kassel .

university
press

Entwicklung einer Software-Architektur fiir Systeme
zum integrierten simulationsbasierten Assessment
des globalen Wandels

Marcel Boris Endejan

Die vorliegende Arbeit wurde vom Fachbereich Elektrotechnik - der Universitat Kassel
als Dissertation zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-
Ing.) angenommen.

Erster Gutachter: Prof. Dr. Joseph Alcamo
Zweiter Gutachter: Prof. Dr. Heinrich Werner
3. Prof. Dr. Werner Kleinkauf
4. Prof. Dr. Andreas Ernst

Tag der mindlichen Priifung 22. September 2003

Bibliografische Information Der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet tiber
http://dnb.ddb.de abrufbar

Zugl.: Kassel, Univ., Diss. 2003
ISBN 3-89958-046-X

© 2003, kassel university press GmbH, Kassel
www.upress.uni-kassel.de

Umschlaggestaltung: M. B. Endejan, unter Verwendung einer Zeichnung von Wolfram
Gothe, Hamburg (Wolfram.Gothe@architektur-zeichnung.de) / 5 Biiro fiir Gestaltung,
Kassel

Druck und Verarbeitung: Unidruckerei der Universitat Kassel

Printed in Germany

Danksagung

Die vorliegende Arbeit entstand im Rahmen meiner Tétigkeit als wissen-
schaftlicher Mitarbeiter am wissenschaftlichen Zentrum fiir Umweltsystemfor-
schung der Universitit Kassel. Dem Direktor des Zentrums, Herrn Prof. Dr.
Joseph Alcamo, danke ich fiir seine Unterstiitzung wiahrend der Anfertigung
der Dissertation und fiir die Ubernahme des Gutachtens. Fiir die freundli-
che Bereitschaft zur Anfertigung des Zweitgutachtens danke ich Herrn Prof.
Dr. Heinrich Werner. Fiir die Bereitschaft zur Mitwirkung in der Promotions-
kommission danke ich Herrn Prof. Dr. Werner Kleinkauf und Herrn Prof. Dr.
Andreas Ernst.

Meinen Kolleginnen und Kollegen am Wissenschaftlichen Zentrum fiir Um-
weltsystemforschung danke ich fiir die gute Arbeitsatmosphére, die stete Dis-
kussionsbereitschaft und die Moglichkeit, einige in der Arbeit vorgestellte Kon-
zepte in der Praxis erproben zu diirfen. Herrn Riidiger Schaldach danke ich fiir
die Diskussionen sowie fiir die Durchsicht des Manuskripts und seine kritischen
Anmerkungen. Fiir die Unterstiitzung bei der Realisierung einiger Programme
danke ich Herrn Stephan Lauer. Herrn Achim Manche sei gedankt fiir die vie-
len Hilfestellungen bei technischen Fragen und Problemen. Ein ganz besonderer
Dank geht an Frau Dr. Martina Florke und Herrn Dr. Michael Mérker, die mit
ihren Anmerkungen und Vorschligen und ihrem unermiidlichen Interesse einen
entscheidenden Beitrag zur Gestalt der vorliegenden Arbeit geleistet haben.

Meinen Mitbewohnerinnen Vesna Joki¢, Meike Siebert und Helena Siebert
sowie meinem Mitbewohner Ljubomir Adzi¢ danke ich fiir die sehr schone At-
mosphéire wiahrend der letzten zwei Jahre. Herrn Ljubomir Adzi¢ danke ich
auch dafiir, dass er mir bei einigen Realisierungsfragen mit Rat und Tat zur
Seite stand.

Der Weg zur Anfertigung dieser Arbeit war nicht immer klar. Daher mochte
ich mich bei all jenen bedanken, die mich — bewusst oder unbewusst — auf die-
sen Weg gebracht haben und mich ermutigten, ihn weiterzugehen. So danke ich
meinen Eltern Frau Karin Ritter und Herrn Heinz Josef Endejan fiir ihre Un-
terstiitzung und fiir die Moglichkeit der freien Wegwahl. Mein innigster Dank
geht an Frau Klara Raas und Herrn Jakob Raas, die mich von den ersten Schrit-
ten an begleitet und ihnen Halt gegeben haben. Sehr herzlich danken mochte
ich meiner Freundin Dagmar Ritterbusch, die selbst in der Abschlussphase der
Arbeit viel Geduld und Verstidndnis gezeigt hat und — trotz der rdumlichen
Entfernung — immer unterstiitzend an meiner Seite war.

ii

Inhaltsverzeichnis

1 Einleitung

1.1 Hintergrund
1.2 Rahmen und Ziel der Arbeit

1.3 Struktur der Arbeit

2 Grundlagen
2.1 Integriertes Assessment

2.1.1
2.1.2

Globaler Wandel
Assessment des globalen Wandels

2.2 Modellierung
2.3 Software-Entwicklung

2.3.1
2.3.2

Entwicklungsphasen
Software-Architektur

3 Stand der Technik
3.1 Integrierte Modelle L.

3.1.1
3.1.2
3.1.3
3.14

Definitionen
Systeme Lo
Frameworks oL oo
Entwicklungsumgebungen

3.2 Standards

3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.3 Fazit

Standardisierungs-Organisationen
High Level Architecture (HLA)
NIST/ECMA-Referenz-Modell
Open Distributed Processing — Reference Model
OpenGIS Service Architecture

4 Systemdefinition
4.1 OOA-Modell

4.1.1
4.1.2

Gesamtmodell o 0oL
SISA-Ressourcen i i

iii

=~ O =

11
14
16
16
18

25
25
25
28
31
38
41
41
47
52
52
55
63

INHALTSVERZEICHNIS

4.2 Anforderungsdefinition oL 0oL 75
4.2.1 Allgemeine Anforderungen 75
4.2.2 Ziele und Funktionen. 78
4.2.3 System-Einsatz o000 80
4.2.4 System-Umgebung 82
4.25 System-Daten 84
4.2.6 System-Leistungen 88
4.2.7 Benutzungsschnittstellen 89
4.2.8 Qualitdts-Zielbestimmung 89
4.2.9 Testszenarien L o 93
4.2.10 Entwicklungs-Umgebung 93

4.3 Fazito 94

Architektur-Entwicklung 95

5.1 Komponenten-Ubersicht 96

5.2 Komponenten-Entwicklung 96
5.2.1 Katalogmanager 96
5.2.2 Metadaten-Sammler L. 116
5.2.3 Dokumentation Lo 119
5.2.4 Simulationslaufmanager 128
5.2.5 Simulationssystem L. 131
5.2.6 Datenzugriff und Datenbanksystem 134
5.2.7 Geodatenverarbeitung 138
5.2.8 Datenverarbeitungo 141
5.2.9 Aufgabensteuerung L. 142
5.2.10 Ergebnisanalyse 144
5.2.11 Modellanalyse. L. 145

5.3 Gesamtarchitektur Lo 148
5.3.1 Komponenteno 149
5.3.2 Imteraktionmeno 154

54 Fazit 160

Realisierung 165

6.1 Beispielmodell GLASS 165

6.2 Komponenten-Ubersicht 168

6.3 Komponenten-Realisierung 169
6.3.1 Dokumentation 169
6.3.2 Katalogmanager 173
6.3.3 Simulationssystem L. 183
6.3.4 Simulationslaufmanager 187
6.3.5 Datenzugriff und Datenbasis 190
6.3.6 Datenverarbeitung oL 198

6.4 Fazit 199

INHALTSVERZEICHNIS v

7 Zusammenfassung und Ausblick 205
7.1 Zusammenfassungo 205
7.2 Ausblick 211
Literaturverzeichnis 213
A Glossar 229
B Datenmodelle und Schnittstellen 233
B.1 Datenmodell zu Personen und Organisationen 234
B.2 Zusammenfassung des SISA-Datenmodells 235
B.3 Zusammenfassung der SISA-Schnittstellen 236
C Standards 237
C.1 Ubersichten 237
C.2 HLA-Regeln 243
D Programm-Quelltexte 245
D.1 PHP-Beispiel 245
D.2 Metadaten-Datei, 247
D.3 Metadaten-Sammler L. 249
D.4 Simulationseinstellungen und Datenzugriff 250
D.5 Simulationssystem oo 254
D.6 Datenzugriff o 257

D.7 Geodatenverarbeitung oL 0oL 257

vi

INHALTSVERZEICHNIS

Abbildungsverzeichnis

2.1 Grundstruktur des globalen Beziehungsgeflechts 9
2.2 Erstellung eines Simulationsmodells 15
3.1 Architektur des Systems GLOBESIGHT 30
3.2 Architektur Object Modeling System 32
3.3 Schematische Modellstruktur von PRISM 34
3.4 Systemarchitektur von DANUBIA 37
3.5 Architektur der Modellumgebung M 39
3.6 High Level Architekture — Ubersicht 50
3.7 HLA-Prinzip der Daten- und Interaktionsweitergabe 51
3.8 NIST/ECMA Referenz-Architektur 53
3.9 Statisches Modell des Dienste-Konzepts der ISO/DIS 19119 . . 57
3.10 Logische Vier-Schichten-Architektur der ISO/DIS 19119 62
3.11 Physikalische Mehrschichten-Architektur der ISO/DIS 19119 . 63
4.1 OOA-Modell eines Systems zum simulationsbasierten integrier-

ten Assessments (SISA) Lo oL 73
4.2 Ressourcen eines SISA 76
4.3 Anwendungsfalldiagramm des SISA 83
4.4 Anforderung an die System-Daten 85
5.1 Ubersicht der SISA-Komponenten 97
5.2 Verbindung zwischen SISA-Komponenten und SISA-Zielen . . . 99
5.3 Geordumliche Ressourcen im Sinne des OpenGIS-Konsortiums 101
5.4 Von den OpenGIS Catalog Services genutzte Klassen 102
5.5 Schnittstellen-Software zum Einsatz von OpenGIS Services . . 104
5.6 Schnittstellen des Katalogmanagers 107
5.7 Datenmodell des Katalogs und der Katalogeintrage 108
5.8 Minimaler Elementsatz der ISO/DIS 19115 112
5.9 Datenmodell zur Speicherung von Metadaten 117
5.10 Prinzip des Metadaten-Sammlers 118
5.11 Schnittstelle des Metadaten-Sammlers 119

vii

viii

5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
0.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
5.35
5.36
5.37
5.38
5.39

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

ABBILDUNGSVERZEICHNIS

Datenmodell des Metadaten-Sammlers 120
Schnittstellen der Dokumentationskomponente 121
Datenmodell fiir Personen/Organisationen 123
Datenmodell fiir Projekte u. Simulationsstudien 124
Datenmodell fiir Szenario-Informationen 126
Datenmodell fiir Simulationsldufen 126
Datenmodell fiir Aufgaben-Informationen 127
Datenmodell fiir Anmerkungen 128
Simulationsmodelle und deren Einstellungen 129
Schnittstellen des Simulationslaufmanagers 130
Zusammenhang Simulationsmodell u. Modelleinstellungen . . . 131
Datenmodell des Simulationslaufmanagers 132
Schnittstellen des Simulationssystems 134
Komponenten zum Datenzugriff und zur Datenhaltung 136
Schnittstelle des Datenbanksystems 137
Schnittstelle der Datenzugriffskomponente 138
Datenmodell der Datenzugriffskomponente 138
Schnittstellen der Komponente zur Geodatenverarbeitung . . . 141
Schnittstelle zur allgemeinen Datenverarbeitung 142
Schnittstelle zur Aufgabensteuerung 144
Schnittstelle der Analyse-Komponente 145
Prinzip der Modellanalyse 147
Schnittstellen zur Modellanalyse 148
Einfaches Datenmodell zur Modellanalyse 148
Komponenten der Architektur 151
Architektur-Dynamik — Erzeugung von Simulationsergebnissen 155
Architektur-Dynamik — Sammlung von Metadaten 157
Architektur-Dynamik — Analyse eines Modells 159
Struktur des GLASS-Modells 167
Tabelle zur Speicherung der Anmerkungen 170
Ubersicht zum Realisierungsbeispiel der SISA-Komponenten . . 171
Datenbankzugriff iiber Web-Browser 172
Dokumentation der Daten iiber Personen/Organisationen . . . 173
Anzeige der Daten iiber Personen/Organisationen 174
Uniform Resource Identifiers 175
Web-Seite zur Generierung eindeutiger Namen 178
Anzeige der Ressourcen-Liste 180
Web-Seite zur Metadaten-Erfassung 181
Web-Seite zur Anzeige von Metadaten 184
Basisklasse der Simulationsmodelle 185
Prinzip eines Adapters 186
Kommunikation iiber Sockets 188

ABBILDUNGSVERZEICHNIS ix

6.15 Realisierung des Simulationslaufmanagers 190
6.16 Prinzip der Mediatoren 192
6.17 Funktionsbeispiel zur Geodatenverarbeitung 199
B.1 Datenmodell zu Personen und Organisationen 234
B.2 Ubersicht des SISA-Datenmodells 235
B.3 Ubersicht der SISA-Koponenten und Schnittstellen 236

C.1 OpenGIS Abstract Spezifikations — Abhéngigkeiten 237

ABBILDUNGSVERZEICHNIS

Tabellenverzeichnis

2.1
3.1

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4
9.5
5.6
5.7

6.1

C.1
C.2
C.3
C4
C.5

Qualitdtsmerkmale und Qualitits-Teilmerkmale der ISO/TEC 9126 23

Sichtweise auf ein Software-System nach ISO/RM-ODP

Arbeitsschritte einer Simulationsstudie
Grundlegende SISA-Ziele
Grundlegende SISA-Funktionen
Grundlegende SISA-Datenbesténde
Anforderungen des SISA an die Software-Qualitdt.

Vorrangige nicht-funktionale Anforderungen an das SISA

Komponenten und ihre Verantwortlichkeiten
Die priméren Funktionen der OpenGIS Catalog Services

Schnittstellen und Operationen der Katalog-Komponente

Pakete des Metadaten-Standards ISO/DIS 19115

Kern-Metadaten der ISO/DIS 19115
Ubersicht zum Content Standard for Computational Models . .
Metadaten-Elementsatz der ISO 15836 (Dublin Core)

ISO-Standards zur Datenkodierung

Beipieldienste der ISO/DIS 19119 Taxonomie, Teil T
Beipieldienste der ISO/DIS 19119 Taxonomie, Teil IT
Arbeitsprogramme des ISO/TC 211
OpenGIS Abstract Spezifications
OpenGIS Implementation Spezifications

xi

o4

xii TABELLENVERZEICHNIS

Abkiirzungsverzeichnis

ADEPT Alexandria Digital Earth Prototype

ADO Active Data Objects

APIT Application Programming Interface

ASCII American Standard Code for Information Interchange
CSCM Content Standard for Computational Models
DCMES Dublin Core Metadata Element Set

DBMS Datenbank-Managementsystem

DIN Deutsches Institut fiir Normung

DOM Document Object Model

FGDC Federal Geographic Data Committee

GIS Geo-Informationssystem

GLASS Global Assessment of Security

GML Geographical Markup Language

GUI Graphical User Interface

HLA High Level Architecture

HYDE Hundred Year Database for Integrated Environmental Assessments
HTML Hyper-Text Markup Language

HTTP Hyper-Text Transport Protocol

IEEE Institute of Electrical and Electronics Engineers

xiii

xiv TABELLENVERZEICHNIS

IMAGE Integrated Model to Assess the Greenhouse Effect
IPCC Intergovernmental Panel on Climate Change

ISO International Organization for Standardization
ISO/DIS ISO Draft International Standard

ISO/TC ISO Technical Committee

ODBC Open Database Connectivity

ODP Open Distributed Processing

OGC Open GIS Consortium

OMS Object Modeling System

OOA Objekt-orientierte Analyse

PHP PHP: Hypertext Preprocessor (rekursive Abkiirzung)
RDBMS Relationales Datenbank-Managementsystem
RDF Resource Description Framework

RIVM Rijksinstituut voor Volksgezondheid en Milieu (staatliches Institut fiir
Gesundheit und Umwelt der Niederlande)

RM-ODP Open Distributed Processing — Reference Model
SI International System of Units

SISA System zum integrierten simulationsbasierten Assessment
SOF Service Organizer Folder

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

W3C World Wide Web Consortium

WWW World Wide Web

XML Extensible Markup Language

Kapitel 1

Einleitung

1.1 Hintergrund

Die Zunahme der Weltbevolkerung, die langfristig verdnderte Zusammenset- globaler
zung der Atmosphire, der Riickgang der biologischen Vielfalt sowie die Dege- Wandel
neration und der Verlust von Bdden sind nur Beispiele der Verdnderungen, die

unter dem Begriff des ‘globalen Wandels’ zusammengefasst werden. Die mit

dem globalen Wandel einhergehenden Verédnderungen und die daraus resultie-
renden Probleme bediirfen zu ihrer Analyse und Losung detaillierter und in

sich konsistenter Bewertungen (Luiten, 1999). Die Rolle der Informationstech-

nik bei der Unterstiitzung umweltpolitischer Entscheidungen wurde bereits bei

der ersten Konferenz der Vereinten Nationen fiir Umwelt und Entwicklung in

Rio de Janeiro 1992 erkannt. Im Kapitel 40 (Informationen fiir die Entschei-
dungsfindung) des aus der Rio-Konferenz hervorgegangenen Aktionsprogramms
Agenda 21 (UN, 1992) wird die ‘Uberbriickung der Datenliicke’ und die ‘Ver-
besserung der Verfiigbarkeit von Informationen’ gefordert. Dies soll u. a. durch

die Nutzung geographischer Informationssysteme (GIS) und die Verwendung

von Expertensystemen und Modellen erreicht werden.

Der Einsatz von GIS und Modellen hat sich bereits in unterschiedlichen Inte-
Disziplinen und Problembereichen (Sektoren) etabliert — beispielsweise in der ﬁfgﬁﬁc
Okologie sowie den Forst- und Agrarwissenschaften. Dariiber hinaus werden seit
Mitte der 1980er Jahre auch Modelle entwickelt, die eine sektoriibergreifende
Problemanalyse erlauben. Diese so genannten integrierten Modelle stellen ei-
ne interdisziplindre Abbildung von Ursache- Wirkungs-Ketten dar (vgl. Parson,

1995; van der Sluijs, 1996). Integrierte Modelle bieten aufgrund der Integration
der wichtigsten, fiir eine Fragestellung relevanten Disziplinen einen Mehrwert
gegeniiber disziplindren Studien und sollen l6sungsrelevante Informationen fiir
Entscheidungstriger bereitstellen. Die Modelle RAINS (Alcamo u. a., 1990) und

1

Beson-
derhei-
ten

Kom-
plexitat

Anforde-
rungen

Problem

2 KAPITEL 1. EINLEITUNG

IMAGE2 (Alcamo, 1994) stellen zwei wichtige Vertreter solcher Simulations-
modelle dar (vgl. Weyant u.a., 1996). Integrierte Modelle unterscheiden sich
von anderen Simulationsmodellen nicht nur durch die Beriicksichtigung meh-
rerer Fachdisziplinen, sondern auch durch den grofien rdumlichen Mafstab der
abgebildeten Prozesse, der sich iiblicherweise zwischen dem nationalen und glo-
balen befindet, sowie durch den simulierten Zeitraum, der sich von Dekaden bis
hin zu mehr als einem Jahrhundert erstrecken kann (vgl. Parson, 1995; Weyant
u. a., 1996; Bakkes u. a., 2000).

Aufgrund der sich stetig verbessernden digitalen Datengrundlage und Rech-
nerleistungen und dem vermehrten Aufkommen quantitativer Systembeschrei-
bungen einzelner Komponenten des Systems Erde, werden die integrierten Mo-
delle — umfassender ausgedriickt: Systeme zum simulationsbasierten integrier-
ten Assessment — immer detailgetreuer, komplexer und leistungsfdhiger und
gewinnen zunehmend an Bedeutung. Schneider (1997) sieht die integrierten
Modelle gar als die priméren Werkzeuge fiir Analysen im Rahmen des globalen
Wandels.

Durch die erhohte Komplexitéit und Groéfle von integrierten Modellen erge-
ben sich Herausforderungen beziiglich der Transparenz, der Nachvollziehbarkeit
und der Reproduzierbarkeit von Analysen und Ergebnissen sowie der Erweiter-
barkeit von Modellen und der Wiederverwendbarkeit und Austauschbarkeit von
Modellteilen. Eine weitere Anforderung — die der Interoperabilitit — ergibt sich
aus der notwendigen Zusammenarbeit mit anderen Software-Systemen (wie bei-
spielsweise GIS), die zur Vorverarbeitung oder Nachbearbeitung von Daten
benoétigt werden. All diese Aspekte bestimmen die Qualitdt eines integrierten
Modells und miissen daher bei der Entwicklung eines solchen Software-Systems
beriicksichtigt werden.

Trotz der gestiegenen Anforderungen sind vorhandene Modelle zumeist un-
zureichend dokumentiert und modularisiert (Jaeger u.a., 2002) und folgen
i.d. R. keinen anderenorts bereits etablierten Standards. Die Austauschbarkeit,
Wartbarkeit und Wiederverwendbarkeit von Modellteilen und Daten ist daher
sehr gering und der Arbeits- und Kostenaufwand zur Erstellung neuer Modelle
sehr hoch. Benz u.a. (1997) fithren das Fehlen einwandfreier Modelldokumen-
tationen darauf zuriick, dass deren Erstellung sehr zeitaufwendig ist und dass
Wissenschaftler fiir eine Dokumentation weder ‘belohnt’ noch fiir eine fehlende
‘bestraft’ werden. Jaeger u.a. (2002) sehen als Grund fiir die mangelhafte Do-
kumentation und Transparenz den Umstand, dass Modellentwickler in erster
Linie Wissenschaftler und keine Software-Ingenieure sind.

Aufgrund der Hiirden, die zur Wiederverwendung vorhandener Modellteile
iitberwunden werden miissen, wird es bei neuen Projekten oft vorgezogen, die
Modelle von Grund auf neu zu entwickeln (Rizzoli und Davis, 1999). Dieser Weg
der Software-Entwicklung ist weder zeitgemé&fl noch geniigt er den gestiegenen

1.2. RAHMEN UND ZIEL DER ARBEIT 3

Anforderungen integrierter Modelle und bedarf daher einer richtungsweisenden
Korrektur.

1.2 Rahmen und Ziel der Arbeit

Um die Komplexitdt und die damit einhergehenden Probleme integrierter Mo-
delle in den Griff zu bekommen, werden Prinzipien und Methoden der Software-
Technik angewendet. Da die Qualitéit grofler Software-Systeme mit deren Ar-
chitektur steht und fillt (Foegen und Battenfeld, 2001), ist das grundlegend
anzuwendende Prinzip das der Modularisierung — ein integriertes Modell muss
also in seine grundlegenden Module (Komponenten) zerlegt werden. Die grund-
legenden Komponenten ergeben, zusammen mit einer Definition der Verant-
wortlichkeiten der einzelnen Komponenten im Gesamtsystem und einer Spe-
zifikation der Schnittstellen, iiber die die Komponenten angesprochen werden,
die Software-Architektur.

Ziel der Arbeit ist eine allgemein anwendbare Software- Architektur fiir Sys-
teme zum integrierten simulationsbasierten Assessment, die die Wiederbenutz-
barkeit und Wiederbenutzung von Modellen, Modellteilen, Daten und ande-
ren notwendigen Betriebsmitteln unterstiitzt, die Zusammenarbeit mit anderen
Programmen begiinstigt und die Qualitit der Ergebnisse sichern hilft.

Um dieses Ziel zu erreichen, stellen sich — unter der Annahme, dass sich
integrierte Modelle in einzelne Komponenten aufteilen lassen — die folgenden
Forschungsfragen:

e In welche generellen Komponenten sollte ein System zum integrierten
simulationsbasierten Assessment aufgeteilt werden?

e Welche Komponenten kénnen unabhiingig von einem konkreten System
realisiert und damit fiir unterschiedliche Modelle wieder verwendet wer-
den?

e Welche Daten sollten zur Unterstiitzung der Transparenz von Analyse-
und Simulationsergebnissen vorgehalten werden?

e Welche Standards kénnen zur Erhchung der Qualitéit integrierter Modelle
beitragen?

Da es keine etablierten Architekturen fiir integrierte Modelle gibt (vgl. Jae-
ger u. a., 2002), bilden veréffentlichte Modelliibersichten und detaillierte Modell-
beschreibungen den Rahmen fiir die Komponentenbildung und die Beantwor-
tung der Forschungsfragen. Mit Hilfe der Modellbeschreibungen werden Funk-
tionalitdten und Strukturen integrierter Modelle identifiziert, die als existenti-
ell fiir jedes integrierte Modell angesehen werden kénnen. Basierend auf diesen
Informationen erfolgt eine ‘Systemdefinition’, die die grundlegenden Anforde-
rungen und Ziele eines integrierten Modells formal definiert. Fiir dieses ‘all-
gemeine’ integrierte Modell wird dann eine Software-Architektur entwickelt.

Konzept

Ziel

Fragen

Methode

Grund-
lagen

Stand
der
Technik

System-
defini-
tion

Archi-
tektur

4 KAPITEL 1. EINLEITUNG

Die Entwicklung der Architektur erfolgt, aus Griinden der Austauschbarkeit
und Interoperabilitiit, unter Beriicksichtigung relevanter Standards. Die Uber-
priifung der Architektur erfolgt durch eine prototypische Implementierung der
Komponenten im Rahmen der Entwicklung eines ‘konkreten’ integrierten Mo-
dells.

1.3 Struktur der Arbeit

Das folgenden Kapitel der Grundlagen beginnt mit einigen Ausfithrungen zum
thematischen Hintergrund der hier betrachteten Software-Systeme und definiert
die zentralen Begriffe ‘globaler Wandel’ und ‘integriertes Assessment’. Zur Ent-
wicklung von Software-Systemen gibt es Phasenmodelle, die den Prozess zum
fertigen Produkt hin beschreiben — die Software-Architektur ist das Ergeb-
nis einer dieser Phasen (der Entwicklungsphase). Um die einzelnen Schritte
der vorliegenden Arbeit in diesen Prozess einordnen zu kénnen, wird ein sol-
ches Phasenmodell vorgestellt. Anschlielend folgen weitere Erklarungen zum
Begriff der Software-Architektur. Fiir die Erstellung von Simulationsmodellen
gibt es ebenfalls Phasenmodelle. Anhand eines dieser Phasenmodelle werden
einige grundlegende Begriffe der Modellierung erkléart.

Kapitel 3 (Seite 25) gibt einen Uberblick iiber den Stand der Technik im Be-
reich der integrierten Modellierung und iiber Arbeiten, die im Zusammenhang
mit der Erstellung der Software-Architektur relevant sind. Es werden einige in-
tegrierte Modelle und Hilfsmittel (Frameworks und Entwicklungsumgebungen)
vorgestellt, die im Rahmen der integrierten Modellierung entwickelt wurden.
Dariiber hinaus werden einige Standards angesprochen, deren Beriicksichtigung
die Interoperabilitit integrierter Modelle steigern kann.

Die Basis fiir die Entwicklung eines Software-Systems ist die Definition der
Ziele und Leistungen sowie der gewiinschten Qualitdtsmerkmale des Systems.
Die Systemdefinition in Kapitel 4 (Seite 69) beginnt mit einer objektorientierte
Analyse eines integrierten Modells und dessen Systemumgebung. Das daraus
resultierende Objekt-Modell dient dem besseren Verstéindnis der Gesamtzusam-
menhénge eines simulationsbasierten Assessments und der Einordnung und De-
finition wichtiger Begrifflichkeiten. Anschlieflend folgt eine Anforderungsdefini-
tion, in der u.a. die grundlegenden Ziele und Funktionen eines Systems zum
integrierten simulationsbasierten Assessment aufgefiihrt werden.

Aufbauend auf der Systemdefinition wird in Kapitel 5 (Seite 95) eine Soft-
ware-Architektur fiir das spezifizierte System entwickelt. Das Gesamtsystem
wird hier in einzelne Komponenten gegliedert, wobei die einzelnen Komponen-
ten eine definierte Zustdindigkeit innerhalb des Gesamtsystems erhalten. Neben
der Festlegung der Verantwortlichkeit der Komponenten werden wichtige Da-
tenstrukturen der Komponenten definiert sowie die Schnittstellen, iber die sie
miteinander verbunden sind. Die sich aus den einzelnen Komponenten und de-

1.3. STRUKTUR DER ARBEIT)

ren Zusammenspiel ergebenden statischen und dynamischen Zusammenhénge
der Architektur werden abschlieBend zusammengefasst und liefern damit eine
Gesamtiibersicht iiber die entwickelte Architektur.

Eine prototypische Realisierung zentraler Komponenten der entwickelten
Architektur folgt in Kapitel 6 (Seite 165). Das Kapitel beginnt mit einer kur-
zen Beschreibung des integrierten Modells GLASS, anhand dessen die Imple-
mentierung der zentralen Teile der Architektur beschrieben wird. Anschlieend
wird die Realisierung der Architektur-Komponenten im Einzelnen beschrie-
ben. Das Fazit dieses Kapitels fasst die wichtigsten Punkte der Komponenten-
Realisierung zusammen und stellt die in der Systemdefinition aufgestellten An-
forderungen den erzielten Resultaten gegeniiber.

Das letzte Kapitel (Kapitel 7, Seite 205) liefert eine Zusammenfassung der
wichtigsten Erkenntnisse dieser Arbeit und zeigt Moglichkeiten der Erweiterung
und Verfeinerung der Architektur auf.

Realisie-
rung

Zusam-
menfas-
sung

KAPITEL 1. EINLEITUNG

Kapitel 2

Grundlagen

Dieses Kapitel beschreibt einige Grundlagen, die zum Versténdnis des Problem-
bereichs und der Entwicklung der Software-Architektur hilfreich sind.

Systeme zum simulationsbasierten integrierten Assessment werden zur Ana- Uber-
lyse von Problemstellungen des globalen Wandels eingesetzt. Das Kapitel be- Siht
ginnt daher mit einer Definition und Abgrenzung dessen, was als globaler Wan-
del verstanden wird. Anschlieflend wird die Bedeutung des Begriffs Assessment
genauer beleuchtet, der im Zusammenhang mit Studien zum globalen Wandel
eine besondere Bedeutung besitzt. Da die Arbeitsgrundlage fiir ein simulations-
basiertes integriertes Assessment die Ergebnisse von Simulationsmodellen sind,
werden in Abschnitt 2.2 (Seite 14), anhand einer Vorgehensweise zur Erstellung
von Simulationsstudien, wichtige Grundbegriffe der Modellierung erklart. Die
zum besseren Verstdndnis der weiteren Ausfiihrungen notwendigen Grundla-
gen der Software-Entwicklung sind Thema des letzten Abschnitts dieses Kapi-
tels (Abschnitt 2.3, Seite 16). Hier werden u. a. die einzelnen Phasen beschrie-
ben, die bei der Entwicklung eines Software-Systems zu durchlaufen sind. Die
Aspekte, die bei der Entwicklung einer Software-Architektur eine Rolle spielen,
werden zum Abschluss des Kapitels behandelt.

2.1 Integriertes Assessment

2.1.1 Globaler Wandel

Im Juli 1992 fand in Rio de Janeiro die erste Konferenz der Vereinten Nationen Agenda
fiir Umwelt und Entwicklung statt. Aus dieser Konferenz ist ein Aktionspro- 2!
gramm fiir das 21. Jahrhundert hervorgegangen: die so genannte Agenda 21

(UN, 1992). In der Prdambel der Agenda 21 heifit es:

7

globaler
Wandel

WBGU

Def.
globaler
Wandel

8 KAPITEL 2. GRUNDLAGEN

Die Menschheit steht an einem entscheidenden Punkt in ihrer Ge-
schichte. Wir erleben eine zunehmende Ungleichheit zwischen V6l-
kern und innerhalb von Vélkern, eine immer grofere Armut, immer
mehr Hunger, Krankheit und Analphabetentum sowie eine fort-
schreitende Schidigung der Okosysteme, von denen unser Wohl-
ergehen abhingt. Durch eine Vereinigung von Umwelt- und Ent-
wicklungsinteressen und ihre stéirkere Beachtung kann es uns jedoch
gelingen, die Deckung der Grundbediirfnisse, die Verbesserung des
Lebensstandards aller Menschen, einen gréfleren Schutz und eine
bessere Bewirtschaftung der Okosysteme und eine gesicherte, ge-
deihlichere Zukunft zu gewihrleisten.

Die angefiihrten zunehmenden Ungleichheiten und Probleme sind nur einige
der weltweit zu beobachtenden Verédnderungen, die oft unter dem Begriff des
globalen Wandels zusammengefasst werden.

Das Bundesministerium fiir Bildung und Forschung definiert den Begriff
des ‘globalen Wandels’ recht eingéingig als die ,,... Verdnderungen in Natur und
Gesellschaft, die die Menschheit als Ganzes und auf ldngere Sicht hin betreffen®
(Kriick u. a., 2001).

Um das Ziel der ‘Vereinigung von Umwelt- und Entwicklungsinteressen’ zu
erreichen, miissen die vielfdltigen Ursachen und Wirkungen, die mit den Ver-
dnderungen verkniipft sind, beriicksichtigt werden. Als Ausgangspunkt fiir sys-
tematische Untersuchungen der Verdnderungen ist eine ausfiihrliche Definition
dessen, was unter dem globalen Wandel zu verstehen ist, notwendig.

Der im Vorfeld der Konferenz von Rio de Janeiro von der Deutschen Bun-
desregierung berufene Wissenschaftliche Beirat Globale Umweltverdnderungen
(WBGU) definiert in seinem ersten Jahresgutachten (WBGU, 1993) den Begriff
des globalen Wandels wie folgt:

Der Beirat versteht unter globalen Verdnderungen der Umwelt sol-
che, die den Charakter des Systems Erde zum Teil irreversibel mo-
difizieren und deshalb direkt oder indirekt die natiirlichen Lebens-
grundlagen fiir einen Grofiteil der Menschheit spiirbar beeinflussen.
Globale Verinderungen der Umwelt kénnen sowohl natiirliche als
auch anthropogene Ursachen haben. Um diesen Gesamtzusammen-
hang zu kennzeichnen, wird der Begriff des globalen Wandels ver-
wendet.

Umwelt selbst wird dabei definiert als die Gesamtheit aller Prozes-
se und Rdume, in denen sich die Wechselwirkung zwischen Natur
und Zivilisation abspielt. Somit schliefit ‘Umwelt’ alle natiirlichen
Faktoren ein, welche von Menschen beeinflusst werden oder diese
beeinflussen.

2.1. INTEGRIERTES ASSESSMENT 9

Das System Erde wird vom WBGU als Kombination aller Komponenten der System
Natursphdre und Anthroposphire verstanden. Abbildung 2.1 gibt einen Uber- Frde
blick iiber die einzelnen Komponenten dieser beiden Sphéren, wie sie der WB-

GU sieht.

/ Natursphére\
Atmosphére Hydrosphére
\ /
. « Lithosphére/
Biosphare Pedosphére
Bevdlkerung Wirtschaft Verkehr
\ NS
Psychosoziae gesellschaft- Wissenschaft /
Sphare liche Technik
Organisation
\\ Anthroposphérv

Abbildung 2.1: Grundstruktur des globalen Beziehungsgeflechts. Quelle: WB-
GU (1993).

Im Rahmen des globalen Wandels werden fiir die verschiedenen, in der Ab- Prozesse
bildung dargestellten Komponenten, u. a. die folgenden Prozesse angegeben:

Atmosphire Reduktion stratosphérischen Ozons, verstidrkter Treibhausef- Natur-
fekt, Troposphéirenverschmutzung sphire

Hydrosphire Meeresspiegelanstieg, Abflussinderungen und Verlagerung von
Stromungen, Senkung des Grundwasserspiegels

Biosphire Anderung 6kologischer Struktur und Leistung, Artenschwund, Re-
duktion von Wildern und Feuchtgebieten, Ubernutzung

Lithosphire/Pedosphiire Erosion, Kontamination, Uberdiingung, Struk-
turzerstorung

Anthro-
posphére

Hand-
lungs-
bedarf

10 KAPITEL 2. GRUNDLAGEN

Bevolkerung Bevolkerungswachstum, Altersstruktur, Urbanisierung, Migra-
tion

Wirtschaft Wirtschaftswachstum, Globalisierung der Mérkte, Tertidrisierung
der Produktion!, sektoraler Strukturwandel

Verkehr Verkehrsaufkommen, Emissionséinderung, Verkehrstrigermix

Psychosoziale Sphire Anspruchsleistung, Emanzipation, Individualisie-
rung, wachsendes Umweltbewusstsein

Gesellschaftliche Organisation Separatismus, Fundamentalismus, Aus-
breitung der Marktwirtschaft, Foderalismus, Demokratisierung

Wissenschaft /Technik Automatisierung/Mechanisierung, Effizienzsteige-
rung, medizinischer Fortschritt, Agrartechnologie/Biotechnologie

Neben diesen Prozessen, die direkt den einzelnen Komponenten (Hauptkom-
partimenten) der Natursphdire und Anthroposphdre zugeordnet werden kénnen,
werden noch Prozesse angefiihrt, die zwischen den Hauptkompartimenten zu
finden sind. Ein Beispiel fiir einen solchen Prozess mit Querschnittscharakter
ist die Ezpansion/Intensivierung der Landwirtschaft, die sowohl in enger Bezie-
hung zum Kompartiment der Biosphére als auch zu dem der Bevolkerung und
der Wirtschaft steht.

Die am dringlichsten anzugehenden globalen Probleme und Haupttrends
sind laut WBGU (1993): die Zunahme der Bevélkerung der Erde, die lang-
fristig verdnderte Zusammensetzung der Atmosphire, der Riickgang der bio-
logischen Vielfalt und die Degeneration und der Verlust von Bdden. Dariiber
hinaus gehéren Probleme durch immer grofier werdende Stiddte und die Versor-
gung mit sauberem Trinkwasser — vor allem in den Entwicklungsléndern — zu
den wichtigsten Herausforderungen (Kriick u. a., 2001).

Zur Verminderung globaler Umweltverinderungen sieht das WBGU (1993)
drei Handlungsprinzipien:

e Beriicksichtigung der Konsequenzen fiir das ganze System Erde bei jeder
Einzelentscheidung

e Beachtung der Einheit von Umwelt und Entwicklung bei jeder politischen
Entscheidung

e Ausweitung der 6konomischen Bewertungssysteme auf Naturgiiter

Fiir eine umfassende Bewertung in diesem Sinne sind vielschichtige Aus-
wirkungsanalysen notwendig. Verschiedene Methoden zur Erstellung solcher
Analysen sind Thema des folgenden Abschnitts.

1Vom Schwerpunkt der Erzeugung von Nahrungsmitteln und Rohstoffen (Primdrsektor)
bzw. des Handwerks und der Industrie (Sekunddrsektor) hin zu Dienstleistungen (Tertidr-
sektor).

2.1. INTEGRIERTES ASSESSMENT 11

2.1.2 Assessment des globalen Wandels

Die Analyse der vielfiltigen Zusammenhinge und der Auswirkungen von An-
derungen innerhalb des Systems Erde ist aufgrund der komplexen Wirkzusam-
menhénge eine nicht-triviale Aufgabe. Eine Organisation, die sich mit der Er-
forschung der vielféltigen Ursache-Wirkungs-Ketten eines der oben angefiihrten
Hauptprobleme, ndmlich der langfristig verénderten Zusammensetzung der At-
mosphiére, beschéftigt, ist das zwischenstaatliche Gremium fir Klimawandel
(Intergovernmental Panel on Climate Change, IPCC)?. Das IPCC wurde 1988
von der meteorologischen Weltorganisation (World Meteorological Organizati-
on, WMO) und dem Umweltprogramm der Vereinten Nationen (United Nations
Environmental Programme, UNEP) gegriindet. Ziel des IPCC ist die Analyse
wissenschaftlicher, technischer und sozio-6konomischer Informationen, die re-
levant sind zum Versténdnis des durch den Menschen verursachten Klimawan-
dels, dessen potentiellen Auswirkungen und der Optionen zur Verminderung
und Anpassung (IPCC, 2001).

Das IPCC ist in drei Arbeitsgruppen unterteilt. Schwerpunkt der ersten
Gruppe (Working Group I, WG 1) ist die Beobachtung und Projizierung des
Klimawandels. Die zweite Arbeitsgruppe (WG II) beschiiftigt sich mit der Un-
tersuchung von Vulnerabilitiat, Auswirkungen und Anpassungen im Zusammen-
hang mit dem Klimawandel. Thema der dritten Arbeitsgruppe (WG I11) sind
die moglichen Optionen zur Minderung des Klimawandels. Die WG IT muss
aufgrund ihres Arbeitsschwerpunktes in besonderem Mafle das gesamte System
Erde, also sowohl die Natursphire als auch die Anthroposphére und deren Ver-
bindungen, betrachten. Zu diesem Zweck setzt die Arbeitsgruppe u.a. das so
genannten ‘integrierte Assessment’ ein.

In der Literatur sind unterschiedliche Definitionen des Begriffs ‘integriertes
Assessment’ (englisch: integrated assessment)? zu finden (s. z. B. Alcamo, 2002;
Easterling, 1997; IPCC, 2001; Parson, 1995; Peirce, 1998; Rotmans, 1998; Tol
und Vellinga, 1998; van der Sluijs, 1996; Weyant u. a., 1996).

Das IPCC sieht das integrierte Assessment als einen interdiszipliniren Pro-

zess, der das Ziel verfolgt, komplizierte Systeme besser zu verstehen und defi-
niert den Begriff wie folgt (IPCC, 2001):

Integrated assessment is an interdisciplinary process that combi-
nes, interprets, and communicates knowledge from diverse scientific
disciplines from the natural and social sciences to investigate and

2Startseite im Internet: http://www.ipcc.ch

3Fiir das englische Wort assessment gibt es kein deutsches Wort, das dem Bedeutungsum-
fang des englischen gerecht wird. Das Wort wird daher als Assessment stehen gelassen und
nicht durch einen deutschen Begriff iibersetzt. Assessment im hier betrachteten Zusammen-
hang kann als Abschditzung, FEinschdtzung, (Be-)Wertung, Auswertung oder Begutachtung
verstanden werden.

IPCC

WG II

inte-
griertes
Assess-
ment

Defini-
tionen

http://www.ipcc.ch

Merk-

male

12

KAPITEL 2. GRUNDLAGEN

understand causal relationships within and between complicated
systems.

Alcamo (2002) definiert den Begriff — im Zusammenhang mit der Abgren-
zung von den integrierten Modellen (s.u.) — folgendermafen:

,Integrated assessment® is the assembling, analysis, and communi-
cation of knowledge from different disciplines and areas of expertise
to assist policymaking; it may or may not involve models, integrated
or otherwise.

Bei van der Sluijs (1996) werden Definitionen verschiedener Autoren aufge-
fiihrt, die sich durch die folgenden Merkmale charakterisieren lassen:

Sektoriibergreifende Abbildung der gesamten Ursache-Wirkungs-Kette
des Klimawandel-Problems

Informationsbereitstellung fiir Entscheidungstriager

Verwendung und Integration eines breiten Spektrums von Untersuchungs-
bereichen, Methoden und Analysetechniken

Projektion zukiinftiger 6konomischer Aktivitdt als Ausgangspunkt der
Wirkungsketten

Kombination, Interpretation und Kommunikation von Wissen unter-
schiedlicher wissenschaftlicher Disziplinen

Zusammenschluss formaler Modelle oder Studien ohne Modellierungsun-
terstiitzung in einem in sich schliissigen, konsistenten Framework
Bearbeitung von Fragestellungen zum globalen Wandel

Bearbeitung von Fragestellungen zu Umweltproblemen

Beriicksichtigung von Informationen iiber physikalische, chemische, biolo-
gische, psychologische, sozio-6konomische und institutionelle Phdnomene,
inklusive relevanter Entscheidungsfindungsprozesse

Parson (1995) sieht bei Projekten zur integrierten Analyse des Klimawandels
die folgenden charakteristischen Merkmale:

Nutzung eines nationalen bis globalen raumlichen Mafistabes, wobei die
Welt in letzterem Fall typischerweise in so genannte Weltregionen einge-
teilt wird

Verwendung eines zeitlichen Maflstabes zwischen einigen Dekaden und
etwa einem Jahrhundert

Nutzung von Interpolations-, Parametrisierungs- und N#herungsverfah-
ren zur Beschreibung von Prozessen, die auf einer feineren rdumlichen
oder zeitlichen Auflésung ablaufen

eine eher grobe sektorale Auflésung, d. h. beispielsweise eine vereinfachte
Darstellung der unterschiedlichen Bereiche im 6konomischen Sektor

2.1. INTEGRIERTES ASSESSMENT 13

Die herausgestellten Definitionen und Merkmale setzen unterschiedliche
Schwerpunkte, z. B. auf den Prozess, die Zielgruppe oder die zu betrachten-
den Disziplinen. Auf einige der angefithrten Merkmale wird im Kapitel der
Systemdefinition (Kapitel 4, Seite 69) noch einmal eingegangen. Im Rahmen
der vorliegenden Arbeit soll der Begriff des ‘integrierten Assessments’ zusam-
menfassend wie folgt verstanden werden:

Das integrierte Assessment ist ein Prozess, in dem Wissen unter-
schiedlicher Fachdisziplinen iiber das ‘System Erde’ in einem kon-
sistenten Rahmen kombiniert und interpretiert wird und der das
Ziel verfolgt, den Zustand und mégliche langfristige Anderungen
des Systems einzuschéitzen und zu bewerten sowie die Ergebnisse
politischen Entscheidungstrigern zu vermitteln.

Integrierte Assessments kénnen mit verschiedenen methodischen Ansétzen
durchgefiihrt werden. Das (IPCC, 2001) nennt hier: 1) computerunterstiitzte
Modellierung, 2) Szenarienanalyse, 3) interaktive Computersimulation (Pla-
nungsspiele)*, 4) teilnehmende integrierte Analyse® und 5) qualitative Analy-
sen, die auf bereits existierenden Analysen und auf Expertise basieren.

Die Moglichkeit der in sich konsistenten Abbildung der gesamten Wirkungs-
kette eines betrachteten Problems (die so genannte ‘end-to-end integration’)
macht integrierte Assessments so bedeutsam (Parson, 1995). Das nach Parson
(1995) vorherrschende Mittel bei dieser ‘end-to-end integration’ ist die vom
IPCC unter Punkt 1 genannte Methode der computerunterstiitzten Modellie-
rung. Die sich stetig verbessernden Rechner-Leistungen, das steigende diszi-
plindre Verstindnis einzelner Glieder der Ursache-Wirkungs-Ketten und die
Verfiigbarkeit sektoraler Modelle machen diese Art des Assessments immer
praktikabler (Weyant u.a., 1996). Schneider (1997) sieht die hierzu verwen-
deten Simulationsmodelle, die so genannten integrierten Modelle, sogar als die
priméiren Werkzeuge fiir Analysen im Rahmen des globalen Wandels an. Inte-
grierte Modelle werden entweder durch die Kopplung existierender sektoraler
Modelle erstellt oder durch die Neukonstruktion einfacherer und konsistenterer
Modelle. Bei der Kopplung sektoraler Modelle bildet jedes Modell einen Teil
der Ursache-Wirkungs-Kette ab, wihrend die einfacheren Modelle die Ursache-
Wirkungs-Kette von Anfang bis Ende abbilden und evtl. sogar Riickkopplungen
implementieren (Parson, 1995). Es gibt aber auch komplexe integrierte Model-
le, bei denen Riickkopplungen realisiert sind — z. B. das Modell IMAGE2 (s.
Alcamo u. a., 1998b).

Integrierte Modelle bilden den grundlegenden Bestandteil der in dieser Ar-
beit betrachteten Software-Systeme. Informationen zum Stand der Technik und
den Charakteristiken dieser Modelle finden sich in Abschnitt 3.1 ab Seite 25.

4Simulation gaming.

5Teilnehmer des ‘participatory integrated assessment’ sind z. B. Wissenschaftler, Politiker
und andere Entscheidungstriger bzw. Interessierte (Tol und Vellinga, 1998).

Def.

Metho-
den

Simula-
tion

Simula~
tions-
studie

Prob-
lem-
analyse

Modell-
bildung

Datener-
hebung

Pro-
gramm-
erstel-
lung

14 KAPITEL 2. GRUNDLAGEN

2.2 Modellierung

Das simulationsbasierte integrierte Assessment basiert auf Ergebnissen von be-
rechenbaren Modellen (Simulationsmodellen) der Umwelt. Die Erstellung und
Nutzung von Simulationsmodellen geschieht in mehreren Schritten. Steinhau-
sen (1994) schligt zur Durchfithrung von Simulationsstudien eine Vorgehens-
weise vor, die aus sieben Schritten besteht:

1. Problemformulierung und -analyse

Modellbildung

Datenerhebung

Erstellung des Computerprogramms
Modellvalidierung

Planung und Durchfiihrung von Simulationsldufen
Auswertung und Implementierung der Ergebnisse

oot W

Im ersten Schritt wird das Untersuchungsproblem identifiziert und gepriift, ob
die Methode der Simulation die angemessene Herangehensweise zur Losung
darstellt. Nach der Kldrung dieses Punktes wird das Problem néher beschrie-
ben und das Simulationsziel spezifiziert. Zur Problembeschreibung werden die
Bestandteile des Problembereichs sowie deren Eigenschaften und Beziehungen
untereinander erfasst. Aulerdem werden in diesem Schritt die Systemgrenzen
definiert, das System wird hier also von seiner Umgebung klar getrennt.

Der zweite Schritt, die Modellbildung, beschiftigt sich mit der Redukti-
on und Abstraktion der Elemente des zu analysierenden Problems. In diesem
Schritt werden die wichtigsten systembeeinflussenden FElemente ausgewihlt und
durch entsprechende Symbole und Regeln (Verkniipfungen zwischen den Ele-
menten) wiedergegeben. Auf diese Weise entsteht das so genannte konzeptio-
nelle Modell, das beispielsweise iiber ein System mathematischer Gleichungen
ausgedriickt wird. Die Basiskonzepte der Software-Entwicklung (z.B. die ob-
jektorientierte Analyse) konnen in diesem Schritt ebenfalls sinnvoll eingesetzt
werden (vgl. Unterabschnitt 2.3.1, Seite 16).

Fiir den Betrieb eines Simulationsmodells werden unterschiedliche Daten
benotigt: 1) Daten fiir ModellgréBen, die wiihrend eines Simulationslaufes kon-
stant bleiben (Systemparameter®), 2) Daten iiber systembeeinflussende exogene
Grofien (Modellumwelt-GroBen), 3) Optionen zur Simulationssteuerung und 4)
evtl. benotigte stochastische Daten (falls es sich um ein stochastisches Modell
handelt, also ein Modell, das Zufallsverteilungen beriicksichtigt).

Da manuelle Losungsverfahren in den meisten Fillen zu aufwendig sind,
muss das konzeptionelle Modell durch ein Computerprogramm realisiert wer-
den. Die Realisierung des Modells kann iiber verschiedene Simulationsverfahren

SBossel definiert den Begriff ‘Parameter’ etwas genauer als GréBen, ,,... die nicht durch
Verdnderungen im System selbst beeinflusst sind, die oft konstant sind, aber moglicherweise
auch von der Zeit abhéngen.“ (Bossel, 1994).

2.2. MODELLIERUNG 15

Kommunikation Objekt-
Verwaltung

& Hlo

Benutzungsschnittstelle

Reale Welt konzeptionelles Modell Simulationsmodell

Abbildung 2.2: Erstellung eines Simulationsmodells: Von der Beschreibung ei-
nes Ausschnitts der realen Welt werden die wichtigsten, systembeeinflussenden
Faktoren und deren Zusammenhénge herausgenommen und im konzeptionellen
Modell beschrieben. Zur Umsetzung in ein Simulationsmodell sind aus softwa-
retechnischer Sicht Elemente hinzuzufiigen um anschlieend Simulationsergeb-
nisse zu erlangen. Abbildung nach Cook und Daniels (1994).

erfolgen: die ausschlieliche Nutzung von Standard-Programmiersprachen (z. B.
FORTRAN, C, C++, Pascal); die zusétzliche Nutzung spezifischer Simulations-
Bibliotheken (z.B. SIMPAS fiir Pascal); die Verwendung spezieller Simula-
tionssprachen (z.B. CSMP); die Nutzung von Simulationsumgebungen (z.B.
STELLA)". Die Erstellung des Simulationsmodells erfordert neben der Imple-
mentierung der Elemente des konzeptionellen Modells die Einfithrung neuer
softwaretechnischer Elemente (beispielsweise um Daten zu lesen und zu spei-
chern oder zur Realisierung der Benutzungsoberfliche). Die Aufgaben bis zur
Erstellung des Simulationsmodells werden in Abbildung 2.2 noch einmal ver-
deutlicht.

Im Schritt der Modellvalidierung wird die Giiltigkeit des Modells gepriift:
das Systemverhalten wird einer logischen Priifung unterzogen und die Simu-
lationsergebnisse werden mit evtl. vorhandenen (gemessenen) Daten aus der
Realitdt verglichen. Wenn sich bei der Validierung herausstellt, dass die Simu-
lationsergebnisse die Realitéit nicht in ausreichendem Mafle widerspiegeln, ist
eine Uberarbeitung des Modellkonzepts vorzunehmen. Sofern das Simulations-

7Zu den Vor- und Nachteilen der verschiedenen Simulationsverfahren siehe Bossel (1994).

Validie-
rung

Simula-
tion

Unsi-
cher-
heits-
analysen

Auswer-
tung

Ablauf

16 KAPITEL 2. GRUNDLAGEN

modell freie Parameter enthélt, muss eine Anpassung dieser Parameter durch
eine Modellkalibrierung erfolgen.

Wenn die Modellvalidierung ein zufriedenstellendes Ergebnis geliefert hat,
ist der néchste Schritt die Planung und Durchfithrung von Simulationsldufen
(Simulationen). Grundlage fiir die Simulationsldufe sind i.d.R. so genannte
‘Szenarien’; die auf ,in sich konsistenten und plausiblen Annahmen iiber die
zukiinftige Entwicklung systembeeinflussender exogener Grofien® (Bossel, 1994)
basieren. Weitere Festlegungen betreffen die Auswahl der Anfangszustéinde des
Simulationsmodells sowie die Anfangs- und Endzeitpunkte fiir die Simulationen
(Laufzeitparameter). Bei stochastischen Modellen ist zusétzlich die Anzahl der
Simulationsdurchldaufe pro Szenario zu bestimmen. Nach der Festlegung und
Beschaffung der benéttigten Daten und Parameter werden die Simulationslaufe
durchgefiihrt.

Um die Auswirkungen von Unsicherheiten der Modelleingabegréfien auf
die Modellergebnisse bzw. den Einfluss einzelner Eingabegrofien auf die Mo-
dellergebnisse zu untersuchen, sollten Unsicherheits- bzw. Sensitivitdtsanalysen
durchgefiihrt werden.

Im letzten Schritt zur Durchfithrung einer Simulationsstudie werden die be-
rechneten Simulationsergebnisse ausgewertet und die Ergebnisse (sofern mog-
lich) umgesetzt bzw. Entscheidungstrigern vermittelt, wobei die Analyse und
Dokumentation der Simulationsergebnisse stets im Zusammenhang mit den ge-
troffenen Annahmen zu erfolgen hat.

Die einzelnen Phasen werden in der Regel nicht einfach nacheinander abge-
arbeitet; eine Anderung der Reihenfolge der Schritte kann ebenso sinnvoll sein
wie der Riicksprung zu bereits bearbeiteten Phasen. Beispiele sind die bereits
angefithrte Notwendigkeit der Uberarbeitung des Modellkonzepts im Zuge der
Modellvalidierung oder eine Modellkonzeptinderung, wenn sich herausstellt,
dass benotigte Daten nicht verfiigbar sind.

Eine ausfiihrliche Beschreibung der Schritte findet sich bei Steinhausen
(1994). Eine detaillierte Vorgehensweise zur Entwicklung von Modellkonzepten
und Simulationsmodellen sowie der Analyse von Modellsystemen liefert Bossel
(1994).

2.3 Software-Entwicklung

2.3.1 Entwicklungsphasen

Die Entwicklung eines Software-Systems geschieht in verschiedenen Entwick-
lungsphasen. Jede Entwicklungsphase hat ihre spezifizierte Aufgabe, verwen-
det strukturell definierte Eingabedokumente und liefert festgelegte Ergebnis-
dokumente. An dieser Stelle wird ein Uberblick iiber die einzelnen Phasen der

2.3. SOFTWARE-ENTWICKLUNG 17

Software-Entwicklung gegeben, um die Arbeit der Architekturentwicklung ein-
ordnen zu kénnen.

Balzert (1996) teilt die Gesamtentwicklung eines Software-Systems in sechs
Phasen ein:

1. Planungsphase

Definitionsphase

Entwurfsphase
Implementierungsphase
Abnahme- und Einfithrungsphase
Wartungs- und Pflegephase

S o

Die Planungsphase beschiftigt sich mit einer Voruntersuchung und einer
Durchfiihrbarkeitsstudie unter Beriicksichtigung fachlicher, 6konomischer und
personeller Aspekte. Ein Ergebnis dieser Phase ist das so genannte Lastenheft
— eine Zusammenfassung aller fachlichen Basisanforderungen aus der Sicht des
Auftraggebers. In diesem Dokument sollen z. B. das Einsatzgebiet des Software-
Systems und die hauptséichlichen Funktionen und Daten beschrieben werden.
Besondere Leistungsanforderungen (z. B. an den Datenumfang und die Genau-
igkeit oder Zuverlissigkeit des Systems) werden ebenfalls in diesem Dokument
aufgefithrt. Neben dem Lastenheft sind eine Projektkalkulation und ein Pro-
jektplan Ergebnis der Planungsphase. Am Ende dieser Phase steht die Durch-
fiihrbarkeitsstudie und damit die Entscheidung, ob das System entwickelt wer-
den soll oder nicht.

Die Definitionsphase beschéaftigt sich mit der Analyse und Definition der
Anforderungen, die vom Auftraggeber an das System gestellt werden. Durch
die Befragung der Auftraggeber und der zukiinftigen Benutzer sollen vollstandi-
ge, konsistente, eindeutige und durchfithrbare Produktanforderungen definiert
werden. Zur Unterstiitzung der Systemanforderungsanalyse (Systemanalyse)
konnen verschiedene Basiskonzepte der Software-Entwicklung eingesetzt wer-
den (z. B. Datenflussdiagramme, ER-Diagramme®, Klassendiagramme). Ergeb-
nis der Definitionsphase ist die Produktdefinition, die in der Regel ein verbal
beschriebenes Pflichtenheft, ein eher formell beschriebenes Produktmodell und
ein Konzept fiir die Benutzungsoberflédche beinhaltet.

Basierend auf den Ergebnissen der Definitionsphase geht es in der Entwurfs-
phase (Designphase) um die Entwicklung einer softwaretechnischen Losung fiir
das Software-Produkt. Das Ergebnis dieser Phase ist die Software-Architektur
des Systems und die Spezifikation der Systemkomponenten. Da diese Phase bei
der vorliegenden Arbeit einen Hauptbestandteil ausmacht, wird sie im folgen-
den Unterabschnitt (2.3.2) separat und ausfiihrlicher als die anderen Phasen
betrachtet.

8Entity-Relationship-Diagramm; werden vornehmlich zur Beschreibung permanent zu
speichernder Daten und derer Beziehungen untereinander eingesetzt.

Planung

Defini-
tion

Entwurf

Imple-
mentie-
rung

Abnah-
me u.
Einfiih-
rung

Wartung

Gesamt-
prozess

18 KAPITEL 2. GRUNDLAGEN

Die in der Entwurfsphase spezifizierten Systemkomponenten werden in der
Implementierungsphase durch Programme realisiert. Ergebnisse der Implemen-
tierungsphase sind neben dem ablauffihigen Produkt (Objektprogramm) die
Quellprogramme (inklusive integrierter Dokumentation) und Testplanungen
mit zugehorigen Testprotokollen.

Innerhalb der Abnahme- und Einfiihrungsphase geschieht die Ubergabe des
Gesamtprodukts (alle Produkte und Teilprodukte der vorausgegangenen Pha-
sen) an den Auftraggeber, die in der Regel auch mit einem Abnahmetest einher-
geht. Das Ergebnis der Abnahmephase ist ein Abnahmeprotokoll, in dem die
Tests und Ergebnisse dokumentiert werden. Wéhrend der Einfithrungsphase
wird das Produkt beim Auftraggeber installiert, die Benutzer werden geschult
und das Produkt wird in Betrieb genommen. Die Ergebnisse dieses Schrittes
werden im Einfiihrungsprotokoll festgehalten. Ab diesem Zeitpunkt unterliegt
das Produkt der Wartung und Pflege.

In die Wartungs- und Pflegephase fillt die Lokalisierung von Restfehlern,
die Optimierung des Produkts sowie das Vornehmen von Anpassungen, Ande-
rungen und Erweiterungen.

Der Gesamtprozess der Software-Entwicklung ist eingebettet in die Aktivi-
taten des Software-Managements und der Qualitéitssicherung, auf die hier nicht
eingegangen wird und fiir die an dieser Stelle z. B. auf Balzert (1998) verwie-
sen wird. Die zu beriicksichtigenden Anforderungen bei der Entwicklung der
Software-Architektur sind, aufgrund der Relevanz fiir die vorliegende Arbeit,
ebenfalls im folgenden Unterabschnitt genauer aufgefiihrt.

2.3.2 Software-Architektur
Der Architektur-Begriff

Ziel der Entwurfsphase ist, wie im vorigen Abschnitt bereits erwdhnt, die Ent-
wicklung einer Software-Architektur. Trotz der Wichtigkeit der Architektur in
der Software-Entwicklung wird der Begriff in der Literatur unterschiedlich und
oft nur vage definiert (Foegen und Battenfeld, 2001). Oestereich (1998) bezeich-
net beispielsweise die Spezifikation der grundlegenden Struktur eines Systems
als Architektur. Nach Buschmann u.a. (1998) beschreibt die Architektur die
Subsysteme und Komponenten eines Software-Systems und die Beziehungen
zwischen ihnen — die grundlegende Struktur wird in dieser Sichtweise also be-
reits unterteilt. Die Object Management Group (OMG) definiert in der Unified
Modeling Language Specification (OMG, 1999) den Begriff der Architektur noch
detaillierter:

Architecture: The organizational structure and associated behavior
of a system. An architecture can be recursively decomposed into
parts that interact through interfaces, relationships that connect

2.3. SOFTWARE-ENTWICKLUNG 19

parts, and constraints for assembling parts. Parts that interact
through interfaces include classes, components and subsystems.

Die Definition der OMG berticksichtigt die wesentlichen Merkmale vieler
anderer Definitionen (vgl. Boosch u.a., 1999; Foegen und Battenfeld, 2001;
Oestereich, 1998; Poetzsch-Heffter, 2001; Shaw und Garlan, 1996):

e die Aufteilung des Gesamtsystems in mehrere Teile (Subsysteme, Kom-
ponenten, Klassen)

e die Kommunikation der einzelnen Teile iiber Schnittstellen

e die Beziehungen der einzelnen Teile untereinander

Im Rahmen der vorliegenden Arbeit soll der Begriff der ‘Software-Architek-
tur’ daher wie folgt verstanden werden:

Eine Software-Architektur ist die grundsétzliche Strukturierung ei-
nes Software-Systems. Sie beschreibt eine Menge definierter Kom-
ponenten, die iiber Schnittstellen miteinander kommunizieren, spe-
zifiziert deren jeweiligen Zusténdigkeitsbereich und beschreibt die
Beziehungen zwischen den Komponenten.

Der Begriff der ‘Komponente’ (auch als ‘Halbfabrikat’ bezeichnet) soll hier
verstanden werden als ,,... ein abgeschlossener, bindrer Software-Baustein, der
eine anwendungsorientierte, semantisch zusammengehorende Funktionalitéit be-

sitzt, die nach auflen iiber Schnittstellen zur Verfiigung gestellt wird.“ (Balzert,
2000)

Sichtweisen auf ein System

Die Betrachtung von Software-Systemen kann aus unterschiedlichen Blickwin-
keln und auf verschiedenen Abstraktionsniveaus erfolgen. Der Benutzer des
Systems ist beispielsweise daran interessiert, welche Funktionen die Software
bereitstellt; den Entwickler hingegen interessiert wie das System diese Funk-
tionen bereitstellt — beide betrachten dasselbe Software-System also aus un-
terschiedlicher Sicht. Die Betrachtung der Funktionen des Systems kann bei
beiden Sichtweisen mehr oder weniger abstrakt sein: der Benutzer kann die Ge-
samtfunktion betrachten, die das Systems fiir seine Arbeit hat oder aber die
einzelnen Funktionen, die er zur Losung des Gesamtproblems bendétigt; der Ent-
wickler kann (z. B. im Rahmen eines Tests oder der Fehlersuche) eine Funktion
als Ganzes untersuchen oder die einzelnen Anweisungen der Funktion.

In der Literatur gibt es unterschiedliche Kategorisierungen von Sichtwei-
sen auf ein System (s. z. B. Foegen und Battenfeld, 2001; Boosch u. a., 1999;
Poetzsch-Heffter, 2001; Farooqui u. a., 1995). Eine Einteilung, die auch im Laufe
dieser Arbeit eine Rolle spielen wird, ist diejenige des internationalen Standards
ISO/IEC 10746, dem so genannten ISO Reference Model for Open Distributed

Def.

Kompo-
nente

Abhén-

20 KAPITEL 2. GRUNDLAGEN

Processing (ISO, 1998; Farooqui u. a., 1995). Das Referenz-Modell unterschei-
det fiinf Sichtweisen:
e enterprise viewpoint (Beschreibung der Einsatzumgebung des Systems)
e information viewpoint (Beschreibung der Informationen des Systems und
deren Verarbeitung)
e computational viewpoint (Beschreibung der funktionalen Zerlegung des
Systems)
e engineering viewpoint (Beschreibung der Aspekte zur Verteilung des Sys-
tems auf mehrere Rechner)
e technology viewpoint (Beschreibung der zur Implementierung verwende-
ten Technologien)

Diese Sichtweisen werden innerhalb des Standards als nicht komplett unab-

sigkeiten hanoig voneinander angesehen; Schliisselelemente einer Sicht treten in anderen

Verwen-
dung

Einsatz

Sichten in untergeordneter Form wieder auf. Dennoch gelten die Sichten als
ausreichend unabhéingig, um Entwurfsentscheidungen fiir das Gesamtsystem
auf Sichtenebene zu treffen. Die Architektur des Gesamtsystems wird iiber den
kompletten Satz miteinander verbundener Sichten ausgedriickt.

Die vorliegende Arbeit konzentriert sich auf die Entwicklung der Software-
Architektur und damit auf den information viewpoint und den computational
viewpoint (vgl. Definition des Architekturbegriffs). Aspekte des enterprise view-
point werden allerdings in der Systemdefinition (Kapitel 4, Seite 69) behandelt
und das Kapitel der Realisierung (Kapitel 6, Seite 165) geht auf den enginee-
ring viewpoint sowie den technology viewpoint ein. Die einzelnen Sichtweisen der
ISO/IEC 10746 werden aufgrund des Schwerpunktes der Arbeit nicht separat
spezifiziert.

ISO/IEC 10746 ist u. a. die Grundlage eines wichtigen Standards im Bereich
der Geodatenverarbeitung (ISO 19119). Eine kurze Erklirung der ISO/IEC
ds10746 und der einzelnen Sichtweisen findet sich daher an spéterer Stelle in
dieser Arbeit (Unterabschnitt 3.2.4, Seite 52).

Anforderungen an die Architektur

Bei der Entwicklung der Architektur sind vielfdltige Faktoren zu beriicksichti-
gen. Balzert (1996) teilt diese Einflussfaktoren in drei Gruppen ein:

e Einsatzbedingungen

e Grundsatzentscheidungen

e Rand- und Umgebungsbedingungen

Die FEinsatzbedingungen ergeben sich aus dem Produkteinsatz und bestim-
men, ob das Produkt sequentiell oder nichtsequentiell ablaufen soll. Im se-
quentiellen Fall werden Programmanweisungen (Schritte) hintereinander aus-
gefiihrt; im nichtsequentiellen Fall kénnen Anweisungen auch nebenliufig (Be-
arbeitung mehrerer Schritte unabhéngig voneinander), parallel (Bearbeitung

2.3. SOFTWARE-ENTWICKLUNG 21

mehrerer Schritte gleichzeitig und unabhiingig voneinander) oder in Echtzeit
(unter Beriicksichtigung von Schritt-Terminierungen und Zeitanforderungen)
ausgefiihrt werden.

Bei der Entwicklung eines Software-Systems miissen gewisse Grundsatzent-
scheidungen hinsichtlich zu verwendender Hilfssysteme getroffen werden. Zu
diesen Hilfssystemen und Hilfsdienstleistungen zihlt Balzert (1996) Systeme
zur Datenhaltung (relationale oder objektorientierte Datenbanken), Hilfesys-
teme (z.B. Hypertext-basierte Systeme), Expertensystem-Shells und Funkti-
onsbibliotheken zur Erstellung von Benutzungsoberflichen. Das generelle Ziel
bei bei Entwicklungsentscheidungen sollte laut Balzert (1996) sein, moglichst
viele Dienstleistungen auf hohem Abstraktionsniveau von anderen Systemen in
Anspruch zu nehmen.

Die Umgebungs- und Randbedingungen beziehen sich auf die Zielplattform
bzw. Zielplattformen, fiir die das Software-System entwickelt werden soll, also
auf die Hardware-, Software- und Anwendungs-Software-Umgebung. Dariiber
hinaus spielen die nicht-funktionalen Anforderungen an das Software-System an
dieser Stelle eine wichtige Rolle. Diese Anforderungen beschreiben die Qualitdt
eines Systems und sind, im Gegensatz zu den funktionalen Anforderungen, nicht
direkt aus der Anforderungsdefinition der Definitionsphase ersichtlich.

Wichtige nicht-funktionale Eigenschaften sind nach Buschmann u. a. (1998):
Anderbarkeit (Wartbarkeit, Erweiterbarkeit, Restrukturierbarkeit, Portierbar-
keit), Interoperabilitéit, Effizienz, Zuverldssigkeit (Fehlertoleranz, Robustheit),
Testbarkeit und Wiederverwendbarkeit.

Einen umfassenden Kriterien-Katalog zur Beurteilung von Software-Quali-
tat, der nicht nur bei der Entwicklung der Software-Architektur, sondern auch
in den anderen Phasen der Software-Entwicklung beriicksichtigt werden sollte,
liefert die international Norm ISO/IEC 9126 (iibernommen in DIN 66272), die
im weiteren Verlauf dieser Arbeit verwendet wird. Eine kurze Erklédrung der
einzelnen Kriterien dieses Katalogs findet sich in Tabelle 2.1 (Seite 23).

Das in der Tabelle 2.1 (Seite 23) aufgefithrte Qualititsmerkmal ‘Interope-
rabilitét’ spielt in dieser Arbeit eine wichtige Rolle. ISO 2382-1 (ISO, 1993)°
definiert und erklért den Begriff wie folgt:

Die Fahigkeit zur Kommunikation, Programmausfithrung oder Da-
teniibertragung iiber verschiedene funktionale Einheiten hinweg, in
einer Art, die vom Nutzer geringe oder keine Kenntnisse der speziel-
len Charakteristiken dieser Einheiten verlangt. Zwei Komponenten
X und Y kénnen interoperieren (sind interoperabel), wenn X Anfra-
gen R fiir Dienste an Y senden kann, basierend auf einem gemeinsa-
men Verstdndnis von R durch X und Y, und wenn Y entsprechend
gemeinsam verstédndliche Antworten S an X zuriickliefern kann.

9Zitiert nach ISO/DIS 19119 (Percivall, 2002).

Grund-
satzent-
schei-
dungen

Bedin-
gungen

nicht-
funktio-
nale
Eigen-
schaften

Inter-
operabi-
litat

Def.
Intero-
perabili-
tat

22 KAPITEL 2. GRUNDLAGEN

Fiir Systeme zur Verarbeitung geographischer Informationen gibt es eine
weitergehende Definition. Die ‘geographische Interoperabilitit’ umfasst laut ISO
19119 (Percivall, 2002) zwei Féhigkeiten von Informationssystemen: 1) dieje-
nige zum freien Austausch jeglicher raumlicher Informationen iiber die Erde
und die Objekte und Phidnomene auf, iiber und unter der Erdoberflidche und 2)
die Fahigkeit zum (netzwerkbasierten) kooperativen Betrieb von Software zur
Manipulation solcher Informationen. ISO 19119 (Percivall, 2002) unterscheidet
dariiber hinaus noch zwischen syntaktischer Interoperabilitit, die eine techni-
sche Verbindung, also einen Datenaustausch zwischen Systemen sicherstellt,
und semantischer Interoperabilitit, die sicherstellt, dass der Inhalt von beiden
Systemen (inklusive interagierenden Personen) gleich interpretiert wird.

Die verschiedenen Gesichtspunkte der Interoperabilitéit werden in den kom-
menden Kapiteln noch mehrfach angesprochen.

2.3. SOFTWARE-ENTWICKLUNG

Merkmal (Name:Erklirung)

[Teilmerkmal (Name:Erklirung)

Funktionalitédt: Vorhandensein
einer Menge von Funktionen
und deren festgelegte Merkmale.
Die Funktionen sind jene, die
die festgelegten oder vorausge-
setzten Erfordernisse erfiillen

Angemessenheit: Vorhandensein und Eignung einer
Menge von Funktionen fiir spezifizierte Aufgaben

23

Richtigkeit: Liefern der richtigen oder vereinbarten Er-
gebnisse oder Wirkungen

Interoperabilitit: Eignung, mit vorgegebenen Systemen
zusammenzuwirken

Ordnungsmifligkeit: Erfiillung anwendungsspezifischer
Normen, Vereinbarungen, gesetzlicher Vorschriften oder
dhnlicher Bestimmungen

Sicherheit: Eignung, unberechtigten Zugriff, sowohl ver-
sehentlich als auch vorsétzlich, auf Programme und Daten
zu verhindern

Zuverliassigkeit: Fihigkeit der
Software, ihr Leistungsniveau
unter festgelegten Bedingungen
iiber einen festgelegten Zeitraum
zu bewahren

Reife: Hiufigkeit von Versagen durch Fehlzustinde in der
Software

Fehlertoleranz: Eignung, ein spezifisches Leistungsni-
veau bei Software-Fehlern oder Nicht-Einhaltung ihrer
spezifischen Schnittstellen zu bewahren

Wiederherstellbarkeit: Moglichkeit, bei einem Versa-
gen das Leistungsniveau wiederherzustellen und die di-
rekt betroffenen Daten wiederzugewinnen, unter Beriick-
sichtigung der dafiir bendtigten Zeit und des bendtigten
Aufwands

Benutzbarkeit: Aufwand, der
zur Benutzung erforderlich ist

Versténdlichkeit: Aufwand fiir den Benutzer, das Kon-
zept und die Anwendung zu verstehen

Erlernbarkeit: Aufwand fiir den Benutzer, die Anwen-
dung zu erlernen

Bedienbarkeit: Aufwand fiir den Benutzer bei der Be-
dienung und Ablaufsteuerung

Effizienz: Verhiltnis zwischen
dem Leistungsniveau der Soft-
ware und dem Umfang der einge-
setzten Betriebsmittel unter fest-
gelegten Betriebsbedingungen

Zeitverhalten: Antwort- und Verarbeitungszeiten und
Durchsatz bei der Funktionsausfithrung

Verbrauchsverhalten: Aufwand an Betriebsmitteln bei
der Funktionserfiillung

Anderbarkeit: Aufwand, der
zur Durchfithrung vorgegebener
Anderungen notwendig ist

Analysierbarkeit: Notwendiger Aufwand, um Mingel
oder Ursachen von Versagen zu diagnostizieren oder um
anderungsbediirftige Teile zu bestimmen

Modifizierbarkeit: Notwendiger Aufwand zur Ausfiih-
rung von Verbesserungen, zur Fehlerbeseitigung oder zur
Anpassung an Umgebungsidnderungen

Stabilitit: Risiko unerwarteter Wirkungen von Anderun-
gen

Priifbarkeit: Aufwand zur Priifung der geédnderten Soft-
ware

Ubertragbarkeit: Eignung der
Software, von einer Umgebung in
eine andere iibertragen zu wer-
den

Anpassbarkeit: Moglichkeit, die Software an verschiede-
ne festgelegte Umgebungen anzupassen, wenn nur Schritte
unternommen oder Mittel eingesetzt werden, die fiir die-
sen Zweck fiir die Software vorgesehen sind

Installierbarkeit: Notwendiger Aufwand zur Installation
der Software in einer festgelegten Umgebung

Konformitét: Merkmale, die bewirken, dass die Software
Normen oder Vereinbarungen zur Ubertragbarkeit erfiillt

Austauschbarkeit: Mdoglichkeit und Aufwand die Soft-
ware anstelle einer spezifizierten anderen Software in der
Umgebung jener Software zu verwenden

Tabelle 2.1: Qualitidtsmerkmale und Qualitéts-Teilmerkmale der ISO/IEC 9126
(DIN 66272) — Bewertung von Softwareprodukten (DIN, 1994).

24

KAPITEL 2. GRUNDLAGEN

Kapitel 3

Stand der Technik

Dieses Kapitel gibt einen Uberblick iiber den Stand der Technik im Bereich der ziel
integrierten Modellierung und iiber Arbeiten, die im Zusammenhang mit der
Erstellung der Software-Architektur relevant sind.

Der erste Abschnitt beschéftigt sich mit Software-Systemen zur integrierten Uber-
Modellierung. Um den Rahmen der relevanten Systeme abzugrenzen, werden Plck
zunéchst verschiedene Definitionen des Begriffs ‘integriertes Modell” gegeniiber-
gestellt. Tm Anschluss wird ein kurzer Uberblick iiber existierende Software-
Systeme zum ‘integrierten simulationsbasierten Assessment’ gegeben und es
werden einige Frameworks und Entwicklungsumgebungen fiir derartige Syste-
me vorgestellt. Da die Wiederbenutzbarkeit und Interoperabilitdt im Zusam-
menhang mit integrierten Assessments eine wichtige Rolle spielt, werden in
Abschnitt 3.2 (Seite 41) einige Standards vorgestellt, die bei der Entwicklung
der Software-Architektur von Interesse sind.

3.1 Integrierte Modelle

3.1.1 Definitionen

In der Literatur sind — analog zur Definition des integrierten Assessments — Definiti-
verschiedenen Definitionen und Auffassungen des Begriffs ‘integriertes (Assess- ™"
ment-) Modell” (IAM)? zu finden. Alcamo (2002) charakterisiert integrierte
Modelle wie folgt:

Although there is no widely accepted definition of integrated mo-
dels, most researchers would agree that they: (i) include information

IDie Begriffe ‘integriertes Modell’ (engl. integrated model) und ‘integriertes Assessment-
Modell’ (engl. ‘integrated assessment model’) werden in dieser Arbeit synonym verwendet.

25

26 KAPITEL 3. STAND DER TECHNIK

from at least two disparate disciplines, (ii) represent this informa-
tion in the form of discrete programming modules or submodels,
and (iii) explicitly or implicitly link scientific findings with policy
analysis.

Diese Definition bezieht sowohl das Hauptmerkmal des integrierten Assess-
ments — den Beitrag mehrerer Disziplinen — mit ein als auch den Hinweis auf
die Verwendung von Simulationsmodellen sowie die Politikrelevanz. Die Beant-
wortung politischer Fragestellungen spielt auch bei der Definition von van der
Sluijs (1996) eine zentrale Rolle?:

In this paper we define an integrated assessment model as a ma-
thematical representation of a coupled natural system and a socio-
economic system, modeling one or more cause-effect chains inclu-
ding feedback loops, and explicitly designed for the purpose of ad-
dressing policy questions, mostly by means of scenario analysis.

Die charakteristische Wichtigkeit der Integration verschiedener Fachdisziplinen
wird in dieser Definition, laut van der Sluijs (1996), iiber die Kopplung des
natiirlichen und sozio-6konomischen Systems zum Ausdruck gebracht. Im Rah-
men des IPCC wird die folgende Definition vorgeschlagen (Weyant u. a., 1996):

Integrated Assessment Models (IAMs) use a computer program to
link an array of component models based on mathematical repre-
sentations of information from the various contributing disciplines.

Wiéhrend van der Sluijs (1996) von einer mathematischen Représentation des
Systems Erde und damit vom konzeptionellen Modell (siche Abschnitt 2.2,
Seite 14) spricht, bezieht sich die Definition von Weyant u.a. (1996) (ebenso
wie die von Alcamo, 2002) bereits auf die Umsetzung als Computer-Programm,
also auf das Simulationsmodell. Dariiber hinaus heifit es: ein TAM nutzt ein
Computer-Programm, was impliziert, dass IAMs aus mehr bestehen, als aus
den einzelnen Teilmodellen. Aus der Sicht der Software-Entwicklung ist diese
Unterscheidung durchaus wichtig, da es hiernach Komponenten innerhalb eines
TAM geben kénnte, die unabhéngig von einem konkreten System entworfen und
wieder verwendet werden kénnen. Diese Interpretation spiegelt sich auch in der
Definition von Rotmans (1998) wider:

Integrated Assessment models are computer simulation (including
optimisation) frameworks that try to describe quantitatively as
much as possible of the cause-effect relationship of a specific issue,
and of the interlinkages and interactions among different issues.

2Uber die Politikrelevanz grenzt van der Sluijs (1996) auch die integrierten Assessment-
Modelle von den so genannten ‘Earth-System Models’ ab, die nach seiner Auffassung primér
fiir wissenschaftliche Zwecke erstellt werden.

3.1. INTEGRIERTE MODELLE 27

Ein TAM wird von Rotmans also als ganzes ‘Framework’ zur Quantifizierung
von Ursache-Wirkungs-Ketten gesehen und beinhaltet demnach mehr als die
reinen Simulationsmodelle. Der zusammenfiigende Charakter eines Frameworks
spielt auch bei der Definition von Toth (1995) eine Rolle:

In this paper, and throughout the collection that follows, the terms
‘integrated model’ and ‘integrated assessment’ refer to a set of for-
mal models or studies without modeling support that are combined
into a consistent framework to address one or more issues in the
problem of global climate change.

Wie zu sehen ist, gibt es unterschiedliche Blickwinkel auf ein integriertes
Modell: es kann — wie bei van der Sluijs (1996) und Toth (1995) — vom konzep-
tionellen Standpunkt aus gesehen werden oder — wie bei den anderen Beispielen
— als Simulationsmodell. Bei der Betrachtung des Modells kann dariiber hinaus
noch unterschieden werden zwischen dem ‘reinen’ Modell oder einer Umgebung
(Framework), in die das Modell eingebettet ist.

Im Rahmen dieser Arbeit wird ein integriertes Modell als die softwaretech-
nische Realisierung des konzeptionellen Modells, also als Software-System, an-
gesehen. Wie in den folgenden Unterabschnitten zu sehen sein wird, bestehen
die Software-Systeme integrierter Modelle i.d. R. aus mehr als nur den gekop-
pelten Simulationsmodellen. Um dies zu verdeutlichen und um den integrieren-
den Charakter des Gesamtsystems hervorzuheben, wird fortan statt von ‘in-
tegrierten Modellen’ von ‘Systemen zum simulationsbasierten integrierten As-
sessment’ (SISAs) gesprochen. In Anlehnung an den Begriff des ’integrierten
Assessments’ (s. S. 13) soll der Begriff SISA wie folgt verstanden werden:

Ein System zum integrierten simulationsbasierten Assessment (SI-
SA) ist ein Software-System, das von unterschiedlichen Fachdiszipli-
nen stammende Daten und Simulationsmodelle zum ‘System Erde’
in einem konsistenten Rahmen kombiniert und neue Daten iiber den
Zustand und méogliche langfristige Anderungen des ‘Systems Erde’
— vornehmlich zur Unterstiitzung politischer Entscheidungstriager —
berechnet und bereitstellt.

Neben der Bezeichnung ‘SISA’ wird der Begriff des ‘integrierten Modells’ im
weiteren Verlauf der Arbeit dann benutzt, wenn die gekoppelten Simulations-
modelle im Mittelpunkt stehen.

3Rotmans fithrt als Beispiele fiir IAM die ablauffihigen Systeme RAINS (Alcamo u. a.,
1990) und IMAGE (Alcamo, 1994) an. Aus diesem Grund kann davon ausgegangen werden,
dass er die Bezeichnung ‘Framework’ fiir ein weit gefasstes System verwendet und nicht — wie
aus der Sicht der Informatik iiblich — fiir ein auszubauendes Rahmenwerk zur Entwicklung
lauffihiger Systeme (vgl. ‘Framework’-Definition im Glossar, Seite 229).

Blick-
winkel

SISA

Defini-
tion

Archi-
tektur

offener
Quell-

code

Anforde-
rungs-
iiber-
sicht

28 KAPITEL 3. STAND DER TECHNIK

Zur Entwicklung einer Software-Architektur fiir ein SISA miissen iiber eine
System-Definition u. a. die wichtigsten Ziele und Funktionen sowie die System-
Umgebung definiert werden. Ausgangspunkt fiir die System-Definition und die
Architektur-Entwicklung sind Veroffentlichungen integrierter Modelle, die Auf-
schluss dariiber geben sollen, welche generellen Funktionen, Ziele und unter-
stiitzenden Programme zu beriicksichtigen sind. Die folgenden Unterabschnitte
geben einen Uberblick iiber diese Anforderungen und geben gleichzeitig Infor-
mationen zur Strukturierung aktueller Systeme.

3.1.2 Systeme
Uberblick

Kickert u.a. (1999) liefern einen Statusbericht iiber Simulationsmodelle zur
Evaluierung moglicher 6kologischer, umweltbezogener und sozialer Konsequen-
zen des globalen Wandels.* Der Bericht beschreibt eine sehr umfangreiche Aus-
wahl unterschiedlichster (integrierter) Modelle. Die Beschreibungen der ein-
zelnen Modelle beschriinken sich in den meisten Fillen auf Angaben zu den
konzeptionellen Modellen in Form von Flussdiagrammen. Erklidrungen zu soft-
waretechnischen Aspekten finden sich i.d.R. nicht — und wenn, dann unter
Verwendung uneinheitlicher Darstellungsformen und unterschiedlichster Ab-
straktionsniveaus: angefangen von der sehr groben Einteilung eines Modells
in drei Komponenten (Model, Control, Show) iiber Objekte eines objektorien-
tiert programmierten Systems bis hin zu Dateistrukturen. Angaben iiber den
grundsdtzlichen Aufbau gesamter Software-Systeme sind hier nicht zu finden.
Die Autoren sprechen in diesem Bericht allerdings die Wichtigkeit der Offen-
heit und freien Verfiigbarkeit des Quellcodes von Simulationsmodellen an, da
Ergebnisse nur iiber diesen Weg von Dritten reproduzierbar seien. Als weiteren
wichtigen Punkt beziiglich der Reproduzierbarkeit von Ergebnissen nennen sie
die Versionierung von Programmen.

Peirce (1998) liefert in seinem Bericht iiber ‘Computer-basierte Modelle im
integrierten Umwelt-Assessment’ Kurzbeschreibungen von insgesamt 27 Soft-
ware-Systemen, die im Rahmen des integrierten Assessments benutzt werden.
Diese Liste enthélt unterschiedliche Systeme, angefangen von Simulationsmo-
dellen iiber Entwicklungsumgebungen bis hin zu GIS. Auf die einzelnen Systeme
soll an dieser Stelle nicht eingegangen werden. Die Analyse der aufgefiihrten
Systeme zeigt allerdings das Funktionsspektrum, das im Rahmen des integrier-
ten Assessments benttigt wird und das an dieser Stelle nur stichpunkthaft dar-
gestellt werden soll: Visualisierung von Ergebnissen, Datenbank-Schnittstellen,
GIS-Funktionen, Datenanalyse, Optimierung, Graphische Benutzungsschnitt-
stelle (GUI), Unsicherheitsmodellierung (Latin Hypercube, Monte-Carlo Si-

4Der Bericht legt seinen Schwerpunkt allerdings auf die 6kologischen Aspekte des globalen
Wandel.

3.1. INTEGRIERTE MODELLE 29

mulation), Statistische Berechnungen, Internet-Zugriff von Informationen, Un-
terstiitzung bei der Verfassung von Berichten, Datenbasis, Wissensbasis mit
Checklisten, Regeln, Hintergrundinformationen fiir den Analysten, Inferenz-
Maschine®, Summary-Report-Generator, Animation, GUI-Design Tool, Inte-
griertes Web-Publishing, Zeitserien-Analyse, Hilfesystem.

Nicht jedes System zur Unterstiitzung des integrierten Assessments muss all
diese Funktionalititen bereitstellen. Die Auflistung zeigt allerdings das Leis-
tungsspektrum der verwendeten Systeme.

Aufschlussreiche Informationen iiber einen grundsétzlichen Aufbau von SI-
SAs, also der Software-Architektur solcher Systeme, finden sich bei Peirce
(1998) ebenso wenig wie bei Kickert u. a. (1999). Dieses Phénomen kann nicht
alleine darauf zuriickzufiihren sein, dass die zugrunde liegenden Software-Kon-
zepte im Rahmen derartiger Berichte nicht von Interesse wéaren — die Beschrei-
bungen von Programmobjekten und Dateistrukturen zielen schliellich auf die
softwaretechnische Umsetzung. Die Ursache fiir fehlende Beschreibungen von
Software-Architekturen in solchen Berichten ist vielmehr darin zu suchen, dass
die Architektur-Konzepte — falls {iberhaupt vorhanden — nicht bzw. nicht fiir
die Offentlichkeit dokumentiert sind. Selbst in ausfiihrlichen Beschreibungen
wie den Biichern zu den integrierten Modellen IMAGE2 (Alcamo, 1994) und
AIM (Kainuma u. a., 2003) finden sich keine ausdriicklichen Beschreibungen der
Architektur-Konzepte. Die angefiihrte Literatur stiitzt die Aussagen von Jae-
ger u. a. (2002), dass integrierte Modelle i. d. R. nur unzureichend dokumentiert
und modularisiert sind.

Wie aufschlussreich eine Beschreibung der Teile des Gesamtsystems sein
kann, wird an der ‘Architektur’-Beschreibung des Systems ‘GLOBESIGH’ ge-
zeigt — eine der wenigen Beschreibungen dieser Art.

Beispiel GLOBESIGHT

Mesarovic u.a. (1996) stellen ein ‘integrated assessment support system’ na-
mens GLOBESIGHT (global insight) vor. Das System besteht aus vier Kom-
ponenten (Abbildung 3.1): der information base, der model (algorithms) base,
der functionalities base (tools base) und der issues base (s. Abb. 3.1, Seite 30).

Die information base enthélt Daten und Informationen, die wéhrend der
Untersuchung einer bestimmten Fragestellung fiir den Nutzer hilfreich sind.
Hierzu konnen z. B. textuelle Hintergrundinformationen iiber die Geographie
oder sozio-6konomische Daten (Zeitreihen der Bevélkerungszahlen, des Brutto-
sozialprodukts, des Ressourcen-Verbrauchs etc.) eines Landes oder einer Region
gezahlt werden.

5In wissensbasierten Systemen benutzt, um aus Fakten und Regeln neues Wissen abzu-
leiten.

Archi-
tekturen

infor-
mation
base

model
base

tools
base

issue
base

30 KAPITEL 3. STAND DER TECHNIK

Die model base enthiilt Modelle einzelner Sub-Systeme (vergleichbar mit den
Sphéren aus Kapitel 2.1.1): Simulationsmodelle zur Bevélkerung/Demographie,
zur Okonomie und zum Ressourcen-Verbrauch sind hier beispielsweise vorhan-
den. Uber Szenarien kénnen mit Hilfe der in der Modell-Basis enthaltenen Si-
mulationsmodelle mogliche zukiinftige Entwicklungen und Konsequenzen poli-
tischer Entscheidungen analysiert werden. Je nach Fragestellung und betrachte-
ter Region bzw. betrachteten Regionen kénnen fiir ein Sub-System Modelle mit
unterschiedlichem Abstraktionsniveau ausgewiihlt werden. So stehen z. B. drei
unterschiedliche Modelle fiir den Bereich der Bevélkerungsentwicklung bereit
(angefangen von einer einfachen Wachstumsrate iiber die Gesamtbevélkerung
bis hin zu einem Kohorten-Modell, das Geburten- und Sterblichkeitsraten be-
riicksichtigt). Dartiber hinaus kénnen Simulationsergebnisse fiir die nationale,
regionale oder globale Ebene berechnet werden.

Die functionality (tools) base stellt Funktionen zur Dateneingabe, Daten-
ausgabe und zur Datenverarbeitung zur Verfiigung. Sie unterstiitzen die Mo-
dellverwaltung, den Datenbank-Import und -Export und die Anzeige von Daten
iiber Diagramme und Karten. Dariiber hinaus bietet die functionality (tools)
base Routinen zur Interpolation von Eingabedaten sowie zur Erreichung vor-
gegebener Ziele (z. B. Emissionsziele).

Die issue base ist eine Ansammlung aller Analysen und enthélt sowohl die
Ergebnisse als auch die zugrunde liegenden Szenario-Annahmen. Diese Informa-
tionssammlung dient als Referenz und Ausgangspunkt fiir zukiinftige Analysen.

GLOBESIGHT Architecture

Models
Base

Information
Base

ANALYSIS
SUPPORT
SYSTEM

Abbildung 3.1: Architektur des Systems GLOBESIGHT. Erklirungen finden
sich im Text. Quelle der Abbildung: http://genie.cwru.edu/globesight.
htm.

Functionalities
Base

Issues
Base

http://genie.cwru.edu/globesight.htm
http://genie.cwru.edu/globesight.htm

3.1. INTEGRIERTE MODELLE 31

GLOBESIGHT verfolgt einen interaktiven Ansatz und ermoglicht es, z. B.
im Rahmen von Workshops, Planspiele durchzufiihren: Szenarien werden da-
bei nicht zu Beginn der Simulation, sondern interaktiv bestimmt — nach einer
kurzen Simulation erfolgt eine Riickfrage bei den anwesenden Experten. Diese
Vorgehensweise erlaubt es, Entscheidungstriger mit in den Erzeugungsprozess
von Simulationsergebnissen einzubeziehen.

Aufgrund fehlender Gesamtbeschreibungen integrierter Modelle (bzw. SI-
SAs) wird im Folgenden auf Veroffentlichungen iiber die Struktur von Frame-
works und Entwicklungsumgebungen zuriickgegriffen.

3.1.3 Frameworks
Object Modeling System (OMS)

Das Object Modeling System (OMS) (Busch u.a., 2002) ist ein Framework
zur interaktiven Entwicklung und Anwendung dynamischer Simulationsmodel-
le. Das System ist eine Gemeinschaftsentwicklung vom U.S. Geological Sur-
vey (USGS), dem U.S. Department of Agriculture (USDA) und der Friedrich-
Schiller-Universitét in Jena.

OMS ist modular aufgebaut (s. Abb. 3.2, Seite 32): die Funktionen zur Ab-
bildung des konzeptionellen Modells sind getrennt von den so genannten ‘Ba-
sisfunktionen’. Uber die Basisfunktionen werden z. B. die Dateneingabe und -
ausgabe, die Kommunikation zwischen Modellteilen und die Anwendung einzel-
ner Modellkomponenten implementiert. OMS bietet den Entwicklern den Vor-
teil einer einheitlichen Programmierschnittstelle (engl. Application Program-
ming Interface, API). Modellnutzern wird iiber OMS eine einheitliche Benut-
zungsschnittstelle (engl. User Interface, UI) bereitgestellt.

OMS besteht aus Systemkomponenten und Modellkomponenten. Zu den Sys-
temkomponenten gehoren: der Systemkern, der Modellersteller, der Skript-In-
terpreter, der GIS-Client, das Anwendungs-Framework, das Update-Center und
Komponenten fiir die Benutzungsschnittstelle.

Der Systemkern bietet Basisfunktionalititen fiir andere Komponenten und
ist die Laufzeit-Umgebung fiir die Entwicklung und Ausfithrung von Modellen
und Komponenten. Der Systemkern stellt auch einfache und komplexe Daten-
objekte bereit. Diese Datenobjekte konnen neben dem Wert zusétzliche Infor-
mationen halten: einen Namen fiir das Objekt, die Einheit des Wertes sowie
den erlauben Zahlenbereich. Alle OMS-Datentypen besitzen Funktionen zum
Lesen und Schreiben der Werte. Uber ein integriertes Funktionspaket zur Ein-
heitenverarbeitung® ist es moglich, die Kompatibilitit von Variablen innerhalb
von Formeln zu priifen und Werte von einer Einheit in eine andere, kompa-
tible umzurechnen. Zur Integration neuer Modellkomponenten miissen deren

SIntegriert wurde das UCAR.UNITS Package der University Corporation for Atmospheric
Research. Internet-Startseite: http://www.ucar.edu

inter-
aktiver
Ansatz

System-
kern

http://www.ucar.edu

Modell-
bilder

Skript-
Interpre-
ter

GIS-
Client

Net-
Beans

32 KAPITEL 3. STAND DER TECHNIK

Schnittstellen bestimmten Konventionen entsprechen. Die Entwicklung neuer
Modellkomponenten wird durch vorgefertigte Oberklassen erleichtert, die eben-
falls Teil des Systemkerns sind.

roms |

e
|j‘ ROBMS { OMS Cormponert mapning ‘

S

j mEMS Werry Wisualization
—| Data Library Library
Parameter
Library componert

;E Resource Library,—/ mapping
External Cormporents ? .
located at different Vods!
institutions v ¥ Code

. " G |
Intemet Yisual Model Builder —ﬁ Sneren %

Y re
2;' = Model Application Framework

IModel Builder

MetBeans Framework

Abbildung 3.2: Architektur des Object Modeling System (OMS). Quelle: Busch
u.a. (2002).

Aufgabe des Modellbilders ist es, die einzelnen OMS-Komponenten zu einem
komplexen Modell zusammenzufiigen. Uber eine GUI-Komponente kénnen z. B.
die Modellausgaben einer OMS-Komponente mit den Eingaben einer anderen
Komponente verbunden und verschiedene Modellkonfigurationen erstellt und
verwaltet werden.

Die Modellentwicklung und -anwendung wird unterstiitzt durch einen inte-
grierten Skript-Interpreter. Uber diesen Interpreter kénnen z. B. Modelle oder
Modellkomponenten gesteuert werden. Eine Interpreter-Konsole zur Ausfiih-
rung von Befehlen und Anderung von Variablenwerten withrend der Simulation
ist ebenfalls integriert. Als Skript-Sprache wurde Python gewéhlt.

Réumliche Daten kénnen mit dem GIS-Client bearbeitet und visualisiert
werden. Neben einer Benutzungsschnittstelle stellt der GIS-Client eine Pro-
grammierschnittstelle bereit, die iiber den Python-Interpreter ansprechbar ist.

Als Anwendungsplattform wird das Open-Source-Produkt” NetBeans be-
nutzt. NetBeans® ist eine modulare, auf Standards basierte integrierte Entwick-

"Die Lizenzen von Open-Source-Produkten gewihren grundlegende Rechte. So diirfen
Open-Source-Programme beispielsweise weitergegeben werden und Quelltexte diirfen ana-
lysiert und auch in gesinderter Form weitergegeben werden. Einen Uberblick iiber die wich-
tigsten Open-Source-Lizenzen geben Roehrl und Schmiedl (2002).

8Startseite im Internet: http://www.netbeans.org

http://www.netbeans.org

3.1. INTEGRIERTE MODELLE 33

lungsumgebung. Das Framework ist in der Programmiersprache JAVA imple-
mentiert und unterstiitzt zurzeit auch nur die Entwicklung mit dieser Sprache.

Uber das so genannte Update Center kiénnen existierende Komponenten
aktualisiert und neue Komponenten in das OMS integriert werden. Die OMS-
Komponenten miissen fiir diesen Zweck als NetBeans-Module gekapselt sein.

OMS stellt Komponenten fiir die Benutzungsschnittstelle bereit, die z. B.
Daten-Visualisierungsmoglichkeiten in Form von Diagrammen bereitstellen.
Die Integration weiterer Komponenten ist in Form von NetBeans-Modulen
moglich.

Die OMS-Modellkomponenten sind die Bausteine aller Modelle, die mit dem
Framework erstellt werden. Der Prototyp einer solchen Komponente ist Teil von
OMS — er gibt die Methoden vor, die implementiert werden miissen: register,
init und run. Die register- und init-Methoden enthalten Anweisungen, die zur
Initialisierung benotigt werden. Die run-Methode enthélt die Anweisungen der
eigentlichen Funktionalitit des Moduls, die bei jedem Aufruf des Moduls aus-
gefiihrt werden.

Die Modellkomponenten sind als JAVA-Klassen implementiert. Die Imple-
mentierung der oben genannten Funktionen kann aber nicht nur in JAVA er-
folgen; der Code anderer Sprachen, wie beispielsweise FORTRAN oder C++,
kann automatisch iiber das JAVA Native Interface (JNI) in die Module inte-
griert werden.

PRISM

PRISM (programme for integrated earth system modelling) ist ein Infrastruk-
turprojekt fiir die Klima- und Erdsystem-Forschung in Europa.® Ziel des von
der Européischen Union geférderten Programms ist die Errichtung eines ver-
teilten européischen Netzwerks fiir die Erdsystem-Modellierung. Um dieses Ziel
zu erreichen, will PRISM

e cine européische Dienstleistungs- und Verwaltungsstruktur zur Entwick-
lung, Koordination und Durchfithrung langfristiger, europaweiter und
multi-institutionaler Klima- und Erdsystem-Simulationen aufbauen

e cin europdisches System portabler, leistungsfihiger und benutzungs-
freundlicher Modelle aus dem Erdsystem- und Klimabereich und damit
zusammenhédngender Diagnose- und Visualisierungs-Software unter stan-
dardisierten Codierungskonventionen entwickeln, die fiir alle européischen
Wissenschaftler zugénglich sind

Ein erwartetes Produkt der Aktivitéten ist eine flexible, effiziente, portable
und benutzungsfreundliche Infrastruktur fiir die Modellierung des Erdsystems
und die Klimavorhersage.

9Startseite im Internet: http://www.prism.enes.org

Update
Center

Modell-
kompo-
nenten

Ziel

http://www.prism.enes.org

Schwer-
punkte

Modell-
koppler

34 KAPITEL 3. STAND DER TECHNIK

PRISM konzentriert sich auf die Modellierung des Erdsystems und zielt auf
den vermehrten Einsatz von Super-Computern fiir die Simulationsberechnun-
gen. Die Komponenten haben die folgenden Schwerpunkte: Atmosphére, atmo-
sphérische Chemie, Landnutzung, Ozean, Meeres-Eis, marine Bio-/Geochemie,
regionale Klimamodelle. Abbildung 3.3 zeigt die schematische Modellstruk-
tur von PRISM. Die explizite Beriicksichtung soziotkonomischer Faktoren und
Auswirkungen durch eine separate Komponente ist hier nicht zu finden.

Atmospheric | _ Atmospheric
GCM D " Chemistry
Land-Surface
Processes

|
Sea-lce Model
Oceanic)
GCM _ Manne_
Biogeochemistry

Abbildung 3.3: Schematische Modellstruktur von PRISM.

Die Modellteile werden iiber eine standardisierte Schnittstelle und einen Mo-
dellkoppler interagieren. Als Koppler wird OASIS (Ocean Atmosphere Sea Ice
Soil) verwendet, der durch das CERFACS!? bereitgestellt wird. OASIS wurde
1991 vom CERFACS-Team Klimamodellierung und globaler Wandel entwickelt
um existierende global circulation models (GCMs) zu koppeln. OASIS besitzt
vier Hauptaufgaben:

1. Modell-Synchronisation
2. Modell-Kopplung
3. Datenaustausch'!

10Buropean Centre for Research and Advanced Training in Scientify Computation.

117ur Synchronisation und zum Datenaustausch werden vier verschiedene Kommunikati-
onswege bereitgestellt: (1) Pipes (CRAY pipes) zur Synchronisation der Modelle und des
Datenaustauschs iiber Binédrdateien, (2) die so genannte CLIM-Technik zur Synchronisati-
on und zum Datenaustausch unter Nutzung der Message-Passing-Standards PVM (Parallel
Virtual Machine) und MPI (Messaga Pasing Interface) und (3/4) SIPC (basierend auf Unix
V Inter Process Communication) bzw. GMEM (basierend auf NEC global memory concept),

3.1. INTEGRIERTE MODELLE 35

4. Interpolation

OASIS ist stark auf die Moglichkeiten der Parallelisierung und die Archi-
tektur von Super-Computern bzw. Skalar-Computern ausgerichtet und nutzt
zur Effizienzsteigerung alle verfiigbaren Betriebssystem-Mittel aus (z.B. von
den Modellen gemeinsam genutzte Speicherbereiche zum Datenaustausch). Die
Kopplung findet also auf einem relativ niedrigen Abstraktionsniveau statt.

Integrating Modelling Architecture (IMA)

Die Integrating Modelling Architecture (IMA) (Villa, 2001) verfolgt die Inte-
gration unterschiedlicher Modellierungsparadigmen'? und besteht aus einem
deklarativen Framework und einem Paket von Software-Werkzeugen (Integra-
ted Modelling Toolkit, IMT).

Das grundlegende Element innerhalb des IMT ist das ‘Modul’. Ein solches
Modul (Objekt einer zuvor spezifizierten Klasse) greift bei seiner Ausfithrung
(z. B. der Berechnung von Gleichungen) auf einen gemeinsamen Datenraum zu,
wobei der Datenraum wiederum als Modul (Datenmodul) spezifiziert ist. Um
die Verbindung von Modulen zu vereinfachen, erhilt jedes Modul eine inter-
ne Beschreibung (‘DNA’) seiner eigenen Struktur. Fiir die Beschreibung der
Struktur wird die Extensible Markup Language (XML) genutzt. Das IMT sieht
u.a. Module vor fiir die Simulationsunterstiitzung, fiir Optimierungsrechnun-
gen, die Integration von GIS'® und Analysewerkzeugen, den Import und Export
von Daten sowie die Visualisierung.

Die Integration von Teilmodellen, die sich nicht direkt in das System ein-
betten lassen, soll iiber Funktionen realisiert werden, die Teilmodelle als ex-
terne Programm starten, deren Zeitschritt fortschreiben und Variablen des
Teilmodells abfragen. Zu diesem Zweck wird die Nutzung weiterer Software-
Werkzeuge, wie dem ‘Simulation Network Interface’ (s. u.), vorgeschlagen.

Simulation Network Interface (SNI)

Das Simulation Network Interface (SNI) (Villa und Costanza, 2000) ist ein
Software-Paket zur netzwerkbasierten Integration von Simulationsmodellen.
Beim Design von SNI wurde Wert darauf gelegt, dass fiir die Modellkopp-
lung nur ein geringer Implementierungsaufwand seitens der zu integrierenden
Teilmodelle notwendig ist — im einfachsten Fall der Modellkopplung ruft ein
koordinierendes Programm ein als ausfithrbares Programm vorliegendes Teil-

die die Synchronisation und den Datenaustausch iiber Semaphoren und gemeinsam genutzte
Speicherbereiche erreichen.
12Genannt werden bei Villa (2001) z.B.: prozessbasierte vs. agentenbasierte, nicht-
raumliche vs. rdumliche explizite, deterministische vs. stochastische Modellierung.
13Geplant ist die Integration der GIS ArcInfo und GRASS.

Technik

Module

Integra-
tion

Kom-
mando-
zeilen-
Ansatz

Master
vs. Slave

Client
vs.
Server

Beispiel-
Dienste

Frame-
work

Daten-
aus-
tausch

Vertei-
lung

36 KAPITEL 3. STAND DER TECHNIK

modell iiber die Kommandozeile auf und wertet dessen Bildschirmausgaben als
Simulationsergebnis aus (Kommandozeilen-Ansatz).

SNI unterscheidet zwischen ‘master’-Anwendungen, die fiir die Planung und
Koordination einer Simulation zustidndig sind, und ‘slave’-Simulationsprogram-
men, die durch entfernte Aufrufe iiber die Kommandozeilen-Schnittstelle kon-
trolliert werden. Wéhrend der ‘master’ die Funktionsbibliotheken von SNI be-
nutzt, miissen auf der ‘slave’-Seite keinerlei Anpassungen vorgenommen werden
— abgesehen von der Erweiterung um eine Kommandozeilen-Schnittstelle, falls
eine solche nicht vorhanden ist.

Implementiert wird SNI durch zwei Software-Komponenten: dem SNI-Ser-
ver und dem SNI-Client. Auf allen Hosts, auf denen ein Simulationsmodell
laufen soll, muss der SNI-Server gestartet werden. Das ‘master’-Programm (die
koordinierende Instanz) spricht die einzelnen Simulationsmodelle dann {iber
ein eigens definiertes Protokoll und mit Hilfe des SNI-Client an.'* Dem SNI-
Server muss hierbei lediglich mitgeteilt werden, wie er ein Simulationsmodell
ausfiithren, initialisieren und einen Simulationslauf starten kann.

Die Simulationsmodelle kénnen tiber die Verbindung SNI-Server/SNI-Client
auch andere Server ansprechen und mit ihnen Daten austauschen. Auf diese
Weise konnen verschiedene Dienste angeboten werden — als Beispiele werden ein
Daten-Server angefiihrt, ein Server, der GIS-Funktionen zur Verfiigung stellt
sowie ein Dienst zur Kalibrierung von Simulationsmodellen. Bei der automa-
tischen Modell-Kalibrierung werden die Parameterséitze unter Angabe eines
eindeutigen Bezeichners gespeichert, so dass fiir spitere Simulationen darauf
zuriickgegriffen werden kann.

DANUBIA

DANUBIA (Hennicker u. a., 2003) ist ein integriertes Simulationssystem, das
im Rahmen des Projektes GLOWA-Danube'® entwickelt wird.

Das dem System zugrunde liegende objektorientierte Framework basiert auf
Internet-Technologien und ist in JAVA realisiert. Im Zentrum eines Systems
steht der Time Controller, der fiir die Koordination von Teilmodellen, die auch
unterschiedliche Zeitschritte verwenden kénnen, verantwortlich ist.

Die Teilmodelle kénnen untereinander iiber definierte Schnittstellen Daten
austauschen. Durch die Implementierung eines Zustands-Ubergangs-Modells
wird dabei sichergestellt, dass nur auf giiltige Werte anderer Teilmodelle zuge-
griffen werden kann.'¢

Die Kommunikation zwischen Teilmodellen wird tiber JAVA Remote Method
Invocation (RMI) abgewickelt. Auf diese Weise konnen sowohl die Teilmodelle

14Zur Verbindung von Server und Client wird das Internet-Protokoll (TCP/IP) genutzt.

15Startseite im Internet: http://wuw.glowa-danube.de

16<Giiltig’ heiBt, dass sich die abgefragten Daten nicht in einem undefinierten, gerade in
der Berechnung begriffenen Zustand befinden.

http://www.glowa-danube.de

3.1. INTEGRIERTE MODELLE 37

als auch der Time Controller auf unterschiedlichen Hosts (Rechnern) laufen.
Durch die Nutzung von Adaptern (wrappers) werden die technischen Details
der Netzwerk-Kommunikation vor den Teilmodellen versteckt. Abbildung 3.4
zeigt als Beispiel die Architektur eines Systems mit zwei Teilmodellen.

In der néchsten Phase des Projektes sollen weitere Komponenten zur Ent-
scheidungsunterstiitzung zur Verfiigung gestellt werden. Hierzu gehoren Funk-
tionen zur Erstellung, Beurteilung und Verwaltung komplexer Szenarien. Dar-
iiber hinaus ist eine Web-basierte Benutzungsschnittstelle vorgesehen.

1
:\ TCModelClient |— B :
-—-F=-1 init() |
| compute() [T
‘ 1 P
- et | s
Proxy>> (") ol
[— |L_AToB ‘BToA ‘I
A /F |
1 ‘
‘ 1 } BWrapper !
| simulation —] TimeControll "- ________ _:DANUBIA
mulation imeController | | ! Dataecs
‘ ! } AWrapper
1 x 1
1 $ T
1 O <<proxy>>") 1
I‘ATOB ‘ BToA |
A 4/[I
1 i A :
e init(!
T
1

comput
: TCModelClient [.. pute0)

Abbildung 3.4: Systemarchitektur von DANUBIA. Beispiel eines Systems mit
zwei Teilmodellen (A und B) und einem gemeinsamen ‘Time Controller’ zur Ko-
ordinierung der Zeitschritte. Der Time Controller und die beiden Teilmodelle
konnen auf unterschiedlichen Hosts laufen. Die Kommunikation der Teilmodelle
geschieht iiber definierte Schnittstellen (AToB, BToA). Durch die Verwendung
von Adaptern (A/B Wrapper) ist die Netzwerk-Kommunikation fiir die Modelle
transparent. Zur Integration eines Teilmodells muss der Entwickler die Metho-
den init() und compute() realisieren. Wihrend der Initialisierung der Modelle
greifen diese beispielsweise auf die fiir das Gesamtsystem konsistenten Daten
innerhalb der DANUBIA Database zu. Die iiber den TimeController gesteuer-
ten TCModelClients veranlassen die Berechnung neuer Ergebnisse. Quelle der
Abbildung: Hennicker u.a. (2003).

Erweite-
rung

Prinzip

Kompo-
nenten

38 KAPITEL 3. STAND DER TECHNIK

3.1.4 Entwicklungsumgebungen
Modellentwicklungssystem M

Im Rahmen der Entwicklung und Anwendung komplexer integrierter Model-
le in den Bereichen Gesundheitswesen und Klimawandel wurde am staatlichen
Institut fiir Gesundheit und Umwelt der Niederlande (RIVM)'7, mit Unterstiit-
zung der niederléndischen Energy Research Foundation ein Werkzeug mit dem
Namen M entwickelt (de Bruin u.a., 1996).'® M ist eine integrierte Software-
Umgebung zur Entwicklung, Visualisierung und Anwendung von interaktiven,
dynamischen Modellen, die auf algebraischen Gleichungen, Differenzengleichun-
gen oder gewohnlichen Differenzialgleichungen basieren.

Das Prinzip des Systems ist die klare Trennung zwischen dem mathemati-
schen Modell, den Losungsmethoden, den Daten, der Datenverwaltung und der
Benutzungsschnittstelle. Dem Modellentwickler soll dadurch die Moglichkeit
gegeben werden, sich auf die Spezifikation der Gleichungen, der Eingabedaten
und der Modell-Dokumentation zu konzentrieren.

Die M-Umgebung besteht nach de Bruin u. a. (1996) aus neun unabhiingigen
Komponenten (s. auch Abb. 3.5):

e dem M compiler zur Ubersetzung von Gleichungen in ausfithrbare Pro-
gramme bzw. Objektdateien (den so genannten Simulatoren)

o dem visualizer zum Entwurf und zur Nutzung interaktiver Présentationen
(in Abbildung 3.5 als graphical interface bezeichnet)

e dem command line interface zum Simulator als Schnittstelle fiir Testzwe-
cke und zur Ausfithrung vordefinierter Aufgaben, der so genannten batch
jobs

e dem tracer zur Verfolgung von Abhéngigkeiten zwischen Variablen

e dem table editor zur alphanumerischen Bearbeitung mehrdimensionaler
Daten (nicht in Abbildung 3.5 aufgefiihrt)

e dem scenario manager zum Sichern und Vergleichen verschiedener Mo-
dell-Eingaben (scenarios)

e dem documentation system zur HTML-basierten Modelldokumentation

e dem online help system zur Bedienung und zum Verstdndnis des Modells
(HTML browser)

e dem application programmers interface zum direkten Zugriff auf den Si-
mulator (API)

17Rijksinstituut voor Volksgezondheid en Milieu. Startseite im Internet: http://www.rivm.
nl
18Startseite des Projektes im Internet: http://www.m.rivm.nl.

http://www.rivm.nl
http://www.rivm.nl
http://www.m.rivm.nl

3.1. INTEGRIERTE MODELLE 39

Architecture [variabie sracer

] Command-line /Batch

Graphical Interface

HTML
Browser

Text editor

ol Viewer %

Y
Dacumentation |
Fiews
control 4

1 DESTICE . | |
C compiler [

Simulator || data
model-info

i

o APT
executable

Scenarios

data

Abbildung 3.5: Architektur der Modellumgebung M. Erkldrungen finden sich
im Text. Quelle: de Bruin (1996).

Die Visualisierungs-Komponente wird von de Bruin u. a. (1996) als die ent-
scheidende Komponente fiir die Entwicklung eines integrierten Modells angese-
hen und erfiillt daher auch vielfiltige Funktionen: von der dynamischen Visua-
lisierung der modellierten Phénomene mit Diagrammen und Karten und dem
Vergleich der Ergebnisse mehrerer Szenarien iiber direkte Manipulationen von
Modell-Daten innerhalb der graphischen Visualisierungen (unter Nutzung des
Model-View-Controller-Musters'?) bis hin zur strukturierten Darstellung von
Graphen fiir alle Modell-Variablen reichen die Moglichkeiten dieser Komponen-
te.

Zur FErzeugung eines ausfithrbaren Modells muss ein bestimmtes Verfah-
ren eingehalten werden: Die Gleichungen eines Modells sind in einer nicht-pro-
zeduralen mathematischen Sprache (der M-Programmiersprache) zu beschrei-
ben und iiber einen einfachen Text-Editor im ASCII-Format abzuspeichern.
Die so spezifizierten Modelle sind dann mit Hilfe eines Konverters in die Pro-
grammiersprache C zu iibersetzen und anschlieBend mit einem handelsiibli-
chen C-Compiler zu kompilieren. Die resultierenden Objekt-Dateien koénnen
dann entweder direkt in andere Programme eingebunden oder mit einer gra-
phischen bzw. alphanumerischen Benutzungsoberfliche zu einem ausfiihrbaren
Programm verbunden werden. Die Definition der Benutzungsschnittstelle ist

19Beim Model-View-Controller-Muster (MVC-Muster) werden die Funktionen zur Visua-
lisierung von denen zur Manipulation der Daten getrennt; zum MVC-Muster s. Gamma u. a.
(1996) oder Buschmann u. a. (1998).

Visuali-
sierung

Modell-
erstel-
lung

Pipes

Modu-
larisie-
rung

Einsatz

40 KAPITEL 3. STAND DER TECHNIK

durch so genannte ‘view definition files’ zu beschreiben. Die Prozeduren zur
numerischen Integration, Datenverwaltung und Datenspeicherung werden beim
Linken automatisch hinzugefiigt.

Unter UNIX ist es auch moglich, den Simulator und die GUI als einzel-
ne Prozesse zu starten. Die Kommunikation der Prozesse erfolgt dann {iber
den ‘Pipe’-Mechanismus von UNIX.?? Nihere Informationen zu dieser Art der
Simulator-GUI-Verbindung finden sich bei van Wijk (1994).

Um auch umfangreiche Modelle mit M verwalten zu kénnen, erlaubt M
die Aufteilung des Gesamtsystems in Module sowie die Definition von Ma-
kros, die Mehrfachverwendung von Dateien und die Integration von C- und
FORTRAN-Funktionen. Die bereits oben angesprochene Verwaltung der Da-
ten in unterschiedlichen Dateien (zur Beschreibung der Modellgleichungen, der
Nutzungsschnittstelle und der unterschiedlichen Prozeduren) erleichtert eben-
falls die Handhabung eines in M entwickelten Modells.

Seit der Geburtsstunde des Systems im Jahr 1992 wurde M zur Realisie-
rung mehrerer Projekte eingesetzt. Am RIVM selbst wurden das integrierte
Modell TARGETS (Tool to Assess Regional and Global Environmental and
health Targets for Sustainability) (Rotmans u.a., 1994) und das user support
system (USS) des integrierten Modells IMAGE (Alcamo u.a. 1998b; Alcamo
1994) mit M entwickelt. Das USS nutzt allerdings hauptséchlich die Funktio-
nalitdten zur Visualisierung der Modellstruktur und der Modellergebnisse fiir
unterschiedliche Szenarien — die Ergebnisse selbst wurden zuvor iiber ein nicht
mit M entwickeltes Modell berechnet. Die Programmiersprache von M wird
im USS lediglich fiir kleinere zusétzliche Berechnungen benutzt. Neben diesen
Systemen gibt es weitere, die sowohl innerhalb als auch aulerhalb des RIVM
mit M entwickelt wurden. Eine aktuelle Ubersicht iiber diverse Projekte ist auf
der Internet-Seite des M-Projektes (http://www.m.rivm.nl) zu finden.

ECOBAS

ECOBAS (Benz u.a., 2001; Hoch u. a., 1998) ist ein Software-System zur Er-
stellung und integrierten Dokumentation von Simulationsmodellen und wurde
im Bereich der 6kologischen Modellierung entworfen. Ziel des Systems ist die
engere Verzahnung von Modellerstellung und Dokumentation. Das System er-
laubt die Eingabe von Modellgleichungen und iiberpriift diese gleichzeitig unter
Verwendung der anzugebenden Einheiten fiir die einzelnen Variablen. Zu den
Modellvariablen werden ausfiihrliche Informationen wie Akronyme, Einheiten,
Bedeutungen, Typ-Informationen, Werte-Bereiche und allgemeine Beschreibun-
gen gespeichert. Basierend auf den Modellgleichungen kann ECOBAS Source-
Code verschiedener Formate erzeugen: FORTRAN, SIMPLEX, EXTEND und

20Pipes bieten die Mdglichkeit der Interprozesskommunikation zwischen Prozessen, die auf
ein und demselben Rechner laufen und die gemeinsame Vorfahren haben. Nidhere Einzelheiten
zum Thema Pipes finden sich z. B. in Gulbins und Obermayr (1995) und Herold (1999a).

http://www.m.rivm.nl

3.2. STANDARDS 41

SciLab (die Anbindung an andere Programme ist in Planung). Beachtenswert
ist an diesem System, neben der ausfiihrlichen Modelldokumentation, die Ver-
waltung von Referenzen auf Literatur und auf Personen, die an der Modellent-
wicklung beteiligt sind bzw. waren.?!

3.2 Standards

3.2.1 Standardisierungs-Organisationen

Bei der Erstellung von interoperablen, offenen Software-Systemen ist die Ver-
wendung von allgemein anerkannten Methoden, Verfahren, Konzepten und No-
tationen hilfreich. Die formale Vereinheitlichung des allgemein anerkannten —
oder anzuerkennenden — erfolgt durch Normungen. Otto Kienzle, Mitbegriin-
der des Deutschen Instituts fir Normung (DIN), beschrieb Normung als ,,...
die einmalige, bestimmte Losung einer sich wiederholenden Aufgabe unter den
jeweils gegebenen wissenschaftlichen, technischen und wirtschaftlichen Méglich-
keiten.“?? Etwas formeller ist die ‘genormte’ Form der Definition: ,,Normung ist
die planméfige, durch die interessierten Kreise gemeinschaftlich durchgefiihrte
Vereinheitlichung von materiellen und immateriellen Gegenstinden zum Nut-
zen der Allgemeinheit.“ (DIN 820 Teil 1)

Normen (Standards®?) kénnen unterteilt werden in nationale Normen, in-
ternationale Normen und Fachnormen. Fiir die Normierung sind lénder- und
fachspezifische Normungsorganisationen zusténdig. Zu den nationalen Normie-
rungsorganisationen gehoren beispielsweise das American National Standards
Institute (ANSI) und das bereits erwdhnte Deutsche Institut fiir Normung
(DIN). Die International Organization for Standardization (ISO) ist eine inter-
nationale Organisation. Das Institute of Electrical and Electronics Engineers
(IEEE) ist ein Beispiel fiir eine fachliche Standardisierungsorganisation.

Die hinsichtlich der Entwicklung eines SISA wichtigsten Normungsorganisa-
tionen werden nachfolgenden kurz vorgestellt. Einige fiir die Entwicklung eines
SISA relevante Normen werden in den folgenden Abschnitten kurz beschrieben.

21Einen dhnlichen Ansatz zur Beschreibung von Modellen verfolgt Maxwell (1999) mit
seinem ‘parsi-model approach’. Ein Modell besteht hier aus einer Modellbeschreibung und
dem ablauffahigen Programm. Modelle setzten sich aus Modulen zusammen, die eine dekla-
rative Beschreibung des Verhaltens beinhalten; das dynamische Verhalten iibernimmt eine
Modellumgebung. Zur Modellbeschreibung wurde die so genannte modular modeling language
entwickelt.

22Quelle: http://www.din.de/portrait/definiti.html

23Die Begriffe ‘Norm’ und ‘Standard’ werden in dieser Arbeit synonym verwendet. Zur
Abgrenzung der Begriffe s. z. B. Bartelme (2000).

Nor-

mung

Norm-
Arten

http://www.din.de/portrait/definiti.html

Ziel

Organi-
sation

Entwick-
lungs-
phasen

42 KAPITEL 3. STAND DER TECHNIK

ISO

Die International Organization for Standardization (ISO)?* ist ein weltweiter
Zusammenschluss der nationalen Standardisierungsinstitute von mehr als 140
Landern. Die ISO wurde 1947 gegriindet und ist eine Nicht-Regierungsorgani-
sation.

Die Mission der ISO ist die Unterstiitzung der Entwicklung von Standardi-
sierungen und damit zusammenh#ngender Aktivitdten in der Welt im Hinblick
auf die Unterstiitzung des internationalen Austauschs von Giitern und Dienst-
leistungen, und der Entwicklung von Kooperationen im Bereich der geistigen,
wissenschaftlichen, technologischen und 6konomischen Aktivititen. Die Arbeit
der ISO resultiert in internationalen Vereinbarungen, die in internationalen
Standards veroffentlicht werden.

Wihrend die strategischen Entscheidungen von den ISO-Mitgliedern (also
den nationalen mit der Standardisierung beauftragten Organisationen) getrof-
fen werden, wird die technische Arbeit der ISO auf fast 3000 technische Aus-
schiisse, Unterausschiisse und Arbeitsgruppen verteilt. Diese Gremien setzen
sich zusammen aus gleichberechtigten Représentanten aus Industrie, Verbrau-
cherverbénden, internationalen Organisationen, wissenschaftlichen Institutio-
nen und Regierungsbehorden. Die Hauptverantwortlichkeit fiir die Administra-
tion eines Ausschusses wird von einem der nationalen Standardisierungsorga-
nisationen (z.B. der DIN) iibernommen. Die Koordination des Netzwerks und
die Veroffentlichung fertiggestellter Standards iibernimmt das in Genf anséssige
ISO-Zentralbiiro.

Die Entwicklung eines internationalen Standards verlduft in sechs Schritten
(Rehesaar, 1996):25
Vorbereitungsphase (Phase 0)

Vorschlagsphase (Phase 1)
Vorbereitungsphase (Phase 2)
Ausschussphase (Phase 3)
Genehmigungsphase (Phase 4)

Veroffentlichungsphase (Phase 5)

Die Vorbereitungsphase (preparation stage) ist eine optionale Phase fiir die ers-
te Vorbereitung eines Standards. (Die Dauer der Phase ist nicht festgelegt.)
In der Vorschlagsphase (proposal stage) wird ein so genannter ‘new work item
proposal’ (NP) an die Mitglieder der Vollversammlung gesendet, die iiber den
Vorschlag annehmend oder ablehnend entscheiden. Sofern der NP angenommen
wurde, wird er allen Mitgliedern zur Abstimmung zugesandt. Die Phase endet
mit der Genehmigung des Projektes. (Dauer der Phase: etwa neun Monate.)

24Gtartseite im Internet: http://www.iso.ch
25Dargestellt sind die vom ISO/IEC JTC1 Subcommittee Software Engineering verwende-
ten Phasen.

http://www.iso.ch

3.2. STANDARDS 43

Die Vorbereitungsphase dient der Entwicklung eines ‘working draft’ (WD). Dem
endgiiltigen WD gehen i. d. R. mehrere Entwurfs-Versionen voraus, die an einen
moglichst groflen Leserkreis verteilt werden. Der endgiiltige WD erhélt dann,
meist im Rahmen einer Vollversammlung, den Status eines so genannten ‘com-
mittee draft (CD)’. (Dauer der Phase: 1 bis 3 Jahre.) In der Ausschussphase
wird der CD zur Diskussion an den zustéindigen Unterausschuss verteilt. Sofern
der CD entsprechende Unterstiitzung durch die Mitglieder erhélt, wird der Sta-
tus auf den so genannten ‘draft international standard’ (DIS) erh6ht.?® (Dauer
der Phase: ein bis vier Jahre.) Wihrend der Genehmigungsphase wird iiber den
DIS brieflich abgestimmt. Zur Akzeptanz ist eine Zwei-Drittel-Mehrheit erfor-
derlich sowie maximal 25% ablehnender Stimmen und eine Wahlbeteiligung von
mindestens 50% der Stimmberechtigten (d. h. der nationalen Standardisierungs-
Organisationen)??. (Dauer der Phase: max. vier Monate zur Abstimmung.) Ein
genehmigter Standard wird dann in der letzten Phase, der Verdffentlichungs-
phase, publiziert.

Uber dieses Verfahren soll gewihrleistet werden, dass die Standards erst
nach ausfithrlichen Diskussionen auf internationaler Ebene und nachfolgender
Genehmigung iiber eine internationale Abstimmung publiziert werden.

Aufgrund der Wichtigkeit von Geoinformationen wurde 1994 das Technical TC 211
Committee Geographic information/Geomatics (ISO/TC 211)* gebildet. Das
Mandat fiir diesen Ausschuss ist die Entwicklung eines integrierten Satzes an
Standards fiir geographische Informationen (die Standard-Reihe 19100).

ISO/TC 211 arbeitet eng mit anderen Standardisierungsorganisationen zu-
sammen; es existieren beispielsweise Kooperationen mit dem OpenGIS Con-
sortium (s.u.), dem gemeinsamen technischen Ausschusses der ISO und der
International Electrotechnical Commission (ISO/IEC JTC1)?* sowie der ge-
meinniitzigen Organisation Global Spatial Data Infrastructure®®, die ihrerseits
eng mit den Vereinten Nationen zusammenarbeitet.

Die auf dem Arbeitsprogramm des ISO/TC 211 stehenden Standards rei- Stan-
chen von einem allgemeinen Referenzmodell (ISO 19100) bis hin zu Sensor- und 4ards
Datenmodelle fiir Bilder und Rasterdaten (ISO 19130) und Implementierungs-
Spezifikationen fiir Metadaten (ISO 19139). Ein Standard dieser Reihe ist auch
fiir die Entwicklung der SISA-Architektur relevant (19119), der daher im Ab-
schnitt 3.2.5 (Seite 55) nither beschrieben wird. Einen Uberblick iiber die der-

26Fehlt der Konsens iiber den CD, kann das JTC1 die Versffentlichung als so genannten
‘type 1 technical report’ (TR1) erbitten.

27Bei Ablehnung kommt auch hier die Uberarbeitung des DIS oder die Versffentlichung als
TR1 in Frage.

28Gtartseite im Internet: http://www.isotc211.org

29Gtartseite im Internet: http://www.jtcl.org. Eine kurze Beschreibung der Struktur, Mit-
glieder und Produkte des JTC1 findet sich bei Rehesaar (1996).

30Gtartseite im Internet: http://www.gsdi.org

http://www.isotc211.org
http://www.jtc1.org
http://www.gsdi.org

Ziel

Stan-
dards

Ziel

44 KAPITEL 3. STAND DER TECHNIK

zeitigen Standardisierungsthemen liefert die im Anhang befindliche Tabelle C.3
(Seite 240). Der Bezug von ISO-Standards ist i. d. R. kostenpflichtig.

IEEE

Das Institute of Electrical and Electronic Engineers (IEEE)?! ist ein gemein-
niitziger, technischer Berufsverband mit mehr als 377000 Mitgliedern aus iiber
150 Léandern. Ziel des IEEE ist die Unterstiitzung der Entwicklung, Integra-
tion, gemeinsamen Nutzung und Anwendung elektro- und informationstechni-
schen Wissens. Eine Aktivitit des IEEE ist die IEEE Standards Assosiation
(IEEE-SA), die zur Formulierung und Foérderung der international anerkann-
ten IEEE-Standards bevollméchtigt ist. Mitglieder im IEEE-SA sind sowohl
Einzelpersonen als auch Firmen.

Von den fast 900 verabschiedeten Standards kann einer beim Aufbau eines
SISA besonders relevant werden: der IEEE Standard for Modeling and Simu-
lation (M&S) High Level Architecture (HLA) (IEEE 1516). Dieser Standard
wurde als eine Referenz-Architektur fiir die verteilte Modellierung und Simu-
lation entwickelt. Abschnitt 3.2.2 (Seite 47) widmet sich diesem Standard. Der
Bezug von IEEE-Standards ist, ebenso wie der von ISO-Standards, i.d. R. kos-
tenpflichtig.

W3C

Das World Wide Web Consortium (W3C)3? ist die Organisation, in der die
Kerntechnologien des World Wide Web (WWW) entwickelt werden. Das W3C
wurde 1994 am Labratory for Computer Science des Massachusetts Institut of
Technology (MIT) von Tim Berners-Lee (dem ‘Erfinder’ des WWW) in Ko-
operation mit seinem ehemaligen Arbeitgeber und Ursprungsort des WWW,
dem Européisches Kernforschungszentrum CERN (Conseil Européen pour la
Recherche Nucléaire), gegriindet.

Das W3C hat sich zur Aufgabe gesetzt, die technische Weiterentwicklung
des WWW durch die Férderung von Interoperabilitit und offenen Diskussions-
foren zu leiten. Auf langfristige Sicht strebt das W3C ein WWW an, auf das alle
Menschen unter Beriicksichtigung der vielen Unterschiede in Sprache, Ausbil-
dungsstand, materiellen Ressourcen usw. zugreifen kénnen (universal access),
das jedem Benutzer die bestmogliche Nutzung der verfiigharen Web-Ressourcen
erlaubt (semantic web) und dessen Entwicklung die vielfiiltigen rechtlichen,
kommerziellen und sozialen Fragen beriicksichtigt, die durch die Technologie
aufkommen (web of trust). Das W3C sieht seine Rolle darin, Visionen des
zukiinftigen WWW zu erstellen, Web-Technologien zu deren Realisierung zu
entwickeln und sich an Standardisierungsbemiihungen zu beteiligen.

31Startseite im Internet: http://www.ieee.org
32Gtartseite im Internet: http://www.u3.org/Consortium

http://www.ieee.org
http://www.w3.org/Consortium

3.2. STANDARDS 45

Das W3C besteht aus dem so genannten W3C-Team und derzeit etwa 450
weiteren Mitgliedern und ist in Gruppen organisiert: Die technischen Entwick-
lungen liegen in der Hand von Working Groups, wahrend Interest Groups fiir
allgemeinere Arbeiten zusténdig sind und die Verbindung miteinander in fach-
licher Beziehung stehender Gruppen Aufgabe der Coordination Groups ist. Die
einzelnen Gruppen sorgen auch fiir die Koordination ihrer Arbeit mit anderen
Standardisierungsorganisationen.

Die Resultate des W3C sind technische Berichte, Open Source Software und
Dienstleistungen. Zu den technischen Berichten gehoren auch die technischen
Spezifikationen, die so genannten Recommendations. Entwickler Web-basierter
Anwendungen kommen um diese Spezifikationen nicht herum — sie sind die
Bausteine des WWW.

Zu den wichtigsten der zurzeit etwa 40 Empfehlungen zdhlen diejenigen
zur hyper-text markup language (HTML), zum uniform resource locator (URL)
und zum hyper-text transport protocol (HTTP). Der URL-Standard legt den
Aufbau von Web-Adressen fest, der HTTP-Standard definiert das Protokoll,
mit dem Web-Seiten von einem Rechner zum anderen {ibertragen werden und
der HTML-Standard definiert die Beschreibungssprache fiir Web-Seiten und
erlaubt damit deren Aufbau (inhaltlich und darstellerisch).

Neben diesen Standards sind fiir die Realisierung des SISA weitere Spezifi-
kationen des W3C relevant: der uniform resource identifier (URI), die exten-
sible markup language (XML) und die mit der XML in Verbindung stehenden
Standards zum XML Schema, resource description framework (RDF) und do-
cument object model (DOM). Néhere Informationen zu diesen Empfehlungen
finden sich im weiteren Verlauf der Arbeit. Die Empfehlungen des W3C sind
kostenfrei und online verfiighar (http://www.w3.org).

0GC

Das Open GIS Consortium (OGC)33 ist ein internationales Industrie-Konsorti-
um von mehr als 230 Firmen, Regierungsorganisationen und Forschungseinrich-
tungen. Ziel dieses 1994 gegriindeten Zusammenschlusses ist die Entwicklung
frei verfiigharer Spezifikationen im Bereich der Geodatenverarbeitung. Die offe-
nen Schnittstellen und Protokolle, die in so genannten OpenGIS Specifications
definiert werden, unterstiitzen interoperable Losungen; die Informationstechno-
logie soll ‘geofiihig’ gemacht werden und Entwickler befihigen komplexe raum-
liche Informationen und Dienste fiir alle denkbaren Anwendungen zugreifbar
zu machen.

Das OGC unterscheidet zwischen OpenGIS Abstract Specifications und
OpenGIS Implementation Specifications. Erstere spezifizieren die konzeptionel-
le Basis fiir Entwicklungsaktivitdten und stellen ein Referenzmodell fiir die

33Gtartseite im Internet: http://www.opengis.org

Organi-
sation

Stan-
dards

Verfiig-
barkeit

Spezifi-
kationen

Abstract
vs. Im-
plemen-
tation

http://www.w3.org
http://www.opengis.org

Abstract
Specifi-
cations

Verbrei-
tung

IETF

46 KAPITEL 3. STAND DER TECHNIK

Entwicklung der Implementation Specifications bereit. Die OpenGIS Imple-
mentation Specifications sind technische Spezifikationen, die Teile der Abstract
Specification fiir spezielle Plattformen zur Entwicklung verteilter Anwendun-
gen (z.B. OLE/COM oder CORBA) spezifizieren. Hier finden sich Program-
mierrichtlinien fiir Software-Entwickler zur Integration und Nutzung der OGC-
Schnittstellen und OGC-Protokolle.

Die Abstract Specifications sind in Themengebiete (topics) eingeteilt. Der-
zeit existieren 16 themenzentrierte Abstract Specifications, die jeweils bestimm-
te Funktions- oder Technologiebereiche betreffen: angefangen von der Definition
geographischer Merkmale iiber die Beschreibung geographischer Referenzsyste-
me bis hin zu Diensten fiir die Koordinaten-Transformation von Bildern. Eine
Auflistung der OpenGIS Abstract Specifications findet sich im Anhang (Tab.
C.4, Seite 241). Auf die in der Liste zu findenden Spezifikationen der Cata-
log Services sowie die Spezifikationen von Metadaten (die das OGC im Mai
2001 von der ISO (ISO/DIS 19115) iibernahm) wird im Abschnitt 5.2.1 (Sei-
te 96) niher eingegangen. Eine Ubersicht iiber die Abhingigkeiten der OGC-
Spezifikationen untereinander findet sich ebenfalls im Anhang (Abb. C.1, Sei-
te 237).

Die Akzeptanz und Anwendbarkeit der OGC-Spezifikationen zeigt sich so-
wohl im wissenschaftlichen Bereich — im Rahmen der Umweltinformatik z. B.
bei Voges (2001), Senkler (2001) und Fitzke und Miiller (2000) — als auch im
kommerziellen Bereich — z. B. durch die Umsetzung von OGC-Spezifikationen3*
innerhalb des Produkts ArcGIS der Firma ESRI?®.

Weitere Organisationen

Neben den angefiihrten Organisationen gibt es weitere, wie die Simulation In-
teroperability Standards Organization (SISO)?® und die Object Management
Group (OMG)®", deren Arbeiten bei der Entwicklung eines SISA ebenfalls zu
Rate gezogen werden konnen. Einige internationale Normen werden vom Deut-
schen Institut fiir Normung (DIN)®® in die deutsche Sprache iibersetzt und in
die eigene Normenreihe aufgenommen.

Sofern Internet-Technologien fiir die Realisierung eines SISA eingesetzt wer-
den sollten, sind die Verdffentlichungen der Internet Engineering Task Force
(IETF') von besonderer Bedeutung. Die IETF ist ein internationaler und of-
fener Verbund aus Netzwerk-Entwicklern, -Betreibern, -Anwendern und Wis-
senschaftlern, die sich mit der Entwicklung der Internet-Architektur und deren

34 OpenGIS Simple Features Specification for OLE/COM 1.1 und OpenGIS Simple Featu-
res Specification for SQL 1.1.

35Startseite im Internet: http://www.esri.com

36Gtartseite im Internet: http://www.sisostds.org

37Startseite im Internet. http://www.omg.org

38Gtartseite im Internet: http://www.din.de

http://www.esri.com
http://www.sisostds.org
http://www.omg.org
http://www.din.de

3.2. STANDARDS 47

Betrieb beschiiftigen. Alle Spezifikationen des IETF werden im Internet als so
genannte Requests for Comments (RFCs) verdffentlicht.?® Zu den wichtigen
Standards gehort z. B. der RFC 791, der das Internet-Protokoll spezifiziert. Im
Rahmen der Realisierung der SISA-Architektur (Kapitel 5, Seite 95) bekommen
weitere RFCs eine besondere Bedeutung.

Weitere Informationen zum Thema Interoperabilitit und Normung finden
sich bei Bartelme (2000). Eine Ubersicht iiber Standardisierungs-Organisatio-
nen im Bereich der Geoinformation gibt Carson (2000).

3.2.2 High Level Architecture (HLA)

Die High Level Architecture (HLA) (Kuhl u.a., 1999) ist eine Architektur zur
Verbindung von interagierenden Teilmodellen zu Gesamtmodellen und verfolgt
das Ziel, die Interoperabilitit von Simulationsmodellen zu erhchen. Entwi-
ckelt im militérischen Umfeld?®, hilt die Architektur zunehmend im zivilen
Bereich Einzug (s. z. B. Schulze u. a., 1999) und wurde im Jahr 2000 zum IEEE-
Standard (IEEE, 2000a)*!.

Die grundlegenden Elemente der HLA sind die so genannten Federates und
Federations: ein Federate ist eine Anwendung, die sich an einer Federation be-
teiligt und kann mit einem Teilmodell verglichen werden?. Eine Federation
besteht — vergleichbar mit einem Gesamtmodell — aus einer Menge interagie-
render Federates, einer formalen Beschreibung des gemeinsamen Objektmodells
und einer Infrastruktur, die fiir die Kommunikation zwischen den Federates zu-
standig ist (vgl. Abb. 3.6, Seite 50).

Die formale Definition der Modeling and Simulation High Level Architecture
— so der offizielle Name der Architektur — umfasst drei Hauptkomponenten:

e HLA Rules (IEEE, 2000a)
e HLA Object Model Template (OMT) (IEEE, 2000c)
o HLA Federate Interface Specification (IEEE, 2000b)

Die HLA Rules beschreiben die Hauptbestandteile einer Federation und de-
finieren iiber insgesamt zehn Regeln das Zusammenspiel zwischen Federate und
Federation. Hier wird beispielsweise festgelegt, dass sich die Federates auf ein
gemeinsames Objektmodell — das Federation Objekt Model (FOM) — beziehen
miissen und dass jeglicher Datenaustausch zwischen den Federates iiber eine

39Die Spezifikation der Standardisierungsprozesses selbst ist ebenfalls ein RFC und findet
sich unter http://wuw.ietf.org/rfc/rfc2026.txt?number=2026.

40Dije HLA ist seit 1996 die Standard-Architektur fiir Simulationsanwendungen im Depart-
ment of Defence der USA. Siehe http://www.dod.mil.

41Grundlage fiir die Beschreibung der HLA in diesem Unterabschnitt liefert die HLA Tech-
nical Specification, Version 1.3, die die Vorlage fiir den IEEE-Standard 1516 darstellt u. iiber
https://www.dmso.mil/public/transition/hla/techspecs erhéltlich ist.

42Ein Federate kann aber auch jedes andere beteiligte Programm sein, wie z. B. ein Sensor
zur Datenerfassung oder eine passive Anwendung zur Datenvisualisierung.

RFC

Rules

http://www.ietf.org/rfc/rfc2026.txt?number=2026
http://www.dod.mil
https://www.dmso.mil/public/transition/hla/techspecs

OMT

Interface
Specifi-
cation

Federa-
tion

Deklara-

tion

Objekte

Eigen-
tum

48 KAPITEL 3. STAND DER TECHNIK

Instanz namens Run-Time Infrastructure (RTI) ablaufen muss. Weiterhin wird
in den Regeln festgelegt, dass es zu jedem Federate eine formale Beschreibung
seiner Objekte in Form eines Simulation Object Model (SOM) geben muss. Die
einzelnen Regeln sind in Anhang C.2 (Seite 243) dokumentiert.

Im Object Model Template (OMT) werden die Formate und die Syntax de-
finiert, die zur formalen Definition von Objekten, Attributen, Interaktionen
und Parametern — also zur Erstellung von FOMs und SOMs — benutzt werden
miissen.

Die HLA Federate Interface Specification definiert die Schnittstelle zwischen
den Federates und der Run-Time Infrastrukture (RTI). Die Dienste der RTI
werden eingeteilt in sechs Gruppen:

1. Federation-Management (federation management)
Deklarations-Management (declaration management)
Objekt-Management (object management)
Eigentum-Management (ownership management)
Zeit-Management (time management)

SR

Datenverteilungs-Management (data distribution management)

Die Gruppe fiir das Federation-Management umfasst Dienste zur Erzeugung
und zum Loschen so genannter Federate Executions (Objekte, die eine Federa-
tion zur Laufzeit repréisentieren) sowie zur dynamischen An- und Abmeldung,
zur Sychronisationssteuerung und zum Speichern und Wiederherstellen von Fe-
derates. Bevor ein Federate in eine Federation FExecution eintreten kann, muss
die Federation Fxecution existieren. Die Dienste des Deklarations-Managements
bieten die Moglichkeit Objekt-Klassen und Interaktions-Klassen zu veroffent-
lichen und Klassen oder einzelne Attribute zu ‘abonnieren’ — die HLA funk-
tioniert nach dem Publisher-Subsciber-Prinzip: Objekte, die die Werte ihrer
Attribute anderen Objekten mitteilen wollen, ‘vertffentlichen’ diese Attribu-
te, wihrend Objekte, die Interesse an diesen Attribut-Werten haben, die At-
tribute ‘abonnieren’ kénnen. Die Anderung eines Attributwertes wird dann
automatisch (iiber die RTI) allen interessierten Objekten bekannt gegeben?3.
Fiir das Objekt-Management werden Dienste bereitgestellt zur Registrierung
von Objekt-Instanzen bei einer Federation, zur Aktualisierung von Attribut-
Werten und Versendung von Interaktionen sowie zur Steuerung des Transpor-
tes von Attribut-Werten und Interaktionen. Uber die Dienste des Eigentum-
Managements** kénnen die Eigentumsrechte einzelner Objekt-Attribute ver-
waltet werden. Es gibt Dienste zur Abfrage der Eigentumsverhéltnisse, zur

43Zum ‘Publisher-Subscriber-Muster’ s. z.B. Gamma u.a. (1996) oder Buschmann u.a.
(1998).

44Der Eigentiimer eines Objekt-Attributes hat mehr Moglichkeiten bei der Verwaltung des
Attributes und das Recht Attributwerte zu @ndern. Die Verwaltung der Rechte geschieht in
der HLA dynamisch.

3.2. STANDARDS 49

Weitergabe des Eigentumsrechtes (inklusive der Anfrage das Eigentum zu er-
langen). Die Zeit des modellierten Systems wird in der Federation als Punkt
auf einer Federation-Zeitachse représentiert. Die Zeit innerhalb der Federa-
tes lauft entweder eingeschrinkt oder uneingeschrinkt entlang dieser Zeitachse
ab. Die Dienste des Zeit-Managements bieten einen Mechanismus zur Kon-
trolle des Zeitverlaufes jedes Federates entlang der Federation-Zeitachse. Fe-
derates konnen time regulated oder time constrained sein: im ersteren Fall
assoziiert ein Federate iiber ‘Zeitstempel’ Aktivitdten mit Punkten auf der
Federation-Zeitachse, im zweiten Fall ist ein Federate interessiert am Empfang
von Benachrichtigungen iiber solche Aktivititen.*> Wihrend das Deklarations-
Management den Datenaustausch auf der Ebene von Klassen-Attributen regelt,
stellt das Datenverteilungs-Management Dienste zur Verfiigung, die von den
Federates benutzt werden kdonnen, um den Datenaustausch zu reduzieren. Die
Dienste erlauben es, so genannte nutzerdefinierte Riume (user defined spaces)
zu definieren. Die RTT gibt Daten und Interaktionsanfragen dann nur an die-
jenigen Federates weiter, die sich fiir diesen Ausschnitt interessieren.

Die Einteilung in die sechs Gruppen sollte es Entwicklern erméglichen, nur
die fiir sie relevanten Dienste zu implementieren und die anderen ignorieren zu
koénnen (Kuhl u.a., 1999).

Die grundlegenden statischen und dynamischen Prinzipien der HLA werden
in den Abbildungen 3.6 (Seite 50) und 3.7 (Seite 51) noch einmal zusammen-
fassend dargestellt.

Neben den drei Standards zur Beschreibung des allgemeinen Rahmens (IE-
EE, 2000a), der Schnittstellen (IEEE, 2000b) und der Modell-Beschreibungs-
sprache (IEEE, 2000c) enthélt die Standard-Serie IEEE 1516 noch ein Doku-
ment, das einen Entwicklungsprozess beinhaltet, der fiir die Erstellung HLA-
konformer Simulationsmodelle empfohlen wird (IEEE, 2003).

Die HLA ist eine Architektur und stellt damit lediglich die Prinzipien bereit,
die zur Erhéhung der Interoperabilitdt von Simulationsmodellen beitrigt. Um
diese Prinzipien einzusetzen, ist es notwendig, die RTI zu implementieren. Bis
September 2002 stellte das Defense Modeling and Simulation Office (DMSO)
der USA*S eine Implementierung kostenfrei zur Verfiigung. Seither wird auf
kommerzielle Implementierungen der RTT verwiesen. Eine Liste aktueller RTI-
Software — die derzeit fiir die Programmiersprachen C++ und JAVA verfiigbar
ist — ist auf den Internet-Seiten des DMSO zu finden*".

45StandardmiBig sind Federates weder time regulated noch time constrained. Sofern keine
Anderungen vorgenommen werden, machen die Federates keinen Gebrauch von den Zeit-
Management-Diensten.

463tartseite im Internet: https://www.dmso.mil

4Thttps://www.dmso.mil/public/transition/hla/rti/statusboard

Zeit

Daten-
vertei-
lung

Entwick-
lungs-
prozess

https://www.dmso.mil
https://www.dmso.mil/public/transition/hla/rti/statusboard

50 KAPITEL 3. STAND DER TECHNIK

federation IEEE Standard for Modeling and
Simulation (M&S) High Level
Architecture (HLA) - Federate
Interface Specification

(IEEE 1516.1-2000)

1EEE Standard for Modeling and
Simulation (M&S) High Level
Architecture (HLA) - Framework

and Rules sendet und empfingt
(IEEE 1516-2000) interactions bestimmter
Klassen
R4 simulations-bezogene
federate Objekt-Instanzen (R2)
RTI ambas- Instanz-Attribut (R5/8)
- . . . lokale Zeit (R1
RTI ambas [objects & interactions— sador okale Zeit (R10)
sador federate 1
T
‘ federate ...
Schnittstellen-Gruppen: £\ Austausch von FOM- ‘
‘ L\G . o federate n
- federation management Z Daten ausschlieBlich ederate
- declaration management tiber RTI (R3) Zusicherung der RTI-
- object management Unterstiitzung (update/
- ownership management Y reflect) fiir alle Attribute
- time management und Interaktionen im
- data distribution management SOM (R7)
Reprisentiert das allgemeine, Beschreibung der Simulations-
vereinbarte Vokabular Funktionalititen und der zur Verfiigung
(objects & interactions) &, o gestellten federate-Daten (R6) sowie der
zwischen den Mitgliedern % . g Eigentumsverwaltung (R8) und der
einer federation & & Bedingungen zum Attribut-Update (R9)
IEEE Standard for Modeling and Simulation Definiert:
M High L Archi HLA) - g
(M&S) High Level Architecture (HLA) OMT - object classes

Object Model Template (OMT) Specification
(IEEE 1516.2-2000)

- interaction classes

Abbildung 3.6: High Level Architekture — Ubersicht. Eine federation (das ‘Ge-
samtmodell’) besteht aus mehreren federates (Teilmodellen) und der run-time
infrastructure (RTI), iiber die der gesamte Datenaustausch abgewickelt wird.
Das Gesamtmodell wird iiber das federation object model (FOM) beschrieben;
die dem Gesamtmodell zur Verfiigung gestellten Daten und Funktionen der
einzelnen Teilmodelle werden im simulation object model (SOM) definiert. Die
formale Spezifikation der High Level Architecture besteht aus drei Teilen: IEEE
1516 beschreibt den allgemeinen Rahmen und die zehn Regeln (R1-R10), die
das Zusammenwirken der Federates (Teilmodelle) innerhalb einer Federation
(Gesamtmodell) definieren; IEEE 1516.1 spezifiziert die Schnittstelle zwischen
der RTT und den einzelnen Teilmodellen; IEEE 1516.2 definiert die Beschrei-
bungssprache, die fiir das FOM und das SOM benutzt werden muss. Die Regeln
finden sich im Anhang C.2 (Seite 243). Weitere Informationen finden sich im
Text.

3.2. STANDARDS o1

Federate 1 RTI Federate 2

start federation execution()

join federation execution()

join federation execution()
get object class handel()

get attribute handle()

get object class handle()

publish object class() get attribute handle()

subscribe object class attributes()

start registration()

register object instance()

discover object instance()

update attribute value
P 0 reflect object attribute()

delete object instance()

remove object instance()
get interaction class handle()

publish interaction class()

get interaction class handle()

)) subscribe interaction class()
turn interactions on()

send interaction()

receive interaction()

resign federation execution()

resign federation execution()

destroy federation execution()

Abbildung 3.7: HLA-Prinzip der Daten- und Interaktionsweitergabe. Die In-
stantiierung einer Federation wird durch den Aufruf start federation execution()
bei der RTT veranlasst. Im Anschluss daran kénnen sich Federates dieser Fede-
ration durch Aufruf von join federation execution() anschliefen — im abgebilde-
ten Beispiel sind es zwei Federates (Federatel und Federate2). Bevor Federates
Daten iiber Objekte und deren Attribute austauschen kénnen, miissen sie sich
zuniichst iiber get object/attribute handle() geeignete Identifizierungsnummern
besorgen. Federatel kann nun die ‘Verdffentlichung’ von Objekten anmelden.
Diese Anmeldung geschieht iiber publish object class(). Ist Federate2 an derar-
tig verdffentlichten Attributen dieses Objektes interessiert, kann es dies iiber
subscribe object class attribute() der RTT bekannt geben. Ab dann erfolgt ei-
ne automatische Benachrichtigung von Federate2, sobald neue Objekte von
Federatel registriert werden oder sich die Attributwerte registrierter Objek-
te dandern (update/reflect object()). Die Registrierung von Interaktionen findet
ebenfalls nach dem Muster publish/subscribe statt. Eine Federation existiert
so lange, bis sich alle Federates iiber resign federation execution() abgemeldet
haben. Die endgiiltige Zerstorung der Federation geschieht iiber den Aufruf der
Funktion destroy federation execution().

Ziel

Kompo-
nenten

52 KAPITEL 3. STAND DER TECHNIK

3.2.3 NIST/ECMA-Referenz-Modell

Das NIST/ECMA-Referenz-Modell*® wurde urspriinglich als Architektur zur
Integration verschiedener Systeme (Anwendungen) im Rahmen des Computer
Aided Software Engineering (CASE) entwickelt. Neben der Verfolgung des Ziels
verschiedene Datenquellen einheitlich zugreifbar zu machen, stellt die Architek-
tur einen erweiterbaren Rahmen bereit, der fiir die Kommunikation der einzel-
nen Anwendungen zusténdig ist und der eine einheitliche Benutzungsoberfliche
und Reprisentation der Daten bietet. Abbildung 3.8 zeigt die Ubersicht dieses
Modells.

Die einzelnen Komponenten besitzen nach Hering u. a. (2000) die folgenden
Verantwortlichkeiten: Repository Services sind zustédndig fiir die Speicherung
der Entwicklungsdaten; die Data-integration Services sind fiir die Versions- und
Konfigurationsverwaltung zusténdig und erlauben einen transparenten Zugriff
auf die Entwicklungsdaten; die Process-management Services sind als Abstrak-
tionsebene zu den Werkzeugen (Tools) und als Schicht zwischen Benutzungs-
schnittstelle und den eigentlichen Werkzeugen zustédndig fiir die Verwaltung
der Zugriffsmoglichkeiten der Anwender; die User-interface Services stellen ei-
ne einheitliche Benutzungsschnittstelle fiir alle Werkzeuge bereit; die Message
Services erlauben den Informationsaustausch zwischen den einzelnen Diensten
und den zwischen den Werkzeugen.

Die Problemstellung, die zur Entwicklung dieser Architektur gefiihrt ha-
ben — der konsistenten Integration von Daten und Programmen (vgl. Shaw
und Garlan, 1996) — ist vergleichbar mit den Integrationsproblemen, die bei
integrierten Modellen auftreteten. Da das NIST/ECMA-Referenz-Modell zur
Entwicklung der Referenz-Architektur des Open-GIS-Konsortiums, die in Un-
terabschnitt 3.2.5 (Seite 55) genauer vorgestellt wird, herangezogen wurde, sei
fiir weitere Ausfithrungen zum NIST/ECMA-Modell auf Chen und Norman
(1992) verwiesen.

3.2.4 Open Distributed Processing — Reference Model

Die Komponenten eines SISA sollten nicht zwangslidufig auf einem Host (Rech-
ner) laufen miissen. Eine Verteilung des Systems ist bei der Architekturent-
wicklung daher zu beriicksichtigen.

Ein verteiltes System stellt besondere Anforderungen an die Software- Archi-
tektur.? Der gemeinsame technische Ausschuss der ISO und der IEC (JTC1)
(sieche Abschnitt 3.2.1, Seite 41) hat daher ein Rahmenwerk geschaffen, das die
Erstellung von Standards fiir solche Systeme erleichtern und férdern soll: den

48NIST = National Institute of Standards and Technology, ECMA = European Computer
Manufacturers Association.

49Zum Beispiel Anforderungen beziiglich der Synchronisation von Komponenten und der
Fehlerbehandlung. Zu den Besonderheiten verteilter Systeme s. ISO (1998).

3.2. STANDARDS 93

Repository services

Data-integration services

Tool layer Horizontal tools

Process-management services

User-interface services

cut
Paste
Main
|
|
Hello World
|

| Message services

Abbildung 3.8: NIST/ECMA Referenz-Architektur. Erklirungen finden sich im
Text. Quelle: Chen und Norman (1992).

Standard ISO/IEC 10746 Information Technology — Open Distributed Proces-
sing — Reference Model (ISO, 1998). Der Standard, der auch als ISO RM-ODP
oder kurz RM-ODP bezeichnet wird, besteht aus vier Teilen:

ISO/IEC 10746-1 Overview

ISO/IEC 10746-2 Foundations

ISO/IEC 10746-3 Architecture

ISO/IEC 10746-4 Architectural Semantics

Der erste Teil motiviert die Anwendung offener, verteilter Systeme, zeigt de- Over-
ren Moglichkeiten auf, erklirt Schliisselkonzepte und skizziert die ODP-Archi- View
tektur. Dariiber hinaus enthélt dieser Teil Beispiele zur Anwendung des Stan-
dards fiir potentielle Nutzer, d. h. fiir Autoren von abgeleiteten Standards und
fiir Entwickler von ODP-Systemen. Der zweite Teil enthélt die Definitionen Founda-
der Konzepte und des analytischen Rahmenwerks zur normalisierten Beschrei- "
bung beliebiger verteilter Systeme. Der dritte Teil des Standards benutzt die , .
Beschreibungstechniken des zweiten Teils und beschreibt die Eigenschaften, die tecture
ein verteiltes System aufweisen muss, um als offen zu gelten. Abgeleitete ODP-
Standards miissen die hier aufgefithrten Kriterien erfiillen. Der vierte Teil be- Seman-
schreibt eine Vereinheitlichung einiger Modellierungskonzepte des zweiten Teils '
unter Verwendung standardisierter formaler Beschreibungssprachen.

fiinf
Sicht-
weisen

54 KAPITEL 3. STAND DER TECHNIK

Zur Standardisierung offener verteilter Systeme werden vier grundlegende
Elemente gefordert:

e ein objektorientierter Modellierungsansatz zur Systembeschreibung

e die Systembeschreibung iiber fiinf gesonderte, aber in wechselseitiger Be-
ziehung stehende Sichtweisen (viewpoints)

o die Definition einer System-Infrastruktur zur Verteilungstransparenz fiir
System-Anwendungen

e ein Rahmenwerk zur Feststellung, ob ein System standardkonform ist

Der objektorientierte Ansatz wird wegen der etablierten Entwurfsmetho-
den der Abstraktion und Kapselung gewéhlt. Durch die Abstraktion kann die
Systemfunktionalitéit beschrieben werden, ohne dass auf die Details der Im-
plementierung eingegangen werden muss (die Kapselung erlaubt beispielsweise
die Heterogenitéit oder die Implementierung von Sicherheitskonzepten zu ver-
bergen). Als weiterer Pluspunkt der Objektorientierung wird die allgemeine
Bekanntheit ihrer Konzepte betrachtet.

Im ersten Teil des Standards wird eine Architektur-Beschreibung eingefiihrt,
die auf fiinf unterschiedlichen Sichtweisen auf ein System beruht: den enter-
prise viewpoint, den computational viewpoint, den information viewpoint, den
engineering viewpoint und den technology viewpoint. Eine zusammenfassende
Beschreibung der einzelnen Sichtweisen findet sich in Tabelle 3.1. Eine Anwen-
dung des Standards ist die im folgenden Unterabschnitt vorgestellte Dienste-
Architektur des OpenGIS-Konsortiums. Fiir weitere Details sei an dieser Stelle
direkt auf den Standard verwiesen (ISO, 1998); eine Einfiihrung in den Stan-
dard liefern Farooqui u.a. (1995) und Schiirmann (1995).

l Sichtweise [Beschreibung]
Enterprise Sichtweise auf ein ODP-System und seine Umgebung, die sich auf
Viewpoint den Zweck, den Bereich und die Grundsétze fiir dieses System kon-

zentriert.

Computational Sichtweise auf ein ODP-System und seine Umgebung, die durch
Viewpoint eine funktionale Zerlegung des Systems in itiber Schnittstellen in-
teragierende Objekte eine Verteilung erlaubt.

Information Sichtweise auf ein ODP-System und seine Umgebung, die sich auf

Viewpoint die Semantik der Informationen und der Informationsverarbeitung
konzentriert.

Engineering Sichtweise auf ein ODP-System und seine Umgebung, die sich auf

Viewpoint die Mechanismen und Funktionen konzentriert, die zur Unterstiit-

zung fiir verteilte Interaktionen zwischen den Objekten des Sys-
tems benétigt werden.

Technology Sichtweise auf ein ODP-System und seine Umgebung, die sich auf
Viewpoint die Auswahl von Technologien innerhalb des Systems konzentriert.

Tabelle 3.1: Sichtweise auf ein Software-System nach ISO/RM-ODP (ISO,
1998).

3.2. STANDARDS 95

3.2.5 OpenGIS Service Architecture

Das Open GIS Consortium schligt in seinen Abstract Specifications (s. S. 45)
die OpenGIS Service Architecture (Percivall, 2002) vor. Diese Architektur wird
als eine von vielen moglichen technischen Referenzmodellen angesehen. Der
Architektur liegen die Annahmen zugrunde, dass die Zielsysteme 1) verteilte
Systeme und 2) objektorientiert aufgebaut sind.

Bis zur Version 4 definierte die OpenGIS Service Architecture im Sinne
der ISO RM-ODP (s. Unterabschnitt 3.2.4) die wesentlichen Teile der compu-
tational view eines Informationssystems fiir geordumliche Verarbeitungen; die
Architektur stellte also lediglich einen Rahmen (engl. framework) der Dienste
bereit, die fiir die Entwicklung und Ausfithrung geordumlich orientierter An-
wendungen benotigt werden.

Im April 2001 wurde iiber das OGC Technical Committee die Ubernahme
der Arbeiten zum ISO-Standard 19119 (Geographic information — Services)
als OGC Service Architecture beschlossen. Die derzeit verfiighare Version 4.3
der OGC Service Architecture (Percivall, 2002)°° beinhaltet den Entwurf zum
Internationalen Standard (ISO/DIS 191195%).

ISO 19119 liefert eine Taxonomie fiir geographische Dienste und schreibt
vor, wie plattformneutrale Spezifikationen fiir Dienste zu erzeugen und hierzu
konforme plattformspezifische Spezifikationen abzuleiten sind.

Die durch den Architektur-Standard fiir geographische Dienste verfolgten
Ziele sind:

e cin abstraktes Rahmenwerk bereitzustellen, das eine abgestimmte Ent-
wicklung spezifischer Dienste erlaubt

e durch eine Schnittstellen-Standardisierung interoperable Daten-Dienste
zu ermoglichen

e durch die Definition von Metadaten iiber Dienste die Entwicklung von
Dienste-Katalogen zu unterstiitzen

e die Trennung einzelner Daten und Dienste zu ermdéglichen

e die Nutzung der Dienste eines Anbieters auf den Daten eines anderen
Anbieters zu ermoglichen

e ein abstraktes Rahmenwerk zu definieren, das unterschiedlich implemen-
tiert werden kann

Zur Erreichung dieser Ziele erweitert der Standard das architektonische Re-
ferenzmodell, das in ISO 19101 definiert ist (ISO 19101 definiert das so genannte
Extended Open Systems Environment (EOSE) model for geographic services).

500penGIS AS Topic 12. Alle Verweise auf die ISO 19119 in der vorliegenden Arbeit
beziehen sich auf diese Verotffentlichung.

51DIS heifit Draft International Standard und bezieht sich auf den Status des Dokuments.
Ein DIS wird den Mitgliedern der ISO zur Abstimmung vorgelegt um zu einem International
Standard zu werden.

Inhalt

Ziele

View-
points

Compu-
tational
View-
point

Schnitt-
stelle

Opera-
tion

Port

Dienst

56 KAPITEL 3. STAND DER TECHNIK

ISO/DIS 19119 betrachtet die Service-Architektur aus vier der insgesamt
fiinf Blickrichtungen der RM-ODP und beschreibt den computational view-
point, den information viewpoint, den engineering viewpoint und den technolo-
gical viewpoint. Der enterprise viewpoint wird in anderen Teilen der ISO-19100-
Serie beschrieben (z.B. im Referenzmodell ISO 19101). Die in ISO/DIS 19119
behandelten Sichtweisen werden im Folgenden kurz beschrieben.

Computational Viewpoint

Bei der Beschreibung des computational viewpoint wird die Basis fiir die Ver-
kettung von Diensten gelegt. Dieser Abschnitt des Standards

e definiert die Konzepte der Dienste (Services), Schnittstellen und Opera-
tionen sowie deren Beziehungen untereinander

o definiert ein Modell fiir die Verkettung von Diensten, um groflere Aufga-
ben 16sen zu konnen (service chaining)

e definiert ein Metadaten-Modell fiir Dienste, um das Auffinden von Diens-
ten iiber Kataloge zu unterstiitzen

e stellt einen Ansatz fiir die physikalische Verteilung von Diensten (durch
die Nutzung einer n-Tier-Architektur) vor

Die einzelnen Punkte werden im Folgenden kurz erldutert.

Dienste-Konzept

Das zentrale Element des Dienste-Konzepts (s. Abb. 3.9) ist die Schnittstel-
le: Eine Schnittstelle wird definiert als benannte Menge von Operationen, die
das Verhalten einer Entitdt charakterisiert. Schnittstellen sind abstrakte, von
der spiteren Realisierungsplattform unabhéingige Spezifikationen und werden
iiber Operationen definiert. Eine Operation ist die abstrakte Beschreibungen
einer iiber die Schnittstelle angebotenen Aktion zur Datentransformation oder
Datenabfrage.

Damit Schnittstellen von Software-Agenten oder Personen (den Nutzern)
benutzt werden kénnen, miissen sie, unter Beriicksichtigung plattformabhingi-
ger Spezifikationen, implementiert werden. Eine solche Implementierung wird
als Port bezeichnet.

Am Ende dieser Definitionskette steht der Dienst, der den eigentlichen Wert
fiir den Nutzer darstellt. Der Dienst besteht aus mehreren Ports, d.h. aus
den Implementierungen mehrerer Schnittstellen. Ein Dienst, der auf einem be-
stimmten Rechner lduft und der iiber ein Netzwerk zugreifbar ist, wird als
Instanz eines Dienstes bezeichnet. Die Implementierung eines Dienstes kann
mit einem fiir diesen Dienst spezifischen Datensatz verbunden sein oder mit
mehreren, unspezifischen Datensétzen arbeiten. Im ersten Fall spricht man von

3.2. STANDARDS o7

SV_ServiceSpecification SV_Service
+ name : CharacterString
+ opModel : SV_OperationModel
1.n SV_PortSpecification
+ binding : DCPList
+ address : URI
T
1.n J
SV_lInterface /
= ! SV_Port

+ typeName : TypeName

operationName : MemberName

+interface Y 1..n

+operation 1

SV_Operation

+ operationName : MemberName

Abbildung 3.9: Statisches Modell des Dienste-Konzepts der ISO/DIS 19119 in
UML-Notation. Dienste (Services) basieren auf der plattformabhéngigen Imple-
mentierung (Ports) von Schnittstellen (Interfaces). Die Schnittstellen werden in
einer Dienste-Spezifikation (Service Specification) zusammengefasst und beste-
hen ihrerseits aus Operationen (Operations). Quelle: ISO/DIS 19119 (Percivall,
2002).

einem eng gekoppelten Dienst (tightly-coupled service), im zweiten Fall von ei-
nem lose gekoppelten Dienst (loosely-coupled service). Welche Schnittstellen ein
Dienst implementiert, wird in der Dienst-Spezifikation festgelegt.

Abbildung 3.9 fasst die Beziehungen der Konzepte in graphischer Form zu-
sammen.

Dienste-Verkettung

Um auch grofere Aufgaben tiber Dienste l6sen zu konnen, wird das Modell
der so genannten Dienste-Ketten (service chains) definiert. Eine Dienste-Kette
wird als gerichteter Graph aufgefasst und definiert als eine Folge von Diensten,
in der bei allen miteinander verbundenen Diensten die Durchfiihrung der ersten
Aktion fiir die Durchfithrung der zweiten Aktion notwendig ist.

ISO/DIS 19119 definiert drei Muster fiir Dienste-Ketten: nutzerdefinierte
Verkettung, Workflow-verwaltete Verkettung und aggregierte Dienste. Bei der

Dienste-
Kette

Muster

Dienste-
Organi-
sation

SOF

58 KAPITEL 3. STAND DER TECHNIK

nutzerdefinierten Verkettung wird die Dienste-Kette vom Nutzer definiert und
kontrolliert. Die Workflow- Variante setzt voraus, dass die Kette vordefiniert
ist; der Nutzer muss lediglich die Kenntnis von der Kette als Ganzes haben
(die Steuerung der einzelnen Dienste iibernimmt ein Workflow Service). Bei
einem aggregierten Dienst tritt die Kette als ein einzelner Dienst auf, der die
Koordination der einzelnen Dienste iibernimmt. Im Gegensatz zum Workflow-
Muster werden die einzelnen Aktionen des aggregierten Dienstes vor dem Nut-
zer versteckt — ein aggregierter Dienst wird daher auch als ‘undurchsichtige
Verkettung’ (opaque-chaining) bezeichnet. Aggregierte Dienste erlauben eine
rekursive Zusammensetzung von Diensten: Eine Dienste-Kette kann zu einem
Dienst werden, was die Skalierbarkeit eines Systems férdert.

Ein System stellt oft viele unterschiedliche Dienste bereitstellt. Da fiir die
Erledigung einer bestimmten Aufgabe aus dieser Gesamtmenge oft nur wenige
Dienste anwendbar sind, schligt ISO/DIS 19119 die Einrichtung so genannter
services organizer folder (SOF) vor. Ein SOF ist eine Datenstruktur, die Re-
ferenzen auf Dienste enthélt, die in bestimmten Situationen anwendbar sind.
Nutzer eines Systems konnen ein aufgabenbezogenes SOF erstellen und ande-
ren Nutzern, fiir die Suche nach Diensten in vergleichbaren Situationen, zur
Verfiigung stellen.

Metadaten-Modell fiir Dienste

ISO/DIS 19119 stellt ein Metadaten-Modell fiir Dienste (genauer: fiir die In-
stanzen von Diensten) bereit. Die iiber die Metadaten-Elemente bereitgestellten
Informationen sollen ausreichen, damit ein Nutzer den Dienst verwenden kann.

Zur Definition des Metadaten-Schemas werden Elemente der ISO 19115
(Geographic information — Metadata) verwendet. Die Metadaten zu einer
Dienst-Instanz bestehen aus einer allgemeinen Beschreibung der Funktiona-
litdt des Dienstes und aus den Beschreibungen der Operationen, die durch die
Dienst-Instanz aufgerufen werden kénnen. Sofern es sich um eine eng gekoppel-
te Dienst-Instanz handelt, sind weitere Metadaten geméafl ISO/DIS 19115 fiir
die Daten anzugeben.

Dienste-Architektur (simple service architecture)

Fiir die Implementierung einer nachrichtenbasierten Architektur zur Verket-
tung von Diensten wird die so genannte ‘einfache Dienste-Architektur’ (simple
service architecture) vorgeschlagen. Damit sich ein System als Instanz dieser
Architektur bezeichnen darf, miissen bei der Implementierung fiinf Punkte be-
riicksichtigt werden, die bei Percivall (2002) mit den folgenden, unten niher
erkldrten Stichpunkten zusammengefasst werden:

e Nachrichten-Operationen
e Trennung von Kontrolle und Daten

3.2. STANDARDS 99

e Zustandsbehaftete vs. zustandslose Dienste
e Bekannter Dienst-Typ
e Zugewiesene Hardware (adequate hardware)

Operationen sollten aus Vereinfachungsgriinden iiber Nachrichten model-
liert werden. Eine Nachrichten-Operation (‘message operation’) sollte aus einer
Anfrage und einer Antwort bestehen. Anfragen und Antworten fithren Para-
meter mit sich, die unabhéngig vom Kontext in einer einheitlichen Weise iiber-
tragen werden. Bei den Anfrage-Antwort-Interaktionen einfacher Anwendun-
gen gibt es charakteristische Nachrichtenaustausch-Muster, wie den unidirek-
tionalen (Ereignis) und den bidirektionalen Austausch. Eine Dienstspezifikation
sollte die Erzeugung und Nutzung von Anwendungen so einfach wie moéglich
machen.

Trennung von Kontrolle und Daten. Ein Client, der auf einen Dienst zu-
greift (ihn kontrolliert), benstigt eventuell nicht die gesamten Resultate eines
Dienstes; im Falle einer Dienste-Kette benotigt er beispielsweise nur das End-
ergebnis, nicht aber die gegebenenfalls zur Verfiigung stehenden Teilergebnisse.
Aus diesem Grund sollten die Operationen einer Schnittstelle die Kontrolle ei-
nes Dienstes vom Zugriff auf die Ergebnisdaten des Dienstes trennen. Ein Client
sollte die Option haben, nur den Status einer Operation zu empfangen und auf
die Daten separat iiber eine andere Operation zuzugreifen.

Aus Vereinfachungsgriinden sollte ein Dienst zustandslos sein, d. h. der Auf-
ruf eines Dienstes besteht aus einer Aufruf-Antwort-Sequenz und es gibt keine
Abhé#ngigkeit von vorhergehenden und zukiinftigen Interaktionen. Dies ist nicht
immer moglich: fiir einige Dienste miissen Vorbedingungen gesetzt werden, fiir
andere sind Interaktionen notwendig. In solchen Fille, sind die moglichen Zu-
stdnde des Dienstes mit Hilfe eines Zustandsdiagramms zu modellieren. Die
Zustandsiibergéinge werden dann durch Operationen ausgeldst.

Alle Dienst-Instanzen sind von spezifischen Dienst-Typen und der Client
kennt den Typ vor der Laufzeit. Clients sollen Software enthalten, die den
Dienst-Typ feststellt, bevor sie in Verbindung mit einer Dienst-Instanz treten.

Die in ISO/DIS 19119 beschriebenen Dienste sind Software-Implementie-
rungen, die auf Hardware-Hosts laufen. Der Standard nimmt an, dass die mit
dem Hardware-Hosting verbunden Software-Fragen transparent gegeniiber dem
Nutzer sind — in anderen Worten: um die Zuweisung eines Hardware-Hosts zu
einem Dienst muss sich der Nutzer nicht kiimmern.

Information Viewpoint

Ziel der Festelegungen zum information viewpoint ist die Interoperabilitiit®? des
Informationsmodells. Zwei Systeme werden nach ISO 19119 dann als interope-
rabel angesehen, wenn sie sowohl syntaktisch als auch semantisch interoperabel

527Zum Begriff der Interoperabilitit sieche Unterabschnitt 2.3.2, Seite 21.

Nach-
richten-
Opera-
tion

Kontrol-
le &
Daten

Zu-
stiande

bekann-
ter
Dienst

zugewie-
sene
Hard-
ware

Dienst-
katego-
rien

Taxo-
nomie

Namens-
gebung

60 KAPITEL 3. STAND DER TECHNIK

sind, d. h. sie miissen nicht nur die gleiche Struktur fiir den Datenverkehr ver-
wenden, sondern auch ein gemeinsames Verstdndnis der Bedeutung der Daten
haben.

Das Modell fiir den information viewpoint wird in ISO 19101 definiert. ISO
19101 definiert fiir den information viewpoint ein Modell namens Extended
Open Systems Environment (EOSE) fiir geographische Informationen. Das Mo-
dell erweitert das Open System Environment Model (ISO/IEC TR 14252)%3 und
definiert sechs Dienstkategorien:

Interaktionsdienste fiir Nutzer (human interaction services) Dienste zur
Verwaltung von Benutzungsschnittstellen, Graphiken, Multimedia und
fiir die Présentation zusammengesetzter Dokumente

Modell- /Informations-Verwaltungsdienste (model/information manage-
ment services) Dienste zur Verwaltung der Entwicklung, Manipulation
und Speicherung von Metadaten, konzeptuellen Schemata und Datensét-
zen

Arbeitsablauf-/ Aufgabenverwaltungsdienste (workflow/task manage-
ment services) Dienste zur Unterstiitzung von speziellen, von Personen
kontrollierten Aufgaben

Verarbeitungsdienste (processing services) Dienste zur Ausfithrung von um-
fangreichen Berechnungen mit betréchtlichem Datenaufwand (weiter un-
terteilt in Dienste zur Verarbeitung raumlicher, thematischer, zeitlicher
und Metadaten-betreffender Aspekte)

Kommunikationsdienste (communication servcies) Dienste zur Verschliis-
selung und Ubertragung von Daten iiber Kommunikationsnetzwerke

Systemverwaltungsdienste (system management services) Dienste zur Ver-
waltung von Systemkomponenten, Anwendungen und Netzwerken sowie
Nutzerkonten und Zugriffsrechten

Jede dieser Kategorien repréasentiert Dienste fiir einen bestimmten, seman-
tisch unterscheidbaren Zweck. ISO/DIS 19119 fithrt Beispiel-Dienste fir die
Dienste-Kategorien an und definiert damit eine Dienst-Taxonomie. In dieser
Klassifizierung findet sich unter den Interaktionsdiensten fiir Nutzer beispiels-
weise ein catalogue viewer zum Auffinden und Verwalten von Metadaten. Ein
Beispiel fiir einen Modell-/Informations-Verwaltungsdienst ist der feature ac-
cess service, der fiir den Datenzugriff und die Verwaltung gespeicherter Daten
zustéandig ist.

Ein System muss diese Beispiel-Dienste nicht implementieren — sofern ein
Dienst innerhalb eines Systems allerdings einen der aufgefiihrten Namen hat,
sollte dieser Dienst auch die vordefinierte Funktionalitdt bereitstellen. Umge-
kehrt gilt Gleiches: ein Dienst mit der Funktionalitit einer der Beispiel-Dienste

531SO/TEC TR 14252: Information Technology — Guide to the POSIX Open System Envi-
ronment (OSE).

3.2. STANDARDS 61

sollte auch den in der Taxonomie vorgeschlagenen Namen haben. Die Namen
aller Beispiel-Dienste der ISO/DIS 19119 sind im Anhang zu finden (Tabel-
len C.1/C.2, Seite 238/239). Die Definitionen der Funktionalitéit dieser Dienste
sind gegebenenfalls in ISO/DIS 19119 (Percivall, 2002) nachzulesen.

Die Mehrzahl der Standards der 19100-Reihe fallen in die Klasse der Modell-
/Informations- Verwaltungsdienste und der Verarbeitungsdienste. Fiir die Berei-
che Arbeitsablauf-/Aufgabendienste, Kommunikationsdienste und Systemuver-
waltungsdienste gibt es in der 19100-Serie keine Standards. Das Kapitel der
Architekturentwicklung (Kapitel 5, Seite 95) nimmt die Beispieldienste noch
einmal auf.

Engineering Viewpoint

Um die Entwicklung eines flexiblen Systems zu unterstiitzen, werden die Diens-
te der oben genannten sechs Dienst-Kategorien in eine vierschichtige logische
Architektur integriert (siehe Abbildung 3.10, Seite 62). Die erste (obere) Schicht
ist zusténdig fiir die physikalische Interaktion mit dem Nutzer und enthélt da-
her alle Interaktionsdienste (human interaction services). Unter dieser Schicht
liegen die Verarbeitungsdienste: in Schicht zwei die vom Nutzer geforderten
Funktionen (user processing services) und in Schicht drei diejenigen Funktio-
nen, die von mehreren Nutzern sowohl aus dem gleichen Anwendungskreis
als auch bereichsiibergreifend verwendbar sind (shared processing services).
Die unterste Schicht beinhaltet die Dienste zur physikalischen Datenspeiche-
rung und Datenverwaltung, also die Modell-/Informations- Verwaltungsdienste
(model/information management services). Die Arbeitsablauf-/Aufgabendienste
(workflow/task services) werden als spezialisierte Verarbeitungsdienste angese-
hen und stehen daher auf der Ebene der Prozessdienste. Die Systemwverwal-
tungsdienste (system management services) konnen in jeder der vier Schichten
auftreten (auch wenn sie in Abbildung 3.10 neben den Verarbeitungsdiensten
platziert sind). Fiir die Verbindungen zwischen den Schichten sind die Kom-
munikationsdienste (communication services) zustindig.

Zur Implementierung dieser logischen Architektur wird eine physikalische
Architektur benotigt, d.h. eine Zuordnung der Dienste zu Komponenten und
deren Schnittstellen. ISO/DIS 19119 schlégt eine zweischichtige und eine drei-
schichtige physikalische Architektur vor. Die zweischichtige besteht aus einer
Komponente, die als Daten-Server dient, und aus einer Komponente, die den
Clients und die Benutzungsschnittstelle implementiert. Bei der dreischichtigen
physikalischen Architektur werden einige bzw. alle Verarbeitungsdienste aus
der Client-Komponente entfernt und in einen Anwendungsserver verlagert. So-
fern alle Verarbeitungsdienste vom Client in den Anwendungsserver {iberfiihrt
werden, wird der Client als thin client bezeichnet. Werden nur die von mehre-
ren Nutzern verwendeten Funktionen in den Anwendungsserver verlagert und
enthélt der Client noch einen groflen Funktionsanteil, handelt es sich um einen

4
logische
Schich-
ten

2 oder 3
physika-
lische
Schich-
ten

Vertei-
lungs-
platt-
form

Platt-
form-
(un)ab-
hingig

Beispiel

62 KAPITEL 3. STAND DER TECHNIK

Human interaction
services

User processing Workflow/Task
services services

Communication
services

System

Shared processing management
services services
T T

-
Model/Information
management
services

Abbildung 3.10: Logische Vier-Schichten-Architektur. Die Erkldrung der Ab-
bildung findet sich im Text. Quelle: ISO/DIS 19119 (Percivall, 2002).

thick client. Abbildung 3.11 zeigt die Zuordnung der logischen Schichten zu den
physikalischen Schichten im Uberblick.

Technology Viewpoint

Damit die Komponenten der physikalischen Architektur in einer verteilten
Umgebung miteinander kommunizieren kénnen, ist eine entsprechende Infra-
struktur notwendig: eine so genannte Distributed Computing Platform (DCP).
DCPs erlauben die Zusammenarbeit der Komponenten iiber Rechnergren-
zen, Hardware-Plattformen, Betriebssysteme und Programmiersprachen hin-
weg. Wichtige DCPs sind die Common Request Broker Architecture (COR-
BA) der Object Management Group (OMG), das (Distributed) Common Object
Model ((D)COM) der Firma Microsoft und Java Remote Message Invocation
(JAVA RMI) der Firma Sun Microsystems. Die Kommunikation zwischen Sys-
temen, die mit unterschiedlichen DCPs realisiert wurden, kann mit spezieller
Software (bridges) erfolgen.

Da die verschiedenen DCPs unterschiedliche Vorgehensweisen zur Vertei-
lungsunterstiitzung verwenden, miissen die genauen Dienste-Spezifikationen ab-
héngig von der DCP entwickelt werden — auf diese Weise entstehen die so
genannten plattformspezifischen Dienste-Spezifikationen. Die Basis fiir die Ent-
wicklung einer plattformspezifischen Spezifikation bildet eine plattformneutrale
Spezifikation, die unabhéngig von der verwendeten DCP ist.

Ein Beispiel fiir dieses Vorgehen sind die Spezifikationen zu den geographi-
schen Informationseinheiten (Features) des OpenGIS-Konsortiums: die platt-

3.3. FAZIT 63

. Human intercation services | |w|User interface client
User interface]
client v\

User processing services
I Application server
/ Shared processing services
Data server < Model/Information L, Data server
management services
2-tier physical Logical 3-tier physical

Abbildung 3.11: Physikalische Mehrschichten-Architektur. Die Erklarung der
Abbildung findet sich im Text. Quelle: ISO/DIS 19119 (Percivall, 2002).

formneutrale Spezifikation findet sich in der abstract specification mit dem Titel
‘The OpenGIS Feature’, wihrend sich die plattformspezifischen Definitionen fiir
unterschiedliche DCPs in den implementation specifications befinden — unter
ihnen beispielsweise eine Spezifikation fiir CORBA (OpenGIS Simple Features
Specification for CORBA).5

3.3 Fazit

Integrierte Modelle

Fiir den Begriff des ‘integrierten Modells’ gibt es keine einheitliche Definiti- inte-
on. Mit dem Begriff wird in der Literatur sowohl die Verbindung mehrerer %Ar:;;ﬁs
konzeptioneller Modelle zu einem Gesamtmodell verstanden als auch die Um-
setzung der konzeptionellen Modelle in Simulationsmodelle, d.h. in ablauffahige
Software-Systeme. Einige Definitionen gehen noch einen Schritt weiter, indem

sie ein integriertes Modell als ein umfangreiches Software-System ansehen, das
einen konsistenten Rahmen fiir die Simulationsmodelle bereitstellt und das ne-

ben der Simulation weitere Funktionalititen anbietet. Eine Analyse existieren-

der integrierter Modelle zeigt das Leistungsspektrum ihrer Software-Systeme,

das sich nicht in der Berechnung neuer Simulationsergebnisse erschopft: viele
Systeme bieten Funktionen zur Visualisierung und statistischen Auswertung

von Ergebnissen, Kopplungsméglichkeiten zu Datenbanksystemen und GIS so-

wie weitere Leistungsmerkmale. Einige Systeme sind demnach weit mehr als

547um OpenGIS-Konsortium siehe Seite 45; eine Spezifikations-Ubersicht findet sich in den
Tabellen C.4 (Seite 241) und C.5 (Seite 242).

inte-
griertes
Modell
vs. SISA

Defini-
tion
SISA

Problem

Ansatz

64 KAPITEL 3. STAND DER TECHNIK

gekoppelte Teilmodelle und stellen in der Tat den angesprochenen Rahmen fiir
die Simulationsmodelle bereit.

Um die unterschiedlichen Sichtweisen voneinander zu unterscheiden, wird
in der vorliegenden Arbeit der Begriff des ‘integrierten Modells’ dann verwen-
det, wenn primér die miteinander gekoppelten Simulationsmodelle angespro-
chen werden. Wenn die Rahmen-Eigenschaft eines Systems betont werden soll,
wird hingegen nicht von einem integrierten Modell gesprochen, sondern von ei-
nem ‘System zum simulationsbasierten integrierten Assessment’, das wie folgt
charakterisiert wird: Ein System zum integrierten simulationsbasierten Assess-
ment (SISA) ist ein Software-System, das von unterschiedlichen Fachdisziplinen
stammende Daten und Simulationsmodelle zum ‘System Erde’ in einem kon-
sistenten Rahmen kombiniert und neue Daten {iber den Zustand und mégliche
langfristige Anderungen des ‘Systems Erde’ — vornehmlich zur Unterstiitzung
politischer Entscheidungstrager — berechnet und bereitstellt.

In Bezug auf die Qualitit von Assessment-Ergebnissen spielt der ‘konsistente
Rahmen’ eine entscheidende Rolle, da er zur Steigerung und Sicherstellung der
Transparenz und Nachvollziehbarkeit der Ergebnisse beitréagt.

Architektur

Eine einheitliche Architektur der vorgestellten Systeme ist nicht zu finden. Die
gestiegenen Leistungsanforderungen an SISAs (GIS-Integration, Kopplung ver-
teilter Modelle etc.) spiegeln sich zwar in den einzelnen Systemen wider, eine
Komponentenbildung im Sinne einer Software-Architektur (Einteilung des Ge-
samtsystems in die Hauptbestandteile und Definition von Verantwortlichkeiten
und Schnittstellen) ist aber nicht zu finden. Die Systeme werden hingegen zu-
meist in Module eingeteilt, die sich aus der Realisierung der Systeme ergeben
(z.B. in Klassen-Bibliotheken). Aufgrund der unterschiedlichen Funktionali-
tdten der Module, lassen sich diese nicht ohne weiteres unter den Systemen
austauschen. Eine Interoperabilitét zwischen den Systemen ist wegen der un-
einheitlichen Einteilung der Gesamtsysteme sowie der unterschiedlichen Imple-
mentierungsmethoden bei der Funktionsrealisierung ebenfalls nicht gegeben.
Der Schliissel zur Wiederverwendbarkeit und Interoperabilitéit sowie zu qua-
litativ hochwertigen Systemen befindet sich in der Definition einer Software-
Architektur. Informationen zu den Leistungsmerkmalen, System-Aufteilungen
und Implementierungen existierender Modelle und Werkzeuge konnen als
Grundlage fiir die Architektur-Entwicklung fiir SISAs herangezogen werden.
Zur Steigerung der Interoperabilitit von Systemen zum simulationsbasier-
ten integrierten Assessment sollten bei deren Entwicklung auch Architektur-
Standards beriicksichtigt werden. Aufgrund der Komplexitidt der Standards
werden standardkonforme Realisierungen von SISAs i.d. R. nicht zu erwarten
sein. Die Architektur eines SISA sollte sich dennoch an diesen Standards orien-
tieren, da bereits die Umsetzung ihrer Prinzipien eine verbesserte Qualitéit der

3.3. FAZIT 65

Systeme verspricht. Dariiber hinaus erlaubt die Beriicksichtigung der grundle-
genden Prinzipien der Standards eine schrittweise Migration zu standardkon-
formen Systemen.

Die Entwicklung einer an Standards orientierten Architektur ist Inhalt des
Kapitels 5 (Seite 95). Grundlage fiir die Entwicklung der Architektur sind u. a.
die allgemeinen Ziele und Anforderungen eines SISA, die im folgenden Kapitel
definiert werden.

Wesentliche Aspekte zu Standards, den Leistungsmerkmalen sowie der Auf-
teilung und Implementierung existierender Systeme werden zum Abschluss die-
ses Kapitels in den folgenden Abséitzen noch einmal zusammengefasst.

Leistungsmerkmale

Die folgenden zentralen Leistungsmerkmale bzw. Funktionalititen gehoren, ne-
ben der Berechnung neuer Simulationsergebnisse, zum Leistungsumfang der in-
tegrierten Modelle und sind daher bei der Erstellung der Software-Architektur
fiir ein SISA zu berticksichtigen:

Bereitstellung und Nutzung von GIS-Funktionalitéten

Unterstiitzung bei der Analyse von (Ergebnis-)Daten

Visualisierung von Modellergebnissen

Unterstiitzung bei der Modellanalyse

Verwaltung von Szenarien

Bereitstellung und Erstellung von Dokumentationen (Modelldokumenta-
tion, Metadaten, Hilfesystem)

e Verwaltung von Datenbesténden

Die GIS-Funktionalitéiten werden fiir die geographisch explizite Modellie-
rung des ‘Systems Erde’ benotigt und werden entweder direkt im Rahmen des
integrierten Modells, also im SISA, implementiert oder durch die Kopplung
mit einem eigensténdigen GIS in das System integriert. Die Verwendung bzw.
Integration von GIS-Funktionen finden sich sowohl bei vielen der von Kickert
u.a. (1999) und Peirce (1998) beschriebenen Modelle wieder als auch bei den
Systemen OMS, IMA und SNI.

Zur Unterstiitzung der Analyse von Daten und Ergebnissen werden von
den Systemen beispielsweise Funktionen zur statistischen Auswertung bereit-
gestellt. Die bei Peirce (1998) aufgefiihrten Systeme stellen Funktionen zur Be-
rechnung von Standard-Statistiken (Mittelwert, Standardabweichung, kumula-
tive Wahrscheinlichkeit etc.) und zur Analyse von Zeitreihen bereit. Die Mog-
lichkeit zur Visualisierung von Ergebnissen in unterschiedlicher Form (Tabellen,
Graphen, Karten) kann als einfache Art der Analyseunterstiitzung angesehen
werden und wird sowohl bei den Systemen DANUBIA, IMA, M und OMS
als auch bei vielen weiteren Systemen (vgl. Kickert u.a., 1999; Peirce, 1998)
erwéhnt.

GIS

Daten-
analyse

Modell-
analyse

Szena-
rien-Ver-
waltung

Doku-
menta-
tion

Daten-
verwal-
tung

66 KAPITEL 3. STAND DER TECHNIK

Neben der Analyse von Modellergebnissen werden von einigen Systemen
auch Funktionen zur Analyse und zum Betrieb des Modells bereitgestellt. Hier-
zu gehoren insbesondere Funktionen zur Unsicherheitsanalyse aber auch Mog-
lichkeiten zur Modellkalibrierung und Modelloptimierung (vgl. die Ziele von
PRISM sowie Kickert u.a., 1999; Peirce, 1998).

Die Verwaltung von Szenarien bzw. Simulationslédufen wird — trotz der Wich-
tigkeit fiir die Nachvollziehbarkeit und Transparenz von Simulationsergebnissen
— bei den meisten Systembeschreibungen nicht erwéhnt. Fiir das Modellierungs-
system M wird hingegen eine separate Komponente hierfiir vorgeschlagen (der
‘scenario manager’), iiber die verschiedene Szenario-Einstellungen gesichert und
miteinander verglichen werden kénnen. Fiir das System DANUBIA steht eben-
falls eine Komponente zur Verwaltung komplexer Szenarien auf dem Entwick-
lungsplan.

Die Dokumentation von Modellen bzw. Ergebnissen, die fiir die Wiederver-
wendbarkeit duflerst relevant ist, spielt eine sehr unterschiedliche Rolle bei den
betrachteten Systemen: wihrend die meisten Systembeschreibungen nicht auf
dieses Thema eingehen, beschiftigen sich bei GLOBESIGH gleich zwei der vier
Komponenten mit der Dokumentation von Hintergrund- und Ergebnisinforma-
tionen (die ‘information base’ und die ‘issues base’). Bei ECOBAS fufit die (au-
tomatische) Modellgenerierung sogar auf einer detaillierten Beschreibung der
Modellelemente. Hier ist die Dokumentation also direkt mit den Modellen ge-
koppelt. Dariiber hinaus besitzt FCOBAS zur Steigerung der Wiederverwend-
barkeit von Modellen ein sehr detailliertes Metadaten-Konzept. Die Integration
von Metadaten spielt bei den Systemen ansonsten — wenn {iberhaupt — eine
sehr untergeordnete Rolle. Peirce (1998) fiihrt in seiner Ubersicht auch Syste-
me an, die die Generierung von Ergebnis-Berichten unterstiitzen. Das System
M bietet, neben einem Hilfesystem, die Moglichkeit der Hypertext-basierten
Berichterstattung.

Bei den Beschreibungen integrierter Modelle spielt die Verwaltung von Da-
tenbestdnden zumeist eine untergeordnete Rolle. Die Integration von Daten in
die Systeme geschieht mit unterschiedlichen Mitteln: wahrend GLOBESIGH
ein Datenbank-Managementsystem verwendet, stellt das System IMA eigene
Funktionen zum Datenimport und -export bereit und kapselt Daten in so ge-
nannten ‘Datenmodulen’. OMS kapselt die Daten in Bibliotheken und separiert
die Parameter in einer eigenen Bibliothek. Die Notwendigkeit der Integration
von Datenbanken héngt laut Peirce (1998) von der Hohe des Entwicklungs-
standes eines Modells ab. Wihrend einige Modelle Datenbanken lediglich als
Datenlieferanten nutzen, stellen bei anderen Modellen ausgereifte Datenbank-
Managementsysteme den Kern des Systems dar.

3.3. FAZIT 67

Komponenten

Bei den Systemen, die mehr als die Simulationsmodelle beinhalten, lassen sich Kompo-
die folgenden Systemkomponenten abgrenzen: nenten

Simulationsmodell
Dokumentation
Datenhaltung
Datenverwaltung
Datenintegration
Ablaufsteuerung

Die Trennung des Simulationsmodells von den iibrigen Teilen des Systems
wird sowohl bei GLOBESIGHT und M als auch bei OMS und IMA vorgenom-
men. Die Funktionen zur Dokumentation kénnen insbesondere bei den Syste-
men GLOBESIGHT, M und ECOBAS als separate Komponenten betrachtet
werden. Eine klare Trennung von Datenhaltung und Datenverwaltung (inkl. ei-
nem Szenario-Manager) findet sich insbesondere beim Modellentwicklungssys-
tem M. Separierte Funktionen zum Datenexport und -import (Datenintegrati-
on) sind bei den Systemen OMS, GLOBESIGHT und IMA vorhanden. OMS
und M bieten zur Verarbeitung von Daten aulerdem eine Art ‘Ablaufsteue-
rung’, mit der die Funktionen des Systems programmgesteuert angesprochen
werden konnen.

Die grofite Aufmerksamkeit bei der Beschreibung integrierter Modelle erhélt Modell-
die Kopplung von Modellteilen. Hier existieren die unterschiedlichsten Ansétze: ﬁf’g‘"
angefangen von relativ einfach zu realisierenden Konzepten (wie bei SNI) bis
zu sehr spezialisierten Modellkopplern (wie bei PRISM).

Implementierung

Bei den eingesetzten Mitteln zur Implementierung integrierter Modelle zeigt
sich eine Tendenz zur Verwendung objektorientierter Technologien sowie zur
Nutzung von Internet-Technologien. So ist das OMS beispielsweise in JAVA
implementiert und nutzt Remote Message Invocation (RMI) zur Verteilung so-
wie die JAVA-NetBeans zur Komponentenkapselung. DANUBIA ist ebenfalls in
JAVA implementiert. Da iiber das Java Native Interface (JNI) die Integration
von Programmen moglich ist, die in anderen Programmiersprachen geschrie-
ben sind, wird die Integration von in C geschriebenen Programmen erlaubt
(auch FORTRAN-Programme lassen sich iiber den Umweg iiber C-Programme
einbinden).

Die Nutzung von Internet-Browsern als Benutzungsschnittstelle findet sich
sowohl in aktuellen Entwicklungen wie DANUBIA als auch von den ‘ilteren’
Systemen M und FCOBAS. Das System IMA verwendet dariiber hinaus die
extensible markup language (XML).

68 KAPITEL 3. STAND DER TECHNIK

Standards

Im Zusammenhang mit der Entwicklung einer Software-Architektur sind ins-
besondere die Arbeiten des technischen Komitees 211 (TC211) der internatio-
nalen Organisation fir Standardisierung (ISO) sowie die Arbeiten des Open
GIS Consortium (OGC) von Bedeutung. Sowohl das TC211 als auch das OGC
liefern Standards zum Aufbau von Systemen zur Geodatenverarbeitung. Den
gemeinsamen Rahmen fiir diese Standards bildet der ISO/DIS 19119. Dieser
Standard beschreibt den grundsétzlichen architektonischen Aufbau, den geo-
datenverarbeitende Systeme aufweisen sollten. Fiir die Kopplung komplex mit-
einander verkniipfter Teilmodelle sollte die High-Level Architecture (HLA) des
Institute of FElectrical and Electronic Engineers (IEEE) in Betracht gezogen
werden. Die Verwendung von Standards des World Wide Web Consortium
(W3C) bei der Realisierung von SISAs verspricht ebenfalls eine gesteigerte
Interoperabilitéit der Systeme.

Kapitel 4
Systemdefinition

Ziel der vorliegenden Arbeit ist die Entwicklung einer Software- Architektur, die
als Referenz bei der Erstellung und Erweiterung von Systemen zum integrierten
simulationsbasierten Assessment (SISAs) verwendet werden kann. Eine Vorun-
tersuchung und Durchfiihrbarkeitsstudie, wie sie in der Planungsphase einer
Software-Entwicklung vorgesehen ist!, kann an dieser Stelle aufgrund der ge-
wiinschten Anwendbarkeit der Architektur auf unterschiedliche Systeme nicht
vorgenommen werden (die genauen Funktionen eines SISA sind projektabhén-
gig). Dieses Kapitel beschiiftigt sich daher mit der Definition allgemeiner An-
forderungen an ein System zum integrierten simulationsbasierten Assessment
und dient damit als Grundlage fiir die Architekturentwicklung in Kapitel 5
(Seite 95).

Grundlage fiir das Verstéindnis der Anforderungsdefinition ist das in Ab-
schnitt 4.1 spezifizierte Produktmodell, das wichtige Aspekte des Anwendungs-
bereichs erkldart. Abschnitt 4.2 (Seite 75) definiert anschliefend das Einsatz-
gebiet und die Hauptfunktionen und Hauptdaten des SISA sowie die grund-
legenden Anforderungen an das System. Die wichtigsten Eigenschaften und
Anforderungen des spezifizierten SISA werden in Abschnitt 4.3 noch einmal
zusammengefasst.

4.1 OOA-Modell

Inhalt dieses Abschnitts ist die Darstellung und Erklirung des Produktmo-
dells, das aus einer objektorientierten Analyse des Problembereichs resultiert
(OOA-Modell). Der erste Unterabschnitt (4.1.1) beschéftigt sich mit den wich-
tigsten Elementen eines SISA und mit der Umgebung, in die das System im

IVergleiche Unterabschnitt 2.3.1, Seite 16.

69

Uber-
sicht

Simula-
tions-
modell

Imple-
mentie-
rung

Daten

70 KAPITEL 4. SYSTEMDEFINITION

Einsatz eingebettet ist (Gesamtmodell). Die Identifizierung verschiedener, wie-
der verwendbarer ‘Betriebsmittel” (Ressourcen), die im Rahmen eines simulati-
onsbasierten Assessments bendtigt werden, erfolgt aufgrund ihrer Wichtigkeit
ausfithrlicher im anschlieBenden Unterabschnitt (4.1.2, Seite 72).

4.1.1 Gesamtmodell

Die in Abbildung 4.1 (Seite 73) dargestellten Objekte geben einen ersten Uber-
blick iiber wichtige Bestandteile und Konzepte, die im Rahmen eines SISA von
Bedeutung sind. Die folgenden Absitze dienen der Erklirung der Abbildung.

Das zentrale Element in einem SISA (s. Abb. 4.1, Seite 73) ist das integrierte
Simulationsmodell, das sich i. d. R. aus mehreren Teilmodellen zusammensetzt.
Die Teilmodelle reprisentieren dabei die verschiedenen Sphiren, die zur Pro-
blembetrachtung notwendig sind. Oft werden bereits vorhandene Modelle oder
vereinfachte Versionen bereits entwickelter Modelle (so genannte Metamodelle)
innerhalb eines integrierten Modells als Teilmodell eingesetzt. Die Modellteile
sind dabei nicht zwangslaufig von einem Entwickler oder einem Entwicklungs-
team innerhalb einer Organisation erstellt worden — bedingt durch die hohe
Komplexitit der Modellteile werden diese oft weltweit von unterschiedlichen
Organisationen wieder verwendet.

Die Implementierung der Teilmodelle eines integrierten Modells kann gene-
rell mit Hilfe verschiedener Simulationsansétze erfolgen. Im Bereich der inte-
grierten Modellierung wird i. d. R. die Eigenentwicklung unter Verwendung von
Standard-Programmiersprachen, wie FORTRAN, C, C++, oder speziell ent-
wickelten Simulationsumgebungen bevorzugt. Ein Grund fiir dieses Vorgehen
sind die unzureichenden Mdoglichkeiten kommerzieller Simulationsumgebungen
und Simulationssprachen zur geographisch expliziten Reprisentation von Vor-
gangen. Die Kopplung der Teilmodelle erfolgt iiber einen Kommunikationsme-
chanismus; im einfachsten Falle mit Hilfe von Dateien (lose Kopplung) oder
durch direkte Funktionsaufrufe (enge Kopplung) der beteiligten Teilmodelle.

Integrierte Modelle benotigen zur Kalibrierung und zum Betrieb grofie Da-
tenmengen; vornehmlich Zeitreihen von Daten mit rdumlichem Bezug (Geoda-
ten). Die Datensitze liegen meist in Form von Dateien vor, die zur Simulations-
zeit direkt vom Simulationsmodell gelesen werden. Bei den verwendeten Daten-
formaten kommen sowohl Standardformate als auch proprietire Formate vor.
Die Speicherung der Daten kann auch {iber Datenbank-Managementsysteme
erfolgen. Bei den Geodaten kann unterschieden werden zwischen solchen mit
primérem Raumbezug und solchen mit sekundirem Raumbezug?.

2Zum primiren Raumbezug werden primire Metriken verwendet, bei denen zwei- oder
dreidimensionale Koordinaten anzugeben sind. Die Angabe geographischer Koordinaten (x-
und y-Wert) ist ein Beispiel fiir einen priméren Raumbezug. Der primire Raumbezug erlaubt
eine sehr genaue und eindeutige Ortsangabe. Sekundidre Metriken, wie beispielsweise die
Postleitzahl-Bereiche oder Landerkennungen, werden fiir Ortsangaben verwendet, die eine

4.1. OOA-MODELL 71

Datensiitze konnen ferner durch ihre Herkunft differenziert werden: Die Da-
tensétze, die von einem Datenlieferanten kommen, fiir deren Inhalt also nicht
der Modellbetreiber oder Modellentwickler verantwortlich ist, konnen als ‘Pri-
maéardatenséitze’ bezeichnet werden. Daten, die von Priméirdatenséitzen abgelei-
tet (z. B. modifiziert oder umformatiert) sind, konnen als ‘Sekundérdatensitze’
bezeichnet werden.

Simulationen (Simulationsliufe) basieren auf in sich konsistenten Annah-
men iiber zukiinftige Entwicklungen (den Szenarien), die iiber Datensiitze und
weitere Modelleinstellungen (z. B. beziiglich der Modellkonfiguration) quantifi-
ziert werden®.

Die Vor- und Nachbearbeitung von Daten geschieht sowohl iiber eigens fiir
diesen Zweck geschriebene Programme (Individualsoftware) als auch tiber Stan-
dardsoftware (Textverarbeitung, Tabellenkalkulation etc.). Das Simulations-
programm nutzt i.d. R. lediglich die Individual-Software zur Erledigung seiner
Aufgabe; ein Trend zur Integration der Funktionalitdt von Geo-Informations-
systemen (GIS) ist allerdings zu erkennen.

An einem integrierten Assessment ist nicht nur eine Person beteiligt. Es kann
unterschieden werden zwischen: Modellentwickler, Modell-Implementierer, Mo-
dell-Betreiber, Entscheidungstriger und Ressourcenlieferant. Der Modellent-
wickler ist zusténdig fiir die Formulierung des konzeptionellen Modells und
die Analyse des Simulationsmodells; die Umsetzung des konzeptionellen Mo-
dells in ausfithrbaren Computercode, d.h. die Erstellung des Simulationsmo-
dells, ist Angelegenheit des Modell-Implementierers; fiir die Bereitstellung von
Daten und anderen Ressourcen (z.B. Teilmodelle oder Hilfsprogramme) sind
verschiedene Ressourcen-Lieferanten zusténdig und der Modellbetreiber fiithrt
die Simulationsstudie durch und vermittelt die Ergebnisse den Entscheidungs-
trdgern. Die beschriebenen Aufgaben kénnen auch von weniger Beteiligten in
Personalunion erledigt werden. Aufgrund der Komplexitéit integrierter Model-
le sind an deren Entwicklung oft Personen aus unterschiedlichen Institutionen
(Organisationen) beteiligt.

Die an einem Assessment beteiligten Personen erzeugen verschiedene Do-
kumente. Bei den Dokumenten kann unterschieden werden zwischen formlosen
Beschreibungen, kurzen Anmerkungen und umfangreicheren Berichten. Bei den
fiir die Publikation von Ergebnissen erzeugten Dokumenten kann unterschieden
werden zwischen Prisentationen (z.B. in Form von ‘Vortragsfolien’), Postern,
Karten und veroffentlichter Literatur.

Das Assessment selbst beinhaltet eine Simulationsstudie, zu der die Durch-
fiihrung mehrerer Simulationslédufe und deren Analyse gehort. Die Simulations-

groflere Unscharferelation aufweisen diirfen. Ndheres zu diesem Thema findet sich z. B. in
Bill und Fritsch (1994).

3Der Begriff des ‘Szenarios’ wird aus Griinden der Einfachheit auch bei der Zusammenfas-
sung von Daten der Vergangenheit (die beispielsweise zur Modellvalidierung benétigt werden)
benutzt.

Szena-
rien

‘Werk-
zeuge

Perso-
nen

Doku-
mente

Assess-
ment

Ressour-
cen

Identifi-
zierung

Modell-
entwick-
lung

72 KAPITEL 4. SYSTEMDEFINITION

ldufe basieren auf definierten Szenarien. Eine Modellanalyse (beispielsweise zur
Untersuchung der Modellunsicherheiten oder -sensitivitit) gehort ebenfalls zu
einem simulationsbasierten integrierten Assessment.

4.1.2 SISA-Ressourcen

Die Erstellung einer Studie mit Hilfe eines SISA erfordert die Verwendung
vieler unterschiedlicher ‘Betriebsmittel’ (Ressourcen*). Die Erzeugung dieser
Betriebsmittel ist aufgrund der Komplexitit eines integrierten Assessments sehr
aufwendig — eine Wiederverwendung der Ressourcen ist also anzustreben. Die
Frage ist daher: Welche Ressourcen konnen innerhalb des SISA identifiziert
werden und wie kann die Wiederverwendbarkeit dieser Ressourcen erreicht oder
gesteigert werden?

Die Identifizierung der Ressourcen wird anhand des OOA-Modells in Abb.
4.1 unter Beriicksichtigung der Arbeitsschritte erfolgen, die zur Erstellung einer
Simulationsstudie notwendig sind (vgl. Abschnitt 2.2, Seite 14). Tabelle 4.1
zeigt die zur Erstellung einer Simulationsstudie erforderlichen Arbeitsschritte
und deren Resultate in einer Ubersicht.

’ Arbeitsschritt ‘ Resultat ‘
Problemformulierung und -analyse Systemgrenzen, Zielbeschreibung
Modellbildung Modellkonzept
Datenerhebung Datenbasis
Erstellung des Computerprogramms Simulationsmodell
Modellvalidierung validiertes Simulationsmodell
Planung und Durchfithrung von Simulationsldufen | Simulationsergebnisse
Auswertung und Implementierung der Ergebnisse Analysen, Berichte

Tabelle 4.1: Arbeitsschritte einer Simulationsstudie (vgl. Abschnitt 2.2, Sei-
te 14) und deren Resultate. Die Resultate konnen als wieder verwendbare
Ressourcen angesehen werden. Weitere Ressourcen sowie deren Unterteilung
werden im Text aufgefiihrt.

Zur Durchfithrung einer Simulationsstudie (Studie) ist demnach zunéchst
ein Modellkonzept zu erstellen. Dieses Modellkonzept ist bereits eine Ressour-
ce, die (bei entsprechend guter Dokumentation) in anderen Projekten sinnvoll
wieder verwendet werden kann. Auf der Grundlage des Modellkonzepts wird
das Simulationsmodell erstellt. Dieses Gesamt-Simulationsmodell besteht im
Rahmen des integrierten Assessments i.d.R. aus unterschiedlichen, dem Mo-
dellkonzept folgenden Teilmodellen. Sowohl das Gesamt-Simulationsmodell als

4 Bestand von etwas, was fiir einen bestimmten Zweck benétigt wird.“ (Duden, 1996)

[ap)
=

4.1. OOA-MODELL

| wa)sAspig
[| _ 1
[rewouaigsuogernung| | neinus|

m:uwn._mv_._:xwm_ _ m:nwn‘.mE_,.n__

; |lepow
[,

L i ! E| -suone|InwIS
sapaubaju|

zyesuesuonenwig|

Jaqn pejupweldw »

aseydg

<1q1e1yaspsal| penueseidas »

paiBelsul

Bunjjeyusieq

any panusiusidwi »

« s|e paruawa|duwy

\ﬂ_sﬁw

Jenuesesdal »

[troa‘a) o {broa‘a)

1
I
«Jne paiseq

I (@) uosiad

[broq) eshreuy-siugeBaesuopeinuns| Bunyomuayoian|

|eidsueld

[doysyiomuayiadx3

(Moa‘a) pefoig

losAjeueuaiieuazg|

| _wovos | \/
(aw) yuswnyoaK | E E

Bunqiaiyosag| juawssassy sajalbaju|

.._ _. .._
< 4oanp uyny
JUBISSOSSY

souaubaju| uosiad

Modell eines Systems zum simulationsbasierten integrier-

Abbildung 4.1: OOA

ten Assessments (SISA). Zur besseren Ubersicht sind nicht alle Beziehungen

).

vgl. auch Abb. 4.4, Seite 85

(

zwischen den Klassen aufgefiihrt

Daten u.
Szena-
rien

Hilfspro-

gramme

Doku-
mente

abstrak-
te Res-
sourcen

74 KAPITEL 4. SYSTEMDEFINITION

auch die Teilmodelle stellen Ressourcen dar, deren Wiederverwendung aufgrund
des Entwicklungsaufwandes in besonderem Mafle anzustreben ist.

Die Simulation des Systemverhaltens erfordert die Bereitstellung von Da-
ten fiir das Simulationsmodell: Initialisierungsdaten fiir das Simulationsmo-
dell, Eingabedaten zur Beschreibung exogener, systembeeinflussender Groéfien
(Modellumwelt-Daten), Parametersditze zur Festlegung der Systemparameter
sowie Angaben iiber Simulationsmodell- Optionen®. All diese Daten sind, eben-
so wie die Ausgabedaten des Simulationsmodells, als wichtige SISA-Ressourcen
zu betrachten. Die Simulationslédufe basieren auf Szenarien; um Ergebnisse ver-
schiedener Assessments vergleichen zu koénnen, werden fiir unterschiedlicher
Studien und Projekte oft die gleichen Szenarien benutzt® — ein Grund, auch
diese als SISA-Ressourcen zu betrachten.

Zur Erzeugung und Vorbereitung der Eingabedaten fiir die Simulations-
modelle werden sowohl Standardprogramme (Anwendungen wie GIS oder Ta-
bellenkalkulationsprogramme) als auch eigens fiir diesen Zweck geschriebene
Programme (Individualsoftware) eingesetzt. Die mehr oder weniger komplexen
eigens entwickelten Programme konnen als Hilfsprogramme betrachtet und als
Ressource innerhalb anderer Projekte wieder verwendet werden. Gleiches gilt
fiir Funktionen, die z. B. in Form von ‘Diensten’ (s. Seite 56) angeboten werden.

Die Anwendungen und Werkzeuge werden auch bei der Analyse der Simu-
lationsergebnisse eingesetzt — zunéchst fiir die Validierung des Modells im Mo-
delltest und anschlielend fiir die Szenarien-Analyse. Endergebnis einer Studie
sind dann verschiedene Dokumente wie Berichte und Veréffentlichungen (vgl.
Abb. 4.1, Seite 73). Diese Dokumente sollten, ebenso wie die Beschreibung
der Modellziele und der Modellgrenzen aus dem ersten Arbeitschritt, moglichst
einfach zugreifbar und wieder verwendbar sein.

Wiéhrend der Erstellung des Modells und der Durchfithrung der Studie tre-
ten zahlreiche Fragen und Probleme auf, deren Losungen eventuell auch fiir
weitere Arbeiten hilfreich sind; kurze, formlose Anmerkungen kénnen hier eine
entscheidende Erleichterung bei der Wiederbenutzung der anderen Ressourcen
bieten. Aus diesem Grund wird die Anmerkung explizit als Ressource angese-
hen.

Zur Beschreibung von Simulationsldaufen, Studien, Projekten etc. sind Do-
kumente zu erstellen. Diese Dokumente kénnen, ebenso wie Daten oder Soft-
ware, unmittelbar fiir andere Zwecke wieder verwendet werden. Ein Simulati-
onslauf an sich kann aber auch eine Ressource darstellen; eine Ressourcen, von
denen Teile (z. B. Ausgabedaten) wieder verwendet werden kénnen oder auf die
an anderen Stellen verwiesen werden kann. Um solche Verweise zu erlauben,
werden fiir das SISA so genannte ‘abstrakte Ressourcen’ eingefiihrt.

5Beispielsweise zur Steuerung des Umfangs oder Formats der Ausgabedaten.

6Beispielsweise kann im Rahmen der Klimafolgenforschung die Beriicksichtigung von Sze-
narien des IPCC Special Report on Emission Scenarios (IPCC, 2000) als obligatorisch an-
gesehen werden.

4.2. ANFORDERUNGSDEFINITION 75

Die (abstrakten) Ressourcen, die sich teilweise auch im objektorientierten
Analysemodell des SISA auf Seite 73 wiederfinden, sind in Abbildung 4.2 (Sei-
te 76) als Ubersicht dargestellt.

4.2 Anforderungsdefinition

Im Folgenden werden die funktionalen und nicht-funktionalen Anforderungen
an ein SISA beschrieben. Die Form der Anforderungsdefinition orientiert sich
am Vorschlag zum Aufbau eines Pflichtenheftes aus Balzert (1996). Da die funk-
tionalen Anforderungen an ein SISA von System zu System variieren, werden
an dieser Stelle lediglich die Grundfunktionalitdten aufgefithrt, die fiir jedes
SISA angenommen werden kénnen.

Der folgende Unterabschnitt (4.2.1) beschreibt zunéchst allgemeine Anfor-
derungen an das SISA, wie sie in der einschléigigen Literatur zu finden sind. Dar-
aufhin erfolgt die Definition der Ziele und Funktionen des SISA (Unterabschnitt
4.2.2, Seite 78). Der Anwendungsbereich, die Zielgruppen und die Betriebsbe-
dingungen werden im Unterabschnitt System-FEinsatz (4.2.3, Seite 80) beschrie-
ben. Anschliefilend erfolgt die Beschreibung der System-Umgebung (4.2.4, Sei-
te 82) und der grundlegenden System-Daten (4.2.5, Seite 84). Besondere Anfor-
derungen an zeit- und umfangbezogene Leistungen des SISA werden im Unter-
abschnitt der System-Leistungen (4.2.6, Seite 88) behandelt. Anforderungen an
die Benutzungsschnittstelle finden sich im folgenden Unterabschnitt (4.2.7, Sei-
te 89). Ein SISA hat nicht nur funktionale Anforderungen zu erfiillen, sondern
auch nicht-funktionale (qualitative); diese werden im Abschnitt Qualtititsziel-
Bestimmung (4.2.8, Seite 89) aufgefiihrt. Im Anschluss folgen Unterabschnitte
zur Beschreibung der Testszenarien und der Entwicklungs-Umgebung sowie ein
kurzer Abschnitt zu Ergdnzungen.

4.2.1 Allgemeine Anforderungen

Das in einem SISA verwendete Simulationsmodell ist i. d. R. kein monolithisches
Programm, sondern ist aus unterschiedlichen (oft iiber Institutionsgrenzen hin-
weg erstellten) Einzelmodellen zusammengesetzt. Selbst Modelle, die bereits im
Einsatz sind, werden alle drei bis sechs Monate verfeinert und auf einen neuen
Stand gebracht (Weyant u. a., 1996), d. h. ein SISA bzw. das Simulationsmodell
innerhalb des SISA muss gut dnderbar sein.

McCarthy u.a. (2001) fordern die Nutzung prozessorientierter Modelle mit
hoher rdumlicher und zeitlicher Auflésung, was die Nutzung entsprechend auf-
geloster (geographischer) Daten nach sich zieht. Zur Vorbereitung dieser Daten
fiir die Simulationsmodelle, die anschliefende Analyse der Simulationsergeb-
nisse und die Analyse von Hintergrunddaten ist der Einsatz von Geo-Infor-

Uber-
sicht

Modell-
dnde-
rungen

Geo-
Daten

76 KAPITEL 4. SYSTEMDEFINITION

Simulationsmodell

Hilfsprogramm

|KIassen—/FunktionsbiIinothek|

Gesamtmodell

Teilmodell

Programm K

—{Systemparameter -Daten|

Initialisierungsdaten

—|M odellumwelt—Daten|

Ressour ce |<]—4 Datensatz

Beschreibung
Anmerkung

Bericht

Préasentation

% Dokument |<]—

1

Poster

Karte

Ver offentlichung

M odellkonzept

Projekt

Abstr akte Ressour ceK|

%Simulationsiauf|

% Analyse
% Szenario |
Abbildung 4.2: Ressourcen eines Systems zum simulationsbasierten integrierten

Assessment. Erkldrungen finden sich im Text. (s. auch Abb. 4.1, Seite 73 u. Abb.
4.4, Seite 85).

M 0de||ana|yse|

Datenanalyse |

P

Szenario-AnaIyse|

4.2. ANFORDERUNGSDEFINITION 7

mationssystemen sinnvoll bzw. notwendig (s. z. B. Luiten, 1999; Peirce, 1998;
Schneider, 1997).

Da nicht alle Daten sinnvoll in einem GIS angezeigt werden koénnen, miis-
sen entsprechende Visualisierungsméglichkeiten vorhanden sein (Alcamo, 2002;
Peirce, 1998; Rotmans und Dowlatabadi, 1998)7. Zur Darstellung sollten nicht
nur Diagramme, Graphen, Tabellen und Histogramme genutzt werden, sondern
auch innovative Techniken, z. B. zur dynamischen Prisentation von Information
(Rotmans und Dowlatabadi, 1998).

Zur Erstellung simulationsbasierter Assessments werden umfangreiche Da-
tenbestédnde benttigt und erzeugt. Die Organisation und Verwaltung dieser Da-
ten (inklusive dazugehoriger Datendokumentationen) spielt eine wichtige Rolle
im integrierten Assessment (Luiten, 1999; Parson, 1995) und sollte daher vom
SISA unterstiitzt werden. Je nach Komplexitdt der konkreten Anwendung ist
auch die Anbindung an ein Datenbank-Managementsystem sinnvoll bzw. not-
wendig (Luiten, 1999).

Alcamo (2002) fordert im Hinblick auf die Anwendbarkeit von integrierten
Modellen eine gute Modelldokumentation. Eine umfangreiche Dokumentation
ist auch notwendig zur von Toth (1995) geforderten Modell-Verifikation durch
den Vergleich von Ergebnissen unterschiedlicher Modelle: um einen solchen Ver-
gleich auch iiber Institutionsgrenzen hinweg zu ermoglichen, miissen sowohl die
einem Simulationslauf zugrunde liegenden Szenarien als auch die verwendeten
Basisdaten vergleichbar und gut dokumentiert sein. Die Dokumentation aller
fiir einen Simulationslauf verwendeten Daten erhoht dariiber hinaus die von
Dowlatabadi (1995) und Rotmans und Dowlatabadi (1998) geforderte Trans-
parenz des Modells.

Als weiteren Weg zur Modell-Uberpriifung schligt Toth (1995) den Aus-
tausch von Modellteilen mit anschliefendem Ergebnisvergleich vor. Neben der
Notwendigkeit einer ausreichenden Dokumentation bedarf es fiir diesen Schritt
einer guten ‘Austauschbarkeit’ von Teilmodellen.

Die Modell-Validierung sollte sich nach Rotmans und Dowlatabadi (1998)
nicht nur auf den Ergebnis-Vergleich unterschiedlicher integrierter Modelle fiir
einen definierten Satz von Szenarien beschrinken. Die Autoren fordern auch
einen Vergleich endogener und exogener Modellannahmen und die Durch-
fiihrung umfassender Sensitivitdts- und Unsicherheitsanalysen. Auch, wenn
Weyant u.a. (1996) sagen, dass eine Sensitivitits-Analyse iiber ein gesamtes
integriertes Modell aus Komplexititsgriinden nicht moglich ist und Alcamo
(2002) anmerkt, dass sich die Unsicherheiten einzelner Teilmodelle unter ge-
wissen Umstédnden auch kompensieren kénnen, werden umfassende Untersu-
chungen zur Sensitivitdt und Unsicherheit an vielen Stellen gefordert (Alcamo,
2002; Cocks u.a., 1998; Dowlatabadi, 1995; Rotmans und van Asselt, 2001;

7 Readers will prefer it if tools that generate data provide their own visualisation functions
suited to the data.“ (Peirce, 1998)

Visuali-
sierung

Daten-
verwal-
tung

Nach-
vollzieh-
barkeit

Aus-
tausch-
barkeit

Modell-
Analyse

/Zxx/
/Fxx/

Simula-
tions-

laufver-
waltung

Projekt-
Ressour-
cen

Ressour-
cenliste

78 KAPITEL 4. SYSTEMDEFINITION

Schneider, 1997; Shlyakhter u.a., 1995; Toth, 1995; Tol und Vellinga, 1998).
Eine Unterstiitzung der Modellanalyse durch das SISA ist daher vorzusehen.

Unter Beriicksichtigung dieser allgemeinen Anforderungen werden im fol-
genden Unterabschnitt die vom SISA verfolgten Ziele genauer definiert.

4.2.2 Ziele und Funktionen

Das iibergeordnete Ziel des Systems zum integrierten simulationsbasierten As-
sessment ist die konsistente Verwaltung von Daten unterschiedlicher Fachdis-
ziplinen und die Erzeugung neuer Daten mit Hilfe von Simulationsmodellen.

Im Folgenden werden die Ziele des Systems sowie die Funktionen, die not-
wendig sind, um das SISA-Ziel zu erreichen, genauer definiert. Um im weiteren
Verlauf der Arbeit einfacher auf diese Definitionen zuriickgreifen zu kénnen,
werden die einzelnen Ziele und Funktionen — dem Vorschlag von Balzert (1996)
folgend — bezeichnet: Die Ziele werden mit /Zxx/ bezeichnet, Funktionen mit
/Fxx/. Die Nummerierung (xx) erfolgt dabei in 10er-Schritten, um nachtragli-
che Anderungen zu vereinfachen.

Um die geforderte Nachvollziehbarkeit von Modellergebnissen und Studien
zu gewéhrleisten, muss das SISA in der Lage sein, Simulationsldufe (Simulatio-
nen) zu verwalten (/Z10/). Zur Simulationsverwaltung muss das System eine
Funktion zur Beschreibung neuer Szenarien bereitstellen (/F10/). Einem Sze-
nario werden i.d.R. mehrere Datensétze zugeordnet (z.B. iiber den Verlauf
wichtiger Indikatoren; vgl. Abb. 4.1, Seite 73). Das System muss daher in der
Lage sein, eine solche Zuordnung aufzunehmen (/F20/). Weitere, zur Berech-
nung von Modellergebnissen notwendige Daten (z. B. zur Parametrisierung des
Modells) miissen den einzelnen Simulationsldufen zugeordnet werden kénnen.
Entsprechende Funktionen zur Beschreibung von Simulationsldufen (/F35/)
und der Datenzuordnung (/F30/) miissen daher vom SISA bereitgestellt wer-
den. Um die Auswahl von Daten zu unterstiitzten, sollte das SISA Informatio-
nen (Metadaten) iiber vorhandene bzw. anwendbare Datensitze bereitstellen

(/F40/).

Uber die Verwaltung der Simulationsliufe hinaus soll das SISA in der Lage
sein, alle Ergebnisse einer Simulationsstudie (inkl. der auf den Modellrechnun-
gen basierenden Analysen) zu verwalten (/Z20/). Zu diesem Zweck ist eine
Funktion bereitzustellen, die eine Zuordnung von Ressourcen zu Simulations-
studien und Projekten erlaubt (/F50/).

Die Verwaltung der Ressourcen selbst wird ebenfalls als ein Ziel des SISA
definiert (/Z30/). Zur Steigerung der Wiederverwendbarkeit von Ressourcen
sollte zumindest eine Funktion zur Auflistung aller vorhandenen Ressourcen
durch das System bereitgestellt werden (/F60/).

4.2. ANFORDERUNGSDEFINITION 79

Um der Anforderung der Nachvollziehbarkeit und Dokumentation des As-
sessments nachzukommen, sollte das SISA fiir das ganze Assessment umfassen-
de Hintergrundinformationen bereitstellen (/Z40/). Informationen sind insbe-
sondere bereitzustellen iiber die eingesetzte Software (/F70/) und die verwen-
deten bzw. erzeugten Daten (/F80/) sowie iiber die verwendeten und erzeugten
Dokumenten (/F90/) und die an einer Studie beteiligten Personen und Orga-
nisationen (/F100/). Eine Funktion zur Bereitstellung von Informationen iiber
durchgefiihrte Projekte und Studien (/F110/) sollte ebenfalls vorhanden sein.

Das SISA sollte zur Verbesserung der Nachvollziehbarkeit und Transparenz
von Ergebnissen auch Hilfestellungen zum Verstindnis des Problembereichs
liefern (/Z50/). Die Bereitstellung eines Glossars, das die Kernbegriffe des Pro-
blemfeldes und des Assessments beinhaltet, wird hier als Minimalanforderung
angesehen (/F120/).

Eine zentrale Aufgabe eines Systems zum simulationsbasierten integrierten
Assessment ist die Erzeugung neuer Simulationsergebnisse (/Z60/). Zu diesem
Zweck sollte das System eine Funktion zum Start neuer Simulationsldufe bereit-
stellen (/F130/). Da die Berechnungen von integrierten Simulationsmodellen
sehr zeitaufwendig sein konnen, sollte das System jederzeit Informationen tiber
deren Verlauf liefern kénnen (/F140/). Diese Informationen sollten z. B. Auf-
schluss geben iiber den Fortschritt der Simulationen und iiber moglicherweise
aufgetretene Fehler.

Zur Berechnung neuer Simulationsergebnisse sind umfangreiche Datensétze
notwendig. Da die Daten oft aus unterschiedlichen Quellen stammen und keine
homogene Datenstruktur aufweisen, ist eine Integration der Daten in das Sys-
tem notwendig. Die Unterstiitzung des Nutzers bei der Datenintegration wird
daher ebenfalls als Ziel des SISA aufgenommen (/Z70/). Zur Erfiillung dieses
Zieles ist zumindest eine Funktion zum Import von Datensétzen in das Sys-
tem bzw. zur Konvertierung von Datenséitzen in ein bekanntes Systemformat
vorzusehen (/F150/).

Aufgrund der Vielfiltigkeit der benttigten Daten fiir ein integriertes Simula-
tionsmodell, miissen einige Datensétze neu erstellt werden. Zur Vorverarbeitung
von Daten wird i.d.R. sowohl eigens fiir diesen Zweck geschriebene Softwa-
re (Individualsoftware) als auch Standardsoftware eingesetzt (vgl. den Bereich
‘Werkzeug’ in Abb. 4.1, Seite 73). Die genauen Funktionen zur Datenvorverar-
beitung sind projektabhéingig und konnen nicht allgemein angegeben werden.
Gleiches gilt fiir evtl. notwendige Nachbearbeitungen der Ausgabedaten des
integrierten Simulationsmodells. Die Unterstiitzung der Vorverarbeitung und
Nachbearbeitung von Daten sollte dennoch als ein Ziel bei der Entwicklung der
Architektur beriicksichtigt werden (/Z80/) — ihm kann beispielsweise durch ei-
ne entsprechende Offenheit gegeniiber Standardsoftware oder standardisierten
Datenformaten Rechnung getragen werden.

Hinter-
grundin-
forma-
tionen

Pro-
blemver-
stdndnis

Simu-
lation

Daten-
import

Daten-
vorver-
arbei-
tung

Daten-
bereit-
stellung

Daten-
analyse

Modell-
analyse

Abgren-
zungs-
kriterien

Uber-
sicht

Anwen-
dungs-
bereich

80 KAPITEL 4. SYSTEMDEFINITION

Die vom integrierten Simulationsmodell berechneten Ergebnissen sollen vom
SISA bereitgestellt werden (/Z90/). Hierzu soll das System mindestens zwei
Funktionen bieten: eine zur Visualisierung der Daten (/F160/) und eine zum
Export der Daten in Formate, die von anderen Anwendungen direkt verwendet
werden konnen (/F170/).

Die Analyse der iiber das Simulationsmodell berechneten (und evtl. nachbe-
arbeiteten) Daten soll ebenfalls vom SISA unterstiitzt werden (/Z100/). Welche
Analysen genau anzubieten sind, héngt — wie bei bereits bei der Vorverar-
beitung und Nachbearbeitung der Daten des integrierten Simulationsmodells
— vom konkret zu realisierenden System ab. Eine Funktion zur statistischen
Analyse von Daten (Mittelwert, Median, Standardabweichung etc.) diirfte al-
lerdings fiir jedes System interessant sein und wird daher als SISA-Funktion
gefordert (/F180/).

Neben der Berechnung neuer Simulationsergebnisse und der Hilfe bei der
Analyse dieser Ergebnisse sollte das SISA auch die Analyse des Simulations-
modells selbst unterstiitzen (/Z110/). Die genauen Funktionen und Moglichkei-
ten (beispielsweise zur Durchfithrung von Sensitivitédtsanalysen) hdngen stark
vom konkret verwendeten Simulationsmodell und dessen Teilmodellen sowie
von der gewiinschten Ausbaustufe des SISA ab und werden in dieser Arbeit
nicht spezifiziert.

Nachdem nun die Ziele und Funktionen des SISA angegeben wurden, folgen
einige Abgrenzungskriterien, die angeben, welche Anforderungen explizit nicht
an das SISA gestellt werden.

Ziel des SISA ist es nicht, ein Simulationswerkzeug bereitzustellen, in dem
neue Simulationsmodelle, -modellteile oder Werkzeuge erstellt werden konnen.
Das SISA ist auch keine Simulationsumgebung zur dynamischen Auswahl oder
Integration von Simulationsmodellen oder -modellteilen. Weiterhin ist das SI-
SA nicht dafiir zusténdig, alle Funktionen zur Simulationsergebnis-Analyse
bereitzustellen (zur Unterstiitzung von Analysen sollen die oben genannten
Export-Funktionen bereitgestellt werden). Ziel des Systems ist auch nicht, als
Plattform eingesetzt zu werden, auf die verschiedene Organisationen verteilt
zugreifen um an einem Projekt zu arbeiten.

Eine Ubersicht der einzelnen Ziele und Funktionen ist in den Tabellen 4.2
und 4.3 zu finden.

4.2.3 System-Einsatz

Das SISA wird angewendet im Rahmen von Untersuchungen der Auswirkun-
gen des globalen Wandels, insbesondere im Bereich der Klimafolgenforschung.
Die aufbereiteten Ergebnisse des Systems sollen politischen Entscheidungstri-
gern als Informationsgrundlage dienen und dariiber hinaus zur Identifizierung
offener Fragestellungen innerhalb der beteiligten wissenschaftlichen Fachdiszi-
plinen beitragen.

4.2. ANFORDERUNGSDEFINITION

l Name des Ziels [Kennzeichnung
Verwaltung von Simulationsldufen /7210/
Verwaltung von Assessment-Ergebnissen 1220/
Verwaltung von Ressourcen /230/
Bereitstellung von Hintergrundinformationen /740/
Forderung des Problemverstindnisses /750/
Erzeugung neuer Simulationsergebnisse /760/
Integration von Daten /Z70/
Unterstiitzung bei der Vorverarbeitung und /780/
Nachbearbeitung von Simulationsmodell-Daten
Bereitstellung von Daten /7290/
Unterstiitzung der Datenanalyse /7100/
Unterstiitzung der Modellanalyse /7110/

81

Tabelle 4.2: Ubersicht der grundlegenden Ziele des Systems zum simulations-
basierten integrierten Assessment. Erklarungen zu den Zielen finden sich im

Unterabschnitt 4.2.2 (Seite 78).

l Name der Funktion [Kennzeichnung [Ziel ‘
Beschreibung eines Szenarios /F10/ /Z10/
Zuordnung von Daten zu einem Szenario /F20/ /Z10/
Beschreibung eines Simulationslaufes /F35/ /210/
Zuordnung von Daten zu einem Simulationslauf /F30/ /710/
Bereitstellung von Metadaten /F40/ /710/
Zuordnung von Ressourcen zu Projekten J/F50/ /Z20/
Bereitstellung einer Ressourcen-Liste J/F60/ /230/
Bereitstellung von Assessment-bezogenen Informationen zu: /Z40/
- verwendeter Software JET0/

- verwendeten/erzeugten Daten /F80/

- verwendeten/erzeugten Dokumenten /F90/

- beteiligten Personen/Organisationen /F100/

- durchgefiihrten Projekten/Studien /F110/

Bereitstellung eines Glossars /F120/ /Z50/
Start eines Simulationslaufes /F130/ /Z60/
Bereitstellung von Informationen zum Simulationsverlauf /F140/ /Z60/
Import/Konvertierung von Datensétzen /F150/ /Z70/
Visualisierung von Daten /F160/ /790/
Export von Daten /F170/ /790/
Statistische Auswertung von Daten /F180/ /7100/

Tabelle 4.3: Ubersicht der grundlegenden Funktionen des Systems zum simula-
tionsbasierten integrierten Assessment. Erklarungen zu den Zielen finden sich

im Unterabschnitt 4.2.2 (Seite 78).

Ziel-
gruppen

Betriebs-
bedin-
gungen

Software

Schnitt-
stellen

Hard-

ware

82 KAPITEL 4. SYSTEMDEFINITION

Betrieben wird das SISA von Wissenschaftlern; sie erzeugen szenarienbe-
zogene Simulationsergebnisse, werten diese aus und vermitteln die Ergebnisse
den Entscheidungstriigern und anderen Wissenschaftlern.® Entscheidungstrii-
ger und andere interessierte Personen oder Personengruppen sollen das System
nutzen kénnen, um sowohl die Ergebnisse von Studien als auch Hintergrundin-
formationen zu den Berechnungen direkt abrufen zu kénnen.

Eine Ubersicht der vorgesehenen Nutzung des SISA ist in Abb. 4.3 in Form
eines Anwendungsfalldiagramms zu finden.

Das System soll in der Umgebung wissenschaftlicher Einrichtungen einge-
setzt werden; hier werden neue Simulationsergebnisse erzeugt, Analysen erstellt
und interessierten Personengruppen bereitgestellt.

Der Einsatz des SISA zur Berechnung neuer Simulationsergebnisse macht
nur einen geringen Anteil an der Gesamteinsatzzeit des Software-Systems aus.
Waéhrend dieser Zeit findet eine intensive Rechnernutzung durch die Simulati-
onsmodelle statt. Die anderen Funktionen des SISA verursachen eine geringe
Rechnerlast und kénnen im Hintergrund ablaufen.

4.2.4 System-Umgebung

Das SISA sollte auf einem Arbeitsplatzrechner ablauffahig sein. Die Verteilung
des Systems auf mehrere Rechner (z.B. die Auslagerung einer Datenbank) ist
wiinschenswert.

Die Software-Umgebung setzt sich zusammen aus den standardméBig ver-
wendeten Biiroprogrammen (Textverarbeitung, Tabellenkalkulation), einem
Internet-Browser, einem Datenbank-Managementsystem (DBMS) und einem
Geo-Informationssystem (GIS). Zur Datenanalyse werden z.B. Statistikpro-
gramme eingesetzt. Der Einsatz des SISA sollte sowohl unter den aktuellen
Betriebssystemen der Firma Microsoft moglich sein als auch unter dem Be-
triebssystems Linux.

Schnittstellen zur oben angefithrten Software-Umgebung sollten bereitge-
stellt werden. Insbesondere Schnittstellen zum DBMS und zu den Daten und
Funktionen des GIS sind, falls diese Systeme eingesetzt werden, notwendig.

Die Anforderungen an die Hardware hingen vom konkret zu realisierenden
SISA ab und reichen von standardméfig ausgeriisteten Personal Computern
(PC) bis hin zu sehr leistungsstarken Rechnern.

8Die Vermittlung von Ergebnissen kann nach Tol und Vellinga (1998) auf zwei grundsitz-
lich verschiedenen Wegen geschehen; erstens iiber die direkte Kommunikation (Présentati-
on der Analysen und Ergebnisse fiir die Entscheidungstriiger), zweitens iiber eine indirekte
Kommunikation (Ergebnisse werden iiber die wissenschaftliche Literatur verbreitet und von
unabhingigen Kommentatoren oder Beratern zusammengefasst und in ein fiir Entscheidungs-
triger angepasstes Format gebracht). Zu den Vor- und Nachteilen beider Wege siehe Tol und
Vellinga (1998).

4.2. ANFORDERUNGSDEFINITION

Projektdaten
verwalten

S

Q

A

Modell-Betreiber

Projekte

Modell analysieren

Daten auswerten

Projektergebnisse
verwerten

verwalten

Projektiiberblick
verschaffen

System zum integrierten simulationsbasierten
Assessment (SISA)

imulationslaufe
durchfithren

Simulationsdaten
verwalten

rgebnisse

Modell-Entwickler

Modell-Entwickler sind nicht nur fiir
die Entwicklung des Systems zusténdig,
sondern auch (und evtl. ausschlieBlich)
fiir die Modellwartung und -pflege.

Entscheidungstriger

Interessent

83

Abbildung 4.3: Anwendungsfalldiagramm des SISA. Zu sehen sind die einzel-
nen Nutzer des Systems (die Akteure) und die einzelnen Anwendungsfille, fiir
die das System Funktionen bereitzustellen hat. Der Modell-Betreiber nutzt das
SISA zur Verwaltung von Projektdaten, Simulationsdaten und Projektergeb-
nissen sowie zur Durchfiithrung von Simulationsldufen und der Analyse der
vorhandenen Daten. Die Projektergebnisse werden dem Modell-Betreiber und
dem Entscheidungstriger vom System zur Verwertung bereitgestellt. Die Funk-
tionen zur Analyse des Modells werden vom Modell-Betreiber und/oder vom
Modell-Entwickler verwendet. Allgemeine (Hintergrund-)Informationen sind al-
len Akteuren (inkl. allgemeiner ‘Interessenten’) vom System bereitzustellen.

Ausfiihrlichere Angaben zu den Zielen und Funktionen finden sich im Text.

Orgware

Eintei-
lung

Hinter-
grund-
daten

Doku-
mente

Konfigu-
rations-
daten

Assess-
ment-
daten

84 KAPITEL 4. SYSTEMDEFINITION

Das SISA muss organisatorisch in den Betrieb des Modellbetreibers einge-
bettet werden. Folgende organisatorische Randbedingungen (Orgware) werden
gesetzt: Die Verwaltung und Pflege der bendttigten Daten und der evtl. vor-
handenen Datenbank wird von fachkundigen Mitarbeitern iibernommen. Zur
Integration neuer Simulationsmodelle oder -modellteile stehen Mitarbeiter zur
Verfiigung, die sich mit der Software-Architektur des Systems auskennen und
notwendige Anderungsarbeiten anleiten oder selber durchfiihren.

4.2.5 System-Daten

Zur Erfiilllung der spezifizierten Ziele und Funktionen sind vom SISA unter-
schiedlich detaillierte Informationen (Dokumente, Daten, Metadaten) vorzu-
halten. Bei den zu speichernden Informationen kann unterschieden werden zwi-
schen den Daten und Metadaten, die vom Nutzer fiir die Verwaltung der Res-
sourcen und des Assessments selbst sowie zum Verstidndnis von Studien beno-
tigt werden (Hintergrunddaten), den Daten, die als Primér-, Sekundér- und
Simulationsmodell-Daten benotigt werden (Assessment-Daten) und Daten, die
zur Konfiguration von Simulationsldufen notwendig sind (Konfigurationsda-
ten).

Zu den Hintergrunddaten gehoren Informationen tiber Projekte, iiber be-
teiligte Personen und deren Organisationszugehorigkeit sowie iiber verwende-
te Szenarien und durchgefithrte Simulationsstudien und Simulationsldufe (vgl.
Abb. 4.4). Eine Liste mit vorhandenen Ressourcen und die Speicherung von
Metadaten zu den Ressourcen wird ebenfalls zur Erfiilllung der Funktionen und
Ziele aus Unterabschnitt 4.2.2 ben6tigt. Die Daten zum Glossar fallen ebenfalls
in die Kategorie der Hintergrunddaten. Fiir Simulationsstudien, Simulations-
ldufe, Szenarien und Projekte sind detaillierte Beschreibungen in Form von
Dokumenten zu erstellen. Da alle Dokumente zu den SISA-Ressourcen gehoren
(vgl. Abb. 4.2, Seite 76), sind diese auch in der Ressourcenliste aufzufiihren
und iiber Metadaten zu beschreiben.

Eine detaillierte Spezifikation der Hintergrunddaten erfolgt im Rahmen der
Architekturentwicklung (Kapitel 5, Seite 95). Zusammenfassend kann aber fest-
gehalten werden, dass das SISA die folgenden Hintergrunddaten zur Verfiigung
zu stellen hat (Referenzierungen erfolgen iiber die Kurzform /Dxx/): Kurzinfor-
mationen iiber Personen und Organisationen (/D10/), Kurzinformationen {iber
die abstrakten Ressourcen (/D20/), Metadaten fiir die Ressourcen (/D30/) und
Glossar-Eintrige (/D40/).

Informationen iiber die Zuordnung von Datenséitzen zu den einzelnen Simu-
lationsléufen/Szenarien bilden die Konfigurationsdaten (/D50/) des Systems.

In die Gruppe der Assessment-Daten gehoren alle weiteren, in Abb. 4.2
(Seite 76) aufgefithrten Datensétze (mit Ausnahme der Systemparameter- und
Optionsdaten, die fiir die Konfiguration zustéindig sind). Die Auswahl wichtiger
Assessment-Daten erfolgt in den folgenden Absétzen.

4.2. ANFORDERUNGSDEFINITION 85

« gehort zu beteiligt an » Hintergrunddaten

Person (D) Projekt (D,Dok)[—_-genortzu

Organisation (D)

Glossar (D, - - -
|S|mu|at|onsstud|e (D,Dok)

nutzt »

basiertfauf »

Ressourcenliste (D) Simulationslauf-Spezifikation (D)Ii
0.*

1.* 1>
refererjziert » referer|ziert »
1. L. Konfigurationsdaten
< beschrieben tiber
Metadatensatz (D) Datensatz (D)
1.* 1

Assessment-Daten

Abbildung 4.4: Anforderung an die System-Daten. Fiir die dargestellten Klas-
sen miissen zur Erfiillung der Systemziele und -funktionen Daten innerhalb
des SISA verwaltet werden (Kennzeichnung ‘D’). Die Attribute der einzelnen
Klassen werden im Kapitel der Architekturentwicklung (Kap. 5, Seite 95) spe-
zifiziert. Fiir einige Klassen werden i. d. R. detaillierte Beschreibungen in Form
von Dokumenten erzeugt (Kennzeichnung ‘Dok’). Die Metadaten dieser Doku-
mente sind — genauso wie die Metadaten zu allen anderen Ressourcen — iiber
die Ressourcenliste zu integrieren (vgl. auch Abb. 4.1, Seite 73 und Abb. 4.2,
Seite 76).

Uber-
blick

HYDE

86 KAPITEL 4. SYSTEMDEFINITION

Assessment-Daten

Die Assessment-Daten sind abhingig von konkreten Projekten. Eine Auswahl
von grundlegenden Daten, die bei integrierten Assessments im Rahmen von
Fragestellungen des globalen Wandels hiufig ben6tigt werden, soll in diesem
Unterabschnitt dennoch getroffen werden.

Grundlegende Daten des SISA sind diejenigen Daten, die die Grundcha-
rakteristiken der einzelnen, wichtigen Komponenten der Natur- und Anthropo-
sphére beschreiben (zu den einzelnen Komponenten siehe Kapitel 2.1.1, Seite
7). Aus dem Bereich der Hydrosphdre sind Daten iiber Fluss-Einzugsgebiete,
Fliisse, Flussrichtungen, Seen und anderen Feuchtgebieten notwendig. Inner-
halb der Biosphdren-Komponente ist die Landnutzung und die Landbedeckung
(die natiirliche Vegetation) von Interesse. In den Bereich der Lithosphdre/Pedo-
sphdre fallen Angabe iiber Bodentypen. Die wichtigsten Informationen aus der
Bevdlkerungs-Komponente sind die Gesamtbevilkerung und die Bevolkerungs-
struktur. Wichtige Daten zum Thema Verkehr sind Angaben iiber vorhande-
ne Transportwege (Strafien, Schienen, Fliisse, Kanile). Im Wirtschaftsbereich
spielt das Brutto-Sozialprodukt eine ausgesprochen wichtige Rolle beim inte-
grierten Assessment. Dariiber hinaus ist die Einkommensverteilung ein wichti-
ger Indikator bei einigen Auswirkungsanalysen. Aus dem Bereich der Wissen-
schaft/Technik sind grundlegende Angaben iiber den Stand der Agrartechnolo-
gie von Interesse (z. B. was die Diingernutzung oder die Bewisserung landwirt-
schaftlicher Flichen angeht). Daten aus dem Bereich der gesellschaftlichen Or-
ganisation beschreiben beispielsweise (Wirtschafts-)Regionen — auch die i. d. R.
benétigten Landergrenzen kénnen hier eingeordnet werden. Die Sammlung re-
levanter Daten aus der psychosozialen Sphdre ist — ebenso wie die Modellierung
der zugehorigen Prozesse — noch nicht so weit fortgeschritten wie diejenige aus
den anderen Komponenten, so dass fiir diesen Bereich keine grundlegenden
Datensétze angegeben werden.”

Das staatliche Institut fiir Gesundheit und Umwelt der Niederlande
(RIVM1!9) hat zur Validierung von Simulationsmodellen eine Umfangreiche
Datenbank erstellt; die Hundred Year Database for Integrated Environmen-
tal Assessments (HYDE) (Klein Goldewijk und Battjes, 1997). HYDE ent-
hilt Daten zu folgenden Themen: 1) Grundlegende Triebkrifte (Bevolkerung,
Bruttosozialprodukt, Wertschépfung durch Industrie und Dienstleistungen,
Privat-Konsum, Anzahl PKW, Temperatur und Niederschlag), 2) Okonomie
des Energie- und Industriesektors (beispielsweise Energieverbrauch, Elektrizi-
tétserzeugung, Brennstoffpreise, Produktion von Kohle, Ol, Eisen und anderen
Metallen), 3) Emissionen des Energie- und Industriesektors (beispielsweise fiir

9Zu Daten aus der psychosozialen Sphire kénnen z. B. Beschreibungen der Wahrnehmung
der Umwelt und Beschreibung von Handlungszielen und -mitteln gezéhlt werden.
10RIVM = Rijksinstituut voor Volksgezondheid en Milieu, engl. National Institute of Public
Health and the Environment.

4.2. ANFORDERUNGSDEFINITION 87

Kohlendioxid, Methan und Schwefeldioxid), 4) Terrestrische Umwelt (beispiels-
weise historische Landbedeckung, Nahrungs- und Futtermittelverbrauch, Feld-
fruchtproduktion, Anzahl Tiere, Handel landwirtschaftlicher Produkte, Diin-
gerverbrauch), 5) Atmosphdre und Ozean (beispielsweise Konzentrationen von
Kohlendioxid und anderen klimarelevanten Gasen, Landbedeckung, Ozean-
Temperatur und Eisbedeckung des Meeres).

Da nicht alle angefiihrten Daten fiir jedes Assessment benotigt werden, wer-
den im Folgenden einige wichtige Datensétze ausgewéhlt, die als Grundlage fiir
jedes SISA dienen sollen.

Auswahl der Assessment-Daten

Modelle zum integrierten Assessment sind oft nach dem so genannten DPSIR-
Prinzip aufgebaut: die Abbildung der Wirkungskette eines betrachteten Pro-
blems beginnt mit den treibenden Faktoren (Driving forces), die dann zu einem
bestimmten Druck (Pressure) auf das System und einem bestimmten Zustand
(State) innerhalb des Systems fithren. Dieser Zustand fithrt dann zu verschiede-
nen Auswirkungen (Impacts), auf die mit bestimmten Antworten (Responses)
reagiert wird. Néheres zu diesem Prinzip findet sich z. B. in Peirce (1998) und
Luiten (1999).

Um die Konsistenz und Vergleichbarkeit der Ergebnisse unterschiedlicher
Studien und Projekte zu erméglichen, sollten die treibenden Faktoren, d.h.
die exogenen Einflussfaktoren bzw. Modellumweltdaten, mdglichst unabhén-
gig vom konkreten Projekt sein. Zu den grundlegenden Daten, die fiir vie-
le Assessments benétigt werden, gehoren Angaben iiber die 6konomischen
und demographischen Zusténde und Entwicklungen von Regionen. Daten iiber
die Einwohnerzahl von Regionen (/D60/) und das oft als Indikator benutzte
Brutto-Sozialprodukt pro Einwohner (/D70/) sollten daher zu den grundlegen-
den Assessment-Daten eines SISA gehoren. Eine Liste vorhandener Regionen'!
(/D80/) muss ebenso vorhanden sein, wie Geo-Datensitze, die die Regionen
voneinander abgrenzen: ein hoch aufgeloster (Vektor-)Datensatz zur Beschrei-
bung der Regionengrenzen (/D90/) ist ebenso notwendig wie ein (Raster-)Da-
tensatz (/D100/), der die Regionen in der Fliche darstellt. Mit der Darstellung
der Regionenfliche verbunden, ist ein weiterer grundlegender Datensatz: die
Landmaske (/D110/). Die Landmaske, die abhéngig ist von der geographischen
Auflésung des Assessments, legt fest, fiir welche Teile der Erde landbezogene
Berechnungen durchzufiihren sind. Untersuchungen im Rahmen des globalen
Wandels benétigen dariiber hinaus i.d. R. Klimadaten (/D120/).

Die aufgefithrten Daten stellen — wie bereits angemerkt — lediglich eine
Grundausstattung dar. Die tatséchlich zu speichernden Daten sind abhéngig

1 Eine Region kann sowohl ein Land als auch ein Teil eines Landes oder eine Zusammen-
setzung mehrerer Lander sein.

Grund-
lagen

zeitliche
Anforde-
rung

Simula-
tions-
dauer

Daten-
auflo-
sung u.
-ab-
deckung

88 KAPITEL 4. SYSTEMDEFINITION

vom konkreten Systemziel des SISA. Eine Ubersicht der vorzuhaltenden Daten
ist in Tab. 4.4 zu finden.

’ Bezeichnung der Datensétze ‘ Kennzeichnung ‘
Kurzinformationen iiber Personen/Organisationen | /D10/
Kurzinformationen iiber ‘abstrakte Ressourcen’ /D20/
Metadaten zu Ressourcen /D30/
Glossar-Eintrége /D40/
Konfigurationsdaten /D50/
grundlegende Assessment-Daten /D60-D120/

Tabelle 4.4: Ubersicht der grundlegenden Datenbestéinde des Systems zum si-
mulationsbasierten integrierten Assessment. Erkldrungen zu den Datensétzen
finden sich im Text.

4.2.6 System-Leistungen

Es es nicht vorgesehen, dass Entscheidungstriger interaktiv neue Simulati-
onsergebnisse erzeugen. Simulationsldufe werden hingegen von den modellbe-
treibenden Wissenschaftlern (Modell-Betreibern) erzeugt. Aufgrund der Wich-
tigkeit von Unsicherheits- und Sensitivitdtsanalysen und der damit verbun-
denen Notwendigkeit mehrere Simulationsldufe mit sich dndernden Modell-
Eingangsgrofien durchzufiihren, sollte sich die Berechnung neuer Simulationser-
gebnisse in einem akzeptablen, vom konkreten SISA abhiingigen Rahmen hal-
ten. Eine generelle Aussage iiber die Performanz des Systems kann an dieser
Stelle allerdings nicht getroffen werden.

Eine Leistungsanforderung wird allerdings als Wunschanforderung angege-
ben: Fiir einen gestarteten Simulationslauf sollte noch am gleichen Tag gepriift
werden koénnen, ob die Berechnungen verwertbar sind oder nicht. Beriicksich-
tigt man eine gewisse Arbeitszeit zur Vorbereitung und Nachbearbeitung einer
Simulation, so kann die folgende Leistungsanforderung formuliert werden: Die
Dauer eines Simulationslaufes sollte sechs Stunden nicht iiberschreiten (Leis-
tungsanforderung /L10/).

Der Umfang und die Genauigkeit der zu speichernden Daten héngt eben-
falls von der konkreten Anwendung des SISA ab. Ein Charakteristikum von
integrierten Assessments im Rahmen des globalen Wandels ist die geographisch
explizite Abbildung von Prozessen. Die Produktdaten miissen daher auch einen
definierten geographischen Bereich abdecken. Im Rahmen der Klimafolgenfor-
schung umspannt dieser Bereich i.d.R. die gesamte Erde. Die geographische
Auflosung variiert anwendungsspezifisch, belduft sich fiir viele flichenbezoge-
ne Datensitze aber auf 0.5 Grad mal 0.5 Grad geographischer Linge/Breite

4.2. ANFORDERUNGSDEFINITION 89

(vgl. z.B. Alcamo u.a., 1998a, Doll u. a., 2003; Klein Goldewijk, 2001; Klein
Goldewijk und Battjes, 1997, New u. a., 1999; New u. a., 2000). Regionenbezo-
gene Daten beziehen sich auf Lénder oder Zusammenfassungen von Léndern.
Die Anzahl der Regionen variiert von etwa einem Dutzend bis zu iiber 200
(vgl. Dowlatabadi, 1995; Weyant u.a., 1996). Die zeitliche Auflsung der Da-
ten variiert ebenfalls von Anwendung zu Anwendung und ist oft durch die zur
Verfiigung stehenden Daten begrenzt (s. o.g. Zitate). Fiir die grundlegenden
Daten kann als Leistungsanforderung lediglich definiert werden, dass die Daten
in einer den konkreten Anforderungen geniigenden geographischen und zeitli-
chen Auflésung und Abdeckung vorzuliegen haben.

4.2.7 Benutzungsschnittstellen

Dieser Abschnitt legt die Anforderungen an die Benutzungsschnittstelle (refe-
renziert iiber /Bxx/) fest, die sowohl die Schnittstelle zu den einzelnen Akteu-
ren, als auch die Schnittstelle zu anderen Software-Systemen beinhaltet.

Aus Griinden der einfachen Bedienbarkeit sollte die Nutzung des SISA iiber
einen Internet-Browser moglich sein (/B10/).

Zur Arbeit mit dem SISA sind den Akteuren (Modellbetreiber, Modellent-
wickler, Entscheidungstriiger) verschiedene ‘Sichten’ auf die Daten und Leistun-
gen bereitzustellen (/B20/). Die Sichten und die mit ihnen verbundenen Mog-
lichkeiten des Datenzugriffs und der Funktionsausfithrung ergeben sich aus dem
Anwendungsfalldiagramm (Abb. 4.3, Seite 83). Modellentwickler und Modell-
betreiber diirfen auf alle gespeicherten Daten zugreifen. Entscheidungstrigern
sollte der Zugriff auf die Analyseergebnisse und auf Hintergrundinformationen
erlaubt werden. Auflenstehenden (Interessenten) sollte der Zugriff auf allgemein
beschreibende Daten und Ansprechpartner gestattet werden.

Anderen Software-Systemen sollte eine Programmierschnittstelle (Applica-
tion Programming Interface, APT) zur Verfiigung gestellt werden, die es erlaubt,
einen Simulationslauf zu starten und bereits berechnete Ergebnisse abzufragen

(/B30/).

4.2.8 Qualitits-Zielbestimmung

Die anzustrebende Qualitit des SISA wird iiber die Merkmale und Teilmerk-
male der ISO/IEC 9126 (vgl. Tabelle 2.1, Seite 23) angegeben. Eine Ubersicht
der nachfolgend beschriebenen Qualitétsziele liefert Tabelle 4.5 (Seite 90).
Das Qualitétsmerkmal der Funktionalitidt umfasst fiinf Teilmerkmale: Ange-
messenheit, Richtigkeit, Interoperabilitit, Ordnungsmiéfligkeit und Sicherheit.
Die Anforderungen an die Angemessenheit und die Sicherheit konnen als nor-
mal eingestuft werden (sie sind relevante Merkmale, aber es werden an sie
keine besonderen oder auflergewéhnlichen Anforderungen gestellt). Aufgrund

Funktio-
nalitét

90 KAPITEL 4. SYSTEMDEFINITION

Merkmal Teilmerkmal Produktqualitat

sehr gut | gut normal nicht rel.

Funktionalitét Angemessenheit X
Richtigkeit X
Interoperabilitit X

Ordnungsméfigkeit X
Sicherheit

Zuverlidssigkeit Reife

Fehlertoleranz
Wiederherstellbarkeit
Benutzbarkeit Verstandlichkeit
Erlernbarkeit
Bedienbarkeit
Effizienz Zeitverhalten
Verbrauchsverhalten
Anderbarkeit Analysierbarkeit X
Modifizierbarkeit X
Stabilitit X
Priifbarkeit
Ubertragbarkeit | Anpassbarkeit

K| R R R R R R

ke

Installierbarkeit

K| A | R

Konformitét
Austauschbarkeit X

Tabelle 4.5: Anforderungen des SISA an die Software-Qualitiat. Qualitdtsmerk-
male angelehnt an ISO/TEC 9126 (DIN 66272). Erkldrungen zu den Merkmalen
finden sich im Text und in Tabelle 2.1 (Seite 23).

4.2. ANFORDERUNGSDEFINITION 91

der Komplexitidt der Simulationsmodelle und der damit nicht einfach nachzu-
vollziehende Ergebnisberechnungen und Ergebnisse ist an die Richtigkeit, ins-
besondere der Ausgaben des Simulationsmodells und seiner Teile, eine hohe
Anforderung zu stellen (ein Modellteil ist oftmals nur von einem Fachexper-
ten — der i.d.R. auch selbst der Autor des Programms ist — nachvollziehbar).
Die Interoperabilitit, also die Eignung, mit anderen Systemen zusammenzu-
wirken, spielt aufgrund der Komplexitidt und der Umgebungsbedingungen bei
der Erstellung und dem Einsatz des Gesamtsystems eine wichtige Rolle. Die
Produktqualitéit sollte diesbeziiglich daher sehr gut sein. Das Teilmerkmal der
OrdnungsmdfSigkeit beschreibt die Erfiillung anwendungsspezifischer Normen
und Vereinbarungen. Auch wenn es fiir die in Kapitel 72 (Seite 87) angefiihrten
wichtigsten Daten des SISA keine Bestimmungen gibt, sollte bei der Auswahl
der Produktdaten darauf geachtet werden, dass es sich um allgemein akzep-
tierte Daten handelt. Hierzu z&hlen z. B. Angaben der Weltbank und der Ver-
einten Nationen oder ihrer Unterorganisationen (wie etwa der Welterndhrungs-
und Landwirtschaftsorganisation (FAO) oder der Weltgesundheitsorganisation
(WHO)). Das Qualitétsziel in Bezug auf das Teilmerkmal der Ordnungsmdfig-
keit wird aufgrund dieser Anforderung auf gut gesetzt.

Die Qualititsanforderungen hinsichtlich der Zuverldssigkeit des SISA, die
iiber die Teilmerkmale Reife, Fehlertoleranz und Wiederherstellbarkeit ausge-
driickt werden, werden als normal eingestuft. Die Qualitdtsanforderungen an
die Benutzbarkeit mit ihren Teilmerkmalen Verstdndlichkeit, Erlernbarkeit und
Bedienbarkeit werden ebenso als normal festgelegt.

Das Qualitdtsmerkmal der Effizienz dient der Beurteilung des Verhéltnis-
ses von erreichter Leistung zu eingesetzten Betriebsmitteln. Das SISA stellt an
beide Teilmerkmale der Effizienz, das Zeitverhalten und das Verbrauchsverhal-
ten, besondere Anforderungen: Die Durchfithrung von Simulationen, also die
Berechnung neuer Modellergebnisse mit Hilfe des Simulationsmodells, fordert
sehr komplexe Berechnungen. Das Zeitverhalten spielt hier eine besondere Rolle
—und wurde daher auch als explizite Leistungsanforderung (/L10/) im Kapitel
4.2.6 (Seite 88) aufgefiihrt. Die geforderte Qualitit des SISA (insbesondere des
Simulationsmodells) hinsichtlich des Zeitverhaltens wird daher auf gut gesetzt.

Das Teilmerkmal des Verbrauchsverhaltens dient der Beschreibung des Auf-
wandes an Betriebsmitteln. Diese Betriebsmittel kénnen sowohl andere Soft-
ware-Produkte, Hardware-Einrichtungen und Materialien (wie Druckerpapier
oder Disketten) als auch Dienstleistungen von Bedienungs-, Wartungs-, oder
Unterstiitzungspersonal einschlieen (DIN, 1994). An dieser Stelle ist eine Ab-
wégung zu machen zwischen dem Verbrauchsverhalten und der Erreichung
der anderen qualitativen und funktionalen Ziele: So ist beispielsweise der Ein-
satz eines Datenbankmanagementsystems (DBMS) hilfreich bei der Verwaltung
von Projektdaten und der Auswertung von Simulationsergebnissen; zur Pflege
DBMS bedarf es aber eines erhohten Personaleinsatzes. Das Zeitverhalten des

Zuver-
lassig-
keit u.
Benutz-
barkeit

Effizienz

Ander-
barkeit

Uber-
tragbar-
keit

92 KAPITEL 4. SYSTEMDEFINITION

Systems kann, als zweites Beispiel, durch den Einsatz einer besseren Hardware-
Ausriistung erreicht werden; die beiden Teilmerkmale der Effizienz stehen sich
hier also direkt gegeniiber. Da das SISA in der Umgebung wissenschaftlicher
Einrichtungen eingesetzt wird (siehe Kapitel 4.2.4, Seite 82) ist aufgrund der
oft vorherrschenden angespannten Ressourcenlagen eine gute Qualitdt beziig-
lich des Verbrauchsverhaltens an das Produkt zu stellen.

Das SISA integriert unterschiedliche Daten und Teilmodelle. Wahrend der
Einsatzzeit des SISA sollten die verwendeten Daten und Simulationsmodel-
le stets den neuesten Stand der wissenschaftlichen Erkenntnisse widerspiegeln.
Diese Anforderung bedingt die Notwendig standiger Korrekturen, Verbesserun-
gen und Anpassungen des Software-Systems. Das entsprechende Qualititsmerk-
mal innerhalb der ISO/TEC 9126 ist die Anderbarkeit mit ihren Teilmerkmalen
Analysierbarkeit, Modifizierbarkeit, Stabilitdt und Priifbarkeit.

Anderungen am SISA sind oft von Personen durchzufiihren, die nicht an der
Entwicklung des Gesamtkonzeptes oder eines bestimmten Teilmodells des SISA
mitgearbeitet haben. Die Analysierbarkeit des Systems, die den notwendigen
Aufwand zur Identifizierung &nderungsbediirftiger Teile einschliefit, muss daher
sehr gut sein. Hinsichtlich der Modifizierbarkeit des Systems wird, analog zu
den vorhergehenden Uberlegungen, ebenfalls eine sehr gute Qualitiit gefordert.
An die Stabilitat des Gesamtsystems (Risiko unerwarteter Wirkungen) im Zu-
sammenhang mit durchgefiihrten Anderungen werden keine aufergewdhnlichen
Anforderungen gestellt. Eine gute Prifbarkeit des geinderten Software-Systems
wird allerdings als Qualitdtsziel aufgenommen.

SISA und SISA-Teile (insbesondere das Simulationsmodell bzw. Teile des Si-
mulationsmodells) werden zunehmend zwischen verschiedenen Organisationen
ausgetauscht. Die Systemumgebungen kénnen dabei nicht als homogen ange-
nommen werden: Es werden unterschiedliche DBMS, GIS und andere Software-
Produkte eingesetzt, und auch die Betriebssysteme kénnen unterschiedlich sein.
Dariiber hinaus ist die Systemumgebung innerhalb einer Organisation auch
nicht stabil. Die Ubertragbarkeit des SISA von einer Umgebung in eine an-
dere spielt daher eine Rolle bei dessen Entwicklung. Die Anpassbarkeit des
Systems an neue Umgebung und die Installierbarkeit innerhalb einer vorgege-
benen Umgebung sollte daher gut sein. Die Einhaltung von Normen fiihrt zu
einer besseren Ubertragbarkeit — dies gilt sowohl fiir Teile des SISA als auch
fiir die erzeugten und verwendeten Daten. Das System sollte daher eine gute
Konformitdt mit solchen Normen aufweisen. Um den bereits oben angesproche-
nen, wichtigen Austausch von Modellteilen des Simulationsmodells mit anderen
Organisationen zu erméglichen und zu erleichtern, sollte bei der Entwicklung
des Software-Systems eine sehr gute Austauschbarkeit (zumindest von Modell-
Teilen) explizit angestrebt werden.

Aufgrund der in Unterabschnitt 4.2.1 (Seite 75) angefiihrten Wichtigkeit
einer guten Dokumentation wird die Erfiillung einer weitere nicht-funktionale

4.2. ANFORDERUNGSDEFINITION 93

Anforderung als sehr wichtig eingestuft: die der Transparenz, Nachvollziehbar-
keit und Reproduzierbarkeit von Assessment-Ergebnissen.

Die vorrangig zu beriicksichtigenden nicht-funktionalen Anforderungen sind
in Tabelle 4.6 noch einmal zusammengefasst und mit referenzierbaren Kenn-
zeichnungen (/NFxx/) versehen.

’ Name des nicht-funktionalen Anforderung ‘ Kennzeichnung ‘
Interoperabilitét /NF10/
Analysierbarkeit /NF20/
Modifizierbarkeit /NF30/
Austauschbarkeit /NF40/
Transparenz, Nachvollziehbarkeit, Reproduzierbarkeit | /NF50/

Tabelle 4.6: Ubersicht der vorrangigen nicht-funktionalen Anforderungen an
das SISA. Erklirungen zu den nicht-funktionalen Anforderungen finden sich
im Text. Eine ausfiihrlichere Auflistung zur Wichtigkeit der einzelnen nicht-
funktionalen Anforderungen findet sich in Tabelle 4.5 (Seite 90).

4.2.9 Testszenarien

In Anlehnung an die Zielbestimmungen in Kapitel 4.2.2 (Seite 78) sind zum
Test eines SISA die Funktionen zu den folgenden, als vorrangig betrachteten
Zielen zu priifen: die Verwaltung von Simulationsldufen (Testszenario /T10/),
Assessment-Ergebnissen (/T20/) und Ressourcen (/T30/), die Bereitstellung
von Hintergrundinformationen (/T40/), die Erzeugung neuer Simulationser-
gebnisse (/T60/), die Integration von Daten in das System (/T70/) und die
Datenbereitstellung (/T90/).

4.2.10 Entwicklungs-Umgebung

Die Umgebung fiir die Entwicklung des SISA ist abhingig von der konkre-
ten Ausprigung der im Kapitel 4.2.4 (Seite 82) skizzierten System-Umgebung
(z. B. dem tatséchlich eingesetzten GIS oder einem vorhanden DBMS). Bei der
Auswahl der Software-Entwicklungsumgebung ist auf die geforderte Ubertrag-
barkeit des Systems auf andere Umgebungen zu achten. Programmiersprachen
sollten aus diesem Grund nur in einem Umfang verwendet werden der standar-
disiert ist; die Verwendung betriebssystemspezifischer Software-Komponenten
(wie der Microsoft Foundation Classes) ist zu vermeiden.

Ziel

Ressour-
cen

Daten

Simula-

tionen

Konsis-
tenz

Umge-
bung

Qualitét

94 KAPITEL 4. SYSTEMDEFINITION

4.3 Fazit

Ziel des Systems zum integrierten simulationsbasierten Assessment (SISA) ist
die Unterstiitzung des integrierten Assessments durch die Bereitstellung eines
konsistenten Rahmens fiir Daten und Simulationsmodelle zum System Erde
und zur Durchfiihrung von Simulationslédufen sowie die Bereitstellung grundle-
gender Informationen zu durchgefiihrten oder in der Durchfiihrung begriffenen
Projekten.

Um dieses Ziel zu erreichen, miissen verschiedene Betriebsmittel (Ressour-
cen) durch das SISA verwaltet werden. Zu diesen Ressourcen gehdren sowohl die
Simulationsmodelle und die ihnen zugeordneten Daten als auch andere Software
(z.B. zur Vorverarbeitung oder Nachbearbeitung von Daten) und Dokumen-
te (z.B. Modellbeschreibungen oder Ergebnisberichte). Dariiber hinaus muss
das SISA Informationen iiber Projekte, Analysen, Szenarien, beteiligte Per-
sonen und andere Hintergrundinformationen bereitstellen. Die Daten, die fiir
die Simulationsmodelle bendtigt werden, sollten ebenfalls iiber das SISA zur
Verfiigung stehen. Die Durchfithrung und Verwaltung von Simulationsldufen
und die Bereitstellung der Simulationsergebnisse gehoren dariiber hinaus eben-
so zur Aufgabe des SISA wie die Bereitstellung von Simulationsergebnissen.
Die Sicherstellung der Konsistenz wird unterstiitzt durch die Dokumentation
der Simulationsergebnisse, der verwendeten Simulationsmodelle, der zugrunde
liegenden Simulationslauf-Spezifikation und des Simulationslaufes selbst.

Das SISA sollte in eine Software-Umgebung eingebettet werden koénnen.
Insbesondere zu Geo-Informationssystemen (GIS) und zu Datenbank-Manage-
mentsystemen (DBMS) sollten Schnittstellen vorhanden sein.

Neben der gewiinschten Interoperabilitdt mit GIS und DBMS stellt das SI-
SA weitere Anforderungen an die Qualitét der Software-Architektur: Wegen des
zunehmend notwendigen Austausches von Modellteilen zwischen unterschiedli-
chen Organisationen sollte das Qualitdtsmerkmal der Austauschbarkeit (zumin-
dest von Modellteilen) bei der Entwicklung der Architektur besonders beriick-
sichtigt werden. Die Modifizierbarkeit des Systems (insbesondere von Modelltei-
len) sollte wegen der oft notwendigen Anderungen und Aktualisierungen eben-
falls sehr gut sein. Dariiber hinaus wird die Transparenz, Nachvollziehbarkeit
und Reproduzierbarkeit von Assessment-Ergebnissen als wichtiges Qualitéits-
Merkmal eines SISA definiert. Um die Anforderung der Nachvollziehbarkeit
von Assessment-Ergebnissen zu erfiillen, ist die Erfiillung des Qualititsmerk-
mals der Analysierbarkeit ebenfalls besonders zu beriicksichtigen.

Nachdem die Ziele und Funktionen des SISA in diesem Kapitel spezifiziert
wurden, erfolgt im nichsten Kapitel die Entwicklung einer Software-Architek-
tur fiir ein solches System.

Kapitel 5

Architektur-Entwicklung

In Kapitel 4 wurden allgemeine, projektunabhingige Anforderungen an ein Sys-
tem zum integrierten simulationsbasierten Assessment definiert. Um die nicht-
funktionalen (qualitativen) Anforderungen des Systems (wie die Modifizierbar-
keit, Austauschbarkeit und Interoperabilitéit) zu erfiillen, muss das System in
seine grundlegenden Bestandteile gegliedert werden. Die Einteilung des Ge-
samtsystems in seine Bestandteile (Komponenten) ergibt, in Verbindung mit
einer Definition der ‘Verantwortlichkeiten’ jeder Komponente, die Software-
Architektur des Systems.

Die folgenden Abschnitte beschiftigen sich mit der Abgrenzung der einzelnen
Komponenten sowie der Definition der Verantwortlichkeiten, Schnittstellen und
grundlegenden Datenstrukturen. Die Gesamtfunktionalitit des Systems ergibt
sich aus der Interaktion der einzelnen Komponenten. Durch die Schnittstellen
werden die Operationen beschrieben, mit denen der Datenaustausch zwischen
den Komponenten koordiniert wird. Die grundlegenden Datenstrukturen spezi-
fizieren die wichtigsten Daten, die zur Erfiillung der definierten Anforderungen
im Rahmen der entwickelten Architektur benétigt werden.

Das Kapitel beginnt mit einem Abschnitt, in dem die einzelnen Komponen-
ten kurz und iibersichtlich vorgestellt werden. Die Ubersicht dient lediglich als
Rahmen fiir die detaillierten Spezifikationen, die in Abschnitt 5.2 (Seite 96) fol-
gen. Das Zusammenspiel aller Komponenten ergibt die Gesamtarchitektur des
Systems zum integrierten simulationsbasierten Assessment. Um die Funktions-
weise der entwickelten Architektur zu verdeutlichen, werden die wichtigsten
statischen und dynamischen Aspekte in Abschnitt 5.3 (Seite 148) noch einmal
graphisch dargestellt und erldutert.

95

Archi-
tektur

Spezifi-
kationen

Uber-
sicht

Aus-

gangs-
basis

Kompo-
nenten

Verant-

wortlich-

keit

Ziel-Zu-
ordnung

Meta-
daten

96 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

5.1 Komponenten-Ubersicht

Ausgangsbasis fiir die Abgrenzung der Architektur-Komponenten sind die Zie-
le, Funktionen und Anforderungen, die in der Systemdefinition (Kapitel 4, Sei-
te 69) bestimmt wurden sowie die im Kapitel 3 (Seite 25) vorgestellten Modelle
und Standards.

Um die Entwicklung der einzelnen Komponenten des SISA besser verfol-
gen und in das Gesamtsystem einordnen zu koénnen, zeigt Abbildung 5.1 die
einzelnen Komponenten in einer Ubersicht. Jede Komponente in Abbildung
5.1 besitzt innerhalb des Gesamtsystems eine definierte Verantwortlichkeit und
kooperiert zur Erfiillung ihrer Aufgaben mit anderen Komponenten (in dieser
Abbildung sind zur Vereinfachung nur die wichtigsten Verbindungen zwischen
den Komponenten eingetragen). Eine kurze Erkldrung der Verantwortlichkei-
ten und Kooperationen findet sich in Tabelle 5.1 (Seite 98). Abbildung 5.2
(Seite 99) veranschaulicht die Verbindungen der einzelnen Komponenten mit
den definierten Funktionen und Zielen des SISA.

Die Begriindungen zu den Abgrenzungen der Komponenten sowie die ge-
nauen Spezifikationen der Komponenten, d. h. die Definition der Schnittstellen
und Datenstrukturen, finden sich im folgenden Abschnitt.

5.2 Komponenten-Entwicklung

In diesem Abschnitt erfolgt die Spezifikation der einzelnen Komponenten. Die
Unterabschnitte spezifizieren jeweils eine der Komponenten und sind ihrerseits
in drei Teile gegliedert: im ersten Teil, der Komponenten-Abgrenzung, wird die
Verantwortlichkeit der Komponente innerhalb des Gesamtsystems festgelegt;
der zweite Teil spezifiziert die Dienste, die von der Komponente zur Erfiilllung
ihrer Aufgaben anzubieten sind; die Spezifizierung wichtiger Datenstrukturen
der Komponente erfolgt im dritten Teil jedes Unterabschnitts.

Da die Verwaltung und Bereitstellung von Metadaten eine zentrale Aufgabe
innerhalb der SISA-Architektur besitzt, beginnt die Beschreibung der Kompo-
nenten mit dem Katalogmanager.

5.2.1 Katalogmanager
5.2.1.1 Komponenten-Abgrenzung

Eine Funktion des SISA ist die Bereitstellung von Metadaten iiber vorhandene
Datensétze (/F40/). Werden Metadaten nicht nur fiir vorhandene Daten vorge-
halten, sondern auch fiir alle anderen SISA-Ressourcen', so kénnen iiber die Be-
reitstellung von Metadaten auch die Funktionen zur Ressourcen-Liste (/F60/)

IVergleiche Abb. 4.2, Seite 76.

5.2. KOMPONENTEN-ENTWICKLUNG 97

Dokumentation Simulationsiau- Ergebnisanalyse
manager
A *
Geodaten-
v v verarbeitung
- A
z‘;tr?l Ogr l«-+ Simulationssystem —»
0 Aufgabensteuerung
A A
b1 ;
Modell- algemeine
analyse Datenverarbeitung
- v i ¢ A 4
M etadaten- ‘ .
Sammler H 3 Datenzugriff
v v

@ @ Datenbasis Datenbanksystem

Metadaten Daten

Abbildung 5.1: Ubersicht der SISA-Komponenten. Kern des Systems ist das
Simulationssystem. Zur Berechnung neuer Ergebnisse verwendet das Simulati-
onssystem Daten aus der Datenbasis, die es iiber die Datenzugriffskomponente
bezieht. Welche Datensiitze und Einstellungen fiir einen Simulationslauf ver-
wendet werden sollen, erfahrt das Simulationsmodell vom Simulationslaufmana-
ger. Die fiir einen Datenzugriff notwendigen Informationen (z.B. Dateinamen)
erhilt die Datenzugriffskomponente iiber den Katalogmanager. Metadaten, die
nicht iiber die Benutzungsoberfliche des Katalogmanagers eingegeben wurden,
kénnen vom Metadaten-Sammler automatisch in die Komponente iibernommen
werden. Grundlegende Funktionen zur Geodatenverarbeitung werden von einer
gesonderten Komponente angeboten, so dass sowohl das Simulationsmodell als
auch der Nutzer des Systems iiber die Dienste der Aufgabensteuerung auf die-
se Funktionen zugreifen konnen. Weitere Datenverarbeitungsfunktionen, die
unabhéngig von einem konkreten System realisiert und wieder verwendet wer-
den konnen, werden iiber die Komponenten der allgemeinen Datenverarbeitung
angeboten. Bei einer Modellanalyse (z.B. einer Unsicherheitsanalyse) wendet
sich das Simulationssystem nicht direkt an die Datenzugriffskomponente. In
diesem Fall bezieht das Simulationssystem alle Daten {iber die Modellanalyse-
Komponente. Die Verbindung der Komponenten mit den funktionalen Anfor-
derungen des SISA kénnen der Ubersicht in Abb. 5.2 entnommen werden.

98 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG
Komponente Verantwortlichkeit
Katalogmanager Verwaltung und Bereitstellung von Metadaten iiber SISA-

Ressourcen.

Metadaten-Sammler

Durchsuchung eines Rechners nach Dateien mit Metadaten
und automatische Weitergabe der gefundenen Informationen
an den Katalogmanager.

Simulationssystem Berechnung, Speicherung und Weitergabe von Simulationser-
gebnissen.

Datenzugriff Lesender und schreibender Zugriff auf Daten und Transforma-
tion zwischen verschiedenen Daten-Formaten.

Datenbanksystem Verwaltete Speicherung von Assessment-Daten.

Simulationslauf- Verwaltung simulationslaufbezogener Einstellungen und Be-

manager reitstellung dieser Informationen fiir die Simulationssystem-

Komponente.

Geodatenverarbeitung

Verarbeitung geographischer Daten und die Bereitstellung ei-
ner Schnittstelle zu eigenstindigen GIS.

Datenverarbeitung Bereitstellung allgemeiner, wieder verwendbarer Datenverar-
beitungsdienste.

Aufgabensteuerung Programmgesteuerter Aufruf anderer Dienste des SISA (z.B.
Dienste zur Datenvorverarbeitung und Datennachbearbei-
tung).

Ergebnisanalyse Unterstiitzung bei der Analyse von Simulationsergebnissen
(z. B. bei der Visualisierung und der statistischen Auswertung
von Datensétzen).

Modellanalyse Unterstiitzung bei der Analyse des Simulationsmodells (insbe-
sondere bei einer Sensitivitéits- oder Unsicherheitsanalyse).

Dokumentation Dokumentation und Verwaltung wichtiger Assessment-

Informationen (z.B. Angaben iiber Projekte und Hinweise
zum Verstindnis von Assessments).

Tabelle 5.1: Komponenten und ihre Verantwortlichkeiten.

5.2. KOMPONENTEN-ENTWICKLUNG

99

\\ /F60/

/" Metadaten- / N <\

Bereitstellung

\ s)
‘\\7 F40/ P /
AN

Katalog- Jl Dokumentation Simulationssystem
manager o | o
S Ressoureen /i N N\
Information |+)—={)
Metadaten- [F70-/F90/ _/ N e S Qﬁmo/-/FnW o
sammler T *"\] I (/Simulaﬁons\-\>
Projekt- "\ —— Start /F130/
j \ N Start /FI307_
i B [Ressourcen- | /7 Szenarien- "\ v /’\
/ Ressourcen\ \ Zuordnung | beschreibung | / Simulations- \
Liste J \ JEs0/ / _ A — [verlauf- |
- < Gloss1r> - | Information |
— L F20/ - JF140/
Ressourcen- s\//Ergebnxs / Simulationslauf- \ 1 ‘/g"““la"“"s ‘ \ /
\\ Verwaltung [verwaltung \ (Beschreibung (Ecrgcbms)
j B— | Erzeugun
1230/ \\ G //vﬂsm dms\ gung

1260/

ﬁ)rdemng

150/ /
/

Simulationslauf- Geoda.ten-
manager Verarbeltl.mg /
allgemeine
— D\ VA Datenverarbeitung
Amulalmus]auf\ S I
/ Smtnions\ / fukionale) ; -
Zuordnung { verwalung = \\—/ Daten- \—
- o
\ Fs0r / \\ = / \\Nachbearbeilung /,‘
o B 1280/
/ Soenario- \ ~_
“‘ Daten- ‘
\ Zuordnung | _—
. F0r / T
\ / Analyse- \ Aufgabensteuerung
_ . :

(Analyse)

Modellanalyse

/ Datenbasis
7 e\

\ Integration |

\ /ZIOO/

X

i (" Erg ebmsbereuslellun ~N
/ Modell-\ Nz / C e e -
- ———— Statistische

\/1110/ / - Datenauswertung w
/'/ 7\\ / Daten- \ / Daten- \ \ _ JEI80/ _—
(i)alen; \ export | | visualisierung ,‘
| Import /FI70/ /F160/
\ S0/ o / \ //
_— Ergebnisanalyse

Datenzugriff TI

Abbildung 5.2: Ubersicht der Verbindung zwischen SISA-Komponenten und
SISA-Zielen. Eine kurze Erkldrung zentraler Komponenten findet sich in der
Beschreibung zu Abbildung 5.1 (Seite 97). Nihere Informationen finden sich
im Abschnitt der Komponenten-Entwicklung (5.2, Seite 96).

OGC

Dienste

Verant-

wortlich-

keit

Def.
Katalog

geo-
rdum-
liche
Ressour-
cen

100 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

und zur Bereitstellung grundlegender Informationen zu eingesetzter Software
(/F70/), erzeugten Daten (/F80/) und vorhandenen Dokumenten (/F90/) rea-
lisiert werden. Die Bereitstellung von Metadaten fiir alle Ressourcen unterstiitzt
daher auch die Verwaltung von Ressourcen (/Z30/) und die Bereitstellung von
Hintergrundinformationen (/Z40/). Die Zuordnung von Projekten zu Ressour-
cen (/F50/) im Rahmen der Ergebnis-Verwaltung (/Z20/) kann ebenfalls iiber
die Speicherung von Metadaten erreicht werden.

Die Katalogisierung von Ressourcen kann als weitgehend unabhéngig reali-
sierbarer Teil der SISA-Funktionalitéit betrachtet werden, fiir den dariiber hin-
aus spezielle Dienste innerhalb der Spezifikationen des OpenGIS-Konsortiums
(OGC) definiert sind. Aus diesen Griinden wird ein Katalogmanager als Kom-
ponente in die SISA-Architektur aufgenommen, der fiir die Verwaltung und
Bereitstellung von Metadaten iiber SISA-Ressourcen zusténdig ist.

5.2.1.2 Dienst-Spezifikation
OpenGIS Catalog Services

Ausgangspunkt fiir die Entwicklung der Dienste des Katalogmanagers sind
die Spezifikationen des OpenGIS-Konsortiums, genauer: die in Topic 18 der
Abstract Specifications definierten Catalog Services (Kottmann, 1999c¢). Diese
Katalogdienste sollen die Organisation von und die Suche nach geordumlichen
Ressourcen? sowie den Zugriff auf diese Ressourcen unterstiitzen.

Der zentrale Begriff des Katalogs wird bei Kottmann (1999¢) wie folgt de-
finiert:

A Catalog is simply a collection of Catalog Entries that is organized
to assist in the discovery, access, and retrieval of geospatial resources
that are of interest to the user, especially when the existence or
whereabouts of the resource are not known to the user.

Welche Ressourcen als geordumliche Ressourcen (geospatial resources) ange-
sehen werden, verdeutlicht Abbildung 5.3. Demnach gehoéren sowohl Geodiens-
te als auch Geodaten zu den geordumlichen Ressourcen. Unter den Diensten
finden sich die Katalogdienste selbst, die Zugriffsdienste auf Daten und alle
weiteren Dienste mit geordumlichem Bezug. Die Geodaten sind in Geodata
Collections zusammengefasst und beinhalten sowohl die bereits angesproche-
nen Features® als auch Feature Collections. Der Katalog besteht aus einzelnen
Katalog-Eintrégen (Catalog Entries), die den Inhalt geordumlicher Datensétze
beschreiben. Diese Eintrége stellen i.d. R. eine Untermenge eines kompletten
Metadatensatzes zu einem geordumlichen Datensatz dar und sind so konstru-
iert, dass Abfragen auf ihnen durchgefiihrt werden kénnen. Bei den Catalog

2Ressourcen mit Raumbezug.
3Repriisentationen realer oder imaginirer Dinge oder Phinomene der realen Welt.

5.2. KOMPONENTEN-ENTWICKLUNG 101

Entries handelt es sich also um Metadaten, die zum Auffinden von Ressourcen
genutzt werden.

<-is referenced by

GeoResource
7
GeoService GeodataCollection
Other GeoServices ... | | Geospatial Analysis Service Catalog FeatureCollection
Access Service Feature -T
CatalogEntry
0"*

Abbildung 5.3: Geordumliche Ressourcen im Sinne des OpenGIS-Konsortiums.
Erklarungen finden sich im Text. Quelle: Kottmann (1999c¢).

Die Dienste der OpenGIS Catalog Services werden in drei Kategorien ein- Dienste
geteilt (s. auch Abb. 5.4, Seite 102):

e georesource discovery services
e geodata access services

e other data access services

Die georesource discovery services dienen dem Auffinden von geordumlichen
Ressourcen und nutzen Metadaten-Repositories, die geordumliche Ressourcen
beschreiben und auf diese verweisen. Die geodata access services bieten den
Zugriff auf geordumliche Daten, die in zugehorigen Daten-Repositories abgelegt
sind. Die georesource disovery services konnen auch Datensétze referenzieren,
die keine geordumlichen Daten beinhalten; fiir den Zugriff auf diese Daten sind
die Dienste der Kategorie other data access services zustandig.

Abbildung 5.4 (Seite 102) zeigt die wichtigsten Klassen, die an der Bereit- primsre
stellung der Dienste der drei Kategorien beteiligt sind und verdeutlicht die Klassen
Zusammenhénge zwischen den Klassen.

dis-
covery
services

102 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

Geodata Access : GeoResource | Other Data Access
Service | Discovery Service | Service
1
|
| 1
1
! !
Geospatial ! | Other
Dataset | Catalog | Dataset
Collection : | Collection
i 1
D
! |
c 1
Geospatial Catalog !
Dataset Entry !

| |
Feature |
Collection !

|
|
! C

o 5

Metadata
Entity

|
% | (unspecified) |
I ! |

|
C? D | | lD o

| |
i i

| |
Feature (or 1 !

Coverage) ! I Metadata
| | Set
! !
! |
Metadata , | C
Set ? :
| I Metadata
! | Entity
[! !
KEY TO ROLES
Metadata C = Contains
Entity D = Describes

Abbildung 5.4: Primére, von den OpenGIS Catalog Services genutzte Klassen.
Erklarungen finden sich im Text. Quelle: Kottmann (1999c¢).

Der Katalog beinhaltet demnach einzelne Katalog-Eintriage, wobei jeder
Eintrag aus einzelnen Metadaten-Entitdten besteht — einer der Katalog-Ein-
triage kann auch den Katalog selbst beschreiben. Die Metadaten-Entitdten sind
Sammlungen so genannter Metadaten-Elemente. Jedes dieser Elemente besteht
aus einem Name-Wert-Paar, das eine spezielle Eigenschaft eines Objektes be-
schreibt — das Paar: Name=,Datum*®; Wert=,,2003-03-31“ ist ein Beispiel fiir
ein solches Metadaten-Element. Die Auswahl konkreter Metadaten-Elemente
zur Objektbeschreibung hingt davon ab, welche Metadaten genau gewiinscht
sind. Aus diesem Grund ist die Klasse als abstrakte Klasse definiert. Die ein-
zelnen Elemente sollten allerdings dem Element-Satz der OpenGIS Abstract
Specifications, Topic 11: Metadata (Kottmann, 2001) entnommen werden.

Fiir die Katalog-Klasse und die Klassen der Katalog-Eintrige und der Meta-
daten-Entitidten wird eine Vielzahl mehr oder weniger umfangreicher Funktio-
nen gefordert — angefangen von Funktionen zur Erzeugung und Modifikation
der Objekte der einzelnen Klassen bis hin zu genau spezifizierten Abfragen
von Katalog-Eintréigen. Eine Ubersicht der nach Kottmann (1999c) priméren
geodata discovery services findet sich in Tabelle 5.2.

5.2. KOMPONENTEN-ENTWICKLUNG 103

Die Katalog-Eintrége konnen sowohl geordumliche als auch andersartige Da-
tensétze beschreiben. Bei den geordumlichen Datensdtzen wird davon ausgegan-
gen, dass es sich um OpenGIS Feature Collections oder einzelne Features (oder
Coverages) handelt. Die ebenfalls durch das OGC definierten Schnittstellen
dieser Klassen (s. Kottmann, 1999¢; Kottmann, 2000; Kottmann, 1999b) kon-
nen also von den geodata access services zur Erfiillung ihrer Aufgaben benutzt
werden. Die Features und Feature Collections werden iiber Metadatensétze
beschrieben, wobei die Metadaten den Spezifikationen aus Kottmann (2001)
entsprechen miissen. Die priméren Funktionen der geodata access services sind
ebenfalls in Tabelle 5.2 aufgefiihrt.

Bei den other datasets findet sich eine vergleichbare Strukturierung bei der
Assoziation von Metadaten. Eine genaue Spezifikation der Datensétze selbst
kann natiirlich nicht vorgenommen werden — die entsprechende Klasse bleibt
daher unbestimmt. Trotz der nicht néher spezifizierten Klasse gelten fiir die
other data access services die gleichen priméren Funktionen wie bei den geodata
access services (vgl. Tab. 5.2).

Geodata Access Service &
Other Data Access Service

Geodata Discovery Service

Copy complete dataset

Query catalog service

Retrieve partial dataset

Add catalog entry

Add dataset

Remove catalog entry

Remove dataset

Modify catalog entry

Modify dataset

Copy selected catalog entry

Create iterator through datasets

Create iterator through catalog entries

Query access service

Get catalog entry schema

Get dataset schema

Get service properties

Get service properties

Set service properties

Get service property schema

Get service property schema

Tabelle 5.2: Die priméren Funktionen der OpenGIS Catalog Services. Eine aus-
fithrliche Beschreibung dieser und weiterer Funktionen findet sich in Kottmann
(1999¢). Spezifikationen zur Implementierung kénnen Nebert (2002) entnom-
men werden. Quelle der Tabelle: Kottmann (1999c).

Neben den Funktionen, die sich direkt den drei Kategorien (discovery, geoda-
ta access, other data access) zuordnen lassen, werden bei Kottmann (1999¢) zu-
sitzliche Funktionen aufgefiihrt, die fiir alle oder mehrere Dienste wichtig sind.
Die Liste enthélt u. a. Funktionen zur Bearbeitung von Objekt-Ansammlungen
(collections) und zur Behandlung umfangreicher Anfrage-Ergebnisse sowie ei-
nen Eintrag, der die Transformation von Daten betrifft. Funktionen zur Da-
ten-Transformation kénnen notwendig werden, wenn die Nutzer gespeicherte

access
services

Daten-
transfor-
mation

104 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

Daten in einem Format benétigen, das von den geodata discovery services oder
den geodata access services nicht angeboten wird. Als Beispiele fiir Datentrans-
formationen werden angefiihrt:

e Konvertierungen des Datenformats (sowohl beziiglich der Werte als auch
der Namen von Datenelementen)

e Transformation rdumlicher Koordinaten

e semantische Transformation von Datenelementen

Waéhrend zur Umsetzung der ersten beiden Punkte bereits Vorschldge der
OGC existieren (s. z. B. Kottmann, 1999d), wird die semantische Transformati-
on, also die Umformung der Bedeutung von Daten, aufgrund ihrer Komplexitét
(noch) nicht durch OGC-Spezifikationen beschrieben.

Zur Realisierung der Datentransformation wird der Weg iiber eine Schnitt-
stellen-Software nach Abbildung 5.5 vorgeschlagen. Die Schnittstellen-Software
(oder ‘Middleware’) ist fiir alle Datentransformationen zusténdig, die fiir den
Datenaustausch zwischen der Anwendungssoftware und den OpenGIS-Diensten
notwendig sind. Bei der Erfiillung ihrer Aufgaben nimmt die Schnittstellen-
Software Dienste (Data Transformation Services) in Anspruch. Diese Diens-
te transformieren die Daten in das jeweils benétigte Format: Anwendungsda-
ten des Formats A werden zur Inanspruchnahme eines OpenGIS-Dienstes iiber
einen Transformationsdienst in ein Format B iiberfiihrt; die Ergebnisse des
OpenGIS-Dienstes werden dann von einem anderen Transformationsdienst vom
Ergebnisformat C zum Format D gewandelt, das von der Anwendungssoftware
erwartet wird.

User
Application
Software
Request y Result
Data format A [Interface | _Format D Data
Transformation _ Software o Transformation
Services Format B (Middleware) Format C Services
Request y Result
OpenGIS
Service

Abbildung 5.5: Nutzung einer Schnittstellen-Software zur Anbindung von
OpenGIS Services an die Anwendungssoftware. Erklarungen finden sich im
Text. Quelle: Kottmann (1999c¢).

Zur Umsetzung dieses Middleware-Prinzips werden in Kottmann (1999c)
verschiedene Moglichkeiten aufgefiihrt: die Middleware kann, wie in Abbildung

5.2. KOMPONENTEN-ENTWICKLUNG 105

5.5 dargestellt, als eigenstédndige Software implementiert werden oder Teil bzw.
Erweiterung einer der anderen drei Software-Typen (OpenGIS-Dienste, Trans-
formationsdienste, Anwendungssoftware) sein. Es wird allerdings vorgeschla-
gen, die Middleware als Erweiterung der OpenGIS-Dienste zu sehen und ihr
eine Programmierschnittstelle (API) mitzugeben, die sich anlehnt an die APIs,
die von den OpenGIS-Diensten angeboten werden.

Um die Geschwindigkeit beim Zugriff auf Daten erhthen zu koénnen, ist
es sinnvoll, die entsprechenden Funktionen von denen des Katalogmanagers
zu trennen.* Aus diesem Grund wird die Verantwortlichkeit fiir den Zugriff
auf Daten innerhalb der SISA-Architektur einer gesonderten Komponente, der
Datenzugriffskomponente, iibertragen. Weitere Ausfithrungen zur Datentrans-
formation und zu den data access services (vgl. Tab. 5.2, Seite 103) finden sich
daher erst im entsprechenden Unterabschnitt (5.2.6, Seite 134).

Anpassung und Erweiterung der Dienste

Die oben angefiihrten Prinzipien, Klassen, Dienste und Funktionen bieten einen
Rahmen, der beim Entwurf der Katalog-Komponente aus Griinden der Offen-
heit und Interoperabilitdt beriicksichtigt werden sollte. Eine OGC-konforme
Realisierung der Komponente kommt in den meisten Fallen der Entwicklung
eines SISA nicht in Frage: die Einhaltung aller Spezifikationen erfordert einen
zu hohen Einarbeitungs- und damit Zeit- und Kostenaufwand, der im Rah-
men von Modell-Entwicklungen i. d. R. nicht gedeckt werden kann. Aus diesem
Grund werden im Folgenden die wichtigsten Dienste und Funktionen spezifi-
ziert, die als Minimal-Ausstattung der Komponente angesehen werden. Hierzu
werden zunéichst die wichtigsten Katalog-Funktionen identifiziert. Im Anschluss
werden die Metadaten-Elemente, die vom Katalog verwaltet werden sollen, spe-
zifiziert.

Spezifikation der Dienste

Die Schnittstellen-Definition der Katalog-Komponente orientiert sich an der
implementation specifikation (IS-CAT) der Katalog-Dienste des OGC (Nebert,
2002). In der IS-CAT werden vier Schnittstellen definiert:

Catalog_Service Schnittstelle auf Server-Ebene, die den Zugriff auf die Diens-
te zur Einrichtung und Verwaltung von Sitzungen (user sessions) bereit-
stellt

Discovery Operationen, die es dem Nutzer erlauben, Daten, Dienste und an-
dere Ressourcen ausfindig zu machen

4Fiir die Zugriffsdienste kann so beispielsweise eine andere Verteilungsplattform verwendet
werden als fiir die Katalogdienste.

Zugriffs-
kompo-
nente

Dienst-
Auswahl

Catalog
Service

Dis-
covery
Service

106 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

Access Operationen, die den Nutzer beim Zugriff auf die Ressourcen unter-
stiitzen, die wiederum iiber die Operationen des Discovery-Dienstes ge-
funden werden

Catalog_Manager Operationen zur Verwaltung und Aktualisierung von Ka-
talogen (die Spezifikation der Operationen dieser Schnittstelle ist in Ne-
bert (2002) vorléufig und noch nicht abgeschlossen)

In Anlehnung an die priméren Funktionen aus Tabelle 5.2 (Seite 103) und die
in Nebert (2002) spezifizierten Operationen werden fiir die SISA-Architektur
die in Tabelle 5.3 zusammengefassten Operationen definiert.

’ Schnittstelle ‘ Operation ‘ Beschreibung ‘
Catalog Service initSession Initialisiert eine Nutzer-Sitzung
terminateSession Beendet eine Nutzer-Sitzung
Discovery query Abfrage des Kataloges nach bestimm-
ten Kriterien
Access getAccessInformation Liefert Informationen zum Zugriff auf
eine eindeutig identifizierte Ressource
Catalog Manager createCatalog Erzeugt einen neuen Katalog
createMetadata Fiigt dem Katalog neue Metadaten-
Entitdten hinzu
updateCatalog Aktualisiert den Inhalt eines gegebe-
nen Kataloges
deleteCatalog Loscht den Inhalt des gegebenen Kata-
loges
addCatalogEntry Erzeugt einen neuen Katalogeintrag
removeCatalogEntry Entfernt einen Katalogeintrag
modifyCatalogEntry Andert einen Katalogeintrag

Tabelle 5.3: Schnittstellen und Operationen der Katalog-Komponente. Die
Schnittstellenbezeichnungen richten sich nach denen von Nebert (2002), die
Operationen orientieren sich an Nebert (2002) und Kottmann (1999¢) (add-,
remove-, modifyCatalog). Weitere Informationen finden sich im Text.

Die Operationen initSession und terminateSession der Catalog-Service-
Schnittstelle dienen der Koordination verschiedener Nutzer-Sitzungen. Die IS-
CAT sieht bei der Initialisierung die Riickgabe einer eindeutigen Identifizie-
rungsnummer fiir die Sitzung vor, die vom Nutzer fortan verwendet werden
muss.

Die zentrale Funktion des geodata discovery service ist nach Kottmann
(1999¢) die Anfrage-Funktion (query function). Diese Funktion muss alle Ka-
talog-Eintrége innerhalb eines Kataloges finden, die nutzerdefinierten Krite-
rien entsprechen. Die Syntax und die Semantik von Abfragen wird in den
OGC-Sperzifikationen zu den Katalog-Diensten (Kottmann, 1999¢ u. Nebert,

5.2. KOMPONENTEN-ENTWICKLUNG

107

2002) genau festgelegt. Die Beriicksichtigung dieser Spezifikationen kann als
Maximal-Anforderung an die Funktion angesehen werden. Im Rahmen eines
SISA sollte als Minimal-Anforderung eine Anfrage-Funktion bereitgestellt wer-
den, die einen Katalog-Eintrag aufgrund eines eindeutigen Ressourcen-Namens

ausfindig macht.

Die Ausgestaltung der Schnittstelle zum Zugriff auf Daten findet hauptséich- Access
lich in der Datenzugriffskomponente statt. Der Katalogmanager sollte allerdings
diejenigen Informationen zur Verfiigung stellen, die fiir einen Zugriff durch die
Datenzugriffskomponente benétigt werden (beispielsweise Informationen iiber
das Datenformat oder das Zugriffsprotokoll). Zu diesem Zweck wird — in An-

lehnung an die in Nebert (2002) nicht weiter spezifizierte Operation zum direct

access — eine Operation mit dem Namen getAccessInformation eingefithrt. Um
eine eindeutige Referenzierung von Ressourcen zu gewéhrleisten, sollte jede
Ressource mit einem eindeutigen Namen, dem so genannten uniform resource
name (URN) versechen werden (ausfiihrliche Informationen zum Konzept des
URN finden sich ab Seite 173 im Kapitel der Realisierung). Fiir die Erzeugung

eines solchen Namens wird ebenfalls eine Operation bereitgestellt.

Die Operationen der ‘Catalog-Manager’-Schnittstelle dienen der Verwaltung Catalog
des Katalogs. Die in Tabelle 5.3 aufgefithrten Operationen erlauben es, neue
Kataloge zu erstellen, vorhandene Kataloge zu aktualisieren und nicht mehr
bendtigte Kataloge zu 16schen. Dariiber hinaus stellt die Schnittstelle Opera-
tionen zur Erstellung, Entfernung und Anderung von Katalog-Eintrigen sowie
zum Hinzufiigen neuer Metadaten bereit.

Abbildung 5.6 zeigt die Schnittstellen des Katalogmanagers im Uberblick.

ICatService O
ICatAccess

ICatManager

Catalog Manager

ICatDiscovery O

«interface»
ICatManager

«interface»
ICatService

«interface»
ICatDiscovery|

+createCatalog()
+updateCatalog()
+deleteCatalog()
+createMetadata()
+addCatalogEntry()
+modifyCatalogEntry()
+removeCatalogEntry()

+query() +initSession()

+terminateSession()

«interface»
ICatAccess

+getAccessInformation()
+getURN()

Abbildung 5.6: Schnittstellen und zugehorige Operationen des Katalogmana-
gers (Catalog Manager).

Manager

Ziel

Elemen-
te

Ressour-
cen

108 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

5.2.1.3 Daten-Spezifikation

Die grundlegende Datenstruktur zur Speicherung des Katalogs besteht aus drei
Klassen (vgl. Abb. 5.4, Seite 102); je einer zur Beschreibung der Kataloge,
der Katalogeintrige und der Metadateneintriige. Abbildung 5.7 zeigt die fiir
die SISA-Architektur vorgeschlagenen Klassen fiir den Katalog und die Ka-
talogeintrage. Jeder Katalog erhélt einen Namen und besteht aus den einzel-
nen Katalogeintrégen. Fiir jede Ressource innerhalb des SISA sollte genau ein
Katalog-Eintrag existieren, der iiber den URN identifizierbar ist.

«DataType» «DataType» «DataType»
SISA_CatalogManager SISA_Catalog SISA_CatalogEntry
-catalog[1..*] : SISA_URN| [-name[1] : String -resourceld[1] : SISA_URN
-resourceld[1] : SISA_URN -metadataEntry[0..*] : SISA_MetadataEntry

-catalogEntry[1] : SISA_CatalogEntry| |-accessInfo[1] : SISA_AccessInformation

Abbildung 5.7: Datenmodell des Katalogs und der Katalogeintrige.

Fiir die Spezifikation der Metadateneintrége miissen zunéchst die Metada-
ten-Elemente ausgewihlt werden, die fiir jede SISA-Ressource zu erheben sind.

Spezifikation der Metadaten

Ein Katalogeintrag sollte nach Kottmann (1999c) auf einer relativ hohen Ab-
straktionsebene Antworten auf die folgenden sechs Frageworte geben:

1. Wo — Region der Erde, die der Datensatz abdeckt

2. Was — thematische Schliisselworter, Mafistab etc. des Datensatzes

3. Wer — verantwortlicher Ansprechpartner zum Datensatz

4. Wann — Datum der Erzeugung des Datensatzes und evtl. Datum genutzter
Ursprungsdaten

5. Wie — Hinweise beziiglich des Zugriffs auf den Datensatz

6. Warum — Informationen zur beabsichtigten Nutzung des Datensatzes

Mittels welcher Metadaten-Elemente diese Fragen zu beantworten sind, legt
Kottmann (1999c) nicht fest — die Elemente sollten aus Griinden der Inter-
operabilitit und der breiten Anwendbarkeit aber kompatibel zu Metadaten-
Standards sein.

Abgesehen von der Frage nach dem ‘wo’, also den rdumlichen Aspekten,
sollten die oben genannten Fragen nicht nur fiir Geodaten, sondern fiir alle
Ressourcen eines SISA (s. Abb. 4.2, Seite 76) beantwortet werden kénnen. Hier
stellt sich die Frage nach den Metadaten-Elementen, die zur Beschreibung einer
Ressource verwendet werden sollten. Im Folgenden werden wichtige Metadaten-
Standards kurz beschrieben.

5.2. KOMPONENTEN-ENTWICKLUNG 109

Metadaten fiir Geodatensitze -ISO/DIS 19115

Das OGC bezieht sich bei den Metadaten fiir geordumliche Daten auf die Doku-
mente der ISO — genauer: auf die Arbeiten des technischen Ausschusses fiir geo-
graphische Informationen der ISO (ISO/TC 211, s. Seite 42). Aus diesem Grund
beinhaltet Topic 11 der OpenGIS Abstract Specifications (Kottmann, 2001),
das sich mit der Spezifikation von Metadaten beschéftigt, den ISO-Standard
ISO/DIS 19115.

ISO/DIS 19115 definiert die Metadaten-Elemente in einem data dictiona-
ry, das insgesamt 409 Eintrdge enthilt. Die Metadaten-Elemente werden zu
Entitdten verbunden, welche dann in thematisch getrennten ‘Paketen’ (Ab-
schnitte im Data Dictionary) verwendet werden. Eine Ubersicht der insgesamt
15 definierten Pakete findet sich in Tabelle 5.4. Das Paket ‘Constraint Informa-
tion’ beinhaltet beispielsweise Elemente zur Beschreibung rechtlicher, sicher-
heitsbezogener oder sonstiger Einschrinkung beziiglich des Zugriffs oder der
Nutzung der Ressource; die Elemente zum Paket ‘Data Quality Information’
betreffen Informationen iiber die ‘Abstammung’ eines Datensatzes, einzelne
Verarbeitungsschritte bei der Generierung des Datensatzes und evtl. verwende-
te Evaluierungsmethoden und deren Ergebnisse. Fiir die Implementierung der
Metadaten stellt die ISO/DIS 19115 insgesamt 27 Tabellen mit Kodierungs-
informationen bereit. Dariiber hinaus wird innerhalb der Norm auf zahlreiche
andere ISO-Standards verwiesen (insbesondere im Paket units of measure).

Metadata entity set information Portrayal catalogue information
Identification information Distribution information
Constraint information Metadata extension information
Data quality information Application schema information
Maintenance information Extent information

Spatial representation information Citation and responsible party
Reference system information information

Content information Units of measure

Tabelle 5.4: Pakete des Metadaten-Standards ISO/DIS 19115. Weitere Infor-
mationen finden sich im Text. Quelle: Kottmann (2001).

ISO/DIS 19115 unterscheidet bei den Elementen im Data Dictionary zwi-
schen zwingend, bedingt und optional auszufiillenden Elementen. Nur die zwin-
gend erforderlichen Elemente miissen fiir jeden Datensatz angegeben werden;
bei den bedingten Elementen hingt die Notwendigkeit der Angabe von der Art
des Datensatzes, d.h. vom Inhalt eines anderen Elementes ab; die Belegung
optionaler Elemente ist hingegen freigestellt.

ISO/DIS 19115 definiert einen sehr umfangreichen Satz an Metadaten-Ele-
menten, von denen i.d.R. nur eine Untermenge genutzt wird. Zur Dokumen-

Elemen-
te

Ver-
pflich-
tung

Kernsatz

110 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

tation geordumlicher Datensiitze definiert ISO/DIS 19115 aber einen Satz von
Metadaten-Elementen, die auf jeden Fall berticksichtigt werden sollen: die so ge-
nannten Kern-Metadaten (core metadata). Diese Metadaten dienen nach Kott-
mann (2001) der Beantwortung der folgenden Fragen:

e Gibt es einen Datensatz zu einem bestimmten Thema (‘was’)?

e ... fiir einen bestimmten Ort (‘wo’)?

e ... fiir einen bestimmten Zeitpunkt bzw. Zeitraum (‘wann’)?

e Welchen Kontaktpunkt gibt es, um mehr {iber den Datensatz zu erfahren
bzw. ihn zu bestellen (‘wer’)?

Eine Ubersicht der zu den Kern-Metadaten gehérenden Daten ist in Tabelle
5.5 zu finden. Einige der dort aufgefithrten Daten werden direkt durch ein Meta-
daten-Element reprasentiert: der dataset title ist beispielsweise ein Metadaten-
Element, dessen Wert mit einem frei wihlbaren Text (Freitext) belegt werden
kann. Andere Daten miissen unter Beriicksichtigung von spezifizierten Kodie-
rungsvorschriften eingetragen werden: dataset language ist ein Beispiel fiir ein
solches Datenelement, dessen Wert einer anderen Norm (der ISO 639-2) fol-
gen muss. Wieder andere Daten werden durch mehrere Werte représentiert:
so kann geographic location durch insgesamt vier Werte implementiert werden
(westliche und 6stliche Begrenzung der geographischen Linge sowie nordliche
und siidliche Begrenzung der geographischen Breite).

Dataset title (M) Spatial representation type (O)
Dataset reference date (M) Reference system (O)

Dataset responsible party (O) Lineage statement (O)
Geographic location of the dataset (C) Online resource (O)

Dataset language (M) Metadata file identifier (O)
Dataset character set (C) Metadata standard name (O)
Dataset topic category (M) Metadata standard version (O)
Spatial resolution of the dataset (O) Metadata language (C)
Abstract describing the dataset (M) Metadata character set (C)
Distribution format (O) Metadata point of contact (M)
Additional extent information Metadata date stamp (M)

for the dataset (O)

Tabelle 5.5: Kern-Metadaten der ISO/DIS 19115 fiir geordumliche Datensétze.
Die mit einem ‘M’ (mandatory) gekennzeichneten Daten miissen angegeben
werden, unter gewissen Umsténden verpflichtende Daten sind mit einem ‘C’
(conditional) gekennzeichnet und mit einem ‘O’ (optional) markierte Daten

sind optional. Ndhere Informationen finden sich im Text. Quelle: Kottmann
(2001).

5.2. KOMPONENTEN-ENTWICKLUNG 111

Abbildung 5.8 (Seite 112) zeigt alle Datenelemente der Kern-Metadaten, die
fiir einen Datensatz zwingend ausgefiillt werden miissen. Bereits die Einschran-
kung auf die zwingenden Elemente zeigt die vielfdltigen Verkniipfungen der in
ISO/DIS 19115 definierten Klassen, Elemente und Kodierungsspezifikationen:
Die Beschreibung des Themas des Datensatzes (Element ‘topicCategory’) muss
beispielsweise unter Verwendung der genormten Kodierungsliste erfolgen, die
Sprache muss nach ISO 693-2° kodiert werden und die Kodierung des Daten-
satzes selbst sollte moglichst nach ISO 10646-15 erfolgen.

Die vielfaltigen Abhéngigkeiten und Spezifikationen machen die Metadaten
auf der einen Seite sehr gut austauschbar und abfragbar (d. h. sehr interopera-
bel). Die Metadaten fiir geordumliche Ressourcen sollten daher, sofern moglich,
gemifl ISO/DIS 19115 erfasst werden. Auf der anderen Seite ist die Implemen-
tierung und Erhebung der Metadaten recht aufwendig. Die Implementierung
des Standards ist auch aufgrund der hohen Anzahl méglicher Datenelemen-
te sehr arbeitsintensiv und kann nur bei entsprechend vorhandenen personel-
len Ressourcen gewéhrleistet werden. Aus diesem Grund sollte ein alternativer
und weniger komplexer Satz an Metadaten-Elementen an die Seite des ISO-
Standards gestellt werden, der mit weniger Aufwand implementiert und erfasst
werden kann. Ein solcher Standard ist z. B. der Dublin Core Metadata Element
Set, der an spiterer Stelle (Seite 114) beschrieben wird.

Metadaten fiir Geodatensitze — weitere Normen

Abhén-
gigkeiten

Kom-
plexitit

Ein weiterer, weit verbreiteter Metadaten-Standard ist der content standard for FGDC

digital geospatial metadata (CSDGM) des Federal Geographic Data Committee
(FGDC)". Der CSDGM (FGDC, 1998) bietet mit etwa 200 Elementen einen
ahnlich umfangreichen Satz an Metadaten-Elementen wie ISO/DIS 19115. Die
Angabe einiger Dutzend dieser Elemente ist zwingend vorgeschrieben und etwa
100 gelten als verpflichtend, sofern sie in einem bestimmten Kontext angege-
benen werden kdnnen. Der Element-Satz ist sehr verbreitet, da die Dokumen-
tationen aller durch offentliche Mittel der USA bezuschussten Daten diesem
Standard folgen miissen. Das weit verbreitete Geo-Informationssystem ArcGIS
der Firma ESRI unterstiitzt den CSDGM in seiner Katalog-Software (ArcCa-
talog) ebenfalls (Vienneau, 2001).

Da die Entwicklung der ISO/DIS 19115 innerhalb des ISO/TC 211 mit den
Arbeiten des FGDC koordiniert ist, bestehen viele Ahnlichkeiten zwischen die-

5ISO 693-2: Codes for the representation of names of languages — Part 2: Alpha-3 code.

6ISO 10646-1: Information technology — Universal Multiple-Octet Coded Character Set
(UCS) — Part 1: Architecture and Basic Multilingual Plane.

"Das FGDC ist ein Ausschuss mit Reprisentanten aus 19 US-amerikanischen Behér-
den (z.B. dem Landwirtschaftsministerium, dem Verteidigungsministerium und der Um-
weltschutzbehérde), der in Kooperation mit anderen Organisationen fiir die Entwicklung
der nationalen rdumlichen Dateninfrastruktur (National Spatial Data Infrastructure, NSDI)
zustadndig ist.

ARCHITEKTUR-ENTWICKLUNG

KAPITEL 5.

112

UOHEDIUNWIWO)SANIHN -
uonepodsuer -

ImPns -
191008 -
_ ansepe)Suruueid - (Bupooua
o IOBEID 1D 8200 - 1210018Y0) B 1oysiqnd -
£0161 SL arq dpopadArared 10 10859001 -
0S1/ 1098 OSI Paneey TowSnsaaugredioutd -
yovu Bunsorpoy PruoyowId -
(xapa1) foyne om0) JojeuISLIO -
po2 UONEULIOJUPYUAIS0IT - adowep x0mquisip -
apmnEpUnogyLIou JUSWIUONAUD - Josn -
UONEBAJ[D - JouMO -
Autou09a - uepoisn? -
- ApnInETpUNOgYINOS

Jaynuapl Sy PrInEIpUROLY, asaydsouny - a1 IOPIAOIOOIN0SAI -

apnySuoTpunogisea SoHEpUneq -

e01q -

5 Surure -

opmiSuoTpunognsom .
soynuapporydeisosd s oped pES——
* 10§ sprepurlg 2poDAI0Y 1D
[EUOnEUIAU]) (xaiei1)
2659 051 swenuonisod
uonduasaCar O Xd T 0 Xd apopAiofare)ardo . am yoru Sunimpoy, _ (xanar)
x OB D ouweN[enpIAIpUL

(Bupooud

4108 1010RIRYD sopouie)
wondusaqporydei30as JR— - (1xonax3) 0161 SL (p1ia 10puomIan
’ Fengue| B 0S1/10980SI || 1-9v901 OST WM >
yoeu Sunuorpoy || uuom Sipuoavou puamjou

QoW 121p

Fipuamiou
auawa[g
uap1aq 19p sud

mnu) S1161 OSI
Ut uoBunsoipoy

1op SULD SUAISIPUIE

faoForeyoidoy

uonesynuApLEIRd AN

{

T m:im._==<
4orU BUIAPOY 4y

eRpEIN_ AN

fuvgoraisuodsoy 10

uoneoynUPI AN

ojuuonEIYNUAP

IeuLIog “Mzq
uauoneyyzads| | sweuuassery

awalg
sapuajnynzsne

-sBunaIpoy | || ouenuowayy

3pudsa]

iesen

ifikationen.

Minimaler Elementsatz der ISO/DIS 19115 und der mit d

in Beziehung stehenden Klassen und Kodierungsspez

Abbildung 5.8
Elementen

5.2. KOMPONENTEN-ENTWICKLUNG 113

sen beiden Standards. Aufgrund der Ausrichtung der OGC-Spezifikationen auf
die Elemente der ISO/DIS 19115 wird dem ISO-Standard hier allerdings der
Vorzug gegeben. Aus den gleichen Griinden wird ISO/DIS 19115 dem ebenfalls
etablierten Satz der ANZLIC-Metadaten-Elementen (ANZLIC, 2001) vorgezo-
gen, die vom Australia New Zealand Land Information Council® — dem austra-
lischen/neuseeléindischen Pendant zum US-amerikanischen FGDC — entwickelt
wurden.

Metadaten fiir Simulationsmodelle

Im Rahmen des Projektes Alezandria Digital Earth Prototype (ADEPT)? wur-
de ein Ansatz zur Beschreibung berechenbarer Modelle entwickelt: der Content
Standard for Computational Models (CSCM) (Hill u. a., 2001; ADEPT, 2001).

Priméres Ziel des CSCM ist die Bereitstellung von Informationen, die es
potentiellen Modellnutzern erlauben, das Modell in einem verteilten, digitalen
Katalog zu finden, die Moglichkeit der Anwendung fiir den eigenen Einsatz
zu evaluieren, es zu bekommen, es erfolgreich mit entsprechenden Datenséitzen
laufen zu lassen und die Ergebnisse zu verstehen (Hill u. a., 2001).

Der CSCM, der unter Beriicksichtigung der Arbeiten zum ISO/DIS 19115
und des CSDGM erstellt wurde (ADEPT, 2001), enthilt rund 160, in zehn
‘Abschnitte’ gegliederte Elemente. Die Elemente der einzelnen Abschnitte be-
schreiben ein Modell mit zunehmendem Detaillierungsgrad: angefangen von
Elementen zur Identifizierung des Modells (Titel und Version des Modells, ver-
antwortliche Personen etc.) iiber Informationen zur Verfiigharkeit des Modells
bis hin zu Beschreibungen der Modellkalibrierung und -validierung. Tabelle 5.6
(Seite 114) beinhaltet eine kurze Beschreibung der einzelnen Abschnitte.

Nicht alle Elemente miissen fiir jedes Modell angegeben werden: auch bei
diesem Standard wird unterschieden zwischen verpflichtend anzugebenden Ele-
menten und solchen, die unter gewissen Bedingungen oder optional auszufiillen
sind. Einige Elemente kénnen bzw. miissen auch mehrfach verwendet werden
— z. B. Elemente zur Beschreibung einzelner Modellvariablen oder Parameter.
Fiir ein Modell mit einer Eingangsvariablen, die aus einer Datei gelesen werden
muss, sind etwa 50 Elementen verpflichtend auszufiillen.

Neben den einzelnen Elementen liefert der CSCM fiir einige Elemente Kodie-
rungsvorschriften. So gibt es beispielsweise Kodierungslisten zur Beschreibung
der Modell-Typologie (Differentialgleichungen, Stochastik, zelluléire Automaten
etc.) und zur Klassifizierung des Themas, mit dem sich das Modell beschéftigt
(Biologie, Physiologie, Okologie etc.).

8Startseite im Internet: http://www.anzlic.org.au
9Startseite im Internet: http://www.alexandria.ucsb.edu

ANZLIC

CSCM

Ziel

Elemen-
te

Ver-
pflich-
tung

http://www.anzlic.org.au
http://www.alexandria.ucsb.edu

Info-
Res-
sourcen

Hinter-
grund

114 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG
’ Abschnitt ‘ Beschreibung
Identification Basisinformationen zur Identifizierung des Modells (z. B. Mo-
Information dellname, -version, Identifizierungsnummer, Ansprechpart-

ner).

Indented Use

Beabsichtigte Nutzung des Modells (Thema des Modells) so-
wie Informationen iiber das geforderte Wissen (den ‘Bildungs-
stand’) zum Verstédndnis und zur Anwendung des Modells.

Description

Beschreibung des Modells, inkl. des Modellierungsprozesses
und der Funktionalitit des Modells.

Access & Availabi-
lity

Informationen zur Verfiigbarkeit des Modells (inkl. Zugriffs-
und Nutzungseinschriankungen und Angaben zu Bestellung
und Kosten).

System
ments

Require-

Anforderungen an das Rechnersystem und den Nutzer zur
Durchfithrung von Modellrechnungen.

Input Data Requi-
rements

Beschreibung der Eingabedaten und ihrer Formate (z. B. An-
gaben iiber zeitliche und rdumliche Auflésung und Abdeckung
der Daten).

Data Processing

Erkldrung der auf die Eingabedaten angewendeten Verarbei-

tungen zur Erzeugung der Ausgabedaten (Angabe zugrunde
liegender Formeln und verwendeter Programmiersprachen).

Model Output Beschreibung der Modellausgaben (Daten bzw. visuelle Aus-
gaben) (inkl. Angaben iiber evtl. notwendige Nachbearbeitun-

gen von Ausgabedaten).

Calibration Efforts
& Validation

Informationen iiber Anstrengungen, die zur Modellvalidierung
und -kalibrierung unternommen wurden (z.B. Angaben zu
Tests, Fallstudien, Validierungsexperimenten).

Metadata Source Angabe der Person oder Organisation, die fiir die Generierung

der Metadaten verantwortlich ist.

Tabelle 5.6: Ubersicht der Abschnitte des Content Standard for Computational
Models. Quellen: Hill u.a. (2001); ADEPT (2001).

Metadaten fiir alle Ressourcen — ISO 15836 (Dublin Core)

Der Dublin Core Metadata Element Set ist ein Metadaten-Standard zur Be-
schreibung von Informationsressourcen unterschiedlichster Bereiche.!? Ziel bei
der Erstellung des Standards waren eine einfache Erzeugung und Wartung der
Metadaten, eine allgemein verstindliche Semantik der Metadaten-Elemente,
ein internationaler Giiltigkeitsbereich und die Erweiterbarkeit der Elemente.
Die Entwicklungs- und Standardisierungsbemiihungen des Elementsatzes
gehen zurtick auf einen Workshop, der 1995 in Dublin, Ohio (USA) stattfand

10 Als ‘Informationsressource’ wird in diesem Standard ‘alles’ verstanden, ‘was eine Identitéit
besitzt’. Dies ist die Definition, die auch im RFC 2396 (Uniform Resource Identifiers (URI):
Generic Syntay) der Internet Engineering Task Force (http://www.ietf.org) benutzt wird.

http://www.ietf.org

5.2. KOMPONENTEN-ENTWICKLUNG 115

und aus dem sich die Dublin Core Metadata Initiative (DCMI)'* bildete. Die-
ser Workshop brachte Bibliothekare, Wissenschaftler aus dem Bereich digitaler
Bibliotheken, Informationsbereitsteller und Experten aus dem Bereich der Aus-
zeichnungssprachen'? zusammen, um die Standards zur Suche nach Informati-
onsressourcen zu verbessern. Mittlerweile wurde der Elementsatz von mehreren
Standardisierungsorganisationen (CEN, W3C, ANSI) iibernommen und ist seit
Februar 2003 auch im ISO-Standardwerk als ISO 15836 (ISO, 2003) zu finden.

Der Dublin Core Metadata Element Set (DCMES) besteht aus 15 Elemen-
ten. In ISO (2003) werden die einzelnen Elemente iiber einen Element-Namen,
eine Kennzeichnung (label) und eine Definition spezifiziert und dariiber hinaus
mit einem kurzen Kommentar versehen — die Element-Namen sollten ja allge-
mein verstindlich sein. Tabelle 5.7 (Seite 116) gibt eine Ubersicht der Elemente
des DCMES.

Jedes der Elemente aus dem DCMES ist optional und kann fiir die Beschrei-
bung einer Ressource beliebig oft wiederholt werden. Die Metadaten-Elemente
kénnen dariiber hinaus in jeder beliebigen Reihenfolge auftreten.

Fiir einige Elemente werden in den Kommentaren Vorschlige zur Belegung
der Werte gemacht: zur Angabe des Verfassers/Urhebers (creator) und des Ver-
legers/Herausgebers (publisher) wird beispielsweise die Angabe eines Namens
empfohlen. Um eine globale Interoperabilitidt zu fordern, werden dariiber hin-
aus fiir einige Elemente kontrollierte Vokabulare vorgeschlagen: zur Angabe der
Sprache (language) wird beispielsweise die Verwendung des bereits im Rahmen
der Beschreibungen zur ISO/DIS 19115 angesprochenen Standards ISO 639
(Codes for the representation of names of languages) empfohlen.

Grundlegende Metadaten-Elemente

Die vorgestellten Elementsétze fiir Metadaten iiber geordumliche Daten und Si-
mulationsmodelle bieten eine sehr ausfiihrliche Beschreibungsmoglichkeit dieser
Ressourcen. Auf der anderen Seite ist das Ausfiillen der Elemente sehr zeitauf-
wendig und grenzt bereits an eine Dokumentation dieser Ressourcen an (die
nicht das primire Ziel des Katalogmanagers ist). Fiir den Katalogmanager wird
daher vorgeschlagen, den einfach implementierbaren und ausfiillbaren DCMES
als Grundlage fiir alle SISA-Ressourcen zu verwenden und ISO/DIS 19115 so-
wie CSCM als optionale Erweiterung zu betrachten. Abbildung 5.9 zeigt die
Klassen zur Speicherung der Metadateneintréige.

1 Gtartseite im Internet: http://www.dublincore.org
12X ML, SGML etc.

Ele-
mentsatz

Ver-
pflich-
tung

Abhin-
gigkeiten

http://www.dublincore.org

zentral
vs. de-
zentral

116

KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

Element-Name

Beschreibung

Title Ein der Ressource gegebener Name.

Creator Eine Entitdt (z.B. Person, Organisation, Dienst), die primér
fiir die Erstellung des Inhalts der Ressource verantwortlich ist.

Subject Thema des Inhalts der Ressource (z.B. ausgedriickt durch
Schliisselworter, kodierte Klassifikationen).

Description Eine Erkldrung des Inhalts der Ressource (z.B. eine Zusam-
menfassung, ein Inhaltsverzeichnis oder eine Referenz auf eine
graphische Repriisentation des Inhalts).

Publisher Eine Entitét, die fiir die Veroffentlichung/Verfiigbarkeit der
Ressource verantwortlich ist.

Contributor Eine Entitét, die einen Beitrag zum Inhalt der Ressource ge-
leistet hat.

Date Datum eines Ereignisses (z. B. der Erzeugung oder Verdsffent-
lichung/Verfiigbarkeit) im Lebenszyklus der Ressource.

Type Die Beschaffenheit oder das Genre des Inhalts der Ressource
(Beispiele sind: Datensatz, Dienst, Software).

Format Die physikalische oder digitale Manifestation der Ressource
(z.B. Angabe des Medientyps oder einer Formatkennzeich-
nung).

Identifier FEine Referenz auf die Ressource, die innerhalb eines gegebenen
Kontextes eindeutig ist.

Source Eine Referenz auf eine Ressource, von der die vorliegenden
Ressource abgeleitet ist.

Language Die Sprache des geistigen Inhalts der Ressource.

Relation Eine Referenz auf eine Ressource, die mit der vorliegende Res-
source in Beziehung steht.

Coverage Giiltigkeitsbereich des Inhalts der Ressource (z.B. die rdum-
liche und die zeitliche Abdeckung).

Rights Informationen iiber die Rechte innerhalb oder an der Ressour-
ce (z. B. Angaben zu Kopierrechten).

Tabelle 5.7: Die Metadaten-Elemente der ISO 15836 (Information and docu-

mentation — The Dublin Core metadata element set) (ISO, 2003).

5.2.2 Metadaten-Sammler

5.2.2.1 Komponenten-Abgrenzung

Die zentrale Verwaltung der Metadaten iiber das Metadaten-Repository inner-
halb des Katalogmanagers bringt Vorteile bei der Suche nach Ressourcen. An-
dererseits ist es oft von Vorteil, wenn die Beschreibung von Daten an dem Ort
gespeichert ist, wo auch die Daten selbst gespeichert sind (z.B. in Form einer
zusiitzlichen Datei). Die Informationen zu einem Datensatz sind dann direkt
dort, wo der Datensatz beim ‘Durchsuchen’ von Verzeichnissen gefunden wird

5.2. KOMPONENTEN-ENTWICKLUNG 117

«DataType»
SISA_MetadataDCMES
«DataType» -Title[*] : String
SISA_MetadataEntry -Creator[*] : String

-Subject[*] : String
-Description[*] : String
-Publisher[*] : String
«DataType» -Contributor[*] : String
SISA_MetadataCSCM -Date[*] : String
-Type[*] : String
-Format[*] : String
-ldentifier[*] : String
-Source[*] : String
«DataType» -Language[*] : String
SISA_MetadatalSO19115| |-Relation[*] : String
— -Coverage[*] : String
-Rights[*] : String

SISA_AccessInformation

-URL[1] : String
-format[1] : String

Abbildung 5.9: Datenmodell zur Speicherung von Metadaten. Als Grundlage
sollen die Elemente des Dublin Core Metadata Element Set (ISO, 2003) ver-
wendet werden. Die Erweiterung um die Sétze der ISO/DIS 19115 (ISO, 2000)
und des CSCM (ADEPT, 2001) sollten bei Bedarf als Unterklasse von SI-
SA_MetadataEntry einfiigt werden (deren Elementsiitze werden aufgrund ihrer
Komplexitdt nicht im Diagramm dargestellt).

und sofort einsehbar'?; werden die Daten kopiert, in ein anderes Verzeichnis
(oder auf einen anderen Rechner) verschoben oder anderen Personen iiberreicht,
konnen die Metadaten sehr einfach mit kopiert werden. Einige Anwendungen
(z.B. Programme zur Textverarbeitung oder Tabellenkalkulation, aber auch
GIS) bieten auch die Moglichkeit, Metadaten direkt als Teil des Arbeitsergeb-
nisses (z. B. ein Text-Dokument) zu integrieren. Die dezentrale Speicherung von
Metadaten besitzt also auch einige Vorteile.

Damit der Nutzer des Systems dezentral angelegte Metadaten nicht zu-
sitzlich in den Katalogmanager eintragen muss, wird die Verwendung von
Metadaten-Sammlern vorgeschlagen. Ein Metadaten-Sammler (engl. Metada-
ta Harvester) ist ein Programm, das die Verzeichnisse eines Rechners nach
Metadaten durchsucht und diese sammelt (‘erntet’). Die zusammengetragenen
Metadaten sind dariiber hinaus einer zentralen Stelle — in Falle des SISA ist
dies der Katalogmanager — mitzuteilen. Eine solcher Sammler sollte auf allen

13Sofern ein einfaches Datenformat verwendet wird bzw. die Software zum Lesen kompli-
zierterer Formate bereitsteht.

Harves-
ter

Verant-
wortlich-
keit

118 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

Rechnern installiert sein, die an der Erzeugung von Daten fiir ein Projekt be-
teiligt sind. Abbildung 5.10 verdeutlicht diese Vorgehensweise in graphischer
Form.

Host 1

Harvester 1

@

Host X @
sm’ign
lokal gespeicherten

Metadaten Harvester n

Katalogmanager

N Bericht an @

Katalogmanager @
Suche nach
lokal gespeicherten

Metadaten

Abbildung 5.10: Prinzip des Metadaten-Sammlers. Dezentral an einem Host
erfasste und gespeicherte Metadaten werden vom Metadaten-Sammler (Har-
vester) gesucht und zusammengetragen (Schritt 1). Im Anschluss an die Suche,
die regelmiBig oder auf Anforderung stattfinden kann, werden die Daten dem
Katalogmanager zur Verfiigung gestellt (Schritt 2). Auf jedem Host, der an
einem Projekt beteiligt ist (Host 1 bis Host n), sollte fiir diese Zwecke ein
Harvester installiert sein.

Ein mit dem Katalogmanager zusammenarbeitender Metadaten-Sammler
ist damit verantwortlich fiir die Durchsuchung eines Rechners nach Dateien mit
Metadaten und die automatische Weitergabe der gefundenen Informationen an
den Katalogmanager.

5.2.2.2 Dienst-Spezifikation

Die von einem Metadaten-Sammler anzubietenden Operationen ergeben sich di-
rekt aus den beiden in Abb. 5.10 erklérten Schritten: der Suche und Zusammen-
tragung von Metadaten und dem Bericht der gefundenen Informationen an den
Katalogmanager. Uber diese beiden Funktionen des Sammlers hinaus, kann es
sinnvoll sein, die auf einem Host — ebenfalls dezentral — vorhandenen Metadaten
in einem lokalen Verzeichnis (Repository) vorzuhalten. Ein solches Repository
erleichtert den Uberblick iiber die auf einem Host vorhandenen Daten, ohne
die Notwendigkeit mit dem Katalogmanager in Verbindung zu treten. Entspre-
chende Operationen zur Einrichtung und Abfrage eines solchen Verzeichnisses

5.2. KOMPONENTEN-ENTWICKLUNG 119

sind daher ebenfalls von der Komponente anzubieten. Abbildung 5.11 zeigt die
Schnittstellenspezifikation des Metadaten-Sammlers als UML-Diagramm.

IMDHarvester
Metadata Harvester

«interface»
IMDHarvester

+harvest()
+report()
+setRepository()
+queryRepository()

Abbildung 5.11: Schnittstelle des Metadaten-Sammlers. Die Komponente be-
sitzt lediglich eine Schnittstelle (IMDHarvester), die sowohl die Operation zum
Einsammeln von Metadaten (harvest) als auch die Operation zur Versendung
der gesammelten Metadaten an den Katalogmanager (report) bereitstellt. Falls
die Speicherung der gesammelten Daten in einem lokalen Verzeichnis (Repo-
sitory) gewiinscht ist, kann ein solches iiber zusiitzliche Operationen gesetzt
(setRepository) und abgefragt (queryRepository) werden.

5.2.2.3 Daten-Spezifikation

Das Datenmodell fiir die Sammlung und den Bericht der Metadaten ist ab-
héngig vom lokal verwendeten Metadaten-Elementsatz. Um eine nahtlose In-
tegration der Metadaten in den Katalog des Katalogmanagers zu ermoglichen,
sollten sich die Metadaten-Elemente an denen orientieren, die im Katalogma-
nager verwendet werden (s. Unterabschnitt 5.2.1, Seite 108).

Da der Metadaten-Harvester mit dem Katalogmanager kooperiert, benotigt
er einen Verweis auf diese Komponente. Zum Zugriff auf das evtl. vorhandene
Repository ist ebenfalls ein entsprechender Verweis (z. B. auf den Namen einer
Datei oder einen verantwortlichen Dienst) notwendig. Abbildung 5.12 zeigt die
resultierende Klasse in UML-Notation.

5.2.3 Dokumentation
5.2.3.1 Verantwortlichkeit

Zu den Zielen eines SISA gehort es, Simulationsldufe zu verwalten (/Z10/),
Hintergrund-Informationen zu Assessments bereitzustellen (/Z40/) sowie Hilfe-
stellungen zum Verstéindnis des Problembereichs zu geben (/Z50/). Die Verwal-
tung der in diesem Zusammenhang notwendigen Informationen iiber verwen-
dete Software und verwendete bzw. erzeugte Daten und Dokumente (/F70/-
J/F90/) wird bereits vom Katalogmanager iibernommen (s. Unterabschnitt

Meta-
daten

Attri-
bute

Abgren-
zung

Verant-
wortlich-
keit

Klassen

120 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

«DataType»
SISA_MetadataHarvester|
-katalogManager(1..*]
-repositoryName[0..]

Abbildung 5.12: Datenmodell des Metadaten-Sammlers. Neben einem — im-
plementierungsabhéngigen — Verweis auf den Katalogmanager muss der
Metadaten-Sammler noch den Namen eines optional anzulegenden Verzeich-
nisses (Repository) speichern kénnen. Die Datentypen der Attribute sind ab-
héngig von der konkreten Realisierung und werden daher an dieser Stelle nicht
spezifiziert.

5.2.1, Seite 96). Wahrend diese Informationen in Form von Metadaten verwaltet
werden, ist fiir die Bereitstellung von Informationen iiber durchgefiihrte Simula-
tionsléufe (/F35/), zugrunde liegenden Szenarien (/F10/), beteiligte Personen
(/F100/) und durchgefithrte Projekte und Studien (/F110/) sowie das gefor-
derte Glossar (/F120/) eine direkte Datenhaltung notwendig (s. ‘Hintergrund-
daten’ in Abb. 4.4, Seite 85). Die Verantwortlichkeit fiir diese Funktionen und
Daten wird einer separaten Komponente iibertragen: der Dokumentationskom-
ponente. Uber die genannten Informationen hinaus sollte die Dokumentations-
komponente Modellbetreibern Hintergrundinformationen iiber die Bedienung
des Systems bereitstellen. Aus dieser Abgrenzung heraus ergibt sich die nach-
stehende Verantwortlichkeit der Komponente. Die Dokumentationskomponente
ist verantwortlich fiir die Bereitstellung und Verwaltung grundlegender Infor-
mationen iiber durchgefiihrte bzw. in Bearbeitung befindliche Assessments, den
Problembereich des modellierten System sowie die Bedienung des Systems.

5.2.3.2 Dienst-Spezifikation

Einige Dienste, die die Dokumentationskomponente zur Verfiigung zu stellen
hat, ergeben sich direkt aus den ihr zugeordneten funktionalen Anforderungen
(vgl. Abb. 5.2, Seite 99). Neben der Bereitstellung eines Glossars (/F120/) sind
Daten vorzuhalten fiir:

beteiligte Personen/Organisationen (/F100/)
durchgefiihrte Projekte/Studien (/F110/)
durchgefiithrte Simulationsldufe (/F35/)

e verwendete Szenarien (/F10/)

Diese Daten miissen iiber die Komponente aufgenommen, abgefragt, modi-
fiziert und gel6scht werden koénnen.

5.2. KOMPONENTEN-ENTWICKLUNG 121

Die einzelnen Datensétze konnen als Eintrédge in entsprechenden Katalogen
betrachtet werden. Aus diesem Grund orientierten sich die Schnittstellende-
finitionen der Dokumentationskomponente (s. Abb. 5.13) an den definierten
Schnittstellen des Katalogmanagers (Unterabschnitt 5.2.1, Seite 96).

Neben Katalogen fiir Personen, Organisationen, Projekte, Studien, Szenari-
en, Simulationslaufe und das Glossar, werden zwei zusétzliche Kataloge vorge-
schlagen: einer zur Dokumentation von Arbeitsschritten und einer zur Aufnah-
me kurzer Anmerkungstexte. Weitere Informationen zu den Katalogen finden
sich in den Absétzen der folgenden Daten-Spezifikation.

IDocManager

Documentation

IDocDiscovery

«interface» «interface» - -
IDocManager IDocDiscovery ?ataloge sind bereitzustellen

ar:

- Personen & Institutionen
+createCatalog() +query() - Projekte & Simulationsstudien
+deleteCatalog() - Simulationslaufe & Szenarien
+addCatalogEntry() - ein Glossar
+modifyCatalogEntry() - einen Service Organizer Folder
+deleteCatalogEntry() - Anmerkungen

Abbildung 5.13: Schnittstellen der Dokumentationskomponente. Die Na-
men der Operationen orientieren sich an den Spezifikationen des OpenGIS-
Konsortiums (vgl. Schnittstellen-Spezifikation des Katalogmanagers, Abb. 5.6,
Seite 107). Erkldrungen zu den Informationen, die fiir die einzelnen Kataloge
zu speichern sind, finden sich in den Abséitzen zur Daten-Spezifikation.

5.2.3.3 Daten-Spezifikation

Zur Erfiillung der SISA-Anforderungen miissen einige Daten innerhalb des Sys-
tems verwaltet und vorgehalten werden. Einige der Klassen, fiir die Informa-
tionen gespeichert werden miissen, wurden bereits bei der Systemdefinition in
Unterabschnitt 4.2.5 (Seite 84) identifiziert und in Abb. 4.4 (Seite 85) darge-
stellt. Demnach sind Attribute zu den folgenden Klassen zu spezifizieren:

Person
Organisation
Projekt
Simulationsstudie
Simulationslauf

[]
[)
[)
[)
[)
e Szenario

Uber-
sicht

1SO/DIS
19115

Rollen

Projekte

122 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

Zur Steigerung der Nachvollziehbarkeit von Assessments werden iiber diese
Klassen hinaus zwei weitere Klassen definiert. Die erste Klasse orientiert sich
am so genannten ‘Service Organizer Folder’ (Percivall, 2002) und erlaubt die
Dokumentation von Arbeitsschritten, die zur Lésung einer bestimmten Aufgabe
notwendig sind. Die zweite Klasse dient zur Speicherung einfacher Notizen, die
verwendet werden konnen, um ein Assessment oder einzelne Ressourcen mit
Anmerkungen zu versehen. Die entsprechenden Klassennamen sind:

e Arbeitsschritt
e Anmerkung

Die folgenden Absitze spezifizieren die Attribute der aufgefiihrten Klassen.

Personen und Organisationen

Die iiber Personen und Organisationen zu speichernden Daten (/F100/) sollten
nach den Richtlinien der ISO/DIS 19115 (Kottmann, 2001) kodiert werden, um
eine nahtlose Integration von Projektdaten und Metadaten zu erméglichen. Der
Standard schlédgt zur Verwaltung von Personen und Organisationen eine Klasse
mit dem Namen ‘responsible party’ (verantwortliche Instanz) vor, die Angaben
zum Namen und zu Kontaktinformationen vorsieht. Die genaue Klassendefini-
tion wird im Anhang B.1 (Seite 234) in UML-Notation wiedergegeben.

Zur Beschreibung der Rolle, die einer Person/Organisation im Rahmen der
Metadaten-Erfassung zugeschrieben werden kann, bietet ISO/DIS 19115 eine
Kodierungsliste (s. Abb. B.1, Seite 234). Da sich diese Liste auf mégliche Rol-
len im Zusammenhang mit Metadaten beschridnkt, muss sie an dieser Stelle
erweitert werden.

Die zentralen Rollen von Personen im Rahmen des simulationsbasierten
Assessments konnen direkt dem OOA-Modell des SISA (Abb. 4.1, Seite 73)
entnommen werden: Modellentwickler, -implementierer, -betreiber, Entschei-
dungstréiger, Ressourcenlieferant und Interessent. Als weitere Rolle kommt noch
der Kapitalgeber hinzu. Abbildung 5.14 zeigt das resultierende Datenmodell im
Uberblick.'

Projekte und Simulationsstudien

Innerhalb des SISA sollten die wichtigsten, auf das Assessment bezogenen In-
formationen zu Projekten gespeichert werden (/F110/). In ISO 9000 (DIN,
2000) wird der Begriff des Projektes definiert als: ,Einmaliger Prozess, der aus
einem Satz von abgestimmten und gelenkten Tétigkeiten mit Anfangs- und

141S0/DIS 19115 verwendet den Namen ‘responsible party’ nicht nur fiir die verantwortli-
chen Instanzen, sondern auch fiir die Nutzer oder Eigentiimer von Ressourcen (s. CI_.RoleCode
in Abb. B.1, Seite 234). In Anlehnung an ISO/DIS 19115 — und mit der gleichen Anmerkung
versehen — wird auch fiir den SISA-Datentyp der Name ‘responsible party’ gew&hlt.

5.2. KOMPONENTEN-ENTWICKLUNG 123

«DataType»
CI_ResponsibilityParty «CodeList»
SISA_RoleCode
-modelDeveloper
-modelCoder
% -modelCarrier
-decisionMaker
«DataType» -resourceProvider|
SISA_ResponsibilityParty| -interestedParty
-investor

Abbildung 5.14: Datenmodell zur Speicherung von Informationen iiber Per-
sonen und Organisationen. Die Klasse zur Speicherung von Informationen zu
Personen und Organisationen (SISA_ResponsibleParty) leitet sich direkt von
der entsprechenden Klasse der ISO/DIS 19119 (CI_ResponsibleParty) ab. Die
Kodierungsliste zur Angabe der Rolle, die eine Person oder Organisation ein-
nimmt, wird fiir das SISA entsprechend erweitert (SISA_RoleCode). Die diesbe-
ziiglichen Definitionen der ISO sind im Anhang zu finden (Abb. B.1, Seite 234).

Endtermin besteht und durchgefithrt wird, um ein Ziel zu erreichen, das spe-
zifische Anforderungen erfiillt, wobei Zeit-, Kosten- und Ressourcenbeschrin-
kungen eingeschlossen sind.“

Das Datenmodell des Umweltdatenkatalogs'® (Swoboda u. a., 1998; Swobo-
da u.a., 2000) beschreibt Projekte iiber die Datenelemente Projektleiter, Be-
teiligte und Erliuterung.'® Uber diese Angaben hinaus sollte das SISA, in An-
lehnung an die ISO-Definition, auf jeden Fall Informationen iiber den Anfangs-
und Endtermin sowie das Ziel des Projektes bereitstellen. Die Angabe eines
Projekt-Titels sowie der Verweis auf weitere Informationsquellen — Dokumente
mit detaillierten Angaben zu Kosten, Ressourcen usw. — sollten ebenfalls iiber
das SISA bereitgestellt werden.

Um eine getrennte Verwaltung von Personen und Organisationen zu erleich-
tern, sollte zur Aufnahme der Daten jeweils ein separater Katalog erzeugt und
verwendet werden.

Fiir Projekte werden Simulationsstudien mit Simulationsldufen und Ergeb-
nis-Analysen durchgefiihrt (vgl. Abb. 4.1, Seite 73). Studien sind , wissenschaft-
liche Untersuchungen iiber eine Einzelfrage“ (Duden, 1996). In diesem Sin-
ne konnen Simulationsstudien als ‘kleine’ Projekte (Unterprojekte) betrachtet
werden (Ziele von Simulationsstudien kénnen neben der Erstellung eines Assess-

5Der Umweltdatenkatalog (UDK) ist ein Metadaten-Informationssystem zum Auffinden
umweltrelevanter Datenquellen, die in den 6ffentlichen Verwaltungen vorhanden sind. Start-
seite im Internet: http://www.umweltdatenkatalog.de

16Im Umweltdatenkatalog werden die gleichen Elemente auch fiir ‘Vorhaben’ und ‘Pro-
gramme’ benutzt.

UDK

Erweite-
rung

Studien

http://www.umweltdatenkatalog.de

Doku-
mente

5 Ele-
mente

124 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

ments z. B. die Durchfiihrung einer Modellvalidierung oder Sensitivitdtsanalyse
sein). Aus dieser Uberlegung heraus entspricht die Datenstruktur zur Beschrei-
bung von Simulationsstudien — erweitert um die Zuordnung zu Projekten —
der Datenstruktur fiir die Projekte. Abbildung 5.15 zeigt die UML-Diagramme
beider Klassen.

Projekte und Studien sollten, genauso wie Personen und Organisationen, in
jeweils getrennten Katalogen verwaltet werden.

«DataType»

SISA_Project
-urn[1] : SISA_URN
-title[1] : String
-aim[1] : String «DataType»
-description[1] : String SISA_SimulationStudy
-responsibleParty[1..*] : SISA_ResponsibilityParty <I -relatedProject[1..1] : SISA_Project
-contributor[0..1] : SISA_ResponsibilityParty
-furtherinfoResource[0..*] : SISA_Resource
-begin[1] : SISA_Date
-end[0..*] : SISA_Date

Abbildung 5.15: Datenmodell zur Speicherung von Informationen iiber Projekte
und Simulationsstudien.

Szenarien

Zur Speicherung von Informationen zu Szenarien stellt sich die Frage, was ein
Szenario genau ist bzw. ausmacht. Szenarien wurden, in einer auf die Mo-
dellierung gerichteten Sichtweise, in Abschnitt 2.2 (Seite 14) definiert als die
»in sich konsistenten und plausiblen Annahmen iiber die zukiinftige Entwick-
lung systembeeinflussender exogener Grofien® (Bossel, 1994). Eine weniger tech-
nisch ausgerichtete Definition gibt das IPCC in einem Bericht iiber Emissions-
Szenarien: ,,Scenarios are images of the future, or alternative futures. They are
neither predictions nor forecasts. Rather, each scenario is one alternative image
of how the future might unfold.“ (Nakicenovic u. a., 2000)

Die Beschreibung solcher Szenarien erfolgt aufgrund ihrer Komplexitét
i.d.R. in Form von Berichten oder anderen Publikationen (s. z. B. Nakicenovic
u. a., 2000). Innerhalb des SISA sollen als Hintergrundinformation dennoch die
wichtigsten Merkmale der verwendeten Szenarien vorgehalten werden.

Zur Frage welche Hintergrundinformationen fiir die ‘moglichen Zukiinfte’ im
SISA zu speichern sind, kénnen die ‘fiinf prinzipiellen Elemente’ herangezogen
werden, aus denen nach Alcamo (2001) ein typisches Szenario im Rahmen von
Umweltstudien besteht:

5.2. KOMPONENTEN-ENTWICKLUNG 125

Beschreibung schrittweiser Anderungen Beschreibung des sich schritt-
weise dndernden, zukiinftigen Status von Gesellschaft und Umwelt (Be-
schreibung iiber Indikatoren)

exogene Einflussfaktoren (driving forces) Schliisselfaktoren bzw. Deter-
minanten, die den Gang der schrittweisen Anderungen hauptséchlich be-
einflussen

Basisjahr Markierung des Beginns des Szenarios (in quantitativen Szenarien
oft das aktuellste Jahr, fiir das Daten vorhanden sind)

Zeithorizont und Schrittweite Markierung des am weitesten in der Zu-
kunft liegenden Jahres, das vom Szenario abgedeckt wird (Zeithorizont)
sowie das Zeitintervall zwischen zwei Beschreibungsschritten

Entwicklungsgeschichte (storyline) Erzihlende Beschreibung des Szenari-
os, die die zentralen Punkte und Trends des Szenarios sowie deren Bezie-
hung zu den exogenen Einflussfaktoren enthélt

Im SISA sollten demnach Angaben zu Basisjahr, Zeithorizont und Schritt-
weite vorhanden sein sowie zusammenfassende Beschreibungen der ezogenen
Einflussfaktoren, der Entwicklungsgeschichte und der sich schrittweise vollzie-
henden Anderungen. Ein Verweis auf weiterfihrende Informationsquellen sollte
ebenfalls moglich sein.

Um die Ergebnisse von Simulationsstudien richtig einschétzen und bewer-
ten zu konnen, sollte das SISA, neben den Angaben zu den fiinf prinzipiellen
Elementen, weitere Informationen iiber die zugrunde liegenden Szenarien be-
reitstellen.

Fiir Fink (2002) ist die Entwicklung von Szenarien u. a. mit zwei zentralen
Fragen verbunden: Was soll mit Hilfe der Szenarien gestaltet werden? Was soll
durch die erstellten Szenarien erkldrt werden? Zumindest eine kurze, zusam-
menfassende Antwort auf diese Fragen nach dem Ziel eines Szenarios sollte
das SISA speichern konnen. Eine weitere wichtige Frage, die nach Fink (2002)
vor dem Beginn der Szenarienentwicklung beantwortet werden sollte, ist die
nach dem rdumlichen Fokus eines Szenarios; auch diese Information sollte im
SISA vorhanden sein. Abbildung 5.16 zeigt das resultierende Datenmodell zur
Speicherung von Szenarien-Informationen.

Simulationsliufe

Zu einer Simulationsstudie gehoéren i. d. R. mehrere Simulationsliufe. Jeder die-
ser Laufe wird mit einem bestimmten Ziel und unter Verwendung genau festge-
legter Randbedingungen durchgefiihrt. Zur Sicherstellung der Nachvollziehbar-
keit und Reproduzierbarkeit von Simulationsergebnissen sollten alle Simulati-
onslaufe dokumentiert sein. Zu dieser Dokumentation gehoren zumindest Anga-
ben zum Ziel eines Simulationslaufes, zum Verantwortlichen (d.h. dem Modell-

Erweite-
rung

Dienst-
Referenz

126 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

«DataType»
SISA_Scenario

-urn[1] : SISA_URN
-title[l] : String) «DataType»
-description[1] : String SISA_Storyline
-furtherinfoResource[0..*] : SISA_Resource - =
-indicatorChangeDescription[1] : String t:trlr;[[i]] } Ssltﬁ':‘—URN
-drivingForces[1] : String . g. .
-baseYear[1] : Integer -description[1] : String

. -furtherInfoResource[0..*] : SISA_Resource

-timeHorizon[1] : Integer i) : o
timeStep[1] : Integer responsibleParty[1] : SISA_ResponsibilityParty

-furtherinfoResource[0..*] : SISA_Resource
-responsibleParty[1] : SISA_ResponsibilityParty
-storyline[1] : SISA_Storyline

Abbildung 5.16: Datenmodell zur Speicherung von Szenario-Informationen. Da
die Erzeugung einer neuen Storyline sehr zeit- und arbeitsaufwendig ist, schléigt
Alcamo (2001) die Wiederverwendung bereits vorhandener und akzeptierter
Storylines vor. Aus diesem Grund wird die ‘Storyline’ als eigensténdiger Da-
tentyp definiert.

betreiber) und zu Randbedingungen, also den zugehérigen Simulationsmodell-
Daten, die evtl. iiber ein zugeordnetes Szenario definiert sein kénnen.

Die Zuordnung von Daten zu Simulationsldufen und Szenarien liegt in der
Verantwortung des Simulationslaufmanagers, so dass innerhalb der Dokumen-
tationskomponente nur die in Abb. 5.17 dargestellten Informationen vorzuhal-
ten sind.

«DataType»

SISA_Simulationrun
-urn[1] : SISA_URN
-title[1] : String
-aim[1] : String
-simulationStudy[1] : SISA_SimulationStudy
-responsibleParty[1..*] : SISA_ResponsibilityParty
-relatedDocument[0..*] : SISA_Document

Abbildung 5.17: Datenmodell zur Speicherung von Simulationslaufen.

Service Organizer Folder

Das OpenGIS-Konsortium fiihrt in der Definition der Service Architecture (ISO
/DIS 19119, Percivall, 2002), neben der Dienste-Taxonomie und den zugeord-
neten Beispieldiensten, den so genannten service organizer folder (SOF) ein.

5.2. KOMPONENTEN-ENTWICKLUNG 127

Ein SOF ist eine Datenstruktur, die Referenzen auf Diensten beinhaltet, die in
bestimmten Situationen sinnvoll eingesetzt werden kénnen. Uber diese Struk-
tur konnen von den Nutzern eines Systems selbst Dienste gruppiert werden,
die sie zur Erfiillung einer bestimmten Aufgabe benétigen. Diese Gruppierung
kann dann von anderen Nutzern bei der Bearbeitung vergleichbarer Aufgaben
eingesetzt werden. Ein SOF stellt also eine Art Dokumentation vorhandener
Losungsmoglichkeiten fiir bestimmte Problembereiche dar.

Bei der Durchfiithrung eines Assessments sind vielfiltige Aufgaben zu bear-
beiten: Modellteile miissen angepasst, Daten in das richtige Format gebracht
und Informationen aufbereitet werden. Die hierzu notwendigen Funktionen
(Dienste) werden oft iiber speziell fiir diesen Zweck geschriebene Werkzeuge
bereitgestellt. Da die oben beschriebenen Aufgaben oft nicht automatisiert sind
— und sich teilweise auch nicht mit einem vertretbaren Aufwand automatisie-
ren lassen — sollten alle in einer bestimmten Situation anwendbaren Werkzeuge
und notwendigen Schritte dokumentiert sein. Eine solche Dokumentation kann
erleichtert werden, indem die urspriingliche Beschrinkung des SOF auf Dienste
aufgehoben und die Angabe aller Ressourcen, die bei der Losung einer Aufgabe
herangezogen werden konnen, erlaubt wird.!”

Ein SOF, der alle SISA-Ressourcen aufnehmen kann, unterstiitzt sowohl
die Daten-Vorverarbeitung (/Z80/) als auch die Ergebnis-Analyse (/Z100/)
und fordert dariiber hinaus die Nachvollziehbarkeit von Assessment-Ergebnis-
sen. Abbildung 5.18 zeigt die innerhalb des SOF fiir die Aufgaben-Dokumen-
tation zu speichernden Attribute. Alle Angaben sollten innerhalb eines eigenen
Katalogs, dem SOF-Katalog, verwaltet werden.

«DataType»

SISA_Task
-title[1] : String
-description[1] : String
-utilizedResources[0..*] : SISA_Resource

Abbildung 5.18: Datenmodell zur Speicherung von Informationen iiber die Be-
arbeitung von Aufgaben.

Anmerkungen

Neben der Nutzung des SOF kann es fiir Modellbetreiber und Modellentwickler
sehr hilfreich sein, kurze Anmerkungen zum SISA direkt innerhalb des System

1"Die grundsitzliche Moglichkeit die innerhalb des SOF aufgefiihrten Dienste automatisch
abarbeiten zu lassen wird durch die Erweiterung nicht eingeschriankt, sofern die einzelnen
Eintrage als ‘Dienst’ bzw. ‘Nicht-Dienst’ gekennzeichnet sind.

Ressour-
cen

Aufga-
ben

Ziele u.
Funktio-
nen

128 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

abzulegen, z. B. Anmerkungen zur Verbesserung des SISA oder zu aufgetrete-
nen Problemen. Um diese Moglichkeit zu bieten wird ein Datentyp fiir Anmer-
kungen vorgeschlagen, der als Eintrag in einem weiteren Katalog (dem Anmer-
kungskatalog) verwendet werden kann. Um die Eintriige des Katalogs einfacher
auflisten zu kénnen, muss jede Anmerkung mit einem Titel versehen werden.
Da sich Anmerkungen auf SISA-Ressourcen beziehen kénnen, wird zusétzlich
ein entsprechender Eintrag bereitgestellt. Abbildung 5.19 zeigt die resultierende
Klasse zur Speicherung von Anmerkungen.

«DataType»
SISA_Annotation
-title[1] : String
-author[1] : SISA_ResponsibilityParty
-date[1] : SISA_Date
-text[1] : String
-relatedResource[0..*] : SISA_Resource

Abbildung 5.19: Datenmodell zur Speicherung von Anmerkungen. Neben dem
eigentlichen Anmerkungstext (text) miissen die Eintréige einen Verweis auf den
Autor (author) sowie das Datum des Eintrages (date) enthalten. Der Titel
(title) dient dem einfachen Zugriff auf Anmerkungen; die Zuordnung einer An-
merkung zu SISA-Ressourcen wird ebenfalls durch ein Attribut unterstiitzt
(relatedResource).

5.2.4 Simulationslaufmanager
5.2.4.1 Komponenten-Abgrenzung

Zur Berechnung neuer Simulationsergebnisse werden vom Simulationsmodell
verschiedene Daten benotigt: Systemparameter, Initialisierungsdaten, Modell-
umweltdaten und Optionen (vgl. Abb. 4.2, Seite 76). Die Auswahl dieser Daten
wird durch einen Satz von Einstellungen im entsprechenden Simulationsmodell
bestimmt. Welche Werte den einzelnen Einstellungen fiir einen bestimmten
Simulationslauf zugeordnet werden, hidngt von der Spezifikation des Simulati-
onslaufes ab (s. Abb. 5.20).

Die Werte der einzelnen Einstellungen kénnen sowohl Daten als auch Ver-
weise auf Daten oder andere Ressourcen repriisentieren (z. B. die Angabe einer
Jahreszahl zur Spezifizierung des Beginns eines Simulationslaufes oder ein Ver-
weis auf einen Datensatz).

Zur Steigerung der Nachvollziehbarkeit und Reproduzierbarkeit von Simula-
tionsldufen wurde in der Systemdefinition die Verwaltung der Simulationsléufe
und Szenarien als ein Ziel definiert (/Z10/). Zu dieser Verwaltung gehoren die

5.2. KOMPONENTEN-ENTWICKLUNG 129

Integriertes Simulationsmodell

Teilmodell =
Einstellungssatz Einstellungssatz
- Einstellung 1 = Wert 1 - Einstellung a = Wert a
- Einstellung 2 = Wert 2 - Einstellung b = Wert b
- Einstellung n = Wert n - Einstellung n = Wert n
Simulationslauf- [:
Spezifikation [

Abbildung 5.20: Simulationsmodelle und deren Einstellungen. Jedes Simulati-
onsmodell besitzt einen eigenen Satz an Einstellungen. Die Einstellungen spezi-
fizieren die Simulationsmodell-Daten (Systemparameter, Initialisierungsdaten,
Modellumweltdaten und Optionen) und sind vom Modellbetreiber fiir jeden
Simulationslauf festzulegen.

geforderten Funktionen zur Beschreibung von Szenarien und Simulationsliu-
fen (/F10/ u. /F35/) und zur Daten-Zuweisung (/F20/ u. /F30/). Fiir die
Beschreibung der Szenarien und Simulationsldufe ist bereits die Dokumentati-
onskomponente (s. Unterabschnitt 5.2.3, Seite 119) zustindig. Die Zuordnung
von Daten (allgemeiner: Ressourcen) zu Szenarien kann iiber die Eintrige des
Katalogmanagers vorgenommen werden.

Die Verantwortlichkeit der Simulationslauf-Komponente beschrankt sich da-
mit auf die Verwaltung der Simulationslauf-Spezifikation, d. h. simulationslauf-
bezogener Einstellungen sowie auf die Bereitstellung dieser Informationen fiir
die Simulationssystem-Komponente.

5.2.4.2 Dienst-Spezifikation

Die Dienste der Simulationslauf-Komponente kénnen unterteilt werden in sol-
che zur Verwaltung von Simulationsldufen (insbesondere durch den SISA-Nut-
zer) und solche zum lesenden Zugriff auf die Einstellungen (z.B. durch das
Simulationsmodell oder durch andere Komponenten).

Die erste Schnittstelle (ISimRunManager) sollte Operationen zur Verfiigung
stellen, mit denen neue Simulationslauf-Spezifikationen erzeugt werden kénnen
sowie Operationen, iiber die Modelleinstellungen innerhalb einer Spezifikation
gesetzt, gedindert oder geloscht werden konnen. Da sich die Modelleinstellungen
zwischen den Simulationsldufen einer Simulationsstudie teilweise nur geringfii-
gig dndern, sollte die Komponente eine Operation bereitstellen, iiber die eine

Verant-
wortlich-
keit

ISim-
Run-
Manager

ISim-
Run-
Specifi-
cation

130 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

komplette Spezifikation inkl. aller damit verbundenen Einstellungen kopiert
werden kann.

Der Zugriff auf die Modelleinstellungen seitens der Simulationsmodelle wird
in einer separaten Schnittstelle (ISimRunSpecification) angeboten. Um sicher-
zustellen, dass alle Einstellungen, die ein Modell fiir einen Simulationslauf be-
notigt, innerhalb der Simulationslauf-Komponente vorhanden sind, sollte die
Komponente eine Operation anbieten, die eine Uberpriifung der Simulations-
lauf-Spezifikation erlaubt. Von dieser Operation sollten sowohl fehlende Ein-
triige als auch die Uberschreitung von Wertebereichen erkannt werden. Die fiir
eine derartige Uberpriifung notwendigen Informationen kénnen entweder direkt
beim Aufruf der Validierungsoperation iibergeben oder iiber eine zusétzlich an-
gebotene Operation bekannt gegeben werden.

Abbildung 5.21 zeigt die Schnittstellen und die ihnen zugeordneten Opera-
tionen im Uberblick.

ISimRunManager
Simulation-Run Manager

ISimRun
Specification
«interface» «interface»
ISimRunManager ISimRunSpecification

+createSpecification() +getSetting()
+copySpecification() +validateSpecification()
+addSetting() +setModelSettingsSpecification()
+modifySetting()
+deleteSetting()

Abbildung 5.21: Schnittstellen des Simulationslaufmanagers. Der Simulations-
laufmanager (Simulation-Run Manager) bietet eine Schnittstelle zur Verwal-
tung von Simulationslauf-Spezifikationen an (ISimRunManager) sowie eine
Schnittstelle zur Abfrage der Werte von Modelleinstellungen und der Validie-
rung von Spezifikationen (ISimRunSpecification).

5.2.4.3 Daten-Spezifikation

Abbildung 5.22 zeigt die bereits in Abb. 5.20 (Seite 129) skizzierten Zusam-
menhénge zwischen Simulationsmodell, Modelleinstellungen und Simulations-
ldufen in Form eines Klassen-Diagramms. Fiir die Zuordnung von Daten und
Ressourcen-Referenzen zu Simulationsldufen miissen nicht alle Klassen durch
entsprechende Datenstrukturen représentiert werden: eine Zuordnung des ‘Si-
mulationslaufes’ zu einer ‘Simulationslauf-Spezifikation’ und die Angabe der
zugehorigen ‘Wertzuweisungen’ reicht zur Erfilllung der Aufgabe des Simula-

5.2. KOMPONENTEN-ENTWICKLUNG 131

tionslaufmanagers aus. Die entsprechenden Klassen hierzu finden sich in Abb.
5.23 (Seite 132). Eine Klasse zur Speicherung der Struktur von Modelleinstel-
lungssétzen ist ebenfalls in Abb. 5.23 zu finden. Da die Speicherung und Verar-
beitung dieser Strukturinformationen von System zu System sehr unterschied-
lich realisiert werden kann, wird fiir das Spezifikationsattribut kein Datentyp
angegeben. '8

Simulationslauf

1
1

Simulationsmodell ModelleinstelIungssatzl—'SimuIationsIauf-Spezifikation

/\ 11

1.7

|integriertes Modelll | Teilmodell | |Mode|leinste|lung

Abbildung 5.22: Zusammenhang zwischen Simulationsmodell, Modelleinstel-
lungen und Simulationslauf. Ein Simulationsmodell besitzt einen fest defi-
nierten Modelleinstellungssatz, bestehend aus mehreren Modelleinstellungen
(Einstellungsmoglichkeiten). Fiir jeden Simulationslauf gibt es genau eine
Simulationslauf-Spezifikation, die iiber ihre Wertzuweisungen allen notwendi-
gen Modelleinstellungen einen Wert zuweist. Die Zusammenhinge gelten sowohl
fiir das integrierte Simulationsmodell als auch fiir die integrierten Teilmodelle.

5.2.5 Simulationssystem
5.2.5.1 Komponenten-Abgrenzung

Die zentrale Aufgabe des SISA ist die Erzeugung neuer Simulationsergebnisse
(/Z60/). Die hierzu notwendigen Simulationsmodelle miissen in das Gesamtsys-
tem integriert werden. Bei dieser Integration sollten moglichst viele Funktionen
des Gesamtsystems wieder verwendet werden (Anforderung der Austauschbar-
keit: /NF40/). Die in Abschnitt 3.1.2 (Seite 28) vorgestellten Systeme schlagen
hierzu eine Abgrenzung des Simulationsmodells innerhalb des Gesamtsystems
vor: das Prinzip der Modellierungsumgebung M (s. Seite 38) ist die klare Tren-
nung zwischen dem mathematischen Modell, den Lésungsmethoden, den Daten,

18Dije Strukturinformation koénnte beispielsweise iiber XML (DTD oder XML Schema)
realisiert werden. In diesem Fall wére das Attribut als String definierbar.

Verant-
wortlich-
keit

Start

132 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

«DataType» «DataType»
SISA_SimulationSpecification SISA_ModelSettingAllocation
-urn[1] : SISA_URN -model[1] : SISA_URN
-simulationRun[1] : SISA_URN -setting[1] : String

-modelSetting[1..*] : SISA_ModelSettingAllocation -value[1] : String

«DataType»
SISA_ModelSettingsSpezification
-model[1] : SISA_URN
-spezification[1]

Abbildung 5.23: Datenmodell des Simulationslaufmanagers. Jedem
Simulationslauf ~wird eine eindeutige Spezifikation zugeordnet (SI-
SA_SimulationSpecification). Innerhalb der Spezifikation werden den Mo-
delleinstellungen Werte zugewiesen (SISA_ModelSettingAllocation). Zur
Speicherung der Struktur von Einstellungssédtzen dient eine weitere Klasse
(SISA_ModelSettingsSpecification).

der Datenverwaltung und der Benutzungsschnittstelle; im Object Modeling Sys-
tem (OMS) (s. Seite 31) gibt es getrennte Bibliotheken fiir Simulations-Module,
Daten und die Visualisierung; GLOBESIGHT (s. Seite 29) unterscheidet zwi-
schen der Informations-, der Funktions- und der Modellbasis. Die Erzeugung
neuer Simulationsergebnisse wird daher in die Verantwortlichkeit einer Kompo-
nente gelegt: die Simulationsmodell-Komponente. Zur Steigerung der Wieder-
verwendbarkeit und Interoperabilitéit sollte die Komponente, iiber die Berech-
nung neuer Simulationsergebnisse hinaus, in der Lage sein, zuvor berechnete
Ergebnisse iiber einen Dienst zur Verfiigung zu stellen. Die Simulationsmodell-
Komponente ist damit verantwortlich fiir die Berechnung, Speicherung und
Weitergabe von Simulationsergebnissen.

5.2.5.2 Dienst-Spezifikation
Dienste

Die Erzeugung von Simulationsergebnissen integrierter Modelle erfolgt i. d. R.
fiir Szenarien, die sich iiber mehrere Jahre erstrecken. Die zur Berechnung not-
wendigen Informationen tiber Modelloptionen etc. stellt der Simulationslaufma-
nager zur Verfiigung. Fiir die Lieferung der Modellumweltdaten ist die Datenzu-
griffskomponente — in Verbindung mit dem Datenbanksystem — verantwortlich.
Alle zum Start eines Simulationslaufes notwendigen Informationen und Daten
sollten vor dem Start einer Simulation in einer Simulationslauf-Spezifikation
(iiber den Simulationslaufmanager) festgelegt sein, so dass die Simulationssys-

5.2. KOMPONENTEN-ENTWICKLUNG 133

temkomponente mit dem Aufruf einer Operation (run) die Simulation beginnen
kann.

Zur Berechnung der Modellergebnisse fiir das erste Jahr eines Simulati-
onszeitraums sind i.d. R. Anfangswerte innerhalb der Simulationsmodelle zu
belegen: Optionen miissen gesetzt/eingelesen und Startwerte von Modellvaria-
blen gesetzt oder berechnet werden, Teilmodelle miissen Kontakt mit anderen
Teilmodellen oder dem Gesamtmodell aufnehmen etc. Die Phase dieser Initia-
lisierung eines Simulationssystems wird im Allgemeinen von der Berechnung
der Simulationsergebnisse getrennt. Die Modellkomponenten von OMS (vgl.
Unterabschnitt 3.1.3, Seite 31) besitzen stets die drei Methoden register (zur
Registrierung von Modellteilen), init (zur Initialisierung) und run (zum Aufruf
der eigentlichen Funktionalitit). Auch die HLA (vgl. Unterabschnitt 3.2.2, Sei-
te 47) sieht einen eigenen Zustand (initialization) fiir die Initialisierung eines
Modellteils vor (IEEE, 2000b).

Die Aufteilung in eine Initialisierungs- und eine Berechnungsphase hat den
Vorteil, dass das Simulationssystem Szenarien schrittweise, also in vorgege-
benen Intervallen, berechnen kann und dadurch Interventionen durch Dritte
(Modellnutzer oder Software) moglich werden.

Auch wenn die Unterteilung in eine Initialisierungs- und eine Berechnungs-
phase den Nachteil mit sich bringt, dass die Komponente zustandsbehaftet ist'?,
sollte sie wegen des angefiihrten Vorteils eine entsprechende Operation zur In-
itialisierung eines Simulationslauf (init) anbieten. Da die fiir einen Simulations-
lauf notwendigen Daten vom Simulationslaufmanager verwaltet werden, sollten
zur Initialisierung die dort eingefiihrten eindeutigen Simulationslaufnamen ver-
wendet werden.

Um die Interoperabilitdt zwischen verschiedenen SISAs zu erhéhen und den
Zugriff auf Simulationsergebnisse von anderer Software zu vereinfachen, sollte
die Simulationskomponente selbst eine Schnittstelle zur Abfrage von Simulati-
onsergebnissen bereitstellen.

Abbildung 5.24 zeigt die resultierenden Schnittstellen und Operationen
der Simulationssystemkomponente in der Ubersicht. Dynamische Aspekte der
Komponente sind in Abb. 5.37 (Seite 155) zusammengefasst.

5.2.5.3 Daten-Spezifikation

Fiir das Simulationssystem wird keine Daten-Spezifikation vorgenommen. Fiir
konkrete Systeme miissen fiir diese Komponente die Klassen fiir mogliche Er-
gebnisriickgaben definiert werden, die die Resultate der Operation getResult()
bestimmen.

19Was nach der simple service architecture zu vermeiden ist (vgl. Seite 58).

Initiali-
sierung

Vorteil

Nachteil

Ergeb-
nisab-
frage

Integra-
tion

2 Fragen

Ort

134 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

ISimControl
) Simulation System
ISimResult
Access
«interface» «interface»
ISimControl ISimResultAccess
+init() +getResult()
+run()

Abbildung 5.24: Schnittstellen des Simulationssystems. Die Operationen der
Schnittstelle zur Simulationskontrolle (ISimControl) dienen der Initialisierung
(init) und dem Start (run) von Simulationsldufen. Die Schnittstelle zum Ergeb-
niszugriff (ISimResultAccess) besitzt lediglich eine abstrakte Operation, die fiir
die Riickgabe von Simulationsergebnissen verantwortlich ist (getResult).

5.2.6 Datenzugriff und Datenbanksystem
5.2.6.1 Komponenten-Abgrenzung

Fiir ein integriertes simulationsbasiertes Assessment ist die Verwendung vielfil-
tiger Datensiitze notwendig (vgl. Abb. 4.2; Seite 76 und Unterabschnitt 4.2.5,
Seite 84): Daten zur Initialisierung und zum Betrieb der Simulationsmodelle,
Primérdaten zur Erzeugung dieser Eingabedaten, Hintergrunddaten fiir weitere
Analysen usw. Die Daten werden demnach nicht nur vom integrierten Simu-
lationsmodell verwendet, sondern auch von anderen Komponenten des SISA
(beispielsweise den Komponenten zur Datenvorverarbeitung und Ergebnisana-
lyse).

Ein Ziel des SISA ist die Integration von Daten (/Z70/). Ziel einer solchen
Datenintegration ist es nach Thomas und Nejmeh (1992), sicherzustellen, dass
alle Daten innerhalb des Systems als ein konsistentes Ganzes verwaltet werden,
unabhéngig davon, wie auf die Teile des Ganzen eingewirkt wird. In diesem
Zusammenhang stellen sich zwei Fragen beziiglich der Datenhaltung:

e Wo (in welcher Komponente/an welchem Ort) werden die Daten gehal-
ten?
e Wie (in welchem Format) werden die Daten gespeichert?

Bei der Frage nach dem Speicherort von Daten gibt es zwei grundsétzliche
Alternativen: die Datensétze werden in derjenigen Komponente verwaltet, in
der sie (am meisten) benotigt werden oder in einer zentralen Datenhaltungs-
komponente (Datenbanksystem??). Gegen die dezentrale Datenhaltung spricht

20Giehe Erklirung des Begriffs im Glossar, Seite 229.

5.2. KOMPONENTEN-ENTWICKLUNG 135

der bereits angesprochene Umstand, dass dieselben Daten in verschiedenen
Komponenten benétigt werden und damit jede an einem Datenaustausch betei-
ligte Komponente entsprechende Schnittstellen zum Datenaustausch mit den
anderen Komponenten zur Verfiigung stellen miisste. Ein weiterer Grund gegen
die dezentrale Datenhaltung ist der hohe Aufwand, der mit einer Implementie-
rung der Funktionen zur Datenverwaltung verbunden ist. Bei einer zentralen
Datenverwaltung benotigt jede Komponente hingegen nur eine Schnittstelle
zum Datenaustausch. Dariiber hinaus férdert die zentrale Datenhaltung die Si-
cherstellung der Konsistenz der eingesetzten Daten und erlaubt die einfachere
Wiederverwendung von Datensétzen beim Austausch des integrierten Modells.
Gegen die zentrale Datenhaltung sprechen evtl. notwendige Anderungen in den
zugreifenden Komponenten und evtl. auftretende Geschwindigkeitseinbuflen bei
der Dateniibertragung.

Die Speicherung aller Daten in einem einheitlichen Format wire aus ver-
waltungstechnischer Sicht und aus Griinden der Interoperabilitéit die beste Lo-
sung. Die Verwendung eines einheitlichen Formats ist aber nicht immer reali-
sierbar, da die Teilmodelle innerhalb eines integrierten Modells i.d. R. unter-
schiedliche Datenformate verwenden — sowohl zur persistenten Datenspeiche-
rung (z.B. in Form von Textdateien, Datenbanktabellen oder Binérdateien)
als auch zur internen Reprisentation von Daten (z.B. in ein- oder zweidimen-
sionalen Arrays, Containern oder Listen). Die gleichen Anmerkungen gelten
fiir Software-Werkzeuge von Drittanbietern, deren Zugriffsoperationen i.d.R.
iiberhaupt nicht geédndert werden kénnen, womit die Datenformate zwingend
vorgeschrieben sind.

Das SISA sollte demnach eine zentrale Datenhaltung unter Verwendung
einheitlicher Datenformate anbieten, gleichzeitig aber offen sein gegeniiber ei-
ner dezentralen Datenspeicherung unterschiedlicher (nicht vorbestimmter) Da-
tenformate. Aus Griinden der Interoperabilitdt und der Austauschbarkeit von
Daten sollte der Datenzugriff auf die zentral und dezentral gespeicherten Da-
ten transparent sein, d. h. die zugreifenden Komponenten sollten weder ‘wissen
miissen’ wo sich die angeforderten Daten befinden, noch in welchem Format
diese Daten gespeichert sind.

Aus diesen Uberlegungen ergibt sich die in Abb. 5.25 (Seite 136) darge-
stellte Strukturierung zur Datenhaltung und zum Datenzugriff: wenn Kom-
ponenten, wie beispielsweise die Simulationskomponente, Daten bené6tigen, so
greifen sie iiber die Datenzugriffskomponente auf die Daten in der Datenba-
sis zu. Die Transformationen von Datenformaten (vgl. die Ausfithrungen zum
Katalogmanager in Unterabschnitt 5.2.1, Seite 96) wird ebenfalls von dieser
Komponente angeboten. Innerhalb der Datenbasis sollten méglichst alle Daten
im Datenbanksystem gespeichert sein. Zur Verwaltung der Daten innerhalb des
Datenbanksystems bietet die Komponente, die z. B. durch ein eigenstéindiges
Datenbank-Managementsystem realisiert werden kann, entsprechende Funktio-

Format

Folge-
rung

Prinzip

Verant-

wortlich-

keiten

SISA-
Ziele

136 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

nen an. Daten, die sich aus technischen Griinden nicht im Datenbanksystem
integrieren lassen, werden ebenfalls von der Datenzugriffskomponente zur Ver-
fiigung gestellt. Die Informationen, die fiir einen Zugriff auf die Daten not-
wendig sind, werden vom Katalogmanager zur Verfiigung gestellt. Lassen sich
die Operationen zum Datenzugriff innerhalb einer Komponente (z. B. in einem
Teilmodell) nicht dndern, kann sie — an der Datenzugriffskomponente vorbei
— direkt auf die Daten zugreifen. Die Integration dieser Daten geschieht dann
lediglich iiber die zugehorigen und im Katalogmanager verwalteten Metadaten.

Katal og-
Manager

A

——— Simulationssystem

Datenzugriffskomponente

v
e e
system

Daten Metadaten

Abbildung 5.25: Komponenten zum Datenzugriff und zur Datenhaltung (Da-
tenbanksystem). Erkldrungen finden sich im Text.

Das Datenbanksystem ist damit fiir die Verwaltung und persistente Speiche-
rung von Daten verantwortlich. Die Datenzugriffskomponente ist zustindig fiir
die transparente Bereitstellung von Daten. Die Datenbasis ist keine Kompo-
nente im eigentlichen Sinne; sie kann als eine Ansammlung von Daten gesehen
werden.

Das Datenbanksystem trégt somit zur Datenintegration (/Z70/) und Ergeb-
nisbereitstellung (/Z90/) bei. Die der Datenzugriffskomponente zugeordneten
Dienste zur Transformation von Daten kénnen nicht nur von den Simulations-
modellen zur Laufzeit verwendet werden: der Datenimport (/F150/) und Da-
tenexport (/F170/) kann ebenfalls iiber diese Komponente abgewickelt werden.
Sofern die Komponente auch Dienste zur Transformation der Daten in For-
mate bereitstellt, die einfach zur Visualisierung benutzt werden kénnen (z. B.
die Abbildung von Rasterdaten in Bilder), wird damit ebenfalls das Ziel der
Ergebnisbereitstellung unterstiitzt (/Z40/ und /F160/). Dariiber hinaus tra-
gen beide Komponenten in hohem Mafle zu den geforderten nicht-funktionalen
Anforderungen der Interoperabilitit (/ZN10/) und Austauschbarkeit (/ZN40/)
bei.

5.2. KOMPONENTEN-ENTWICKLUNG 137

5.2.6.2 Dienst-Spezifikation
Datenbanksystem

In Anlehnung an die vom OpenGIS-Konsortiums vorgeschlagenen und bereits
im Unterabschnitt des Katalogmanagers aufgefithrten priméren Funktionen
zum Datenzugriff (vgl. Tab. 5.2, Seite 103), enthélt die Schnittstelle des Da-
tenbanksystems (IDBSystem) Operationen, um neue Datensétze zu erzeugen
(addDataset), abzufragen (retrieve), zu modifizieren (modify) und zu entfer-
nen (removeDataset). Um einen gleichzeitigen Zugriff mehrerer Komponenten
(oder Teilmodelle) auf die Datensétze zu erlauben, werden die in Nebert (2002)
aufgefiihrten Funktionen zur Abfrage des Zugriffsstatus (check/modify/get-
DatabaseStatus) ebenfalls in die Schnittstelle aufgenommen (s. Abb. 5.27).
Damit ein Metadaten-Sammler auch Zugriff auf die Metadaten hat, die di-
rekt im Datenbanksystem gespeichert sind, bietet die Komponente iiber eine
zusitzliche Schnittstelle (IDBDiscovery) eine weiter Operation zur Abfrage von
Datensiitzen (query).

IDBSystem
Database System
IDBDiscovery

«interface» «interface»
IDBSystem IDBDiscovery

+retrieveDataset() +query()
+addDataset()
+removeDataset()
+modifyDataset()
+checkDatasetStatus()
+modifyDatasetStatus()
+getDatasetStatus()

Abbildung 5.26: Schnittstelle des Datenbanksystems. Erkldrungen finden sich
im Text.

Datenzugriffskomponente

Die Datenzugriffskomponente kann als Middleware zwischen der Datenbasis
und den anderen Komponenten angesehen werden (vgl. Abb. 5.5, Seite 104).
Zur Gewihrleistung eines transparenten Datenzugriffs bietet sie daher, Kott-
mann (1999c¢) folgend, die gleiche Schnittstelle zur Datenhaltung an wie das Da-
tenbanksystem (IDBSystem). Die Operation zur Format-Transformation eines
Datensatzes (transformDataset) wird in einer zusiitzlichen Schnittstelle (IDa~
taTransform) angeboten (s. Abb. 5.27).

138 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

IDBSystem
Data Access

IDataTransform

«interface»
IDataTransform

+transformDataset()
+getFormatinfo()

Abbildung 5.27: Schnittstelle der Datenzugriffskomponente. Erklarungen finden
sich im Text.

5.2.6.3 Daten-Spezifikation
Datenhaltungskomponente

Das Datenmodell des Datenbanksystems ist abhéngig von der Realisierung der
Komponente.

Datenzugriffskomponente

Die Datenzugriffskomponente benotigt zur Realisierung ihrer Schnittstelle zu-
mindest ein entsprechendes Attribut zur Beschreibung der unterstiitzten Trans-
formationsformate (formatInfo, s. Abb. 5.28).

Die unterstiitzten Datenformate sollten sich aus Griinden der Interopera-
bilitdt allerdings an Standards orientieren. Als wichtige, vielerorts eingesetzte
Standards sind die Implementierungs-Spezifikationen des OGC zu den Simple
Features zu betrachten (Kottmann, 1999e).

«DataType»
SISA_DataAccess

-formatinfo[*] : String

Abbildung 5.28: Datenmodell der Datenzugriffskomponente. Erklarung findet
sich im Text.

5.2.7 Geodatenverarbeitung
5.2.7.1 Komponenten-Abgrenzung

Die geordaumliche Auflésung ist wichtig, da sie eine verbesserte Reprasentation
globaler dynamischer Prozesse (inkl. Riickkopplungen) erlaubt und detaillierte-

5.2. KOMPONENTEN-ENTWICKLUNG 139

re Informationen fiir Auswirkungs-Analysen ermoglicht (Alcamo u. a., 1998a).
Auf die Wichtigkeit geordumlicher Daten und die zunehmende Integration von
GIS bzw. GIS-Funktionalitdt in simulationsbasierte Systeme wurde bereits in
der Systemdefinition hingewiesen. Aktuelle Entwicklungen beriicksichtigen die-
se Anforderung: OMS (s. Seite 31) durch die Bereitstellung eines GIS-Clients
zur Bearbeitung und Visualisierung geordumlicher Daten und das System von
Villa und Costanza (2000) durch eine GIS-Komponente als zentrales System-
Element.

Die Integration typischer GIS-Funktionen?! kann auf zwei verschiedene Ar-
ten erfolgen: einerseits durch eine direkte Implementierung der geforderten
Funktionen durch das SISA und andererseits durch die Anbindung eines ei-
genstidndigen (evtl. kommerziellen) GIS.

Welche der beiden Moglichkeiten in einem System verwendet wird hingt
u. a. von Komplexitits- und Effizienzfragen ab. Der Aufwand zur Implemen-
tierung einer sehr komplexen Funktion innerhalb des SISA kann zu grof sein,
so dass nur eine Anbindung an ein eigenstindiges GIS in Frage kommt. Zur
Steigerung der Ausfiihrungsgeschwindigkeit kann es aber sinnvoll sein, einfache
Funktionen direkt im SISA zu realisieren. Welche der beiden Méglichkeiten in
einem System verwendet wird, sollte fiir den Aufrufer einer Funktion allerdings
irrelevant (und der Aufruf damit transparent) sein.

Zur Steigerung der Transparenz und Wiederverwendbarkeit sowie zur besse-
ren Austauschbarkeit GIS-typischer Funktionen, sollten diese Funktionen iiber
eine weitere Indirektion in Form einer Komponente zur Geodaten- Verarbeitung
angeboten werden. Diese Komponente ist verantwortlich fiir die Verarbeitung
geographischer Daten und die Bereitstellung einer Schnittstelle zu eigenstén-
digen GIS. Sie liefert damit einen Beitrag zur Vorverarbeitung und Nachbear-
beitung von Simulationsmodell-Daten (/Z80/) sowie zu den nicht-funktionalen
Zielen der Interoperabilitdt (/ZN10/), Modifizierbarkeit (/ZN30)/) und Aus-
tauschbarkeit (/ZN40/).

Da im Umfeld eines SISA i.d. R. eigenstidndige GIS verwendet werden, be-
schriankt sich die Verantwortlichkeit der Komponente bewusst auf das Anbieten
von Funktionen zur Datenverarbeitung und iibernimmt keine weiteren GIS-
Aufgaben wie z. B. die Visualisierung oder Datenhaltung.

5.2.7.2 Dienst-Spezifikation

Die geographischen Komponenten von Modellen zum integrierten Assessment
arbeiten meist mit Rasterdaten (vgl. Bakkes u. a., 2000). Die Komponente der
Geodatenverarbeitung sollte daher zumindest typische Raster-GIS-Funktionen
zur Verfiigung stellen. Zu den elementaren Operationen der Rasterdatenverar-
beitung gehoren nach Bartelme (2000) die radiometrischen Transformationen

21 Beispielsweise die Verschneidung von Datenschichten (Layers), die Pufferbildung und die
Reklassifizierung.

Integra-
tion

Trans-
parenz

Verant-
wortlich-
keit

Abgren-
zung

ISO/DIS
19119

Raum

Thema

Zeit

Meta-
daten

Auswahl

140 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

sowie arithmetische und logische Kombinationen von Rasterbildern. Bei radio-
metrischen Transformationen wird eine Transferfunktion auf die Werte (Grau-
werte) der Rasterzellen angewendet (z.B. eine Multiplikation aller Werte mit
einer Konstanten oder die Anwendung von Schwellwerten zur Unterdriickung
oder Hervorhebung bestimmter Zellen). Bei arithmetischen und logischen Ope-
rationen werden die Grauwerte von zwei Rasterbilder miteinander kombiniert
(z. B. addiert, multipliziert oder UND-verkniipft).

In der Dienste-Taxonomie der OpenGIS Service Architecture (ISO/DIS
19119) (vgl. Abschnitt 3.2.5, Seite 55; Percivall, 2002) werden die geographi-
schen Verarbeitungsdienste in Dienste eingeteilt, die sich auf den Raum, das
Thema, die Zeit oder die Metadaten beziehen.

Dienste, die den Raumbezug von Daten dndern, werden (wenn iiberhaupt)
vornehmlich zur Datenvorverarbeitung benétigt — Beispiele sind die Koordina-
tentransformation, die Anderung der GroBe von Rasterzellen oder die Raste-
rung von Vektordaten.

Zu den Diensten zur Anderung thematischer Aspekte gehdren die oben an-
gesprochenen elementaren Operationen, die in der Taxonomie unter dem Begriff
geographic calculation service?? zusammengefasst sind.

Die Dienste zur Verarbeitung von Geodaten, die zeitliche Aspekte bertick-
sichtigen, umfassen sowohl Operationen zur Transformation zwischen zeitlichen
Referenzsystemen als auch Operationen, um aus Zeitreihen Stichproben zu neh-
men sowie Funktionen zur Datenselektion aufgrund von Zeitpunkten oder Zei-
tintervallen.

Zu den Diensten, die sich auf die Metadaten von geographischen Daten be-
ziehen, gehort der statistical calculation service. Dieser Dienst ist zur statisti-
schen Auswertung von Datensétzen gedacht, dessen Operationen beispielsweise
den Mittelwert, den Modalwert oder die Standardabweichung eines Datensat-
zes berechnen oder ein Histogramm erstellen. Ein solcher Dienst kann daher
als Ausgangspunkt fiir die Realisierung der gewiinschten SISA-Funktion zur
statistischen Auswertung (/F180/) genutzt werden.

Die zur Taxonomie aufgefiihrten Dienste sollen laut ISO/DIS 19119 ledig-
lich als Beispiele gesehen werden. Einige der angefiihrten Dienste kénnen auch
im Rahmen eines SISA sehr gut eingesetzt werden (die oben genannten Diens-
te sind ebenfalls nur Beispiele). Eine Auswahl und Spezifikation der einzelnen
Dienste ist an dieser Stelle allerdings wenig sinnvoll, da sie vom konkret zu
realisierenden SISA abhéngt. Die Schnittstellendefinition zeigt daher lediglich
die beiden Operationen zur Transformation (transformGrid) und Kombination
(combineGrid) von Rasterdatensitzen und eine Funktion zur statistischen Ana-
lyse eines Rasterdatensatzes (gridStatistics). Abbildung 5.29 fasst die Schnitt-
stellen und Operationen der Komponente zusammen.

22 Dienste zur Ableitung anwendungsorientierter, quantitativer Ergebnisse, die nicht von
den Rohdaten selbst verfiigbar sind.“ Percivall (2002)

5.2. KOMPONENTEN-ENTWICKLUNG 141

IGeoParamter
Calculation
- Geographic Processin
|Statistical grap g
Calculation
«interface» «interface»
IGeoParameterCalculation IStatisticalCalculatoin
+transformGrid() +gridStatistics()
+combineGrid()

Abbildung 5.29: Schnittstellen der Komponente zur Geodatenverarbeitung.

5.2.7.3 Daten-Spezifikation

Die Sperzifikation der unterstiitzten Datenmodelle sollte sich an den eingesetz-
ten Klassen der Datenzugriffskomponente orientieren und wird an dieser Stelle
nicht weiter ausgebaut.

5.2.8 Datenverarbeitung
5.2.8.1 Komponenten-Abgrenzung

In einem SISA gibt es Funktionen, die unabhéngig von einem konkreten Pro-
jekt realisiert und innerhalb verschiedener Systeme eingesetzt werden kénnen;
die im vorigen Unterabschnitt (5.2.7, Seite 138) erwihnten Dienste zur Verar-
beitung von Geodaten sind wichtige Vertreter dieser Funktionen. Neben den
Funktionen zur Bearbeitung geographischer Daten gibt es weitere Funktionen,
die im Rahmen eines SISA oft benttigt werden. Als Beispiele seien die Erzeu-
gung von Zufallszahlen, die bei Simulationen oft eine wichtige Rolle spielt (s.
z.B. Bratley u. a., 1987; Grams, 1992; Steinhausen, 1994) oder die Interpolati-
on und numerische Integration von Werten (s. z. B. Bossel, 1994; Grams, 1992;
Liebl, 1995) genannt. Die Berechnung statistischer Daten (Minimal-, Maximal-,
Mittelwert, Standardabweichung etc.) fillt ebenfalls in die Kategorie oft bens-
tigter Funktionen (insbesondere zur Ergebnisanalyse).

Zusammen mit den Diensten zur Geodatenverarbeitung koénnen derartige
Funktionen als ‘shared processing services’ im Sinne der Dienste-Architektur
des OpenGIS (ISO/DIS 19119) angesehen werden (vgl. Unterabschnitt 3.2.5,
Seite 55), die verantwortlich fiir die Bereitstellung von allgemeinen, durch meh-
rere Nutzer verwendbaren Funktionen sind (s. Percivall, 2002). Die ,,Shared
Domain Services“, zu denen auch die Geodienste gehoren, kénnen als ,,toolbox*
oder ,building blocks of Applications” angesehen werden (Kottman, 1999). In
diesem Sinne ist die Datenverarbeitungskomponente, die im Folgenden auch
als ‘Utility’-Komponente bezeichnet wird, verantwortlich fiir die Bereitstel-

Shared
Services

Verant-
wortlich-
keit

142 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

lung allgemeiner Datenverarbeitungsdienste. Die Komponente dient im SISA
der Unterstiitzung bei der Erzeugung von Simulationsergebnissen (/Z60/), der
Datenvorverarbeitung und Nachbearbeitung (/Z80/) und der Ergebnisanalyse

(/Z100/).

5.2.8.2 Dienst-Spezifikation

Die Funktionen der Komponente sind abhéngig von den Anforderungen eines
konkret zu realisierenden SISA, so dass auf eine detaillierte Spezifikation an
dieser Stelle verzichtet wird. Die Schnittstelle der Komponente (IUtility) ent-
hélt daher lediglich eine exemplarische Operation zur Berechnung statistischer
Groflen.

Utility
Utility

«interface»
IUtility

+calculateStatistics()

Abbildung 5.30: Schnittstelle zur allgemeinen Datenverarbeitung. Eine Spezi-
fikation der Schnittstelle (IUtility) findet an dieser Stelle nicht statt.

5.2.8.3 Daten-Spezifikation

Das Datenmodell der Dienste sollte sich — wie bereits das Modell der Kompo-
nente zur Geodatenverarbeitung — an den eingesetzten Klassen der Datenzu-
griffskomponente orientieren und, soweit moglich, Standards beriicksichtigen.

5.2.9 Aufgabensteuerung
5.2.9.1 Komponenten-Abgrenzung

Die einzelnen Komponenten der SISA-Architektur stellen in ihren Schnittstel-
len grundsétzlich wieder verwendbare Operationen bereit. Die Operationen der
Komponente zur Geodatenverarbeitung stehen beispielsweise nicht nur dem Si-
mulationssystem zur Verfiigung, sondern auch allen anderen Komponenten und
anderen Systemen. Bei der Vorverarbeitung und Nachbearbeitung von Daten
konnen SISA-Betreiber und Modellentwickler daher ebenfalls diese Dienste in
Anspruch nehmen. Um die Nutzung der Dienste zu vereinfachen, sollte das SI-
SA daher Funktionen zum Aufruf und zur Kontrolle von Diensten bereitstellen.

5.2. KOMPONENTEN-ENTWICKLUNG 143

Die Aufgabensteuerung ist somit verantwortlich fiir den programmgesteuerten
Aufruf anderer Dienste des SISA.

5.2.9.2 Dienst-Spezifikation

Eine Vielzahl von Aufgaben wird nicht durch den Aufruf nur eines Dienstes zu
l6sen sein (zur Konvertierung eines Datensatzes kann beispielsweise eine raum-
liche und eine thematische Verarbeitung notwendig sein). Dienste sollten also
verkettet und als Ganzes aufgerufen werden kénnen. In der ISO/DIS 19119
(Percivall, 2002) wird bei der Verkettung von Diensten (vgl. Seite 57, Unterab-
schnitt 3.2.5) unterschieden zwischen nutzerdefinierten Ketten, bei denen der
Nutzer den Arbeitsablauf innerhalb der Kette selbst definiert und kontrolliert,
Workflow-verwalteten Ketten, die vom Nutzer iiber einen Verwaltungsdienst
aufgerufen werden, der dann die einzelnen Dienste der Kette kontrolliert und
aggregierten Diensten, bei denen der Nutzer eine Kette als einfachen Dienst
aufruft und sich nicht dariiber bewusst ist, dass es sich um eine Dienstekette
handelt.

Das von der ISO/DIS 19119 vorgestellte Konzept zur Verkettung von Diens-
ten sieht einen umfangreichen Dienstekatalog vor. In diesem Katalog sind bei-
spielsweise Dienste zur Definition, Kontrolle und zur Abfrage des Status von
Diensteketten zu finden, Dienste zur Anzeige/Verwaltung von Metadaten {iber
Dienste, Dienste zur Validierung von Diensteketten sowie Dienste zur Autorisie-
rung und Authentifizierung. Zur Verkettung von Diensten miissen die Dienste
selbst einige Voraussetzungen erfiillen: sie miissen genau definierte Schnittstel-
len aufweisen, miissen miteinander verbunden und mit Daten gekoppelt werden.

Uber die reine Zusammensetzung von Diensten zu Diensteketten hinaus wi-
re es sinnvoll, wenn die Komponente einfache Steuerungsmechanismen (Kon-
trollstrukturen) bereitstellen wiirden. Beim Object Modeling System (vgl. Un-
terabschnitt 3.1.3, Seite 31) wird diese Funktionalitét beispielsweise iiber die
Integration eines Skript-Interpreters realisiert.

Da die dynamische Zusammenstellung von Diensteketten ausdriicklich nicht
zu den Hauptaufgaben des SISA gehort (s. Systemdefinition, Seite 80), wird
an dieser Stelle keine detaillierte Spezifikation der Komponenten-Schnittstellen
vorgenommen. Die Umsetzung des gesamten Dienstekonzepts der ISO/DIS
19119 wird im Rahmen einer SISA-Entwicklung nur selten realisierbar sein.
Das Grundkonzept der dokumentierten Zusammenstellung vorhandener Diens-
te sollte dennoch in die Architektur einflieen. Der Komponente werden daher
zwei abstrakte, fiir eine konkrete Realisierung weiter auszufithrende Operatio-
nen zugeordnet (s. Abb. 5.31, Seite 144): eine fiir die Definition von Aufgaben
(defineTask) und eine zur aggregierten Ausfithrung vordefinierter Aufgaben (in-
vokeTask).

Verant-
wortlich-
keit

Dienste-
kette

Kon-
troll-
struktu-
ren

abstrak-
te
Opera-
tionen

Verant-
wortlich-
keit

144 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

ITaskManager
Task Manager

«interface»
ITaskManager

+defineTask()
+invokeTask()

Abbildung 5.31: Schnittstelle zur Aufgabensteuerung. Die Komponente stellt
lediglich zwei abstrakte Operationen bereit, um Aufgaben zu definieren (defi-
neTask) und durchzufithren (invokeTask).

5.2.9.3 Daten-Spezifikation

Die Metadaten fiir Dienste sollten in den Katalogmanager aufgenommen wer-
den.?? Informationen iiber die Verwendbarkeit von Diensten zur Bearbeitung
hiufig wiederkehrender Funktionen sollten im Service Organizer Folder aufge-
nommen werden. Weitere Spezifikationen werden an dieser Stelle nicht vorge-
nommen.

5.2.10 Ergebnisanalyse
5.2.10.1 Komponenten-Abgrenzung

Das SISA soll, neben der Erzeugung neuer Simulationsergebnisse (/Z60/), auch
Funktionen vorhalten, die bei der Bereitstellung (/Z90/) und Analyse (/Z100/)
der Simulationsergebnisse helfen. Einige der vorgestellten Komponenten des
SISA unterstiitzen diese Ziele bereits: bei den Komponenten fiir die geogra-
phische bzw. allgemeine Datenverarbeitung wird beispielsweise eine Operation
zur Berechnung statistischer Werte vorgeschlagen (vgl. Unterabschnitt 5.2.7,
Seite 138 bzw. 5.2.8, Seite 141) und bei der Datenzugriffskomponente wird
die Transformation in Datenformate vorgeschlagen, die eine Visualisierung der
Daten erleichtert.

Aufbauend auf den Datenverarbeitungsdiensten und den Diensten der Da-
tenzugriffskomponente ist die Analysekomponente verantwortlich fiir die Un-
terstiitzung des Modellbetreibers bei der Analyse von Simulationsergebnissen.

5.2.10.2 Dienst-Spezifikation

Alle vom Modellbetreiber zur Analyse eines Problems gewiinschten Dienste und
Operationen sollten {iber diese Komponente angeboten werden. In Anlehnung

23ISO/DIS 19119 stellt hierzu ein eigenes Metadaten-Schema zur Verfiigung.

5.2. KOMPONENTEN-ENTWICKLUNG 145

an die geforderten Funktionen zur Visualisierung (/F160/) und statistischen
Auswertung von Daten (/F180/) enthilt die Schnittstelle der Analysekompo-
nente (IAnalysis) zunéichst zwei entsprechende Operationen (s. Abb. 5.32). Da
die Operationen der Analysekomponente von den konkreten Anforderungen
eines SISA abhiingig sind, werden iiber die beiden angegebenen Operationen
hinaus an dieser Stelle keine weiteren Operationen spezifiziert.

Um die Analyse von Daten zu erleichtern, sollten fiir alle Assessment-Daten
des SISA (bzw. deren Formate/Klassen) entsprechende Visualisierungsopera-
tionen bereitgestellt werden, wobei die Operationen in der Lage sein sollten,
Daten in unterschiedlichen Formen (z.B. als Karte, Diagramm oder Tabelle)
darzustellen.

IAnalysis
Analysis

«interface»
IAnalysis

+viewDataset()
+viewStatistics()

Abbildung 5.32: Schnittstelle der Analysekomponente. Die Analysekomponente
enthélt zwei exemplarische Operationen: eine zur Visualisierung von Datensét-
zen (viewDataset) und eine zur Visualisierung statistischer Werte eines Daten-
satzes (viewStatistics). Da die Komponente verantwortlich ist fiir die Bereit-
stellung von Simulationsergebnissen fiir den Modellbetreiber, beschrénken sich
die Operationen auf die Visualisierung der entsprechenden Daten.

5.2.10.3 Daten-Spezifikation

Fiir die Analysekomponente werden keine gesonderten Daten-Spezifikationen
vorgenommen. Die von den Diensten unterstiitzten Datenmodelle sollten sich
allerdings an den eingesetzten Klassen der Datenzugriffskomponente orientie-
ren, um eine nahtlose Datenverarbeitung zu erméglichen.

5.2.11 Modellanalyse
5.2.11.1 Komponenten-Abgrenzung

Die Wichtigkeit der Durchfithrung von Unsicherheits- und Sensitivitdtsanaly-
sen fiir die verwendeten Simulationsmodelle wurde bereits in der Systemde-
finition (Kapitel 4, Seite 69) herausgestellt. In diesen Analysen werden ge-
zielte Verdnderungen der Eingangsdaten der Simulationsmodelle vorgenom-

Darstel-
lungfor-
men

Modell-
analyse

Verant-

wortlich-

keit

sicher-
heiten

gezielte
Wert-
ande-
rungen

Zwi-
schen-
schicht

146 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

men und in Beziehung zur Anderung der Ausgangsgréfen gesetzt. Die Tren-
nung der Verantwortlichkeiten fiir die Erzeugung von Simulationsergebnissen
(Simulationsmodell-Komponente) und die Verwaltung bzw. Bereitstellung von
Modelleingabedaten (Slmulatlonslaufmanager Komponente) erlaubt eine einfa-
che Anderung der Eingabedaten (z.B. die Anderung von Modellparametern).
Diese Anderungen sollten von einer separaten Komponente, der Modellanalyse-
Komponente, durchgefiihrt werden. Die Modellanalyse-Komponente ist damit
verantwortlich fiir die Unterstiitzung bei der Analyse des Simulationssystems,
insbesondere bei der Durchfithrung von Sensitivitidts- und Unsicherheitsanaly-
sen.

5.2.11.2 Dienst-Spezifikation

Die Modellumweltgréfien sowie die Parameterwerte von Modellen kénnen
i.d. R. nicht genau angegeben werden. Die Unsicherheiten dieser Werte miis-
sen daher stets beriicksichtigt werden. Im Zusammenhang mit den Eingabe-
daten eines Modells kénnen Unsicherheiten zwei Ursachen haben: Zum einen
Unsicherheiten bei den Messungen und zum anderen inhérente stochastische
Schwankungen bei den gemessenen Werten. Diese Unsicherheiten kénnen z. B.
beriicksichtigt werden, indem die Eingabewerte zufillig im Rahmen der Unsi-
cherheit des Parameters verédndert werden (s. z. B. Clark u. a., 1975).

Das Simulationsmodell bekommt seine Eingabedaten von der Datenzugriffs-
komponente. Zur Analyse der Sensitivitdt und Unsicherheit sind die Einga-
bedaten allerdings gezielt zu verdndern. Diese Verdnderungen koénnten direkt
innerhalb des Simulationssystems vorgenommen werden. Hierzu miisste das Si-
mulationssystem entsprechende Methoden bereitstellen und die Eingabedaten
dann gezielt (z.B. iiber interne Faktoren) manipulieren. Ein anderer Weg ist
die Verdnderung der Eingabedaten bevor sie dem Simulationssystem {ibermit-
telt werden. Diese Art der Verdnderung von Eingabewerten hat den Vorteil,
dass die Modelle selbst keine entsprechenden Vorkehrungen zur Manipulation
der Daten treffen miissen. Da die Wahl der zu verindernden Parameter und
die Kombinationen bei der gleichzeitigen Verédnderung mehrerer Parameter ei-
ne nicht-triviale Aufgabe ist, sollte diese Verantwortlichkeit in eine separate
Komponente gelegt werden.

Um ihre Aufgabe der Manipulation von Eingangsdaten erfiillen zu kénnen,
befindet sich die Modellanalyse-Komponente als Schicht zwischen Simulations-
system und Datenzugriffskomponente (s. Abb. 5.33). Alle Daten, die das Simu-
lationssystem wiihrend eines Simulationslaufes (Analyselaufes) benotigt, wer-
den von der Modellanalyse-Komponente zur Verfiigung gestellt; ein direkter Zu-
griff des Simulationssystems auf die Datenzugriffskomponente findet wihrend
eines solchen Analyselaufes nicht statt. Auf diese Weise kénnen alle Eingabe-
daten vor der Weitergabe an das Simulationssystem gezielt verdndert werden.

5.2. KOMPONENTEN-ENTWICKLUNG 147

Die zur Modellanalyse benéGtigten Ausgabedaten des Simulationssystems gehen
ebenfalls den Weg iiber die Modellanalyse-Komponente.

Simulationssystem
Modell-
analyse
v v
Datenzugriffskomponente

Abbildung 5.33: Prinzip der Modellanalyse. Die Modellanalyse-Komponente
wird als Schicht zwischen das Simulationssystem und die Datenzugriffskompo-
nente gelegt. Alle Modelleingabedaten und Modellausgabedaten passieren die
Modellanalyse-Komponente und kénnen auf diese Weise verindert und ausge-
wertet werden.

Fiir eine Modellanalyse sind i.d. R. eine ganze Reihe an Simulationsldufen
durchzufithren. Die grundlegenden Einstellungen fiir die Simulationslaufe sind
wiederum iiber eine Simulationslauf-Spezifikation, also iiber den Simulations-
laufmanager, festzulegen. Die speziell fiir eine Modellanalyse benéGtigten Para-
meter (z.B. die maximale Verédnderung von Eingabedaten) sind direkt von der
Modellanalyse-Komponente vorzuhalten.

Die Modellanalyse-Komponente muss verschiedene Schnittstellen implemen-
tieren. Da der Datenzugriff fiir das Simulationssystem transparent sein soll-
te, muss die Modellanalyse-Komponente zunéchst die gleichen Schnittstellen
bereitstellen wie die Datenzugriffskomponente (IRepositor und IDataAccess).
Dariiber hinaus muss sie eine Schnittstelle bereitstellen, die die Analyseopera-
tionen — zumindest eine abstrakte Operation zum Start der Analyse (analyse)
— aufnimmt (ISimModelAnalysis). Die Schnittstellen der Komponente sind in
Abb. 5.34 (Seite 148) zusammengefasst.

5.2.11.3 Daten-Spezifikation

Die fiir die Durchfithrung von Modellanalysen notwendigen Daten héngen von
den gewiinschten Analysemethoden ab und kénnen daher an dieser Stelle nicht
spezifiziert werden. Als Ausgangsbasis kann die in Abb. 5.35 dargestellte Klasse
(SISA_ModelAnalysis) dienen, die neben dem Simulationslauf-Namen eine Liste
von Datensatzéinderungen enthiilt. Die Anderungen kénnen iiber die Angabe

Schnitt-
stellen

148 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

ISimModAnalysis
Model Analysis

IDBSystem
IDataTransform O

«interface»
ISimModAnalysis

+analyse()

Abbildung 5.34: Schnittstellen zur Modellanalyse. Neben den Schnittstellen,
die fiir einen transparenten Datenzugriff notwendig sind, bietet die Kompo-
nente eine Modellanalyse-Schnittstelle zur Aufnahme der eigentlichen Analyse-
Operationen. Die Spezifikation der Schnittstellen IRepository und IDataTrans-
form finden sich in den in Abb. 5.26 (Seite 137) und 5.27 (Seite 138).

des Datensatzes und die minimale und maximale Abweichung der Werte des
Datensatzes (Klasse SISA_DatasetChange) spezifiziert werden??.

«DataType» «DataType»
SISA_ModelAnalysis SISA_DatasetChange
-simulationRun[1] : SISA_URN -dataSet[1] : SISA_URN
-datasetChange[1..*] : SISA_DatasetChange -changeMin[1]
-changeMax[1]

Abbildung 5.35: Einfaches Datenmodell zur Modellanalyse.

5.3 Gesamtarchitektur

Dieser Abschnitt liefert eine zusammenfassende Darstellung der entwickelten
SISA-Architektur. Hierzu werden in Unterabschnitt 5.3.1 zunéchst die stati-
schen Aspekte der Architektur in Form eines Komponenten-Diagramms dar-
gestellt und erkldrt. Der anschlieende Unterabschnitt (5.3.2, Seite 154) be-
schreibt die wichtigsten dynamischen Aspekte iiber Sequenzdiagramme.

24 Auf die Angabe eines Datentyps fiir die Abweichungsangaben wird verzichtet, da hier
sowohl Absolutwerte unterschiedlicher Typen als auch andere Datensétze vorgesehen werden
konnten.

5.3. GESAMTARCHITEKTUR 149

5.3.1 Komponenten

Die in diesem Kapitel entwickelte Gesamtarchitektur des SISA besteht aus ins-
gesamt zwolf Komponenten — den Client nicht mitgezihlt. Abbildung 5.36 zeigt
die Komponenten und ihre gegenseitigen Abhéngigkeiten als Komponentendia-
gramm. Die Schnittstellen und Verantwortlichkeiten jeder Komponente werden
— wenn notwendig, erginzt durch Anmerkungen iiber vorgeschlagene Daten-
strukturen — im Folgenden zusammenfassend erklirt (ausfiihrlichere Erldute-
rungen finden sich in den entsprechenden Unterabschnitten der Komponenten-
Entwicklung ab Seite 96).

Die Dokumentationskomponente (Documentation) ist verantwortlich fiir die
Dokumentation und Verwaltung grundlegender Hintergrundinformationen iiber
durchgefiihrte bzw. in der Durchfithrung befindliche Assessments. Zu den Hin-
tergrundinformationen gehéren Angaben iiber durchgefiihrte Projekte und Stu-
dien, beteiligte Personen und Organisationen, durchgefithrte Simulationslaufe
und verwendete Szenarien. Neben diesen Informationen stellt die Dokumenta-
tionskomponente auch ein Glossar bereit sowie einen Katalog, in dem Arbeits-
schritte erklart werden konnen, die hiufig mit dem SISA durchgefiihrt werden
(der so genannte ‘Service Organizer Folder’). Ein Katalog, in dem die Nutzer
des SISA nicht weiter spezifizierte Anmerkungen eintragen kénnen, ist ebenfalls
in dieser Komponente angesiedelt. Die Dokumentationskomponente bietet zwei
Schnittstellen an: eine zur Verwaltung der internen Kataloge (IDocManager)
und eine zur Abfrage der Kataloge nach bestimmten Kriterien (IDocDiscove-
ry). Die Dokumentationskomponente enthélt projektbezogenen Informationen
iiber Ressourcen vom Katalogmanager und ist somit von dieser Komponente
abhéngig. Benutzt wird die Komponente lediglich vom Client.

Der Katalogmanager (Catalog Manager) ist fiir die Verwaltung und Be-
reitstellung von Metadaten iiber SISA-Ressourcen verantwortlich. Die Daten-
struktur zur Speicherung von Metadaten orientiert sich an Standards: Grund-
lage fiir alle Ressourcenbeschreibungen ist der Dublin Core Metadata Element
Set (DCMES) (ISO, 2003), dessen 15 Elemente mit relativ wenig Aufwand fiir
jede Ressource ausgefiillt werden kénnen. Detaillierte Beschreibungen zu Geo-
daten sollten sich am ISO-Standard 19115 (ISO, 2000) orientieren, genaue-
re Angaben zu Simulationsmodellen am Content Standard for Computational
Models (ADEPT, 2001). Die Schnittstellen richten nach den Catalog Services
des OpenGIS-Konsortiums und bieten Operationen zur Verwaltung und Abfra-
ge von Katalogen (durch die Schnittstellen ICatManager und ICatDiscovery)
sowie zur Abfrage von Zugriffsinformationen und zur Generierung eindeuti-
ger Ressourcen-Namen (Schnittstelle ICatAccess). Der Katalogmanager wird
sowohl vom Client benutzt als auch von der Dokumentations- und der Daten-
zugriffskomponente. Der Katalogmanager selbst ist unabhéngig von anderen
Komponenten.

Docu-
menta-
tion

Catalog
Manager

Meta-
data
Har-
vester

Datasets

Data-
Base
System

Data
Access

150 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

Der Metadaten-Sammler (Metadata Harvester) ist verantwortlich fiir die
Durchsuchung eines Rechners (Hosts) nach Dateien mit Metadaten und die au-
tomatische Weitergabe der gefundenen Informationen an den Katalogmanager.
Die Datenstruktur des Metadaten-Sammlers orientiert sich an der Spezifikation
der Metadaten des Katalogmanagers. Uber seine Schnittstelle (IMDHarvester)
bietet der Metadaten-Sammler die Mo6glichkeit, die Sammlung von Metadaten
zu starten und die gefundenen Informationen an den Katalogmanager weiterzu-
leiten. Um seine Aufgabe zu erfiillen, benttigt der Metadaten-Sammler Zugriff
auf die Dateien des zu durchsuchenden Rechners. Fiir die Ubermittlung der
Metadaten greift er auf den Katalogmanager zu. Der Aufruf der Operationen
kann durch den Client erfolgen oder in regelméfiigen Abstédnden durch einen
entsprechenden Prozess.

Das Paket der Datensitze (Datasets) ist eine lose, nicht direkt durch das
SISA verwaltete Sammlung von Dateien und bietet keine iiber die SISA-Archi-
tektur definierten Schnittstellen an. Die Datenstrukturen sind ebenfalls nicht
vorbestimmt. Daten, die fiir das SISA verwendet werden sollen und nicht im
Datenbanksystem (s.u.) gespeichert werden, sollten aus Griinden der Inter-
operabilitit etablierten Daten-Standards folgen. Zu jedem Datensatz sollte ein
entsprechender Metadatensatz existieren. Bei der Verwendung neuer, fiir das
SISA unbekannter Formate sollten der Datenzugriffskomponente entsprechende
Operationen zum lesenden und schreibenden Zugriff auf Dateien dieses Formats
hinzugefiigt werden.

Der Weg der direkten Datenintegration in das SISA geht iiber das Daten-
banksystem (Database System). Das Datenbanksystem ist verantwortlich fiir
die verwaltete Speicherung von Assessment-Daten (vgl. ‘System-Daten’, Un-
terkapitel 4.2.5, Seite 84). Zur Verwaltung der Daten bietet die Komponente
in ihrer Schnittstelle (IDBSystem) Operationen zum Einfiigen, Modifizieren,
Abfragen und Loschen von Datenséitzen. Die Komponente kann iiber ein eigen-
stdndiges Datenbank-Managementsystem oder einen Geodaten-Server realisiert
werden.

Die Datenzugriffskomponente (Data Access) ist fiir den lesenden und schrei-
benden Zugriff auf Daten verantwortlich sowie fiir die Transformation zwischen
verschiedenen Datenformaten. Die Komponente erlaubt einen transparenten
Zugriff sowohl auf die Daten im Datenbanksystem als auch auf die Daten,
die in den Dateien der Datenbasis gespeichert sind. Um einen transparenten
Datenzugriff zu gewéhrleisten, muss die Datenzugriffskomponente die gleiche
Schnittstelle implementieren wie das Datenbanksystem (IDBSystem). Werden
Daten in einem anderen als dem gespeicherten Format angefordert, iibernimmt
die Komponente automatisch die Umformatierung. Fiir die automatische Um-
wandlung sind entsprechende Transformationsfunktionen in der Komponente
bereitzustellen. Die zur Transformation von Formaten verwendeten Funktio-
nen sollten iiber eine gesonderte Schnittstelle (IDataTransform) auch expli-

151

5.3. GESAMTARCHITEKTUR

191S3AIEH BlepeRIsN

SI9 swaa
«waishs» «wasks» stwesera . sesn
| [} /enoosiagal
| walsAs aseqereq L
| [}queasfsaal
S$S300€ UBD 1111111111‘” i :
sasn
$S900E URD | |
wiojsuelereq|
“““““ SS90V BlRQ
wayshsgal
uone|noed
[eansie;
Buissasoid o1ydeiboas feonseIS|
uope|nofed
JaIweredoa9)|
sisAfeuy [2pon
EI ©
Jabeuey ysel 5300
InsaywiIs|
] walsAs uone|nwis
[oAuOQWIS|

sa01AI19s Buissadold

siseuy
sisAfeuy|

]

uoneo|
uny

wiojsueIleIRQ|
waysAsaal

sisAreuypoONWIS|

1abeuepy Horered

m.%mmmuoﬁmu_
1abBeuepieD|

ERIINEIS)]

oads

x
wis| |

et Kianoasiared|

J1abeuepy uny-uonenwis

JaBeuepunywIS|

uol 1900

Kisnodsigooql

JaBeuepooqd|

J91SanIRHANI

Abbildung 5.36: Komponenten der Architektur. Pfeile, die direkt auf Kompo-

nenten verweisen und nicht auf einzelne Schnittstellen, driicken die Abhéingig-
keit von allen Schnittstellen der entsprechenden Komponente aus. Erkliarungen

zu den Komponenten finden sich im Text.

Simula-
tion-Run
Manager

Simula-
tions-
system

Model
Analysis

152 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

zit aufrufbar sein (z. B. um Formate beim Datenaustausch unter Teilmodellen
transferieren zu kénnen). Der Zugriff auf Daten sollte stets iiber einen eindeu-
tigen Bezeichner erfolgen; notwendige Zugriffsinformationen erhélt die Daten-
zugriffskomponente iiber den Katalogmanager (genauer: iiber die Schnittstelle
ICatAccess). Werden Daten geschrieben, sollten der Datenzugriffskomponente
die entsprechenden Metadaten direkt mitgegeben werden, um eine konsistente
Dokumentation der Datensétze zu gewéhrleisten. Beim Zugriff auf Daten aus
dem Paket der Datensitze benttigt die Datenzugriffskomponente entsprechen-
de Rechte, auflerdem ist die Komponente zur Erfiillung ihrer Aufgaben vom
Datenbanksystem abhéingig. Alle Komponenten, die Zugriff auf die Assessment-
Daten bendttigen, sollten zur Sicherstellung der Datenintegritdt und Nachvoll-
ziehbarkeit die Schnittstellen der Datenzugriffskomponente verwenden.

Der Simulationslaufmanager (Simulation Run Manager) ist verantwortlich
fiir die Verwaltung und Bereitstellung von Simulationslauf-Spezifikationen (Ein-
stellungen, durch die sich ein Simulationslauf von einem anderen unterscheidet).
Der Simulationslaufmanager bietet zwei Schnittstellen an: die erste (ISimRun-
Manager) dient der Verwaltung von Simulationslauf-Spezifikationen, die zweite
(ISimRunSpecification) der Abfrage einzelner Einstellungen und der Uberprii-
fung, ob alle fiir ein Modell benétigten Spezifikationen vorhanden sind. Da Si-
mulationsldufe (abstrakte) SISA-Ressourcen darstellen und daher durch einen
eindeutigen Bezeichner zu repriisentieren sind, ist der Simulationslaufmanager
zur Erfiilllung seiner Aufgaben vom Katalogmanager (der fiir die Vergabe der
Bezeichner zustéindig ist) abhéingig. Dariiber hinaus gehéren zu den Einstellun-
gen fiir Simulationsmodelle, die ebenfalls iiber ihre eindeutigen Bezeichner zu
referenzieren sind, auch Verweise auf Datenséitze, deren Auswahl ebenfalls mit
Hilfe der Dienste des Katalogmanagers erleichtert werden kann.

Die Simulationssystem-Komponente (Simulation System) ist verantwortlich
fiir die Berechnung, Speicherung und Weitergabe von Simulationsergebnissen
und stellt hierzu zwei Schnittstellen zur Verfiigung: eine Schnittstelle (ISim-
Control), iiber die das Simulationssystem initialisiert wird und Simulationsliu-
fe gestartet werden konnen und eine weitere Schnittstelle (ISimResultAccess),
iiber die Simulationsergebnisse direkt abgefragt werden kénnen. Die Moglich-
keit auf — auch bereits gespeicherte — Simulationsergebnisse direkt iiber die
Simulationssystem-Komponente zugreifen zu konnen, erhoht die Interoperabi-
litdt und Wiederverwendbarkeit der Modelle und Daten. Zur Erfiilllung ihrer
Aufgaben ist die Komponente von der Datenzugriffskomponente abhéingig. Bei
der Erstellung neuer Simulationsergebnisse benutzt die Komponente dariiber
hinaus die Dienste des Simulationslaufmanagers und Dienste aus dem Paket
der Verarbeitungsdienste. Im Zuge von Modellanalysen wird der Datenzugriff
itber die Modellanalyse-Komponente abgewickelt.

Die Komponente zur Modellanalyse (Model Analysis) ist verantwortlich fiir
die Unterstiitzung bei der Analyse des Simulationssystems, insbesondere bei

5.3. GESAMTARCHITEKTUR 153

der Durchfithrung von Sensitivitdts- und Unsicherheitsanalysen. Beim Start
einer Modellanalyse (iiber die Schnittstelle ISimModAnalysis) iibernimmt die
Modellanalyse-Komponente die Kontrolle iiber die Durchfithrung von Simulati-
onslaufen. Auflerdem schaltet sie sich zwischen das Simulationssystem und die
Datenzugriffskomponente, so dass alle Modelleingabedaten und Modellausga-
bedaten vor der Weitergabe kontrolliert und gezielt verdndert werden kénnen.
Um den Datenzugriff fiir das Simulationsmodell transparent zu halten, muss die
Modellanalyse-Komponente iiber ihre eigene Schnittstelle hinaus die gleichen
Schnittstellen implementieren wie die Datenzugriffskomponente (IDBSystem
und IDataTransform).

Die Analyse-Komponente unterstiitzt den Modellbetreiber und Modellent-
wickler bei der Analyse von Simulationsergebnissen. Zu den Operationen, die
diese Komponente (iiber die Schnittstelle IAnalysis) anbietet, sollte auf jeden
Fall eine zur Visualisierung von Datensétzen bereitgestellt werden. Fiir weiter-
gehende Analysen kann die Komponente auf das Paket der Verarbeitungsdiens-
te zuriickgreifen. Abhéngig ist die Analyse-Komponente von der Datenzugriffs-
komponente, die die zu analysierenden Daten bereitstellt, und vom Katalogma-
nager, der umfassende Ressourceninformationen liefert (z. B. iiber die Formate
der Datensitze, die analysiert werden). In der Analysekomponente kénnen die
Operationen implementiert werden, die fiir ein konkretes SISA gewiinscht sind
— also Dienste, die im Sinne der OGC-Dienstearchitektur (ISO/DIS 19119) zu

den ‘user processing services’ zédhlen.

Die im Paket der Verarbeitungsdienste (Processing Services) zusammen-
gefassten Komponenten bieten allgemeine Verarbeitungsdienste, die von den
anderen Komponenten, unabhéingig von einem speziellen SISA, verwendet wer-
den konnen. Das Paket beinhaltet die Komponente zur Aufgabensteuerung
(Task Manager) sowie die Komponenten zur (Geo-) Datenverarbeitung (Geo-
graphic Processing u. Utility). Die Komponente der Geodatenverarbeitung ist
verantwortlich fiir die Bereitstellung von Diensten zur Verarbeitung geographi-
scher Daten sowie den transparenten Zugriff auf die Funktionen eigensténdiger
Geo-Informationssysteme. Die von ihr angebotenen Schnittstellen (IGeoPara-
meterCalculation und IStatisticalCalculation) sollten zumindest Operationen
zur Transformation, Kombination und statistischen Auswertung von Rasterda-
ten bereitstellen. Weitere im Rahmen eines SISA niitzliche Dienste, die Funk-
tionen ohne geordumlichen Bezug anbieten, werden in der Komponente zur
allgemeinen Datenverarbeitung (Utility) angeboten. Die Dienste dieser Kompo-
nente werden nicht weiter spezifiziert. Die Komponente der Aufgabensteuerung
ist verantwortlich fiir die Bereitstellung von Diensten zum programmgesteuer-
ten Aufruf anderer Dienste. Sie sollte iiber ihre Schnittstelle (ITaskManager)
Operationen zur Definition und zum Ausfiithren von Diensten und Diensteket-
ten bereitstellen.

Analysis

Proces-
sing
Services

Geo Pro-

cessing

Utility

Task
Manager

Wieder-
ver-
wendung

init

retrieve

access

info

database
system

154 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

Die Dienste der Komponenten zur Geodatenverarbeitung und zur allgemei-
nen Datenverarbeitung koénnen als ‘shared processing services’ im Sinne der
OGC-Dienstearchitektur (ISO/DIS 19119) aufgefasst werden, also als Dienste,
die nicht nur fiir ein spezielles SISA, sondern bereichsiiberschreitend (beispiels-
weise fiir andere SISA oder zur Erstellung von Hilfsprogrammen) eingesetzt
werden konnen.

5.3.2 Interaktionen

Die Interaktionen der Komponenten werden im Folgenden iiber Sequenzdia-
gramme verdeutlicht. Die als ‘Client’ bezeichneten Objekte in den Sequenzdia-
grammen kénnen sowohl menschliche Nutzer (Modellbetreiber, Modellentwick-
ler etc.) als auch andere Software-Systeme (z.B. ein den Metadaten-Sammler
anstoflender Hintergrundprozess) sein.

5.3.2.1 Simulationslauf

Das Sequenzdiagramm in Abb. 5.37 zeigt die Interaktionen der Komponenten
bei der Erzeugung neuer Simulationsergebnisse (Testszenario /T60/).

Der Client startet die Initialisierung des Simulationssystems (Simulation
System) fiir einen — zuvor durch eine Simulationslauf-Spezifikation definierten
— Simulationslauf unter Angabe des eindeutigen Simulationslauf-Bezeichners
iiber die Operation init().?> Wihrend der Initialisierungsphase werden grund-
legende Einstellungen des Systems vorgenommen. Die von den Simulationsmo-
dellen benétigten simulationslaufspezifischen Einstellungen bezieht das Simu-
lationssystem iiber die Operation getSetting() des Simulationslaufmanagers.

Nachdem die Initialisierung abgeschlossen ist, startet der Client den Simula-
tionslauf iiber die Operation run(). Die im Laufe der Simulation benétigten Da-
tensétze erhilt das Simulationssystem von der Datenzugriffskomponente (Data
Access). Hierzu nutzt das Simulationssystem die Operation retrieveDataset().
Der angeforderte Datensatz sollte iiber einen eindeutigen Bezeichner referen-
ziert werden.

Die Datenzugriffskomponente selbst benttigt fiir den Zugriff auf den Daten-
satz zusétzliche Informationen iiber den angeforderten Datensatz (z.B. einen
Datenbank-Namen oder das Format und den Speicherort einer Datei). Die-
se Informationen erhilt die Datenzugriffskomponente — unter Verwendung des
eindeutigen Datensatz-Bezeichners — iiber die Operation getAccessinfo() des
Katalogmanagers (Catalog Manager).

Die Datenzugriffskomponente bezieht den angeforderten Datensatz durch
den Aufruf der Operation retrieveDataset() des Datenbanksystems (Database
System) und gibt ihn dann direkt weiter an das Simulationssystem.

25Ein noch nicht initialisiertes Simulationssystem kann beim Eintreffen der Nachricht run
die Initialisierung auch selbsténdig vornehmen.

155

:Geographic Processin

:Database System

‘ :Catalog Manager

:Data Access

‘ :Simulation System ‘ ‘ :Simulation-Run Manager

5.3. GESAMTARCHITEKTUR

external data
GIS

;m | m |
i i
| |
| |
i i
i i
i i
i i
i i
i i
i i
i i
\\ L RS,
M_ i i U
L | |
i | |
i i i
i i i
i i i
| i i
| i i
=1 i i i
2 i = i i =3
| g i i D
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ M\\\L\\\\\\\\\\\ e B L 20
a i _ Q | I £
o | < | £ | | a8
< 13 | 2 | S 1 1 < =1
=] £ S =1
<] 12 i = i G =3 i <]]
2 S @ € ©
£ 1's | 2 | < = g i = i
@ = | Q | s 1 12 | 2 |
@ | | 3 | = . 2 Wm ! 2 |
8 | | < | \ g |
o3 | | 3 | S 8 19 | 8 |
b | | <4 | Ja 2 12 | < |
3 | | Q i s g 13 | s |
S e s 5 >
N N ERING (L 5 N
> 1® 1
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ E— - AR R N N
i i
i i i i
i i i i
i i i i
i i i i
i i i i
i i i i
i i i i
i i i i
= | = | | |
2 | @ | | | =1
3 | 3 | | |]
\\\\\\\\\\\ - —] - g g iR
a i a i i i g
i i] i o i i i 8
I I H | 3 | | | k=]
i i £ i kS i i i 2
(=3 1< | ° ! ° | | |
2 = | = | = | | |
=1 = i i i i i
@] i i i i i
1] 19 | | | | |
@ 1D | | | | |
= 1o I I I I I
i i i i i i
=4 4
€ 3

Abbildung 5.37: Architektur-Dynamik bei der Erzeugung von Simulationser-

gebnissen. Erkldrungen finden sich im Text.

datasets

trans-
form

services

add
dataset

Bsp.:
2 Hosts

harvest

156 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

Der zweite Aufruf von retrieveDataset() zeigt eine Aufruf-Sequenz fiir den
Fall, dass die Daten weder im angeforderten Format noch im Datenbanksystem
gespeichert sind. Nachdem die Datenzugriffskomponente durch getDataAccess-
Info() festgestellt hat, dass die Daten nicht im Datenbanksystem zur Verfii-
gung stehen, greift die Datenzugriffskomponente jetzt direkt auf den spezifi-
zierten Datensatz — der sich im Paket Datasets befindet — zu. Danach ruft die
Datenzugriffskomponente die interne Operation transformData() auf, um den
Datensatz in das angeforderte Format umzuwandeln. Der Datensatz wird dem
Simulationssystem dann im angeforderten Format iibergeben.

Benotigt das Simulationssystem im SISA verfiighare Dienste fiir die (Geo-)
Datenverarbeitung, so ruft es die entsprechenden Dienste auf. Dieser Vorgang
wird durch den Aufruf der fiktiven Operation anyService() der Komponente
Geographic Processing verdeutlicht. Der Aufruf der (ebenfalls fiktiven) Ope-
ration anotherService() verdeutlicht die Transparenz beim Aufruf einer GIS-
Funktion: das Simulationssystem ruft die Operation der Komponente auf, die
diesen Aufruf allerdings zur Bearbeitung an ein eigenstéindiges GIS weiterleitet
und das Ergebnis anschliefend zuriickliefert — von der Weiterleitung erfihrt der
Aufrufer (in diesem Fall das Simulationssystem) nichts.

Die Speicherung von Simulationsergebnissen erfolgt analog zum oben be-
schriebenen lesenden Zugriff: das Simulationssystem ruft die entsprechende
Zugriffs-Operation, also addDataset() auf. Daraufhin werden die fiir den Zugriff
notwendigen Informationen iiber getAccessInfo() bezogen und der Datensatz (in
diesem Fall) im Datenbanksystem ebenfalls iber addDataset() gespeichert.

5.3.2.2 Metadaten-Sammlung

Die Integration von Metadaten in das System (Testszenario /T70/) geschieht
u. a. iiber den Metadaten-Sammler. Die Interaktionen der Komponenten, die
an der Sammlung von Metadaten beteiligt sind, werden iiber das Sequenzdia-
gramm in Abb. 5.38 verdeutlicht.

Die Daten, die fiir ein Assessment von Interesse sind, konnen sich auf unter-
schiedlichen Rechnern (Hosts) befinden. Um die Daten dem System bekannt zu
geben, ohne dass der Nutzer des Hosts explizit entsprechende Eintréige im Ka-
talogmanager vornehmen muss, werden Metadaten-Sammler (Harvester) ein-
gesetzt. Auf jedem Rechner, der Daten fiir das SISA bereitstellt, sollte da-
her ein Metadaten-Sammler installiert sein®. Im Sequenzdiagramm in Abb.
5.38 sind zwei Hosts mit jeweils einem Harvester zu sehen (H1:Harvester und
H2:Harvester).

Wie in Beispiel (a) der Abb. 5.38 zu sehen ist, wird die Sammlung von Me-
tadaten durch den Aufruf der Operation harvest() eines Metadaten-Sammlers

26Fs ist auch moglich Metadaten iiber Rechnergrenzen hinweg zu sammeln; dies erfordert
allerdings entsprechende Zugriffsrechte auf lokale Speichermedien, die nicht immer gewahrt
werden kénnen.

157

5.3. GESAMTARCHITEKTUR

:Repositorn

:Catalog Manager

H2:Harvester

Hil:Harvester

C2:Client

Cl:Client

b U I s U B PR
4 = W y
[
3 I
o | (=3
! g
N} | S
T I g
2 I 8
2 ! 2
] W]
— © g =
] _I 2 | By 8
° ! o
< % <
© /T ©
\\\\\\\\\\\\\\\\\\ Q- ft-————=-- F-- & T B
L o)
g g
o o
= =] =]
f) > >
I I g g
0 @ 2 =}
= = [a iy [a
2 I S o S o
8 a = a
<4 k<t & &
a a
& & ;U & &
Ef 2 2
: g !
& £ g
) 1]
< x
= g = >
< = 2 o4 = @
g g 7| % E :
2 =% a 2 o
<] @ @] @
\\\\\\ E =t \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘m\\\\h B I -
Q
n
— — —~ —~
© Q o e
- = - =

Abbildung 5.38: Architektur-Dynamik bei der Sammlung von Metadaten. Er-

klarungen finden sich im Text.

report

harvest

Daten-
bank-
system-
Suche

internes
Reposi-
tory

Aktuali-
sierung

analyse

Transpa-
renz

158 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

(Harvester) gestartet. Der Metadaten-Sammler durchsucht darauf hin die loka-
len Dateien nach Metadaten und sammelt die gefundenen Metadaten intern.

Durch den Aufruf der Operation report() werden die gefundenen Metadaten
dem Katalogmanager iibermittelt. Hierzu verwendet der Metadaten-Sammler
die Operation updateCatalog() des Katalogmanagers.

Die beschriebene Aufruf-Sequenz aus harvest() und report() wird fiir jeden
Host durchlaufen, der Daten speichert, die fiir das SISA von Interesse sind.

Der Metadaten-Sammler auf dem zweiten Host (H2:Harvester) durchsucht
nicht nur die lokalen Dateien nach Metadaten: iiber die Operation query() des
Datenbanksystems (Database System) sucht und sammelt er auch Metadaten,
die sich evtl. im Datenbanksystem befinden. Beispiel (b) verdeutlicht die ent-
sprechenden Aufruf-Sequenzen.

Sofern die Metadaten fiir die Daten eines Hosts auch auf dem Host selber ge-
sammelt zur Verfligung stehen sollen, ist dies dem Harvester vor der Sammlung
mitzuteilen. Wie in Beispiel (¢) zu sehen ist, geschieht diese Mitteilung iiber
die Operation setRepository(). Nach der Sammlung der Metadaten schreibt
der Sammler ein eigenes (lokales) Repository. Auf ein lokales Repository kon-
nen dann auch andere Clients zugreifen (z. B. der Nutzer des Rechners, auf dem
das Repository gespeichert ist). Beispiel (d) zeigt den Aufruf der hierzu not-
wendigen Operation queryRepository() durch einen zweiten Client (C2:Client).

Der Aufruf zum Starten der Metadaten-Sammlung kann sowohl durch einen
menschlichen Nutzer als auch durch eine andere Software erfolgen. Um die Me-
tadaten aktuell zu halten, ist es ratsam, die Sammlung regelméflig durchzu-
fiihren. Dies kann z.B. durch die Aufnahme des Aufrufs in einen regelmifig
ablaufenden Betriebssystem-Prozess sichergestellt werden.

5.3.2.3 Modellanalyse

Abbildung 5.39 zeigt das Sequenzdiagramm fiir einen Analyselauf. Im Fall der
Modellanalyse schaltet sich die Modellanalyse-Komponente (Model Analysis)
zwischen das Simulationssystem (Simulation System) und die Datenzugriffs-
komponente (Data Access) und kann damit die lesenden und schreibenden Da-
tenzugriffe des Simulationssystems kontrollieren und manipulieren.

Eine Modellanalyse wird iiber die Operation analyse() der Modellanalyse-
Komponente gestartet, die darauthin die Kontrolle fiir Simulationsléufe iiber-
nimmt und zunéchst das Simulationssystem iiber init() initialisiert. Nach der
Initialisierung startet die Modellanalyse-Komponente den (ersten) Simulations-
lauf.

Alle Datenzugriffe des Simulationssystems werden nun iiber die Modellana-
lyse-Komponente abgewickelt. Diese Komponente bietet die gleichen Schnitt-
stellen zum Datenzugriff an wie die Datenzugriffskomponente, der Zugriff auf
die Daten bleibt daher fiir das Simulationssystem transparent und im Modell
selbst miissen keine Anderungen fiir den Analyselauf vorgenommen werden.

159

Processing Services

:Database System

:Data Access

retrieveDataset()

L addDataset()

anyService()

anyAnalysis()

:Model Analysis

addDataset()

retrieveDataset()

:Simulation System

init()
run()

addDataset()

===
N N

init()
run()
retrieveDataset()

:Client

5.3. GESAMTARCHITEKTUR

Abbildung 5.39: Architektur-Dynamik bei der Analyse eines Simulationssys-

tems. Erkldrungen finden sich im Text.

services

analysis

Ziel

Aus-
gangsba-
sis

Ergeb-

nisse

160 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

Das Lesen und Schreiben von Datensétzen erfolgt — wie bereits zu Abb. 5.37
(Seite 155) erklért — iiber die Operationen retrieveDataset() und addDataset().

Zur evtl. notwendigen Analyse oder gezielten Verédnderung von Eingabeda-
ten kann die Modellanalyse-Komponente, ebenso wie das Simulationssystem,
die allgemein verfiigbaren Dienste (Processing Services) nutzen.

Nach einem Simulationslauf werden die Simulationsergebnisse ausgewertet,
was durch den Aufruf der Operation anyAnalysis() angedeutet wird.

Fiir Sensitivitdts- und Unsicherheitsanalysen miissen eine Vielzahl von Si-
mulationsldufen durchgefithrt werden. Bei jedem Simulationslauf werden die
Eingabedaten durch die Modellanalyse-Komponente gezielt und nach einem
bestimmten Verfahren gedndert und danach die Ausgabedaten analysiert. Die
Sequenz ‘Initialisierung—Simulationsstart—Eingabedatenveréinderung—Ausgabe-
datenanalyse’ wird so lange wiederholt, bis ein definiertes Abbruchkriterium
(z.B. die Anzahl durchgefiihrter Simulationen) erfiillt ist.

5.4 Fazit

Ziel dieses Kapitels war die Entwicklung einer Software-Architektur fiir ein
System zum integrierten simulationsbasierten Assessment (SISA), die als Aus-
gangsbasis fiir die Realisierung neuer Systeme herangezogen werden kann.

Den Rahmen fiir die Architektur-Entwicklung lieferten die in Kapitel 4
(Seite 69) definierten allgemeinen Anforderungen an ein SISA. Grundlage fiir
die Abgrenzung der Architektur-Komponenten waren die in Kapitel 3 (Sei-
te 25) identifizierten Komponenten existierender Systeme sowie die Dienste-
Architektur des OpenGIS-Konsortiums (ISO/DIS 19119).

Zur Erfiilllung der definierten Systemziele teilt die entwickelte Architektur
das Gesamtsystem eines SISA in insgesamt zwo6lf Komponenten.

Die in der Systemdefinition geforderte Verwaltung verschiedener Betriebs-
mittel (Ressourcen) liegt in der Verantwortung des so genannten Katalogma-
nagers, der Metadaten zu allen SISA-Ressourcen (vgl. Abb. 4.2, Seite 76) be-
reithélt. Fir die Bereitstellung weiterer Hintergrundinformationen, z. B. {iber
Projekte oder an einem Projekt beteiligte Personen, ist die Dokumentations-
komponente verantwortlich. Die Verantwortlichkeit fiir die Berechnung neu-
er Simulationsergebnisse wird der Simulationssystem-Komponente {ibertragen.
Diese Komponente konzentriert sich auf die Umsetzung des konzeptionellen Mo-
dells in ausfithrbaren Programmcode und nutzt zur Erfiillung ihrer Aufgabe die
Dienste weiterer Komponenten, insbesondere die Dienste der Datenzugriffskom-
ponente (um auf Datensétze zuzugreifen) und die des Simulationslaufmanagers
(um die fiir einen Simulationslauf notwendigen Einstellungen zu erfragen). Hau-
fig von Simulationsmodellen benétigte Funktionen zur Geodatenverarbeitung
sowie zur allgemeinen Datenverarbeitung werden {iber separate Komponenten
angeboten.

5.4. FAZIT 161

Die Einbettung des SISA in eine Software-Umgebung wird einerseits iiber
den Austausch persistenter Daten erreicht, fiir die die Datenzugriffskomponen-
te zustdndig ist, und andererseits iiber die Moglichkeit der direkten Kopp-
lung einzelner SISA-Komponenten mit externen Programmen iiber Program-
mierschnittstellen. Die Komponente zur Geodatenverarbeitung ist beispiels-
weise verantwortlich fiir die Kopplung des SISA mit eigensténdigen Geo-In-
formationssystemen (GIS), die Datenzugriffskomponente fiir die Anbindung
an externe Datenbanksysteme. Die in der Systemdefinition geforderte Inter-
operabilitit mit solchen ‘externen’ Systemen (nicht-funktionale Anforderung
/NF10/) wird damit explizit beriicksichtigt. Die Austauschbarkeit von Sys-
temteilen (/NF40/) sowie die Modifizierbarkeit (/NF30/) und Analysierbar-
keit (/NF20/) des Systems wird insbesondere durch die klare Trennung der
definierten Verantwortlichkeit der einzelnen Komponenten unterstiitzt. Der ho-
hen Anforderung an das Qualitéitsmerkmal der Austauschbarkeit wird insbe-
sondere durch die Schnittstellendefinition der Simulationssystemkomponente
Rechnung getragen. Die ebenfalls als wichtiges Qualitéitsmerkmal eines SI-
SA geforderte Transparenz, Nachvollziehbarkeit und Reproduzierbarkeit von
Assessment-Ergebnissen (/NF50/) wird durch das Zusammenwirken der Do-
kumentationskomponente, des Simulationslaufmanagers, des Katalogmanagers
und der Metadaten-Sammler sichergestellt.

Eine graphische Ubersicht aller SISA-Komponenten sowie deren Verbindun-
gen mit den SISA-Zielen und -Funktionen findet sich in den Abbildungen 5.1
(Seite 97) und 5.2 (Seite 99). Die Ubersicht der spezifizierten Datenstruktu-
ren und Schnittstellen ist im Anhang dokumentiert (Abbildung B.2, Seite 235
bzw. Abbildung B.3, Seite 236). Zum Abschluss des Kapitels folgt eine kurze
Beschreibung der zwolf Komponenten der SISA-Architektur.

Die zentrale Komponente des Simulationssystems kapselt die Teilmodelle
des Gesamtsystems und ist fiir die Berechnung neuer Simulationsergebnisse zu-
stdndig. Zur Erhohung der Integrierbarkeit des Simulationsmodells bzw. dessen
Teilmodelle, sollten diese in der Lage sein, zuvor berechnete Ergebnisse tiber
eine entsprechende Schnittstelle zur Verfiigung zu stellen.

Um die Nachvollziehbarkeit und Reproduzierbarkeit der Simulationsergeb-
nisse zu gewihrleisten, werden alle fiir einen Simulationslauf bendtigten Ein-
stellungen von einer separaten Komponente verwaltet: dem Simulationslauf-
manager. Er versorgt das Simulationssystem auf Anfrage mit den notwendigen
Informationen tiber Parametrisierungen, Optionen oder Eingangsdaten.

Der Ort der Speicherung von Eingangsdaten éndert sich in der Praxis von
Zeit zu Zeit (z.B. im Zuge der Erweiterung oder des Austausches eines Daten-
Servers). Um die Nachvollziehbarkeit und Reproduzierbarkeit von Ergebnis-
sen dennoch zu gewihrleisten, wird dem Simulationslaufmanager nicht der Ort
(Pfad/Dateiname) der Speicherung eines Datensatzes angegeben, sondern ein
Ressourcen-Name, der den Datensatz eindeutig identifiziert.

Uber-
sicht

Simula-
tions-
system

Simula-
tions-
lauf-
Manager

Daten-
zugriff

Katalog-
manager

Daten-
basis

Meta-
daten-
Sammler

Doku-
menta-
tion

162 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

Das Simulationssystem greift auf einen derart referenzierten Datensatz nicht
direkt zu. Stattdessen wendet sich das Simulationssystem an die Datenzugriffs-
komponente, die fiir die Bereitstellung von Datensétzen zustédndig ist. Hierzu
muss ihr lediglich der Ressourcen-Name des gewiinschten Datensatzes sowie das
Format, in dem der Datensatz geliefert werden soll, mitgeteilt werden. Diese Art
des Datenzugriffs ermoglicht einen transparenten Datenzugriff sowie eine auto-
matische Transformationen von Datenformaten. Das Format der Datenspeiche-
rung wird somit von der ‘internen’ Représentation fiir das Simulationssystem
getrennt. Dieser Zugriffsmechanismus erlaubt eine schrittweise Migration hin
zu offenen Datenformaten. Die Schnittstelle zum Datenzugriff orientiert sich
an den Spezifikationen der OpenGIS Service Architecture (ISO/DIS 19119).

Die Informationen, die die Datenzugriffskomponente zum Zugriff auf einen
Datensatz benétigt (z. B. ein Pfad/Dateiname), werden vom Katalogmanager,
der fiir die Verwaltung von Metadaten zustdndig ist, bereitgestellt. Die Anga-
be der Zugriffsinformationen ist — aufler fiir abstrakte Ressourcen — fiir jede
Ressource zwingend erforderlich. Obligatorisch sind ebenfalls die Angabe eines
eindeutigen Ressourcen-Namens und eines Kurztitels. All diese Informationen
werden in die Ressourcen-Liste des SISA aufgenommen. Die Beschreibung jeder
Ressource iiber die 15 Elemente des Dublin Core Metadata Element Set (ISO
15836) wird als Minimal-Anforderung angesehen. Weitergehende Beschreibun-
gen zu Geodaten sollten sich nach dem Metadaten-Standard der ISO-19100-
Reihe richten (ISO/DIS 19115), Metadaten zu Simulationsmodellen nach dem
Content Standard for Compulational Models. Die Schnittstellendefinition sowie
die Datenstruktur orientiert sich an den Spezifikationen der OpenGIS Service
Architecture (ISO/DIS 19119).

Die Datenzugriffskomponente greift auf die Daten innerhalb der Datenbasis
zu. Die Datenbasis besteht aus einem Datenbanksystem, das eine verwaltete
Datenspeicherung zulésst, und kann durch eine lose Sammlung von Dateien er-
ginzt werden. Die Integration der Dateien in das SISA erfolgt {iber Metadaten,
die zu jeder Datei vorhanden sein sollten.

Die in der Datenbasis vorhandenen Metadaten, die nicht direkt vom Nut-
zer iiber den Katalogmanager eingegeben werden, werden von Metadaten-
Sammlern eingesammelt und dem Katalogmanager iibermittelt. Ein Metada-
ten-Sammler sollte auf jedem Rechner installiert sein, der Ressourcen fiir das
SISA bereitstellt.

Projektbezogene Kurz-Informationen werden direkt im SISA vorgehalten,
genauer: in der Dokumentationskomponente. In diesem ‘Auskunftssystem’ wer-
den u. a. Daten iiber durchgefiihrte Simulationslaufe, beteiligte Personen und
verwendete Szenarien hinterlegt und den Akteuren des SISA (Modellbetreiber,
Modellentwickler, Entscheidungstriger, Interessenten) bereitgestellt.

5.4. FAZIT 163

Zur Steigerung der Wiederverwendbarkeit von Software sollten haufig wie-
derkehrende Funktionen nicht direkt in der Komponente des Simulationssys-
tems implementiert, sondern in andere Komponenten ausgelagert werden. Zur
Erhohung der Interoperabilitit und Austauschbarkeit sollte sich die Modu-
larisierung von Funktionen an der Dienste-Taxonomie der OpenGIS Service
Architecture (ISO/DIS 19119) orientieren. Im Rahmen des SISA lassen sich
diesbeziiglich drei relevante Bereiche (Komponenten) abgrenzen: Funktionen
zur Bearbeitung geographischer Informationen, allgemeine Datenverarbeitungs-
funktionen und Funktionen, die der Steuerung anderer Funktionen dienen. In
der Architektur sind die Funktionen in den Komponenten Geodatenverarbei-
tung, Datenverarbeitung und Aufgabensteuerung lokalisiert. Die Komponente
zur Geodatenverarbeitung sollte auch die Schnittstelle zu eigensténdigen GIS
darstellen.

Zur Sensitivitdts- und Unsicherheitsanalyse von Simulationsmodellen ist ei-
ne gesonderte Komponente vorgesehen: die Modellanalyse-Komponente. Diese
Komponente schaltet sich zur Modellanalyse als Schicht zwischen das Simula-
tionssystem und die Datenzugriffskomponente. Auf diese Weise kann die Kom-
ponente die Eingabedaten fiir das Simulationsmodell gezielt verdindern und die
Ausgabedaten analysieren. Zur Modellanalyse miissen daher keine Anderungen
innerhalb des Simulationssystems vorgenommen werden.

Funktionen, die speziell fiir konkrete Assessments benotigt werden, werden
der Komponente der Ergebnisanalyse zugeordnet.

Daten-
verarbei-
tung

Modell-
Analyse

Ergeb-
nisana-
lyse

164 KAPITEL 5. ARCHITEKTUR-ENTWICKLUNG

Kapitel 6

Realisierung

Nachdem im vorigen Kapitel das Software-System eines SISA in seine wich-
tigsten Komponenten gegliedert wurde, beschéftigen sich die folgenden Ab-
schnitte mit der Realisierung dieser abstrakten Komponenten, also mit deren
Implementierung fiir ein konkretes System. Die prototypischen Implementie-
rungen der Komponenten sollen die Anwendbarkeit der entwickelten Konzepte
belegen. Unterschiedliche Realisierungsmoglichkeiten (z. B. iiber verschiedene
Verteilungsplattformen) werden nicht gegeniibergestellt.

Die Implementierungen der Komponenten erfolgten im Rahmen des GLASS-
Modells; ein Modell zum Assessment der Auswirkungen des globalen Wan-
dels auf die Nahrungsmittelproduktion und Wasserverfiigbarkeit. Die beiden
folgenden Abschnitte liefern zunéchst eine kurze Beschreibung des Simulati-
onssystems von GLASS sowie eine Ubersicht zur Implementierung der SISA-
Architektur, in die das GLASS-Simulationssystem eingebettet wird. Detaillierte
Erklarungen zur Realisierung der einzelnen Architektur-Komponenten finden
sich in Abschnitt 6.3 ab Seite 169. Das Fazit in Abschnitt 6.4 (Seite 199) fasst
die wichtigsten Punkte der Komponenten-Realisierung zusammen.

6.1 Beispielmodell GLASS

Das integrierte Modell GLASS (Global Assessment of Security; Alcamo u.a.,
2001) ist ein Simulationssystem zur Quantifizierung der Beziehungen zwischen
globalem Wandel und menschlicher Sicherheit unter Beriicksichtigung natur-
und sozialwissenschaftlicher Aspekte. Das politisch relevante Ziel ist die Dar-
stellung umweltbezogener Bedrohungspotentiale fiir die menschliche Sicherheit
und die Identifizierung von Strategien zur Risikominimierung. Die derzeitigen
Prioritdten des GLASS-Modells liegen in der Verbindung extremer Klimaereig-
nisse (z.B. Diirren) mit Risiken bei der Wasserversorgung und Nahrungsmit-

165

Ziel

Uber-
sicht

Modell-
Ziel

Berech-
nungs-
prinzip

Verwen-

dung

Teil-
modelle

166 KAPITEL 6. REALISIERUNG

telproduktion. Die folgenden Unterabschnitte erkliaren kurz das Modellkonzept
und die Rahmenbedingungen fiir die Realisierung des SISA.

Modellkonzept

Die Klimavariabilitét spielt bei der Analyse der Nahrungsmittelproduktion und
Wasserverfiigharkeit eine wichtige Rolle. Aus diesem Grund werden iiber den
Klimavariabilitits-Generator (s. Abb. 6.1) szenarienbasierte Daten zu Tem-
peratur und Niederschlag berechnet. Dieses Teilmodell beriicksichtigt sowohl
Daten zum historischen Klima (u.a. Angaben iiber Temperaturen und Nie-
derschlédge der letzten 100 Jahre auf einer monatlichen Basis) als auch Daten
iitber mogliche Klima#énderungen, die von Klimamodellen fiir verschiedene Sze-
narien berechnet wurden. Die auf diese Weise generierten Klima-Daten wer-
den anschlieflend vom Modell WaterGAP (Alcamo u.a., 2003a) zur Berech-
nung jihrlicher Wasserverfiigharkeiten und vom Modell GAEZ (Fischer u. a.,
2000) zur Berechnung méglicher Ertrige wichtiger Feldfriichte genutzt. Diese
von Jahr zu Jahr schwankenden Indikator-Werte werden vom Wasserstress-
Modell bzw. vom Nahrungsmittelstress-Modell zur Berechnung von ‘Stresswer-
ten’ benutzt.! Bei der Berechnung des Nahrungsmittelstresses werden zusétz-
lich sozio-6konomische Daten beriicksichtigt (beispielsweise Angaben dariiber,
welche Feldfrucht in einer Region besonders wichtig ist oder wie hoch der Anteil
an importierten Nahrungsmitteln in einer Region ist). Das Sicherheitsmodell
verkniipft diese Stresswerte schlieBlich mit demographischen Angaben (z.B.
der regionalen Altersstruktur und Einkommensverteilung), um Aussagen iiber
die Wahrscheinlichkeit des Auftretens von Krisen und die potentiell von einer
Krise betroffene Bevolkerung zu treffen.

Das GLASS-Konzept wird sowohl fiir Studien mit globaler als auch fiir Stu-
dien mit regionaler Abdeckung verwendet. Fiir eine erste globale Studie wur-
den 160 verschiedene Lénder (Regionen) berticksichtigt (Alcamo u.a., 2001).
Eine erste regionale Studie wurde fiir das Gebiet der russischen Foderation
erstellt (R-GLASS; Alcamo u. a., 2003c) — in diesem Fall wurden 89 verschie-
dene Regionen unterschieden. Die Teilmodelle arbeiten auf unterschiedlicher
rdumlicher Auflésung. Geographisch explizite Berechnungen beruhen zumeist
auf einer Auflédsung von 0.5° * 0.5° geographischer Linge und Breite.

Rahmenbedingungen

GLASS verwendet sowohl Modelle, die sich bereits im Rahmen globaler Um-
weltforschung etabliert haben, als auch Modelle, die im Rahmen der GLASS-
Entwicklung erstellt wurden. Die Modelle WaterGAP? (Alcamo u. a., 2003a;

IDie Stresswerte ergeben sich aus dem Verhltnis der jihrlich schwankenden Wasserver-
fiigbarkeiten bzw. Feldfruchtertrige zu deren langjahrigen Mittelwerten.
2Water — Global Assessment and Prognosis.

6.1. BEISPIELMODELL GLASS 167

Treibende 5 i i
Fakioren Umweltveranderungen Umweltstress Krisenpotential
jéhrliche
WaterGAP- | | Wasser- Wasser str ess- Wasser-
Modell Verfiighar- Model Stress potentiell
keit
< betroffene
Bevolkerung
Klima- Klima:
fistorisches variabilitats- vatibiia Sicherheits-
ima Generator / Exrem
ereignisse Model
Krisensignal

Nahrungs-
mittelstress-
Modell

jéhrlicher
I Ernteertrag

sozio-
©konomi-
sche Daten

demo- Bevolkerungs- Be-
graphische - profil- volkerungs-
Daten Generator profil

Krisen-
daten
. vorhandener neu erstellter vorhandenes neu erstelltes
Legende: Datensatz Datensatz / Modell Modell I

Abbildung 6.1: Struktur des GLASS-Modells. Ausgangsbasis fiir die Uberprii-
fung der entwickelten SISA-Architektur ist ein loser Verbund von Teilmodellen,
die zusammen das GLASS-Modell ausmachen. Die Teilmodelle wurden teilwei-
se von anderen Projekten (Modell WaterGAP) bzw. Organisationen (Modell
GAEZ) iibernommen und teilweise neu erstellt. Die Kopplung erfolgt in die-
sem ‘Gesamtmodell’ lediglich iiber die von Teilmodellen gemeinsam genutzten
Datensiitze, beispielweise dem Datensatz zur jahrlichen Wasserverfiigbarkeit,
der von WaterGAP berechnet und vom Wasserstress-Modell verwendet wird.
Die Einstellungen, die von den einzelnen Modellteilen fiir die Simulation be-
notigt werden (z.B. Informationen iiber Datensiitze) werden in dieser Form
des Modells von jedem Modell separat verwaltet, was zu Inkonsistenzen fithren
kann (z.B. der Nutzung unterschiedlicher Versionen grundlegender Datensiit-
ze). Gemeinsam genutzte Datensétze miissen stets in dem Format vorliegen, das
von den Modellen genutzt wird, so dass einige Datensétze (inhaltlich) redun-
dant vorliegen miissen. Die Anwendung der Prinzipien der entwickelten SISA-
Architektur sollen helfen, diese Nachteile zu {iberwinden.

Daten-
formate

Ver-

brauchs-

verhal-
ten

Teil-
modelle

168 KAPITEL 6. REALISIERUNG

Alcamo u. a., 2003b; D61l u. a., 2003) und GAEZ? (Fischer u. a., 2000) gehéren
zu den etablierten Modellen, wiahrend die anderen Modellteile im Rahmen der
GLASS-Entwicklung entworfen wurden. WaterGAP wurde in C und C++ im-
plementiert und GAEZ in FORTRAN, wihrend die neu erstellten Teilmodelle
in C+4+ realisiert wurden.

Aufgrund der Verwendung bereits existierender Simulationsmodelle miis-
sen im GLASS-Modell unterschiedliche Datenformate beriicksichtigt werden.
Zu den Datenformaten gehoren sowohl Textdateien im ASCII-Format als auch
Geodatensétze im Binérformat des integrierten Modells IMAGE2 (Alcamo u. a.,
1998b) in der Version2.2 (eingesetzt in WaterGAP) sowie Geodatensiitze im
ASCII-Austauschformat, im Raster-Format und im Polygon-Format des GIS
ArcView?. Da GLASS rasterbasiert arbeitet, werden die letztgenannten Arc-
View-Daten im Polygon-Format nicht direkt vom Simulationsmodell verwen-
det. Sachdaten koénnen aber als Tabelle behandelt werden. Sofern der geogra-
phische Bezug der Daten bei der Simulation explizit beriicksichtigt werden soll
(primérer Raumbezug), sind die polygonbezogenen Daten in rasterbasierte zu
iiberfithren. Die anderen angefiihrten Formate sind direkt bei der Konzeption
der Implementierung der Datenzugriffskomponente zu beriicksichtigen.

Bereits bei der prototypischen Implementierung der SISA-Architekturkon-
zepte sollte die Anforderung an das Verbrauchsverhalten beriicksichtigt werden
(s. Qualititsziel-Bestimmung, Unterabschnitt 4.2.8, Seite 89). Einfache und ef-
fiziente Losungen sind evtl. technisch ‘schéneren’ Losungen vorzuziehen, um die
Wiederverwendbarkeit der Software zu erhchen. Bei der Betrachtung des Ver-
brauchsverhaltens spielt neben technologischen Gesichtspunkten auch die ver-
wendete Software bzw. Middleware eine Rolle. Da das GLASS-Modell evtl. an
Dritte weitergegeben werden soll (z. B. an die russischen Projektpartner der R~
GLASS-Studie), sollte auf den Einsatz kostenintensiver Programme méglichst
verzichtet und die Verwendung frei verfiigharer Software bevorzugt werden.

6.2 Komponenten-Ubersicht

Im Rahmen des GLASS-Projektes wurden die zentralen Konzepte der SISA-
Architektur getestet. Die Implementierung erfolgte prototypisch fiir ausgewéhl-
te Modellteile und Datensétze: Fiir einige Teilmodelle von GLASS (die Stress-
modelle und das Sicherheitsmodell sowie WaterGAP) wurde die Schnittstel-
le implementiert, die fiir die Simulationssystem-Komponente definiert wurde
(Operationen init und run). Auf diese Weise kann der Einfluss der Schnitt-
stelle auf die Wiederverwendbarkeit, Austauschbarkeit und Interoperabilitét
verdeutlicht werden.

3Global Agro-Ecological Zones.
4Verwendet wurde die Version 3.2.

6.3. KOMPONENTEN-REALISIERUNG 169

Das Gesamtmodell von GLASS, d.h. die Verbindung aller GLASS-Teilmo-
delle zu einem Software-System innerhalb der Simulationssystem-Komponente,
wurde im Rahmen der Uberpriifung der SISA-Architektur nicht realisiert. Die
Implementierung der Konzepte, die sich auf den Datenzugriff beziehen, kon-
zentrieren sich auf Geodaten des Modells WaterGAP.

Die Realisierung der Konzepte und Komponenten erfolgte unter Nutzung
verschiedener Programmiersprachen, Formate und Software-Systeme. Abbil-
dung 6.3 (Seite 171) zeigt einige der Realisierungsaspekte in der Ubersicht. Die
Abbildung dient als Rahmen fiir die detaillierten Erkldrungen der Realisierung
des folgenden Abschnitts.

6.3 Komponenten-Realisierung

6.3.1 Dokumentation

Die Dokumentationskomponente ist verantwortlich fiir die Bereitstellung
grundlegender Hintergrundinformationen. Zu diesen, in Katalogform vorzuhal-
tenden Informationen, gehéren Angaben iiber Personen/Organisationen, Pro-
jekte, Simulationsstudien, Simulationsldufe und Szenarien sowie ein Glossar,
Beschreibungen zu typischen Arbeitsablidufen und kurze Anmerkungstexte (vgl.
Unterabschnitt 4.2.5, Seite 84 u. Abschnitt 5.2.3, Seite 119).

Die Daten der Dokumentationskomponente miissen dauerhaft und konsis-
tent gespeichert werden und sollten einfach zu verwalten und abzufragen sein.
Dariiber hinaus muss die Dokumentationskomponente je nach Nutzer unter-
schiedliche ‘Sichten’ auf die Daten bereitstellen. Um allen Beteiligten an einem
Assessment einen einfachen Zugang zu aktuellen Informationen zu bieten, soll-
ten die Daten iiber ein Netzwerk (z. B. das Internet) abrufbar sein.

Aufgrund der Anforderungen an die Datenhaltung und Datennutzung bie-
tet sich die Verwendung eines Datenbanksystems an. Im Rahmen des GLASS-
Projektes wurde das Datenbank-Managementsystem (DBMS) MySQL der
schwedischen Firma MySQL AB® eingesetzt. MySQL ist ein Open-Source-
Produkt im Sinne der GNU General Public License® und besitzt damit den
Vorteil, dass keine Lizenzgebiihren anfallen. Das fertige System kann somit auch
ohne Probleme an andere Organisationen weitergegeben werden. Dariiber hin-
aus ist MySQL — im Gegensatz zu sehr umfangreichen kommerziellen Systemen
wie ORACLE oder IBM/DB2 — relativ einfach zu installieren und zu warten
und bietet eine Vielzahl von Programmierschnittstellen (u. a. fiir die Sprachen
C, C++, JAVA, Perl und PHP). Einige Leistungsmerkmale von DBMS werden
von MySQL zwar (noch) nicht unterstiitzt (Transaktionen, Stored Procedures,

5Startseite im Internet: http://www.mysql.com
6Startseite im Internet: http://www.gnu.org/licenses

Daten-
sitze

Uber-
sicht

Daten

Anforde-
rung

DBS

MySQL

http://www.mysql.com
http://www.gnu.org/licenses

Tabellen

Beispiel

SQL

Werk-
zeuge

170 KAPITEL 6. REALISIERUNG

Trigger, referenzielle Integritit), fiir den Einsatz in der Dokumentationskom-
ponente des SISA kann auf diese aber verzichtet werden.”

MySQL ist ein relationales DBMS, d. h. die Daten werden in Tabellenform
gespeichert.® Die in Kapitel 5 definierten SISA-Daten miissen daher in eine
‘normalisierte’ Tabellenform gebracht werden.® Abbildung 6.2 zeigt als Bei-
spiel die Tabellen, iiber die die ‘Anmerkungen’ (engl. annotations) gespeichert
werden (vgl. Abb. 5.19, Seite 128).

annotation - resource
annotationResource
PK | annotationld ok lid PK |[resourceld
id
title title
author FK2 | annotationld url
date FK3 | resourceld format
text

Abbildung 6.2: Tabelle zur Speicherung der Anmerkungen und deren Bezie-
hung zu anderen Tabellen.

Die im Rahmen der Architekturentwicklung definierte Datenstruktur fiir
Anmerkungen wird umgesetzt durch das Zusammenspiel von drei Tabellen: die
erste Tabelle (‘annotation’) enthélt Titel und Inhalt der Anmerkung sowie die
Angaben zu Autor und Datum. Jede Anmerkung wird — genauso wie jede Res-
source — dariiber hinaus durch eine eindeutige Bezeichnung, den Primérschliis-
sel (engl. primary key, PK), gekennzeichnet. Die Verbindung von Anmerkungen
zu Ressourcen wird iiber eine dritte Tabelle (‘annotationResource’) realisiert.
Jede Zeile dieser Tabelle enthilt den Primérschliissel einer Anmerkung und
einer Ressource (die Primérschliissel werden hier als ‘Fremdschliissel’ (engl.
foreign key, FK) bezeichnet, da sie sich auf die Schliissel anderer (fremder)
Tabellen beziehen).

MySQL selbst besitzt keine graphische Benutzungsoberfliche. Die Definiti-
on und Abfrage von Tabellen und die Verwaltung von Datenbanken geschieht
iiber ein Kommandozeilen-Werkzeug und die Anweisungen der Structured Que-
ry Language (SQL). Da die Nutzung eines Datenbanksystems iiber Kommando-
zeilen wenig komfortabel ist, werden zusétzliche Werkzeuge zur Bedienung von
MySQL angeboten. Ein Werkzeug zur Verwaltung von MySQL-Datenbanken ist
beispielsweise phpMyAdmin'®, das auch im Rahmen der GLASS-Entwicklung

7Zu den Vor- u. Nachteilen von MySQL gegeniiber anderen DBMS siehe z. B. Greenspan
und Bulger (2001).

8Nshere Informationen zum Prinzip relationaler Datenbanksysteme und einen Vergleich
mit objektorientierten Systemen findet sich in Balzert (1996).

9Zur Normalisierung s. z. B. Balzert (1996) oder Schwinn (1992).

10Startseite im Internet: http://phpmyadmin.sourceforge.net

http://phpmyadmin.sourceforge.net

6.3. KOMPONENTEN-REALISIERUNG 171

Simulationsl auf-)
Dokumentation manager Ergebnisanalyse
MySQL, PHP, Web-Browser Si',‘fi’ S;IS', TD%P,\;'P 7
A
Geodaten-
h 4 h 4 verarbeitung
Katalog- Simulationssystem
manager le-| (GLASS-Modelle) |
DCMES, MySQL Stress-, Sicherheits-Modell, Aufgabensteuerung
PHP, Web-Browser WaterGAP, C++
A A
L T algemeine
Modell- Datenverarbeitung
anayse
C++-Klassenbibliothek

! h 4 L ¢ h 4
M etadaten-Sammler H

i
i
! .
XML/RDF, DCMES ! Datenzugriff
bash-Skript, PHP, DOM | Server, C++, TCP/IP, Mediatoren
T
v M i
@ @ Datenbasi Datenbanksystem
atenbasis
MySQL, MS Access
Metadaten Daten ODBC, ADO

XML/RDF, DCMES ASCII, UNF, GeoTIFF, GML, ArcView

Abbildung 6.3: Ubersicht zum Realisierungsbeispiel der SISA-Komponenten.
Die fiir das Simulationssystem definierte Schnittstelle wird durch einige Teil-
modelle von GLASS, z. B. vom Modell WaterGAP, unter Verwendung der Pro-
grammiersprache C++ realisiert. Die Datenzugriffskomponente ist ebenfalls
in C++4 implementiert und lauft als Server auf einem Host unter Microsoft
Windows 2000. Die Anforderung zum transparenten Zugriff auf Datensiitze ge-
schieht iiber das Internet-Protokoll (TCP/IP). Zur Datenspeicherung stehen
sowohl Datenbanksysteme (MySQL und MS Access) als auch verschiedene pro-
prietdre (UNF) und standardisierte (z. B. GeoTIFF) Dateiformate zur Verfii-
gung. Der Katalogmanager nutzt zur Speicherung von Zugriffsinformationen
und Metadaten (ebenso wie die Dokumentationskomponente) eine MySQL-
Datenbank, die iiber einen Web-Browser bedient werden kann. Als Metadaten-
Elementsatz werden die 15 Elemente des Dublin Core Metadata Element Set
(DCMES) verwendet. Die Speicherung lokaler Metadaten erfolgt tiber die Ez-
tensible Markup Language (XML) in Verbindung mit dem Resource Description
Framework (RDF). XML wird ebenfalls zur Speicherung der Simulationslauf-
spezifikationen innerhalb des als Server implementierten Simulationslaufmana-
gers verwendet. Wiederverwendbare Datenverarbeitungsfunktionen wurden in
Form von C+-+-Klassenbibliotheken implementiert.

PHP u.
Browser

Voraus-
setzung

Erfas-
sung u.
Anzeige

Sichten

172 KAPITEL 6. REALISIERUNG

eingesetzt wurde. Die Eingabe neuer Daten in das System ist aber auch mit
diesem Werkzeug noch recht rudimentér.

Fir die Eingabe und Anzeige von Daten wurde daher ein anderer Weg
gewihlt: die Verbindung von MySQL mit der Programmiersprache PHP!!
und einem Web-Browser. Daten, die iiber ein Formular in einen Web-Browser
(beim Client) eingegebenen werden, kénnen iiber den Web-Server direkt an
einen PHP-Interpreter weitergeleitet werden, der sie seinerseits in eine MySQL-
Datenbank schreibt.

Um diesen Weg der Datenverwaltung zu gehen, muss lediglich ein Web-
Server (z.B. der frei verfiighare ‘Apache’-Server!?), MySQL und ein PHP-
Interpreter (ebenfalls frei verfiighar!) auf dem Server installiert sein. Abbil-
dung 6.4 verdeutlicht das Prinzip der Zusammenarbeit dieser Systeme noch
einmal. Weitere Informationen hierzu finden sich z. B. bei Greenspan und Bul-
ger (2001).

Web-Browser

Web-Server
(Apache) «—> PHP «—> MySQL

Abbildung 6.4: Datenbankzugriff iiber Web-Browser. Bei der gewéhlten Rea-
lisierung greift der Nutzer iiber den Web-Browser und das Internet auf den
Web-Server zu. Der Web-Server (in diesem Falle ‘Apache’) sendet die Daten
weiter an den PHP-Interpreter, der sie auswertet und iiber die API von MyS-
QL lesend bzw. schreibend auf die Datenbank zugreift.

Eine einfache Maske zur Erfassung von Personen/Organisationen (‘respon-
sible party’, vgl. Abb. 5.14, Seite 123) iiber einen Web-Browser ist in Abbildung
6.5 zu sehen. Die Anzeige des Datenbank-Inhalts iiber den Web-Browser zeigt
Abb. 6.6 (Seite 174).

Der in Unterabschnitt 4.2.7 (Seite 89) aufgestellten Forderung zur Verwen-
dung von Web-Technologien (/B10/) wird durch dieser Vorgehensweise Rech-

1IPHP ist eine rekursive Abkiirzung und steht fiir ‘PHP: Hypertext Processor’.
123tartseite im Internet: http://httpd.apache.org
13Startseite im Internet: http://www.php.net

http://httpd.apache.org
http://www.php.net

6.3. KOMPONENTEN-REALISIERUNG 173

i
. Datei Bearbeiten Arceigen Gehe Leseceichen Extras Fenster Hilfe |
@o O @ G @ [hitp:/127.0.0.1/rglass/insertResporsiblerarty. php | (€5 Suchen | do @

. @ | % anfang @ Suche | Blesezeid hen S WZ USF S R-GLASS - Deutsch - Englisc... % phpMyadmin 2.2.

Insert Responsible Party (Person/Organisation)

individual name (Giinther Fischer

organisation name [IASA

position name Head of Department

role

Contact Info

Phone Online Resource
voice linkage

fax protocol
Address application Profile
delivery point name

city function
adminstrative area description

postal code

country

e-mail address
hours of service

contact
instructions

insert | clear

© & A 84D | bokument: Done (6.93 Sek.) - =

Abbildung 6.5: Dokumentation der Daten iiber Personen/Organisationen. Der
Nutzer (Client) braucht im Web-Browser lediglich eine entsprechende (PHP-)
Seite aufzurufen, um die Daten eingeben und an den Web-Server senden zu
konnen. Betétigt der Nutzer die Schaltfliche zum Absenden des Formulars
(‘insert’), so wird dessen Inhalt automatisch zum Web-Server und iiber den
PHP-Interpreter an die MySQL-Datenbank gesendet.

nung getragen. Die Bereitstellung unterschiedlicher ‘Sichtweisen’ auf die Daten
des Systems (/B20/) kann iiber unterschiedliche Web-Seiten realisiert werden:
Modellbetreibern und Entwicklern, die sich im lokalen Netz (Intranet) der Do-
kumentationskomponente befinden, kénnen Seiten zur Verfiigung gestellt wer-
den, die alle Daten einer Tabelle anzeigen, Interessenten auflerhalb des Intranet
bekommen hingegen nur eine Auswahl aller verfiigbaren Informationen iiber
den Web-Server zugesendet. Dariiber hinaus kann der Zugriff auf Web-Seiten
relativ einfach durch Passworter geschiitzt werden.

6.3.2 Katalogmanager
6.3.2.1 Ressourcen-Identifizierung

Der Katalogmanager ist verantwortlich fiir die Verwaltung und Bereitstellung
von Metadaten iiber SISA-Ressourcen (s. Abschnitt 5.2.1 (Seite 96)). Zu den

IETF

URI

174 KAPITEL 6. REALISIERUNG

& View Responsible Parties -Netscape] =10 x|
. Datei Bearbeiten Anzeigen Gehe Lesezeichen Extras Fenster Hilfe |
®O Q @ Q O | http//127.0.0. 1 /rglassviewResponsibleParty.php & | [Qg Suchen] cgo ‘@
-/ B\ fanfang & Suche. BLesezeichen S WEZ USF S R-GLASS S Deutsch - Englisc... e phpMyadmin 2.2,
a]

List of Responsible Parties

‘im‘]ivi\iual name: Prof. Dr. Joseph Alcamo

organisation name: Center for Environmental Systems Reserach =

Position: Director

Role: Project Leader

Phone: +42.561.804.3900 I

Fax: +49.561.804.3176

E-DMail: alcamo@usfum-kassel de

individual name: !ProE Dr. Genady N. Golubew

organisation name: |Faculty of Geography, Moscow State Tniversity

Position: Head of Department

Role: Project Leader

Phone: +7.085.939 3962

Fax: +7.095.939.8336

E-DMail: |ggolub5v Emiu-net

K

E & & 9] | Dokument: Done (5.698 Sek.) [E=

Abbildung 6.6: Anzeige der Daten iiber Personen/Organisationen. Ruft der
Nutzer die Web-Seite zur Anzeige der Daten auf, so wird tiber den Web-Server
und den PHP-Interpreter eine Datenbank-Anfrage ausgefiihrt. Die Ergebnisse
werden dann automatisch an den Browser zuriick gesendet und dort angezeigt.
Ein Ausschnitt des Quelltextes dieser PHP-Seite ist im Anhang D.1 (Seite 245)
dokumentiert.

Metadaten gehoren ein eindeutiger Identifikator jeder Ressource sowie Infor-
mationen, die fiir den technischen Zugriff auf die Ressource benttigt werden.

Fiir die Lokalisierung und Identifizierung von Ressourcen hat die Internet
Engineering Task Force (IETF)!* einige Vorschlige (RFCs'®) erarbeitet: den
Uniform Resource Identifier (RFC 2396, Berners-Lee u. a., 1998), den Uniform
Resource Locator (RFC 1738, Berners-Lee u.a., 1994) und den Uniform Re-
source Name (RFC 2141, Moats, 1997).

Ein Uniform Resource Identifier (URI) ist definiert als ,,a compact string of
characters for identifying an abstract or physical resource.“ (Berners-Lee u. a.,
1998) Das ‘Einheitliche’ an diesen Identifikatoren ist die generische Syntax, mit
der die identifizierenden Zeichenketten zusammengesetzt werden. Als ‘Ressour-
ce’ wird alles verstanden, was eine Identitédt hat; das konnen nicht nur elek-

M Startseite im Internet: http://wuw.ietf.org
15Requests for Comments. Siehe Grundlagenkapitel.

http://www.ietf.org

6.3. KOMPONENTEN-REALISIERUNG

175

tronische Ressourcen wie beispielsweise Dateien sein, sondern auch Menschen,
Dienstleistungen oder Firmen. Der Identifikator wird als Objekt betrachtet,
das als Referenz auf etwas dienen kann, das eine Identitdt hat — im Falle des
URI ist dieses Objekt eine Zeichenkette, die bestimmten Regeln zu folgen hat.
URIs koénnen'® klassifiziert werden in solche zur Lokalisierung und solche zur
Bezeichnung von Ressourcen (vgl. Abb. 6.7).

Uniform Resource ldentifiers

Uniform
Resource Locators

ftp:
http:
file

Uniform
Resource Names

urn:

Abbildung 6.7: Uniform Resource Identifiers. Zu den Uniform Resource Iden-
tifiers (URIs) zéhlen sowohl die Uniform Resource Locators (URLs) als auch
die Uniform Resource Names (URNSs). Ziel aller Identifizierer ist die Identifi-
zierung abstrakter und physikalischer Ressourcen in Form einer Zeichenkette.
Zu den URLs gehéren WWW-Adressen und Adressen von Datei-Servern (ftp-
Servern). URNs werden u.a. zur Beschreibung von Buchtiteln benutzt (z.B.
url:isbn:3-8266-0805-4).

Ein Uniform Resource Locator (URL) verweist (zeigt) auf eine Ressource
eher durch den Mechanismus des Zugriffs auf diese Ressource, als durch andere
Attribute wie dem Ressourcen-Namen. Eine WWW-Adresse ist ein Beispiel fiir
einen URL. URLs sind sowohl Grundlage fiir das World Wide Web (WWW) als
auch entscheidend fiir andere Internet-Technologien (z. B. XML). Der Aufbau
eines URL folgt einer generischen Syntax der Form:

<scheme>‘:"<scheme-specific-part>

Der erste Teil (scheme) stellt das Schema der URL dar, dem, durch einen Dop-
pelpunkt getrennt, eine Zeichenkette (scheme specific part) folgt und dessen
Interpretation vom Schema abhéngt (Berners-Lee u. a., 1994). Schemata kon-
nen bei der Internet Assigned Numbers Authority (IANA)'7 registriert werden.

167y unterschiedlichen Sichtweisen und Interpretationen des URI-Konzepts s. Mealling und

Denenberg (2002).

17Startseite im Internet: http://http://www.iana.org

URL

http://http://www.iana.org

URL-Zu-
weisung

URN

SISA
Namens-
raum

176 KAPITEL 6. REALISIERUNG

Unter den derzeit etwa 40 registrierten Schemata sind, neben dem bereits er-
wihnten Schema ‘http’ (das fiir ‘Hyper-Text Transfer Protocol’ steht), z. B. ‘ftp’
(zum Austausch von Dateien), ‘telnet’ (fiir den entfernten Zugriff auf Rechner)
und ‘file’ (zur Angabe des Speicherortes von Dateien).'® Bei der Registrierung
der Schemata wird auch die genaue Syntax festgelegt, der die schemaspezifi-
schen Zeichenketten folgen miissen.

Zur Steigerung der Nachvollziehbarkeit und Uberpriifbarkeit von Assess-
ment-Ergebnissen und zum einfachen Zugriff auf die Ressourcen iiber die Da-
tenzugriffskomponente sollten allen digital zugreifbaren SISA-Ressourcen URLs
zugewiesen werden. Der folgende URL kann beispielsweise die Datei mit den
Landerinformationen fiir das das Simulationsmodell IMAGE2 referenzieren:

file://Usf-ws14/grid/data/general /modellnput/ GCOUNTRY.UNF2

Die Landerinformationen sind demnach in Form einer Datei (Schema ‘file’) ge-
speichert und befinden sich auf dem Rechner Usf-ws14 unter dem angegebenen
Pfad.

Ein Uniform Resource Name (URN) stellt, im Gegensatz zu einem URL, kei-
nen Verweis auf den Ort einer Ressource bereit, sondern einen (global) eindeu-
tigen und bestéindigen (persistenten) Namen. Die genaue Definition des IETF
lautet wie folgt: ,,Uniform Resource Names (URNS) are resource identifiers with
the specific requirements for enabling location independent identification of a
resource, as well as longevity of reference.“ (Daigle u. a., 2002)

URNSs bestehen, wie die URLs, aus Zeichenketten und miissen einer vorge-
gebenen Syntax entsprechen (Moats, 1997):

‘urn:’ <NID>¢’<NSS>

‘NID’ ist der so genannte ‘Namespace Identifier’, der — vergleichbar mit dem
‘scheme’ beim URL — die syntaktische Interpretation des ‘Namespace Specific
String’ (NSS) festlegt. Die Registrierung der Namensridume ist ebenfalls iiber
die IANA moglich.!? Unter den derzeit knapp 20 registrierten Namensriumen
findet sich beispielsweise auch derjenige zur Angabe der internationalen Stan-
dardbuchnummer (ISBN). Die Angabe eines Buchtitels in Form eines URN
sieht, obiger Syntax folgend, so aus: urn:isbn:3-8266-0805-4.

Im Rahmen des integrierten Assessments werden viele Ressourcen zwischen
unterschiedlichen Organisationen ausgetauscht: Daten, Modelle, Teilmodelle
etc. Um die Wiederverwendbarkeit der Ressourcen zu erh6hen und Assessment-
Ergebnisse besser nachvollziehbar und vergleichbar zu machen, wére die Ein-
fiihrung eines definierten, einheitlichen und bei der TANA registrierten Na-
mensraumes fiir diese Interessensgemeinschaft sicherlich erstrebenswert. Die

18Die offizielle Liste der Schemata wird unter http://www.iana.org/assignments/
uri-schemes verdffentlicht.

19Die offizielle Liste der Namensriume wird unter http://www.iana.org/assignments/
urn-namespaces verdffentlicht.

http://www.iana.org/assignments/uri-schemes
http://www.iana.org/assignments/uri-schemes
http://www.iana.org/assignments/urn-namespaces
http://www.iana.org/assignments/urn-namespaces

6.3. KOMPONENTEN-REALISIERUNG 177

fiir eine formale Registrierung notwendige Koordination unterschiedlicher In-
teressensschwerpunkte ist allerdings sehr aufwendig. Ein formal bei der IANA
registrierter Namensraum fiir SISA-Ressourcen ist daher (vorerst) nicht zu er-
warten. Fiir solche Fille wurden in den Spezifikationen der URN so genannte
‘experimentelle’ Namensraume eingefiihrt. Fiir die Bezeichnung dieser nicht bei
der TANA registrierten Namensriume wird die folgende Form vorgeschrieben:

‘x-’<NID>

‘NID’ steht hier wieder fiir ‘Namespace Identifier’, also fiir die Bezeichnung des
Namensraumes. Bezeichnungen dieser Art sind fiir ‘interne oder eingeschréankte
experimentelle Kontexte’ gedacht, fiir die — im Gegensatz zu den formell regis-
trierten URNs — keine Vorkehrungen zur ‘Vermeidung von Kollisionen’ mit
anderen Namensridumen getroffen werden (Daigle u. a., 2002).

Fiir die Bezeichnung von SISA-Ressourcen am wissenschaftlichen Zentrum
fiir Umweltsystemforschung (WZ-USF) wurde ein experimenteller Namensraum
mit dem NID ‘wzusf’ eingefiihrt; URNs fiir SISA-Ressourcen beginnen daher
immer mit der Zeichenfolge

‘urn:x-wzusf:’

Zu einem URN gehort, neben der Bezeichnung des Namensraumes, auch
die Definition der Syntax fiir die spezifische Zeichenkette (NSS). Die Definition
dieser Syntax fiir ‘x-wzusf’ fufit auf der Analyse der unterschiedlichen SISA-
Ressourcen aus Unterabschnitt 4.1.2 (Seite 72) und hat die folgende Form:

<resTyp>-<resUTyp>.<kTitel>-V<verNr>.<relNr>.<for>.<med>

Die Zeichenkette wird damit definiert iiber den Typ und den evtl. vorhande-
nen Untertyp der Ressource (resTyp, resUTyp), einen Kurztitel (kTitel), eine
Versions- und Releasenummer (verNr, relNr) sowie das Format der Ressource
(format) und das Medium, auf dem sie gespeichert ist (med). Als Ressourcen-
Typen sind derzeit definiert: Datensatz (resTyp = ‘ds’), Datensatz-Sammlung
(dsc), Dokument (doc), Software (sw) sowie die abstrakten Ressourcen (ares).
Zu den Untertypen gehoéren z.B. Simulationsmodell-Eingabedaten (ds-min)
und -Ausgabedaten (ds-mout), Prisentationen (doc-prs) sowie Simulationsmo-
delle (sw-mod). Der URN

urn:x-wzusf:ds-min.image22countryGrid-V1,0.unf.hd

identifiziert beispielsweise den bereits erwihnten Datensatz (ds) mit den Lén-
derinformationen fiir IMAGE2.2 (Kurztitels ‘image22countryGrid’), der primér
als Eingabedatensatz fiir Simulationsmodelle (min) genutzt wird und in der
Version ‘1.0” sowie im Format ‘unf’ an einem hier nicht spezifizierten Ort (vgl.
URL-Bsp.) auf der Festplatte (‘hd’) gespeichert ist.

X-name

x-wzusf

Syntax

Beispiel

URN-
Erzeu-
gung

178 KAPITEL 6. REALISIERUNG

Allen SISA-Ressourcen sollte ein derartiger URN zugewiesen werden. Zur
Generierung neuer URNs auf Basis der beschriebenen Syntax wurde im Rah-
men des GLASS-Projektes die in Abb. 6.8 dargestellte Web-Seite entwickelt, die
auch eine Ubersicht iiber die derzeit definierten Ressourcen-Untertypen gibt.
Um zu gewéhrleisten, dass der URN noch nicht vergeben ist, miisste, iiber die
derzeitige Funktion der Web-Seite hinaus, ein Abgleich mit der Ressourcen-
Liste des Katalogmanagers vorgenommen werden (vgl. die Schnittstellendefini-
tion des Katalogmanagers in Abb. 5.6, Seite 107).

@ Resource-Name Generator -Netscape =lalx]
 Datei Bearbeften Anzeigen Gehe Lesszeichen Extas Ferster Hilfe ‘

G O @ Q (D [http: v usfun-kassel de/grid/metajurm_generator him] [suchen | ‘-‘f\go Q

. @ 4 Anfang ©4 Suche | Filesezeichen S WZ USF - R-GLASS % Deutsch - Englisc... % phpMyAdmin 2.2...

4]

Namen-Generator fiir Ressourcen

Beschreibung der Ressource:

Kurstitel image?2country Grid

© Fein Untertyp
& Datensatz ¢ Primardaten @ Simulationsmodell-Eingabe
" Datensatz-Sammhung © Sekundardaten ¢ Simulationsmodell-Ausgabe
" Basisdaten © Simulationsmodell-Parameter/-Optionen.
€ Eein Untertyp B
 Datenanalyse " Prasentation
€ Dolument © Beschreibung Poster
© Repert © Karte
Ressourcen-Typ € Veroffentichung
" Eein Untertyp
© Simulationsmodell Klassen- / Funktionsbibliothel
© Software
© Anwendung ¢ Dienstleistung / Server
' Werkzeug/Tool
© Eein Untertyp
© Abstrakte Ressource © Simulationslavf © Studie B
© Srenario C Projekt
Version v
Format [IMAGEZ2 UNF =
Medium Fesiplatie =
Ressourcen-Mame (uniform resource name, URI):
PRessourcen-Name gensrieren | utn:ewzust ds-min.image22country Grid-1.0 unt hd
@ 2 & @) Dokument: Done (0.26 Sek.) Emp

Abbildung 6.8: Web-Seite zur Generierung eindeutiger Namen. Die Bezeich-
nung von Ressourcen erfolgt iiber Uniform Resource Names (URNSs). Zur Gene-
rierung eines solchen Namens ist jede Ressource mit einer Kurzbezeichnung zu
versehen. Weiterhin miissen Angaben zum Typ der Ressource gemacht werden
sowie zum verwendeten Speicherformat und Speichermedium. Wird die Schalt-
fliche ‘Ressourcen-Name generieren’ betétigt, erscheint im entsprechenden Feld
der URN.

6.3. KOMPONENTEN-REALISIERUNG 179

6.3.2.2 Ressourcen-Liste

Die im Projekt verwendeten Ressourcen koénnen iiber eine Ressourcen-Liste zur
Verfiigung gestellt werden (/F60/). Zur Identifizierung der Ressourcen besitzt
jeder Listeneintrag auf jeden Fall einen URN und — sofern es sich nicht um eine
‘abstrakte’ Ressource handelt — einen URL. Der URN dient der eindeutigen
Bezeichnung und der URL der eindeutigen Lokalisierung der Ressource.

Der Katalogmanager ist auch fiir die Bereitstellung von Informationen zu-
stdndig, die die Datenzugriffskomponente fiir den Zugriff auf Ressourcen beno-
tigt. Diese Zugriffsinformationen sollten sich bereits aus dem ‘Format’-Teil des
URN ergeben (in obigem Beispiel war das die Zeichenkette ‘unf’). Werden iiber
diese Angabe hinaus zusétzliche Informationen fiir den Zugriff benétigt, soll-
ten sie ebenfalls in der Ressourcenliste zur Verfiigung stehen. Im angefiihrten
Beispiel der Daten mit der Linderkennung wurde das Format als ‘unf’-Format
angegeben. Dieses Format ldsst sich aber weiter unterteilen, so dass die ent-
sprechende Information mit in die Ressourcen-Liste aufgenommen wurde. Um
die Ressourcen-Liste lesbarer zu gestalten und um einfacher nach Ressourcen
suchen zu kénnen wird noch ein weiteres Feld mit in die Liste aufgenommen:
der ‘Titel’ (Name) der Ressource. Abbildung 6.9 zeigt die resultierenden Ein-
trige, die fiir jede Ressource gemacht werden sollen, anhand eines Ausschnitts
einer Ressourcen-Liste.

6.3.2.3 Metadaten

Zur Beschreibung der SISA-Ressourcen in GLASS wurde der in Unterabschnitt
5.2.1 auf Seite 83 vorgestellte Dublin Core Metadata Element Set (DCMES)
verwendet (vgl. Tab. 5.7, Seite 116).

Zur Eingabe der insgesamt 15 Metadaten-Elemente des DCMES wurde die
in Abb. 6.10 (Seite 181) dargestellte Web-Seite erstellt. Neben der Eingabe der
Elemente des DCMES sind drei weitere Felder zu fiillen: eins fiir den URN, eins
fiir den Datei-Namen (falls es sich um eine Ressource handelt, deren Inhalt sich
in einer Datei befindet) und eins fiir die Angabe einer Datei, in der die Meta-
daten gespeichert werden konnen. Die URN-Angabe und der evtl. eingetragene
Dateiname werden durch die Web-Seite automatisch in das Element ‘Identifier’
iibernommen.

Die eingegebenen Metadaten kénnen direkt in die Datenbank des Katalog-
managers iibernommen werden. Die Verbindung der Web-Seite mit dem Ein-
gesetzten DBMS (MySQL) geschieht, wie bereits in Unterabschnitt 6.3.1 ab
Seite 172 beschrieben, {iber den Web-Server und PHP. Bei der Eingabe von
Metadaten wird gleichzeitig auch die Ressourcen-Liste der Dokumentations-
komponente aktualisiert.

Ist eine direkte Ubertragung der Metadaten an den Katalogmanager nicht
gewiinscht oder nicht méglich (z. B. weil die Eingabe auf einem nicht vernetz-

URN u.
URL

Zugriffs-
info

Titel

DCMES

Eingabe

DBMS

XML/
RDF

XSL

Konven-
tion

180 KAPITEL 6. REALISIERUNG

=1l
. Datei Bearbeiten Anzeigen Gehe Lesezeichen Extras Fenster Hilfe
@ Q@ O Q |Q [Freizioirmheremrmin | Gosuhen] <%, 3 @
B, | 4 Anfang O Suche Flesezeichen S WZ USF % R-GLASS % Deutsch - Englisc... S phpMyAdimin 2.2..
Title: Potential Water Runoff 1961
Tdentifier: urnz-vwzust ds-mout Potential WaterRunoff1961-V2, le unfhd
URL: file:ffusf-ws 17 pridiwarergap watesgap_runsfuser/marceli2. leMydro/OUTPUTIG_ POT_CELL RUNOFF_1961 TNFO
Access Info: Tmage22Unfl
Title: Potential Water Runeff 1961
Tdentifi urng-wusf ds-mout PotentialWaterRunoff1961-V2, Le grd hd —
URL: flefusf-ws1 Tigrdfwatergaplwatergap_runsfuserimarcel/2. lefhydro/ OUTPUT/G__POT_CELL RUNOFE_1961.ASC
Access Info: AreViewhsciGrid
Title: R-GLASS Database
Tdentifier: urnx-weusf ds rolassDatabase-V1,0.mdb hd
URL: filefusf-we14/grid/data/glass/dbiussia v_1_3.andb
Access Info: DatabasehS Access |
Title: Summary Report: Will Climate Change Affect Food and Water Security in Russia?
Tdentifier: wrnz-wausf dos-rep relassSummaryReport-¥1,0.doc.hd
URL: file/fusfl/heme/ GRID/MarcelMoscowlfinal_repertiglass_final 2003-03-24.doc
Access Info: DocumentVSWord |
]
D & & S4B | Dokumert: Dane (4,437 Sek.) E=Fg

Abbildung 6.9: Anzeige der Ressourcen-Liste.

ten Rechner stattfindet), kénnen die Metadaten auch in eine separate Datei
geschrieben werden. Die Speicherung der Metadaten-Dateien erfolgt dann {iber
die Kombination des Resource Description Framework (RDF) und der Eztensi-
ble Markup Language (XML)?°, die an vielen Stellen fiir diese Zwecke gefordert
wird (s. z.B. Anderson u. a., 2000). Der Inhalt einer solchen Metadaten-Datei
ist in Anhang D.2 (Seite 247) kommentiert dargestellt.

Damit der Inhalt derartiger Metadaten-Dateien einfach und iibersichtlich
angezeigt werden kann, sind die Dateien mit einem so genannten ‘XML-Style-
sheet’ (XSL) verkniipft. Ein solches Stylesheet enthélt Anweisungen zur Trans-
formation von XML in HTML; die Metadaten-Dateien kénnen somit einfach in
einem Web-Browser dargestellt werden.

Um eine spitere Sammlung der Metadaten-Datei durch den im Rahmen
des GLASS-Projektes entwickelten Metadaten-Sammler (s.u.) zu vereinfachen,
enden die Namen der Dateien mit den Metadaten auf ‘.dc.xml’. Wird die Datei
mit den Metadaten im gleichen Verzeichnis wie die Daten gespeichert, erhilt

20X ML ist eine Empfehlung des W3C. Startseite im Internet: http://www.w3.org/XML.
Ausgiebige Erkldrungen zu dieser Sprache und ihrer Anwendung finden sich z. B. bei Anderson
a. (2000) u. Goldfarb und Prescod (2000).

http://www.w3.org/XML

6.3. KOMPONENTEN-REALISIERUNG 181

&) Metadaten-Erfassung -Netscape =[5
. Datei Bearbeiten Aneeigen Gehe Lesezeichen Extras Fenster Hilfe [
@O Q @ Q @ [hup:/127.0.0.1/rglass fmetadata_input_db.htrnl] [Cy suchen | ‘S;Q @

. B 4 Anfang G Suche | Bllesezeichen % W2 USF S R-GLASS v Deutsch - Englisc... S phpMyAdmin 2.2...
3]
Metadaten Entry

(Dublin Core Metadata Element Set, Version 1.2)

A description of the elements can be found at the Dublin Core Metadata Initiative.
Check out also the Dublin-Core Assistant.

Multiple values for one element can be mserted using line feed (return) after each entry.

Title |

URN:

I
File Name | Durchsuchen
I

File Mame Metadata

Creator: |

Subject and K eywords |

e

r
S & & ©FD [Dokument: Done (0.20 Sek.) ==
Rights Management:

Only with MS Tnternet Bxplorer with

Insertto DB Create XML Text enabled ActiveX] and JavaScript:
Write XML File B
]
=
© 2@ & D [Dokument: Done (0.29 Sek.) =

Abbildung 6.10: Web-Seite zur Erfassung der Metadaten nach dem Dublin
Core Metadata Element Set (Ausschnitt des oberen und unteren Teils der Ein-
gabemaske). Die Eingabe des Titels und einer URN ist obligatorisch fiir jede
Ressource. Sofern es sich bei der beschriebenen Ressource nicht um eine ‘ab-
strakte’ Ressource handelt (s. Seite 74), muss zusétzlich der URL angegeben
werden (z.B. file://meineRessource.txt). Die Seite bietet zwei grundsétzlich
unterschiedliche Moglichkeiten der Metadaten-Speicherung: 1. die direkte Ein-
tragung der Metadaten in die Datenbank der Katalogkomponente und 2. die
Speicherung in einer XML/RDF-Datei.

der Metadaten-Sammler auch noch die Moglichkeit, den URL der Ressource
(im ‘file’-Schema, s.0.) automatisch den Metadaten hinzuzufiigen.

6.3.2.4 Metadaten-Sammler

Die dezentrale Erfassung und Speicherung der Metadaten innerhalb der XML-
Dateien hat den Vorteil, dass die Metadaten genau dort liegen, wo auch die
Ressourcen selbst gespeichert sind. Damit alle Metadaten aber auch zentral

Samm-
lung

Prinzip

Umset-
zung

Aktuali-
sierung

Integra-
tion

Style-
sheet

182 KAPITEL 6. REALISIERUNG

eingesehen werden kénnen, miissen die Einzelinformationen gesammelt und in
einem zentralen Repository gespeichert werden. Fiir dieses ‘Einsammeln’ der
Metadaten ist der Metadaten-Sammler (engl. metadata harvester) zusténdig
(vgl. Abb. 5.10, Seite 118).

Im Rahmen des GLASS-Projektes wurde ein einfacher Harvester implemen-
tiert und auf mehreren Rechnern installiert. Das Programm durchsucht zu-
vor eingestellte Verzeichnisse nach Metadaten (XML-Dateien mit der Endung
‘.de.xml’), legt fiir die gefundenen Metadaten ein lokales Repository an und
kopiert dieses — sofern gewiinscht/méglich — anschlieflend an einen dafiir vor-
gesehenen, zentralen Ort. Die auf diese Weise zusammengetragenen Informa-
tionen werden anschlieffend vom Katalogmanager in dessen eigene Datenbank
integriert.

Um die spétere Bearbeitung der Metadaten zu erleichtern, folgt die Spei-
cherung des lokalen Repositorys ebenfalls dem XML/RDF-Format. Der Har-
vester wurde als Skript fiir die Bourne-Again Shell (bash) unter Unix (Linux)
erstellt und benutzt die standardméfig auf Unix-Maschinen verfiigharen Werk-
zeuge awk und sed.?’ Da die bash-Shell inklusive der Werkzeuge auch unter
Microsoft-Windows verfiigbar ist, kann der Harvester ohne Anderungen auch
auf Rechnern mit diesem Betriebssystem installiert werden.??

Auf dem Projekt-Server von GLASS wurde der Harvester in die Liste der
Programme aufgenommen, die regelméfig vom System selbst aufgerufen wer-
den.?? Auf diese Weise ist gewihrleistet, dass die Repositories téglich aktuali-
siert werden.

Die Integration der im XML-Format vorliegenden Repository-Daten in die
Datenbank des Katalogmanagers wurde iiber ein PHP-Skript realisiert. Dieses
Skript benutzt das Document Object Model (DOM) des W3C — eine plattform-
und sprachneutrale Schnittstelle, um auf XML-Dokumente zuzugreifen und de-
ren Inhalt zu manipulieren (s. z. B. Anderson u. a., 2000)?* — und iibertrigt alle
Metadaten des Repositorys iiber SQL in die Datenbank.

6.3.2.5 Metadaten-Anzeige

Das iiber den Metadaten-Harvester erzeugte Repository besteht aus XML-Tags
und kann daher auch direkt in einem Web-Browser angezeigt werden. Damit
die Anzeige in einer ansprechenden Form erfolgt, wurde vom Harvester eine
Stylesheet-Angabe in die XML-Datei geschrieben (s. Erkldrungen zum Harves-
ter im Anhang D.3, Seite 249). Durch das verwendete Stylesheet erfolgt die
Anzeige im Web-Browser in Tabellenform. Abbildung 6.11 (Seite 184) zeigt die
Anwendung des Stylesheets mit einem Eintrag aus dem automatisch erzeugten
Metadaten-Repository fiir das R-GLASS-Projekt.

21 gk ist ein Programm zur Bearbeitung von Textmustern, sed ein zeilenorientierter Texte-

ditor. Néhere Informationen iiber diese Werkzeuge finden sich z. B. bei Herold (1999b). Eine

6.3. KOMPONENTEN-REALISIERUNG 183

Die Metadaten, die sich direkt in der Datenbank des Katalogmanagers be-
finden, kénnen iiber phpMyAdmin (s.o.) abgefragt, angezeigt und manipuliert
werden.

6.3.2.6 Automatische Metadaten-Generierung

Der verwendete Satz an Metadaten-Elementen (DCMES) beinhaltet ein Ele-
ment namens ‘Source’. Der Wert dieses Elementes sollte eine Referenz auf ei-
ne Ressource beinhalten, die mit der beschriebenen Ressource in Beziehung
steht (vgl. Tab. 5.7, Seite 116). Fiir Simulationsmodell-Ergebnisse enthélt die-
ses Feld sinnvollerweise den Namen (URN) des verantwortlichen Simulations-
modells sowie den Namen (URN) des Simulationslaufes, in dessen Rahmen die
Berechnung stattfand. Ein Blick in die Metadaten eines Simulationsmodell-
Ergebnisses gibt dann direkt Aufschluss iiber dessen Herkunft (Simulations-
modell) sowie iiber die verwendeten Modelleinstellungen, da diese iiber den
Simulationslaufnamen eindeutig bestimmt werden. Auf diese Weise kann die
Berechnungsgrundlage fiir Ergebnisse transparenter und nachvollziehbarer ge-
macht und damit die Qualitéit eines Assessments erhoht werden.

Um die direkte Speicherung von Metadaten durch das Simulationssystem
zu unterstiitzten, wird durch die Komponente der ‘allgemeinen Datenverar-
beitung’ eine Funktion bereitgestellt, die Metadaten in der oben beschriebe-
nen Form (DCMES und XML/RDF) als Datei speichern und Daten aus einer
solchen Datei wieder lesen kann. Realisiert wurde diese Funktion durch eine
in C++4 implementierte Klasse, die von den neu erstellten Simulationsmodell-
Teilen (vgl. Abb. 6.1, Seite 167) direkt verwendet wird. Eine Erweiterung dieser
Klasse zu einem Dienst wiirde es ermoglichen, dass auch die nicht iiber C++
realisierten Teilmodelle die Funktionalitéit verwenden konnen.

6.3.3 Simulationssystem
6.3.3.1 Modellteile

Die Simulationssystem-Komponente ist verantwortlich fiir die Berechnung,
Speicherung und Weitergabe von Simulationsergebnissen. Zur Erfiillung die-
ser Aufgaben wurden in Unterabschnitt 5.2.5 (Seite 131) zwei Schnittstellen

zusammenfassende Darstellung der Standard-Programme unter Unix findet sich bei Herold
(1999a), ausfiihrlichere Informationen hierzu geben Gulbins und Obermayr (1995).

22Getestet wurde der Harvester fiir MS-Windows-Rechner unter ‘Cygwin’ — einer Linux-
dhnlichen Umgebung, die unter http://www.cygwin.com/ kostenfrei zur Verfiigung gestellt
wird.

23Unter Unix konnen regelmiflig zu startende Programme in eine Tabelle (‘crontab’) auf-
genommen werden. Fiir den Start dieser Programme sorgt der so genannte ‘cron’-Prozess des
Systems (s. z. B. Welsh u. a., 2000).

24Die Sperzifikation des DOM ist als ‘Recommendation’ auf den Internet-Seiten des W3C
zu finden (http://www.w3.org/DOM/DOMTR).

Daten-
bank

Bezie-
hungen

Klasse

http://www.cygwin.com/
http://www.w3.org/DOM/DOMTR

Basis-
Klasse

184 KAPITEL 6. REALISIERUNG

Datei

-5 PERAVETIEBE-SH

Bearbeiten Ansicht Favoriten Extras

| title ‘Will Climate Change Affact Food and Water Security in Russia?

creator ‘Juseph Alcamo

creator ‘Ganady Golubey

creator |Nikolai Dronin

creator | Andrei Kirilenko

creator |Marcel Endejan
subject |R-GLASS
subject |GLASS

subject |Russia

description Will Climate Change Affect Food and Water Security in Russia?

Summary Report of the International Project on Global Environmental Change and its Thread to Food
and Water Security in Russia

publisher CESR
|contributor‘6uaﬂthar Fischer
| date |z003-03-24
type Document

description

type Report
format |M5-Word
identifier |url:file://usf1/home/ GRID/Marcel/Moscow/final_report/rglass_final_2002-03-24.doc

identifier |urn:x-wzusf:doc-rep.rglassSummaryReport-¥1,0.doc.hd

source

| language ‘an (also in Russian language available)
relation
coverage \tempural; 1961-1990, 20205, 20705
coverage ‘spatiat: 89 Russian Regions
rigT

| titte [RGLASS Database
| creator ‘Marcet Endejan
| subject [RaLASS

<Il ‘ | LILI

| €] Fertig [[4 rernet

A

Abbildung 6.11: Web-Seite zur Anzeige von Metadaten.

definiert: eine zur Kontrolle von Simulationslidufen (ISimControl) und eine zur
Abfrage von Ergebnissen (ISimResultAccess). Wihrend die erste Schnittstelle
zwei konkret zu realisierende Operationen enthélt (init und run), besitzt die
zweite Schnittstelle lediglich eine abstrakte Operation (getResult) — die genau-
en Operationen sind abhéngig von konkreten Simulationsmodellen.

Im Rahmen der GLASS-Entwicklung wurde eine C++-Klasse erstellt (SI-
SA_ModelBase), die als Basisklasse fiir die neu erstellten Simulationsmodell-
Teile dient und die einen Rahmen fiir die Kontrolle von Simulationslaufen bil-
det. Diese Basisklasse besitzt neben den Operationen init() und run() eine Ope-

6.3. KOMPONENTEN-REALISIERUNG 185

ration, iiber die abgefragt werden kann, ob fiir eine bestimmte Simulationslauf-
Spezifikation bereits Ergebnisse berechnet wurden: resultsAvailable().

Simulationsmodelle, die auf der Basis dieser Klasse realisiert sind, bieten vier
generelle Dienste an: 1) die Abfrage, ob bestimmte Ergebnisse bereits berechnet
wurden (AvailabilityRequest), 2) die Erzeugung von Ergebnis-Datensétzen fiir
eine komplette Simulationszeit-Periode (DataSetGeneration), 3) die Abfrage
bereits berechneter Ergebnisse (DataSetRequest) und 4) die Erzeugung neuer
Ergebnisse zur Laufzeit (RunTimResult)2°.

Die Operationen zur Abfrage von Simulationsergebnissen sind abhéngig
von konkreten Simulationsmodellen. Fiir das Wasserstressmodell und das Nah-
rungsmittelstressmodell von GLASS wurde beispielsweise die Operation get-
Stress() definiert, die fiir eine gegebene Region und einen gegebenen Zeitpunkt
den Stresswert liefert. Abbildung 6.12 zeigt die Operationen der Basisklasse
und des Nahrungsmittelstressmodels zur Verdeutlichung in Form eines UML-
Klassendiagramms.

SISA_ModelBase «enumeration»
SISA_GeneralModelService|

-modelName : String

-modelVersion : String -AvailabilityRequest

-modelURN : SISA_URN -DataSetGeneration

-currentSimulationRunName : SISA_URN -DataSetRequest
-RunTimeResult

+resultsAvailable(in simRunURN : SISA_URN)
+init(in sSimRunURN : SISA_URN, in modelService : SISA_GeneralModelService)
+run(in simRunURN : SISA_URN, in simulationTime : SISA_Time)

T

GLS_FoodStressModel

-NN

+resultsAvailable(in simRunURN : SISA_URN)

+init(in sSimRunURN : SISA_URN, in modelService : SISA_GeneralModelService)
+run(in sSimRunURN : SISA_URN, in simulationTime : SISA_Time)

+getStress(in regionld : GLS_Region, in year : GLS_Date)

Abbildung 6.12: Basisklasse der Simulationsmodelle. Die Basisklasse der Si-
mulationsmodelle (SISA_ModelBase) enthilt die virtuellen Operationen results-
Awailable() (zur Abfrage, ob ein Simulationslauf bereits durchgefiihrt wurde),
init() (zur Initialisierung eines Dienstes) und run() (zum Starten der Berech-
nung neuer Ergebnisse). Das von der Basisklasse abgeleitete Simulationsmodell
zur Berechnung des Nahrungsmittelstresses (GLS_FoodStressModel) realisiert
die rein virtuellen Funktionen der Basisklasse und fiigt eine weitere zur Abfra-
ge von Ergebnissen hinzu: getStress(). Die Umsetzung des Wasserstressmodells
erfolgt analog.

25Da oft aufwendige Initialisierungen zur Berechnung eines Wertes notwendig sind, ist die
direkte Berechnung eines einzelnen, angefragten Wertes nicht immer sinnvoll bzw. mdglich.

vier
Dienste

Konkre-
tisierung

Adapter

Erweite-
rung

186 KAPITEL 6. REALISIERUNG

Simulationsmodelle, die aus anderen Projekten iibernommen und nicht neu
erstellt werden, bieten die geforderten Schnittstellen und Operationen i.d. R.
nicht direkt an — das WaterGAP-Modell hat beispielsweise keine Operation
namens ‘init()’. Sofern diese Modelle die geforderten Funktionen iiber andere
Schnittstellen bzw. Operationen bereitstellen, miissen die Schnittstellen ent-
sprechend angepasst werden. Diese Anpassung kann mit Hilfe so genannter
Adapter (Wrapper) erfolgen. Adapter nutzen die verfiigbaren Operationen des
anzupassenden Objektes und stellen mit deren Hilfe die geforderten Opera-
tionen zur Verfiigung. Abbildung 6.13 verdeutlicht das Prinzip in Form eines
UML-Sequenzdiagramms.

Klient Adapter Simulationsmodell
| | |
| | |

1 | |
init() : :
1 |
readOptions() :
initialize()

e ___________
|
S :
| |
L | | |
|

Abbildung 6.13: Prinzip eines Adapters. Laut SISA-Schnittstellendefinition
besitzt ein Simulationsmodell die Operation init(). Das beispielhafte Simulati-
onsmodell besitzt diese Operation aber nicht und bené6tigt zur Initialisierung
den Aufruf von zwei anderen Operationen: readOptions() und initialize(). Da-
mit ein Client dennoch die im SISA definierte Schnittstelle mit der Operation
init() fir dieses Modell benutzen kann, sorgt der Adapter fiir eine transparen-
te Umsetzung auf die entsprechenden Operationen des Modells — der Adapter
passt die Schnittstelle des Simulationsmodells damit an die geforderte SISA-
Schnittstelle an. Weitergehende Informationen iiber das Adapter-Muster finden
sich z. B. bei Gamma u. a. (1996).

Bietet ein Simulationsmodell keine Operationen, die zur Anpassung an die
geforderten Schnittstellen verwendet werden kénnen, so ist das Modell entspre-
chend zu modifizieren oder zu erweitern. Eine Implementierung der Operation
run() kann dabei als Minimalanforderung zur ‘Integration’ eines Modells in ein
SISA betrachtet werden.

6.3. KOMPONENTEN-REALISIERUNG 187

Das Wasserstressmodell und das Nahrungsmittelstressmodell wurden di-
rekt in C++ geschrieben und sind Ableitungen der abstrakten Basisklasse SI-
SA_ModelBase. Fiir das WaterGAP-Modell wurde ein einfacher — ebenfalls auf
der SISA_ModelBase basierender — Adapter geschrieben, der nach Aufruf der
Operation run() einen Modelllauf iiber die gesamte Simulationszeit startet.

6.3.3.2 Modellkopplung

In der derzeitigen Version des GLASS-Modells sind die Teilmodelle einfach mit-
einander verkettet. Die Ausgabedaten eines Modells werden als Eingabedaten
fiir ein nachgeordnetes Modell verwendet, Riickkopplungen zwischen den Mo-
dellen gibt es nicht (vgl. Abb. 6.1, Seite 167). Die Teilmodelle schreiben ihre
Ergebnisse in Dateien, die im Anschluss von den nachgeordneten Modellen wie-
der gelesen werden (bzw. iiber die Schnittstelle ISimResultAccess direkt vom
Modell bezogen werden).

Die neu erstellten (und nicht verteilten) Modellteile von GLASS (u. a. das
Wasserstress-, das Nahrungsmittelstress- und das Sicherheitsmodell) kénnen
iiber einen einfachen Simulationsmodell-Manager integriert werden, der eine
Liste aller beteiligten Teilmodelle enthélt und auf Anfrage Referenzen auf diese
Modelle zuriickgibt. Der Eintrag in die Liste wird von den Teilmodellen selbst
(durch eine Anmeldung) veranlasst. Eine Koordination der Zeitschritte oder
die Verwaltung gemeinsam genutzter Variablen ist aufgrund der Kaskadierung
der Modelle nicht notwendig.

6.3.4 Simulationslaufmanager

Der Simulationslaufmanager ist verantwortlich fiir die Verwaltung der simula-
tionslaufspezifischen Einstellungen und die Bereitstellung dieser Informationen
fiir die Simulationssystem-Komponente (s. Unterkapitel 5.2.4, Seite 128).

Die Simulationsmodelle innerhalb der Simulationssystem-Komponente kon-
nen verteilt iiber mehrere Hosts realisiert sein. Im Falle des GLASS-Modells
laufen die Teilmodelle auf unterschiedlichen Betriebssystemen und das Ge-
samtmodell ist alleine aus diesem Grund bereits ein verteiltes System. Um
die Verwaltung der simulationslaufspezifischen Modelleinstellungen zu verein-
fachen und um Ergebnisse zu einem spéteren Zeitpunkt besser nachvollziehen
zu konnen, bietet sich fiir den Simulationslaufmanager allerdings eine nicht-
verteilte Realisierung an. Die Konzentration aller simulationslaufspezifischen
Einstellung in einem zentralen Simulationslaufmanager erhoht dariiber hinaus
die Konsistenz von Simulationsldufen — eine nicht passende Kombination der
Einstellungen unterschiedlicher Modellteile fillt bei einer zentralen Verwaltung
eher auf und ldsst sich besser (auch formal) iiberpriifen. Dariiber hinaus er-
moglicht die zentrale Verwaltung der Simulationslaufspezifikationen diejenigen
Einstellungen nur einmal zu speichern und zu spezifizieren, die fiir mehrere

Verket-
tung

Modell-
Manager

verteilt
vS.
zentral

Prinzip

Umset-
zung

Sockets

Adres-
sierung

188 KAPITEL 6. REALISIERUNG

Teilmodelle giiltig sind (z. B. den Start- und Endzeitpunkt des Simulationszeit-
raums).

Im Rahmen des GLASS-Projektes wurde der Simulationslaufmanager aus
den genannten Griinden als Server realisiert. Dieser Server verwaltet alle simu-
lationslaufspezifischen Einstellungen und bietet die Einstellungen auf Anfrage
den Simulationsmodellen (Clients) an.

Zur Kommunikation zwischen Client und Server, die auch auf einem Host
laufen konnen, wurden die so genannten ‘Sockets’ in Verbindung mit dem
Transmission Control Protocol/Internet Protocol (TCP/IP) benutzt. Abbil-
dung 6.14 gibt einen Uberblick iiber das Prinzip dieser Kommunikationsart.
Die Kommunikation iiber Sockets und TCP/IP wurde gewéhlt, da sie relativ
einfach realisierbar ist und da TCP/IP auf vielen Plattformen bereitsteht —
TCP/IP ist das Protokoll, das am héufigsten zur Kommunikation in lokalen
und weltweiten Netzen (z. B. dem Internet) eingesetzt wird (Herold, 1999a).

Die Adressierung zwischen Client und Server geschieht iiber die Internet-
Adresse (IP-Adresse) der Hosts und iiber die Nummer des verwendeten Kom-
munikationskanals (Port) auf dem Host. Programme, die mit dem Simulati-

Client-Prozess Server-Prozess
\ \
Socket-K opf | | Socket-K opf
\ \
TCP TCP
Protokoll-Stack ‘ ‘ Protokoll-Stack
IP IP
| |
Gerétetreiber zB. Ethernet-Treiber Gerétetreiber zB. Ethernet-Treiber
Rechnernetz

Abbildung 6.14: Kommunikation iiber Sockets. Die Abbildung zeigt das Socket-
Modell am Beispiel von TCP/IP. Die Sockets sind die ‘Datenendpunkte’ zur
Kommunikation zwischen Prozessen. Sie bauen auf dem Transmission Control
Protocol (TCP) auf, das wiederum auf dem Internet Protocol (IP) fuft. Die
‘unterste’ Schicht, der Gerétetreiber, sorgt schlielich fiir die Kommunikation
iiber das Rechnernetz. Client und Server nutzen (sehen) lediglich die Funk-
tionen des Socket-Kopfes, die anderen Schichten sind transparent. Quelle der
Abbildung: Gulbins und Obermayr (1995).

6.3. KOMPONENTEN-REALISIERUNG 189

onslaufmanager kommunizieren wollen, miissen lediglich die IP-Adresse seines
Hosts und den Port des Managers kennen, um mit ihm in Verbindung zu treten.

Um die Kommunikation der in GLASS eingesetzten C++-Programme mit
dem Server zu vereinfachen, wurde eine Klasse (SISA_SimulationRunManager-
Client) erstellt, die die Kommunikation iiber die Sockets transparent macht. In
C++ geschriebene Modellteile rufen also lediglich eine Methode dieser Klasse
auf und brauchen sich nicht um die Kommunikation mit dem Server zu kiim-
mern.?6 Der SISA_SimulationRunManagerClient kontaktiert bei einer Anfrage
automatisch den Server, erfragt den Wert der gewtiinschten Einstellung und gibt
ihn anschlieflend an das Simulationsmodell weiter.

Der Server, der ebenfalls iiber eine C++-Klasse (SISA_SimulationRunMan-
agerServer) implementiert ist, bezieht alle simulationslaufspezifischen Informa-
tionen aus einer XML-Datei. Da Simulationsldufe als abstrakte Ressourcen be-
trachtet werden, konnen die zugehorigen Einstellungen innerhalb des SISA ein-
deutig identifiziert werden. Innerhalb des Servers werden die Einstellungen iiber
das Document Object Model (DOM) abgebildet. Der Server stellt den Clients
auf Anfrage einzelne Einstellungen in Form von Zeichenketten zur Verfiigung.
Abbildung 6.15 (Seite 190) verdeutlicht das Zusammenspiel von Client und
Server noch einmal.

Die Verwendung des XML-Formats bietet gegeniiber anderen Formaten den
Vorteil, dass sowohl die Strukturen als auch die giiltigen Werte von Simulati-
onsmodell-Spezifikationen auf eine einfache und vor allem standardisierte Weise
definiert werden konnen. Diese Definitionen kénnen entweder iiber die Docu-
ment Type Definition (DTD) oder iiber die XML Schema Description Language
(XSD) erfolgen. Der Simulationslaufmanager ist auf diese Weise in der Lage, die
Einstellungen beim Laden der Datei auf ihre Giiltigkeit hin zu tiberpriifen. Die
Uberpriifung selbst ist Sache eines validierenden XML-Parsers,?” dem neben
der XML-Datei die entsprechende DTD- bzw. XSD-Datei zur Verfiigung ge-
stellt wird. Wird dem Server eine nicht giiltige Simulationsmodell-Spezifikation
iibergeben (z.B. mit einer fehlenden Variablen-Belegung), so erkennt er beim
Einlesen der Spezifikation den Fehler und kann direkt eine entsprechende Mel-
dung ausgeben. Uber XML-Schemata ist es dariiber hinaus méoglich den Wert-
bereich fiir Variablen festzulegen. Ein Simulationslauf mit Modelleinstellungen,
fiir die Simulationsmodelle nicht ausdriicklich vorgesehen oder getestet wurden
(z.B. die Unterschreitung des minimalen Zeitschrittes), kann auf diese Weise
unterbunden werden.

26 Entsprechende Funktionen sollten fiir alle in der Simulationssystem-Komponente ver-
wendeten Programmiersprachen bereitgestellt werden.

27Ein Parser ist ein Programm, das einen Quelltext in seine einzelnen Bestandteile zerlegt
und das iiberpriifen kann, ob der Quelltext syntaktisch korrekt ist (s. Engesser, 1993). Vali-
dierende XML-Parser priifen sowohl Form als auch Inhalt von XML-Quelltexten (s. Anderson
u. a., 2000).

Client

Server

Validie-
rung

Beispiel

190 KAPITEL 6. REALISIERUNG

Ein kommentiertes Beispiel fiir den Einsatz des Simulationslaufmanagers
ist, zusammen mit Erklarungen zur Realisierung der nachfolgend beschriebenen
Datenzugriffskomponente, im Anhang D.4 (Seite 250) zu finden.

Client Server

z.B. WaterGAP SISA

Simulation-Run Manager
(Server) v—D
SISA

SISA T
Simulation-Run | o e TepIP—» Socket

Manager
(Client)
*DTD
] *XSD
setServerinfo() waitForRequest()
getSetting() getSetting()
setM odel SettingsSpecifications() setM odel SettingsSpecifications()

Abbildung 6.15: Realisierung des Simulationslaufmanagers. Der Simulations-
laufmanager ist als Server realisiert. Die Simulationslauf-Spezifikationen sind
in Form von XML-Dateien (in Verbindung mit einer DTD/XSD-Datei) ge-
speichert. Die Auswahl einer solcher Datei erfolgt iiber die Methode set-
ModelSettingsSpecification(). Beim Laden der XML-Datei kénnen die in ihr
enthaltenen Einstellungen unter Zuhilfenahme einer DTD/Schema-Datei va-
lidiert werden. Nach dem Aufruf der Methode waitForRequest() wartet der
Server auf Anfragen von Clients. Die Kommunikation geschieht iiber den
TCP /IP-Protokoll-Stack (Client und Server kommunizieren iiber die Sockets
der Hosts, auf denen sie laufen). Der Client kann entweder direkt mit dem
Server kommunizieren oder — wie dargestellt — die hierfiir geschriebene Klasse
SISA_SimulationRunManagerClient benutzen. Nachdem der Client iiber setS-
erverInfo() einen Server ausgewé#hlt hat (IP-Adresse und Port), kann er — unter
Angabe des Simulationslaufnamens — iiber getSetting() einzelne Modelleinstel-
lungen abfragen. Sofern notwendig kann der Client zunéchst die zu verwendende
XML-Datei mit den Einstellungen festlegen (iiber setModelSettingsSpecificati-
on).

6.3.5 Datenzugriff und Datenbasis
6.3.5.1 Datenzugriff

Die Datenzugriffskomponente ist verantwortlich fiir den transparenten lesenden
und schreibenden Zugriff auf Daten und die Transformation zwischen Daten-
formaten (s. Unterabschnitt 5.2.6, Seite 134).

6.3. KOMPONENTEN-REALISIERUNG 191

Die Datenzugriffskomponente kann als Vermittler von Datensétzen angese-
hen werden: Clients (z. B. Simulationsmodelle) wenden sich unter Angabe der
Datensatzbezeichnung an den Vermittler und erhalten von ihm den gewiinsch-
ten Datensatz, der sich an einem beliebigen, durch den Vermittler zugreifbaren
Ort befindet.

Bei dieser Art des Datenzugriffs handelt es sich um eine Schichten-Architek-
tur: der Client greift auf die Datenzugriffskomponente zu und diese wendet sich
an die Datenhaltungsschicht bzw. an die Datenbasis (vgl. Abb. 5.25, Seite 136).

Mediatoren

Der Zugriff auf Datensétze ist fiir den Nutzer transparent: Einzelheiten zu Ort
und Format der Speicherung des Datensatzes sollten fiir den Nutzer irrelevant
sein. Die Datenzugriffskomponente verbirgt diese Einzelheiten und transfor-
miert das Format eines gespeicherten Datensatzes gegebenenfalls in das ge-
wiinschte Format. Innerhalb eines SISA sind i. d. R. viele Datenformate zu be-
riicksichtigen. Die Vermittlung (Mediation) zwischen den einzelnen Formaten
innerhalb der Datenzugriffskomponente sollten aus Griinden der Erweiterbar-
keit und Flexibilitdt modular aufgebaut sein. Shaw und Garlan (1996) schla-
gen hierzu das Prinzip der ‘Mediatoren’ vor.2® Die Schicht zwischen Nutzer-
Funktionen und Datenbasis besteht hiernach aus einzelnen Mediatoren, die fiir
den Zugriff auf verschiedene Datenquellen zusténdig sind. Abbildung 6.16 (Sei-
te 192) verdeutlicht dieses Prinzip in graphischer Form.

Im Rahmen der GLASS-Entwicklung wurden Mediatoren fiir die wichtigs-
ten Datenformate realisiert. Ein besonderer Schwerpunkt lag dabei auf der In-
tegration des proprietdren Datenformats des Modells IMAGE2.2, das auch im
WaterGAP-Modell verwendet wird. Bei diesem Format handelt es sich um ein
unformatiertes Bindrformat (Abkiirzung ‘UNF’) fiir vier verschiedene Daten-
typen: Ganzzahlen in 8 Bit-, 16 Bit- und 32 Bit-Darstellung (abgekiirzt UNF1,
UNF2, UNF4) sowie FlieBkommazahlen in 32 Bit-Darstellung (UNF0). Ein Da-
tensatz im UNF-Format von IMAGE2.2 besteht aus insgesamt 66896 Werten.
Jeder Wert repriisentiert dabei einen Teil der gesamten Landoberfliche der Er-
de, genauer: eine 0.5° geographischer Linge * 0.5° geographischer Breite grofie
Rasterzelle. Die Georeferenzierung der Zellen, also die Zuordnung einer eindeu-
tigen Position auf der Erdoberfliche fiir jede Zelle, geschieht iiber die Angabe
von Zeilen (1-720) und Spalten (1-360), die in zwei weiteren Datensétzen ge-
speichert sind.

Mit der Verwendung des UNF-Formats gehen einige Probleme einher: so
konnen beispielsweise nur Werte fiir Zellen gespeichert werden, die auch in der
Landmaske von IMAGE2.2 auftreten; Anderungen in der Landmaske ziehen

28Nicht zu verwechseln mit dem Mediator-Muster von Gamma u. a. (1996).

Schich-
ten

Media-
tor

UNF-
Format

UNF-
Proble-
me

192 KAPITEL 6. REALISIERUNG

o I b I

Client-server <

Mediators

el I N

Abbildung 6.16: Prinzip der Mediatoren. Mediatoren sind Teile einer hierar-
chischen Schichtenarchitektur, in der die Funktionen der Nutzer (Users) ge-
trennt sind von den Datenbanken (Databases). Die Mediatoren vermitteln da-
bei zwischen den Anfragen der Nutzer und den (heterogenen) Datenbanken.
In der SISA-Architektur entspricht die Datenzugriffskomponente einer solchen
Mediator-Schicht. Quelle der Abbildung: Shaw und Garlan (1996).

u. U. Anderungen der Programme nach sich?’; aus dem Datenformat ist nicht
ersichtlich, ob es sich um vorzeichenbehaftete oder vorzeichenlose Daten han-
delt3?; und durch die binire Speicherung und der damit verbundenen Frage
der Binédrkodierung der Daten (little endian oder big endian) sind Datensétze
schlecht portierbar3!.

Fiir das UNF-Format wurde aus diesen Griinden eine Reihe von Mediatoren

implementiert. Zu den wichtigsten Mediatoren gehoren jene zur Vermittlung
zwischen den Formaten UNF0/1/2/4 und

29IMAGE2.1 enthielt beispielsweise nur 59831 Zellen. Programm-Schleifen iiber alle Zel-
len konnten daher iiber 16-Bit-Zahlen realisiert werden — fiir IMAGE2.2 ist das nicht mehr
méglich (der maximal darstellbare Wert fiir eine ganzzahlige 16-Bit-Variable ist 65535).

30Die Formatangabe ‘UNF2’, die auch als Dateiendung verwendet wird, bezieht sich auf
den Wertebereich von 0-65535 oder auf den von -32768 bis 32767.

31Die Wertigkeit der Bytes innerhalb eines Datenwortes unterscheidet sich zwischen Platt-
formen: wéhrend Intel-basierte Systeme das niederwertigste Byte einer binédren Zahlenre-
prisentation zuerst schreiben (little endian), verfolgen beispielsweise die Systeme von SUN-
Microsystems unter SPARC sowie Hewlett-Packard-Maschinen unter HP-UX den umgekehr-
ten Weg und gehen davon aus, das hdchstwertige Byte zuerst (an der niedrigsten Adresse)
im Speicher vorzufinden (big endian).

6.3. KOMPONENTEN-REALISIERUNG 193

o dem ASCII-Format des GIS ‘ArcView’
e Tabellen in relationalen Datenbanken

Das ArcView-ASCII-Format beschreibt einen rasterbasierten Geodatensatz
iiber ein regelméfliges Raster und je einem Wert pro Rasterzelle. Die Daten sind
in Text-Form im ASCII-Format3? gespeichert und somit auch zwischen unter-
schiedlichen Plattformen gut austauschbar und mit einfachen Mitteln (z.B.
einem Texteditor) darstellbar. Zusétzlich zu den Daten enthélt jede Datei die-
ses Formats in den ersten Zeilen eine kurze Beschreibung der Charakteristiken
des Datensatzes (z. B. die geographische Ausdehnung einer Zelle). Das Format
des Datensatzes wird im Anhang D.6 (Seite 257) kurz erklért.

Die Vermittlung zwischen dem UNF-Format und den Tabellen relationa-
ler Datenbank-Managementsysteme (RDBMS) wurde iiber die Open Databa-
se Connectivity (ODBC) realisiert. ODBC ist eine auf Treibern basierende
Schnittstelle zum herstellerunabhéngigen Zugriff auf Datenquellen und wird
von allen namhaften Datenbank-Herstellern unterstiitzt.?3 Die ODBC-Daten-
bank-Mediatoren wurden erfolgreich getestet fiir das RDBMS MySQL sowie fiir
das System Microsoft Access 2000.

Aufgrund der relativ schlechten Performance beim Zugriff auf Datensétze
iitber ODBC wurden ebenfalls Mediatoren implementiert, die auf den Active
Data Objects (ADO) von Microsoft basieren und die einen schnelleren Zugriff
auf die Daten erlauben.3*

Zum Export von UNF-Datensétzen wurden weitere Mediatoren realisiert.
Diese erlauben die Speicherung von Datensétzen in den Formaten

e ArcView Grid

Geography Markup Language (GML)
GeoTiff

ASCII-Tabelle

Das Format ArcView Grid ist ein proprietires Rasterformat des GIS Arc-
View des Herstellers ESRI. Die Geography Markup Language (GML) ist ein
Standard des OGC (Cox u. a., 2003) — der nicht nur zur Kodierung von Ras-
terdaten eingesetzt werden kann — und GeoTiff ein Rasterformat, das das fiir
Bilddateien benutzte Tiff-Format um geographische Informationen erweitert.
Das ArcView-Format wurde gewéhlt, da dieses GIS im Rahmen des GLASS-
Projektes eingesetzt wird. Die Moglichkeit des Exports von Daten in die For-
mate GML und GeoTiff wurde implementiert, da diese Standards eine brei-
te Anwendung versprechen (s. z. B. Kuhn u. a., 2001). Neben diesen Formaten

32 American Standard Code for Information Interchange (ASCII) — ein auf vielen Rechnern
verwendeter 7-Bit-Code zur Darstellung von Ziffern, Buchstaben und Sonderzeichen.

33Zur Verwendung von ODBC unter Oracle s. z. B. Herrmann u. a. (1998).

34Nihere Informationen zu ADO finden sich z. B. bei Gordon (2000).

ASCII-
Format

ODBC

ADO

weitere
Formate

GIS-
Kopp-
lung

Binérko-
dierung

Realisie-
rung

Beispiel

Basis

Erweite-
rung

Formate

194 KAPITEL 6. REALISIERUNG

kann ein UNF-Datensatz auch als Tabelle im ASCII-Format abgespeichert wer-
den, die anschlieflend einfach in andere Programme (z. B. in DBMS) importiert
werden kann.

Der Mediator zum Export in das ArcView-Grid-Format nutzt die Program-
mierschnittstelle von ArcView und stellt somit ein einfaches Beispiel fiir die
Kopplung der Komponente mit einem externen GIS dar.

Neben den angefithrten Mediatoren gibt es solche, die einen transparenten
Zugriff auf UNF-Dateien erlauben, indem sie eine automatische Konvertierung
der beiden moglichen Bindrkodierungen vornehmen.

Realisierung

Die Komponente fiir den Datenzugriff wurde als C++-Klasse implementiert
und lduft derzeit als Server auf dem Betriebssystem Microsoft Windows 2000.
Die Kommunikation zwischen Client und Server geschieht iiber den bereits
in Unterabschnitt 6.3.4 (Seite 187) erklérten Mechanismus der Sockets. Fiir die
Seite des Client wurde — wie beim Simulationslaufmanager (vgl. 6.3.4, Seite 187)
— eine C++-Klasse zur Kapselung der Dateniibertragung implementiert. Ein
Beispiel zur Verwendung der Datenzugriffskomponente findet sich im Anhang
D.4 (Seite 250).

6.3.5.2 Datenbasis

Die im Rahmen des GLASS-SISA realisierten Mediatoren beschrinken sich
derzeit auf Geodaten im IMAGE2.2-Format. Diese Daten koénnen iiber die Me-
diatoren sowohl in Form von Dateien in unterschiedlichen Formaten als auch
innerhalb eines RDBMS, d. h. des Datenbanksystems, gespeichert werden. Auf-
grund der eingeschrinkten Verfiigbarkeit von Mediatoren miissen die Simula-
tionsmodelle aber auch direkt — also an der Datenzugriffskomponente vorbei —
auf Dateien zugreifen.3?

Um die Integration der Datenséitze in das SISA zu verbessern und das Spei-
chern eines Datensatzes in unterschiedlichen Formaten zu vermeiden, sind die
Mediatoren entsprechend zu erweitern. Die Erweiterung der Mediatoren soll-
te neben dem Geodaten-Format von IMAGE2.2 auch andersartige Geodaten
sowie Daten in Form von Listen und Tabellen behandeln kénnen.

Bei der Realisierung und Erweiterung der Mediatoren stellt sich die Frage
der Speicherungsart (Datei vs. Datenbanksystem) sowie den zu verwendenden
Datenformaten fiir die Speicherung. In dieser Frage konnte sich (noch) kein
Standard durchsetzen: Daten, die zur Initialisierung von Modellen benutzt wer-
den, sind heterogen und ,Wissenschaftler sind verwirrt* iiber die verschiedenen

35Eine ‘Integration’ der Daten in das System erfolgt dennoch: durch die eindeutige Bezeich-
nung der Datensiitze (Ressourcen) und die Bereitstellung der Zugriffsinformationen durch den
Katalogmanager.

6.3. KOMPONENTEN-REALISIERUNG 195

Datentypen, Formate und Systeme im Umkreis wissenschaftlicher Daten im
Rahmen der Erdsystemforschung (Ramachandran u. a., 2003).36

Nicht nur im Rahmen der Speicherung und Ubertragung von Geodaten kris-
tallisiert sich die Verwendung des XML-Formats als moglicher Standard heraus
(s. GML, Cox u.a., 2003). Dieses Format hat weitere Vorteile, die Anderson
u.a. (2000) wie folgt zusammenfassen:

e gute Archivierungsmoglichkeit der Daten
e leichter Austausch von Daten

e die Daten sind iiber das Document Object Model (DOM) auch von ein-
fachen Clients, z. B. einem Web-Browser, zu bearbeiten

flexible Darstellungsmoglichkeit der Daten, z. B. iiber Stylesheets

moglicher Import und Export von Daten in bzw. aus Datenbanken3”

Auch fiir die Archivierung von Daten bietet XML nach Anderson u. a. (2000)
gegeniiber anderen Datenformaten, wie einfachen Dateien oder Datenbank-
Dumps, Vorteile:

e XML-Dateien sind plattformunabhéingig — einfache Bearbeitung durch
DOM-Parser moglich

e XML-Dateien sind selbstbeschreibend — Strukturinformationen sind in-
hérent; nur wenig Zusatzinformation zum Verstdndnis eines Dokuments
notwendig

e XML-Dateien beschreiben hierarchische Informationen — einfaches Ver-
standnis der Daten durch Baumstruktur

Der oft angefiithrte Nachteil der umfangreichen Gréfle von XML-Dateien
wird ebenfalls durch Anderson u.a. (2000) entkréftet: da es sich um einfache
Text-Dateien handelt, konnen diese i. d. R. durch Komprimierung auf ein Zehn-
tel oder Zwanzigstel der urspriinglichen Grofle reduziert werden. Als Nachteil
dieses Formats bleibt allerdings eine im Vergleich zu anderen Arten der Da-
tenspeicherung schlechtere Auswertungsgeschwindigkeit — XML-Daten miissen
vor der Verwendung innerhalb eines Programms zunéchst durch einen Parser
in das Document Object Model iiberfithrt werden.

Die derzeitigen Aktivitdten im Bereich der GML und die beginnende Un-
terstiitzung dieses Formats durch GIS-Hersteller sprechen ebenfalls fiir die Ver-
wendung von XML. Dariiber hinaus erlaubt die Speicherung von Datenséitzen
im XML-Format eine direkte Integration von Metadaten in den Datensatz.

36Einer der Griinde, warum eine automatisierte Transformation von Datentypen notwendig
ist.

37Siehe hierzu z.B. die Informationen zur XML-Datenbank ‘Xindice’ unter http://xml.
apache.org/xindice

XML

http://xml.apache.org/xindice
http://xml.apache.org/xindice

aner-
kannte
Quellen

Standar-
disie-
rungsbe-
miithun-
gen

196 KAPITEL 6. REALISIERUNG

6.3.5.3 Datenbanksystem

Als Datenbanksysteme wurden, wie bereits erwiahnt, MySQL und Microsoft
Access eingesetzt. Der Einsatz der Systeme beschrinkt sich bisweilen auf den
Zugriff durch die angesprochenen Mediatoren.

6.3.5.4 Datengrundlage

Neben der Verwendung eines ‘allgemein anerkannten’ Formats von Datensat-
zen, ist es im Rahmen der Forschung zum System Erde wichtig, auf anerkannte
Inhalte zuriickzugreifen. Diese Notwendigkeit begriindet sich u. a. darauf, dass
zur Validierung von Modellen deren Ergebnisse mit den Ergebnissen anderer
Modelle verglichen werden sollen (Toth, 1995).

Die im Rahmen der Systemdefinition aufgelisteten grundlegenden Assess-
ment-Daten (/D60/-/D120/) sollten daher aus einschlidgig bekannten und an-
erkannten Quellen (UN-Organisationen, IPCC, Weltbank etc.) kommen.

In diesem Zusammenhang sind auch die Bestrebungen des International
Steering Committee for Global Mapping (ISCGM)*® von Bedeutung, das die
Erstellung von Geodaten mit einer Auflésung von 1km * 1km und globaler Ab-
deckung koordiniert. Diese so genannte Global Map besteht aus acht Schichten
(Themen): Grenzen, Entwiisserung, Transport, Siedlungen, geographische Ho-
he, Landbedeckung, Landnutzung, Vegetation.?® Die Verwendung derartiger
Basisdaten wiirde die Vergleichbarkeit von Analysen und — aufgrund der dann
einheitlichen Landmaske — auch die Interoperabilitit von Modellen erheblich
verbessern.*?

6.3.5.5 Kodierungsstandards

Der Austausch von Ressourcen macht nicht bei den Modellen oder Modelltei-
len bzw. Diensten Halt. Auch Daten, deren Erzeugung oder Beschaffung sehr
arbeitsaufwendig ist, stellen eine wichtige Arbeitsgrundlage beim integrierten
Assessment dar, deren Wiederverwendung anzustreben ist. Der Austausch von
Daten funktioniert aber nur dann reibungslos, wenn sie nicht nur die gleiche
Form im Sinne der verwendeten Datenelemente (Syntax) und die gleiche In-
haltsbedeutung (Semantik) besitzen, sondern dariiber hinaus auf die gleiche Art
und Weise kodiert wurden: Entfernungsangaben in Meilen mit einem Punkt als
Dezimaltrennzeichen lassen sich nicht ohne Umwandlungsaufwand in Systemen
verwenden, die die Angaben in Metern und einem Komma als Dezimaltrenn-
zeichen benétigen. Im Sinne der Interoperabilitdt ist daher die Verwendung

38Gtartseite im Internet: http://www.iscgm.org/html4/index.html

39Die Sperzifikation der Global Map ist in der Version 1.1 erhiltlich unter http://www.
iscgm.org/html4/pdf/gmspec-1.1.pdf

40Gjehe zu diesem Thema auch das Spatial Data Infrastructure Cookbook von Nebert
(2001).

http://www.iscgm.org/html4/index.html
http://www.iscgm.org/html4/pdf/gmspec-1.1.pdf
http://www.iscgm.org/html4/pdf/gmspec-1.1.pdf

6.3. KOMPONENTEN-REALISIERUNG 197

einheitlicher Metriken und Kodierungen anzustreben. Ausgangspunkte hierfiir
sind erneut Standards.

Als Grundlage sollten die allgemein bekannten SI-Einheiten dienen. Die
Verwendung dieser Einheiten mag in einigen Féllen (und Léndern) zunéchst
umsténdlich und wenig eingéngig erscheinen: man denke an einen Datensatz,
der eine mittlere Monatstemperatur von 280 anzeigt — Kelvin, wohlgemerkt.
Temperaturangaben in Kelvin haben allerdings den Vorteil, dass sie stets als
positive Zahlen dargestellt werden (einfachere Datenhaltung und -validierung)
und dass diese Metrik in vielen wissenschaftlichen Gleichungen verwendet wird.

Gerade beim internationalen Datenaustausch stellen Standards und andere
Vereinbarungen nicht nur eine grofie Arbeitserleichterung dar, sondern auch
einen Gewinn beziiglich der Richtigkeit bei der Verwendung von Daten. Die
Angabe ‘320 centner/ha’, die aus einer russischen Statistik iiber Ernte-Ertréige
entnommen wurde, ist beispielsweise nicht direkt vergleichbar mit derselben
Zahl aus einer deutschen Statistik — in Russland bedarf es 100 kg fiir einen
Zentner, in Deutschland sind es 50 kg (100 Pfund). Selbst bei einem Daten-
satz mit dokumentierter Einheit wiirde ein solches Problem nicht direkt (wenn
iiberhaupt) auffallen.

Neben ‘einheitlichen’ SI-Einheiten gibt es Standards (insbesondere der ISO-
Serie) zur Implementierung und Formatierung von Daten. Ein Beispiel fir deren
Sinnhaftigkeit ist die Angabe eines Datums: ‘08/05/03" — in den USA wiirde
diese Angabe dem 5. August 2003 entsprechen, in Deutschland dem 8. Mai
2003. Eine Mehrdeutigkeit trotz eines wohldefinierten Formats, denn ‘2003-05-
08’41 ist die standardkonforme Art fiir die numerische Notation des 8. Mai 2003
nach ISO 8601. Diese Norm regelt iiber die Datums-Angaben hinaus auch die
Angabe von Wochennummern und Zeiten: 11:55:00Z entspricht fiinf vor zwolf
gemessen am Null-Meridian (Greenwich).

Ein im Rahmen der globalen Modellierung immer wieder aufkommendes
Problem ist die uneinheitliche Kodierung von Léndern. Bei der Realisierung
des GLASS-Modells mussten fiir eine Analyse beispielsweise drei Datensétze
unterschiedlicher Datenlieferanten miteinander verkniipft werden. Die Bezeich-
nungen fiir die USA lauteten in diesen Datensétzen wie folgt: ‘United States’,
‘U.S.%, ‘America, US’ — an eine automatische Zusammenfiithrung der Datensiit-
ze war (nicht nur wegen der Landerkennung der USA) nicht zu denken. Fiir
GLASS wurden allen lénderbezogenen Datensétzen eindeutige Lénderkennun-
gen zugewiesen. Hierzu wurde die aus drei Ziffern bestehende Kennung nach
ISO 3166 verwendet. Diese Norm erlaubt neben der Kodierung existierender
Lénder auch die Kodierung nicht mehr existierender Staaten (wie der DDR)
und administrativer Einheiten, die fiir manche Assessments relevant sind.

4 Formal: JJJJ-MM-TT. Die Bindestriche kénnen auch entfallen. Ist die Angabe des Tages
oder Tages und Monats nicht gewiinscht, wird ‘2003-05" bzw. ‘2003’ geschrieben.

SI-Ein-
heiten

ISO-
Normen

Datum

Lander

Verwen-
dung

Utility

198 KAPITEL 6. REALISIERUNG

Die angesprochenen Kodierungen sind nur Beispiele. Tabelle 6.1 listet wei-
tere relevante Standards auf.

’ Standard ‘ Gegenstand ‘ Kurzbeschreibung
ISO 2955 Das metrische System Methode zur Beschreibung von SI-
Einheiten und anderen Maflen in Compu-
tersystemen.
ISO 3166 Léndercodes oder Linder- | Spezifikation fiir die Kennzeichnung von
kennungen Léndernamen.
ISO 4217 Kiirzel fir Wahrungen Liste von Codes fiir nationale W&hrungen.
ISO 5218 Kennzeichnungen fiir das | Codes zur Angabe des Geschlechts.
Geschlecht
ISO 6093 Angabe fiir nummerische | Drei Prisentationsnormen fiir nummeri-
Werte sche Werte. In Form von Zeichenketten

(Texten), in einer maschinenlesbaren Form
und eine fiir Menschen gut lesbare Form.

ISO 6709 Ortsangaben Format zur eindeutigen Identifikation von
Ortskoordinaten auf, unter oder iiber der
Erdoberfliche (Lingengrad, Breitengrad,
Héhe).

ISO 8601 Datum und Zeit Format fiir Datums- und Zeitangaben.

Tabelle 6.1: ISO-Standards zur Datenkodierung. Quelle: Anderson u. a. (2000).

6.3.6 Datenverarbeitung

Zur Geodatenverarbeitung wurde im Rahmen der GLASS-Entwicklung eine
C++-Klasse implementiert. Diese Klasse bietet Operationen, mit denen grund-
legende Transformationen und Kombinationen von rasterbasierten Geodaten
durchgefiihrt werden kénnen. Zu den realisierten Operationen gehoren solche
zur Multiplikation, Division, Addition und Subtraktion von Rasterdaten mit
skalaren Werten sowie mit anderen Rasterdaten. Dariiber hinaus bietet die
Klasse Operationen zur Berechnung zonaler Summen und zonaler Mittelwerte
(s. Bsp. in Abb. 6.17).

Die Klasse zur Geodatenverarbeitung wird sowohl von Teilen des Simulati-
onsmodells eingesetzt als auch von den Werkzeugen, die fiir die Vorverarbeitung
und Nachbearbeitung von Assessment-Daten erstellt wurden. Ein Beispiel zur
Verwendung dieser Klasse findet sich im Anhang D.7 (Seite 257).

Neben der Klasse zur Unterstiitzung der Geodatenverarbeitung wurden eini-
ge allgemeine Datenverarbeitungsfunktionen erstellt; u. a. Funktionen zur Kon-
vertierung der Kodierung von Bindrdaten (big/little endian) sowie ein einfacher
Zufallszahlengenerator, der fiir den Klimavariabilitdtsgenerator in GLASS be-
notigt wird.

6.4. FAZIT 199

21213|5
213|3|5
Summe
3/5|5|6
11124 1111 315054
1(2(24 1111
1/3|34 212|122
1333 212021 7|7/3(3
7
Raster 1 Raster 2 3/3/3 zonale
71919|3| Summe
719199

Abbildung 6.17: Funktionsbeispiel zur Geodatenverarbeitung. Die Abbildung
verdeutlicht die realisierten Operationen zur Bildung von Summen und zona-
len Summen von Geodatensétzen. Die Summe ergibt sich aus der Addition der
Werte, die sich an der entsprechenden Position von Raster 1 und Raster 2 be-
finden. Die zonale Summe ergibt sich aus der Summe aller Werte von Raster 2,
die sich in einer Zone befinden, wobei die Zonen durch die Werte in Raster 1
bestimmt werden.

6.4 Fazit

In Kapitel 5 (Seite 95) wurde eine Software-Architektur fiir Systeme zum inte-
grierten simulationsbasierten Assessment (SISA) entwickelt. Diese Architektur
soll als Ausgangsbasis fiir die Entwicklung neuer SISA herangezogen werden
konnen.

Ziel dieses Kapitels war es, die Anwendbarkeit dieser allgemeinen SISA-
Architektur anhand einer prototypischen Implementierung der spezifizierten
Komponenten unter Verwendung eines konkreten Simulationssystems zu bele-
gen.

Die Implementierungen erfolgten fiir die Simulationsmodelle, die im Rah-
men des Assessment-Projektes GLASS (GLobal ASsessment of Security) — des-
sen Ziel die Analyse der Auswirklungen des globalen Wandels auf die Wasser-
und Nahrungsmittelverfiigbarkeit ist — eingesetzt werden. Das GLASS-Simula-
tionssystem besteht sowohl aus Teilmodellen, die bereits in anderen Projekten
verwendet wurden (z. B. das Modell WaterGAP) als auch aus Teilmodellen, die
speziell fiir das GLASS-Projekt erstellt wurden (z.B. das Wasserstressmodell
und das Nahrungsmittelstressmodell).

Unter Nutzung des GLASS-Simulationssystems wurden die folgenden zen-
tralen Konzepte der Architektur iiberpriift:

Aus-
gangs-
basis

Ziel

Rahmen

Tests

Ergeb-
nisse

Doku-
menta-
tion

200 KAPITEL 6. REALISIERUNG

e die Verwaltung und Bereitstellung wichtiger Assessment-Informationen
durch die Dokumentationskomponente

e die Verwaltung von Zugriffsinformationen und Metadaten innerhalb des
Katalogmanagers

e die automatische Aktualisierung des Katalogmanagers durch Metadaten-
Sammler

e die Kapselung von Simulationsmodellen in der Simulationssystemkompo-
nente

e die Bereitstellung von Simulationslauf-Spezifikationen {iber den Simula-
tionslaufmanager

e der transparente Datenzugriff iiber die Datenzugriffskomponente
e die Datenspeicherung im Datenbanksystem bzw. in Dateien (Datenbasis)

e die Bereitstellung wieder verwendbarer Funktionen zur Geodatenverarbei-
tung und allgemeinen Datenverarbeitung

Zusammenfassend ldsst sich festhalten, dass die Umsetzung der zentralen
Konzepte der entwickelten SISA-Architektur auch mit relativ einfachen tech-
nischen Mitteln und unter Verwendung freier Software moglich ist. Bei der
Anwendung im Rahmen des GLASS-Modells haben sich insbesondere die Ver-
folgung der Metadaten-Konzepte (Nutzung der 15 grundlegenden Metadaten-
Elemente, Verwendung von eindeutigen Ressourcen-Bezeichner, Nutzung von
Metadaten-Sammlern) und die Nutzung des Simulationslaufmanagers als ent-
scheidende Schritte zu mehr Transparenz und Nachvollziehbarkeit erwiesen. Die
Ubertragung der fiir das Simulationssystem definierten Schnittstellen (Ope-
rationen init, run, getResult) auf die Teilmodelle fiihrt zu einer verbesserten
Wiederverwendbarkeit und Interoperabilitit der Teilmodelle. Ferner hat sich
gezeigt, dass die Informationen der Dokumentationskomponente entscheidend
zu einem reibungslosen und transparenten Assessment beitragen konnen.

Eine Zusammenfassung wichtiger Realisierungsaspekte zu den aufgefithrten
Tests findet sich in den folgenden Absétzen.

Zur Verwaltung der Assessment-Informationen (Anmerkungstexte, Informa-
tionen iiber Personen und Organisationen etc.) wurde das relationale Daten-
bank-Managementsystem (RDBMS) MySQL eingesetzt, das die Verwaltung der
Datenbesténde {iber einen Web-Browser erlaubt. Zur Bereitstellung und Erwei-
terung von Datenbestéinden wurde ein separates, auf der Programmiersprache
PHP basierendes, Web-Interface implementiert.

6.4. FAZIT 201

Der Katalogmanager, der die Metadaten und Zugriffsinformationen ver-
waltet, basiert ebenfalls auf dem RDBMS MySQ@L. Die eindeutige Identifizie-
rung von Ressourcen im Katalogmanager wird iiber Uniform Resource Names
(URN) realisiert. URNs folgen einer Syntax, die im Rahmen dieses Kapitels spe-
ziell fiir SISA-Ressourcen entwickelt wurde. Die Erstellung eines URN fiir eine
Ressource wird durch einen ‘URN-Generator’ unterstiitzt, der iiber einen Web-
Browser bedient werden kann. Jeder SISA-Ressource muss ein solcher URN
zugewiesen werden. Nicht abstrakte Ressourcen (vgl. Abb. 4.2 Seite 76) miis-
sen iiber den URN hinaus einen Uniform Resource Locator (URL) besitzen, der
iitber den Ort der Speicherung der Ressource und den Zugriffsmechanismus auf
diese Ressource Auskunft gibt.

Als Metadatensatz wurde der Dublin Core Metadata Element Set (DCMES)
verwendet. Zur Erfassung der Metadaten wurde ebenfalls eine Web-Seite er-
stellt. Nach der Eingabe der 15 Elemente sowie des URN und evtl. des URL
kann ein automatischer Eintrag in die Datenbank des Katalogmanagers erfol-
gen. Dariiber hinaus ist es moglich, die Meatdaten in Form einer Datei (im
XML/RDF-Format) zu speichern.

Die in Form von Dateien gespeicherten Metadaten konnen iiber Metadaten-
Sammler zusammengetragen und in gesonderten Repositories (ebenfalls im
XML/RDF-Format) gespeichert werden. Das Programm des Metadaten-Samm-
lers wurde iiber ein einfaches Shell-Skript realisiert. Die Integration der Reposi-
tory-Daten in die Katalogkomponente erfolgt durch ein PHP-Programm. Dieses
Programm verwendet das Document Object Model (DOM), um die Reposito-
ries zu analysieren, und iibertragt die Metadaten tiber die Structured Query
Language (SQL) in die MySQL-Datenbank. Bei dieser Ubertragung wird auch
automatisch die Ressourcen-Liste des Katalogmanagers aktualisiert. Sowohl die
Repositories als auch die einzelnen Metadaten-Dateien kénnen durch die Ver-
wendung von XML-Stylesheets direkt iiber einen Web-Browser angezeigt wer-
den.

Um die Transparenz und Nachvollziehbarkeit von Modellergebnissen zu er-
hohen, sollten die Simulationsmodelle bei der Erzeugung von Ergebnisdaten-
sitzen direkt die zugehorigen Metadaten schreiben. Zur Gewéhrleistung der
Nachvollziehbarkeit sollten die Metadaten zu einem Ergebnisdatensatz auf je-
den Fall den URN des Modells sowie den URN des Simulationslaufs beinhalten.
Um eine derartige Dokumentation von Modellergebnissen zu erleichtern, wur-
de innerhalb der Komponente zur allgemeinen Datenverarbeitung eine C++-
Klasse implementiert, iiber die die DCMES-Elemente im XML /RDF-Format
gespeichert werden konnen.

Zur Realisierung der Simulationssystem-Komponenten der SISA-Architek-
tur wurde eine C++-Klasse erstellt. Diese Klasse dient als Basisklasse fiir die im
Rahmen des GLASS-Projektes neu erstellten Teilmodelle. In Anlehnung an die
fiir das Simulationssystem der SISA-Architektur definierte Schnittstelle miis-

Katalog-
manager

Sammler

Meta-
daten
Generie-
rung

Simula-
tionssys-
tem

Simula~
tions-
lauf-
manager

Daten-
zugriff

202 KAPITEL 6. REALISIERUNG

sen alle von dieser Basisklasse abgeleiteten Teilmodelle die Operationen init()
und run() implementieren. Des Weiteren muss jedes Teilmodell eine Operation
namens resultsAvailable() anbieten. Uber diese Operation gibt ein Teilmodell
Auskunft dariiber, ob fiir eine bestimmte Simulationslaufspezifikation bereits
Ergebnisse vorliegen. Die neu erstellten Teilmodelle implementieren auflerdem
die Schnittstelle ISimResultAccess oder bieten eine entsprechende Operation
zur Abfrage von Modellergebnissen an (das Nahrungsmittelstressmodell stellt
beispielsweise die Operation getStress() zur Verfiigung).

Das wieder verwendete Modell zur Berechnung von Wasserverfiigbarkeiten
(WaterGAP) bietet die geforderten Schnittstellen nicht an. Um das Modell
dennoch als Teilmodell innerhalb des Simulationssystems benutzen zu kénnen,
wurde ein Adapter implementiert. Dieser Adapter ist fiir die Anpassung der
Schnittstelle des WaterGAP-Modells an die geforderten Schnittstellen zustéin-
dig.

Die neu erstellten Teilmodelle kénnen iiber einen einfachen, in C++ im-
plementierten Modellkoppler miteinander verbunden werden. Um eine solche
Verbindung zu erlauben, muss sich ein Modell bei diesem Koppler anmelden.
Der Koppler trigt darauthin einen Verweis auf das Modell in eine interne Liste
ein und gibt ihn auf Anfrage an andere Teilmodelle weiter. Die Interaktion der
Teilmodelle geschieht dann iiber deren definierte Schnittstelle.

Die fiir einen Simulationslauf notwendigen Einstellungen (Simulationslauf-
spezifikationen) erhalten die Simulationsmodelle vom Simulationslaufmanager.
Der Simulationslaufmanager wurde unter Verwendung der Programmierspra-
che C++ als Server-Anwendung unter Microsoft Windows 2000 realisiert. Die
Kommunikation zwischen dem Simulationslaufmanager und den Simulations-
modellen (Clients) geschieht iiber das Internet-Protokoll (TCP/IP) (Verwen-
dung von Sockets). Auf diese Weise wird der Aufbau einer verteilten Anwen-
dung ermdoglicht (das Modell WaterGAP lduft beispielsweise unter Linux). Die
Simulationslaufspezifikationen werden in Form von XMI-Dateien gespeichert
und vom Simulationslaufmanager eingelesen. Durch die Verwendung einer Do-
cument Type Definition (DTD) innerhalb der Spezifikationsdatei kann der Si-
mulationslaufmanager die Giiltigkeit von Einstellungen iiber einen validieren-
den Parser tiberpriifen.

Die Datenzugriffskomponente wurde, genauso wie der Simulationslaufma-
nager, als Server-Anwendung unter Microsoft Windows 2000 realisiert. Die
Simulationsmodelle (Clients) wenden sich, unter Angabe des Datensatz-URN
und des gewiinschten Formats, in dem der Datensatz geliefert werden soll, an
den Server. Der Server wendet sich seinerseits an den Katalogmanager, um die
fiir einen Zugriff notwendigen Informationen (URL und weitere Informationen
zum Datenformat) zu erfragen. Anschliefiend liefert die Datenzugriffskompo-
nente dem Client den Datensatz im gewiinschten Format. Die Transformation
verschiedener Datenformate geschieht transparent fiir den Client und wird tiber

6.4. FAZIT 203

so genannte Mediatoren realisiert. Im Rahmen des Architekturtests wurden ver-
schiedene Mediatoren fiir das Teilmodell WaterGAP realisiert. Die Mediatoren
greifen auf die Datensétze aus der Datenbasis zu und geben sie dann im internen
(bindren) Format (UNF-Format) an das Modell weiter.

Die Mediatoren erlauben den lesenden und schreibenden Zugriff auf das
UNF-Dateiformat und auf das textbasierte Austauschformat fiir Rasterdaten
des GIS ArcView. Dariiber hinaus wurden Mediatoren fiir den Zugriff auf Daten
entwickelt, die in einem RDBMS gespeichert sind. Die Verbindung der Media-
toren mit dem RDBMS wurde iiber die Open Database Connectivety (ODBC)
realisiert. Durch die ODBC-Verbindung ist ein relativ einfacher Austausch des
verwendeten RDBMS moglich (getestet wurden MySQL und Microsoft Access
2000). AuBerdem wurde die etwas schnellere Verbindung zur Datenbank iiber
Active Data Object (ADO) implementiert (und fiir Microsoft Access 2000 getes-
tet). Weitere Mediatoren erlauben den Export von Datensétzen in das ArcView-
Rasterformat, in GeoTiff sowie in Dateien, die die Geographical Markup Lan-
guage (GML) als Format nutzen. Der Mediator zum Export von Daten in das
ArcView-Rasterformat ist ein Beispiel fiir die Kopplung mit einem GIS, da
er zur Erzeugung des proprietéiren Datenformats die Programmierschnittstelle
von ArcView nutzt.

Fiir die Ausgestaltung der Komponenten zur Geodatenverarbeitung bzw.
zur allgemeinen Datenverarbeitung wurden einige C++-Klassen und Funktio-
nen implementiert. Die geodatenverarbeitenden Klassen erlauben die Kombi-
nation und Transformation von Rasterdaten des internen UNF-Formats. Die
Funktionen erlauben z.B. die Addition zweier Rasterdatensétze oder die Bil-
dung zonaler Summen. In der Komponente der allgemeinen Datenverarbeitung
befindet sich u. a. ein Zufallszahlengenerator.

Daten-
basis

204 KAPITEL 6. REALISIERUNG

Kapitel 7

Zusammenfassung und

Ausblick

7.1 Zusammenfassung

Systeme zum integrierten simulationsbasierten Assessment (SISAs) sind Soft-
ware-Systeme, die von unterschiedlichen Fachdisziplinen stammende Daten und
Simulationsmodelle zum ‘System Erde’ in einem konsistenten Rahmen kombi-
nieren und neue Daten iiber den Zustand und mogliche langfristige Anderungen
des ‘Systems Erde’ — vornehmlich zur Unterstiitzung politischer Entscheidungs-
trager — berechnen und bereitstellen. Diese Systeme, die von einigen Autoren
auch als integrierte Modelle bezeichnet werden, sind wichtige Werkzeuge zur
Analyse des globalen Wandels. Durch die zunehmende Komplexitit und Grofle
von SISAs ergeben sich Herausforderungen beziiglich der Transparenz, Nach-
vollziehbarkeit und Reproduzierbarkeit von Analysen und Ergebnissen, der Er-
weiterbarkeit von Modellen, der Wiederverwendbarkeit und Austauschbarkeit
von Modellteilen sowie der Interoperabilitdt. Um diesen Herausforderungen ge-
recht zu werden, muss das Prinzip der Modularisierung angewendet werden.
Vorhandene Systeme sind allerdings zumeist unzureichend modularisiert (Jae-
ger u. a., 2002) und geniigen daher nicht den gestiegenen Anforderungen.

Die Modularisierung kann {iber die Definition einer Software- Architektur er-
reicht werden. Eine Software-Architektur ist die grundsdtzliche Strukturierung
eines Software-Systems. Sie beschreibt eine Menge definierter Komponenten,
die iiber Schnittstellen miteinander kommunizieren, spezifiziert deren jeweili-
gen Zustdndigkeitsbereich und beschreibt die Beziehungen zwischen den Kom-
ponenten.

Wie eine Analyse existierender Systeme in Kapitel 3 (Seite 25) gezeigt hat,
spiegeln sich die gestiegenen Leistungsanforderungen an die Modelle (z. B. die

205

Problem

Losungs-
ansatz

Ziel

Fragen

System-
defini-
tion

Leis-
tungs-
spek-
trum

206 KAPITEL 7. ZUSAMMENFASSUNG UND AUSBLICK

Integration von GIS-Funktionalititen) zwar in den einzelnen Systemen wider,
eine Komponentenbildung im Sinne einer Software-Architektur konnte in der
Literatur aber nicht gefunden werden. Die Systeme werden hingegen zumeist
in Module eingeteilt, die sich aus der Realisierung der Systeme ergeben (z. B.
in Klassen-Bibliotheken). Aufgrund der unterschiedlichen Funktionalitidten der
Module, lassen sich diese nicht ohne weiteres unter den Systemen austauschen.
Eine Interoperabilitdt zwischen den Systemen ist wegen der uneinheitlichen
Einteilung der Gesamtsysteme sowie der unterschiedlichen Implementierungs-
methoden bei der Funktionsrealisierung ebenfalls nicht gegeben.

Das Ziel der vorliegenden Arbeit war daher die Entwicklung einer allgemein
anwendbaren Software- Architektur fiir SISAs, die die Wiederbenutzbarkeit und
Wiederbenutzung von Modellen, Modellteilen, Daten und anderen notwendigen
Betriebsmitteln unterstiitzt, die Zusammenarbeit mit anderen Programmen be-
giinstigt und die Qualitdt der Ergebnisse sichern hilft.

Um dieses Ziel zu erreichen, stellten sich die folgenden Forschungsfragen:

e In welche generellen Komponenten sollte ein System zum integrierten
simulationsbasierten Assessment aufgeteilt werden?

e Welche Komponenten kénnen unabhingig von einem konkreten System
realisiert und damit fiir unterschiedliche Modelle wieder verwendet wer-
den?

e Welche Daten sollten zur Unterstiitzung der Transparenz von Analyse-
und Simulationsergebnissen vorgehalten werden?

e Welche Standards konnen zur Erh6hung der Qualitit integrierter Modelle
beitragen?

Der generelle Ausgangspunkt fiir die Entwicklung einer Software-Architek-
tur ist die Systemdefinition, in der die Hauptfunktionen und Hauptdaten sowie
die grundlegenden Anforderungen an ein System bestimmt werden. Um die all-
gemeinen, auf mehrere Systeme iibertragbaren Anforderungen eines SISA zu
definieren, wurde in Kapitel 3 (Stand der Technik, Seite 25) die Literatur iiber
SISAs hinsichtlich ihrer Leistungsmerkmale und ihres Funktionsumfangs ausge-
wertet. Diese Analyse zeigte, dass sich das Leistungsspektrum von SISAs nicht
auf die Berechnung neuer Simulationsergebnisse beschriankt: insbesondere die
Bereitstellung und Nutzung von GIS-Funktionalititen, die Unterstiitzung bei
der Analyse von Ergebnissen, Daten und Modellen, die Verwaltung von Szena-
rien und Datenbestédnden sowie die Bereitstellung von Systemdokumentationen
gehoren ebenfalls zu den Leistungsmerkmalen vieler Systeme. Aufbauend auf
diesem Ergebnis und einer weiteren Analyse nicht-funktionaler (qualitativer)
Anforderungen wurde in Kapitel 4 (Seite 69) eine Systemdefinition fiir ein all-
gemeines (d.h. nicht von konkreten Projektanforderungen beeinflusstes) SISA
vorgenommen. Der folgende Absatz fasst die wichtigsten Aspekte der System-
definition zusammen.

7.1. ZUSAMMENFASSUNG 207

Ziel des Systems zum integrierten simulationsbasierten Assessment ist die
Unterstiitzung des integrierten Assessments durch die Bereitstellung eines kon-
sistenten Rahmens fiir Daten und Simulationsmodelle zum System Erde und
zur Durchfiihrung von Simulationsldufen sowie die Bereitstellung grundlegen-
der Informationen zu durchgefiihrten oder in der Durchfiihrung begriffenen
Projekten. Um dieses Systemziel zu erreichen, miissen verschiedene Betriebs-
mittel (Ressourcen) durch das SISA verwaltet werden. Zu diesen Ressourcen
gehoren sowohl die Simulationsmodelle und die ihnen zugeordneten Daten als
auch andere Software (z.B. zur Vorverarbeitung oder Nachbearbeitung von
Daten) und Dokumente (z.B. Modellbeschreibungen oder Ergebnisberichte).
Dariiber hinaus muss das SISA Informationen iiber Projekte, Analysen, Sze-
narien, beteiligte Personen und andere Hintergrundinformationen bereitstel-
len. Die Daten, die fiir die Simulationsmodelle ben&tigt werden, sollten eben-
falls iiber das SISA zur Verfiigung stehen. Die Durchfithrung und Verwaltung
von Simulationsldufen gehort dariiber hinaus ebenso zur Aufgabe des SISA
wie die Bereitstellung von Simulationsergebnissen. Die Sicherstellung der Kon-
sistenz wird unterstiitzt durch die Dokumentation der Simulationsergebnisse,
der verwendeten Simulationsmodelle, der zugrunde liegenden Simulationslauf-
Spezifikation und des Simulationslaufes selbst. Das SISA sollte in eine Software-
Umgebung eingebettet werden konnen. Insbesondere sollten Schnittstellen
zu Geo-Informationssystemen (GIS) und zu Datenbank-Managementsystemen
(DBMS) vorhanden sein. Neben der gewiinschten Interoperabilitit mit GIS und
DBMS stellt das SISA weitere Anforderungen an die Qualitdt der Software-
Architektur (nicht-funktionale Anforderungen). Wegen des zunehmend notwen-
digen Austausches von Modellteilen zwischen unterschiedlichen Organisationen
sollte das Qualitdtsmerkmal der Austauschbarkeit (zumindest von Modellteilen)
bei der Entwicklung der Architektur besonders beriicksichtigt werden. Die Mo-
difizierbarkeit des Systems (insbesondere von Modellteilen) sollte wegen der oft
notwendigen Anderungen und Aktualisierungen ebenfalls sehr gut sein. Dar-
iiber hinaus wird die Transparenz, Nachvollziehbarkeit und Reproduzierbarkeit
von Assessment-Ergebnissen als wichtiges Qualitidts-Merkmal eines SISA defi-
niert. Um die Anforderung der Nachvollziehbarkeit von Assessment-Ergebnissen
zu erfiillen, ist das Qualitéitsmerkmal der Analysierbarkeit ebenfalls besonders
zu beriicksichtigen.

Diese allgemeine Systemdefinition wurde in Kapitel 5 (Seite 95) als Basis
fiir die Entwicklung der Software-Architektur fiir ein SISA benutzt. Hinweise
zur Abgrenzung von Komponenten wurden der bereits angesprochenen Analyse
vorhandener SISAs entnommen. Da die Wiederbenutzbarkeit und Interopera-
bilitdt im Zusammenhang mit SISAs eine wichtige Rolle spielt, wurden zur Ab-
grenzung und Definition der Architektur-Komponenten auch Standards beriick-
sichtigt. Wichtige Standards, die bei der Entwicklung der Software-Architektur
von Interesse sind, wurden in Kapitel 3 (Seite 25) vorgestellt. Ein SISA ist

System-
ziel

Ressour-
cen

Daten

Simula-
tionen

Konsis-
tenz

Umge-
bung

Qualitat

Archi-
tektur

12
Kompo-
nenten

Simula-
tions-
system

Simula-
tions-
lauf-
Manager

Daten-
zugriff

Katalog-
manager

Daten-
bank-
system

Meta-
daten-
Sammler

208 KAPITEL 7. ZUSAMMENFASSUNG UND AUSBLICK

ein geodatenverarbeitendes System. Aus diesem Grund sind bei dessen Ent-
wicklung insbesondere die Arbeiten des technischen Komitees fiir geographische
Informationen/Geomatik (TC211) der internationalen Organisation fir Stan-
dardisierung (ISO) sowie die Arbeiten des Open-GIS-Konsortiums (OGC) von
Bedeutung. Den gemeinsamen Rahmen fiir die Standards des TC211 und des
OGC bildet der ISO/DIS 19119. Dieser Standard, der die Empfehlung eines
grundsétzlichen architektonischen Aufbaus fiir geodatenverarbeitende Systeme
enthélt, wurde sowohl zur Komponentenabgrenzung als auch fiir die Schnitt-
stellendefinitionen der SISA-Architektur herangezogen.

Um die definierten Systemziele zu erfiillen, wurde die Architektur des SISA
in zwolf Komponenten geteilt. Die zentrale Komponente der Architektur ist
die Simulationssystem-Komponente, die fiir die Berechnung, Speicherung und
Weitergabe von Simulationsergebnissen verantwortlich ist. Die Weitergabe von
Simulationsergebnissen erfolgt iiber eine gesonderte Schnittstelle. Die M6glich-
keit Ergebnisdaten direkt vom Simulationssystem abfragen zu kénnen erhcht
die Interoperabilitidt und Wiederverwendbarkeit des Simulationssystems. Um
die Nachvollziehbarkeit und Reproduzierbarkeit von Simulationsergebnissen zu
gewiihrleisten, werden alle fiir einen Simulationslauf benétigten Einstellungen
von einer separaten Komponente verwaltet und bereitgestellt: dem Simula-
tionslaufmanager. Die Referenzierung von Datensétzen wird nicht iiber den
Ort der Datenspeicherung (z. B. einem Dateinamen), sondern iiber eindeutige
Ressourcen-Namen vorgenommen. Das Simulationssystem greift auf einen der-
art referenzierten Datensatz nicht direkt zu. Stattdessen wendet es sich an die
Datenzugriffskomponente, die fiir den lesenden und schreibenden Zugriff auf Da-
ten und die Transformation zwischen verschiedenen Daten-Formaten zustéindig
ist. Diese Art des Datenzugriffs ermoglicht einen ortstransparenten Datenzugriff
sowie eine automatische Transformationen von Datenformaten. Das Format der
Datenspeicherung wird somit von der ‘internen’ Reprisentation fiir das Simula-
tionssystem getrennt. Dieser Zugriffsmechanismus erlaubt eine schrittweise Mi-
gration hin zu offenen Datenformaten. Die Informationen, die die Datenzugriffs-
komponente zum Zugriff auf einen Datensatz benotigt (z. B. den Dateinamen),
werden vom Katalogmanager, der fiir die Verwaltung von Metadaten zustéindig
ist, bereitgestellt. Die Beschreibung jeder Ressource iiber die 15 Elemente des
Dublin Core Metadata Element Set (ISO 15836) wird als Minimal-Anforderung
der Dokumentation angesehen. Die Datenzugriffskomponente greift auf die Da-
ten innerhalb der Datenbasis zu. Die Datenbasis besteht aus einer Datenbank-
system-Komponente, die fiir die verwaltete Speicherung von Assessment-Daten
zusténdig ist, und kann durch eine lose Sammlung von Dateien ergéinzt wer-
den. Die Integration der Dateien in das SISA erfolgt iiber Metadaten, die zu
jeder Datei vorhanden sein sollten. Die in der Datenbasis vorhandenen Metada-
ten, die nicht direkt vom Nutzer iiber den Katalogmanager eingegeben werden,
werden von Metadaten-Sammlern verarbeitet. Ein Metadaten-Sammler ist ver-

7.1. ZUSAMMENFASSUNG 209

antwortlich fiir die Durchsuchung eines Rechners nach Dateien mit Metadaten
und die automatische Weitergabe der gefundenen Informationen an den Kata-
logmanager. Auf diese Weise wird die Wiederverwendbarkeit von Ressourcen
erhoht. Ein Metadaten-Sammler sollte auf jedem Rechner installiert sein, der
Ressourcen fiir das SISA bereitstellt.

Projektbezogene Kurz-Informationen werden direkt im SISA vorgehalten,
genauer: in der Dokumentationskomponente. Diese Komponente ist verantwort-
lich fiir die Dokumentation und Verwaltung wichtiger Assessment-Informatio-
nen. In diesem ‘Auskunftssystem’ werden u. a. Daten iiber durchgefiihrte Simu-
lationsldufe, beteiligte Personen und verwendete Szenarien hinterlegt und den
Akteuren des SISA (Modellbetreiber, Modellentwickler, Entscheidungstriger,
Interessenten) bereitgestellt. Die Daten dieser Komponenten tragen entschei-
dend zur Transparenz von Assessment-Ergebnissen bei.

Zur Steigerung der Wiederverwendbarkeit von Software sollten haufig wie-
derkehrende Funktionen nicht direkt in der Komponente des Simulationssys-
tems implementiert, sondern in andere Komponenten ausgelagert werden. Im
Rahmen des SISA wurden drei thematische Komponenten abgegrenzt: Die
Geodatenverarbeitungs-Komponente, die fiir die Verarbeitung geographischer
Daten und die Bereitstellung einer Schnittstelle zu eigenstdndigen GIS verant-
wortlich ist, die Komponente zur allgemeinen Datenverarbeitung, die zustindig
ist fiir die Bereitstellung allgemeiner, wieder verwendbarer Datenverarbeitungs-
dienste, und die Komponente der Aufgabensteuerung, in deren Verantwortung
der programmgesteuerte Aufruf anderer Funktionen des SISA liegt (z. B. Funk-
tionen zur Datenvorverarbeitung und Datennachbearbeitung).

Zur Sensitivitédts- und Unsicherheitsanalyse von Simulationsmodellen ist ei-
ne gesonderte Komponente vorgesehen: die Modellanalyse-Komponente. Diese
Komponente schaltet sich zur Modellanalyse als Schicht zwischen das Simula-
tionssystem und die Datenzugriffskomponente. Auf diese Weise kann die Kom-
ponente die Eingabedaten fiir das Simulationsmodell gezielt verdndern und die
Ausgabedaten analysieren. Zur Modellanalyse miissen daher keine Anderun-
gen innerhalb des Simulationssystems vorgenommen werden. Funktionen, die
speziell fiir konkrete Assessments (Projekte) benétigt werden, sollen zur Steige-
rung der Transparenz, Analysierbarkeit und Modifizierbarkeit des System der
Komponente Ergebnisanalyse zugeordnet werden.

Die Simulationssystemkomponente sowie die Komponente zur Ergebnisana-
lyse sind die einzigen Komponenten, die fiir ein neues SISA angepasst werden
miissen. Die anderen Komponenten kénnen generell fiir SISAs anderer Projekte
wieder verwendet werden (von Erweiterungen um neue Funktionen, Datentypen
etc. abgesehen).

Um die Anwendbarkeit der allgemeinen SISA-Architektur zu belegen, wur-
den die zentralen Komponenten unter Verwendung eines konkreten Simulati-
onssystems prototypisch implementiert (Kapitel 6, Seite 165). Die Implementie-

Doku-
menta-
tion

Daten-
verarbei-
tung

Modell-
Analyse

Ergeb-
nisana-
lyse

Wieder-
verwend-
barkeit

Realisie-
rung

210 KAPITEL 7. ZUSAMMENFASSUNG UND AUSBLICK

rungen erfolgten fiir die Simulationsmodelle, die im Rahmen des Assessment-
Projektes GLASS (GLobal ASsessment of Security) eingesetzt wurden. Ziel
des Projektes ist die Analyse der Auswirkungen des globalen Wandels auf die
Wasser- und Nahrungsmittelverfiigbarkeit. Das GLASS-Simulationssystem be-
steht sowohl aus Teilmodellen, die bereits in anderen Projekten verwendet wur-
den (z.B. das Modell WaterGAP) als auch aus Teilmodellen, die speziell fiir
das GLASS-Projekt erstellt wurden (z. B. das Wasserstressmodell und das Nah-
rungsmittelstressmodell).

Tests Unter Nutzung des GLASS-Simulationssystems wurden die folgenden zen-
tralen Konzepte der Architektur iiberpriift:

e die Verwaltung und Bereitstellung wichtiger Assessment-Informationen
durch die Dokumentationskomponente

e die Verwaltung von Zugriffsinformationen und Metadaten innerhalb des
Katalogmanagers

e die automatische Aktualisierung des Katalogmanagers durch Metadaten-
Sammler

e die Kapselung von Simulationsmodellen in der Simulationssystemkompo-
nente

e die Bereitstellung von Simulationslauf-Spezifikationen {iber den Simula-
tionslaufmanager

e der transparente Datenzugriff iiber die Datenzugriffskomponente
e die Datenspeicherung im Datenbanksystem bzw. in Dateien (Datenbasis)

o die Bereitstellung wieder verwendbarer Funktionen zur Geodatenverarbei-
tung und allgemeinen Datenverarbeitung

Ergeb- Durch die prototypische Implementierung konnte gezeigt werden, dass die

nisse Umsetzung der zentralen Konzepte der entwickelten SISA-Architektur auch
mit relativ einfachen technischen Mitteln und unter Verwendung freier Soft-
ware moglich ist. Bei der Anwendung im Rahmen des GLASS-Modells haben
sich insbesondere die Verfolgung der Metadaten-Konzepte (Nutzung der 15
grundlegenden Metadaten-Elemente, Verwendung von eindeutigen Ressourcen-
Bezeichnern, Nutzung von Metadaten-Sammlern) und die Nutzung des Simula-
tionslaufmanagers als entscheidende Schritte zu mehr Transparenz und Nach-
vollziehbarkeit erwiesen. Die Ubertragung der fiir das Simulationssystem de-
finierten Schnittstellen (Operationen init, run, getResult) auf die Teilmodelle
fiihrt zu einer verbesserten Wiederverwendbarkeit und Interoperabilitéit der
Teilmodelle. Ferner hat sich gezeigt, dass die Informationen der Dokumenta-
tionskomponente entscheidend zu einem reibungslosen und transparenten As-
sessment beitragen kénnen.

7.2. AUSBLICK 211

7.2 Ausblick

Die Anwendbarkeit der grundlegenden Prinzipien der entwickelten SISA-Archi-
tektur konnte anhand einer prototypischen Implementierung gezeigt werden.
Der nichste Schritt wire die Entwicklung eines SISA, das vollends auf den
beschriebenen Komponenten beruht. Hierzu miissten zunéchst schnittstellen-
konforme Realisierungen der wieder verwendbaren Komponenten implemen-
tiert und getestet werden. Bei der Realisierung der Komponenten sollte die
Verwendung von Web-Technologien in Betracht gezogen werden, da diese einen
entscheidenden Schritt in Richtung Interoperabilitdt versprechen. Eine weitere
Verbesserung der Architektur kann durch die Integration von Funktionen zur
Metadaten-Speicherung in die Datenzugriffskomponente erfolgen. Eine solche
Integration wiirde die obligatorische Angabe von Metadaten fiir alle zu spei-
chernden Datensétze erlauben und somit die Qualitdtsmerkmale der Nachvoll-
ziehbarkeit und Wiederverwendbarkeit, insbesondere von Simulationsergebnis-
sen, verbessern. Ein Abgleich der Schnittstellen der Datenzugriffskomponente
mit weiteren Spezifikationen des OpenGIS-Konsortiums verspricht ebenfalls ei-
ne Verbesserung der Interoperabilitit eines SISA und sollte aus diesem Grund
vorgenommen werden.

212 KAPITEL 7. ZUSAMMENFASSUNG UND AUSBLICK

Literaturverzeichnis

[ADEPT 2001] ALEXANDRIA DIGITAL EARTH PROTOTYPE — METADATA
FOR MODELS WORKING GROUP (Hrsg.): Content Standard for Compu-
tational Models. Version 1.2. Santa Barbara, USA : University of Cali-
fornia, 2001. — URL http://www.ncgia.ucsb.edu/projects/metadata/
standard/standard_1.2.doc

[Alcamo 1994] Avrcamo, Joseph (Hrsg.): IMAGE 2.0: Integrated modelling
of global climate change. Dordrecht, Boston, London : Kluwer Academic
Publishers, 1994. — reprinted from Water, Air, and Soil Pollution, Volume
76, Nos. 1-2, 1994. — ISBN 0-7923-2860-4

[Alcamo 2001] ALcAMO, Joseph: Scenarios as tools for international environ-
mental assessment. Luxembourg : European Environmental Agency, Office
for Official Publication of the European Communities, 2001 (Experts’ corner
report, Prospects and scenarios No. 5; Environmental issues report No. 24).
— ISBN 92-9167-402-8

[Alcamo 2002] ALcAMO, Joseph: Three issues for improving integrated mo-
dels: uncertainty, social science, and legitimacy. In: GETHMANN, Carl F.
(Hrsg.) ; LINGNER, Stephan (Hrsg.): Integrative Modellierung zum Globalen
Wandel. Berlin, Heidelberg, New York u.a. : Springer, 2002 (Wissenschaft-
sethik und Technikfolgenbeurteilung, Band 17), S. 3—14. — ISBN 3-540-43253-
1

[Alcamo u.a. 2003a] ALCAMO, Joseph ; DOLL, Petra ; HENRICHS, Thomas ;
KASPAR, Frank ; LEHNER, Bernhard ; SIEBERT, Stefan: Development and
testing of the WaterGAP 2 global model of water use and availability. In:
Hydrological Sciences Journal 48 (2003), Nr. 3, S. 317-338

[Alcamo u. a. 2003b] ALcAMO, Joseph ; DOLL, Petra ; HENRICHS, Thomas ;
KASPAR, Frank ; LEHNER, Bernhard ; SIEBERT, Stefan: Global estimates
of water withdrawals and availability under current and future ‘business-
as-usual’ conditions. In: Hydrological Sciences Journal 48 (2003), Nr. 3,
S. 339-348

213

http://www.ncgia.ucsb.edu/projects/metadata/standard/standard_1.2.doc
http://www.ncgia.ucsb.edu/projects/metadata/standard/standard_1.2.doc

214 LITERATURVERZEICHNIS

[Alcamo u. a. 2003c] ALCAMO, Joseph ; DRONIN, Nikolai ; ENDEJAN, Marcel ;
GOLUBEV, Genady ; KIRILENKO, Andrei: Will Climate Change Affect Food
and Water Security in Russia? Summary Report of the International Project
on Global Environmental Change and its Thread to Food and Water Security
in Russia. Kassel : Center for Environmental Systems Research, Universtity
of Kassel, 2003 (Report No. A0302). — URL http://www.usf.uni-kassel.
de/usf/archiv/dokumente/projekte/rglass. summary.pdf

[Alcamo u.a. 2001] ALcAMO, Joseph ; ENDEJAN, Marcel ; KASPAR, Frank ;
ROscH, Thomas: The GLASS model: a strategy for quantifying global en-
vironmental security. In: Environmental Science and Policy 4 (2001), Nr. 1,
S. 1-12

[Alcamo u. a. 1998a] ALcaMoO, Joseph ; KREILEMAN, Eric ; KROL, Maarten ;
LEEMANS, Rik ; BOLLEN, Johannes ; MINNEN, Jelle van ; SCHAEFFER, Mi-
chiel ; TOET, Sander ; VRIES, Bert de: Global modelling of environmental
change: an overview of IMAGE 2.1. In: (Alcamo u. a., 1998b), S. 3-94

[Alcamo u.a. 1998b] Arcamo, Joseph (Hrsg.) ; LEEMANS, Rik (Hrsg.) ;
KREILEMAN, Eric (Hrsg.): Global Change Scenarios of the 21st Century
- Results from the IMAGE 2.1 Model. Oxford, UK : Pergamon, 1998

[Alcamo u.a. 1990] Arcamo, Joseph (Hrsg.) ; SHAW, Roderick (Hrsg.) ; HOR-
DUJK, Leen (Hrsg.): The Rains Model of Acidification — Science and Strategies
in BEurope. Dordrecht; Boston; London : Kluwer Academic Publishers, 1990.
— ISBN 0-7923-0781-X (HB), 0-7923-0782-8 (PB)

[Anderson u.a. 2000 ANDERSON, Richard ; BIRBECK, Mark ; KAy, Michael ;
U.A.: XML Professionell. 1. Aufl. Bonn : MITP-Verlag, 2000. — 957 Seiten

[ANZLIC 2001] Group, Australia New Zealand Land Information Council
Metadata W. (Hrsg.): ANZLIC Metadata Guidelines: Core metadata ele-
ments for geographic data in Autralia and New Zealand. Version 2. Bel-
connen, Australia : ANZLIC, 2001. — URL http://www.anzlic.org.au/
asdi/metagrp.htm

[Bakkes u.a. 2000] BAKKES, Jan A. ; GROSSKURTH, Jasper ; IDENBURG,
Annemarth M. ; ROTHMAN, Dale .. ; VUUREN, Detlef P. van: Descrip-
tion of selected global models for scenario studies on environmentally su-
stainable development. Bilthoven, The Netherlands : National Institut of
Public Health and the Environment (RIVM), 2000 (Global Dynamics and
Sustainable Development Programme, Global Report Series No. 30). — URL
http://www.rivm.nl/bibliotheek/rapporten/402001018.pdf. — RIVM
Report No. 402001018

http://www.usf.uni-kassel.de/usf/archiv/dokumente/projekte/rglass.summary.pdf
http://www.usf.uni-kassel.de/usf/archiv/dokumente/projekte/rglass.summary.pdf
http://www.anzlic.org.au/asdi/metagrp.htm
http://www.anzlic.org.au/asdi/metagrp.htm
http://www.rivm.nl/bibliotheek/rapporten/402001018.pdf

LITERATURVERZEICHNIS 215

[Balzert 1996] BALZERT, Helmut: Lehrbuch der Software- Technik: Software-
Entwicklung. Heidelberg, Berlin, Oxford : Spektrum Akademischer Verlag,
1996 (Lehrbiicher der Informatik). — ISBN 3-8274-0042-2

[Balzert 1998] BALZERT, Helmut: Lehrbuch der Software-Technik: Software-
Management, Software-Qualitdtssicherung, Unternehmensmodellierung. Hei-
delberg, Berlin : Spektrum Akademischer Verlag, 1998 (Lehrbiicher der In-
formatik). — ISBN 3-8274-0065-1

[Balzert 2000] BALZERT, Helmut: Lehrbiicher der Informatik. Bd. 1.
Software-Entwicklung: Lehrbuch der Software-Technik. 2. Aufl. Heidelberg,
Berlin : Spektrum, Akad. Verlag, 2000. — ISBN 3-8274-0480-0

[Bartelme 2000] BARTELME, Norbert: Geoinformatik: Modelle, Strukturen,
Funktionen. 3., erweiterte u. aktualisierte Aufl. Berlin, Heidelberg, New
York : Springer-Verlag, 2000. — ISBN 3-540-65988-9

[Benz u.a. 1997] BENZ, Joachim ; HocH, Ralf ; GABELE, Tobias: Documen-
tation of Mathematical Models in Ecology — an Unpopular Task? In: In-
ternational Society for Ecological Modelling’s (ISEM) Newsletter (Ecomod)
(1997), December, S. 1-7

[Benz u. a. 2001] BENZz, Joachim ; HocH, Ralf ; LEGovic, Tarzan: ECOBAS
— modelling and documentation. In: Ecological Modelling (2001), Nr. 1-3,
S. 3-15

[Berners-Lee u.a. 1998] BERNERS-LEE, Tim (Hrsg.) ; FIELDING, Roy T.
(Hrsg.) ; MASINTER, Larry (Hrsg.): Uniform Resource Identifiers (URI):
Generic Syntaz. IETF, 1998 (RFC 2396). — URL http://www.ietf.org/
rfc/rfc2396.txt

[Berners-Lee u.a. 1994] BERNERS-LEE, Tim (Hrsg.) ; MASINTER, Larry
(Hrsg.) ; McCaHILL, Mark (Hrsg.): Uniform Resource Locators (URL).
CERN, 1994 (RFC 1738). — URL http://www.ietf.org/rfc/rfc1738.
txt?number=1738

[Bill und Fritsch 1994] BILL, Ralf ; FRITSCH, Dieter: Grundlagen der Geo-
Informationssysteme. Bd. 1 (Hardware, Software und Daten). 2. Auflage.
Heidelberg : Wichmann, 1994. — ISBN 3-87907-265-5

[Boosch u.a. 1999] BooscH, Grady ; RUMBAUGH, James ; JACOBSON, Ivar:
Das UML-Benutzerhandbuch. 2. Aufl. Bonn : Addison Wesley, 1999 (Pro-
fessionelle Softwareentwicklung). — ISBN 3-8273-1486-0

[Bossel 1994] BOSSEL, Hartmut: Modellbildung und Simulation: Konzepte,
Verfahren und Modelle zum Verhalten dynamischer Systeme. 2. verdnderte
Auflage. Braunschweig; Wiesbaden : Vieweg, 1994

http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc1738.txt?number=1738
http://www.ietf.org/rfc/rfc1738.txt?number=1738

216 LITERATURVERZEICHNIS

[Bratley u.a. 1987] BRATLEY, Paul ; FOX, Bennett L. ; SCHRAGE, Linus E.:
A Guide to Simulation. Second Edition. Berlin; Heidelberg; New York :
Springer, 1987. — ISBN 3-540-96467-3 u. 0-387-96467-3

[Busch u.a. 2002] BuscH, C. ; Davip, O. ; KRALISCH, S. ; KRAUSE, P.:
Using the Object Modelling System OMS for future proof hydrological mo-
del development and application. In: Fvironmental Modelling and Software
(submitted) (2002)

[Buschmann u.a. 1998] BuscHMANN, Frank ; MEUNIER, Regine ; ROH-
NERT, Hans ; SOMMERLAD, Peter ; STAL, Michael: Pattern-orientierte
Software-Architektur: FEin Pattern-System. Bonn, Paris u.a. : Addison-
Wesley-Longman, 1998. — ISBN 3-8273-1282-5

[Carson 2000] CARSON, George S.: Spatial standardization. In: ACM SIG-
GRAPH Computer Graphics 34 (2000), Nr. 3, S. 38-41. — ISSN 0097-8930

[Chen und Norman 1992] CHEN, Minder ; NORMAN, Ronald J.: A Framework
for Integrated CASE. In: IEEFE Software 9 (1992), March/April, Nr. 2, S. 18-
22

[Clark u.a. 1975] CLARK, John ; COLE, Sam ; CURNOW, Ray ; HOPKINS,
Mike: Global Simulation Models — A Comparative Study. London, New York,
Sydney, Toronto : John Wiley & Sons, 1975. — ISBN 0-471-15899-2

[Cocks u.a. 1998] Cocks, A.T. ; RODGERS, LR. ; SKEFFINGTON, R.A. ;
WEBB, A. H.: The limitations of integrated assessment modelling in deve-
loping air pollution cotrol policies. In: Environmental Pollution 102 (1998),

Nr. S1, S. 635-639

[Cook und Daniels 1994] CoOOK, Steve ; DANIELS, John: Designing Object
Systems - Object-Oriented Modelling with Syntropy. New York, London,
Toronto, Sydney, Tokyo, Singopore : Prentice Hall, 1994 (Object-Oriented
Series)

[Cox u.a. 2003] Cox, Simon (Hrsg.) ; DAISEY, Paul (Hrsg.) ; LAKE, Ron
(Hrsg.) ; PORTELE, Clemens (Hrsg.) ; WHITESIDE, Arliss (Hrsg.): OpenGIS®
Geography Markup Language (GML) Implementation Specification. Versi-
on 3.0. Wayland, Massachusetts, USA : Open GIS Consortium, 2003. —
URL http://www.opengis.org/techno/documents/02-023r4.pdf. — Pro-
ject document number: OGC 02-023r4

[Daigle u.a. 2002] DAIGLE, Leslie L. ; GULIK, Dirk-Willem van ; TANNELLA,
Renato ; FALTSTROM, Patrik: Uniform Resource Names (URN) Namespace
Definition Mechanisms. IETF, October 2002 (RFC 3406). — URL http:
//www.ietf.org/rfc/rfc3406.txt?number=3406

http://www.opengis.org/techno/documents/02-023r4.pdf
http://www.ietf.org/rfc/rfc3406.txt?number=3406
http://www.ietf.org/rfc/rfc3406.txt?number=3406

LITERATURVERZEICHNIS 217

[de Bruin 1996] DE BRUIN, Jos: Getting Started with M. Bilthoven, Net-
herland: National Institute of Public Health and the Environment (RIVM)
(Veranst.), 1996. — URL www.m.rivm.nl/html/start/start.htm

[de Bruin u. a. 1996] DE BRUIN, Jos ; DE VINK, Pascal ; vAN WLJK, Jarke: M —
A Visual Simulation Tool. In: Simulation in the Medical Sciences Conference,
Proceedings of the 1996 Western Multiconference. San Diego : The Society
for Computer Simulation, 1996, S. 181-186. — URL www.m.rivm.nl

[DIN 1994] DEUTSCHES INSTITUT FUR NORMUNG E.V. (Hrsg.): DIN 66272:
Bewertung von Softwareprodukten — Qualitdtsmerkmale und Leitfaden zu ih-
rer Verwendung. Berlin, Wien, Ziirich : Beuth, Oktober 1994 (Informations-
technik). — (Identisch mit ISO/TEC 9126:1991)

[DIN 1995] DEUTSCHES INSTITUT FUR NORMUNG E.V. (Hrsg.): DIN-
Taschenbuch 166: Software — Enticklung, Dokumentation, Qualitdt. Normen
(Informationstechnik 4). 4. Aufl., Stand der abgedr. Normen: August 1995.
Berlin, Wien, Ziirich : Beuth, 1995. — ISBN 3410134522

[DIN 2000] DEeUTSCHES INSTITUT FUR NORMUNG E.V. (Hrsg.): DIN EN
IS0 9000 Qualititsmanagementsysteme — Grundlagen und Begriffe. Berlin,
Wien, Ziirich : Beuth, Dezember 2000

[D6ll u. a. 2003] DOLL, Petra ; KASPAR, Frank ; LEHNER, Bernhard: A global
hydrological model for deriving water availability indicators: model tuning
and validation. In: Journal of Hydrology 270 (2003), Nr. 1-2, S. 105-134

[Dowlatabadi 1995] DoOwLATABADI, Hadi: Integrated assessment models of
climate change — An incomplete overview. In: Energy Policy 23 (1995),
Nr. 4/5, S. 289-296

[Duden 1996] DroSDOWSKI, Giinther (Hrsg.) ; MULLER, Wolfgang (Hrsg.) ;
SCHOLZE-STUBENRECHT, Werner (Hrsg.) ; WERMKE, Matthias (Hrsg.): Du-
den — Deutsches Universalworterbuch. 3., neu bearbeitete und erweiterte
Auflage. Mannheim, Leipzig, Wien, Ziirich : Dudenverlag, 1996

[Easterling 1997] EASTERLING, William E.: Why regional studies are needed
in the development of full-scale integrated assessment modelling of global
change processes. In: Global Environmental Change 7 (1997), Nr. 4, S. 337—
356

[Engesser 1993] LEKTORAT DES B.I.-WISSENSCHAFTSVERLAGS UNTER LEI-
TUNG VON HERMANN ENGESSER (Hrsg.): Duden ‘Informatik’: ein Sachlexi-
kon fiir Studium und Praxis. 2., vollst. iiberarb. und erw. Aufl. Mannheim;
Leipzig; Wien; Ziirich : Dudenverlag, 1993

www.m.rivm.nl/html/start/start.htm
www.m.rivm.nl

218 LITERATURVERZEICHNIS

[Farooqui u.a. 1995] Farooqul, Kazi ; LOGRIPPO, Luigi ; MEER, Jan de:
The ISO Reference Model for Open Distributed Processing: an introduction.
In: Computer Networks and ISDN Systems 2 (1995), Nr. 8, S. 1215-1229

[FGDC 1998] FEDERAL GEOGRAPHIC DATA COMMITTEE (Hrsg.): Con-
tent Standard for Digital Geospatial Metadata. Version 1998. Federal Geo-
graphic Data Committee, 1998. — URL http://www.fgdc.gov/standards/
documents/standards/metadata/v2_0698.pdf. - FGDC-STD-001-1998

[Fink 2002] FINK, Alexander: Szenariotechniken. In: SOMMERLATTE, Tom
(Hrsg.): Angewandte Systemforschung — Ein interdisziplindrer Ansatz. Wies-
baden : Gabler, 2002, Kap. 3.4, S. 297-319. — ISBN 3-409-11879-9

[Fischer u. a. 2000] FISCHER, Giinther ; VELTHUIZEN, Harrij van ; NACHTER-
GAELE, Freddy O.: Global Agro-Ecological Zones Assessment: Methodology
and Results. International Institute for Applied Systems Analysis, 2000 (In-
terim Report IR-00-064). — URL http://www.iiasa.ac.at/Publications/
Documents/IR-00-064.pdf

[Fitzke und Miiller 2000] F1TZKE, Jens ; MULLER, Markus: Simple Featu-
res in der Praxis: OpenGIS-Strukturen in Auskunftssystemen fiir Umwelt-
und Naturschutz. In: CREMERS, Armin B. (Hrsg.) ; GREVE, Klaus (Hrsg.):
Umweltinformatik 00, Umweltinformation fir Planung, Politik und Offent-
lichkeit. 14. Internationales Symposium ,Informatik fiir den Umweltschutz®
der Gesellschaft fiir Informatik (GI), Bonn 2000 Bd. 1. Marburg : Metropolis
Verlag, 2000, S. 484-492

[Foegen und Battenfeld 2001] FOEGEN, Malte ; BATTENFELD, Jorg: Die Rolle
der Architektur in der Anwendungsentwicklung. In: Informatik-Spektrum 24
(2001), Nr. 5, S. 290-301

[Gamma u.a. 1996] GaMMa, Erich ; HELM, Richard ; JoHNSON, Ralph ;
VLISSIDES, John: FEntwurtsmuster: Elemente wiederverwendbarer objektori-

entierter Software. Miinchen; Boston; San Francisco u.a. : Addison-Wesley,
1996 (Professionelle Softwareentwicklung). — ISBN 3-89319-950-0

[Goldfarb und Prescod 2000] GOLDFARB, Charles F. ; PRESCOD, Paul: The
XML Handbook. 2nd Edition. Upper Saddle River, NJ, USA : Prentice Hall
PTR, 2000. — ISBN 0-13-014714-1

[Gordon 2000] GORDON, Alan: The COM and COM+ programming primer.
Upper Saddle River, New Jersey, USA : Prentice Hall PTR, 2000 (Prentice
Hall PTR Microsoft Technologies Series). — ISBN 0-13-085032-2

[Grams 1992] GraMS, Timm: Simulation: strukturiert und objektorientiert
programmaert. Mannheim; Leipzig;Wien; Ziirich : BI Wissenschaftsverlag,
1992. — ISBN 3-411-15631-7

http://www.fgdc.gov/standards/documents/standards/metadata/v2_0698.pdf
http://www.fgdc.gov/standards/documents/standards/metadata/v2_0698.pdf
http://www.iiasa.ac.at/Publications/Documents/IR-00-064.pdf
http://www.iiasa.ac.at/Publications/Documents/IR-00-064.pdf

LITERATURVERZEICHNIS 219

[Greenspan und Bulger 2001] GREENSPAN, Jay ; BULGER, Brad:
MySQL/PHP-Datenbankanwendungen. Bonn : mitp-Verlag, 2001. — ISBN
3-8266-0805-4

[Gulbins und Obermayr 1995] GULBINS, Jiirgen ; OBERMAYR, Karl: Uniz
System V.4: Begriffe, Konzepte, Kommandos, Schnittstellen. 4., iiberarb.
Aufl. Bonn, Rending u.a. : Springer Compass, 1995. — ISBN 3-540-58864-7

[Hennicker u.a. 2003] HENNICKER, Rolf ; BARTH, Michael ; KrRAUS, An-
dreas ; LubpwiG, Matthias: An Integrated Simulation System for Glo-
bal change Research in the Upper Danube Basin. In: First Interna-
tional NAISO Symposium on Information Technologies in Environmental
Engineering (ITEE), June 24 - June 27, 2003 Gdansk University of
Technology, Poland (Veranst.), URL http://www.glowa-danube.de/PDF/
Publications/100041-00-RH-064.pdf, 2003

[Hering u. a. 2000] HERING, Ekbert ; GUTEKUNST, Jiirgen ; DYLLONG, Ulrich:
Handbuch der praktischen und technischen Informatik. 2., neubearbeitete
und erweiterte Auflage. Berlin, Heidelberg, New York : Springer, 2000. —
ISBN 3-540-67626-0

[Herold 1999a] HEROLD, Helmut: Linuz-Uniz-Kurzreferenz. 2., iiberarb. Aufl.
Bonn; Reading, Mass. u.a. : Addison-Wesley-Longman, 1999 (Linux/Unix
und seine Werkzeuge). — ISBN 3-8273-1536-0

[Herold 1999b] HEROLD, Helmut: Linuz-Uniz-Profitools: awk, sed, lex, yacc
und make. 3., iiberarb. Aufl. Bonn; Reading, Mass. u.a. : Addison-Wesley-
Longman, 1999 (Linux/Unix und seine Werkzeuge). — ISBN 3-8273-1448-8

[Herrmann u.a. 1998] HERRMANN, Uwe ; LENZ, Dierk ; UNBESCHEID, Giin-
ter: Oracle8 fiir den DBA: Verwalten, optimieren, vernetzen. Bonn; Reading,
Massachusetts u.a. : Addison-Wesley-Longman, 1998. — ISBN 3-8273-1310-0

[Hill u.a. 2001] HiLL, Linda L. ; CROSIER, Scott J. ; SMITH, Terence R. ;
GOODCHILD, Michael: A Content Standard for Computational Models. In: D-
Lib Magazine 7 (2001), Nr. 6. — URL http://www.dlib.org/dlib/june01/
hill/06hill.html. — ISSN 1082-9873

[Hoch u.a. 1998] HocH, Ralf ; GABELE, Tobias ; BENZ, Joachim: Towards a
standard for documentation of mathematical models in ecology. In: Ecological
Modelling 113 (1998), S. 3-12

[IEEE 2000a] INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS
(Hrsg.): IEEE 1516-2000: Standard for Modeling and Simulation (MES)
High Level Architecture (HLA) - Framework and Rules. IEEE, 2000. — ISBN
0-7381-2620-9

http://www.glowa-danube.de/PDF/Publications/100041-00-RH-064.pdf
http://www.glowa-danube.de/PDF/Publications/100041-00-RH-064.pdf
http://www.dlib.org/dlib/june01/hill/06hill.html
http://www.dlib.org/dlib/june01/hill/06hill.html

220 LITERATURVERZEICHNIS

[IEEE 2000b] INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS
(Hrsg.): IEEFE 1516.1-2000: Standard for Modeling and Simulation (MES)
High Level Architecture (HLA) — Federate Interface Specification. IEEE,
2000. — ISBN 0-7381-2621-7

[IEEE 2000c] INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS
(Hrsg.): IEEE 1516.2-2000: Standard for Modeling and Simulation (ME&S)
High Level Architecture (HLA) — Object Model Template (OMT) Specificati-
on. IEEE, 2000. — ISBN 0-7381-2523-3

[IEEE 2003] INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS
(Hrsg.): IEEFE 1516.3-2003: Recommended Practice for High Level Architec-
ture (HLA) Federation Development and Ezecution Process (FEDEP). IEEE,
2003. — ISBN 0-7381-3584-4

[IPCC 2001] MCcCARTHY, James J. (Hrsg.) ; CANZIANI, Osvaldo F. (Hrsg.) ;
LEARY, Neil A. (Hrsg.) ; DOKKEN, David J. (Hrsg.) ; WHITE, Kasey S.
(Hrsg.): Climate Change 2001: Impacts, Adaptation and Vulnerability — Con-
tribution of Working Group II to the Third Assessment Report of Intergo-
vernmental Panel on Climate Change. Cambridge, UK : Cambridge Univer-
sity Press, 2001. — URL http://www.grida.no/climate/ipcc_tar/wg2/. —
ISBN 0-521-01500-6

[ISO 1989] INTERNATINAL ORGANIZATION FOR STANDARDIZATION (Hrsg.):
ISO/IEC 2382-7: Information technology — Vocabulary — Part 7: Computer
programming. Geneve, Switzerland : Internatinal Organization for Standar-
dization, 1989

[ISO 1990] INTERNATINAL ORGANIZATION FOR STANDARDIZATION (Hrsg.):
ISO/IEC 2382-20: Information technology — Vocabulary — Part 20: System
development. Geneve, Switzerland : Internatinal Organization for Standar-
dization, 1990

[ISO 1993] INTERNATINAL ORGANIZATION FOR STANDARDIZATION (Hrsg.):
ISO/IEC 2582-1: Information technology — Vocabulary — Part 1: Fundamen-
tal terms. Geneve, Switzerland : Internatinal Organization for Standardiza-
tion, 1993

[ISO 1998] INTERNATINAL ORGANIZATION FOR STANDARDIZATION (Hrsg.):
ISO/IEC 10746: Reference Model — Open Distributed Processing (RM-ODP),
Part 1. Geneve, Switzerland : International Organization for Standardizati-
on, 1998

[ISO 2000] INTERNATIONAL ORGANIZATION FOR STANDADIZATION -
ISO/TC211 SECRETARIAT (Hrsg.): ISO/DIS 199115 Geographic Infor-

http://www.grida.no/climate/ipcc_tar/wg2/

LITERATURVERZEICHNIS 221

mation — Metadata. Version 5. Geneve, Switzerland : Internatinal Or-
ganization for Standardization, 2000 Siehe (Kottmann, 2001). — URL
http://www.opengis.org/techno/abstract/01-111.pdf. — Project Do-
cument Number: 01-111.doc

[ISO 2003] INTERNATINAL ORGANIZATION FOR STANDARDIZATION (Hrsg.):
IS0 15836: Information and Documentation — The Dublin Core metadata
element set. Geneve, Switzerland : Internatinal Organization for Standardi-
zation, 2003

[Jaeger u.a. 2002] JAEGER, Carlo C. ; LEIMBACH, Marian ; CARRARO, Car-
lo ; HASSELMANN, Klaus ; HOURCADE, Jean-Charles ; KEELER, Andrew ;
KLEIN, Rupert: Integrated Assessment Modeling: Modules for Cooperati-
on / Fondazione Eni Enrico Mattei. URL http://www.feem.it/Feem/Pub/
Publications/WPapers/WP2002-053.htm, July 2002 (NOTA DI LAVORO
53.2002). — Working Paper

[Kainuma u.a. 2003] KaiNuma, Mikiko (Hrsg.) ; MATSUOKA, Yuzuru
(Hrsg.) ; MoRITA, Tsuneyuki (Hrsg.): Climate Policy Assessment — Asia-
Pacific Integrated Modeling. Tokyo; Berlin; Heidelberg; New York : Springer,
2003. — ISBN 4-431-70264-4

[Kickert u.a. 1999] KICKERT, Ronald N. ; TONELLA, Giorgio ; SIMONOV,
Alexander ; KRUPA, Sagar V.: Predictive modeling of effects under global
change. In: Environmental Pollution 100 (1999), S. 87-132

[Klein Goldewijk und Battjes 1997] KLEIN GOLDEWUIK, C.G.M. ; BATTJES,
J.J.: A Hundred Year (1890 - 1990) Database for Integrated Environmen-
tal Assessments (HYDE, version 1.1) / National Institute of Public Health
and the Environment (RIVM). February 1997 (Report Nr. 422514002). —
Forschungsbericht

[Klein Goldewijk 2001] KLEIN GOLDEWLIK, Kees: Estimating global land
use change over the past 300 years: The HYDE Database. In: Global Biogeo-
chemical Cycles 15 (2001), June, Nr. 2, S. 417-433

[Kottman 1999] KotTMmaN, Cliff (Hrsg.): The OpenGIS™ Abstract Spe-
cification — Topic 12: OpenGIS Service Architecture. Version 4. Way-
land, Massachusetts, USA : Open GIS Consortium, 1999. — URL http:
//www.opengis.org/techno/abstract/99-112.pdf. — Project document
number: 99-112.doc

[Kottmann 1999a] KoTTMmanN, Cliff (Hrsg.): The OpenGIS™ Abstract
Specification — Topic 0: Abstract Specification Overview. Version 4. Way-
land, Massachusetts, USA : Open GIS Consortium, 1999. — URL http:

http://www.opengis.org/techno/abstract/01-111.pdf
http://www.feem.it/Feem/Pub/Publications/WPapers/WP2002-053.htm
http://www.feem.it/Feem/Pub/Publications/WPapers/WP2002-053.htm
http://www.opengis.org/techno/abstract/99-112.pdf
http://www.opengis.org/techno/abstract/99-112.pdf
http://www.opengis.org/techno/abstract/99-100r1.pdf

222 LITERATURVERZEICHNIS

//www.opengis.org/techno/abstract/99-100rl.pdf. — Project Docu-
ment Number: 99-100r1.doc

[Kottmann 1999b] KorTMANN, Cliff (Hrsg.): The OpenGIS™ Abstract Spe-
cification — Topic 10: Feature Collections. Version 4. Wayland, Massachu-
setts, USA : Open GIS Consortium, 1999. - URL http://www.opengis.org/
techno/abstract/99-110.pdf. — Project Document Number: 99-110.doc

[Kottmann 1999c] KoTT™mANN, Cliff (Hrsg.): The OpenGIST™ Abstract Spe-
cification — Topic 13: Catalog Services. Version 4. Wayland, Massachusetts,
USA : Open GIS Consortium, 1999. — URL http://www.opengis.org/
techno/abstract/99-113.pdf. — Project document number: 99-113.doc

[Kottmann 1999d] KoTTMANN, Cliff (Hrsg.): The OpenGIS™ Abstract Spe-
cification — Topic 16: Image Coordinate Transformation Services. Version
4. Wayland, Massachusetts, USA : Open GIS Consortium, 1999. — URL
http://www.opengis.org/techno/abstract/99-116r2.pdf. — Project do-
cument number: 99-116r2.doc

[Kottmann 1999¢] KoTTMANN, Cliff (Hrsg.): The OpenGIS™ Abstract Spe-
cification — Topic 5: Features. Version 4. Wayland, Massachusetts, USA :
Open GIS Consortium, 1999. — URL http://www.opengis.org/techno/
abstract/99-105r2.pdf. — Project Document Number: 99-105r2.doc

[Kottmann 2000] KoTTMANN, Cliff (Hrsg.): The OpenGIS™ Abstract Spe-
cification — Topic 6: The Coverage Type and its Subtypes. Version 6. Way-
land, Massachusetts, USA : Open GIS Consortium, 2000. — URL http:
//www.opengis.org/techno/abstract/00-106.pdf. — Project Document
Number: 00-106.doc

[Kottmann 2001] KoTTMANN, Cliff (Hrsg.): The OpenGIS™ Abstract Spe-
cification — Topic 11: OpenGIS™ Metadata (ISO/TC 211 DIS 19115). Ver-
sion 5. Wayland, Massachusetts, USA : Open GIS Consortium, 2001. — URL
http://www.opengis.org/techno/abstract/01-111.pdf. — Project Docu-
ment Number: 01-111.doc

[Kriick u.a. 2001] KRrUcCK, Carsten ; PLOETZ, Christiane ; WIEDMANN,
Thomas ; ZWECK, Axel ; BMBF, Bundesministerium fiir Bildung und F.
(Hrsg.): Forschung zum Globalen Wandel — Wissen fiir die Zukunft der Er-
de. Miinchen : Walter Biering GmbH, Mediahaus Grafischer Betrieb, Juni
2001 (BMBF Publik)

[Kuhl u.a. 1999] KuUHL, Frederick ; WEATHERLY, Richard ; DAHMANN, Ju-

dith: Creating computer simulation systems: an indroduction to the high level
architecture. Prentice Hall PTR, 1999

http://www.opengis.org/techno/abstract/99-100r1.pdf
http://www.opengis.org/techno/abstract/99-100r1.pdf
http://www.opengis.org/techno/abstract/99-110.pdf
http://www.opengis.org/techno/abstract/99-110.pdf
http://www.opengis.org/techno/abstract/99-113.pdf
http://www.opengis.org/techno/abstract/99-113.pdf
http://www.opengis.org/techno/abstract/99-116r2.pdf
http://www.opengis.org/techno/abstract/99-105r2.pdf
http://www.opengis.org/techno/abstract/99-105r2.pdf
http://www.opengis.org/techno/abstract/00-106.pdf
http://www.opengis.org/techno/abstract/00-106.pdf
http://www.opengis.org/techno/abstract/01-111.pdf

LITERATURVERZEICHNIS 223

[Kuhn u.a. 2001] KUHN, Werner ; BASEDOW, Sebastian ; BROX, Christoph ;
RIEDEMANN, Catharina ; RossoL, Holger ; SENKLER, Kristian ; ZENS, Ka-
tharina ; LANDES NORDRHEIN-WESTFALEN, Ministerprisident des (Hrsg.):
GDI Geodaten-Infrastruktur Nordrhein- Westfalen — Referenzmodell 3.0. Diis-
seldorf : media NRW, 2001 (media NRW: Band 26)

[Liebl 1995] LIEBL, Franz: Simulation: problemorientierte Einfihrung. 2.
iiberarbeitete Auflage. Miinchen; Wien; Oldenbourg : Oldenbourg Verlag,
1995. — ISBN 3-486-23373-4

[Luiten 1999] LUITEN, H.: A legislative view on science and predictive models.
In: Environmental Pollution 100 (1999), Nr. 100, S. 5-11

[Maxwell 1999] MAXWELL, Thomas: A paris-model approach to modular
simulation. In: Environmental Modelling and Software 14 (1999), Nr. 6,
S. 511-517

[McCarthy u.a. 2001] McCARTHY, James J. ; CANZIANI, Oswaldo F. ; LEA-
RY, Neil a. ; DOKKEN, David J. ; WHITE, Kasey S.: Climate Change 2001: Im-
pacts, Adaption & Vulnerability — Technical Summary. In: Climate Change
2001: Impacts, Adaptions, and Vulnerability. Contribution of Working Group
11 to the Third Assessment Report of the Intergovernmental Panel on Climate
Change (IPCC). Cambridge, UK : Cambridge University Press, 2001

[Mealling und Denenberg 2002] MEALLING, Michael (Hrsg.) ; DENENBERG,
Ray (Hrsg.): Report from the Joint WSC/IETF URI Planning Interest
Group: Uniform Resource Identifiers (URIs), URLs, and Uniform Resource
Names. (URNs): Clarifications and Recommendations. IETF, August 2002
(RFC 3305). — URL http://www.ietf.org/rfc/rfc3305.txt?number=
3305

[Mesarovic u.a. 1996] MEsARoOVIC, Mihajlo ; McGINNIS, David L. ; WEST,
Dalton A.: Cybernetics of Global Change: Human Dimensions and Managing
of Complexity. UNESCO, 1996 (MOST Policy Paper No. 3). — Forschungs-
bericht

[Moats 1997] Moarts, Ryan: URN Syntaz. IETF, 1997 (RFC 2141). — URL
http://www.ietf.org/rfc/rfc2141.txt?number=2141

[Nakicenovic u.a. 2000 NAKICENOVIC, Nebojsa ; ALCAMO, Joseph ; DAVIS,
Gerald ; ET AL.: Special Report on Emission Scenarios. Cambridge, UK :
Cambridge University Press, 2000. — ISBN 0-521-80493-0

[Nebert 2002] NEBERT, Douglas (Hrsg.): The OpenGIS® Implementation
Specification — Catalog Services. Version 1.1.1. Wayland, Massachusetts,
USA : Open GIS Consortium, 2002. — URL http://www.opengis.org/
techno/specs/02-087r3.pdf. — Project document number: OGC 02-087r3

http://www.ietf.org/rfc/rfc3305.txt?number=3305
http://www.ietf.org/rfc/rfc3305.txt?number=3305
http://www.ietf.org/rfc/rfc2141.txt?number=2141
http://www.opengis.org/techno/specs/02-087r3.pdf
http://www.opengis.org/techno/specs/02-087r3.pdf

224 LITERATURVERZEICHNIS

[Nebert 2001] NEBERT, Douglas D. (Hrsg.): Developing Spatial Data Infra-
structures: The SDI Cookbook. Version 1.1. Reston, VA, USA : The Global
Spatial Data Infrastructure Secretariat, 2001. — URL http://www.gsdi.
org/pubs/cookbook/cookbook0515. pdf

[New u.a. 1999] NEew, Mark ; HULME, Mike ; JONES, Phil: Representing
Twentieth-Century Space-Time Climate Variability. Part I: Development of
a 1961-1990 Mean Monthly Terrestrial Climatology. In: Journal of Climate
12 (1999), March, S. 829-856

[New u.a. 2000 NEw, Mark ; HULME, Mike ; JONES, Phil: Representing
Twentieth-Century Space-Time Climate Variability. Part II: Development
of 1961-1990 Monthly Grids of Terrestrial Surface Climate. In: Journal of
Climate 13 (2000), July, S. 2217-2237

[Oestereich 1998] OESTEREICH, Bernd: Objektorientierte Softwareentwick-
lung: Analyse und Desig mit der Unified Modeling Language. 4., aktualisierte
Aufl. Miinchen, Wien : Oldenbourg, 1998. — ISBN 3-486-24787-5

[OMG 1999] OBJECT MANAGEMENT GROUP (Hrsg.): OMG Unified Modeling
Language - Specification V.1.8 (June 1999). Object Management Group,
1999. — URL www.rational.com/uml/resources/documentation/index.
jsp

[Parson 1995] PARSON, Edward A.: Integrated assessment and environmental
policy making. In: Energy Policy 23 (1995), Nr. 4/5, S. 463-475

[Peirce 1998] PEIRCE, Martin: Computer-Based Models in Integrated Envi-
ronmental Assessment / European Environmental Agency. European En-
vironmental Agency, 1998 (AEAT-1987). — Technical Report 14. — URL
http://reports.eea.eu.int/TEC14/en/tech14.pdf

[Percivall 2002] PERCIVALL, George (Hrsg.): The OpenGIS™ Abstract Spe-
cification — Topic 12: OpenGIS Service Architecture. Version 4.3. Way-
land, Massachusetts, USA : Open GIS Consortium, 2002. — URL http:
//www.opengis.org/techno/abstract/02-112.pdf. — Project document
number: 02-112.doc

[Poetzsch-Heffter 2001] POETZSCH-HEFFTER, A.. Software-Architektur.
Bd. 1: Architektur von Softwaresystemen. Hagen : FernUniversitit - Ge-
samthochschule Hagen, 2001

[Ramachandran u.a. 2003] RAMACHANDRAN, Rahul ; CONOVER, Helen ;
GRAVES, Sara ; CHRISTOPHER, Sundar: EARTH SCIENCE MARKUP LAN-
GUAGE: A Solution to Earth Science Data Format Heterogeneity Problem.
In: American Meteorological Society’s (AMS) 19th International Conference

http://www.gsdi.org/pubs/cookbook/cookbook0515.pdf
http://www.gsdi.org/pubs/cookbook/cookbook0515.pdf
www.rational.com/uml/resources/documentation/index.jsp
www.rational.com/uml/resources/documentation/index.jsp
http://reports.eea.eu.int/TEC14/en/tech14.pdf
http://www.opengis.org/techno/abstract/02-112.pdf
http://www.opengis.org/techno/abstract/02-112.pdf

LITERATURVERZEICHNIS 225

on Interactive Information Processing Systems (IIPS) for Meteorology, Ocea-
nography, and Hydrology, Long Beach, CA, Feb. 9 - 18, 2003, URL http:
//ams.confex.com/ams/annual2003/techprogram/paper_54086.htm, Fe-
bruary 2003

[Rehesaar 1996] REHESAAR, Hugo: International Standards: Practical or just
theoretical? In: StandardView 4 (1996), September, Nr. 3, S. 123-126

[Rizzoli und Davis 1999] RizzoLl, Andrea E. ; Davis, J. R.: Integration and
re-use of Environmental Models. In: Environmental Modelling & Software
14 (1999), Nr. 6, S. 493-494 (Editorial)

[Roehrl und Schmiedl 2002] ROEHRL, Armin ; SCHMIEDL, Stefan: Die wich-

tigsten Open-Source-Lizenzen. In: ¢’t Magazin fiir Computer-Technik 1
(2002), S. 170ff

[Rotmans u.a. 1994] ROTMANS, J. ; ASSELT, M.B.A. van ; BRUIN, A.J. de ;
ELzEN, M.G.J. den ; GREEF, J. de ; HILDERINK, H. ; HOEKSTRA, A.Y. ;
JANSSEN, M.A. ; KOSTER, HW. ; MARTENS, W.J.M. ; NIESSEN, L.W. ;
VRIES, H.J.M. de: Global Change and Sustainable Development: A Modeling
Perspective for the Next Decade. Bilthoven, The Netherlands : National
Institute of Public Health and Environmental Protection (RIVM), Juni 1994.
— URL http://sedac.ciesin.org/mva/JR1994A/JR1994A .html

[Rotmans 1998] ROTMANS, Jan: Methods for TA: The challanges and oppor-
tunities ahead. In: Environmental Modeling and Assessment (1998), Nr. 3,
S. 155-179

[Rotmans und van Asselt 2001] ROTMANS, Jan ; ASSELT, Marjolein B. A.
van: Uncertainty management in integrated assessment modelling: towards a
pluralistic approach. In: Environmental Monitoring and Assessment (2001),
Nr. 69, S. 101-130

[Rotmans und Dowlatabadi 1998] ROTMANS, Jan ; DOWLATABADI, Hadi:
Integrated assessment modeling. In: RAYNER, Steve (Hrsg.) ; MALONE, Eli-
zabetz L. (Hrsg.): Human choice and climate change Bd. 3 — The tools for
policy analysis. Columbus, Ohio, USA : Battelle Press, 1998, Kap. 5, S. 291—
377

[Schneider 1997] SCHNEIDER, Stephen H.: Integrated assessment modeling of
global climate change: Transparent rational tool for policy making or opaque
screen hiding value-laden assumptions? In: Environmental Modeling and
Assessment (1997), Nr. 2, S. 229-249

http://ams.confex.com/ams/annual2003/techprogram/paper_54086.htm
http://ams.confex.com/ams/annual2003/techprogram/paper_54086.htm
http://sedac.ciesin.org/mva/JR1994A/JR1994A.html

226 LITERATURVERZEICHNIS

[Schulze u.a. 1999] ScHULZE, Thomas ; STRASSBURGER, Steffen ; KLEIN,
Ulrich: Migration of HLA into Civil Domains: Solutions and Prototy-
pes for Transportation Applications. In: Simulation 73 (1999), Nr. 5,
S. 296-303. — URL http://isgsiml.cs.uni-magdeburg.de/hla/paper/
S7305-05.pdf. — ISSN 0037-5497,/99

[Schiirmann 1995] SCHURMANN, Gerd: The evolution from open systems
interconnection (OSI) to open distributed processing (ODP). In: Computer
Standards & Interfaces 17 (1995), January, Nr. 1, S. 107-113

[Schwinn 1992] ScHWINN, Hans: Relationale Datenbanksysteme. Miinchen;
Wien : Hanser, 1992 (Hanser Studienbiicher der Informatik). — ISBN 3-446-
15782-4

[Senkler 2001] SENKLER, Kristian: Anforderungen an eine offene Infra-
struktur fiir E-Business und Geoinformations-Services. In: STROBL, Josef
(Hrsg.) ; BLASCHKE, Thomas (Hrsg.) ; GRIESEBNER, Gerald (Hrsg.): Ange-
wandte Geographische Informationsverarbeitung XIII. Beitrige zum AGIT-
Symposium Satzburg 2001. Heidelberg : Wichmann Verlag, 2001, S. 455-460

[Shaw und Garlan 1996] SHAw, Mary ; GARLAN, David: Software-
Architecture. Perspectives on an Emerging Discipline. Upper Saddle River,
New Jersey : Prentice Hall - Alan Apt, 1996

[Shlyakhter u.a. 1995] SHLYAKHTER, Alexander ; VALVERDE A. JR, L. J. ;
WILSON, Richard: Integrated risk analysis of global climate change. In:
Chemosphere 30 (1995), Nr. 8, S. 1585-1618

[Steinhausen 1994] STEINHAUSEN, Detlef: Simulationstechniken. Miinchen,
Wien : Oldenbourg, 1994

[Swoboda u.a. 2000 SwoBODA, Walter ; KRUSE, Fred ; LEGAT, Rudolf ;
NikovrAl, Ralf ; BEHRENS, Sven: Harmonisierter Zugang zu Umweltinfor-
mationen fiir Offentlichkeit, Politik und Planung: Der Umweltdatenkatalog
UDK im Einsatz. In: CREMERS, Armin B. (Hrsg.) ; GREVE, Klaus (Hrsg.):
Umweltinformatik 00, Umweltinformation fir Planung, Politik und Offent-
lichkeit. 14. Internationales Symposium ,Informatik fiir den Umweltschutz®
der Gesellschaft fiir Informatik (GI), Bonn 2000 Bd. 2. Marburg : Metro-
polis Verlag, 2000, S. 595-607. — URL http://www.umweltdatenkatalog.
de/publikat/pdfs/harmonisierterzugang.pdf

[Swoboda u.a. 1998] SwoBODA, Walter ; KRUSE, Fred ; NYHUIS, Detlev ;
RoUSSELLE, Holger: Die Neukonzeption des Umweltdatenkataloges. In: HAA-
sis, Hans-Dietrich (Hrsg.) ; Ranzg, K. C. (Hrsg.): Umweltinformatik ’98,
Vernetzte Strukturen in Informatik, Umwelt und Wirtschaft. 12. ,Informa-
tik fir den Umweltschutz® der Gesellschaft fiir Informatik (GI), Bremen 1998

http://isgsim1.cs.uni-magdeburg.de/hla/paper/S7305-05.pdf
http://isgsim1.cs.uni-magdeburg.de/hla/paper/S7305-05.pdf
http://www.umweltdatenkatalog.de/publikat/pdfs/harmonisierterzugang.pdf
http://www.umweltdatenkatalog.de/publikat/pdfs/harmonisierterzugang.pdf

LITERATURVERZEICHNIS 227

Bd. 2. Marburg : Metropolis Verlag, 1998, S. 610-620. — URL http://www.
umweltdatenkatalog.de/publikat/pdfs/NeukonzeptiondesUDK.pdf

[Thomas und Nejmeh 1992] THOMAS, Ian ; NEJMEH, Brian A.: Definiti-
ons of Tool Integration for Environments. In: IEEE Software 9 (1992),
March/April, Nr. 2, S. 29-35

[Tol und Vellinga 1998] Tor, Richard S. J. ; VELLINGA, Pier: The Euro-
pean Forum on Integrated Environmental Assessment. In: Environmental
Modeling and Assessment (1998), Nr. 3, S. 181-191

[Toth 1995] ToOTH, Ferenc L.: Practice and progress in integrated assessment
of climate change — A workshop overview. In: Energy Policy 23 (1995),
Nr. 4/5, S. 253-267

[UN 1992] UNITED NATIONS (UN) ; BUNDESMINISTERIUM FUR UMWELT,
NATURSCHUTZ UND REAKTORSICHERHEIT (BMU) (Hrsg.): Konferenz der
Vereinten Nationen fir Umwelt und Entwicklung im Juni 1992 in Rio de Ja-
neiro. Dokumente: Agenda 21. Bonn : Kollen Druck+Verlag, 1992 (Umwelt-
politik). — URL http://www.bmu.de/download/dateien/agenda2l.pdf

[van der Sluijs 1996] VAN DER SLULS, Jeroen: Integrated assessment mo-
dels and the management of uncertainties / ITASA (International Institute
for Appliend Systems Analysis). Laxenburg, Austria : ITASA (International
Institute for Appliend Systems Analysis), October 1996. — Working Paper
WP-96-119

[van Wijk 1994] vAN WUIK, Jack: M-Software Architecture. Documentation
available at M web page (www.m.rivim.nl). Juni 1994

[Vienneau 2001] VIENNEAU, Aleta: Using ArcCatalog™. USA : ESRI®),
Environmental System Research Institute, 2001. — ISBN ISBN: 1879102951

[Villa 2001] ViLLA, Ferdinando: Integrating modelling architecture: a decla-
rative framework for multi-paradigm, multi-scale ecological modelling. In:
Ecological Modelling 137 (2001), Nr. 1, S. 23-42

[Villa und Costanza 2000] VILLA, Ferdinando ; COSTANZA, Robert: Design
of multi-paradigm integrating modelling tools for ecological reserach. In:
Environmental Modelling and Software (2000), Nr. 15, S. 169-177

[Voges 2001] VocEs, Uwe: terraSeek — OpenGIS basierter Katalogdienst
fiir Geodaten und Geoservices. In: HILTY, Lorenz M. (Hrsg.) ; GILGEN,
Paul W. (Hrsg.): Sustainability in the Information Society. 15th international
Symposium Informatics for Environmental Protection, Zurich 2001 Bd. 1:
Impacts and Applications. Marburg : Metropolis Verlag, 2001, S. 484-492

http://www.umweltdatenkatalog.de/publikat/pdfs/NeukonzeptiondesUDK.pdf
http://www.umweltdatenkatalog.de/publikat/pdfs/NeukonzeptiondesUDK.pdf
http://www.bmu.de/download/dateien/agenda21.pdf

228 LITERATURVERZEICHNIS

[WBGU 1993] WISSENSCHAFTLICHER BEIRAT DER BUNDESREGIERUNG
GLOBALE UMWELTVERANDERUNGEN (Hrsg.): Welt im Wandel: Grundstruk-
tur globaler Mensch- Umwelt- Beziehungen; Jahresgutachten 1993. Bonn : Eco-
nomica Verlag, 1993. — URL http://www.wbgu.de/wbgu_jg1993.pdf

[Welsh u.a. 2000] WELSH, Matt ; DALHEIMER, Matthias K. ; KAUFMAN,
Lar: LINUX — Wegweiser zur Installation & Konfiguration. Koln : O’Reilly,
2000. — ISBN 3-89721-133-5

[Weyant u.a. 1996] WEYANT, J. ; DAVIDSON, O. ; DOWLATABADI, H. ; ED-
MONDS, J. ; GRUBB, M. ; PARSON, E.A. ; RICHELS, R. ; ROTMANS, J. ;
SHUKLA, P.R. ; TorL, R.S.J. ; CLINE, W. ; FANKHAUSER, S.: Integrated
Assessment of Climate Change: An Overview and Comparison of Approa-
ches and Results. In: IPCC, (Intercovernmental Panel on Climate Change)
(Hrsg.): Climate Change 1995. Cambridge, UK : Cambridge University Press,
1996, S. 369-396

http://www.wbgu.de/wbgu_jg1993.pdf

Anhang A

Glossar

Architektur Siehe Software-Architektur.
Assessment-Modell Siche Integriertes Assessment-Modell.

Daten Eine wieder interpretierbare Darstellung von Information in formali-
sierter Weise, geeignet zur Ubermittlung, Deutung oder Verarbeitung.
(ISO, 1993; Quelle: DIN, 1995)

Datensatz-Serie Sammlung von Datensiitzen mit gleicher Produktspezifika-
tion. (?)

Datenbank Die Gesamtheit der Daten eines Anwendungsbereichs. (Balzert,
1996)

Datenbank-Managementsystem (DBMS) System zur zentralen Verwal-
tung und Kontrolle der Datenbesténde von Datenbanken. (Balzert, 1996)

Datenbanksystem System fiir die dauerhafte, zuverlissige und unabhéngi-
ge Verwaltung sowie die komfortable, flexible und geschiitzte Verwen-
dung grofer, integrierter und mehrfachbenutzbarer Datenbanken. (Bal-
zert, 1996)

Datenhaltungssystem Siehe Datenbanksystem.

Dienst Abgrenzbarer (distinct) Teil einer Funktionalitéit, die von einer Entitét
iiber eine Schnittstelle bereitgestellt wird. (ISO/IEC TR 14252)

Framework Ein durch den Software-Entwickler anpassbares oder erweiterba-
res System kooperierender Klassen bei dem in der Regel abstrakte oder
leere Operationen in Unterklassen definiert bzw. implementiert werden.
(Balzert, 1996)

229

230 ANHANG A. GLOSSAR

Globaler Wandel Die Verdnderungen in Natur und Gesellschaft, die die
Menschheit als Ganzes und auf lingere Sicht hin betreffen. (Kriick u. a.,
2001)

Hilfs-Unterprogramm, Hilfsprogramm Ein Unterprogramm oder ein Pro-
gramm, das allgemeine, hiufig benotigte Dienste fiir Benutzer und Be-
dienungspersonal liefert. (ISO, 1989; Quelle: DIN, 1995)

IAM Siehe Integriertes Assessment-Modell.

Integriertes Assessment Prozess, in dem Wissen unterschiedlicher Fachdis-
ziplinen tiber das ‘System Erde’ in einem konsistenten Rahmen kombiniert
und interpretiert wird und der das Ziel verfolgt, den Zustand und mogli-
che langfristige Anderungen des Systems einzuschiitzen und zu bewerten
sowie die Ergebnisse politischen Entscheidungstrégern zu vermitteln. (s.
Unterabschnitt 2.1.2; Seite 11)

Integrated Assessment Model (IAM) TAMs use a computer program to
link an array of component models based on mathematical representations
of information from the various contributing disciplines. (Weyant u. a.,
1996) Siehe auch den weiter gefassten Begriff ‘SISA’.

Integriertes Modell Siehe Integriertes Assessment-Modell.

Interoperabilitidt Eignung, mit vorgegebenen Systemen zusammenzuwirken.
(DIN, 1994)

Katalog Eine Sammlung von Katalogeintrigen, die so organisiert ist, dass
sie einem Nutzer bei der Suche nach und beim Zugriff auf Ressourcen
unterstiitzt. (in Anlehnung an Kottmann, 1999¢13)

Komponente Ein abgeschlossener, bindrer Software-Baustein, der eine an-
wendungsorientierte, semantisch zusammengehérende Funktionalitéit be-
sitzt, die nach auflen iiber Schnittstellen zur Verfiigung gestellt wird. (Bal-
zert, 2000) Baustein fiir die Struktur eines Systems. (Buschmann u. a.,
1998)

Metadaten Daten iiber den Inhalt, die Qualitdt, den Zustand und andere
Charakteristiken von Daten. (FGDC, 1998)

Programm Eine syntaktische Einheit, die die Regeln einer bestimmten Pro-
grammiersprache befolgt und die aus Deklarationen und Anweisungen
oder Instruktionen zusammengesetzt ist, notwendig zur Losung einer ge-
wissen Funktion, Aufgabe oder eines Problems. (ISO, 1993; Quelle: DIN|
1995)

231

Ressource Natiirlich vorhandener Bestand von etwas, was fiir einen bestimm-
ten Zweck benétigt wird. (Duden, 1996) (“source of supply or support; a
source of information or expertise“ Merriam-Webster “s Collegiate Dictio-
nary, http://www.britannica.com.)

Schnittstelle Benannter Satz von Operationen, der das Verhalten einer Enti-
tét charakterisiert. (ISO/DIS 19119)

Service Siehe Dienst

Simulation/Simulationslauf Durchfiihrung einer Modellberechnung unter
definierten Bedingungen. (vgl. Simulationslauf-Spezifikation)

Simulationslauf-Spezifikation Definierte Modell-Konfiguration. Beinhaltet
die Spezifikation aller Simulationsmodell-Daten (inkl. Systemparameter,
Modellumwelt-Grofien, Optionen). (s. Unterabschnitt 4.1.2, Seite 72)

Simulationsmodell , A set of computational codes, executable in some soft-
ware/hardware environment, that transform a set of input data into a
set of output data, with the input, output, and transformation typically
having some interpretation in terms of real-world phenomena.“ Definition
des Begriffs ‘computational model’ nach Hill u.a. (2001).

SISA Siehe System zum integrierten simulationsbasierten Assessment

Software Programme, Verfahren, Regeln und méoglicherweise zugehorige Do-
kumentationen und Daten zum Betrieb eines Computersystems. (IEEE
610.12)

Software-Architektur Eine Software-Architektur ist die grundsétzliche
Strukturierung eines Software-Systems. Sie beschreibt eine Menge defi-
nierter Komponenten, die iiber Schnittstellen miteinander kommunizie-
ren, spezifiziert deren jeweiligen Zusténdigkeitsbereich und beschreibt die
Beziehungen zwischen den Komponenten. (s. Unterabschnitt 2.3.2, Sei-
te 18)

Software-Erzeugnis Eine vollstdndige und dokumentierte Menge von Pro-
grammen zur Lieferung an mehrere Benutzer fiir eine Anwendungs- oder

Funktionsgattung. (ISO, 1990; Quelle: DIN, 1995)

Software-System Eine Menge von Software-Komponenten, die gemeinsam
eine oder mehrere Aufgaben erfiillen. (Buschmann u. a., 1998)

Subsystem FEine Menge von miteinander arbeitenden Komponenten, die ge-
meinsam eine Aufgabe erfiillen und die als eigensténdige Einheit in-
nerhalb einer Software-Architektur angesehen werden wird. (Buschmann
u. a., 1998)

http://www.britannica.com

232 ANHANG A. GLOSSAR

System zum integrierten simulationsbasierten Assessment (SISA)
Ein System zum integrierten simulationsbasierten Assessment (SISA)
ist ein Software-System, das von unterschiedlichen Fachdisziplinen
stammende Daten und Simulationsmodelle zum ‘System Erde’ in einem
konsistenten Rahmen kombiniert und neue Daten iiber den Zustand
und mégliche langfristige Anderungen des ‘Systems Erde’ — vornehmlich
zur Unterstiitzung politischer Entscheidungstriger — berechnet und
bereitstellt. (s. Unterabschnitt 3.1, Seite 25)

Szenario In sich konsistente und plausible Annahmen iiber die zukiinftige
Entwicklung systembeeinflussender exogener GroBen. (Bossel, 1994)

Anhang B

Datenmodelle und
Schnittstellen

233

ANHANG B. DATENMODELLE UND SCHNITTSTELLEN

nen

B.1 Datenmodell zu Personen und Organisatio-

<<DataType>>
Cl_ResponsibleParty
+ individualName[0..1] : CharacterString
+ organisationName[0..1] : CharacterString
+ positionName[0..1] : CharacterString
+ contactinfo [0..1] : CI_Contact
+ role : Cl_RoleCode

count of (individualName +
organisationName + position
Name) > 0

<<DataType>>
Cl_Contact

+ phone [0..1] : Cl_Telephone

+ address [0..1] : Cl_Address

+ onlineResource [0..1] : Cl_OnlineResource
+ hoursOfSenvice [0..1] : CharacterString

+ contactinstructions [0..1] : CharacterString

<<DataType>>
Cl_OnlineResource
+ linkage : URL
+ protocol [0..1] : CharacterString
+ applicationProfile [0..1] : CharacterString
+ name [0..1] : CharacterString
+ description [0..1] : CharacterString
+ function [0..1] : CI_OnLineFunctionCode

<<DataType>>
Cl_Address

+ deliveryPoint [0..*] : CharacterString

+ city [0..1] : CharacterString

+ administrativeArea [0..1] : CharacterString
+ postalCode [0..1] : CharacterString

+ country [0..1] : CharacterString

+ electronicMailAddress[0..*] : CharacterString

<<CodeList>>
Cl_RoleCode
+ resourceProvider
+ custodian
+ owner
+ user
+ distributor
+ originator
+ pointOfContact
+ principallnvestigator
+ processor
+ publisher

<<CodeList>>
Cl_OnLineFunctionCode
+ download
+ information
+ offlineAccess
+ order
+ search

URL

<<DataType>>
Cl_Telephone

+ wice [0..*] : CharacterString

+ facsimile [0..*] : CharacterString

Abbildung B.1: Zur Verwaltung von Personen und Organisationen (Institu-
tionen) verwendete Klassen nach ISO 19115 (Responsible party information).
Néhere Informationen finden sich in Unterabschnitt 5.2.3 (Seite 119). Quelle:

Kottmann (2001).

B.2. ZUSAMMENFASSUNG DES SISA-DATENMODELLS

SISA_Storyline
-urn[1] : SISA_URN

SISA_SimulationRun

«DataType» «CodeList» «DataType»
CI_ResponsibilityParty| SISA_RoleCode SISA_Project
“modelDeveloper | [-urn[1] : SISA_URN
-modelCoder -title[1] : String
-modelCarrier l-aim[1] : String «DataType»
1] String SISA_SimulationStudy
«DataType» ovider -respor ty[1..4] : SISA_| ,qirre\aledpvojec([l..l] : SISA_Project]
ty| 1] SISA_| y
l-investor -furtherinfoResource[0..*] : SISA_Resource
-begin[1] : SISA_Date
-end[0..4] : SISA_Date
«DataType» «DataType»

«DataType»
SISA_SimulationSpecification

-urn : SISA_URN

-urn[1] : SISA_URN

-urn[1] : SISA_URN

-title[1] : String

description[1] : String
-furtherinfoResource[0..*] : SISA_Resource

y[1] : SISA Y

I-title[1] : String
-description[1] : Strin
-utilizedResources[0..] : SISA_Resource|

-indicatorChangeDescription[1] : String
-drivingForces[1] : String
-baseYear[1] : Integer
-timeHorizon[1] : Integer
-timeStep[1] : Integer
-furtherinfoResource[0..*] : SISA_Resource

[1]: SISA_| y
-storyline[1] : SISA_Storyline

«DataType»
SISA_Annotation

title[1] - String

-author{1] : SISA_ResponsibilityParty

-date[1] : SISA_Date

text[1] : String

-relatedResource[0..*] : SISA_Resource|

-title[1] : String title : String -simulationRun[1] : SISA_URN
-description[1] : String -aim : String ing[1.*] : SISA | Il
-furtherinfoResource[0..*] : SISA_Resource -study : SISA_SimulationStudy
y[1] : SISA_ y ty : SISA_|
-relatedDocument : SISA_Document «DataType»
SISA_ModelSettingsSpezification:
-model[1] : SISA_URN
«DataType» «DataType» i 1
SISA_Scenario SISA_Task

«DataType»
SISA_ModelSettingAllocation
“model[1] : SISA_URN
I-setting[1] : String
-value[1] : String

"URL[1] : String
-format[1] : String

DataType»
SISA_DataAccess
formatinfo["] : String

«DataType»
SISA_ModelAnalysis

-simulationRun[1] : SISA_URN

datasetChange[L..*] : SISA_DatasetChange|

«DataType» «DataType» «DataType» «DataType»
SISA_CatalogManager SISA_Catalog SISA_CatalogEntry SISA_MetadataHarvester
-catalog[1..*] : SISA_URN| -name[1] : String -resourceld[1] : SISA_URN -katalogManager{1..*]
1] : SISA_URN [0.#] : SISA_I y D y [0.4]
[1]: SISA_C y 1): SISA 4 -
SISA_AccessInformation <DataTypen

SISA_MetadataEntry|

«DataType»
SISA_! 01

«DataType»
SISA_! CcM

«DataType»
| D

9115

SISA CMES|

-Title[*] : String

-Creator[*] : String

«DataType»
SISA_DatasetChange
“dataSet[1] : SISA_URN
-changeMin[1]
-changeMax(1]

-Subject[4] : String
-Description[*] : String
-Publisher[*] : String
-Contributur[4] : String
-Date[*] : String
-Type[*] : String
-Format[*] : String
-Identifier(*] : String
-Source[*] : String
-Language(*] : String
-Relation[*] : String
-Coverage[*] : String
-Rights[*] : String

235

B.2 Zusammenfassung des SISA-Datenmodells

Abbildung B.2: Ubersicht des SISA-Datenmodells. Erklarungen finden sich in
Abschnitt 5.2 (Seite 96).

236 ANHANG B. DATENMODELLE UND SCHNITTSTELLEN

B.3 Zusammenfassung der SISA-Schnittstellen

nterface» nterface»
IDocManager IDocDiscovery|

Kataloge sind D
fr

Documentation

- Personen & Institutionen
[+createCatalog() rquery) - Projekte & Simulationsstudien
+deleteCatalog() - & Szenarien
+addCatalogEntry() - ein Glossar
[+modifyCatalogEntry()| - einen Service Organizer Folder
[+deleteCatalogEntry() - Anmerkungen

IDocDiscovery

ICatService

«interface» «interface» «interface»
ICatAccess

ICatManager ICatAccess ICatService

Catalog Manager

IC:
ICatDiscovery

[+createCatalog()))
l+updateCatalog() +getURN() +terminateSession()
|+deleteCatalog()
+createMetadatal)
+addC: o)
+modifyC:)
+removeCatalogEntry()| [+query()

«interface»
iCatDiscovery|

«interface» «interface»

ISimRunManager

! Simulation-Run Manager
ISimRun

0
+modifySetting()
)

«interface»

IMDHarvester IMDHarvester

Metadata Harvester

[+harvest()
+report()
|+setRepository()
[+queryRepository()

«interface» «interface»

IDataTransform IDBSystem IDBSystem

Data Access

IDataTransform

[+transformDataset()| [+retrieveDataset()
[+getFormatinfo() | |+addDataset()
+removeDataset()
+modifyDataset()
+checkD:
+modifyD) .
rquery() +getDatasetStatus() IDBDiscovery

«interface»

IDBDiscovery| IDBSystem

Database System

«interface» «interface»

ISimControl ISimControl

Simulation System
ISimResult v

+init() +getResult() Access
+run()

interface» ISimModAnalysis
y

Model Analysis
IRepository
IDataTransform

+analyse()

«interface»

Wtility 1Utility

Utility

[+calculateStatistics()

«interface» «interface» IGeoParamter

Calculation
IStatistical

[+transformGrid([+gridStatistics() Calculation

Geographic Processing

«interface»

IAnalysis 1Analysis

Analysis

[+viewDataset()
)

«interface»

ITaskManager| ITaskManager

Task Manager

[+defineTask()
[+invokeTask()

Abbildung B.3: Ubersicht der SISA-Koponenten und Schnittstellen. Erklirun-
gen finden sich in Abschnitt 5.2 (Seite 96).

Anhang C

Standards

C.1 Ubersichten

Topic 1 Topic 2 Spatial Topic 3 Topic 8 Tonic 11
Feature Reference Locational Relations Me? adata
Geometry Systems Geometry Bet'n Features—j
[I I I I ‘
Topic 10 Tomc1d
Feature opic Topic9
Collections Semantics and ;
Info Com't's| | Quality
I
Topic 4 Stored Topic5
Functions and The Open
Interpolation [7| GIS Feature Topic 12
I—]—' The Open GIS
Topice Servi ?e Arch.
The Coverage | T]
Type Topic 13 Topic15 |~ Topic16
Catalog Image Expl. Image Coord.
] Services Services Transf Services
Topic7
Earth Imagery|

Abbildung C.1: Uberblick iiber die Abhingigkeiten der OpenGIS Abstract Spe-
cifications untereinander. Quelle: Kottmann (1999a).

237

238

ANHANG C. STANDARDS

Dienste-Taxonomie der ISO/DIS 19119, Teil I

Taxonomie-Klasse

Beispiel

Geographic Human Interaction Services

catalogue viewer

geographic viewer

geographic viewer — animation
geographic viewer — mosaicing
geographic viewer — perspective
geographic viewer — imagery
geographic spreadsheet viewer
service editor

chain definition editor
workflow enactment manager
geographic feature editor
geographic symbol editor
feature generalization editor
geographic data-structure viewer

geographic model/information management
services

feature access service
map access service
coverage access service
coverage access service — sensor
sensor description service
product access service
feature type servcie
catalogue servcie

registry servcie

gazetteer service

order handling service
standing order service

geographic workflow/task management
services

chain definition service
workslow enactment service
subscription service

geographic communication services

encoding service

transfer service

geographic compression service
geographic format conversion service
messaging service

remote file and executable management

geographic system management services

no services have been identified.

Tabelle C.1: Beipieldienste der ISO/DIS 19119 Taxonomie, Teil I.

C.1. UBERSICHTEN

239

Dienste-Taxonomie der ISO/DIS 19119, Teil II

Taxonomie-Klasse

Beispiel

geographic processing services — spatial

coordinate conversion service

coordinate transformation service
coveratge/vector conversion service
image coordinate conversion service
rectification service

sensor geometry model adjustment service
image geometry model conversion service
subsetting service

sampling service

tiling change service

dimension measurement service

feature manipulation service

feature matching service

feature generalization service

route determination service

positioning service

proximity analysis servcie

geographic processing services — thematic

geoparameter calculation service
thematic classification service

feature generalization service
subsetting service

spatial counting service

change detection service

geographic information extraction service
image processing service

reduced resolution generation service
image manipulation service

image understnading service

image synthesis service

multi-band image manipulation service
object detection service

geocoding service

geographic processing services — temporal

temp. reference system transformation s.
subsetting service

sampling service

temporal proximity analysis service

geographic processing services — metadata

statistical calculation service
geographic annotation service

Tabelle C.2: Beipieldienste der ISO/DIS 19119 Taxonomie, Teil II.

240

ANHANG C. STANDARDS

Standards aus der ISO-19100-Reihe

Bezeichnung Thema

ISO 19101 Reference model

ISO 19102 Overview

ISO 19103 Conceptual schema language

ISO 19104 Terminology

ISO 19105 Conformance and testing (published)
ISO 19106 Profiles

ISO 19107 Spatial schema

ISO 19108 Temporal schema

ISO 19109 Rules for application schema

ISO 19110 Feature cataloguing methodology
ISO 19111 Spatial referencing by coordinates
ISO 19112 Spatial referencing by geographic identifiers
ISO 19113 Quality principles

ISO 19114 Quality evaluation procedures

ISO 19115 Metadata

ISO 19116 Positioning services

ISO 19117 Portrayal

ISO 19118 Encoding

ISO 19119 Services

ISO/TR 19120
ISO/TR 19121
ISO/TR 19122
I1SO 19123
ISO 19124
ISO 19125-1
ISO 19125-2
SO 19125-3
ISO 19126
ISO 19127
I1SO 19128
ISO 19129
ISO 19130
ISO 19131
ISO 19132
ISO 19133
SO 19134
1SO 19135
ISO 19136
I1SO 19137

ISO 19138
ISO 19139
1SO 19140

Functional standards + new revision started

Imagery and gridded data (published

Qualifications and certification of personnel

Schema for coverage geometry and functions

Imagery and gridded data components

Simple feature access - Part 1: Common architecture

Simple feature access - Part 2: SQL option

Simple feature access - Part 3: COM/OLE option

Profile - FACC Data Dictionary

Geodetic codes and parameters

‘Web map server interface

Imagery, gridded and coverage data framework

Sensor and data models for imagery and gridded data

Data product specifications

Location based services possible standards

Location based services tracking and navigation

Multimodal location based services for routing and navigation
Procedures for registration of geographical information items
Geography Markup Language

Generally used profiles of the spatial schema and of similar
important other schemas

Data quality measures

Metadata - Implementation specification

Technical amendment to the ISO 191** Geographic information series
of standards for harmonization and enhancements

Tabelle C.3: Standards im Arbeitsprogramm des ISO/TC 211 (Stand: Janu-
ar 2003, Quelle: http://www.isotc211.org). Aufgefithrt sind alle Standards,
unabhingig vom aktuellen Status (der vom ersten Working Draft bis zum In-
ternational Standard reicht). Siehe auch Abschnitt 32 (Seite 42).

http://www.isotc211.org

C.1. UBERSICHTEN 241

Abstract Specifications des OpenGIS-Konsortiums

Topic-Nr. Topic-Name Version
0 Overview 4
1 Feature Geometry® 5
2 Spatial Reference Systems® 1
3 Locational Geometry 4
4 Stored Functions and Interpolation 4
5 The OpenGIS Feature 4
6 The Coverage Type 6
7 Earth Imagery® 4
8 Relations Between Features 4
9 Accuracy ¢ 4
10 Feature Collections 4
11 Metadata® 5
12 The OpenGIS Service Architecturef 4.3
13 Catalog Services 4
14 Semantics and Information Communities 4
15 Image Exploitation Services 6
16 Image Coordinate Transformation Services 4

%Harmonisierung mit ISO in 2001: ISO 19119 wurde iibernommen. Aktuelle Version ent-
hilt ISO/DIS 19107 Spatial Schema

bBasis ist ISO 19111, es wurden allerdings Erweiterungen und Anderungen vorgenommen.
Die Unterschiede zu ISO/DIS 19111 werden im Anhang zu Topic 2 zusammengefasst

¢Entwicklung in enger Kooperation mit ISO/TC 211

dnschste Version dieses Dokuments wird wahrscheinlich auf Arbeiten zum Qualitéits-
Thema der des ISO/TC 211 aufbauen

¢Harmonisierung mit ISO in 2001: ISO/DIS 19115 wurde als OGC Topic 11 iibernommen

fHarmonisierung mit ISO in 2001: ISO 19119 wurde iibernommen. Aktuelle Version ent-
hilt den Inhalt von ISO/DIS 19119

Tabelle C.4: Auflistung verfiigbarer OpenGIS Abstract Specifications mit An-
merkungen zu Haronisierungsbestrebungen mit der ISO (Stand: Januar 2003,
Quelle: http://wuw.opengis.org).

http://www.opengis.org

242 ANHANG C. STANDARDS

Implementation Specifications des OpenGIS-Konsortiums

Titel Version
OpenGIS Simple Features Specification for OLE/COM 1.1
OpenGIS Simple Features Specification for CORBA 1.0
OpenGIS Simple Features Specification for SQL 1.1
OpenGIS Catalog Services Implementation Specification 1.1.1
OpenGIS Grid Coverages Implementation Specification 1.0
OpenGIS Coordinate Transformation Services Implementation Specification 1.0
OpenGIS Web Map Server Interfaces Implementation Specification 1.1.1
OpenGIS Geography Markup Language (GML) Implementation Specification 2.1.2
OpenGIS Web Feature Service Implementation Specification 1.0
OpenGIS Filter Encoding Implementation Specification 1.0
OpenGIS Styled Layer Descriptor Implementation Specification 1.0

Tabelle C.5: Auflistung verfiigharer OpenGIS Implementation Specifications
(Stand: Januar 2003, Quelle: http://www.opengis.org).

http://www.opengis.org

C.2. HLA-REGELN 243

C.2 HLA-Regeln

Die HLA Rules definieren insgesamt zehn Regeln (fiinf fiir Federations und fiinf
fiir Federates):

Regeln fiir Federations:

1. Federations sollen ein geméfi der HLA Object Model Template (OMT)
dokumentiertes HLA federation object model (FOM) besitzen.

2. Innerhalb einer federation sollen alle simulationsbezogenen Reprisenta-
tionen von Objekt-Instanzen in den federates sein und nicht in der run-
time infrastructure (RTT).

3. Wihrend der Ausfiihrung einer federation soll der gesamte Austausch von
FOM-Daten zwischen den federates iiber die RTI erfolgen.

4. Wihrend der Ausfithrung einer federation sollen die federates geméf der
HLA interface specification mit der RTI interagieren.

5. Wihrend der Ausfiihrung einer federation soll ein Instanz-Attribut zu
jeder Zeit Eigentum' von maximal einem federate sein.

Regeln fiir Federates:

6. Federates sollen ein gem#l HLA OMT dokumentiertes HLA simulation
object model (SOM) besitzen.

7. Federates sollen in der Lage sein jedes Attribut gem#f der Beschreibung in
den SOMs zu aktualisieren und/oder widerzuspiegeln und Interaktionen
zu senden und/oder zu empfangen.

8. Federates sollen in der Lage sein den Besitz eines Attributes geméif3 der
Beschreibung in den SOMs dynamisch, d. h. zur Laufzeit der Federation,
zu iibertragen oder anzunehmen.

9. Federates sollen im Einklang mit den Beschreibungen in den SOMs in der
Lage sein die Bedingungen (z.B. Grenzwerte) zu verdndern unter denen
sie Aktualisierungen (Updates) der Attribute bereitstellen.

10. Federates sollen in der Lage sein die lokale Zeit in einer Art und Weise
zu verwalten, die ihnen einen koordinierten Datenaustausch mit anderen
Mitgliedern der federation erlaubt.

IEigentum/Besitz (ownership) ist hier definiert als die Berechtigung, die Attribut-Werte
einer Instanz zu aktualisieren.

244 ANHANG C. STANDARDS

Anhang D

Programm-Quelltexte

D.1 PHP-Beispiel

Datenbankverbindung

Der folgenden PHP-Quelltext (dbconnect.php) wird beim Aufruf jeder PHP-
Seite mit Datenbank-Funktionalitéit aufgerufen.

<!-- dbconnect.php -->

<7php
if (! ($mylink = mysql_connect("localhost","rglassUser",
"rglassPasswd"))) 1
{
print "<h3>Keine Verbindung zur Datenbank!</h3>\n";
exit; (2)
}
mysql_select_db("rglassDB"); (3)
7>

Zuniichst wird versucht eine Verbindung zum Datenbank-Server herzustel-
len — s. Punkt (1). Fiir diesen Aufruf wird sowohl die Internet-Adresse des
Servers (hier ‘localhost’, also der lokale Rechner) als auch der Benutzername
(‘rglassUser’) und dessen Passwort (‘rglassPasswd’) benotigt. Bei erfolgreicher
Verbindung wird die gewiinschte Datenbank ausgewihlt (‘rglassDB’) (3), an-
sonsten wird eine Fehlermeldung ausgegeben (2).

Datenbankabfrage und Datenvisualisierung

Der folgende PHP-Quelltext (viewResponsibleParty.php) dient der Auflistung
aller Personen/Organisationen, die in der Datenbank gespeichert sind.

245

246 ANHANG D. PROGRAMM-QUELLTEXTE

<!-- viewResponsibleParty.php -->

<?phpinclude("dbconnect.php");?> (¢D)
<title>View Responsible Parties</title>

<body bgcolor="#FFFF00">

<h2>List of Responsible Parties</h2> (2)
<?php
//-—-—= get data from MySQL database (3)

$result = mysql_query("select * from responsibleparty") or die
("Error");

//-—-—= display each dataset in a separate table (4)
if ($result) {
while ($row = mysql_fetch_array($result))

{
echo "<table width=90% border=1>\n";
//-———= first database field to display for each
//~===- entry (individual name) (5)

echo "<tr>\n";
echo "<td width=19%>";

print "Individual Name: ";
echo "</td>";
echo "<td width=22)>";

print $row["individualName"];
echo "</td>";

echo "</tr>\n";

echo "<tr align=left>\n";
echo "<td width=19%>";

print "Organisation Name: ";
echo "</td>";
echo "<td width=22)>";

print $row["organisationName"];
echo "</td>";

echo "</tr>\n";

/7. ..

//-—-—= last database field to display for each entry (6)
echo "<tr align=left>\n";
echo "<td width=19%>";
print "E-Mail: ";
echo "</td>";
echo "<td width=22)>";
print "<a href=\"mailto:";

D.2. METADATEN-DATEI 247

print $row["email"];
print "\">";
print $row["email"];
echo "</td>";
echo "</tr>\n";

echo "</table>\n";

print "
\n";
print "
\n";
}

mysql_free_result($result);
>

<h2>Insert another
party</h2> (7

Zunéchst wird iiber die oben beschriebene Funktionsfolge (dbconnect.php)
die Verbindung zur Datenbank hergestellt (1). Nach der Ausgabe einer Uber-
schrift (2) erfolgt dann die Abfrage der Datenbank iiber einen SQL-Befehl, der
fiir die Selektion aller Eintrége der Tabelle ‘responsibleparty’ sorgt (3). Jeder
der gefundenen Datensétze wird anschlieflend iiber eine Schleife in einer eige-
nen Tabelle auf dem Bildschirm angezeigt (4) — vom ersten (5) bis zum letzten
gewiinschten Eintrag (6). Als Abschluss folgt noch ein Verweis auf die Seite
zum Eintragen neuer Personen/Organisationen (7). Uber die einzelnen PHP-
Anweisungen wird zur Laufzeit der HTML-Quelltext erzeugt, der zur Anzeige
im Web-Browser benotigt wird.

D.2 Metadaten-Datei

Nachfolgend findet sich der Quelltext einer Metadaten-Datei, die automatisch
durch die Web-Seite zur Metadaten-Erfassung erzeugt wurde (vgl. Abbildung
6.10, Seite 181).

<?xml version="1.0"7> <7xml-stylesheet type="text/xsl"

href="http://www.usf.uni-kassel.de/grid/meta/metadata.xsl" 7> (1)
<rdf:rdf xmlns:rdf="http://www.w3.org/rdf/rdf/" (2)
xmlns:dc="http://purl.oclc.org/dc/"> (3
<rdf :Description about=
"urn:x-wzusf:doc-rep.rglassSummaryReport-V1,0.doc.hd"> (4)
<!-- Dublin Core Elements generated via metaDatalnput.htm -->

<dc:title> Will Climate Change Affect Food and Water Security
in Russia? </dc:title>
<dc:creator> Joseph Alcamo </dc:creator> (5)

248 ANHANG D. PROGRAMM-QUELLTEXTE

<dc:creator> Genady Golubev </dc:creator>

<dc:creator> Nikolai Dronin </dc:creator>

<dc:creator> Andrei Kirilenko </dc:creator>

<dc:creator> Marcel Endejan </dc:creator>

<dc:subject> R-GLASS </dc:subject>

<dc:subject> GLASS </dc:subject>

<dc:subject> Russia </dc:subject>

<dc:description> Will Climate Change Affect Food and Water
Security in Russia? </dc:description>

<dc:description> Summary Report of the International Project
on Global Environmental Change and its Thread to Food and
Water Security in Russia </dc:description>

<dc:publisher> CESR </dc:publisher>

<dc:contributor> Guenther Fischer </dc:contributor>

<dc:date> 2003-03-24 </dc:date>

<dc:type> Document </dc:type>

<dc:type> Report </dc:type>

<dc:format> MS-Word </dc:format>

<dc:identifier>url:file://usf1/home/_GRID/Marcel/Moscow/
final_report/rglass_fina1_2003—03—24.doc

</dc:identifier>

<dc:identifier>urn:x-wzusf:doc-rep.rglassSummaryReport-V1,0.doc.hd

</dc:identifier>

<dc:source> </dc:source>

<dc:language>en (also in Russian language available) </dc:language>

<dc:relation> </dc:relation>

<dc:coverage> temporal: 1961-1990, 2020s, 2070s </dc:coverage>

<dc:coverage> spatial: 89 Russian Regions </dc:coverage>

<dc:rights> </dc:rights>

</rdf :Description>
</rdf :rdf>

Die Datei beschreibt die Ressource ‘urn:x-wzusf:doc-rep.rglassSummaryRe-
port-V1,0.doc.hd’ — siehe Punkt (4). Hierzu werden die Elemente des Dublin
Core Metadata Element Set verwendet (Namensraum-Kennzeichnung ‘dc’) (3),
die wiederum eingebettet sind in die Struktur des Resource Description Fra-
mework (Kennzeichnung ‘rdf’) (2).

Wie an Punkt (5) in der Datei zu sehen ist, kénnen einige der Elemente
mehrfach vorkommen (z.B. <dc:creator> zur Beschreibung der Autoren der
Studie), wéhrend einige keine Eintrége enthalten (z. B. <dc:source>).

D.3. METADATEN-SAMMLER 249

D.3 Metadaten-Sammler

Skript fiir einfachen Harvester unter der Bash-Shell

Das folgende Skript ist ein Beispiel fiir einen einfachen Metadaten-Sammler
unter der Bourne-Again-Shell (bash).

path=/grid/meta (¢D)
copy old repository mv $path/repository.xml
$path/repository.old

search for *.dc.xml files and copy content to repository.xml

find $path -name ’*.dc.xml’ -exec cat {} > $path/repository.xml \; (2)
if necessary add further locations to search path here:

find nextPath -name ’*xml’ -exec cat {} >> $path/repository.xml \;

remove tags not needed

sed -n ’/7xml/!p’ $path/repository.xml > $path/tmpl.xml (3)
sed -n ’/xmlns/!p’ $path/tmpl.xml > $path/tmp2.xml
sed -n ’/rdf:rdf/!p’ $path/tmp2.xml > $path/tmp3.xml

add needed tags for RDF and XSL

cat $path/rdfHeader.txt > $path/repository.xml (4)
cat $path/tmp3.xml >> $path/repository.xml

cat $path/rdfFooter.txt >> $path/repository.xml

clean files
/bin/rm $path/tmpl.xml $path/tmp2.xml $path/tmp3.xml

copy repository to www
ftp -i -n < $path/copyRepositoryToWwwW.ftp (5)

Das Skript durchsucht die unter Punkt (1) spezifizierten Verzeichnisse iiber
den find-Befehl (2) und kopiert dabei den kompletten Inhalt der Dateien in
eine separate Datei. Anschliefend werden redundante XML-Textbegrenzungen
(Tags) entfernt (3) und fiir die Gesamtdatei benotigte Tags hinzugefiigt (4).

Die auf diese Weise erzeugte Datei wird dann tiber das File Transfer Protocol
(ftp) an einen zentralen Ort kopiert (5) — in diesem Fall ist der zentrale Ort ein
Verzeichnis auf dem Web-Server.

Nachteil dieser ersten Version des Metadaten-Sammlers ist die Festlegung
auf das starre Format, in dem die Dateien vorliegen miissen. Die Implementie-
rung iiber das Document Object Model (DOM) wiirde die Qualitit des Samm-
lers wesentlich erh6hen und die Vorteile von XML auch an dieser Stelle aus-
nutzen.

250 ANHANG D. PROGRAMM-QUELLTEXTE

Inhalt der zugehorigen Dateien

Datei ‘rdfHeader.xml’:

<?7xml version="1.0"7>
<?xml-stylesheet
type="text/xsl"
href="http://www.usf.uni-kassel.de/grid/meta/repository.xsl" 7> (1)
<rdf:rdf
xmlns:rdf ="http://www.w3.org/rdf/rdf/" (2)
xmlns:dc ="http://purl.oclc.org/dc/">

Datei ‘rdfFooter.xml’:
</rdf :rdf> 3)

Die Datei ‘rdfHeader.xml’ enthélt die Daten, die zur Einleitung der XML/
RDF-Datei notwendig sind. Neben der Angabe des fiir die Darstellung der Datei
in einem Browser notwendigen Stylesheets (1), sind dies die Deklarationen {iber
die verwendeten Namensrdume (rdf: und ds:) (2). Die Datei ‘rdfFooter.xml’
enthilt lediglich das abschlielende Tag der XML-Datei.

Datei ‘copyRepositoryToOWWW.ftp”:

open connection to web server

open 141.51.100.72

login user

user endejan myPassword

copy repository to web server

put /grid/meta/repository.xml /home/WWW/grid/meta/repository.xml
bye

Die Datei ‘copyRepositoryToWWW.ftp’ ist zustédndig fiir das Kopieren der
zusammengestellten Datei an den festgelegten zentralen Ort (hier ein Verzeich-
nis auf dem Web-Server) und enthélt lediglich die hierfiir benétigten Informa-
tionen iiber den Server und die zu kopierende Datei.

D.4 Simulationseinstellungen und Datenzugriff

Die folgenden Quelltext-Ausschnitte entstammen dem GLASS-Teilmodell Wa-
terGAP und zeigen die Anderungen, die zum Einsatz des Simulationslaufma-
nagers und des Datenzugriffs-Servers innerhalb dieses Modells notwendig sind.

WaterGAP nutzt fiir den Kontakt zu den Servern die hierzu entwickelten
Klienten-Klassen (SISA_simulationRunMangerClient und SISA_dataAccessCli-
ent). Die Deklarationen dieser Klassen sind daher im Quelltext von WaterGAP
bekanntzugeben:

D.4. SIMULATIONSEINSTELLUNGEN UND DATENZUGRIFF 251

//-==== SISA classes -----
#include "dataAccessClient.h"
#include "simRunManagerClient.h"

Im Quelltext von WaterGAP folgen dann allgemeine Einstellungen zu den
Servern und zum Klienten (WaterGAP):

//-———- SISA declarations/definitions —-----
char THIS_MODEL[] = "urn:x-wzusf.sw-mod.WaterGAP-V2,le.exe-1i.hd"; (1)
char simRunName[] = "urn:x-wzusf.ares-run.SisaTest-V1,0.na.na"; (2)
char daServerIP[] = "141.51.100.15"; (3)
int daServerPort = 55555;
char srmServerIP[] = "141.51.100.15"; (4)
int srmServerPort = 55556;
//----= global simulation-run manager -----
SISA_simRunManagerClient simRunManager; (5)
//-==== SISA initializations -----
//-—-—= init data-access server (singleton) -----
SISA_dataAccessClient::instance()->setServerInfo(daServerIP,
daServerPort) ; (6)

//-—-—= init simulation-run manager -----
simRunManager.setServerInfo(srmServerIP,

srmServerPort) ; (@8]

simRunManager.setModelSettingsSpecifications("//Usf-ws14/grid/study/
rglassl_3/simulationrun/SimulationParameter.xml") ; (8)

[[mmm

Zu den allgemeinen Einstellungen gehoren die eindeutige Identifizierung des
Simulationsmodells (URN des Modells) (1), die Festlegung auf einen Simulati-
onslauf (der i.d. R. erst zur Laufzeit festgelegt wird) (2) und die Informationen,
die notwendig sind, um den Simulationslaufmanager und den Datenzugriffs-
Server zu kontaktieren (IP-Adresse und Port) (3) und (4). Von der Klienten-
Klasse des Simulationslaufmanagers wird dariiber hinaus ein Objekt erzeugt
(5), iiber das die Abfragen der Modelleinstellungen erfolgt (vom Klienten fiir
den Datenzugriff wird nicht explizit ein Objekt angelegt, da die Klasse nach
dem ‘Singleton’-Prinzip implementiert wurde?).

Nach diesen Definitionen und Deklarationen werden die Server-Informati-
onen gesetzt: fiir den Datenzugriffsklienten geschieht dies iiber die Methode
instance(), die eine Instanz der Klasse SISA_dataAccessClient liefert und iiber

IDer Simulationsmodell-Manager ist nach dem Singleton-Muster implementiert, d.h. es
gibt maximal eine — global zugreifbare — Instanz des Managers innerhalb eines Programms.
Niheres zum Singleton-Muster findet sich z. B. in Gamma u. a. (1996).

252 ANHANG D. PROGRAMM-QUELLTEXTE

die anschliefend die IP-Adresse und der Port zur Kommunikation mit dem
Server gesetzt wird (6).

Beim ersten Aufruf der statischen Klassen-Methode instance() erzeugt die
Klasse automatisch ein Objekt, speichert eine Referenz auf dieses Objekt in
einer statischen Klassen-Variablen und gibt die Referenz anschliefflend an den
Aufrufer zuriick. Bei weiteren Aufrufen der Methode wird lediglich die Refe-
renz auf das bereits existierende Objekt zuriickgeliefert. Auf diese Weise wird
sichergestellt, dass immer nur ein Objekt dieser Klasse in einem Programm
existiert.?

Die Einstellungen zum Simulationslaufmanager werden ebenfalls iiber die
Methode setServerInfo() gemacht (7) — hier allerdings direkt iiber den Aufruf
der Methode fiir das zuvor manuell erzeugte Objekt. Im obigen Beispiel wird
dem Simulationslaufmanager auch direkt innerhalb des WaterGAP-Modells die
zu verwendende XML-Datei mit den Modellspezifikationen bekanntgegeben.

Nachdem die grundlegenden Einstellungen gemacht wurden, greift Water-
GAP auf die Dienste des Simulationslaufmanagers und des Datenzugriffs-Ser-
vers zu:

//-==== get dataset (old style) -----
//sprintf (filename, "%s/G_CORR_FACTOR.UNFO", options.input_dir); 9
//gridI0.readUnfFile(filename, ng, dailyWaterBalance.G_cellCorrFact);

//-—-—= get dataset (SISA style) —-----
char datasetURN[255];

// get URN for dataset from simulation-run manager
simRunManager.getSetting (THIS_MODEL, simRunName, (10)
"dsCorrectionFactor",

datasetURN, sizeof(datasetURN));
// get the dataset
SISA_dataAccessClient::instance()->retrieveDataset (datasetURN, (1)
"SISA_DS_IMG22UNFO",
(char*) dailyWaterBalance.G_cellCorrFact,
sizeof (dailyWaterBalance.G_cellCorrFact));

Der Quelltext-Ausschnitt zeigt den lesenden Zugriff auf einen Datensatz, wie
er in der Originalversion von WaterGAP (9) und wie er unter Verwendung der
SISA-Komponenten realisiert ist (10/11). In der urspriinglichen WaterGAP-
Version sind der Name der Datei (G_GORR_FACTOR.UNF0) und damit des-
sen Format (UNFO) fest in den Quellcode integriert. Identifiziert wird der Da-
tensatz allein iiber die Klassenvariable options.input_dir, dessen Inhalt das Ver-
zeichnis festlegt, in dem sich die Datei befindet. Unter Verwendung der SISA-
Komponenten wird zum Lesen des Datensatzes zunéichst dessen URN vom Si-
mulationsmanager erfragt (10). Dem Simulationslaufmanager muss hierzu der

2Der Konstruktor der Klasse ist nicht éffentlich und kann nur indirekt iiber die Methode
instance() aufgerufen werden.

D.4. SIMULATIONSEINSTELLUNGEN UND DATENZUGRIFF 253

Modellname (URN des verwendeten WaterGAP-Modells), der aktuelle Simu-
lationslaufname (ebenfalls ein URN) und der Name der Einstellung (dsCorrec-
tionFactor) iibergeben werden sowie eine Variable zur Riickgabe des Einstel-
lungswertes — der Einstellungswert ist wiederum ein URN, der den zu lesenden
Datensatz eindeutig identifiziert. Das Lesen des Datensatzes erfolgt dann unter
Angabe dieses URNs und des gewiinschten Formates (SISA_DS_IMG22UNF0)
iiber den Datenzugriffs-Server bzw. die Klasse SISA_dataAccessClient (11).

Der folgende Quelltext zeigt einen Auszug aus der XML-Datei mit den
Simulationslauf-Spezifikationen:

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE simulationSpecifications SYSTEM "SimulationParameter.dtd"> (1)
<simulationSpecifications>

<simulationSpecification

simRunId="urn:x-wzusf.ares-run.SisaTest-V1,0.na.na"> (2)
<modelSettings simulationModelId=

"urn:x-wzusf:sw-mod.WaterGAP-V2,1le.exe-1i.hd"> (3)

<simulationStartYear>1961</simulationStartYear> (4)

<simulationEndYear>1990</simulationEndYear>
<simulationTimeStep>1</simulationTimeStep>
<dsCorrectionFactor>
urn:x-wzusf:ds-min.CorrectionFactor-V2,1le.unf.hd

</dsCorrectionFactor>

<l-- . ..>

</modelSettings>

</simulationSpecification>
</simulationSpecifications>

Zur Validierung der Einstellungen wird unter Punkt (1) zunichst die Datei
angegeben, die die Document Type Definition (DTD) enthiilt (s.u.) und iiber
die eine Validierung der Angaben erfolgen kann. Die Spezifikationen fiir einen
Simulationslauf wird von den Marken (Tags) <simulationSpecification> und
< /simulationSpecification> begrenzt. Der Simulationslauf wird iiber den URN
im Attribut simRunld identifiziert (2). Zu jedem Simulationslauf werden die
geforderten Einstellungen angegeben (3) — die Identifizierung der Modelle ge-
schieht wiederum iiber die URNs. Das Beispiel zeigt vier Einstellungen fiir das
WaterGAP-Modell, die den Start, das Ende und den Zeitschritt der Simulati-
onszeit sowie den oben bereits angesprochenen Datensatz mit den Korrektur-
Faktoren spezifizieren.

Die Definition der Elemente und Attribute, die in der XML-Datei vorkom-
men diirfen bzw. vorkommen miissen, wird in der DTD vorgenommen:

<!ELEMENT simulationSpecifications (simulationSpecification+)> (1)
<!ELEMENT simulationSpecification (modelSettings+)> 2)
<IATTLIST simulationSpecification simRunId CDATA #REQUIRED> (3

254 ANHANG D. PROGRAMM-QUELLTEXTE

<!ELEMENT modelSettings (simulationStartYear, simulationEndYear,

simulationTimeStep, dsCorrectionFactor)> (4)
<IATTLIST modelSettings simulationModelId CDATA #REQUIRED> (5)
<!ELEMENT dsCorrectionFactor (#PCDATA)> (6)

<IELEMENT simulationStartYear (#PCDATA)>
<!ELEMENT simulationEndYear (#PCDATA)>
<!ELEMENT simulationTimeStep (#PCDATA)>

Die simulationSpecifications bestehen nach Punkt (1) aus mindestens einer
simulationSpecification — ausgedriickt durch das Zeichen ‘4’. Zu einer simula-
tionSpecification gehort wiederum mindestens ein Satz an modelSettings (2),
wobei der Simulationslaufname iiber das Attribut simRunld fiir jeden dieser
Einstellungssitze zwingend (#REQUIRED) vorgeschrieben ist (3). Ein Ein-
stellungssatz besteht nach (4) aus genau vier Einstellungen: simulationStart-
Year, simulationEndYear, simulationTimeStep und dsCorrectionFactor. Jede
dieser Einstellungen besteht dabei aus einfachen Texteintrégen — gekennzeich-
net durch ‘#PCDATA’ (6).

D.5 Simulationssystem

Der folgende Quelltext zeigt einen Ausschnitt aus dem Sicherheitsmodell von
GLASS und verdeutlicht das Prinzip der Generierung und Abfrage von Daten-
satzen.

/] ——————————— Security Model ---- et
//-—-—= create new security model
GlsSecurityModel *securityModel = new GlsSecurityModel; (1)
//-—-—= check availability of results
if (securityModel->resultsAvailable(simRunURN)) { (2)
//-=-== results available
//-—-—= use results:
//-—=—= stress
GlsStressType stress;
stress = securityModel->getStress(region, year, GlsWater); (3)
//-—-—= susceptibility

GlsSusceptibilityType sus;

sus = securityModel->getSusceptibility(region, year, GlsWater);
//-—=—= crisis signal

GlsCrisisType crisisSignal;

crisisSignal = securityModel->getCrisisSignal(region, year, GlsWater);
//-—=—= affected population

GlsPopulationType pop;

//-—-—= potentially affected population

D.5. SIMULATIONSSYSTEM 255

pop = securityModel->getPotentiallyAffectedPopulation(region, year,
GlsWater) ;

//-—-—= crisis occurence

GlsCrisisType crisisOccurence;

crisisOccurence = securityModel->getOccuredCrisis(region,year,

GlsWater) ;
//-==== actually affected populaton
pop = securityModel->getActuallyAffectedPopulation(region, year,
GlsWater) ;
//-=—== crisis-domain remark

string remark;
remark = securityModel->getCrisisDomainRemark(region, year, GlsWater);

//

}
else {
//---—= results not yet available
//-—-—= generate new dataset
securityModel->generateDataSet (simRunURN) ; (4)
}
// -—-

Unter Punkt (1) wird zunéchst eine neue Sicherheitsmodell-Instanz erzeugt.
Im Anschluss wird gepriift, ob fiir einen bestimmten Simulationslauf (simRun-
Name) bereits Ergebnisse berechnet wurden (2). Liegen die Ergebnisse bereits
vor, kénnen diese direkt iiber die Operationen zum Datenzugriff (getStress(),
getSusceptibility() etc.) verwendet werden (3). Liegen die Ergebnisse noch nicht
vor, wird die Operation zur Generierung der Datensiitze aufgerufen (4).2

Der folgende Quelltext ist ebenfalls ein Ausschnitt aus dem Sicherheitsmo-
dell und zeigt den Umgang mit dem Simulationsmodell-Manager.

//---—= get reference to model manager
TamModelManager *modelManager = IamModelManager::instance(); (1)

//-—-—= get references to co-operating simulation models. If required
//-—-—= models are not yet registered, create and register them.

//-—-—= population profile model
_populationProfileModel = (GlsPopulationProfileModelx*)
modelManager->getModelReference ("PopulationProfileModel") ; (2)
if (!_populationProfileModel) {
_populationProfileModel = new GlsPopulationProfileModel; (3)
modelManager->registerModel ("PopulationProfileModel", (4)
_populationProfileModel) ;

3Die init()-Operationen werden automatisch aufgerufen und sind daher im Quelltext nicht
aufgefiihrt.

256 ANHANG D. PROGRAMM-QUELLTEXTE

//-—-—= food-stress model (5)
if (_foodSecurityAnalysis) {
_foodStressModel = (GlsFoodStressModel*)
modelManager->getModelReference ("FoodStressModel") ;
if (!_foodStressModel) {
_foodStressModel = new GlsFoodStressModel;
modelManager->registerModel ("FoodStressModel", _foodStressModel);

}
//-———- water-stress model
//..
[/=-==== check, whether model results for water and food stress are
//-==== already available for the specified simulation-run. If not,
//-———- create data sets.
//-—-—= food-stress model
if (_foodSecurityAnalysis) {
if (!_foodStressModel->resultsAvailable((6)
"urn:x-wzusf.ares-run.SisaTest-V1,0.na.na")) {
//-———= results not yet available -> start simulation run
_foodStressModel->initGeneralModelService (DataSetGeneration); (@)
_foodStressModel->generateDataSet () ; (8)
}
}
//-——- water-stress model:
//..

Im ersten Schritt (1) wird eine Referenz auf die (Singleton-)Instanz des
Simulationsmodell-Managers beschafft. AnschlieBend wird vom Modell-Man-
ager eine Referenz auf ein Bevolkerungsprofil-Modell (populationProfileModel)
erfragt (2). Sofern innerhalb ein solches Modell noch nicht existiert, wird es
erzeugt (3) und beim Modellmanager registriert (4). Die Registrierung erfolgt
unter Angabe des Modellnamens und einer Referenz auf das Modell. Wird fiir
die aktuelle Berechnung die Analyse des Nahrungsmittelstresses ben6tigt, wird
die gleiche Befehlssequenz auch fiir das Nahrungsmittelstressmodell durchge-
fithrt (5) — entsprechendes gilt auch fiir das Wasserstressmodell. Nachdem die
Existenz der Modelle nun sichergestellt ist, wird gepriift, ob die fiir eine Ana-
lyse des Nahrungsmittelsicherheit notwendigen Ergebnisse des Nahrungsmit-
telstressmodells bereits berechnet wurden (6). Ist dies nicht der Fall, wird eine
solche Berechnung initialisiert (7) und gestartet (8).

D.6. DATENZUGRIFF 257

D.6 Datenzugriff

ArcView-Exportformat fiir Rasterdaten

Ein fiir die Datenspeicherung verwendetes Format ist das ASCII-Format, das
vom GIS ArcView zum Import und Export von Rasterdaten verwendet wird.
Die Daten entsprechen den Werten eines regelmiifligen Rasters. Jeder Daten-
satz beginnt mit einer kurzen Charakterisierung des Rasterdatensatzes. Die
folgenden Zeilen entstammen der Beschreibung des Datensatzes mit den Lén-
derkennzahlen, wie sie in IMAGE2.2 verwendet werden.

ncols 720
nrows 360
xllcorner -180
yllcorner -90
cellsize 0.5

NODATA_value -9999

Ein Rasterdatensatz wird also charakterisiert iiber die Anzahl der Spalten
(ncols — number of columns) und Zeilen (nrows — number of rows), die Angabe
des x- und y-Wertes der linken oberen Ecke der geographischen Abdeckung
(x/yllcorner — x/y lower left corner) und die Angabe der Grofie einer Zelle
(cellsize; hier 0.5 Grad). Dariiber hinaus kann optional der ‘Wert’ angegebenen
werden, der fiir unbekannte Werte innerhalb des Datensatzes verwendet wird
(NODATA _value). Der NODATA-Wert wird im Datensatz der Landerkennzah-
len beispielsweise fiir die Zellen der Ozeane eingesetzt (die in IMAGE2.2 keinem
Land zugeordnet sind).

Nach der Beschreibung des Datensatzes folgen die eigentlichen Daten, indem
zeilenweise die Werte jeder Zelle des Rasters von ‘oben links’ (-180°/+90°)nach
‘unten rechts’ (180°/-90°) angegeben werden.

D.7 Geodatenverarbeitung

Der folgende Quelltext zeigt die Verwendung einiger Operationen der Klasse
zur Geodatenverarbeitung innerhalb einer Version des Wasserstressmodells.

void GlsWaterStressModel::calculateStressAreaBased(void)
// calcutate water stress based on current area below threshold

//-———- calculate relative current value [of mean]
*_currentRelative_themePtr = *_currentValue_themePtr (1)

/ *_runningMean_themePtr * 100;

//-—-== calculate stress [} of region area where deviation>threshold]

258 ANHANG D. PROGRAMM-QUELLTEXTE

}

//-—-—- get cells with values below threshold (2)
*_cellsBelowThreshold_themePtr = (*_currentRelative_themePtr <
_availabilityThreshold) ;

//-—-—= calculate region area for all cells with values<threshold
*_affectedCellArea_themePtr = *_cellsBelowThreshold_themePtr
* *_cellArea_themePtr;

_affectedCellArea_themePtr->zonalSum(*_region_themePtr, (3)
*_affectedRegionArea_themePtr) ;

//-—=—= calculate stress [area fraction in % of total region areal
*_affectedRegionAreaFraction_themePtr = =*_affectedRegionArea_themePtr
/ *_regionArea_themePtr
* 100;

*_regionStress_themePtr = * _affectedRegionAreaFraction_themePtr;

Die dargestellte Methode (calculateStressAreaBased) berechnet den flichen-

bezogenen Wasserstress. Alle Geodatensétze werden hier iiber Objekte einer
Klasse ‘theme’ repriisentiert (die Definition der Objekte findet an anderer Stel-
le statt). Die Geodaten-Objekte im Wasserstressmodell reprisentieren jeweils
66896 Rasterzellen (IMAGE2.2-Format). Zur Berechnung des Stresses wird zu-
nichst die relative Wasserverfiigbarkeit (currentRelative) fiir jede Rasterzelle
berechnet (1). Hierzu wird eine Division mit den Geodaten-Objekten durchge-
fithrt, um das Ergebnis anschliefend mit einem skalaren Wert (100) zu mul-
tiplizieren. Die Berechnungen werden dabei automatisch fiir jede der 66896
Rasterzellen durchgefiihrt. Anschlieflend folgt eine logische Operation mit zwei
Geodaten-Objekten (2). Nach einer weiteren Multiplikation erfolgt die Bildung
der zonalen Summe (3).

	Einleitung
	Hintergrund
	Rahmen und Ziel der Arbeit
	Struktur der Arbeit

	Grundlagen
	Integriertes Assessment
	Globaler Wandel
	Assessment des globalen Wandels

	Modellierung
	Software-Entwicklung
	Entwicklungsphasen
	Software-Architektur

	Stand der Technik
	Integrierte Modelle
	Definitionen
	Systeme
	Frameworks
	Entwicklungsumgebungen

	Standards
	Standardisierungs-Organisationen
	High Level Architecture (HLA)
	NIST/ECMA-Referenz-Modell
	Open Distributed Processing -- Reference Model
	OpenGIS Service Architecture

	Fazit

	Systemdefinition
	OOA-Modell
	Gesamtmodell
	SISA-Ressourcen

	Anforderungsdefinition
	Allgemeine Anforderungen
	Ziele und Funktionen
	System-Einsatz
	System-Umgebung
	System-Daten
	System-Leistungen
	Benutzungsschnittstellen
	Qualitäts-Zielbestimmung
	Testszenarien
	Entwicklungs-Umgebung

	Fazit

	Architektur-Entwicklung
	Komponenten-Übersicht
	Komponenten-Entwicklung
	Katalogmanager
	Metadaten-Sammler
	Dokumentation
	Simulationslaufmanager
	Simulationssystem
	Datenzugriff und Datenbanksystem
	Geodatenverarbeitung
	Datenverarbeitung
	Aufgabensteuerung
	Ergebnisanalyse
	Modellanalyse

	Gesamtarchitektur
	Komponenten
	Interaktionen

	Fazit

	Realisierung
	Beispielmodell GLASS
	Komponenten-Übersicht
	Komponenten-Realisierung
	Dokumentation
	Katalogmanager
	Simulationssystem
	Simulationslaufmanager
	Datenzugriff und Datenbasis
	Datenverarbeitung

	Fazit

	Zusammenfassung und Ausblick
	 Zusammenfassung
	Ausblick

	Literaturverzeichnis
	Glossar
	Datenmodelle und Schnittstellen
	Datenmodell zu Personen und Organisationen
	Zusammenfassung des SISA-Datenmodells
	Zusammenfassung der SISA-Schnittstellen

	Standards
	Übersichten
	HLA-Regeln

	Programm-Quelltexte
	PHP-Beispiel
	Metadaten-Datei
	Metadaten-Sammler
	Simulationseinstellungen und Datenzugriff
	Simulationssystem
	Datenzugriff
	Geodatenverarbeitung

