eines einzelnen, angefragten Wertes nicht immer sinnvoll bzw. möglich.

186 KAPITEL 6. REALISIERUNG

Simulationsmodelle, die aus anderen Projekten übernommen und nicht neuAdapter

erstellt werden, bieten die geforderten Schnittstellen und Operationen i. d. R.
nicht direkt an – das WaterGAP-Modell hat beispielsweise keine Operation
namens ‘init()’. Sofern diese Modelle die geforderten Funktionen über andere
Schnittstellen bzw. Operationen bereitstellen, müssen die Schnittstellen ent-
sprechend angepasst werden. Diese Anpassung kann mit Hilfe so genannter
Adapter (Wrapper) erfolgen. Adapter nutzen die verfügbaren Operationen des
anzupassenden Objektes und stellen mit deren Hilfe die geforderten Opera-
tionen zur Verfügung. Abbildung 6.13 verdeutlicht das Prinzip in Form eines
UML-Sequenzdiagramms.

Klient Adapter Simulationsmodell

init()

readOptions()

initialize()

Abbildung 6.13: Prinzip eines Adapters. Laut SISA-Schnittstellendefinition
besitzt ein Simulationsmodell die Operation init(). Das beispielhafte Simulati-
onsmodell besitzt diese Operation aber nicht und benötigt zur Initialisierung
den Aufruf von zwei anderen Operationen: readOptions() und initialize(). Da-
mit ein Client dennoch die im SISA definierte Schnittstelle mit der Operation
init() für dieses Modell benutzen kann, sorgt der Adapter für eine transparen-
te Umsetzung auf die entsprechenden Operationen des Modells – der Adapter
passt die Schnittstelle des Simulationsmodells damit an die geforderte SISA-
Schnittstelle an. Weitergehende Informationen über das Adapter-Muster finden
sich z. B. bei Gamma u. a. (1996).

Bietet ein Simulationsmodell keine Operationen, die zur Anpassung an dieErweite-
rung geforderten Schnittstellen verwendet werden können, so ist das Modell entspre-

chend zu modifizieren oder zu erweitern. Eine Implementierung der Operation
run() kann dabei als Minimalanforderung zur ‘Integration’ eines Modells in ein
SISA betrachtet werden.

6.3. KOMPONENTEN-REALISIERUNG 187

Das Wasserstressmodell und das Nahrungsmittelstressmodell wurden di-
rekt in C++ geschrieben und sind Ableitungen der abstrakten Basisklasse SI-
SA ModelBase. Für das WaterGAP-Modell wurde ein einfacher – ebenfalls auf
der SISA ModelBase basierender – Adapter geschrieben, der nach Aufruf der
Operation run() einen Modelllauf über die gesamte Simulationszeit startet.

6.3.3.2 Modellkopplung

In der derzeitigen Version des GLASS-Modells sind die Teilmodelle einfach mit- Verket-
tungeinander verkettet. Die Ausgabedaten eines Modells werden als Eingabedaten

für ein nachgeordnetes Modell verwendet, Rückkopplungen zwischen den Mo-
dellen gibt es nicht (vgl. Abb. 6.1, Seite 167). Die Teilmodelle schreiben ihre
Ergebnisse in Dateien, die im Anschluss von den nachgeordneten Modellen wie-
der gelesen werden (bzw. über die Schnittstelle ISimResultAccess direkt vom
Modell bezogen werden).

Die neu erstellten (und nicht verteilten) Modellteile von GLASS (u. a. das Modell-
ManagerWasserstress-, das Nahrungsmittelstress- und das Sicherheitsmodell) können

über einen einfachen Simulationsmodell-Manager integriert werden, der eine
Liste aller beteiligten Teilmodelle enthält und auf Anfrage Referenzen auf diese
Modelle zurückgibt. Der Eintrag in die Liste wird von den Teilmodellen selbst
(durch eine Anmeldung) veranlasst. Eine Koordination der Zeitschritte oder
die Verwaltung gemeinsam genutzter Variablen ist aufgrund der Kaskadierung
der Modelle nicht notwendig.

6.3.4 Simulationslaufmanager

Der Simulationslaufmanager ist verantwortlich für die Verwaltung der simula-
tionslaufspezifischen Einstellungen und die Bereitstellung dieser Informationen
für die Simulationssystem-Komponente (s. Unterkapitel 5.2.4, Seite 128).

Die Simulationsmodelle innerhalb der Simulationssystem-Komponente kön- verteilt
vs.
zentral

nen verteilt über mehrere Hosts realisiert sein. Im Falle des GLASS-Modells
laufen die Teilmodelle auf unterschiedlichen Betriebssystemen und das Ge-
samtmodell ist alleine aus diesem Grund bereits ein verteiltes System. Um
die Verwaltung der simulationslaufspezifischen Modelleinstellungen zu verein-
fachen und um Ergebnisse zu einem späteren Zeitpunkt besser nachvollziehen
zu können, bietet sich für den Simulationslaufmanager allerdings eine nicht-
verteilte Realisierung an. Die Konzentration aller simulationslaufspezifischen
Einstellung in einem zentralen Simulationslaufmanager erhöht darüber hinaus
die Konsistenz von Simulationsläufen – eine nicht passende Kombination der
Einstellungen unterschiedlicher Modellteile fällt bei einer zentralen Verwaltung
eher auf und lässt sich besser (auch formal) überprüfen. Darüber hinaus er-
möglicht die zentrale Verwaltung der Simulationslaufspezifikationen diejenigen
Einstellungen nur einmal zu speichern und zu spezifizieren, die für mehrere

188 KAPITEL 6. REALISIERUNG

Teilmodelle gültig sind (z. B. den Start- und Endzeitpunkt des Simulationszeit-
raums).

Im Rahmen des GLASS-Projektes wurde der Simulationslaufmanager ausPrinzip

den genannten Gründen als Server realisiert. Dieser Server verwaltet alle simu-
lationslaufspezifischen Einstellungen und bietet die Einstellungen auf Anfrage
den Simulationsmodellen (Clients) an.

Zur Kommunikation zwischen Client und Server, die auch auf einem HostUmset-
zung laufen können, wurden die so genannten ‘Sockets’ in Verbindung mit dem

Sockets
Transmission Control Protocol/Internet Protocol (TCP/IP) benutzt. Abbil-
dung 6.14 gibt einen Überblick über das Prinzip dieser Kommunikationsart.
Die Kommunikation über Sockets und TCP/IP wurde gewählt, da sie relativ
einfach realisierbar ist und da TCP/IP auf vielen Plattformen bereitsteht –
TCP/IP ist das Protokoll, das am häufigsten zur Kommunikation in lokalen
und weltweiten Netzen (z. B. dem Internet) eingesetzt wird (Herold, 1999a).

Die Adressierung zwischen Client und Server geschieht über die Internet-Adres-
sierung Adresse (IP-Adresse) der Hosts und über die Nummer des verwendeten Kom-

munikationskanals (Port) auf dem Host. Programme, die mit dem Simulati-

Socket-Kopf

Protokoll-Stack

Gerätetreiber z.B. Ethernet-Treiber

TCP

IP

Client-Prozess

 Socket-Kopf

Protokoll-Stack

Gerätetreiber z.B. Ethernet-Treiber

TCP

IP

Server-Prozess

Rechnernetz

Abbildung 6.14: Kommunikation über Sockets. Die Abbildung zeigt das Socket-
Modell am Beispiel von TCP/IP. Die Sockets sind die ‘Datenendpunkte’ zur
Kommunikation zwischen Prozessen. Sie bauen auf dem Transmission Control
Protocol (TCP) auf, das wiederum auf dem Internet Protocol (IP) fußt. Die
‘unterste’ Schicht, der Gerätetreiber, sorgt schließlich für die Kommunikation
über das Rechnernetz. Client und Server nutzen (sehen) lediglich die Funk-
tionen des Socket-Kopfes, die anderen Schichten sind transparent. Quelle der
Abbildung: Gulbins und Obermayr (1995).

6.3. KOMPONENTEN-REALISIERUNG 189

onslaufmanager kommunizieren wollen, müssen lediglich die IP-Adresse seines
Hosts und den Port des Managers kennen, um mit ihm in Verbindung zu treten.

Um die Kommunikation der in GLASS eingesetzten C++-Programme mit Client

dem Server zu vereinfachen, wurde eine Klasse (SISA SimulationRunManager-
Client) erstellt, die die Kommunikation über die Sockets transparent macht. In
C++ geschriebene Modellteile rufen also lediglich eine Methode dieser Klasse
auf und brauchen sich nicht um die Kommunikation mit dem Server zu küm-
mern.26 Der SISA SimulationRunManagerClient kontaktiert bei einer Anfrage
automatisch den Server, erfragt den Wert der gewünschten Einstellung und gibt
ihn anschließend an das Simulationsmodell weiter.

Der Server, der ebenfalls über eine C++-Klasse (SISA SimulationRunMan- Server

agerServer) implementiert ist, bezieht alle simulationslaufspezifischen Informa-
tionen aus einer XML-Datei. Da Simulationsläufe als abstrakte Ressourcen be-
trachtet werden, können die zugehörigen Einstellungen innerhalb des SISA ein-
deutig identifiziert werden. Innerhalb des Servers werden die Einstellungen über
das Document Object Model (DOM) abgebildet. Der Server stellt den Clients
auf Anfrage einzelne Einstellungen in Form von Zeichenketten zur Verfügung.
Abbildung 6.15 (Seite 190) verdeutlicht das Zusammenspiel von Client und
Server noch einmal.

Die Verwendung des XML-Formats bietet gegenüber anderen Formaten den Validie-
rungVorteil, dass sowohl die Strukturen als auch die gültigen Werte von Simulati-

onsmodell-Spezifikationen auf eine einfache und vor allem standardisierte Weise
definiert werden können. Diese Definitionen können entweder über die Docu-
ment Type Definition (DTD) oder über die XML Schema Description Language
(XSD) erfolgen. Der Simulationslaufmanager ist auf diese Weise in der Lage, die
Einstellungen beim Laden der Datei auf ihre Gültigkeit hin zu überprüfen. Die
Überprüfung selbst ist Sache eines validierenden XML-Parsers,27 dem neben
der XML-Datei die entsprechende DTD- bzw. XSD-Datei zur Verfügung ge-
stellt wird. Wird dem Server eine nicht gültige Simulationsmodell-Spezifikation
übergeben (z. B. mit einer fehlenden Variablen-Belegung), so erkennt er beim
Einlesen der Spezifikation den Fehler und kann direkt eine entsprechende Mel-
dung ausgeben. Über XML-Schemata ist es darüber hinaus möglich den Wert-
bereich für Variablen festzulegen. Ein Simulationslauf mit Modelleinstellungen,
für die Simulationsmodelle nicht ausdrücklich vorgesehen oder getestet wurden
(z. B. die Unterschreitung des minimalen Zeitschrittes), kann auf diese Weise
unterbunden werden.

26Entsprechende Funktionen sollten für alle in der Simulationssystem-Komponente ver-
wendeten Programmiersprachen bereitgestellt werden.

27Ein Parser ist ein Programm, das einen Quelltext in seine einzelnen Bestandteile zerlegt
und das überprüfen kann, ob der Quelltext syntaktisch korrekt ist (s. Engesser, 1993). Vali-
dierende XML-Parser prüfen sowohl Form als auch Inhalt von XML-Quelltexten (s. Anderson
u. a., 2000).

190 KAPITEL 6. REALISIERUNG

Ein kommentiertes Beispiel für den Einsatz des SimulationslaufmanagersBeispiel

ist, zusammen mit Erklärungen zur Realisierung der nachfolgend beschriebenen
Datenzugriffskomponente, im Anhang D.4 (Seite 250) zu finden.

Client

z.B. WaterGAP

Server

SISA
Simulation-Run Manager

(Server)

Socket

SISA
Simulation-Run

Manager
(Client)

Socket TCP/IP

setServerInfo()

setModelSettingsSpecifications()

getSetting() getSetting()

setModelSettingsSpecifications()

waitForRequest()

*.XML

*.DTD
*.XSD

Abbildung 6.15: Realisierung des Simulationslaufmanagers. Der Simulations-
laufmanager ist als Server realisiert. Die Simulationslauf-Spezifikationen sind
in Form von XML-Dateien (in Verbindung mit einer DTD/XSD-Datei) ge-
speichert. Die Auswahl einer solcher Datei erfolgt über die Methode set-
ModelSettingsSpecification(). Beim Laden der XML-Datei können die in ihr
enthaltenen Einstellungen unter Zuhilfenahme einer DTD/Schema-Datei va-
lidiert werden. Nach dem Aufruf der Methode waitForRequest() wartet der
Server auf Anfragen von Clients. Die Kommunikation geschieht über den
TCP/IP-Protokoll-Stack (Client und Server kommunizieren über die Sockets
der Hosts, auf denen sie laufen). Der Client kann entweder direkt mit dem
Server kommunizieren oder – wie dargestellt – die hierfür geschriebene Klasse
SISA SimulationRunManagerClient benutzen. Nachdem der Client über setS-
erverInfo() einen Server ausgewählt hat (IP-Adresse und Port), kann er – unter
Angabe des Simulationslaufnamens – über getSetting() einzelne Modelleinstel-
lungen abfragen. Sofern notwendig kann der Client zunächst die zu verwendende
XML-Datei mit den Einstellungen festlegen (über setModelSettingsSpecificati-
on).

6.3.5 Datenzugriff und Datenbasis

6.3.5.1 Datenzugriff

Die Datenzugriffskomponente ist verantwortlich für den transparenten lesenden
und schreibenden Zugriff auf Daten und die Transformation zwischen Daten-
formaten (s. Unterabschnitt 5.2.6, Seite 134).

6.3. KOMPONENTEN-REALISIERUNG 191

Die Datenzugriffskomponente kann als Vermittler von Datensätzen angese-
hen werden: Clients (z. B. Simulationsmodelle) wenden sich unter Angabe der
Datensatzbezeichnung an den Vermittler und erhalten von ihm den gewünsch-
ten Datensatz, der sich an einem beliebigen, durch den Vermittler zugreifbaren
Ort befindet.

Bei dieser Art des Datenzugriffs handelt es sich um eine Schichten-Architek- Schich-
tentur: der Client greift auf die Datenzugriffskomponente zu und diese wendet sich

an die Datenhaltungsschicht bzw. an die Datenbasis (vgl. Abb. 5.25, Seite 136).

Mediatoren

Der Zugriff auf Datensätze ist für den Nutzer transparent: Einzelheiten zu Ort Media-
torund Format der Speicherung des Datensatzes sollten für den Nutzer irrelevant

sein. Die Datenzugriffskomponente verbirgt diese Einzelheiten und transfor-
miert das Format eines gespeicherten Datensatzes gegebenenfalls in das ge-
wünschte Format. Innerhalb eines SISA sind i. d. R. viele Datenformate zu be-
rücksichtigen. Die Vermittlung (Mediation) zwischen den einzelnen Formaten
innerhalb der Datenzugriffskomponente sollten aus Gründen der Erweiterbar-
keit und Flexibilität modular aufgebaut sein. Shaw und Garlan (1996) schla-
gen hierzu das Prinzip der ‘Mediatoren’ vor.28 Die Schicht zwischen Nutzer-
Funktionen und Datenbasis besteht hiernach aus einzelnen Mediatoren, die für
den Zugriff auf verschiedene Datenquellen zuständig sind. Abbildung 6.16 (Sei-
te 192) verdeutlicht dieses Prinzip in graphischer Form.

Im Rahmen der GLASS-Entwicklung wurden Mediatoren für die wichtigs- UNF-
Formatten Datenformate realisiert. Ein besonderer Schwerpunkt lag dabei auf der In-

tegration des proprietären Datenformats des Modells IMAGE2.2, das auch im
WaterGAP-Modell verwendet wird. Bei diesem Format handelt es sich um ein
unformatiertes Binärformat (Abkürzung ‘UNF’) für vier verschiedene Daten-
typen: Ganzzahlen in 8 Bit-, 16 Bit- und 32 Bit-Darstellung (abgekürzt UNF1,
UNF2, UNF4) sowie Fließkommazahlen in 32 Bit-Darstellung (UNF0). Ein Da-
tensatz im UNF-Format von IMAGE2.2 besteht aus insgesamt 66896 Werten.
Jeder Wert repräsentiert dabei einen Teil der gesamten Landoberfläche der Er-
de, genauer: eine 0.5◦ geographischer Länge * 0.5◦ geographischer Breite große
Rasterzelle. Die Georeferenzierung der Zellen, also die Zuordnung einer eindeu-
tigen Position auf der Erdoberfläche für jede Zelle, geschieht über die Angabe
von Zeilen (1-720) und Spalten (1-360), die in zwei weiteren Datensätzen ge-
speichert sind.

Mit der Verwendung des UNF-Formats gehen einige Probleme einher: so UNF-
Proble-
me

können beispielsweise nur Werte für Zellen gespeichert werden, die auch in der
Landmaske von IMAGE2.2 auftreten; Änderungen in der Landmaske ziehen

28Nicht zu verwechseln mit dem Mediator-Muster von Gamma u. a. (1996).

192 KAPITEL 6. REALISIERUNG

Users

Client-server

Mediators

Databases

Client-server

Abbildung 6.16: Prinzip der Mediatoren. Mediatoren sind Teile einer hierar-
chischen Schichtenarchitektur, in der die Funktionen der Nutzer (Users) ge-
trennt sind von den Datenbanken (Databases). Die Mediatoren vermitteln da-
bei zwischen den Anfragen der Nutzer und den (heterogenen) Datenbanken.
In der SISA-Architektur entspricht die Datenzugriffskomponente einer solchen
Mediator-Schicht. Quelle der Abbildung: Shaw und Garlan (1996).

u.U. Änderungen der Programme nach sich29; aus dem Datenformat ist nicht
ersichtlich, ob es sich um vorzeichenbehaftete oder vorzeichenlose Daten han-
delt30; und durch die binäre Speicherung und der damit verbundenen Frage
der Binärkodierung der Daten (little endian oder big endian) sind Datensätze
schlecht portierbar31.

Für das UNF-Format wurde aus diesen Gründen eine Reihe von Mediatoren
implementiert. Zu den wichtigsten Mediatoren gehören jene zur Vermittlung
zwischen den Formaten UNF0/1/2/4 und

29IMAGE2.1 enthielt beispielsweise nur 59831 Zellen. Programm-Schleifen über alle Zel-
len konnten daher über 16-Bit-Zahlen realisiert werden – für IMAGE2.2 ist das nicht mehr
möglich (der maximal darstellbare Wert für eine ganzzahlige 16-Bit-Variable ist 65535).

30Die Formatangabe ‘UNF2’, die auch als Dateiendung verwendet wird, bezieht sich auf
den Wertebereich von 0-65535 oder auf den von -32768 bis 32767.

31Die Wertigkeit der Bytes innerhalb eines Datenwortes unterscheidet sich zwischen Platt-
formen: während Intel-basierte Systeme das niederwertigste Byte einer binären Zahlenre-
präsentation zuerst schreiben (little endian), verfolgen beispielsweise die Systeme von SUN-
Microsystems unter SPARC sowie Hewlett-Packard-Maschinen unter HP-UX den umgekehr-
ten Weg und gehen davon aus, das höchstwertige Byte zuerst (an der niedrigsten Adresse)
im Speicher vorzufinden (big endian).

6.3. KOMPONENTEN-REALISIERUNG 193

• dem ASCII-Format des GIS ‘ArcView’
• Tabellen in relationalen Datenbanken

Das ArcView-ASCII-Format beschreibt einen rasterbasierten Geodatensatz ASCII-
Formatüber ein regelmäßiges Raster und je einem Wert pro Rasterzelle. Die Daten sind

in Text-Form im ASCII-Format32 gespeichert und somit auch zwischen unter-
schiedlichen Plattformen gut austauschbar und mit einfachen Mitteln (z. B.
einem Texteditor) darstellbar. Zusätzlich zu den Daten enthält jede Datei die-
ses Formats in den ersten Zeilen eine kurze Beschreibung der Charakteristiken
des Datensatzes (z. B. die geographische Ausdehnung einer Zelle). Das Format
des Datensatzes wird im Anhang D.6 (Seite 257) kurz erklärt.

Die Vermittlung zwischen dem UNF-Format und den Tabellen relationa- ODBC

ler Datenbank-Managementsysteme (RDBMS) wurde über die Open Databa-
se Connectivity (ODBC) realisiert. ODBC ist eine auf Treibern basierende
Schnittstelle zum herstellerunabhängigen Zugriff auf Datenquellen und wird
von allen namhaften Datenbank-Herstellern unterstützt.33 Die ODBC-Daten-
bank-Mediatoren wurden erfolgreich getestet für das RDBMS MySQL sowie für
das System Microsoft Access 2000.

Aufgrund der relativ schlechten Performance beim Zugriff auf Datensätze ADO

über ODBC wurden ebenfalls Mediatoren implementiert, die auf den Active
Data Objects (ADO) von Microsoft basieren und die einen schnelleren Zugriff
auf die Daten erlauben.34

Zum Export von UNF-Datensätzen wurden weitere Mediatoren realisiert. weitere
FormateDiese erlauben die Speicherung von Datensätzen in den Formaten

• ArcView Grid
• Geography Markup Language (GML)
• GeoTiff
• ASCII-Tabelle

Das Format ArcView Grid ist ein proprietäres Rasterformat des GIS Arc-
View des Herstellers ESRI. Die Geography Markup Language (GML) ist ein
Standard des OGC (Cox u. a., 2003) – der nicht nur zur Kodierung von Ras-
terdaten eingesetzt werden kann – und GeoTiff ein Rasterformat, das das für
Bilddateien benutzte Tiff-Format um geographische Informationen erweitert.
Das ArcView-Format wurde gewählt, da dieses GIS im Rahmen des GLASS-
Projektes eingesetzt wird. Die Möglichkeit des Exports von Daten in die For-
mate GML und GeoTiff wurde implementiert, da diese Standards eine brei-
te Anwendung versprechen (s. z. B. Kuhn u. a., 2001). Neben diesen Formaten

32American Standard Code for Information Interchange (ASCII) – ein auf vielen Rechnern
verwendeter 7-Bit-Code zur Darstellung von Ziffern, Buchstaben und Sonderzeichen.

33Zur Verwendung von ODBC unter Oracle s. z. B. Herrmann u. a. (1998).
34Nähere Informationen zu ADO finden sich z. B. bei Gordon (2000).

194 KAPITEL 6. REALISIERUNG

kann ein UNF-Datensatz auch als Tabelle im ASCII-Format abgespeichert wer-
den, die anschließend einfach in andere Programme (z. B. in DBMS) importiert
werden kann.

Der Mediator zum Export in das ArcView-Grid-Format nutzt die Program-GIS-
Kopp-
lung

mierschnittstelle von ArcView und stellt somit ein einfaches Beispiel für die
Kopplung der Komponente mit einem externen GIS dar.

Neben den angeführten Mediatoren gibt es solche, die einen transparentenBinärko-
dierung Zugriff auf UNF-Dateien erlauben, indem sie eine automatische Konvertierung

der beiden möglichen Binärkodierungen vornehmen.

Realisierung

Die Komponente für den Datenzugriff wurde als C++-Klasse implementiertRealisie-
rung und läuft derzeit als Server auf dem Betriebssystem Microsoft Windows 2000.

Die Kommunikation zwischen Client und Server geschieht über den bereits
in Unterabschnitt 6.3.4 (Seite 187) erklärten Mechanismus der Sockets. Für die
Seite des Client wurde – wie beim Simulationslaufmanager (vgl. 6.3.4, Seite 187)
– eine C++-Klasse zur Kapselung der Datenübertragung implementiert. Ein
Beispiel zur Verwendung der Datenzugriffskomponente findet sich im AnhangBeispiel

D.4 (Seite 250).

6.3.5.2 Datenbasis

Die im Rahmen des GLASS-SISA realisierten Mediatoren beschränken sichBasis

derzeit auf Geodaten im IMAGE2.2-Format. Diese Daten können über die Me-
diatoren sowohl in Form von Dateien in unterschiedlichen Formaten als auch
innerhalb eines RDBMS, d. h. des Datenbanksystems, gespeichert werden. Auf-
grund der eingeschränkten Verfügbarkeit von Mediatoren müssen die Simula-
tionsmodelle aber auch direkt – also an der Datenzugriffskomponente vorbei –
auf Dateien zugreifen.35

Um die Integration der Datensätze in das SISA zu verbessern und das Spei-Erweite-
rung chern eines Datensatzes in unterschiedlichen Formaten zu vermeiden, sind die

Mediatoren entsprechend zu erweitern. Die Erweiterung der Mediatoren soll-
te neben dem Geodaten-Format von IMAGE2.2 auch andersartige Geodaten
sowie Daten in Form von Listen und Tabellen behandeln können.

Bei der Realisierung und Erweiterung der Mediatoren stellt sich die FrageFormate

der Speicherungsart (Datei vs. Datenbanksystem) sowie den zu verwendenden
Datenformaten für die Speicherung. In dieser Frage konnte sich (noch) kein
Standard durchsetzen: Daten, die zur Initialisierung von Modellen benutzt wer-
den, sind heterogen und ”Wissenschaftler sind verwirrt“ über die verschiedenen

35Eine ‘Integration’ der Daten in das System erfolgt dennoch: durch die eindeutige Bezeich-
nung der Datensätze (Ressourcen) und die Bereitstellung der Zugriffsinformationen durch den
Katalogmanager.

6.3. KOMPONENTEN-REALISIERUNG 195

Datentypen, Formate und Systeme im Umkreis wissenschaftlicher Daten im
Rahmen der Erdsystemforschung (Ramachandran u. a., 2003).36

Nicht nur im Rahmen der Speicherung und Übertragung von Geodaten kris- XML

tallisiert sich die Verwendung des XML-Formats als möglicher Standard heraus
(s. GML, Cox u. a., 2003). Dieses Format hat weitere Vorteile, die Anderson
u. a. (2000) wie folgt zusammenfassen:

• gute Archivierungsmöglichkeit der Daten
• leichter Austausch von Daten
• die Daten sind über das Document Object Model (DOM) auch von ein-

fachen Clients, z. B. einem Web-Browser, zu bearbeiten
• flexible Darstellungsmöglichkeit der Daten, z. B. über Stylesheets
• möglicher Import und Export von Daten in bzw. aus Datenbanken37

Auch für die Archivierung von Daten bietet XML nach Anderson u. a. (2000)
gegenüber anderen Datenformaten, wie einfachen Dateien oder Datenbank-
Dumps, Vorteile:

• XML-Dateien sind plattformunabhängig – einfache Bearbeitung durch
DOM-Parser möglich

• XML-Dateien sind selbstbeschreibend – Strukturinformationen sind in-
härent; nur wenig Zusatzinformation zum Verständnis eines Dokuments
notwendig

• XML-Dateien beschreiben hierarchische Informationen – einfaches Ver-
ständnis der Daten durch Baumstruktur

Der oft angeführte Nachteil der umfangreichen Größe von XML-Dateien
wird ebenfalls durch Anderson u. a. (2000) entkräftet: da es sich um einfache
Text-Dateien handelt, können diese i. d. R. durch Komprimierung auf ein Zehn-
tel oder Zwanzigstel der ursprünglichen Größe reduziert werden. Als Nachteil
dieses Formats bleibt allerdings eine im Vergleich zu anderen Arten der Da-
tenspeicherung schlechtere Auswertungsgeschwindigkeit – XML-Daten müssen
vor der Verwendung innerhalb eines Programms zunächst durch einen Parser
in das Document Object Model überführt werden.

Die derzeitigen Aktivitäten im Bereich der GML und die beginnende Un-
terstützung dieses Formats durch GIS-Hersteller sprechen ebenfalls für die Ver-
wendung von XML. Darüber hinaus erlaubt die Speicherung von Datensätzen
im XML-Format eine direkte Integration von Metadaten in den Datensatz.

36Einer der Gründe, warum eine automatisierte Transformation von Datentypen notwendig
ist.

37Siehe hierzu z. B. die Informationen zur XML-Datenbank ‘Xindice’ unter http://xml.

apache.org/xindice

http://xml.apache.org/xindice
http://xml.apache.org/xindice

196 KAPITEL 6. REALISIERUNG

6.3.5.3 Datenbanksystem

Als Datenbanksysteme wurden, wie bereits erwähnt, MySQL und Microsoft
Access eingesetzt. Der Einsatz der Systeme beschränkt sich bisweilen auf den
Zugriff durch die angesprochenen Mediatoren.

6.3.5.4 Datengrundlage

Neben der Verwendung eines ‘allgemein anerkannten’ Formats von Datensät-
zen, ist es im Rahmen der Forschung zum System Erde wichtig, auf anerkannte
Inhalte zurückzugreifen. Diese Notwendigkeit begründet sich u. a. darauf, dass
zur Validierung von Modellen deren Ergebnisse mit den Ergebnissen anderer
Modelle verglichen werden sollen (Toth, 1995).

Die im Rahmen der Systemdefinition aufgelisteten grundlegenden Assess-aner-
kannte
Quellen

ment-Daten (/D60/-/D120/) sollten daher aus einschlägig bekannten und an-
erkannten Quellen (UN-Organisationen, IPCC, Weltbank etc.) kommen.

In diesem Zusammenhang sind auch die Bestrebungen des InternationalStandar-
disie-
rungsbe-
mühun-
gen

Steering Committee for Global Mapping (ISCGM)38 von Bedeutung, das die
Erstellung von Geodaten mit einer Auflösung von 1km * 1km und globaler Ab-
deckung koordiniert. Diese so genannte Global Map besteht aus acht Schichten
(Themen): Grenzen, Entwässerung, Transport, Siedlungen, geographische Hö-
he, Landbedeckung, Landnutzung, Vegetation.39 Die Verwendung derartiger
Basisdaten würde die Vergleichbarkeit von Analysen und – aufgrund der dann
einheitlichen Landmaske – auch die Interoperabilität von Modellen erheblich
verbessern.40

6.3.5.5 Kodierungsstandards

Der Austausch von Ressourcen macht nicht bei den Modellen oder Modelltei-
len bzw. Diensten Halt. Auch Daten, deren Erzeugung oder Beschaffung sehr
arbeitsaufwendig ist, stellen eine wichtige Arbeitsgrundlage beim integrierten
Assessment dar, deren Wiederverwendung anzustreben ist. Der Austausch von
Daten funktioniert aber nur dann reibungslos, wenn sie nicht nur die gleiche
Form im Sinne der verwendeten Datenelemente (Syntax) und die gleiche In-
haltsbedeutung (Semantik) besitzen, sondern darüber hinaus auf die gleiche Art
und Weise kodiert wurden: Entfernungsangaben in Meilen mit einem Punkt als
Dezimaltrennzeichen lassen sich nicht ohne Umwandlungsaufwand in Systemen
verwenden, die die Angaben in Metern und einem Komma als Dezimaltrenn-
zeichen benötigen. Im Sinne der Interoperabilität ist daher die Verwendung

38Startseite im Internet: http://www.iscgm.org/html4/index.html
39Die Spezifikation der Global Map ist in der Version 1.1 erhältlich unter http://www.

iscgm.org/html4/pdf/gmspec-1.1.pdf
40Siehe zu diesem Thema auch das Spatial Data Infrastructure Cookbook von Nebert

(2001).

http://www.iscgm.org/html4/index.html
http://www.iscgm.org/html4/pdf/gmspec-1.1.pdf
http://www.iscgm.org/html4/pdf/gmspec-1.1.pdf

6.3. KOMPONENTEN-REALISIERUNG 197

einheitlicher Metriken und Kodierungen anzustreben. Ausgangspunkte hierfür
sind erneut Standards.

Als Grundlage sollten die allgemein bekannten SI-Einheiten dienen. Die SI-Ein-
heitenVerwendung dieser Einheiten mag in einigen Fällen (und Ländern) zunächst

umständlich und wenig eingängig erscheinen: man denke an einen Datensatz,
der eine mittlere Monatstemperatur von 280 anzeigt – Kelvin, wohlgemerkt.
Temperaturangaben in Kelvin haben allerdings den Vorteil, dass sie stets als
positive Zahlen dargestellt werden (einfachere Datenhaltung und -validierung)
und dass diese Metrik in vielen wissenschaftlichen Gleichungen verwendet wird.

Gerade beim internationalen Datenaustausch stellen Standards und andere
Vereinbarungen nicht nur eine große Arbeitserleichterung dar, sondern auch
einen Gewinn bezüglich der Richtigkeit bei der Verwendung von Daten. Die
Angabe ‘320 centner/ha’, die aus einer russischen Statistik über Ernte-Erträge
entnommen wurde, ist beispielsweise nicht direkt vergleichbar mit derselben
Zahl aus einer deutschen Statistik – in Russland bedarf es 100 kg für einen
Zentner, in Deutschland sind es 50 kg (100 Pfund). Selbst bei einem Daten-
satz mit dokumentierter Einheit würde ein solches Problem nicht direkt (wenn
überhaupt) auffallen.

Neben ‘einheitlichen’ SI-Einheiten gibt es Standards (insbesondere der ISO- ISO-
NormenSerie) zur Implementierung und Formatierung von Daten. Ein Beispiel für deren

Sinnhaftigkeit ist die Angabe eines Datums: ‘08/05/03’ – in den USA würde
Datum

diese Angabe dem 5. August 2003 entsprechen, in Deutschland dem 8. Mai
2003. Eine Mehrdeutigkeit trotz eines wohldefinierten Formats, denn ‘2003-05-
08’41 ist die standardkonforme Art für die numerische Notation des 8. Mai 2003
nach ISO 8601. Diese Norm regelt über die Datums-Angaben hinaus auch die
Angabe von Wochennummern und Zeiten: 11:55:00Z entspricht fünf vor zwölf
gemessen am Null-Meridian (Greenwich).

Ein im Rahmen der globalen Modellierung immer wieder aufkommendes Länder

Problem ist die uneinheitliche Kodierung von Ländern. Bei der Realisierung
des GLASS-Modells mussten für eine Analyse beispielsweise drei Datensätze
unterschiedlicher Datenlieferanten miteinander verknüpft werden. Die Bezeich-
nungen für die USA lauteten in diesen Datensätzen wie folgt: ‘United States’,
‘U.S.’, ‘America, US’ – an eine automatische Zusammenführung der Datensät-
ze war (nicht nur wegen der Länderkennung der USA) nicht zu denken. Für
GLASS wurden allen länderbezogenen Datensätzen eindeutige Länderkennun-
gen zugewiesen. Hierzu wurde die aus drei Ziffern bestehende Kennung nach
ISO 3166 verwendet. Diese Norm erlaubt neben der Kodierung existierender
Länder auch die Kodierung nicht mehr existierender Staaten (wie der DDR)
und administrativer Einheiten, die für manche Assessments relevant sind.

41Formal: JJJJ-MM-TT. Die Bindestriche können auch entfallen. Ist die Angabe des Tages
oder Tages und Monats nicht gewünscht, wird ‘2003-05’ bzw. ‘2003’ geschrieben.

198 KAPITEL 6. REALISIERUNG

Die angesprochenen Kodierungen sind nur Beispiele. Tabelle 6.1 listet wei-
tere relevante Standards auf.

Standard Gegenstand Kurzbeschreibung

ISO 2955 Das metrische System Methode zur Beschreibung von SI-
Einheiten und anderen Maßen in Compu-
tersystemen.

ISO 3166 Ländercodes oder Länder-
kennungen

Spezifikation für die Kennzeichnung von
Ländernamen.

ISO 4217 Kürzel für Währungen Liste von Codes für nationale Währungen.

ISO 5218 Kennzeichnungen für das
Geschlecht

Codes zur Angabe des Geschlechts.

ISO 6093 Angabe für nummerische
Werte

Drei Präsentationsnormen für nummeri-
sche Werte. In Form von Zeichenketten
(Texten), in einer maschinenlesbaren Form
und eine für Menschen gut lesbare Form.

ISO 6709 Ortsangaben Format zur eindeutigen Identifikation von
Ortskoordinaten auf, unter oder über der
Erdoberfläche (Längengrad, Breitengrad,
Höhe).

ISO 8601 Datum und Zeit Format für Datums- und Zeitangaben.

Tabelle 6.1: ISO-Standards zur Datenkodierung. Quelle: Anderson u. a. (2000).

6.3.6 Datenverarbeitung

Zur Geodatenverarbeitung wurde im Rahmen der GLASS-Entwicklung eine
C++-Klasse implementiert. Diese Klasse bietet Operationen, mit denen grund-
legende Transformationen und Kombinationen von rasterbasierten Geodaten
durchgeführt werden können. Zu den realisierten Operationen gehören solche
zur Multiplikation, Division, Addition und Subtraktion von Rasterdaten mit
skalaren Werten sowie mit anderen Rasterdaten. Darüber hinaus bietet die
Klasse Operationen zur Berechnung zonaler Summen und zonaler Mittelwerte
(s. Bsp. in Abb. 6.17).

Die Klasse zur Geodatenverarbeitung wird sowohl von Teilen des Simulati-Verwen-
dung onsmodells eingesetzt als auch von den Werkzeugen, die für die Vorverarbeitung

und Nachbearbeitung von Assessment-Daten erstellt wurden. Ein Beispiel zur
Verwendung dieser Klasse findet sich im Anhang D.7 (Seite 257).

Neben der Klasse zur Unterstützung der Geodatenverarbeitung wurden eini-Utility

ge allgemeine Datenverarbeitungsfunktionen erstellt; u. a. Funktionen zur Kon-
vertierung der Kodierung von Binärdaten (big/little endian) sowie ein einfacher
Zufallszahlengenerator, der für den Klimavariabilitätsgenerator in GLASS be-
nötigt wird.

6.4. FAZIT 199

1 21 4
4221

1 3 3 4
3331

1 11 1
1111

2 2 2 2
1222

Raster 1 Raster 2

Summe

zonale
Summe

7 37 3
3337

7 9 9 3
9997

2 32 5
5332

3 5 5 6
4553

Abbildung 6.17: Funktionsbeispiel zur Geodatenverarbeitung. Die Abbildung
verdeutlicht die realisierten Operationen zur Bildung von Summen und zona-
len Summen von Geodatensätzen. Die Summe ergibt sich aus der Addition der
Werte, die sich an der entsprechenden Position von Raster 1 und Raster 2 be-
finden. Die zonale Summe ergibt sich aus der Summe aller Werte von Raster 2,
die sich in einer Zone befinden, wobei die Zonen durch die Werte in Raster 1
bestimmt werden.

6.4 Fazit

In Kapitel 5 (Seite 95) wurde eine Software-Architektur für Systeme zum inte- Aus-
gangs-
basis

grierten simulationsbasierten Assessment (SISA) entwickelt. Diese Architektur
soll als Ausgangsbasis für die Entwicklung neuer SISA herangezogen werden
können.

Ziel dieses Kapitels war es, die Anwendbarkeit dieser allgemeinen SISA- Ziel

Architektur anhand einer prototypischen Implementierung der spezifizierten
Komponenten unter Verwendung eines konkreten Simulationssystems zu bele-
gen.

Die Implementierungen erfolgten für die Simulationsmodelle, die im Rah- Rahmen

men des Assessment-Projektes GLASS (GLobal ASsessment of Security) – des-
sen Ziel die Analyse der Auswirklungen des globalen Wandels auf die Wasser-
und Nahrungsmittelverfügbarkeit ist – eingesetzt werden. Das GLASS-Simula-
tionssystem besteht sowohl aus Teilmodellen, die bereits in anderen Projekten
verwendet wurden (z. B. das Modell WaterGAP) als auch aus Teilmodellen, die
speziell für das GLASS-Projekt erstellt wurden (z. B. das Wasserstressmodell
und das Nahrungsmittelstressmodell).

Unter Nutzung des GLASS-Simulationssystems wurden die folgenden zen- Tests

tralen Konzepte der Architektur überprüft:

200 KAPITEL 6. REALISIERUNG

• die Verwaltung und Bereitstellung wichtiger Assessment-Informationen
durch die Dokumentationskomponente

• die Verwaltung von Zugriffsinformationen und Metadaten innerhalb des
Katalogmanagers

• die automatische Aktualisierung des Katalogmanagers durch Metadaten-
Sammler

• die Kapselung von Simulationsmodellen in der Simulationssystemkompo-
nente

• die Bereitstellung von Simulationslauf-Spezifikationen über den Simula-
tionslaufmanager

• der transparente Datenzugriff über die Datenzugriffskomponente

• die Datenspeicherung im Datenbanksystem bzw. in Dateien (Datenbasis)

• die Bereitstellung wieder verwendbarer Funktionen zur Geodatenverarbei-
tung und allgemeinen Datenverarbeitung

Zusammenfassend lässt sich festhalten, dass die Umsetzung der zentralenErgeb-
nisse Konzepte der entwickelten SISA-Architektur auch mit relativ einfachen tech-

nischen Mitteln und unter Verwendung freier Software möglich ist. Bei der
Anwendung im Rahmen des GLASS-Modells haben sich insbesondere die Ver-
folgung der Metadaten-Konzepte (Nutzung der 15 grundlegenden Metadaten-
Elemente, Verwendung von eindeutigen Ressourcen-Bezeichner, Nutzung von
Metadaten-Sammlern) und die Nutzung des Simulationslaufmanagers als ent-
scheidende Schritte zu mehr Transparenz und Nachvollziehbarkeit erwiesen. Die
Übertragung der für das Simulationssystem definierten Schnittstellen (Ope-
rationen init, run, getResult) auf die Teilmodelle führt zu einer verbesserten
Wiederverwendbarkeit und Interoperabilität der Teilmodelle. Ferner hat sich
gezeigt, dass die Informationen der Dokumentationskomponente entscheidend
zu einem reibungslosen und transparenten Assessment beitragen können.

Eine Zusammenfassung wichtiger Realisierungsaspekte zu den aufgeführten
Tests findet sich in den folgenden Absätzen.

Zur Verwaltung der Assessment-Informationen (Anmerkungstexte, Informa-Doku-
menta-
tion

tionen über Personen und Organisationen etc.) wurde das relationale Daten-
bank-Managementsystem (RDBMS) MySQL eingesetzt, das die Verwaltung der
Datenbestände über einen Web-Browser erlaubt. Zur Bereitstellung und Erwei-
terung von Datenbeständen wurde ein separates, auf der Programmiersprache
PHP basierendes, Web-Interface implementiert.

6.4. FAZIT 201

Der Katalogmanager, der die Metadaten und Zugriffsinformationen ver- Katalog-
managerwaltet, basiert ebenfalls auf dem RDBMS MySQL. Die eindeutige Identifizie-

rung von Ressourcen im Katalogmanager wird über Uniform Resource Names
(URN) realisiert. URNs folgen einer Syntax, die im Rahmen dieses Kapitels spe-
ziell für SISA-Ressourcen entwickelt wurde. Die Erstellung eines URN für eine
Ressource wird durch einen ‘URN-Generator’ unterstützt, der über einen Web-
Browser bedient werden kann. Jeder SISA-Ressource muss ein solcher URN
zugewiesen werden. Nicht abstrakte Ressourcen (vgl. Abb. 4.2, Seite 76) müs-
sen über den URN hinaus einen Uniform Resource Locator (URL) besitzen, der
über den Ort der Speicherung der Ressource und den Zugriffsmechanismus auf
diese Ressource Auskunft gibt.

Als Metadatensatz wurde der Dublin Core Metadata Element Set (DCMES)
verwendet. Zur Erfassung der Metadaten wurde ebenfalls eine Web-Seite er-
stellt. Nach der Eingabe der 15 Elemente sowie des URN und evtl. des URL
kann ein automatischer Eintrag in die Datenbank des Katalogmanagers erfol-
gen. Darüber hinaus ist es möglich, die Meatdaten in Form einer Datei (im
XML/RDF-Format) zu speichern.

Die in Form von Dateien gespeicherten Metadaten können über Metadaten- Sammler

Sammler zusammengetragen und in gesonderten Repositories (ebenfalls im
XML/RDF-Format) gespeichert werden. Das Programm des Metadaten-Samm-
lers wurde über ein einfaches Shell-Skript realisiert. Die Integration der Reposi-
tory-Daten in die Katalogkomponente erfolgt durch ein PHP -Programm. Dieses
Programm verwendet das Document Object Model (DOM), um die Reposito-
ries zu analysieren, und überträgt die Metadaten über die Structured Query
Language (SQL) in die MySQL-Datenbank. Bei dieser Übertragung wird auch
automatisch die Ressourcen-Liste des Katalogmanagers aktualisiert. Sowohl die
Repositories als auch die einzelnen Metadaten-Dateien können durch die Ver-
wendung von XML-Stylesheets direkt über einen Web-Browser angezeigt wer-
den.

Um die Transparenz und Nachvollziehbarkeit von Modellergebnissen zu er- Meta-
daten
Generie-
rung

höhen, sollten die Simulationsmodelle bei der Erzeugung von Ergebnisdaten-
sätzen direkt die zugehörigen Metadaten schreiben. Zur Gewährleistung der
Nachvollziehbarkeit sollten die Metadaten zu einem Ergebnisdatensatz auf je-
den Fall den URN des Modells sowie den URN des Simulationslaufs beinhalten.
Um eine derartige Dokumentation von Modellergebnissen zu erleichtern, wur-
de innerhalb der Komponente zur allgemeinen Datenverarbeitung eine C++-
Klasse implementiert, über die die DCMES-Elemente im XML/RDF-Format
gespeichert werden können.

Zur Realisierung der Simulationssystem-Komponenten der SISA-Architek- Simula-
tionssys-
tem

tur wurde eine C++-Klasse erstellt. Diese Klasse dient als Basisklasse für die im
Rahmen des GLASS-Projektes neu erstellten Teilmodelle. In Anlehnung an die
für das Simulationssystem der SISA-Architektur definierte Schnittstelle müs-

202 KAPITEL 6. REALISIERUNG

sen alle von dieser Basisklasse abgeleiteten Teilmodelle die Operationen init()
und run() implementieren. Des Weiteren muss jedes Teilmodell eine Operation
namens resultsAvailable() anbieten. Über diese Operation gibt ein Teilmodell
Auskunft darüber, ob für eine bestimmte Simulationslaufspezifikation bereits
Ergebnisse vorliegen. Die neu erstellten Teilmodelle implementieren außerdem
die Schnittstelle ISimResultAccess oder bieten eine entsprechende Operation
zur Abfrage von Modellergebnissen an (das Nahrungsmittelstressmodell stellt
beispielsweise die Operation getStress() zur Verfügung).

Das wieder verwendete Modell zur Berechnung von Wasserverfügbarkeiten
(WaterGAP) bietet die geforderten Schnittstellen nicht an. Um das Modell
dennoch als Teilmodell innerhalb des Simulationssystems benutzen zu können,
wurde ein Adapter implementiert. Dieser Adapter ist für die Anpassung der
Schnittstelle des WaterGAP-Modells an die geforderten Schnittstellen zustän-
dig.

Die neu erstellten Teilmodelle können über einen einfachen, in C++ im-
plementierten Modellkoppler miteinander verbunden werden. Um eine solche
Verbindung zu erlauben, muss sich ein Modell bei diesem Koppler anmelden.
Der Koppler trägt daraufhin einen Verweis auf das Modell in eine interne Liste
ein und gibt ihn auf Anfrage an andere Teilmodelle weiter. Die Interaktion der
Teilmodelle geschieht dann über deren definierte Schnittstelle.

Die für einen Simulationslauf notwendigen Einstellungen (Simulationslauf-Simula-
tions-
lauf-
manager

spezifikationen) erhalten die Simulationsmodelle vom Simulationslaufmanager.
Der Simulationslaufmanager wurde unter Verwendung der Programmierspra-
che C++ als Server-Anwendung unter Microsoft Windows 2000 realisiert. Die
Kommunikation zwischen dem Simulationslaufmanager und den Simulations-
modellen (Clients) geschieht über das Internet-Protokoll (TCP/IP) (Verwen-
dung von Sockets). Auf diese Weise wird der Aufbau einer verteilten Anwen-
dung ermöglicht (das Modell WaterGAP läuft beispielsweise unter Linux). Die
Simulationslaufspezifikationen werden in Form von XML-Dateien gespeichert
und vom Simulationslaufmanager eingelesen. Durch die Verwendung einer Do-
cument Type Definition (DTD) innerhalb der Spezifikationsdatei kann der Si-
mulationslaufmanager die Gültigkeit von Einstellungen über einen validieren-
den Parser überprüfen.

Die Datenzugriffskomponente wurde, genauso wie der Simulationslaufma-Daten-
zugriff nager, als Server-Anwendung unter Microsoft Windows 2000 realisiert. Die

Simulationsmodelle (Clients) wenden sich, unter Angabe des Datensatz-URN
und des gewünschten Formats, in dem der Datensatz geliefert werden soll, an
den Server. Der Server wendet sich seinerseits an den Katalogmanager, um die
für einen Zugriff notwendigen Informationen (URL und weitere Informationen
zum Datenformat) zu erfragen. Anschließend liefert die Datenzugriffskompo-
nente dem Client den Datensatz im gewünschten Format. Die Transformation
verschiedener Datenformate geschieht transparent für den Client und wird über

6.4. FAZIT 203

so genannte Mediatoren realisiert. Im Rahmen des Architekturtests wurden ver-
schiedene Mediatoren für das Teilmodell WaterGAP realisiert. Die Mediatoren
greifen auf die Datensätze aus der Datenbasis zu und geben sie dann im internen
(binären) Format (UNF-Format) an das Modell weiter.

Die Mediatoren erlauben den lesenden und schreibenden Zugriff auf das Daten-
basisUNF-Dateiformat und auf das textbasierte Austauschformat für Rasterdaten

des GIS ArcView. Darüber hinaus wurden Mediatoren für den Zugriff auf Daten
entwickelt, die in einem RDBMS gespeichert sind. Die Verbindung der Media-
toren mit dem RDBMS wurde über die Open Database Connectivety (ODBC)
realisiert. Durch die ODBC-Verbindung ist ein relativ einfacher Austausch des
verwendeten RDBMS möglich (getestet wurden MySQL und Microsoft Access
2000). Außerdem wurde die etwas schnellere Verbindung zur Datenbank über
Active Data Object (ADO) implementiert (und für Microsoft Access 2000 getes-
tet). Weitere Mediatoren erlauben den Export von Datensätzen in das ArcView-
Rasterformat, in GeoTiff sowie in Dateien, die die Geographical Markup Lan-
guage (GML) als Format nutzen. Der Mediator zum Export von Daten in das
ArcView-Rasterformat ist ein Beispiel für die Kopplung mit einem GIS, da
er zur Erzeugung des proprietären Datenformats die Programmierschnittstelle
von ArcView nutzt.

Für die Ausgestaltung der Komponenten zur Geodatenverarbeitung bzw.
zur allgemeinen Datenverarbeitung wurden einige C++-Klassen und Funktio-
nen implementiert. Die geodatenverarbeitenden Klassen erlauben die Kombi-
nation und Transformation von Rasterdaten des internen UNF-Formats. Die
Funktionen erlauben z. B. die Addition zweier Rasterdatensätze oder die Bil-
dung zonaler Summen. In der Komponente der allgemeinen Datenverarbeitung
befindet sich u. a. ein Zufallszahlengenerator.

204 KAPITEL 6. REALISIERUNG

Kapitel 7

Zusammenfassung und
Ausblick

7.1 Zusammenfassung

Systeme zum integrierten simulationsbasierten Assessment (SISAs) sind Soft- Problem

ware-Systeme, die von unterschiedlichen Fachdisziplinen stammende Daten und
Simulationsmodelle zum ‘System Erde’ in einem konsistenten Rahmen kombi-
nieren und neue Daten über den Zustand und mögliche langfristige Änderungen
des ‘Systems Erde’ – vornehmlich zur Unterstützung politischer Entscheidungs-
träger – berechnen und bereitstellen. Diese Systeme, die von einigen Autoren
auch als integrierte Modelle bezeichnet werden, sind wichtige Werkzeuge zur
Analyse des globalen Wandels. Durch die zunehmende Komplexität und Größe
von SISAs ergeben sich Herausforderungen bezüglich der Transparenz, Nach-
vollziehbarkeit und Reproduzierbarkeit von Analysen und Ergebnissen, der Er-
weiterbarkeit von Modellen, der Wiederverwendbarkeit und Austauschbarkeit
von Modellteilen sowie der Interoperabilität. Um diesen Herausforderungen ge-
recht zu werden, muss das Prinzip der Modularisierung angewendet werden.
Vorhandene Systeme sind allerdings zumeist unzureichend modularisiert (Jae-
ger u. a., 2002) und genügen daher nicht den gestiegenen Anforderungen.

Die Modularisierung kann über die Definition einer Software-Architektur er- Lösungs-
ansatzreicht werden. Eine Software-Architektur ist die grundsätzliche Strukturierung

eines Software-Systems. Sie beschreibt eine Menge definierter Komponenten,
die über Schnittstellen miteinander kommunizieren, spezifiziert deren jeweili-
gen Zuständigkeitsbereich und beschreibt die Beziehungen zwischen den Kom-
ponenten.

Wie eine Analyse existierender Systeme in Kapitel 3 (Seite 25) gezeigt hat,
spiegeln sich die gestiegenen Leistungsanforderungen an die Modelle (z. B. die

205

206 KAPITEL 7. ZUSAMMENFASSUNG UND AUSBLICK

Integration von GIS-Funktionalitäten) zwar in den einzelnen Systemen wider,
eine Komponentenbildung im Sinne einer Software-Architektur konnte in der
Literatur aber nicht gefunden werden. Die Systeme werden hingegen zumeist
in Module eingeteilt, die sich aus der Realisierung der Systeme ergeben (z. B.
in Klassen-Bibliotheken). Aufgrund der unterschiedlichen Funktionalitäten der
Module, lassen sich diese nicht ohne weiteres unter den Systemen austauschen.
Eine Interoperabilität zwischen den Systemen ist wegen der uneinheitlichen
Einteilung der Gesamtsysteme sowie der unterschiedlichen Implementierungs-
methoden bei der Funktionsrealisierung ebenfalls nicht gegeben.

Das Ziel der vorliegenden Arbeit war daher die Entwicklung einer allgemeinZiel

anwendbaren Software-Architektur für SISAs, die die Wiederbenutzbarkeit und
Wiederbenutzung von Modellen, Modellteilen, Daten und anderen notwendigen
Betriebsmitteln unterstützt, die Zusammenarbeit mit anderen Programmen be-
günstigt und die Qualität der Ergebnisse sichern hilft.

Um dieses Ziel zu erreichen, stellten sich die folgenden Forschungsfragen:Fragen

• In welche generellen Komponenten sollte ein System zum integrierten
simulationsbasierten Assessment aufgeteilt werden?

• Welche Komponenten können unabhängig von einem konkreten System
realisiert und damit für unterschiedliche Modelle wieder verwendet wer-
den?

• Welche Daten sollten zur Unterstützung der Transparenz von Analyse-
und Simulationsergebnissen vorgehalten werden?

• Welche Standards können zur Erhöhung der Qualität integrierter Modelle
beitragen?

Der generelle Ausgangspunkt für die Entwicklung einer Software-Architek-System-
defini-
tion

tur ist die Systemdefinition, in der die Hauptfunktionen und Hauptdaten sowie
die grundlegenden Anforderungen an ein System bestimmt werden. Um die all-
gemeinen, auf mehrere Systeme übertragbaren Anforderungen eines SISA zu
definieren, wurde in Kapitel 3 (Stand der Technik, Seite 25) die Literatur über
SISAs hinsichtlich ihrer Leistungsmerkmale und ihres Funktionsumfangs ausge-
wertet. Diese Analyse zeigte, dass sich das Leistungsspektrum von SISAs nichtLeis-

tungs-
spek-
trum

auf die Berechnung neuer Simulationsergebnisse beschränkt: insbesondere die
Bereitstellung und Nutzung von GIS-Funktionalitäten, die Unterstützung bei
der Analyse von Ergebnissen, Daten und Modellen, die Verwaltung von Szena-
rien und Datenbeständen sowie die Bereitstellung von Systemdokumentationen
gehören ebenfalls zu den Leistungsmerkmalen vieler Systeme. Aufbauend auf
diesem Ergebnis und einer weiteren Analyse nicht-funktionaler (qualitativer)
Anforderungen wurde in Kapitel 4 (Seite 69) eine Systemdefinition für ein all-
gemeines (d. h. nicht von konkreten Projektanforderungen beeinflusstes) SISA
vorgenommen. Der folgende Absatz fasst die wichtigsten Aspekte der System-
definition zusammen.

7.1. ZUSAMMENFASSUNG 207

Ziel des Systems zum integrierten simulationsbasierten Assessment ist die System-
zielUnterstützung des integrierten Assessments durch die Bereitstellung eines kon-

sistenten Rahmens für Daten und Simulationsmodelle zum System Erde und
zur Durchführung von Simulationsläufen sowie die Bereitstellung grundlegen-
der Informationen zu durchgeführten oder in der Durchführung begriffenen
Projekten. Um dieses Systemziel zu erreichen, müssen verschiedene Betriebs- Ressour-

cenmittel (Ressourcen) durch das SISA verwaltet werden. Zu diesen Ressourcen
gehören sowohl die Simulationsmodelle und die ihnen zugeordneten Daten als
auch andere Software (z. B. zur Vorverarbeitung oder Nachbearbeitung von
Daten) und Dokumente (z. B. Modellbeschreibungen oder Ergebnisberichte).
Darüber hinaus muss das SISA Informationen über Projekte, Analysen, Sze- Daten

narien, beteiligte Personen und andere Hintergrundinformationen bereitstel-
len. Die Daten, die für die Simulationsmodelle benötigt werden, sollten eben-
falls über das SISA zur Verfügung stehen. Die Durchführung und Verwaltung Simula-

tionenvon Simulationsläufen gehört darüber hinaus ebenso zur Aufgabe des SISA
wie die Bereitstellung von Simulationsergebnissen. Die Sicherstellung der Kon-

Konsis-
tenzsistenz wird unterstützt durch die Dokumentation der Simulationsergebnisse,

der verwendeten Simulationsmodelle, der zugrunde liegenden Simulationslauf-
Spezifikation und des Simulationslaufes selbst. Das SISA sollte in eine Software- Umge-

bungUmgebung eingebettet werden können. Insbesondere sollten Schnittstellen
zu Geo-Informationssystemen (GIS) und zu Datenbank-Managementsystemen
(DBMS) vorhanden sein. Neben der gewünschten Interoperabilität mit GIS und Qualität

DBMS stellt das SISA weitere Anforderungen an die Qualität der Software-
Architektur (nicht-funktionale Anforderungen). Wegen des zunehmend notwen-
digen Austausches von Modellteilen zwischen unterschiedlichen Organisationen
sollte das Qualitätsmerkmal der Austauschbarkeit (zumindest von Modellteilen)
bei der Entwicklung der Architektur besonders berücksichtigt werden. Die Mo-
difizierbarkeit des Systems (insbesondere von Modellteilen) sollte wegen der oft
notwendigen Änderungen und Aktualisierungen ebenfalls sehr gut sein. Dar-
über hinaus wird die Transparenz, Nachvollziehbarkeit und Reproduzierbarkeit
von Assessment-Ergebnissen als wichtiges Qualitäts-Merkmal eines SISA defi-
niert. Um die Anforderung der Nachvollziehbarkeit von Assessment-Ergebnissen
zu erfüllen, ist das Qualitätsmerkmal der Analysierbarkeit ebenfalls besonders
zu berücksichtigen.

Diese allgemeine Systemdefinition wurde in Kapitel 5 (Seite 95) als Basis Archi-
tekturfür die Entwicklung der Software-Architektur für ein SISA benutzt. Hinweise

zur Abgrenzung von Komponenten wurden der bereits angesprochenen Analyse
vorhandener SISAs entnommen. Da die Wiederbenutzbarkeit und Interopera-
bilität im Zusammenhang mit SISAs eine wichtige Rolle spielt, wurden zur Ab-
grenzung und Definition der Architektur-Komponenten auch Standards berück-
sichtigt. Wichtige Standards, die bei der Entwicklung der Software-Architektur
von Interesse sind, wurden in Kapitel 3 (Seite 25) vorgestellt. Ein SISA ist

208 KAPITEL 7. ZUSAMMENFASSUNG UND AUSBLICK

ein geodatenverarbeitendes System. Aus diesem Grund sind bei dessen Ent-
wicklung insbesondere die Arbeiten des technischen Komitees für geographische
Informationen/Geomatik (TC211) der internationalen Organisation für Stan-
dardisierung (ISO) sowie die Arbeiten des Open-GIS-Konsortiums (OGC) von
Bedeutung. Den gemeinsamen Rahmen für die Standards des TC211 und des
OGC bildet der ISO/DIS 19119. Dieser Standard, der die Empfehlung eines
grundsätzlichen architektonischen Aufbaus für geodatenverarbeitende Systeme
enthält, wurde sowohl zur Komponentenabgrenzung als auch für die Schnitt-
stellendefinitionen der SISA-Architektur herangezogen.

Um die definierten Systemziele zu erfüllen, wurde die Architektur des SISA12
Kompo-
nenten

in zwölf Komponenten geteilt. Die zentrale Komponente der Architektur ist

Simula-
tions-
system

die Simulationssystem-Komponente, die für die Berechnung, Speicherung und
Weitergabe von Simulationsergebnissen verantwortlich ist. Die Weitergabe von
Simulationsergebnissen erfolgt über eine gesonderte Schnittstelle. Die Möglich-
keit Ergebnisdaten direkt vom Simulationssystem abfragen zu können erhöht
die Interoperabilität und Wiederverwendbarkeit des Simulationssystems. Um
die Nachvollziehbarkeit und Reproduzierbarkeit von Simulationsergebnissen zuSimula-

tions-
lauf-
Manager

gewährleisten, werden alle für einen Simulationslauf benötigten Einstellungen
von einer separaten Komponente verwaltet und bereitgestellt: dem Simula-
tionslaufmanager. Die Referenzierung von Datensätzen wird nicht über den
Ort der Datenspeicherung (z. B. einem Dateinamen), sondern über eindeutige
Ressourcen-Namen vorgenommen. Das Simulationssystem greift auf einen der-Daten-

zugriff art referenzierten Datensatz nicht direkt zu. Stattdessen wendet es sich an die
Datenzugriffskomponente, die für den lesenden und schreibenden Zugriff auf Da-
ten und die Transformation zwischen verschiedenen Daten-Formaten zuständig
ist. Diese Art des Datenzugriffs ermöglicht einen ortstransparenten Datenzugriff
sowie eine automatische Transformationen von Datenformaten. Das Format der
Datenspeicherung wird somit von der ‘internen’ Repräsentation für das Simula-
tionssystem getrennt. Dieser Zugriffsmechanismus erlaubt eine schrittweise Mi-
gration hin zu offenen Datenformaten. Die Informationen, die die Datenzugriffs-Katalog-

manager komponente zum Zugriff auf einen Datensatz benötigt (z. B. den Dateinamen),
werden vom Katalogmanager, der für die Verwaltung von Metadaten zuständig
ist, bereitgestellt. Die Beschreibung jeder Ressource über die 15 Elemente des
Dublin Core Metadata Element Set (ISO 15836) wird als Minimal-Anforderung
der Dokumentation angesehen. Die Datenzugriffskomponente greift auf die Da-Daten-

bank-
system

ten innerhalb der Datenbasis zu. Die Datenbasis besteht aus einer Datenbank-
system-Komponente, die für die verwaltete Speicherung von Assessment-Daten
zuständig ist, und kann durch eine lose Sammlung von Dateien ergänzt wer-
den. Die Integration der Dateien in das SISA erfolgt über Metadaten, die zu
jeder Datei vorhanden sein sollten. Die in der Datenbasis vorhandenen Metada-Meta-

daten-
Sammler

ten, die nicht direkt vom Nutzer über den Katalogmanager eingegeben werden,
werden von Metadaten-Sammlern verarbeitet. Ein Metadaten-Sammler ist ver-

7.1. ZUSAMMENFASSUNG 209

antwortlich für die Durchsuchung eines Rechners nach Dateien mit Metadaten
und die automatische Weitergabe der gefundenen Informationen an den Kata-
logmanager. Auf diese Weise wird die Wiederverwendbarkeit von Ressourcen
erhöht. Ein Metadaten-Sammler sollte auf jedem Rechner installiert sein, der
Ressourcen für das SISA bereitstellt.

Projektbezogene Kurz-Informationen werden direkt im SISA vorgehalten, Doku-
menta-
tion

genauer: in der Dokumentationskomponente. Diese Komponente ist verantwort-
lich für die Dokumentation und Verwaltung wichtiger Assessment-Informatio-
nen. In diesem ‘Auskunftssystem’ werden u. a. Daten über durchgeführte Simu-
lationsläufe, beteiligte Personen und verwendete Szenarien hinterlegt und den
Akteuren des SISA (Modellbetreiber, Modellentwickler, Entscheidungsträger,
Interessenten) bereitgestellt. Die Daten dieser Komponenten tragen entschei-
dend zur Transparenz von Assessment-Ergebnissen bei.

Zur Steigerung der Wiederverwendbarkeit von Software sollten häufig wie- Daten-
verarbei-
tung

derkehrende Funktionen nicht direkt in der Komponente des Simulationssys-
tems implementiert, sondern in andere Komponenten ausgelagert werden. Im
Rahmen des SISA wurden drei thematische Komponenten abgegrenzt: Die
Geodatenverarbeitungs-Komponente, die für die Verarbeitung geographischer
Daten und die Bereitstellung einer Schnittstelle zu eigenständigen GIS verant-
wortlich ist, die Komponente zur allgemeinen Datenverarbeitung, die zuständig
ist für die Bereitstellung allgemeiner, wieder verwendbarer Datenverarbeitungs-
dienste, und die Komponente der Aufgabensteuerung, in deren Verantwortung
der programmgesteuerte Aufruf anderer Funktionen des SISA liegt (z. B. Funk-
tionen zur Datenvorverarbeitung und Datennachbearbeitung).

Zur Sensitivitäts- und Unsicherheitsanalyse von Simulationsmodellen ist ei- Modell-
Analysene gesonderte Komponente vorgesehen: die Modellanalyse-Komponente. Diese

Komponente schaltet sich zur Modellanalyse als Schicht zwischen das Simula-
tionssystem und die Datenzugriffskomponente. Auf diese Weise kann die Kom-
ponente die Eingabedaten für das Simulationsmodell gezielt verändern und die
Ausgabedaten analysieren. Zur Modellanalyse müssen daher keine Änderun-
gen innerhalb des Simulationssystems vorgenommen werden. Funktionen, die Ergeb-

nisana-
lyse

speziell für konkrete Assessments (Projekte) benötigt werden, sollen zur Steige-
rung der Transparenz, Analysierbarkeit und Modifizierbarkeit des System der
Komponente Ergebnisanalyse zugeordnet werden.

Die Simulationssystemkomponente sowie die Komponente zur Ergebnisana- Wieder-
verwend-
barkeit

lyse sind die einzigen Komponenten, die für ein neues SISA angepasst werden
müssen. Die anderen Komponenten können generell für SISAs anderer Projekte
wieder verwendet werden (von Erweiterungen um neue Funktionen, Datentypen
etc. abgesehen).

Um die Anwendbarkeit der allgemeinen SISA-Architektur zu belegen, wur- Realisie-
rungden die zentralen Komponenten unter Verwendung eines konkreten Simulati-

onssystems prototypisch implementiert (Kapitel 6, Seite 165). Die Implementie-

210 KAPITEL 7. ZUSAMMENFASSUNG UND AUSBLICK

rungen erfolgten für die Simulationsmodelle, die im Rahmen des Assessment-
Projektes GLASS (GLobal ASsessment of Security) eingesetzt wurden. Ziel
des Projektes ist die Analyse der Auswirkungen des globalen Wandels auf die
Wasser- und Nahrungsmittelverfügbarkeit. Das GLASS-Simulationssystem be-
steht sowohl aus Teilmodellen, die bereits in anderen Projekten verwendet wur-
den (z. B. das Modell WaterGAP) als auch aus Teilmodellen, die speziell für
das GLASS-Projekt erstellt wurden (z. B. das Wasserstressmodell und das Nah-
rungsmittelstressmodell).

Unter Nutzung des GLASS-Simulationssystems wurden die folgenden zen-Tests

tralen Konzepte der Architektur überprüft:

• die Verwaltung und Bereitstellung wichtiger Assessment-Informationen
durch die Dokumentationskomponente

• die Verwaltung von Zugriffsinformationen und Metadaten innerhalb des
Katalogmanagers

• die automatische Aktualisierung des Katalogmanagers durch Metadaten-
Sammler

• die Kapselung von Simulationsmodellen in der Simulationssystemkompo-
nente

• die Bereitstellung von Simulationslauf-Spezifikationen über den Simula-
tionslaufmanager

• der transparente Datenzugriff über die Datenzugriffskomponente

• die Datenspeicherung im Datenbanksystem bzw. in Dateien (Datenbasis)

• die Bereitstellung wieder verwendbarer Funktionen zur Geodatenverarbei-
tung und allgemeinen Datenverarbeitung

Durch die prototypische Implementierung konnte gezeigt werden, dass dieErgeb-
nisse Umsetzung der zentralen Konzepte der entwickelten SISA-Architektur auch

mit relativ einfachen technischen Mitteln und unter Verwendung freier Soft-
ware möglich ist. Bei der Anwendung im Rahmen des GLASS-Modells haben
sich insbesondere die Verfolgung der Metadaten-Konzepte (Nutzung der 15
grundlegenden Metadaten-Elemente, Verwendung von eindeutigen Ressourcen-
Bezeichnern, Nutzung von Metadaten-Sammlern) und die Nutzung des Simula-
tionslaufmanagers als entscheidende Schritte zu mehr Transparenz und Nach-
vollziehbarkeit erwiesen. Die Übertragung der für das Simulationssystem de-
finierten Schnittstellen (Operationen init, run, getResult) auf die Teilmodelle
führt zu einer verbesserten Wiederverwendbarkeit und Interoperabilität der
Teilmodelle. Ferner hat sich gezeigt, dass die Informationen der Dokumenta-
tionskomponente entscheidend zu einem reibungslosen und transparenten As-
sessment beitragen können.

7.2. AUSBLICK 211

7.2 Ausblick

Die Anwendbarkeit der grundlegenden Prinzipien der entwickelten SISA-Archi-
tektur konnte anhand einer prototypischen Implementierung gezeigt werden.
Der nächste Schritt wäre die Entwicklung eines SISA, das vollends auf den
beschriebenen Komponenten beruht. Hierzu müssten zunächst schnittstellen-
konforme Realisierungen der wieder verwendbaren Komponenten implemen-
tiert und getestet werden. Bei der Realisierung der Komponenten sollte die
Verwendung von Web-Technologien in Betracht gezogen werden, da diese einen
entscheidenden Schritt in Richtung Interoperabilität versprechen. Eine weitere
Verbesserung der Architektur kann durch die Integration von Funktionen zur
Metadaten-Speicherung in die Datenzugriffskomponente erfolgen. Eine solche
Integration würde die obligatorische Angabe von Metadaten für alle zu spei-
chernden Datensätze erlauben und somit die Qualitätsmerkmale der Nachvoll-
ziehbarkeit und Wiederverwendbarkeit, insbesondere von Simulationsergebnis-
sen, verbessern. Ein Abgleich der Schnittstellen der Datenzugriffskomponente
mit weiteren Spezifikationen des OpenGIS-Konsortiums verspricht ebenfalls ei-
ne Verbesserung der Interoperabilität eines SISA und sollte aus diesem Grund
vorgenommen werden.

212 KAPITEL 7. ZUSAMMENFASSUNG UND AUSBLICK

Literaturverzeichnis

[ADEPT 2001] Alexandria Digital Earth Prototype – Metadata
for Models Working Group (Hrsg.): Content Standard for Compu-
tational Models. Version 1.2. Santa Barbara, USA : University of Cali-
fornia, 2001. – URL http://www.ncgia.ucsb.edu/projects/metadata/
standard/standard_1.2.doc

[Alcamo 1994] Alcamo, Joseph (Hrsg.): IMAGE 2.0: Integrated modelling
of global climate change. Dordrecht, Boston, London : Kluwer Academic
Publishers, 1994. – reprinted from Water, Air, and Soil Pollution, Volume
76, Nos. 1-2, 1994. – ISBN 0-7923-2860-4

[Alcamo 2001] Alcamo, Joseph: Scenarios as tools for international environ-
mental assessment. Luxembourg : European Environmental Agency, Office
for Official Publication of the European Communities, 2001 (Experts’ corner
report, Prospects and scenarios No. 5; Environmental issues report No. 24).
– ISBN 92-9167-402-8

[Alcamo 2002] Alcamo, Joseph: Three issues for improving integrated mo-
dels: uncertainty, social science, and legitimacy. In: Gethmann, Carl F.
(Hrsg.) ; Lingner, Stephan (Hrsg.): Integrative Modellierung zum Globalen
Wandel. Berlin, Heidelberg, New York u.a. : Springer, 2002 (Wissenschaft-
sethik und Technikfolgenbeurteilung, Band 17), S. 3–14. – ISBN 3-540-43253-
1

[Alcamo u. a. 2003a] Alcamo, Joseph ; Döll, Petra ; Henrichs, Thomas ;
Kaspar, Frank ; Lehner, Bernhard ; Siebert, Stefan: Development and
testing of the WaterGAP 2 global model of water use and availability. In:
Hydrological Sciences Journal 48 (2003), Nr. 3, S. 317–338

[Alcamo u. a. 2003b] Alcamo, Joseph ; Döll, Petra ; Henrichs, Thomas ;
Kaspar, Frank ; Lehner, Bernhard ; Siebert, Stefan: Global estimates
of water withdrawals and availability under current and future ‘business-
as-usual’ conditions. In: Hydrological Sciences Journal 48 (2003), Nr. 3,
S. 339–348

213

http://www.ncgia.ucsb.edu/projects/metadata/standard/standard_1.2.doc
http://www.ncgia.ucsb.edu/projects/metadata/standard/standard_1.2.doc

214 LITERATURVERZEICHNIS

[Alcamo u. a. 2003c] Alcamo, Joseph ; Dronin, Nikolai ; Endejan, Marcel ;
Golubev, Genady ; Kirilenko, Andrei: Will Climate Change Affect Food
and Water Security in Russia? Summary Report of the International Project
on Global Environmental Change and its Thread to Food and Water Security
in Russia. Kassel : Center for Environmental Systems Research, Universtity
of Kassel, 2003 (Report No. A0302). – URL http://www.usf.uni-kassel.
de/usf/archiv/dokumente/projekte/rglass.summary.pdf

[Alcamo u. a. 2001] Alcamo, Joseph ; Endejan, Marcel ; Kaspar, Frank ;
Rösch, Thomas: The GLASS model: a strategy for quantifying global en-
vironmental security. In: Environmental Science and Policy 4 (2001), Nr. 1,
S. 1–12

[Alcamo u. a. 1998a] Alcamo, Joseph ; Kreileman, Eric ; Krol, Maarten ;
Leemans, Rik ; Bollen, Johannes ; Minnen, Jelle van ; Schaeffer, Mi-
chiel ; Toet, Sander ; Vries, Bert de: Global modelling of environmental
change: an overview of IMAGE 2.1. In: (Alcamo u. a., 1998b), S. 3–94

[Alcamo u. a. 1998b] Alcamo, Joseph (Hrsg.) ; Leemans, Rik (Hrsg.) ;
Kreileman, Eric (Hrsg.): Global Change Scenarios of the 21st Century
- Results from the IMAGE 2.1 Model. Oxford, UK : Pergamon, 1998

[Alcamo u. a. 1990] Alcamo, Joseph (Hrsg.) ; Shaw, Roderick (Hrsg.) ; Hor-
dijk, Leen (Hrsg.): The Rains Model of Acidification – Science and Strategies
in Europe. Dordrecht; Boston; London : Kluwer Academic Publishers, 1990.
– ISBN 0-7923-0781-X (HB), 0-7923-0782-8 (PB)

[Anderson u. a. 2000] Anderson, Richard ; Birbeck, Mark ; Kay, Michael ;
u.a.: XML Professionell. 1. Aufl. Bonn : MITP-Verlag, 2000. – 957 Seiten

[ANZLIC 2001] Group, Australia New Zealand Land Information Council
Metadata W. (Hrsg.): ANZLIC Metadata Guidelines: Core metadata ele-
ments for geographic data in Autralia and New Zealand. Version 2. Bel-
connen, Australia : ANZLIC, 2001. – URL http://www.anzlic.org.au/
asdi/metagrp.htm

[Bakkes u. a. 2000] Bakkes, Jan A. ; Grosskurth, Jasper ; Idenburg,
Annemarth M. ; Rothman, Dale .. ; Vuuren, Detlef P. van: Descrip-
tion of selected global models for scenario studies on environmentally su-
stainable development. Bilthoven, The Netherlands : National Institut of
Public Health and the Environment (RIVM), 2000 (Global Dynamics and
Sustainable Development Programme, Global Report Series No. 30). – URL
http://www.rivm.nl/bibliotheek/rapporten/402001018.pdf. – RIVM
Report No. 402001018

http://www.usf.uni-kassel.de/usf/archiv/dokumente/projekte/rglass.summary.pdf
http://www.usf.uni-kassel.de/usf/archiv/dokumente/projekte/rglass.summary.pdf
http://www.anzlic.org.au/asdi/metagrp.htm
http://www.anzlic.org.au/asdi/metagrp.htm
http://www.rivm.nl/bibliotheek/rapporten/402001018.pdf

LITERATURVERZEICHNIS 215

[Balzert 1996] Balzert, Helmut: Lehrbuch der Software-Technik: Software-
Entwicklung. Heidelberg, Berlin, Oxford : Spektrum Akademischer Verlag,
1996 (Lehrbücher der Informatik). – ISBN 3-8274-0042-2

[Balzert 1998] Balzert, Helmut: Lehrbuch der Software-Technik: Software-
Management, Software-Qualitätssicherung, Unternehmensmodellierung. Hei-
delberg, Berlin : Spektrum Akademischer Verlag, 1998 (Lehrbücher der In-
formatik). – ISBN 3-8274-0065-1

[Balzert 2000] Balzert, Helmut: Lehrbücher der Informatik. Bd. 1.
Software-Entwicklung: Lehrbuch der Software-Technik. 2. Aufl. Heidelberg,
Berlin : Spektrum, Akad. Verlag, 2000. – ISBN 3-8274-0480-0

[Bartelme 2000] Bartelme, Norbert: Geoinformatik: Modelle, Strukturen,
Funktionen. 3., erweiterte u. aktualisierte Aufl. Berlin, Heidelberg, New
York : Springer-Verlag, 2000. – ISBN 3-540-65988-9

[Benz u. a. 1997] Benz, Joachim ; Hoch, Ralf ; Gabele, Tobias: Documen-
tation of Mathematical Models in Ecology – an Unpopular Task? In: In-
ternational Society for Ecological Modelling’s (ISEM) Newsletter (Ecomod)
(1997), December, S. 1–7

[Benz u. a. 2001] Benz, Joachim ; Hoch, Ralf ; Legovic, Tarzan: ECOBAS
– modelling and documentation. In: Ecological Modelling (2001), Nr. 1–3,
S. 3–15

[Berners-Lee u. a. 1998] Berners-Lee, Tim (Hrsg.) ; Fielding, Roy T.
(Hrsg.) ; Masinter, Larry (Hrsg.): Uniform Resource Identifiers (URI):
Generic Syntax. IETF, 1998 (RFC 2396). – URL http://www.ietf.org/
rfc/rfc2396.txt

[Berners-Lee u. a. 1994] Berners-Lee, Tim (Hrsg.) ; Masinter, Larry
(Hrsg.) ; McCahill, Mark (Hrsg.): Uniform Resource Locators (URL).
CERN, 1994 (RFC 1738). – URL http://www.ietf.org/rfc/rfc1738.
txt?number=1738

[Bill und Fritsch 1994] Bill, Ralf ; Fritsch, Dieter: Grundlagen der Geo-
Informationssysteme. Bd. 1 (Hardware, Software und Daten). 2. Auflage.
Heidelberg : Wichmann, 1994. – ISBN 3-87907-265-5

[Boosch u. a. 1999] Boosch, Grady ; Rumbaugh, James ; Jacobson, Ivar:
Das UML-Benutzerhandbuch. 2. Aufl. Bonn : Addison Wesley, 1999 (Pro-
fessionelle Softwareentwicklung). – ISBN 3-8273-1486-0

[Bossel 1994] Bossel, Hartmut: Modellbildung und Simulation: Konzepte,
Verfahren und Modelle zum Verhalten dynamischer Systeme. 2. veränderte
Auflage. Braunschweig; Wiesbaden : Vieweg, 1994

http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc1738.txt?number=1738
http://www.ietf.org/rfc/rfc1738.txt?number=1738

216 LITERATURVERZEICHNIS

[Bratley u. a. 1987] Bratley, Paul ; Fox, Bennett L. ; Schrage, Linus E.:
A Guide to Simulation. Second Edition. Berlin; Heidelberg; New York :
Springer, 1987. – ISBN 3-540-96467-3 u. 0-387-96467-3

[Busch u. a. 2002] Busch, C. ; David, O. ; Kralisch, S. ; Krause, P.:
Using the Object Modelling System OMS for future proof hydrological mo-
del development and application. In: Evironmental Modelling and Software
(submitted) (2002)

[Buschmann u. a. 1998] Buschmann, Frank ; Meunier, Regine ; Roh-
nert, Hans ; Sommerlad, Peter ; Stal, Michael: Pattern-orientierte
Software-Architektur: Ein Pattern-System. Bonn, Paris u.a. : Addison-
Wesley-Longman, 1998. – ISBN 3-8273-1282-5

[Carson 2000] Carson, George S.: Spatial standardization. In: ACM SIG-
GRAPH Computer Graphics 34 (2000), Nr. 3, S. 38–41. – ISSN 0097-8930

[Chen und Norman 1992] Chen, Minder ; Norman, Ronald J.: A Framework
for Integrated CASE. In: IEEE Software 9 (1992), March/April, Nr. 2, S. 18–
22

[Clark u. a. 1975] Clark, John ; Cole, Sam ; Curnow, Ray ; Hopkins,
Mike: Global Simulation Models – A Comparative Study. London, New York,
Sydney, Toronto : John Wiley & Sons, 1975. – ISBN 0-471-15899-2

[Cocks u. a. 1998] Cocks, A.T. ; Rodgers, I.R. ; Skeffington, R.A. ;
Webb, A. H.: The limitations of integrated assessment modelling in deve-
loping air pollution cotrol policies. In: Environmental Pollution 102 (1998),
Nr. S1, S. 635–639

[Cook und Daniels 1994] Cook, Steve ; Daniels, John: Designing Object
Systems - Object-Oriented Modelling with Syntropy. New York, London,
Toronto, Sydney, Tokyo, Singopore : Prentice Hall, 1994 (Object-Oriented
Series)

[Cox u. a. 2003] Cox, Simon (Hrsg.) ; Daisey, Paul (Hrsg.) ; Lake, Ron
(Hrsg.) ; Portele, Clemens (Hrsg.) ; Whiteside, Arliss (Hrsg.): OpenGIS r©
Geography Markup Language (GML) Implementation Specification. Versi-
on 3.0. Wayland, Massachusetts, USA : Open GIS Consortium, 2003. –
URL http://www.opengis.org/techno/documents/02-023r4.pdf. – Pro-
ject document number: OGC 02-023r4

[Daigle u. a. 2002] Daigle, Leslie L. ; Gulik, Dirk-Willem van ; Iannella,
Renato ; Faltstrom, Patrik: Uniform Resource Names (URN) Namespace
Definition Mechanisms. IETF, October 2002 (RFC 3406). – URL http:
//www.ietf.org/rfc/rfc3406.txt?number=3406

http://www.opengis.org/techno/documents/02-023r4.pdf
http://www.ietf.org/rfc/rfc3406.txt?number=3406
http://www.ietf.org/rfc/rfc3406.txt?number=3406

LITERATURVERZEICHNIS 217

[de Bruin 1996] de Bruin, Jos: Getting Started with M. Bilthoven, Net-
herland: National Institute of Public Health and the Environment (RIVM)
(Veranst.), 1996. – URL www.m.rivm.nl/html/start/start.htm

[de Bruin u. a. 1996] de Bruin, Jos ; de Vink, Pascal ; van Wijk, Jarke: M –
A Visual Simulation Tool. In: Simulation in the Medical Sciences Conference,
Proceedings of the 1996 Western Multiconference. San Diego : The Society
for Computer Simulation, 1996, S. 181–186. – URL www.m.rivm.nl

[DIN 1994] Deutsches Institut für Normung e.V. (Hrsg.): DIN 66272:
Bewertung von Softwareprodukten – Qualitätsmerkmale und Leitfaden zu ih-
rer Verwendung. Berlin, Wien, Zürich : Beuth, Oktober 1994 (Informations-
technik). – (Identisch mit ISO/IEC 9126:1991)

[DIN 1995] Deutsches Institut für Normung e.V. (Hrsg.): DIN-
Taschenbuch 166: Software – Enticklung, Dokumentation, Qualität. Normen
(Informationstechnik 4). 4. Aufl., Stand der abgedr. Normen: August 1995.
Berlin, Wien, Zürich : Beuth, 1995. – ISBN 3410134522

[DIN 2000] Deutsches Institut für Normung e.V. (Hrsg.): DIN EN
ISO 9000 Qualitätsmanagementsysteme – Grundlagen und Begriffe. Berlin,
Wien, Zürich : Beuth, Dezember 2000

[Döll u. a. 2003] Döll, Petra ; Kaspar, Frank ; Lehner, Bernhard: A global
hydrological model for deriving water availability indicators: model tuning
and validation. In: Journal of Hydrology 270 (2003), Nr. 1–2, S. 105–134

[Dowlatabadi 1995] Dowlatabadi, Hadi: Integrated assessment models of
climate change – An incomplete overview. In: Energy Policy 23 (1995),
Nr. 4/5, S. 289–296

[Duden 1996] Drosdowski, Günther (Hrsg.) ; Müller, Wolfgang (Hrsg.) ;
Scholze-stubenrecht, Werner (Hrsg.) ; Wermke, Matthias (Hrsg.): Du-
den – Deutsches Universalwörterbuch. 3., neu bearbeitete und erweiterte
Auflage. Mannheim, Leipzig, Wien, Zürich : Dudenverlag, 1996

[Easterling 1997] Easterling, William E.: Why regional studies are needed
in the development of full-scale integrated assessment modelling of global
change processes. In: Global Environmental Change 7 (1997), Nr. 4, S. 337–
356

[Engesser 1993] Lektorat des B.I.-Wissenschaftsverlags unter Lei-
tung von Hermann Engesser (Hrsg.): Duden ‘Informatik’: ein Sachlexi-
kon für Studium und Praxis. 2., vollst. überarb. und erw. Aufl. Mannheim;
Leipzig; Wien; Zürich : Dudenverlag, 1993

www.m.rivm.nl/html/start/start.htm
www.m.rivm.nl

218 LITERATURVERZEICHNIS

[Farooqui u. a. 1995] Farooqui, Kazi ; Logrippo, Luigi ; Meer, Jan de:
The ISO Reference Model for Open Distributed Processing: an introduction.
In: Computer Networks and ISDN Systems 2 (1995), Nr. 8, S. 1215–1229

[FGDC 1998] Federal Geographic Data Committee (Hrsg.): Con-
tent Standard for Digital Geospatial Metadata. Version 1998. Federal Geo-
graphic Data Committee, 1998. – URL http://www.fgdc.gov/standards/
documents/standards/metadata/v2_0698.pdf. – FGDC-STD-001-1998

[Fink 2002] Fink, Alexander: Szenariotechniken. In: Sommerlatte, Tom
(Hrsg.): Angewandte Systemforschung – Ein interdisziplinärer Ansatz. Wies-
baden : Gabler, 2002, Kap. 3.4, S. 297–319. – ISBN 3-409-11879-9

[Fischer u. a. 2000] Fischer, Günther ; Velthuizen, Harrij van ; Nachter-
gaele, Freddy O.: Global Agro-Ecological Zones Assessment: Methodology
and Results. International Institute for Applied Systems Analysis, 2000 (In-
terim Report IR-00-064). – URL http://www.iiasa.ac.at/Publications/
Documents/IR-00-064.pdf

[Fitzke und Müller 2000] Fitzke, Jens ; Müller, Markus: Simple Featu-
res in der Praxis: OpenGIS-Strukturen in Auskunftssystemen für Umwelt-
und Naturschutz. In: Cremers, Armin B. (Hrsg.) ; Greve, Klaus (Hrsg.):
Umweltinformatik ’00, Umweltinformation für Planung, Politik und Öffent-
lichkeit. 14. Internationales Symposium ”Informatik für den Umweltschutz“
der Gesellschaft für Informatik (GI), Bonn 2000 Bd. 1. Marburg : Metropolis
Verlag, 2000, S. 484–492

[Foegen und Battenfeld 2001] Foegen, Malte ; Battenfeld, Jörg: Die Rolle
der Architektur in der Anwendungsentwicklung. In: Informatik-Spektrum 24
(2001), Nr. 5, S. 290–301

[Gamma u. a. 1996] Gamma, Erich ; Helm, Richard ; Johnson, Ralph ;
Vlissides, John: Entwurtsmuster: Elemente wiederverwendbarer objektori-
entierter Software. München; Boston; San Francisco u.a. : Addison-Wesley,
1996 (Professionelle Softwareentwicklung). – ISBN 3-89319-950-0

[Goldfarb und Prescod 2000] Goldfarb, Charles F. ; Prescod, Paul: The
XML Handbook. 2nd Edition. Upper Saddle River, NJ, USA : Prentice Hall
PTR, 2000. – ISBN 0-13-014714-1

[Gordon 2000] Gordon, Alan: The COM and COM+ programming primer.
Upper Saddle River, New Jersey, USA : Prentice Hall PTR, 2000 (Prentice
Hall PTR Microsoft Technologies Series). – ISBN 0-13-085032-2

[Grams 1992] Grams, Timm: Simulation: strukturiert und objektorientiert
programmiert. Mannheim; Leipzig;Wien; Zürich : BI Wissenschaftsverlag,
1992. – ISBN 3-411-15631-7

http://www.fgdc.gov/standards/documents/standards/metadata/v2_0698.pdf
http://www.fgdc.gov/standards/documents/standards/metadata/v2_0698.pdf
http://www.iiasa.ac.at/Publications/Documents/IR-00-064.pdf
http://www.iiasa.ac.at/Publications/Documents/IR-00-064.pdf

LITERATURVERZEICHNIS 219

[Greenspan und Bulger 2001] Greenspan, Jay ; Bulger, Brad:
MySQL/PHP-Datenbankanwendungen. Bonn : mitp-Verlag, 2001. – ISBN
3-8266-0805-4

[Gulbins und Obermayr 1995] Gulbins, Jürgen ; Obermayr, Karl: Unix
System V.4: Begriffe, Konzepte, Kommandos, Schnittstellen. 4., überarb.
Aufl. Bonn, Rending u.a. : Springer Compass, 1995. – ISBN 3-540-58864-7

[Hennicker u. a. 2003] Hennicker, Rolf ; Barth, Michael ; Kraus, An-
dreas ; Ludwig, Matthias: An Integrated Simulation System for Glo-
bal change Research in the Upper Danube Basin. In: First Interna-
tional NAISO Symposium on Information Technologies in Environmental
Engineering (ITEE), June 24 - June 27, 2003 Gdansk University of
Technology, Poland (Veranst.), URL http://www.glowa-danube.de/PDF/
Publications/100041-00-RH-064.pdf, 2003

[Hering u. a. 2000] Hering, Ekbert ; Gutekunst, Jürgen ; Dyllong, Ulrich:
Handbuch der praktischen und technischen Informatik. 2., neubearbeitete
und erweiterte Auflage. Berlin, Heidelberg, New York : Springer, 2000. –
ISBN 3-540-67626-0

[Herold 1999a] Herold, Helmut: Linux-Unix-Kurzreferenz. 2., überarb. Aufl.
Bonn; Reading, Mass. u.a. : Addison-Wesley-Longman, 1999 (Linux/Unix
und seine Werkzeuge). – ISBN 3-8273-1536-0

[Herold 1999b] Herold, Helmut: Linux-Unix-Profitools: awk, sed, lex, yacc
und make. 3., überarb. Aufl. Bonn; Reading, Mass. u.a. : Addison-Wesley-
Longman, 1999 (Linux/Unix und seine Werkzeuge). – ISBN 3-8273-1448-8

[Herrmann u. a. 1998] Herrmann, Uwe ; Lenz, Dierk ; Unbescheid, Gün-
ter: Oracle8 für den DBA: Verwalten, optimieren, vernetzen. Bonn; Reading,
Massachusetts u.a. : Addison-Wesley-Longman, 1998. – ISBN 3-8273-1310-0

[Hill u. a. 2001] Hill, Linda L. ; Crosier, Scott J. ; Smith, Terence R. ;
Goodchild, Michael: A Content Standard for Computational Models. In: D-
Lib Magazine 7 (2001), Nr. 6. – URL http://www.dlib.org/dlib/june01/
hill/06hill.html. – ISSN 1082-9873

[Hoch u. a. 1998] Hoch, Ralf ; Gabele, Tobias ; Benz, Joachim: Towards a
standard for documentation of mathematical models in ecology. In: Ecological
Modelling 113 (1998), S. 3–12

[IEEE 2000a] Institute of Electrical and Electronics Engineers
(Hrsg.): IEEE 1516-2000: Standard for Modeling and Simulation (M&S)
High Level Architecture (HLA) - Framework and Rules. IEEE, 2000. – ISBN
0-7381-2620-9

http://www.glowa-danube.de/PDF/Publications/100041-00-RH-064.pdf
http://www.glowa-danube.de/PDF/Publications/100041-00-RH-064.pdf
http://www.dlib.org/dlib/june01/hill/06hill.html
http://www.dlib.org/dlib/june01/hill/06hill.html

220 LITERATURVERZEICHNIS

[IEEE 2000b] Institute of Electrical and Electronics Engineers
(Hrsg.): IEEE 1516.1-2000: Standard for Modeling and Simulation (M&S)
High Level Architecture (HLA) – Federate Interface Specification. IEEE,
2000. – ISBN 0-7381-2621-7

[IEEE 2000c] Institute of Electrical and Electronics Engineers
(Hrsg.): IEEE 1516.2-2000: Standard for Modeling and Simulation (M&S)
High Level Architecture (HLA) – Object Model Template (OMT) Specificati-
on. IEEE, 2000. – ISBN 0-7381-2523-3

[IEEE 2003] Institute of Electrical and Electronics Engineers
(Hrsg.): IEEE 1516.3-2003: Recommended Practice for High Level Architec-
ture (HLA) Federation Development and Execution Process (FEDEP). IEEE,
2003. – ISBN 0-7381-3584-4

[IPCC 2001] McCarthy, James J. (Hrsg.) ; Canziani, Osvaldo F. (Hrsg.) ;
Leary, Neil A. (Hrsg.) ; Dokken, David J. (Hrsg.) ; White, Kasey S.
(Hrsg.): Climate Change 2001: Impacts, Adaptation and Vulnerability – Con-
tribution of Working Group II to the Third Assessment Report of Intergo-
vernmental Panel on Climate Change. Cambridge, UK : Cambridge Univer-
sity Press, 2001. – URL http://www.grida.no/climate/ipcc_tar/wg2/. –
ISBN 0-521-01500-6

[ISO 1989] Internatinal Organization for Standardization (Hrsg.):
ISO/IEC 2382-7: Information technology – Vocabulary – Part 7: Computer
programming. Geneve, Switzerland : Internatinal Organization for Standar-
dization, 1989

[ISO 1990] Internatinal Organization for Standardization (Hrsg.):
ISO/IEC 2382-20: Information technology – Vocabulary – Part 20: System
development. Geneve, Switzerland : Internatinal Organization for Standar-
dization, 1990

[ISO 1993] Internatinal Organization for Standardization (Hrsg.):
ISO/IEC 2382-1: Information technology – Vocabulary – Part 1: Fundamen-
tal terms. Geneve, Switzerland : Internatinal Organization for Standardiza-
tion, 1993

[ISO 1998] Internatinal Organization for Standardization (Hrsg.):
ISO/IEC 10746: Reference Model – Open Distributed Processing (RM-ODP),
Part 1. Geneve, Switzerland : International Organization for Standardizati-
on, 1998

[ISO 2000] International Organization for Standadization -
ISO/TC211 Secretariat (Hrsg.): ISO/DIS 199115 Geographic Infor-

http://www.grida.no/climate/ipcc_tar/wg2/

LITERATURVERZEICHNIS 221

mation – Metadata. Version 5. Geneve, Switzerland : Internatinal Or-
ganization for Standardization, 2000 Siehe (Kottmann, 2001). – URL
http://www.opengis.org/techno/abstract/01-111.pdf. – Project Do-
cument Number: 01-111.doc

[ISO 2003] Internatinal Organization for Standardization (Hrsg.):
ISO 15836: Information and Documentation – The Dublin Core metadata
element set. Geneve, Switzerland : Internatinal Organization for Standardi-
zation, 2003

[Jaeger u. a. 2002] Jaeger, Carlo C. ; Leimbach, Marian ; Carraro, Car-
lo ; Hasselmann, Klaus ; Hourcade, Jean-Charles ; Keeler, Andrew ;
Klein, Rupert: Integrated Assessment Modeling: Modules for Cooperati-
on / Fondazione Eni Enrico Mattei. URL http://www.feem.it/Feem/Pub/
Publications/WPapers/WP2002-053.htm, July 2002 (NOTA DI LAVORO
53.2002). – Working Paper

[Kainuma u. a. 2003] Kainuma, Mikiko (Hrsg.) ; Matsuoka, Yuzuru
(Hrsg.) ; Morita, Tsuneyuki (Hrsg.): Climate Policy Assessment – Asia-
Pacific Integrated Modeling. Tokyo; Berlin; Heidelberg; New York : Springer,
2003. – ISBN 4-431-70264-4

[Kickert u. a. 1999] Kickert, Ronald N. ; Tonella, Giorgio ; Simonov,
Alexander ; Krupa, Sagar V.: Predictive modeling of effects under global
change. In: Environmental Pollution 100 (1999), S. 87–132

[Klein Goldewijk und Battjes 1997] Klein Goldewijk, C.G.M. ; Battjes,
J.J.: A Hundred Year (1890 - 1990) Database for Integrated Environmen-
tal Assessments (HYDE, version 1.1) / National Institute of Public Health
and the Environment (RIVM). February 1997 (Report Nr. 422514002). –
Forschungsbericht

[Klein Goldewijk 2001] Klein Goldewijk, Kees: Estimating global land
use change over the past 300 years: The HYDE Database. In: Global Biogeo-
chemical Cycles 15 (2001), June, Nr. 2, S. 417–433

[Kottman 1999] Kottman, Cliff (Hrsg.): The OpenGISTM Abstract Spe-
cification – Topic 12: OpenGIS Service Architecture. Version 4. Way-
land, Massachusetts, USA : Open GIS Consortium, 1999. – URL http:
//www.opengis.org/techno/abstract/99-112.pdf. – Project document
number: 99-112.doc

[Kottmann 1999a] Kottmann, Cliff (Hrsg.): The OpenGISTM Abstract
Specification – Topic 0: Abstract Specification Overview. Version 4. Way-
land, Massachusetts, USA : Open GIS Consortium, 1999. – URL http:

http://www.opengis.org/techno/abstract/01-111.pdf
http://www.feem.it/Feem/Pub/Publications/WPapers/WP2002-053.htm
http://www.feem.it/Feem/Pub/Publications/WPapers/WP2002-053.htm
http://www.opengis.org/techno/abstract/99-112.pdf
http://www.opengis.org/techno/abstract/99-112.pdf
http://www.opengis.org/techno/abstract/99-100r1.pdf

222 LITERATURVERZEICHNIS

//www.opengis.org/techno/abstract/99-100r1.pdf. – Project Docu-
ment Number: 99-100r1.doc

[Kottmann 1999b] Kottmann, Cliff (Hrsg.): The OpenGISTM Abstract Spe-
cification – Topic 10: Feature Collections. Version 4. Wayland, Massachu-
setts, USA : Open GIS Consortium, 1999. – URL http://www.opengis.org/
techno/abstract/99-110.pdf. – Project Document Number: 99-110.doc

[Kottmann 1999c] Kottmann, Cliff (Hrsg.): The OpenGISTM Abstract Spe-
cification – Topic 13: Catalog Services. Version 4. Wayland, Massachusetts,
USA : Open GIS Consortium, 1999. – URL http://www.opengis.org/
techno/abstract/99-113.pdf. – Project document number: 99-113.doc

[Kottmann 1999d] Kottmann, Cliff (Hrsg.): The OpenGISTM Abstract Spe-
cification – Topic 16: Image Coordinate Transformation Services. Version
4. Wayland, Massachusetts, USA : Open GIS Consortium, 1999. – URL
http://www.opengis.org/techno/abstract/99-116r2.pdf. – Project do-
cument number: 99-116r2.doc

[Kottmann 1999e] Kottmann, Cliff (Hrsg.): The OpenGISTM Abstract Spe-
cification – Topic 5: Features. Version 4. Wayland, Massachusetts, USA :
Open GIS Consortium, 1999. – URL http://www.opengis.org/techno/
abstract/99-105r2.pdf. – Project Document Number: 99-105r2.doc

[Kottmann 2000] Kottmann, Cliff (Hrsg.): The OpenGISTM Abstract Spe-
cification – Topic 6: The Coverage Type and its Subtypes. Version 6. Way-
land, Massachusetts, USA : Open GIS Consortium, 2000. – URL http:
//www.opengis.org/techno/abstract/00-106.pdf. – Project Document
Number: 00-106.doc

[Kottmann 2001] Kottmann, Cliff (Hrsg.): The OpenGISTM Abstract Spe-
cification – Topic 11: OpenGISTM Metadata (ISO/TC 211 DIS 19115). Ver-
sion 5. Wayland, Massachusetts, USA : Open GIS Consortium, 2001. – URL
http://www.opengis.org/techno/abstract/01-111.pdf. – Project Docu-
ment Number: 01-111.doc

[Krück u. a. 2001] Krück, Carsten ; Ploetz, Christiane ; Wiedmann,
Thomas ; Zweck, Axel ; BMBF, Bundesministerium für Bildung und F.
(Hrsg.): Forschung zum Globalen Wandel – Wissen für die Zukunft der Er-
de. München : Walter Biering GmbH, Mediahaus Grafischer Betrieb, Juni
2001 (BMBF Publik)

[Kuhl u. a. 1999] Kuhl, Frederick ; Weatherly, Richard ; Dahmann, Ju-
dith: Creating computer simulation systems: an indroduction to the high level
architecture. Prentice Hall PTR, 1999

http://www.opengis.org/techno/abstract/99-100r1.pdf
http://www.opengis.org/techno/abstract/99-100r1.pdf
http://www.opengis.org/techno/abstract/99-110.pdf
http://www.opengis.org/techno/abstract/99-110.pdf
http://www.opengis.org/techno/abstract/99-113.pdf
http://www.opengis.org/techno/abstract/99-113.pdf
http://www.opengis.org/techno/abstract/99-116r2.pdf
http://www.opengis.org/techno/abstract/99-105r2.pdf
http://www.opengis.org/techno/abstract/99-105r2.pdf
http://www.opengis.org/techno/abstract/00-106.pdf
http://www.opengis.org/techno/abstract/00-106.pdf
http://www.opengis.org/techno/abstract/01-111.pdf

LITERATURVERZEICHNIS 223

[Kuhn u. a. 2001] Kuhn, Werner ; Basedow, Sebastian ; Brox, Christoph ;
Riedemann, Catharina ; Rossol, Holger ; Senkler, Kristian ; Zens, Ka-
tharina ; Landes Nordrhein-Westfalen, Ministerpräsident des (Hrsg.):
GDI Geodaten-Infrastruktur Nordrhein-Westfalen – Referenzmodell 3.0. Düs-
seldorf : media NRW, 2001 (media NRW: Band 26)

[Liebl 1995] Liebl, Franz: Simulation: problemorientierte Einführung. 2.
überarbeitete Auflage. München; Wien; Oldenbourg : Oldenbourg Verlag,
1995. – ISBN 3-486-23373-4

[Luiten 1999] Luiten, H.: A legislative view on science and predictive models.
In: Environmental Pollution 100 (1999), Nr. 100, S. 5–11

[Maxwell 1999] Maxwell, Thomas: A paris-model approach to modular
simulation. In: Environmental Modelling and Software 14 (1999), Nr. 6,
S. 511–517

[McCarthy u. a. 2001] McCarthy, James J. ; Canziani, Oswaldo F. ; Lea-
ry, Neil a. ; Dokken, David J. ; White, Kasey S.: Climate Change 2001: Im-
pacts, Adaption & Vulnerability – Technical Summary. In: Climate Change
2001: Impacts, Adaptions, and Vulnerability. Contribution of Working Group
II to the Third Assessment Report of the Intergovernmental Panel on Climate
Change (IPCC). Cambridge, UK : Cambridge University Press, 2001

[Mealling und Denenberg 2002] Mealling, Michael (Hrsg.) ; Denenberg,
Ray (Hrsg.): Report from the Joint W3C/IETF URI Planning Interest
Group: Uniform Resource Identifiers (URIs), URLs, and Uniform Resource
Names. (URNs): Clarifications and Recommendations. IETF, August 2002
(RFC 3305). – URL http://www.ietf.org/rfc/rfc3305.txt?number=
3305

[Mesarovic u. a. 1996] Mesarovic, Mihajlo ; McGinnis, David L. ; West,
Dalton A.: Cybernetics of Global Change: Human Dimensions and Managing
of Complexity. UNESCO, 1996 (MOST Policy Paper No. 3). – Forschungs-
bericht

[Moats 1997] Moats, Ryan: URN Syntax. IETF, 1997 (RFC 2141). – URL
http://www.ietf.org/rfc/rfc2141.txt?number=2141

[Nakicenovic u. a. 2000] Nakicenovic, Nebojsa ; Alcamo, Joseph ; Davis,
Gerald ; et al.: Special Report on Emission Scenarios. Cambridge, UK :
Cambridge University Press, 2000. – ISBN 0-521-80493-0

[Nebert 2002] Nebert, Douglas (Hrsg.): The OpenGIS r© Implementation
Specification – Catalog Services. Version 1.1.1. Wayland, Massachusetts,
USA : Open GIS Consortium, 2002. – URL http://www.opengis.org/
techno/specs/02-087r3.pdf. – Project document number: OGC 02-087r3

http://www.ietf.org/rfc/rfc3305.txt?number=3305
http://www.ietf.org/rfc/rfc3305.txt?number=3305
http://www.ietf.org/rfc/rfc2141.txt?number=2141
http://www.opengis.org/techno/specs/02-087r3.pdf
http://www.opengis.org/techno/specs/02-087r3.pdf

224 LITERATURVERZEICHNIS

[Nebert 2001] Nebert, Douglas D. (Hrsg.): Developing Spatial Data Infra-
structures: The SDI Cookbook. Version 1.1. Reston, VA, USA : The Global
Spatial Data Infrastructure Secretariat, 2001. – URL http://www.gsdi.
org/pubs/cookbook/cookbook0515.pdf

[New u. a. 1999] New, Mark ; Hulme, Mike ; Jones, Phil: Representing
Twentieth-Century Space-Time Climate Variability. Part I: Development of
a 1961-1990 Mean Monthly Terrestrial Climatology. In: Journal of Climate
12 (1999), March, S. 829–856

[New u. a. 2000] New, Mark ; Hulme, Mike ; Jones, Phil: Representing
Twentieth-Century Space-Time Climate Variability. Part II: Development
of 1961-1990 Monthly Grids of Terrestrial Surface Climate. In: Journal of
Climate 13 (2000), July, S. 2217–2237

[Oestereich 1998] Oestereich, Bernd: Objektorientierte Softwareentwick-
lung: Analyse und Desig mit der Unified Modeling Language. 4., aktualisierte
Aufl. München, Wien : Oldenbourg, 1998. – ISBN 3-486-24787-5

[OMG 1999] Object Management Group (Hrsg.): OMG Unified Modeling
Language - Specification V.1.3 (June 1999). Object Management Group,
1999. – URL www.rational.com/uml/resources/documentation/index.
jsp

[Parson 1995] Parson, Edward A.: Integrated assessment and environmental
policy making. In: Energy Policy 23 (1995), Nr. 4/5, S. 463–475

[Peirce 1998] Peirce, Martin: Computer-Based Models in Integrated Envi-
ronmental Assessment / European Environmental Agency. European En-
vironmental Agency, 1998 (AEAT-1987). – Technical Report 14. – URL
http://reports.eea.eu.int/TEC14/en/tech14.pdf

[Percivall 2002] Percivall, George (Hrsg.): The OpenGISTM Abstract Spe-
cification – Topic 12: OpenGIS Service Architecture. Version 4.3. Way-
land, Massachusetts, USA : Open GIS Consortium, 2002. – URL http:
//www.opengis.org/techno/abstract/02-112.pdf. – Project document
number: 02-112.doc

[Poetzsch-Heffter 2001] Poetzsch-Heffter, A.: Software-Architektur.
Bd. 1: Architektur von Softwaresystemen. Hagen : FernUniversität - Ge-
samthochschule Hagen, 2001

[Ramachandran u. a. 2003] Ramachandran, Rahul ; Conover, Helen ;
Graves, Sara ; Christopher, Sundar: EARTH SCIENCE MARKUP LAN-
GUAGE: A Solution to Earth Science Data Format Heterogeneity Problem.
In: American Meteorological Society’s (AMS) 19th International Conference

http://www.gsdi.org/pubs/cookbook/cookbook0515.pdf
http://www.gsdi.org/pubs/cookbook/cookbook0515.pdf
www.rational.com/uml/resources/documentation/index.jsp
www.rational.com/uml/resources/documentation/index.jsp
http://reports.eea.eu.int/TEC14/en/tech14.pdf
http://www.opengis.org/techno/abstract/02-112.pdf
http://www.opengis.org/techno/abstract/02-112.pdf

LITERATURVERZEICHNIS 225

on Interactive Information Processing Systems (IIPS) for Meteorology, Ocea-
nography, and Hydrology, Long Beach, CA, Feb. 9 - 13, 2003, URL http:
//ams.confex.com/ams/annual2003/techprogram/paper_54086.htm, Fe-
bruary 2003

[Rehesaar 1996] Rehesaar, Hugo: International Standards: Practical or just
theoretical? In: StandardView 4 (1996), September, Nr. 3, S. 123–126

[Rizzoli und Davis 1999] Rizzoli, Andrea E. ; Davis, J. R.: Integration and
re-use of Environmental Models. In: Environmental Modelling & Software
14 (1999), Nr. 6, S. 493–494 (Editorial)

[Roehrl und Schmiedl 2002] Roehrl, Armin ; Schmiedl, Stefan: Die wich-
tigsten Open-Source-Lizenzen. In: c’t Magazin für Computer-Technik 1
(2002), S. 170ff

[Rotmans u. a. 1994] Rotmans, J. ; Asselt, M.B.A. van ; Bruin, A.J. de ;
Elzen, M.G.J. den ; Greef, J. de ; Hilderink, H. ; Hoekstra, A.Y. ;
Janssen, M.A. ; Koster, H.W. ; Martens, W.J.M. ; Niessen, L.W. ;
Vries, H.J.M. de: Global Change and Sustainable Development: A Modeling
Perspective for the Next Decade. Bilthoven, The Netherlands : National
Institute of Public Health and Environmental Protection (RIVM), Juni 1994.
– URL http://sedac.ciesin.org/mva/JR1994A/JR1994A.html

[Rotmans 1998] Rotmans, Jan: Methods for IA: The challanges and oppor-
tunities ahead. In: Environmental Modeling and Assessment (1998), Nr. 3,
S. 155–179

[Rotmans und van Asselt 2001] Rotmans, Jan ; Asselt, Marjolein B. A.
van: Uncertainty management in integrated assessment modelling: towards a
pluralistic approach. In: Environmental Monitoring and Assessment (2001),
Nr. 69, S. 101–130

[Rotmans und Dowlatabadi 1998] Rotmans, Jan ; Dowlatabadi, Hadi:
Integrated assessment modeling. In: Rayner, Steve (Hrsg.) ; Malone, Eli-
zabetz L. (Hrsg.): Human choice and climate change Bd. 3 – The tools for
policy analysis. Columbus, Ohio, USA : Battelle Press, 1998, Kap. 5, S. 291–
377

[Schneider 1997] Schneider, Stephen H.: Integrated assessment modeling of
global climate change: Transparent rational tool for policy making or opaque
screen hiding value-laden assumptions? In: Environmental Modeling and
Assessment (1997), Nr. 2, S. 229–249

http://ams.confex.com/ams/annual2003/techprogram/paper_54086.htm
http://ams.confex.com/ams/annual2003/techprogram/paper_54086.htm
http://sedac.ciesin.org/mva/JR1994A/JR1994A.html

226 LITERATURVERZEICHNIS

[Schulze u. a. 1999] Schulze, Thomas ; Straßburger, Steffen ; Klein,
Ulrich: Migration of HLA into Civil Domains: Solutions and Prototy-
pes for Transportation Applications. In: Simulation 73 (1999), Nr. 5,
S. 296–303. – URL http://isgsim1.cs.uni-magdeburg.de/hla/paper/
S7305-05.pdf. – ISSN 0037-5497/99

[Schürmann 1995] Schürmann, Gerd: The evolution from open systems
interconnection (OSI) to open distributed processing (ODP). In: Computer
Standards & Interfaces 17 (1995), January, Nr. 1, S. 107–113

[Schwinn 1992] Schwinn, Hans: Relationale Datenbanksysteme. München;
Wien : Hanser, 1992 (Hanser Studienbücher der Informatik). – ISBN 3-446-
15782-4

[Senkler 2001] Senkler, Kristian: Anforderungen an eine offene Infra-
struktur für E-Business und Geoinformations-Services. In: Strobl, Josef
(Hrsg.) ; Blaschke, Thomas (Hrsg.) ; Griesebner, Gerald (Hrsg.): Ange-
wandte Geographische Informationsverarbeitung XIII. Beiträge zum AGIT-
Symposium Satzburg 2001. Heidelberg : Wichmann Verlag, 2001, S. 455–460

[Shaw und Garlan 1996] Shaw, Mary ; Garlan, David: Software-
Architecture. Perspectives on an Emerging Discipline. Upper Saddle River,
New Jersey : Prentice Hall - Alan Apt, 1996

[Shlyakhter u. a. 1995] Shlyakhter, Alexander ; Valverde A. Jr, L. J. ;
Wilson, Richard: Integrated risk analysis of global climate change. In:
Chemosphere 30 (1995), Nr. 8, S. 1585–1618

[Steinhausen 1994] Steinhausen, Detlef: Simulationstechniken. München,
Wien : Oldenbourg, 1994

[Swoboda u. a. 2000] Swoboda, Walter ; Kruse, Fred ; Legat, Rudolf ;
Nikolai, Ralf ; Behrens, Sven: Harmonisierter Zugang zu Umweltinfor-
mationen für Öffentlichkeit, Politik und Planung: Der Umweltdatenkatalog
UDK im Einsatz. In: Cremers, Armin B. (Hrsg.) ; Greve, Klaus (Hrsg.):
Umweltinformatik ’00, Umweltinformation für Planung, Politik und Öffent-
lichkeit. 14. Internationales Symposium ”Informatik für den Umweltschutz“
der Gesellschaft für Informatik (GI), Bonn 2000 Bd. 2. Marburg : Metro-
polis Verlag, 2000, S. 595–607. – URL http://www.umweltdatenkatalog.
de/publikat/pdfs/harmonisierterzugang.pdf

[Swoboda u. a. 1998] Swoboda, Walter ; Kruse, Fred ; Nyhuis, Detlev ;
Rousselle, Holger: Die Neukonzeption des Umweltdatenkataloges. In: Haa-
sis, Hans-Dietrich (Hrsg.) ; Ranze, K. C. (Hrsg.): Umweltinformatik ’98,
Vernetzte Strukturen in Informatik, Umwelt und Wirtschaft. 12. ”Informa-
tik für den Umweltschutz“ der Gesellschaft für Informatik (GI), Bremen 1998

http://isgsim1.cs.uni-magdeburg.de/hla/paper/S7305-05.pdf
http://isgsim1.cs.uni-magdeburg.de/hla/paper/S7305-05.pdf
http://www.umweltdatenkatalog.de/publikat/pdfs/harmonisierterzugang.pdf
http://www.umweltdatenkatalog.de/publikat/pdfs/harmonisierterzugang.pdf

LITERATURVERZEICHNIS 227

Bd. 2. Marburg : Metropolis Verlag, 1998, S. 610–620. – URL http://www.
umweltdatenkatalog.de/publikat/pdfs/NeukonzeptiondesUDK.pdf

[Thomas und Nejmeh 1992] Thomas, Ian ; Nejmeh, Brian A.: Definiti-
ons of Tool Integration for Environments. In: IEEE Software 9 (1992),
March/April, Nr. 2, S. 29–35

[Tol und Vellinga 1998] Tol, Richard S. J. ; Vellinga, Pier: The Euro-
pean Forum on Integrated Environmental Assessment. In: Environmental
Modeling and Assessment (1998), Nr. 3, S. 181–191

[Toth 1995] Toth, Ferenc L.: Practice and progress in integrated assessment
of climate change – A workshop overview. In: Energy Policy 23 (1995),
Nr. 4/5, S. 253–267

[UN 1992] United Nations (UN) ; Bundesministerium für Umwelt,
Naturschutz und Reaktorsicherheit (BMU) (Hrsg.): Konferenz der
Vereinten Nationen für Umwelt und Entwicklung im Juni 1992 in Rio de Ja-
neiro. Dokumente: Agenda 21. Bonn : Köllen Druck+Verlag, 1992 (Umwelt-
politik). – URL http://www.bmu.de/download/dateien/agenda21.pdf

[van der Sluijs 1996] van der Sluijs, Jeroen: Integrated assessment mo-
dels and the management of uncertainties / IIASA (International Institute
for Appliend Systems Analysis). Laxenburg, Austria : IIASA (International
Institute for Appliend Systems Analysis), October 1996. – Working Paper
WP-96-119

[van Wijk 1994] van Wijk, Jack: M-Software Architecture. Documentation
available at M web page (www.m.rivm.nl). Juni 1994

[Vienneau 2001] Vienneau, Aleta: Using ArcCatalogTM. USA : ESRI r©,
Environmental System Research Institute, 2001. – ISBN ISBN: 1879102951

[Villa 2001] Villa, Ferdinando: Integrating modelling architecture: a decla-
rative framework for multi-paradigm, multi-scale ecological modelling. In:
Ecological Modelling 137 (2001), Nr. 1, S. 23–42

[Villa und Costanza 2000] Villa, Ferdinando ; Costanza, Robert: Design
of multi-paradigm integrating modelling tools for ecological reserach. In:
Environmental Modelling and Software (2000), Nr. 15, S. 169–177

[Voges 2001] Voges, Uwe: terraSeek – OpenGIS basierter Katalogdienst
für Geodaten und Geoservices. In: Hilty, Lorenz M. (Hrsg.) ; Gilgen,
Paul W. (Hrsg.): Sustainability in the Information Society. 15th international
Symposium Informatics for Environmental Protection, Zurich 2001 Bd. 1:
Impacts and Applications. Marburg : Metropolis Verlag, 2001, S. 484–492

http://www.umweltdatenkatalog.de/publikat/pdfs/NeukonzeptiondesUDK.pdf
http://www.umweltdatenkatalog.de/publikat/pdfs/NeukonzeptiondesUDK.pdf
http://www.bmu.de/download/dateien/agenda21.pdf

228 LITERATURVERZEICHNIS

[WBGU 1993] Wissenschaftlicher Beirat der Bundesregierung
Globale Umweltveränderungen (Hrsg.): Welt im Wandel: Grundstruk-
tur globaler Mensch-Umwelt-Beziehungen; Jahresgutachten 1993. Bonn : Eco-
nomica Verlag, 1993. – URL http://www.wbgu.de/wbgu_jg1993.pdf

[Welsh u. a. 2000] Welsh, Matt ; Dalheimer, Matthias K. ; Kaufman,
Lar: LINUX – Wegweiser zur Installation & Konfiguration. Köln : O’Reilly,
2000. – ISBN 3-89721-133-5

[Weyant u. a. 1996] Weyant, J. ; Davidson, O. ; Dowlatabadi, H. ; Ed-
monds, J. ; Grubb, M. ; Parson, E.A. ; Richels, R. ; Rotmans, J. ;
Shukla, P.R. ; Tol, R.S.J. ; Cline, W. ; Fankhauser, S.: Integrated
Assessment of Climate Change: An Overview and Comparison of Approa-
ches and Results. In: IPCC, (Intercovernmental Panel on Climate Change)
(Hrsg.): Climate Change 1995. Cambridge, UK : Cambridge University Press,
1996, S. 369–396

http://www.wbgu.de/wbgu_jg1993.pdf

Anhang A

Glossar

Architektur Siehe Software-Architektur.

Assessment-Modell Siehe Integriertes Assessment-Modell.

Daten Eine wieder interpretierbare Darstellung von Information in formali-
sierter Weise, geeignet zur Übermittlung, Deutung oder Verarbeitung.
(ISO, 1993; Quelle: DIN, 1995)

Datensatz-Serie Sammlung von Datensätzen mit gleicher Produktspezifika-
tion. (?)

Datenbank Die Gesamtheit der Daten eines Anwendungsbereichs. (Balzert,
1996)

Datenbank-Managementsystem (DBMS) System zur zentralen Verwal-
tung und Kontrolle der Datenbestände von Datenbanken. (Balzert, 1996)

Datenbanksystem System für die dauerhafte, zuverlässige und unabhängi-
ge Verwaltung sowie die komfortable, flexible und geschützte Verwen-
dung großer, integrierter und mehrfachbenutzbarer Datenbanken. (Bal-
zert, 1996)

Datenhaltungssystem Siehe Datenbanksystem.

Dienst Abgrenzbarer (distinct) Teil einer Funktionalität, die von einer Entität
über eine Schnittstelle bereitgestellt wird. (ISO/IEC TR 14252)

Framework Ein durch den Software-Entwickler anpassbares oder erweiterba-
res System kooperierender Klassen bei dem in der Regel abstrakte oder
leere Operationen in Unterklassen definiert bzw. implementiert werden.
(Balzert, 1996)

229

230 ANHANG A. GLOSSAR

Globaler Wandel Die Veränderungen in Natur und Gesellschaft, die die
Menschheit als Ganzes und auf längere Sicht hin betreffen. (Krück u. a.,
2001)

Hilfs-Unterprogramm, Hilfsprogramm Ein Unterprogramm oder ein Pro-
gramm, das allgemeine, häufig benötigte Dienste für Benutzer und Be-
dienungspersonal liefert. (ISO, 1989; Quelle: DIN, 1995)

IAM Siehe Integriertes Assessment-Modell.

Integriertes Assessment Prozess, in dem Wissen unterschiedlicher Fachdis-
ziplinen über das ‘System Erde’ in einem konsistenten Rahmen kombiniert
und interpretiert wird und der das Ziel verfolgt, den Zustand und mögli-
che langfristige Änderungen des Systems einzuschätzen und zu bewerten
sowie die Ergebnisse politischen Entscheidungsträgern zu vermitteln. (s.
Unterabschnitt 2.1.2, Seite 11)

Integrated Assessment Model (IAM) IAMs use a computer program to
link an array of component models based on mathematical representations
of information from the various contributing disciplines. (Weyant u. a.,
1996) Siehe auch den weiter gefassten Begriff ‘SISA’.

Integriertes Modell Siehe Integriertes Assessment-Modell.

Interoperabilität Eignung, mit vorgegebenen Systemen zusammenzuwirken.
(DIN, 1994)

Katalog Eine Sammlung von Katalogeinträgen, die so organisiert ist, dass
sie einem Nutzer bei der Suche nach und beim Zugriff auf Ressourcen
unterstützt. (in Anlehnung an Kottmann, 1999c13)

Komponente Ein abgeschlossener, binärer Software-Baustein, der eine an-
wendungsorientierte, semantisch zusammengehörende Funktionalität be-
sitzt, die nach außen über Schnittstellen zur Verfügung gestellt wird. (Bal-
zert, 2000) Baustein für die Struktur eines Systems. (Buschmann u. a.,
1998)

Metadaten Daten über den Inhalt, die Qualität, den Zustand und andere
Charakteristiken von Daten. (FGDC, 1998)

Programm Eine syntaktische Einheit, die die Regeln einer bestimmten Pro-
grammiersprache befolgt und die aus Deklarationen und Anweisungen
oder Instruktionen zusammengesetzt ist, notwendig zur Lösung einer ge-
wissen Funktion, Aufgabe oder eines Problems. (ISO, 1993; Quelle: DIN,
1995)

231

Ressource Natürlich vorhandener Bestand von etwas, was für einen bestimm-
ten Zweck benötigt wird. (Duden, 1996) (“source of supply or support; a
source of information or expertise“ Merriam-Webster´s Collegiate Dictio-
nary, http://www.britannica.com.)

Schnittstelle Benannter Satz von Operationen, der das Verhalten einer Enti-
tät charakterisiert. (ISO/DIS 19119)

Service Siehe Dienst

Simulation/Simulationslauf Durchführung einer Modellberechnung unter
definierten Bedingungen. (vgl. Simulationslauf-Spezifikation)

Simulationslauf-Spezifikation Definierte Modell-Konfiguration. Beinhaltet
die Spezifikation aller Simulationsmodell-Daten (inkl. Systemparameter,
Modellumwelt-Größen, Optionen). (s. Unterabschnitt 4.1.2, Seite 72)

Simulationsmodell ”A set of computational codes, executable in some soft-
ware/hardware environment, that transform a set of input data into a
set of output data, with the input, output, and transformation typically
having some interpretation in terms of real-world phenomena.“ Definition
des Begriffs ‘computational model’ nach Hill u. a. (2001).

SISA Siehe System zum integrierten simulationsbasierten Assessment

Software Programme, Verfahren, Regeln und möglicherweise zugehörige Do-
kumentationen und Daten zum Betrieb eines Computersystems. (IEEE
610.12)

Software-Architektur Eine Software-Architektur ist die grundsätzliche
Strukturierung eines Software-Systems. Sie beschreibt eine Menge defi-
nierter Komponenten, die über Schnittstellen miteinander kommunizie-
ren, spezifiziert deren jeweiligen Zuständigkeitsbereich und beschreibt die
Beziehungen zwischen den Komponenten. (s. Unterabschnitt 2.3.2, Sei-
te 18)

Software-Erzeugnis Eine vollständige und dokumentierte Menge von Pro-
grammen zur Lieferung an mehrere Benutzer für eine Anwendungs- oder
Funktionsgattung. (ISO, 1990; Quelle: DIN, 1995)

Software-System Eine Menge von Software-Komponenten, die gemeinsam
eine oder mehrere Aufgaben erfüllen. (Buschmann u. a., 1998)

Subsystem Eine Menge von miteinander arbeitenden Komponenten, die ge-
meinsam eine Aufgabe erfüllen und die als eigenständige Einheit in-
nerhalb einer Software-Architektur angesehen werden wird. (Buschmann
u. a., 1998)

http://www.britannica.com

232 ANHANG A. GLOSSAR

System zum integrierten simulationsbasierten Assessment (SISA)
Ein System zum integrierten simulationsbasierten Assessment (SISA)
ist ein Software-System, das von unterschiedlichen Fachdisziplinen
stammende Daten und Simulationsmodelle zum ‘System Erde’ in einem
konsistenten Rahmen kombiniert und neue Daten über den Zustand
und mögliche langfristige Änderungen des ‘Systems Erde’ – vornehmlich
zur Unterstützung politischer Entscheidungsträger – berechnet und
bereitstellt. (s. Unterabschnitt 3.1, Seite 25)

Szenario In sich konsistente und plausible Annahmen über die zukünftige
Entwicklung systembeeinflussender exogener Größen. (Bossel, 1994)

Anhang B

Datenmodelle und
Schnittstellen

233

234 ANHANG B. DATENMODELLE UND SCHNITTSTELLEN

B.1 Datenmodell zu Personen und Organisatio-
nen

ISO/DIS 19115

34 © ISO 2000 – All rights reserved

A.3.2 Citation and responsible party information

Figure A.16 defines metadata describing authoritative reference information, including responsible party and con-
tact information. The data dictionary for this diagram is located in B.3.2.

CI_Telephone
+ voice [0..*] : CharacterString
+ facsimile [0..*] : CharacterString

<<DataType>>

CI_Address
+ deliveryPoint [0..*] : CharacterString
+ city [0..1] : CharacterString
+ administrativeArea [0..1] : CharacterString
+ postalCode [0..1] : CharacterString
+ country [0..1] : CharacterString
+ electronicMailAddress[0..*] : CharacterString

<<DataType>>

CI_OnlineResource
+ linkage : URL
+ protocol [0..1] : CharacterString
+ applicationProfile [0..1] : CharacterString
+ name [0..1] : CharacterString
+ description [0..1] : CharacterString
+ function [0..1] : CI_OnLineFunctionCode

<<DataType>>

CI_PresentationFormCode
+ documentDigital
+ documentHardcopy
+ imageDigital
+ mapDigital
+ mapHardcopy
+ modelDigital
+ modelHardcopy
+ profileDigital
+ profileHardcopy
+ tableDigital
+ tableHardcopy
+ videoDigital
+ videoHardcopy

<<CodeList>>

CI_Citation
+ title : CharacterString
+ alternateTitle [0..*] : CharacterString
+ date [1..*] : CI_Date
+ edition [0..1] : CharacterString
+ editionDate [0..1] : Date
+ identifier [0..*] : CharacterString
+ identifierType [0..*] : CharacterString
+ citedResponsibleParty [0..*] : CI_ResponsibleParty
+ presentationForm [0..*] : CI_PresentationFormCode
+ series [0..1] : CI_Series
+ otherCitationDetails [0..1] : CharacterString
+ collectiveTitle[0..1] : CharacterString
+ ISBN[0..1] : CharacterString
+ ISSN[0..1] : CharacterString

<<DataType>>

CI_OnLineFunctionCode
+ download
+ information
+ offlineAccess
+ order
+ search

<<CodeList>>

URL

CI_Contact
+ phone [0..1] : CI_Telephone
+ address [0..1] : CI_Address
+ onlineResource [0..1] : CI_OnlineResource
+ hoursOfService [0..1] : CharacterString
+ contactInstructions [0..1] : CharacterString

<<DataType>>

CI_RoleCode
+ resourceProvider
+ custodian
+ owner
+ user
+ distributor
+ originator
+ pointOfContact
+ principalInvestigator
+ processor
+ publisher

<<CodeList>>

CI_ResponsibleParty
+ individualName[0..1] : CharacterString
+ organisationName[0..1] : CharacterString
+ positionName[0..1] : CharacterString
+ contactInfo [0..1] : CI_Contact
+ role : CI_RoleCode

<<DataType>> count of (individualName +
organisationName + position
Name) > 0

CI_Date
+ date : Date
+ dateType : CI_DateTypeCode

<<DataType>>

CI_DateTypeCode
+ creation
+ publication
+ revision

<<CodeList>>

CI_Series
+ name [0..1] : CharacterString
+ issueIdentification [0..1] : CharacterString
+ page [0..1] : CharacterString

<<DataType>>

Figure A.16 — Citation and responsible party information

Abbildung B.1: Zur Verwaltung von Personen und Organisationen (Institu-
tionen) verwendete Klassen nach ISO 19115 (Responsible party information).
Nähere Informationen finden sich in Unterabschnitt 5.2.3 (Seite 119). Quelle:
Kottmann (2001).

B.2. ZUSAMMENFASSUNG DES SISA-DATENMODELLS 235

B.2 Zusammenfassung des SISA-Datenmodells

«DataType»
CI_ResponsibilityParty

«DataType»
SISA_ResponsibilityParty

-modelDeveloper
-modelCoder
-modelCarrier
-decisionMaker
-resourceProvider
-interestedParty
-investor

«CodeList»
SISA_RoleCode

-urn[1] : SISA_URN
-title[1] : String
-aim[1] : String
-description[1] : String
-responsibleParty[1..*] : SISA_ResponsibilityParty
-contributor[0..1] : SISA_ResponsibilityParty
-furtherInfoResource[0..*] : SISA_Resource
-begin[1] : SISA_Date
-end[0..*] : SISA_Date

«DataType»
SISA_Project

-urn[1] : SISA_URN
-title[1] : String
-description[1] : String
-furtherInfoResource[0..*] : SISA_Resource
-responsibiliteParty[1] : SISA_ResponsibilityParty

«DataType»
SISA_Storyline

-urn[1] : SISA_URN
-title[1] : String
-description[1] : String
-furtherInfoResource[0..*] : SISA_Resource
-responsibiliteParty[1] : SISA_ResponsibilityParty
-indicatorChangeDescription[1] : String
-drivingForces[1] : String
-baseYear[1] : Integer
-timeHorizon[1] : Integer
-timeStep[1] : Integer
-furtherInfoResource[0..*] : SISA_Resource
-responsibleParty[1] : SISA_ResponsibilityParty
-storyline[1] : SISA_Storyline

«DataType»
SISA_Scenario

-relatedProject[1..1] : SISA_Project

«DataType»
SISA_SimulationStudy

-title[1] : String
-description[1] : String
-utilizedResources[0..*] : SISA_Resource

«DataType»
SISA_Task

-urn : SISA_URN
-title : String
-aim : String
-study : SISA_SimulationStudy
-responsibleParty : SISA_ResponsibilityParty
-relatedDocument : SISA_Document

«DataType»
SISA_SimulationRun

-title[1] : String
-author[1] : SISA_ResponsibilityParty
-date[1] : SISA_Date
-text[1] : String
-relatedResource[0..*] : SISA_Resource

«DataType»
SISA_Annotation

-urn[1] : SISA_URN
-simulationRun[1] : SISA_URN
-modelSetting[1..*] : SISA_ModelSettingAllocation

«DataType»
SISA_SimulationSpecification

-model[1] : SISA_URN
-setting[1] : String
-value[1] : String

«DataType»
SISA_ModelSettingAllocation

-model[1] : SISA_URN
-spezification[1]

«DataType»
SISA_ModelSettingsSpezification

-katalogManager[1..*]
-repositoryName[0..*]

«DataType»
SISA_MetadataHarvester

-name[1] : String
-resourceId[1] : SISA_URN
-catalogEntry[1] : SISA_CatalogEntry

«DataType»
SISA_Catalog

-resourceId[1] : SISA_URN
-metadataEntry[0..*] : SISA_MetadataEntry
-accessInfo[1] : SISA_AccessInformation

«DataType»
SISA_CatalogEntry

«DataType»
SISA_MetadataEntry

-Title[*] : String
-Creator[*] : String
-Subject[*] : String
-Description[*] : String
-Publisher[*] : String
-Contributur[*] : String
-Date[*] : String
-Type[*] : String
-Format[*] : String
-Identifier[*] : String
-Source[*] : String
-Language[*] : String
-Relation[*] : String
-Coverage[*] : String
-Rights[*] : String

«DataType»
SISA_MetadataDCMES

«DataType»
SISA_MetadataISO19115

«DataType»
SISA_MetadataCSCM

-URL[1] : String
-format[1] : String

SISA_AccessInformation

-catalog[1..*] : SISA_URN

«DataType»
SISA_CatalogManager

-formatInfo[*] : String

«DataType»
SISA_DataAccess

-simulationRun[1] : SISA_URN
-datasetChange[1..*] : SISA_DatasetChange

«DataType»
SISA_ModelAnalysis -dataSet[1] : SISA_URN

-changeMin[1]
-changeMax[1]

«DataType»
SISA_DatasetChange

Abbildung B.2: Übersicht des SISA-Datenmodells. Erklärungen finden sich in
Abschnitt 5.2 (Seite 96).

236 ANHANG B. DATENMODELLE UND SCHNITTSTELLEN

B.3 Zusammenfassung der SISA-Schnittstellen

+initSession()
+terminateSession()

«interface»
ICatService

+query()

«interface»
ICatDiscovery

+getAccessInformation()
+getURN()

«interface»
ICatAccess

+createCatalog()
+updateCatalog()
+deleteCatalog()
+createMetadata()
+addCatalogEntry()
+modifyCatalogEntry()
+removeCatalogEntry()

«interface»
ICatManager

+createCatalog()
+deleteCatalog()
+addCatalogEntry()
+modifyCatalogEntry()
+deleteCatalogEntry()

«interface»
IDocManager

+query()

«interface»
IDocDiscovery

Kataloge sind bereitzustellen
für:
- Personen & Institutionen
- Projekte & Simulationsstudien
- Simulationsläufe & Szenarien
- ein Glossar
- einen Service Organizer Folder
- Anmerkungen

+getSetting()
+validateSpecification()
+setModelSettingsSpecification()

«interface»
ISimRunSpecification

+createSpecification()
+copySpecification()
+addSetting()
+modifySetting()
+deleteSetting()

«interface»
ISimRunManager

+harvest()
+report()
+setRepository()
+queryRepository()

«interface»
IMDHarvester

+transformDataset()
+getFormatInfo()

«interface»
IDataTransform

+retrieveDataset()
+addDataset()
+removeDataset()
+modifyDataset()
+checkDatasetStatus()
+modifyDatasetStatus()
+getDatasetStatus()

«interface»
IDBSystem

+transformGrid()
+combineGrid()

«interface»
IGeoParameterCalculation

+gridStatistics()

«interface»
IStatisticalCalculatoin

+query()

«interface»
IDBDiscovery

Documentation
IDocManager

IDocDiscovery

Catalog Manager
ICatManager

ICatAccess

ICatDiscovery

ICatService

Simulation-Run Manager
ISimRunManager

ISimRun
Specification

Metadata Harvester
IMDHarvester

Data Access
IDBSystem

IDataTransform

Database System
IDBSystem

IDBDiscovery

+init()
+run()

«interface»
ISimControl

+getResult()

«interface»
ISimResultAccess

+analyse()

«interface»
ISimModAnalysis

+defineTask()
+invokeTask()

«interface»
ITaskManager

+calculateStatistics()

«interface»
IUtility

+viewDataset()
+viewStatistics()

«interface»
IAnalysis

Simulation System
ISimResult

Access

ISimControl

Model Analysis
ISimModAnalysis

IRepository
IDataTransform

Task Manager
ITaskManager

Analysis
IAnalysis

Geographic Processing

IGeoParamter
Calculation

IStatistical
Calculation

Utility
IUtility

Abbildung B.3: Übersicht der SISA-Koponenten und Schnittstellen. Erklärun-
gen finden sich in Abschnitt 5.2 (Seite 96).

Anhang C

Standards

C.1 Übersichten

The OpenGIS™ Abstract Specification Page 3

Volume 0: Abstract Specification Overview (99-100r1.doc)

2.3. Topic Volumes
There are currently 17 “books” in the OGC Abstract Specification (including this one, Topic 0).
Each is called a “Topic,” and given a descriptive name. The Abstract Specification refers to the
collection of Topic Volume documents referenced by [2].

The Abstract Specification is broken into Topics in order to assist parallel developments of
different topics by different Working Groups of the OGC membership. Figure 1 shows some
dependency relationships between topics.

Topic 9
 Quality

Topic 12
The Open GIS
Service Arch.

Topic 13
Catalog
Services

Topic 14
Semantics and
Info Com’t’s

Topic 4 Stored
Functions and
Interpolation

Topic 5
The Open

GIS Feature

Topic 6
The Coverage

Type

Topic 7
Earth Imagery

Topic 10
Feature

Collections

Topic 8
Relations

Bet’n Features

Topic 11
Metadata

Topic 1
Feature

Geometry

Topic 2 Spatial
Reference
Systems

Topic 3
Locational
Geometry

Topic 15
Image Expl.

Services

Topic 16
Image Coord.

Transf Services

 Figure 1: Abstract Specification Topic Dependencies

The Abstract Specification is organized into separate topic volumes in order to manage the
complexity of the subject matter and to assist parallel development of work items by different
Working Groups of the OGC Technical Committee. The topics are, in reality, dependent upon one
another each one begging to be written first. Each topic must be read in the context of the entire
Abstract Specification.

The topic volumes are not all written at the same level of detail. Some are mature, and are the basis
for Requests For Proposal (RFP). Others are immature, and require additional specification before
RFPs can be issued. The level of maturity of a topic reflects the level of understanding and
discussion occurring within the Technical Committee. Refer to the OGC Technical Committee
Policies and Procedures [3] and Technology Development Process [4] documents for more
information on the OGC OpenGIS™ standards development process.

2.4. Topics and Their Proponents
The 17 Topics and the Work Groups (WGs) or Special Interest Groups (SIGs) primarily
responsible for them are:

 Topic Volume Volume Name Work Group or Special Interest Group
 Topic 0 Abstract Specification Overview Core Task Force Editor
 Topic 1 Feature Geometry Geometry WG
 Topic 2 Spatial Reference Systems Coordinate Transformation WG
 Topic 3 Locational Geometry Structures Coordinate Transformation WG
 Topic 4 Stored Functions and Interpolation Coverages WG
 Topic 5 The OpenGIS™ Feature Feature SIG
 Topic 6 The Coverage Type Coverages WG
 Topic 7 Earth Imagery Case Coverages WG and Image Exploitation Services

SIG
 Topic 8 Relationships Between Features Feature Identity and Relationships WG and

Feature SIG
 Topic 9 Quality Metadata SIG

Abbildung C.1: Überblick über die Abhängigkeiten der OpenGIS Abstract Spe-
cifications untereinander. Quelle: Kottmann (1999a).

237

238 ANHANG C. STANDARDS

Dienste-Taxonomie der ISO/DIS 19119, Teil I

Taxonomie-Klasse Beispiel

Geographic Human Interaction Services catalogue viewer
geographic viewer
geographic viewer – animation
geographic viewer – mosaicing
geographic viewer – perspective
geographic viewer – imagery
geographic spreadsheet viewer
service editor
chain definition editor
workflow enactment manager
geographic feature editor
geographic symbol editor
feature generalization editor
geographic data-structure viewer

geographic model/information management feature access service
services map access service

coverage access service
coverage access service – sensor
sensor description service
product access service
feature type servcie
catalogue servcie
registry servcie
gazetteer service
order handling service
standing order service

geographic workflow/task management chain definition service
services workslow enactment service

subscription service
geographic communication services encoding service

transfer service
geographic compression service
geographic format conversion service
messaging service
remote file and executable management

geographic system management services no services have been identified.

Tabelle C.1: Beipieldienste der ISO/DIS 19119 Taxonomie, Teil I.
.

C.1. ÜBERSICHTEN 239

Dienste-Taxonomie der ISO/DIS 19119, Teil II

Taxonomie-Klasse Beispiel

geographic processing services – spatial coordinate conversion service
coordinate transformation service
coveratge/vector conversion service
image coordinate conversion service
rectification service
sensor geometry model adjustment service
image geometry model conversion service
subsetting service
sampling service
tiling change service
dimension measurement service
feature manipulation service
feature matching service
feature generalization service
route determination service
positioning service
proximity analysis servcie

geographic processing services – thematic geoparameter calculation service
thematic classification service
feature generalization service
subsetting service
spatial counting service
change detection service
geographic information extraction service
image processing service
reduced resolution generation service
image manipulation service
image understnading service
image synthesis service
multi-band image manipulation service
object detection service
geocoding service

geographic processing services – temporal temp. reference system transformation s.
subsetting service
sampling service
temporal proximity analysis service

geographic processing services – metadata statistical calculation service
geographic annotation service

Tabelle C.2: Beipieldienste der ISO/DIS 19119 Taxonomie, Teil II.
.

240 ANHANG C. STANDARDS

Standards aus der ISO-19100-Reihe

Bezeichnung Thema
ISO 19101 Reference model
ISO 19102 Overview
ISO 19103 Conceptual schema language
ISO 19104 Terminology
ISO 19105 Conformance and testing (published)
ISO 19106 Profiles
ISO 19107 Spatial schema
ISO 19108 Temporal schema
ISO 19109 Rules for application schema
ISO 19110 Feature cataloguing methodology
ISO 19111 Spatial referencing by coordinates
ISO 19112 Spatial referencing by geographic identifiers
ISO 19113 Quality principles
ISO 19114 Quality evaluation procedures
ISO 19115 Metadata
ISO 19116 Positioning services
ISO 19117 Portrayal
ISO 19118 Encoding
ISO 19119 Services
ISO/TR 19120 Functional standards + new revision started
ISO/TR 19121 Imagery and gridded data (published
ISO/TR 19122 Qualifications and certification of personnel
ISO 19123 Schema for coverage geometry and functions
ISO 19124 Imagery and gridded data components
ISO 19125-1 Simple feature access - Part 1: Common architecture
ISO 19125-2 Simple feature access - Part 2: SQL option
ISO 19125-3 Simple feature access - Part 3: COM/OLE option
ISO 19126 Profile - FACC Data Dictionary
ISO 19127 Geodetic codes and parameters
ISO 19128 Web map server interface
ISO 19129 Imagery, gridded and coverage data framework
ISO 19130 Sensor and data models for imagery and gridded data
ISO 19131 Data product specifications
ISO 19132 Location based services possible standards
ISO 19133 Location based services tracking and navigation
ISO 19134 Multimodal location based services for routing and navigation
ISO 19135 Procedures for registration of geographical information items
ISO 19136 Geography Markup Language
ISO 19137 Generally used profiles of the spatial schema and of similar

important other schemas
ISO 19138 Data quality measures
ISO 19139 Metadata - Implementation specification
ISO 19140 Technical amendment to the ISO 191** Geographic information series

of standards for harmonization and enhancements

Tabelle C.3: Standards im Arbeitsprogramm des ISO/TC 211 (Stand: Janu-
ar 2003, Quelle: http://www.isotc211.org). Aufgeführt sind alle Standards,
unabhängig vom aktuellen Status (der vom ersten Working Draft bis zum In-
ternational Standard reicht). Siehe auch Abschnitt 32 (Seite 42).

.

http://www.isotc211.org

C.1. ÜBERSICHTEN 241

Abstract Specifications des OpenGIS-Konsortiums

Topic-Nr. Topic-Name Version
0 Overview 4
1 Feature Geometrya 5
2 Spatial Reference Systemsb 1
3 Locational Geometry 4
4 Stored Functions and Interpolation 4
5 The OpenGIS Feature 4
6 The Coverage Type 6
7 Earth Imageryc 4
8 Relations Between Features 4
9 Accuracy d 4
10 Feature Collections 4
11 Metadatae 5
12 The OpenGIS Service Architecturef 4.3
13 Catalog Services 4
14 Semantics and Information Communities 4
15 Image Exploitation Services 6
16 Image Coordinate Transformation Services 4

aHarmonisierung mit ISO in 2001: ISO 19119 wurde übernommen. Aktuelle Version ent-
hält ISO/DIS 19107 Spatial Schema

bBasis ist ISO 19111, es wurden allerdings Erweiterungen und Änderungen vorgenommen.
Die Unterschiede zu ISO/DIS 19111 werden im Anhang zu Topic 2 zusammengefasst

cEntwicklung in enger Kooperation mit ISO/TC 211
dnächste Version dieses Dokuments wird wahrscheinlich auf Arbeiten zum Qualitäts-

Thema der des ISO/TC 211 aufbauen
eHarmonisierung mit ISO in 2001: ISO/DIS 19115 wurde als OGC Topic 11 übernommen
fHarmonisierung mit ISO in 2001: ISO 19119 wurde übernommen. Aktuelle Version ent-

hält den Inhalt von ISO/DIS 19119

Tabelle C.4: Auflistung verfügbarer OpenGIS Abstract Specifications mit An-
merkungen zu Haronisierungsbestrebungen mit der ISO (Stand: Januar 2003,
Quelle: http://www.opengis.org).

http://www.opengis.org

242 ANHANG C. STANDARDS

Implementation Specifications des OpenGIS-Konsortiums

Titel Version
OpenGIS Simple Features Specification for OLE/COM 1.1
OpenGIS Simple Features Specification for CORBA 1.0
OpenGIS Simple Features Specification for SQL 1.1
OpenGIS Catalog Services Implementation Specification 1.1.1
OpenGIS Grid Coverages Implementation Specification 1.0
OpenGIS Coordinate Transformation Services Implementation Specification 1.0
OpenGIS Web Map Server Interfaces Implementation Specification 1.1.1
OpenGIS Geography Markup Language (GML) Implementation Specification 2.1.2
OpenGIS Web Feature Service Implementation Specification 1.0
OpenGIS Filter Encoding Implementation Specification 1.0
OpenGIS Styled Layer Descriptor Implementation Specification 1.0

Tabelle C.5: Auflistung verfügbarer OpenGIS Implementation Specifications
(Stand: Januar 2003, Quelle: http://www.opengis.org).

http://www.opengis.org

C.2. HLA-REGELN 243

C.2 HLA-Regeln

Die HLA Rules definieren insgesamt zehn Regeln (fünf für Federations und fünf
für Federates):

Regeln für Federations:

1. Federations sollen ein gemäß der HLA Object Model Template (OMT)
dokumentiertes HLA federation object model (FOM) besitzen.

2. Innerhalb einer federation sollen alle simulationsbezogenen Repräsenta-
tionen von Objekt-Instanzen in den federates sein und nicht in der run-
time infrastructure (RTI).

3. Während der Ausführung einer federation soll der gesamte Austausch von
FOM-Daten zwischen den federates über die RTI erfolgen.

4. Während der Ausführung einer federation sollen die federates gemäß der
HLA interface specification mit der RTI interagieren.

5. Während der Ausführung einer federation soll ein Instanz-Attribut zu
jeder Zeit Eigentum1 von maximal einem federate sein.

Regeln für Federates:

6. Federates sollen ein gemäß HLA OMT dokumentiertes HLA simulation
object model (SOM) besitzen.

7. Federates sollen in der Lage sein jedes Attribut gemäß der Beschreibung in
den SOMs zu aktualisieren und/oder widerzuspiegeln und Interaktionen
zu senden und/oder zu empfangen.

8. Federates sollen in der Lage sein den Besitz eines Attributes gemäß der
Beschreibung in den SOMs dynamisch, d. h. zur Laufzeit der Federation,
zu übertragen oder anzunehmen.

9. Federates sollen im Einklang mit den Beschreibungen in den SOMs in der
Lage sein die Bedingungen (z. B. Grenzwerte) zu verändern unter denen
sie Aktualisierungen (Updates) der Attribute bereitstellen.

10. Federates sollen in der Lage sein die lokale Zeit in einer Art und Weise
zu verwalten, die ihnen einen koordinierten Datenaustausch mit anderen
Mitgliedern der federation erlaubt.

1Eigentum/Besitz (ownership) ist hier definiert als die Berechtigung, die Attribut-Werte
einer Instanz zu aktualisieren.

244 ANHANG C. STANDARDS

Anhang D

Programm-Quelltexte

D.1 PHP-Beispiel

Datenbankverbindung

Der folgenden PHP-Quelltext (dbconnect.php) wird beim Aufruf jeder PHP-
Seite mit Datenbank-Funktionalität aufgerufen.

<!-- dbconnect.php -->

<?php

if (!($mylink = mysql_connect("localhost","rglassUser",

"rglassPasswd"))) (1)

{

print "<h3>Keine Verbindung zur Datenbank!</h3>\n";

exit; (2)

}

mysql_select_db("rglassDB"); (3)

?>

Zunächst wird versucht eine Verbindung zum Datenbank-Server herzustel-
len – s. Punkt (1). Für diesen Aufruf wird sowohl die Internet-Adresse des
Servers (hier ‘localhost’, also der lokale Rechner) als auch der Benutzername
(‘rglassUser’) und dessen Passwort (‘rglassPasswd’) benötigt. Bei erfolgreicher
Verbindung wird die gewünschte Datenbank ausgewählt (‘rglassDB’) (3), an-
sonsten wird eine Fehlermeldung ausgegeben (2).

Datenbankabfrage und Datenvisualisierung

Der folgende PHP-Quelltext (viewResponsibleParty.php) dient der Auflistung
aller Personen/Organisationen, die in der Datenbank gespeichert sind.

245

246 ANHANG D. PROGRAMM-QUELLTEXTE

<!-- viewResponsibleParty.php -->

<?phpinclude("dbconnect.php");?> (1)

<title>View Responsible Parties</title>

<body bgcolor="#FFFF00">

<h2>List of Responsible Parties</h2> (2)

<?php

//----- get data from MySQL database (3)

$result = mysql_query("select * from responsibleparty") or die

("Error");

//----- display each dataset in a separate table (4)

if ($result) {

while ($row = mysql_fetch_array($result))

{

echo "<table width=90% border=1>\n";

//----- first database field to display for each

//----- entry (individual name) (5)

echo "<tr>\n";

echo "<td width=19%>";

print "Individual Name: ";

echo "</td>";

echo "<td width=22%>";

print $row["individualName"];

echo "</td>";

echo "</tr>\n";

echo "<tr align=left>\n";

echo "<td width=19%>";

print "Organisation Name: ";

echo "</td>";

echo "<td width=22%>";

print $row["organisationName"];

echo "</td>";

echo "</tr>\n";

//...

//----- last database field to display for each entry (6)

echo "<tr align=left>\n";

echo "<td width=19%>";

print "E-Mail: ";

echo "</td>";

echo "<td width=22%>";

print "<a href=\"mailto:";

D.2. METADATEN-DATEI 247

print $row["email"];

print "\">";

print $row["email"];

echo "</td>";

echo "</tr>\n";

echo "</table>\n";

print "
\n";

print "
\n";

}

mysql_free_result($result);

} ?>

<h2>Insert another

party</h2> (7)

Zunächst wird über die oben beschriebene Funktionsfolge (dbconnect.php)
die Verbindung zur Datenbank hergestellt (1). Nach der Ausgabe einer Über-
schrift (2) erfolgt dann die Abfrage der Datenbank über einen SQL-Befehl, der
für die Selektion aller Einträge der Tabelle ‘responsibleparty’ sorgt (3). Jeder
der gefundenen Datensätze wird anschließend über eine Schleife in einer eige-
nen Tabelle auf dem Bildschirm angezeigt (4) – vom ersten (5) bis zum letzten
gewünschten Eintrag (6). Als Abschluss folgt noch ein Verweis auf die Seite
zum Eintragen neuer Personen/Organisationen (7). Über die einzelnen PHP-
Anweisungen wird zur Laufzeit der HTML-Quelltext erzeugt, der zur Anzeige
im Web-Browser benötigt wird.

D.2 Metadaten-Datei

Nachfolgend findet sich der Quelltext einer Metadaten-Datei, die automatisch
durch die Web-Seite zur Metadaten-Erfassung erzeugt wurde (vgl. Abbildung
6.10, Seite 181).

<?xml version="1.0"?> <?xml-stylesheet type="text/xsl"

href="http://www.usf.uni-kassel.de/grid/meta/metadata.xsl" ?> (1)

<rdf:rdf xmlns:rdf="http://www.w3.org/rdf/rdf/" (2)

xmlns:dc="http://purl.oclc.org/dc/"> (3)

<rdf:Description about=

"urn:x-wzusf:doc-rep.rglassSummaryReport-V1,0.doc.hd"> (4)

<!-- Dublin Core Elements generated via metaDataInput.htm -->

<dc:title> Will Climate Change Affect Food and Water Security

in Russia? </dc:title>

<dc:creator> Joseph Alcamo </dc:creator> (5)

248 ANHANG D. PROGRAMM-QUELLTEXTE

<dc:creator> Genady Golubev </dc:creator>

<dc:creator> Nikolai Dronin </dc:creator>

<dc:creator> Andrei Kirilenko </dc:creator>

<dc:creator> Marcel Endejan </dc:creator>

<dc:subject> R-GLASS </dc:subject>

<dc:subject> GLASS </dc:subject>

<dc:subject> Russia </dc:subject>

<dc:description> Will Climate Change Affect Food and Water

Security in Russia? </dc:description>

<dc:description> Summary Report of the International Project

on Global Environmental Change and its Thread to Food and

Water Security in Russia </dc:description>

<dc:publisher> CESR </dc:publisher>

<dc:contributor> Guenther Fischer </dc:contributor>

<dc:date> 2003-03-24 </dc:date>

<dc:type> Document </dc:type>

<dc:type> Report </dc:type>

<dc:format> MS-Word </dc:format>

<dc:identifier>url:file://usf1/home/_GRID/Marcel/Moscow/

final_report/rglass_final_2003-03-24.doc

</dc:identifier>

<dc:identifier>urn:x-wzusf:doc-rep.rglassSummaryReport-V1,0.doc.hd

</dc:identifier>

<dc:source> </dc:source>

<dc:language>en (also in Russian language available) </dc:language>

<dc:relation> </dc:relation>

<dc:coverage> temporal: 1961-1990, 2020s, 2070s </dc:coverage>

<dc:coverage> spatial: 89 Russian Regions </dc:coverage>

<dc:rights> </dc:rights>

</rdf:Description>

</rdf:rdf>

Die Datei beschreibt die Ressource ‘urn:x-wzusf:doc-rep.rglassSummaryRe-
port-V1,0.doc.hd’ – siehe Punkt (4). Hierzu werden die Elemente des Dublin
Core Metadata Element Set verwendet (Namensraum-Kennzeichnung ‘dc’) (3),
die wiederum eingebettet sind in die Struktur des Resource Description Fra-
mework (Kennzeichnung ‘rdf’) (2).

Wie an Punkt (5) in der Datei zu sehen ist, können einige der Elemente
mehrfach vorkommen (z. B. <dc:creator> zur Beschreibung der Autoren der
Studie), während einige keine Einträge enthalten (z. B. <dc:source>).

D.3. METADATEN-SAMMLER 249

D.3 Metadaten-Sammler

Skript für einfachen Harvester unter der Bash-Shell

Das folgende Skript ist ein Beispiel für einen einfachen Metadaten-Sammler
unter der Bourne-Again-Shell (bash).

path=/grid/meta (1)

copy old repository mv $path/repository.xml

$path/repository.old

search for *.dc.xml files and copy content to repository.xml

find $path -name ’*.dc.xml’ -exec cat {} > $path/repository.xml \; (2)

if necessary add further locations to search path here:

find nextPath -name ’*xml’ -exec cat {} >> $path/repository.xml \;

remove tags not needed

sed -n ’/?xml/!p’ $path/repository.xml > $path/tmp1.xml (3)

sed -n ’/xmlns/!p’ $path/tmp1.xml > $path/tmp2.xml

sed -n ’/rdf:rdf/!p’ $path/tmp2.xml > $path/tmp3.xml

add needed tags for RDF and XSL

cat $path/rdfHeader.txt > $path/repository.xml (4)

cat $path/tmp3.xml >> $path/repository.xml

cat $path/rdfFooter.txt >> $path/repository.xml

clean files

/bin/rm $path/tmp1.xml $path/tmp2.xml $path/tmp3.xml

copy repository to www

ftp -i -n < $path/copyRepositoryToWWW.ftp (5)

Das Skript durchsucht die unter Punkt (1) spezifizierten Verzeichnisse über
den find-Befehl (2) und kopiert dabei den kompletten Inhalt der Dateien in
eine separate Datei. Anschließend werden redundante XML-Textbegrenzungen
(Tags) entfernt (3) und für die Gesamtdatei benötigte Tags hinzugefügt (4).

Die auf diese Weise erzeugte Datei wird dann über das File Transfer Protocol
(ftp) an einen zentralen Ort kopiert (5) – in diesem Fall ist der zentrale Ort ein
Verzeichnis auf dem Web-Server.

Nachteil dieser ersten Version des Metadaten-Sammlers ist die Festlegung
auf das starre Format, in dem die Dateien vorliegen müssen. Die Implementie-
rung über das Document Object Model (DOM) würde die Qualität des Samm-
lers wesentlich erhöhen und die Vorteile von XML auch an dieser Stelle aus-
nutzen.

250 ANHANG D. PROGRAMM-QUELLTEXTE

Inhalt der zugehörigen Dateien

Datei ‘rdfHeader.xml’:

<?xml version="1.0"?>

<?xml-stylesheet

type="text/xsl"

href="http://www.usf.uni-kassel.de/grid/meta/repository.xsl" ?> (1)

<rdf:rdf

xmlns:rdf ="http://www.w3.org/rdf/rdf/" (2)

xmlns:dc ="http://purl.oclc.org/dc/">

Datei ‘rdfFooter.xml’:

</rdf:rdf> (3)

Die Datei ‘rdfHeader.xml’ enthält die Daten, die zur Einleitung der XML/
RDF-Datei notwendig sind. Neben der Angabe des für die Darstellung der Datei
in einem Browser notwendigen Stylesheets (1), sind dies die Deklarationen über
die verwendeten Namensräume (rdf: und ds:) (2). Die Datei ‘rdfFooter.xml’
enthält lediglich das abschließende Tag der XML-Datei.

Datei ‘copyRepositoryToWWW.ftp’:

open connection to web server

open 141.51.100.72

login user

user endejan myPassword

copy repository to web server

put /grid/meta/repository.xml /home/WWW/grid/meta/repository.xml

bye

Die Datei ‘copyRepositoryToWWW.ftp’ ist zuständig für das Kopieren der
zusammengestellten Datei an den festgelegten zentralen Ort (hier ein Verzeich-
nis auf dem Web-Server) und enthält lediglich die hierfür benötigten Informa-
tionen über den Server und die zu kopierende Datei.

D.4 Simulationseinstellungen und Datenzugriff

Die folgenden Quelltext-Ausschnitte entstammen dem GLASS-Teilmodell Wa-
terGAP und zeigen die Änderungen, die zum Einsatz des Simulationslaufma-
nagers und des Datenzugriffs-Servers innerhalb dieses Modells notwendig sind.

WaterGAP nutzt für den Kontakt zu den Servern die hierzu entwickelten
Klienten-Klassen (SISA simulationRunMangerClient und SISA dataAccessCli-
ent). Die Deklarationen dieser Klassen sind daher im Quelltext von WaterGAP
bekanntzugeben:

D.4. SIMULATIONSEINSTELLUNGEN UND DATENZUGRIFF 251

//----- SISA classes -----

#include "dataAccessClient.h"

#include "simRunManagerClient.h"

//------------------------

Im Quelltext von WaterGAP folgen dann allgemeine Einstellungen zu den
Servern und zum Klienten (WaterGAP):

//----- SISA declarations/definitions -----

char THIS_MODEL[] = "urn:x-wzusf.sw-mod.WaterGAP-V2,1e.exe-li.hd"; (1)

char simRunName[] = "urn:x-wzusf.ares-run.SisaTest-V1,0.na.na"; (2)

char daServerIP[] = "141.51.100.15"; (3)

int daServerPort = 55555;

char srmServerIP[] = "141.51.100.15"; (4)

int srmServerPort = 55556;

//----- global simulation-run manager -----

SISA_simRunManagerClient simRunManager; (5)

//----- SISA initializations -----

//----- init data-access server (singleton) -----

SISA_dataAccessClient::instance()->setServerInfo(daServerIP,

daServerPort); (6)

//----- init simulation-run manager -----

simRunManager.setServerInfo(srmServerIP,

srmServerPort); (7)

simRunManager.setModelSettingsSpecifications("//Usf-ws14/grid/study/

rglass1_3/simulationrun/SimulationParameter.xml");(8)

//--------------------------------

Zu den allgemeinen Einstellungen gehören die eindeutige Identifizierung des
Simulationsmodells (URN des Modells) (1), die Festlegung auf einen Simulati-
onslauf (der i. d. R. erst zur Laufzeit festgelegt wird) (2) und die Informationen,
die notwendig sind, um den Simulationslaufmanager und den Datenzugriffs-
Server zu kontaktieren (IP-Adresse und Port) (3) und (4). Von der Klienten-
Klasse des Simulationslaufmanagers wird darüber hinaus ein Objekt erzeugt
(5), über das die Abfragen der Modelleinstellungen erfolgt (vom Klienten für
den Datenzugriff wird nicht explizit ein Objekt angelegt, da die Klasse nach
dem ‘Singleton’-Prinzip implementiert wurde1).

Nach diesen Definitionen und Deklarationen werden die Server-Informati-
onen gesetzt: für den Datenzugriffsklienten geschieht dies über die Methode
instance(), die eine Instanz der Klasse SISA dataAccessClient liefert und über

1Der Simulationsmodell-Manager ist nach dem Singleton-Muster implementiert, d. h. es
gibt maximal eine – global zugreifbare – Instanz des Managers innerhalb eines Programms.
Näheres zum Singleton-Muster findet sich z. B. in Gamma u. a. (1996).

252 ANHANG D. PROGRAMM-QUELLTEXTE

die anschließend die IP-Adresse und der Port zur Kommunikation mit dem
Server gesetzt wird (6).

Beim ersten Aufruf der statischen Klassen-Methode instance() erzeugt die
Klasse automatisch ein Objekt, speichert eine Referenz auf dieses Objekt in
einer statischen Klassen-Variablen und gibt die Referenz anschließend an den
Aufrufer zurück. Bei weiteren Aufrufen der Methode wird lediglich die Refe-
renz auf das bereits existierende Objekt zurückgeliefert. Auf diese Weise wird
sichergestellt, dass immer nur ein Objekt dieser Klasse in einem Programm
existiert.2

Die Einstellungen zum Simulationslaufmanager werden ebenfalls über die
Methode setServerInfo() gemacht (7) – hier allerdings direkt über den Aufruf
der Methode für das zuvor manuell erzeugte Objekt. Im obigen Beispiel wird
dem Simulationslaufmanager auch direkt innerhalb des WaterGAP-Modells die
zu verwendende XML-Datei mit den Modellspezifikationen bekanntgegeben.

Nachdem die grundlegenden Einstellungen gemacht wurden, greift Water-
GAP auf die Dienste des Simulationslaufmanagers und des Datenzugriffs-Ser-
vers zu:

//----- get dataset (old style) -----

//sprintf(filename, "%s/G_CORR_FACTOR.UNF0", options.input_dir); (9)

//gridIO.readUnfFile(filename, ng, dailyWaterBalance.G_cellCorrFact);

//----- get dataset (SISA style) -----

char datasetURN[255];

// get URN for dataset from simulation-run manager

simRunManager.getSetting(THIS_MODEL, simRunName, (10)

"dsCorrectionFactor",

datasetURN, sizeof(datasetURN));

// get the dataset

SISA_dataAccessClient::instance()->retrieveDataset(datasetURN, (11)

"SISA_DS_IMG22UNF0",

(char*) dailyWaterBalance.G_cellCorrFact,

sizeof(dailyWaterBalance.G_cellCorrFact));

Der Quelltext-Ausschnitt zeigt den lesenden Zugriff auf einen Datensatz, wie
er in der Originalversion von WaterGAP (9) und wie er unter Verwendung der
SISA-Komponenten realisiert ist (10/11). In der ursprünglichen WaterGAP-
Version sind der Name der Datei (G GORR FACTOR.UNF0) und damit des-
sen Format (UNF0) fest in den Quellcode integriert. Identifiziert wird der Da-
tensatz allein über die Klassenvariable options.input dir, dessen Inhalt das Ver-
zeichnis festlegt, in dem sich die Datei befindet. Unter Verwendung der SISA-
Komponenten wird zum Lesen des Datensatzes zunächst dessen URN vom Si-
mulationsmanager erfragt (10). Dem Simulationslaufmanager muss hierzu der

2Der Konstruktor der Klasse ist nicht öffentlich und kann nur indirekt über die Methode
instance() aufgerufen werden.

D.4. SIMULATIONSEINSTELLUNGEN UND DATENZUGRIFF 253

Modellname (URN des verwendeten WaterGAP-Modells), der aktuelle Simu-
lationslaufname (ebenfalls ein URN) und der Name der Einstellung (dsCorrec-
tionFactor) übergeben werden sowie eine Variable zur Rückgabe des Einstel-
lungswertes – der Einstellungswert ist wiederum ein URN, der den zu lesenden
Datensatz eindeutig identifiziert. Das Lesen des Datensatzes erfolgt dann unter
Angabe dieses URNs und des gewünschten Formates (SISA DS IMG22UNF0)
über den Datenzugriffs-Server bzw. die Klasse SISA dataAccessClient (11).

Der folgende Quelltext zeigt einen Auszug aus der XML-Datei mit den
Simulationslauf-Spezifikationen:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE simulationSpecifications SYSTEM "SimulationParameter.dtd"> (1)

<simulationSpecifications>

<simulationSpecification

simRunId="urn:x-wzusf.ares-run.SisaTest-V1,0.na.na"> (2)

<modelSettings simulationModelId=

"urn:x-wzusf:sw-mod.WaterGAP-V2,1e.exe-li.hd"> (3)

<simulationStartYear>1961</simulationStartYear> (4)

<simulationEndYear>1990</simulationEndYear>

<simulationTimeStep>1</simulationTimeStep>

<dsCorrectionFactor>

urn:x-wzusf:ds-min.CorrectionFactor-V2,1e.unf.hd

</dsCorrectionFactor>

<!-- ...>

</modelSettings>

</simulationSpecification>

</simulationSpecifications>

Zur Validierung der Einstellungen wird unter Punkt (1) zunächst die Datei
angegeben, die die Document Type Definition (DTD) enthält (s.u.) und über
die eine Validierung der Angaben erfolgen kann. Die Spezifikationen für einen
Simulationslauf wird von den Marken (Tags) <simulationSpecification> und
</simulationSpecification> begrenzt. Der Simulationslauf wird über den URN
im Attribut simRunId identifiziert (2). Zu jedem Simulationslauf werden die
geforderten Einstellungen angegeben (3) – die Identifizierung der Modelle ge-
schieht wiederum über die URNs. Das Beispiel zeigt vier Einstellungen für das
WaterGAP-Modell, die den Start, das Ende und den Zeitschritt der Simulati-
onszeit sowie den oben bereits angesprochenen Datensatz mit den Korrektur-
Faktoren spezifizieren.

Die Definition der Elemente und Attribute, die in der XML-Datei vorkom-
men dürfen bzw. vorkommen müssen, wird in der DTD vorgenommen:

<!ELEMENT simulationSpecifications (simulationSpecification+)> (1)

<!ELEMENT simulationSpecification (modelSettings+)> (2)

<!ATTLIST simulationSpecification simRunId CDATA #REQUIRED> (3)

254 ANHANG D. PROGRAMM-QUELLTEXTE

<!ELEMENT modelSettings (simulationStartYear, simulationEndYear,

simulationTimeStep, dsCorrectionFactor)> (4)

<!ATTLIST modelSettings simulationModelId CDATA #REQUIRED> (5)

<!ELEMENT dsCorrectionFactor (#PCDATA)> (6)

<!ELEMENT simulationStartYear (#PCDATA)>

<!ELEMENT simulationEndYear (#PCDATA)>

<!ELEMENT simulationTimeStep (#PCDATA)>

Die simulationSpecifications bestehen nach Punkt (1) aus mindestens einer
simulationSpecification – ausgedrückt durch das Zeichen ‘+’. Zu einer simula-
tionSpecification gehört wiederum mindestens ein Satz an modelSettings (2),
wobei der Simulationslaufname über das Attribut simRunId für jeden dieser
Einstellungssätze zwingend (#REQUIRED) vorgeschrieben ist (3). Ein Ein-
stellungssatz besteht nach (4) aus genau vier Einstellungen: simulationStart-
Year, simulationEndYear, simulationTimeStep und dsCorrectionFactor. Jede
dieser Einstellungen besteht dabei aus einfachen Texteinträgen – gekennzeich-
net durch ‘#PCDATA’ (6).

D.5 Simulationssystem

Der folgende Quelltext zeigt einen Ausschnitt aus dem Sicherheitsmodell von
GLASS und verdeutlicht das Prinzip der Generierung und Abfrage von Daten-
sätzen.

// ------------ Security Model --

//----- create new security model

GlsSecurityModel *securityModel = new GlsSecurityModel; (1)

//----- check availability of results

if (securityModel->resultsAvailable(simRunURN)) { (2)

//----- results available

//----- use results:

//----- stress

GlsStressType stress;

stress = securityModel->getStress(region, year, GlsWater); (3)

//----- susceptibility

GlsSusceptibilityType sus;

sus = securityModel->getSusceptibility(region, year, GlsWater);

//----- crisis signal

GlsCrisisType crisisSignal;

crisisSignal = securityModel->getCrisisSignal(region, year, GlsWater);

//----- affected population

GlsPopulationType pop;

//----- potentially affected population

D.5. SIMULATIONSSYSTEM 255

pop = securityModel->getPotentiallyAffectedPopulation(region, year,

GlsWater);

//----- crisis occurence

GlsCrisisType crisisOccurence;

crisisOccurence = securityModel->getOccuredCrisis(region,year,

GlsWater);

//----- actually affected populaton

pop = securityModel->getActuallyAffectedPopulation(region, year,

GlsWater);

//----- crisis-domain remark

string remark;

remark = securityModel->getCrisisDomainRemark(region, year, GlsWater);

// ...

}

else {

//----- results not yet available

//----- generate new dataset

securityModel->generateDataSet(simRunURN); (4)

}

// --

Unter Punkt (1) wird zunächst eine neue Sicherheitsmodell-Instanz erzeugt.
Im Anschluss wird geprüft, ob für einen bestimmten Simulationslauf (simRun-
Name) bereits Ergebnisse berechnet wurden (2). Liegen die Ergebnisse bereits
vor, können diese direkt über die Operationen zum Datenzugriff (getStress(),
getSusceptibility() etc.) verwendet werden (3). Liegen die Ergebnisse noch nicht
vor, wird die Operation zur Generierung der Datensätze aufgerufen (4).3

Der folgende Quelltext ist ebenfalls ein Ausschnitt aus dem Sicherheitsmo-
dell und zeigt den Umgang mit dem Simulationsmodell-Manager.

//----- get reference to model manager

IamModelManager *modelManager = IamModelManager::instance(); (1)

//----- get references to co-operating simulation models. If required

//----- models are not yet registered, create and register them.

//----- population profile model

_populationProfileModel = (GlsPopulationProfileModel*)

modelManager->getModelReference("PopulationProfileModel"); (2)

if (!_populationProfileModel) {

_populationProfileModel = new GlsPopulationProfileModel; (3)

modelManager->registerModel("PopulationProfileModel", (4)

_populationProfileModel);

}

3Die init()-Operationen werden automatisch aufgerufen und sind daher im Quelltext nicht
aufgeführt.

256 ANHANG D. PROGRAMM-QUELLTEXTE

//----- food-stress model (5)

if (_foodSecurityAnalysis) {

_foodStressModel = (GlsFoodStressModel*)

modelManager->getModelReference("FoodStressModel");

if (!_foodStressModel) {

_foodStressModel = new GlsFoodStressModel;

modelManager->registerModel("FoodStressModel", _foodStressModel);

}

}

//----- water-stress model

//...

//----- check, whether model results for water and food stress are

//----- already available for the specified simulation-run. If not,

//----- create data sets.

//----- food-stress model

if (_foodSecurityAnalysis) {

if (!_foodStressModel->resultsAvailable((6)

"urn:x-wzusf.ares-run.SisaTest-V1,0.na.na")) {

//----- results not yet available -> start simulation run

_foodStressModel->initGeneralModelService(DataSetGeneration); (7)

_foodStressModel->generateDataSet(); (8)

}

}

//----- water-stress model:

//...

Im ersten Schritt (1) wird eine Referenz auf die (Singleton-)Instanz des
Simulationsmodell-Managers beschafft. Anschließend wird vom Modell-Man-
ager eine Referenz auf ein Bevölkerungsprofil-Modell (populationProfileModel)
erfragt (2). Sofern innerhalb ein solches Modell noch nicht existiert, wird es
erzeugt (3) und beim Modellmanager registriert (4). Die Registrierung erfolgt
unter Angabe des Modellnamens und einer Referenz auf das Modell. Wird für
die aktuelle Berechnung die Analyse des Nahrungsmittelstresses benötigt, wird
die gleiche Befehlssequenz auch für das Nahrungsmittelstressmodell durchge-
führt (5) – entsprechendes gilt auch für das Wasserstressmodell. Nachdem die
Existenz der Modelle nun sichergestellt ist, wird geprüft, ob die für eine Ana-
lyse des Nahrungsmittelsicherheit notwendigen Ergebnisse des Nahrungsmit-
telstressmodells bereits berechnet wurden (6). Ist dies nicht der Fall, wird eine
solche Berechnung initialisiert (7) und gestartet (8).

D.6. DATENZUGRIFF 257

D.6 Datenzugriff

ArcView-Exportformat für Rasterdaten

Ein für die Datenspeicherung verwendetes Format ist das ASCII-Format, das
vom GIS ArcView zum Import und Export von Rasterdaten verwendet wird.
Die Daten entsprechen den Werten eines regelmäßigen Rasters. Jeder Daten-
satz beginnt mit einer kurzen Charakterisierung des Rasterdatensatzes. Die
folgenden Zeilen entstammen der Beschreibung des Datensatzes mit den Län-
derkennzahlen, wie sie in IMAGE2.2 verwendet werden.

ncols 720

nrows 360

xllcorner -180

yllcorner -90

cellsize 0.5

NODATA_value -9999

Ein Rasterdatensatz wird also charakterisiert über die Anzahl der Spalten
(ncols – number of columns) und Zeilen (nrows – number of rows), die Angabe
des x- und y-Wertes der linken oberen Ecke der geographischen Abdeckung
(x/yllcorner – x/y lower left corner) und die Angabe der Größe einer Zelle
(cellsize; hier 0.5 Grad). Darüber hinaus kann optional der ‘Wert’ angegebenen
werden, der für unbekannte Werte innerhalb des Datensatzes verwendet wird
(NODATA value). Der NODATA-Wert wird im Datensatz der Länderkennzah-
len beispielsweise für die Zellen der Ozeane eingesetzt (die in IMAGE2.2 keinem
Land zugeordnet sind).

Nach der Beschreibung des Datensatzes folgen die eigentlichen Daten, indem
zeilenweise die Werte jeder Zelle des Rasters von ‘oben links’ (-180◦/+90◦)nach
’unten rechts’ (180◦/-90◦) angegeben werden.

D.7 Geodatenverarbeitung

Der folgende Quelltext zeigt die Verwendung einiger Operationen der Klasse
zur Geodatenverarbeitung innerhalb einer Version des Wasserstressmodells.

void GlsWaterStressModel::calculateStressAreaBased(void)

// calcutate water stress based on current area below threshold

{

//----- calculate relative current value [% of mean]

*_currentRelative_themePtr = *_currentValue_themePtr (1)

/ *_runningMean_themePtr * 100;

//----- calculate stress [% of region area where deviation>threshold]

258 ANHANG D. PROGRAMM-QUELLTEXTE

//----- get cells with values below threshold (2)

*_cellsBelowThreshold_themePtr = (*_currentRelative_themePtr <

_availabilityThreshold);

//----- calculate region area for all cells with values<threshold

*_affectedCellArea_themePtr = *_cellsBelowThreshold_themePtr

* *_cellArea_themePtr;

_affectedCellArea_themePtr->zonalSum(*_region_themePtr, (3)

*_affectedRegionArea_themePtr);

//----- calculate stress [area fraction in % of total region area]

*_affectedRegionAreaFraction_themePtr = *_affectedRegionArea_themePtr

/ *_regionArea_themePtr

* 100;

*_regionStress_themePtr = * _affectedRegionAreaFraction_themePtr;

}

Die dargestellte Methode (calculateStressAreaBased) berechnet den flächen-
bezogenen Wasserstress. Alle Geodatensätze werden hier über Objekte einer
Klasse ‘theme’ repräsentiert (die Definition der Objekte findet an anderer Stel-
le statt). Die Geodaten-Objekte im Wasserstressmodell repräsentieren jeweils
66896 Rasterzellen (IMAGE2.2-Format). Zur Berechnung des Stresses wird zu-
nächst die relative Wasserverfügbarkeit (currentRelative) für jede Rasterzelle
berechnet (1). Hierzu wird eine Division mit den Geodaten-Objekten durchge-
führt, um das Ergebnis anschließend mit einem skalaren Wert (100) zu mul-
tiplizieren. Die Berechnungen werden dabei automatisch für jede der 66896
Rasterzellen durchgeführt. Anschließend folgt eine logische Operation mit zwei
Geodaten-Objekten (2). Nach einer weiteren Multiplikation erfolgt die Bildung
der zonalen Summe (3).

	Einleitung
	Hintergrund
	Rahmen und Ziel der Arbeit
	Struktur der Arbeit

	Grundlagen
	Integriertes Assessment
	Globaler Wandel
	Assessment des globalen Wandels

	Modellierung
	Software-Entwicklung
	Entwicklungsphasen
	Software-Architektur

	Stand der Technik
	Integrierte Modelle
	Definitionen
	Systeme
	Frameworks
	Entwicklungsumgebungen

	Standards
	Standardisierungs-Organisationen
	High Level Architecture (HLA)
	NIST/ECMA-Referenz-Modell
	Open Distributed Processing -- Reference Model
	OpenGIS Service Architecture

	Fazit

	Systemdefinition
	OOA-Modell
	Gesamtmodell
	SISA-Ressourcen

	Anforderungsdefinition
	Allgemeine Anforderungen
	Ziele und Funktionen
	System-Einsatz
	System-Umgebung
	System-Daten
	System-Leistungen
	Benutzungsschnittstellen
	Qualitäts-Zielbestimmung
	Testszenarien
	Entwicklungs-Umgebung

	Fazit

	Architektur-Entwicklung
	Komponenten-Übersicht
	Komponenten-Entwicklung
	Katalogmanager
	Metadaten-Sammler
	Dokumentation
	Simulationslaufmanager
	Simulationssystem
	Datenzugriff und Datenbanksystem
	Geodatenverarbeitung
	Datenverarbeitung
	Aufgabensteuerung
	Ergebnisanalyse
	Modellanalyse

	Gesamtarchitektur
	Komponenten
	Interaktionen

	Fazit

	Realisierung
	Beispielmodell GLASS
	Komponenten-Übersicht
	Komponenten-Realisierung
	Dokumentation
	Katalogmanager
	Simulationssystem
	Simulationslaufmanager
	Datenzugriff und Datenbasis
	Datenverarbeitung

	Fazit

	Zusammenfassung und Ausblick
	 Zusammenfassung
	Ausblick

	Literaturverzeichnis
	Glossar
	Datenmodelle und Schnittstellen
	Datenmodell zu Personen und Organisationen
	Zusammenfassung des SISA-Datenmodells
	Zusammenfassung der SISA-Schnittstellen

	Standards
	Übersichten
	HLA-Regeln

	Programm-Quelltexte
	PHP-Beispiel
	Metadaten-Datei
	Metadaten-Sammler
	Simulationseinstellungen und Datenzugriff
	Simulationssystem
	Datenzugriff
	Geodatenverarbeitung

