

Heiko Stamer

Restarting Tree Automata
Formal Porperties and Possible Variations

kassel
university

press

This work has been accepted by the faculty of Electrical Engineering and Computer Science of the
University of Kassel as a thesis for acquiring the academic degree of Doktor der Naturwissenschaften
(Dr. rer. nat).

Supervisor: Prof. Dr. Friedrich Otto, Universität Kassel
Co-Supervisor: Prof. Dr. Heiko Vogler, Technische Universität Dresden

Defense day: 10th December 2008

Bibliographic information published by Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at http://dnb.d-nb.de.

Zugl.: Kassel, Univ., Diss. 2008
ISBN: 978-3-89958-634-3
URN: urn:nbn:de:0002-6358

© 2009, kassel university press GmbH, Kassel
www.upress.uni-kassel.de

Printed by: Unidruckerei, University of Kassel
Printed in Germany

A B S T R A C T

The subject of this work is a generalization of restarting automata to trees,
i.e., first-order terms over a finite ranked alphabet. Consequently, it is a
comprehensive study of a novel tree automaton—the so-called restarting
tree automaton—resulting from the proposed generalization. The thesis ex-
plores the expressive power and the formal properties of the new automaton
model. Furthermore, some possible variations are considered.

Restarting automata have been introduced to mirror a linguistic concept
called analysis by reduction. This technique consists of a stepwise simplifica-
tion of a given sentence such that the syntactical correctness or incorrectness
is not affected. After finitely many steps the final result of the reduction is
easily identified as being correct or incorrect. Restarting automata are a
formal framework for studying certain aspects of analysis by reduction.

In the last years there was a growing effort to investigate language classes
recognized by different variants of restarting automata. Moreover, tree au-
tomata have gained much attention in the computer science community,
mainly due to their fruitful applications in abstract interpretation, auto-
mated theorem proving, logical reasoning, and program verification. Thus,
it seems to be promising to merge these different areas of automata theory—
from a practical as well as from a theoretical point of view.

Essentially, a restarting tree automaton is an iterated top-down tree auto-
maton that is equipped with an additional rewriting capability and a finite
look-ahead. A computation of the automaton consists of finitely many cy-
cles. In each cycle the tree is read in a top-down manner by branching out in
many parallel subcomputations. While reading the tree at least one position
is determined where a size-reducing rewrite will be performed. However,
on each root-to-leaf path at most one such position may occur. After the
rewrite the remaining parts of the tree are read. Finally, depending on the
state of the finite control unit the automaton will decide, whether it restarts,
i.e., the next run is initiated, or rejects. However, in order to perform a
restart, a restarting condition must be met, i.e., all independent subcompu-
tations uniformly decide to restart. The main consequence of a restart is the
loss of all information memorized in the control unit. After finitely many
cycles a computation ends in a tail, i.e., an initial part of a cycle where the
restarting condition is met without performing any rewrite. If the reduced
tree is read without reject, then the original input is recognized.

Unsurprisingly, many of the known results about restarting automata can
be transferred to the new tree automaton model. However, there are a lot of
interesting questions on their own. One of the most remarkable results is the
recognition of each linear context-free tree language. This is surely interest-
ing, because it establishes a relationship to some tree generating formalisms
studied in linguistics, e.g. tree-adjoining grammars.

iii

Z U S A M M E N FA S S U N G

Die vorliegende Arbeit beschäftigt sich mit einem neuen Baumautomaten-
modell, welches die sogenannten ”Restart-Automaten“ für Bäume verallge-
meinert. Insbesondere werden die Ausdruckskraft und die formalen Eigen-
schaften dieses neuen Modells untersucht. Zusätzlich werden einige einge-
schränkte Varianten vorgestellt, die ebenfalls hinsichtlich ihrer Ausdrucks-
stärke und in Bezug auf das Verhältnis der Einschränkungen zueinander
genauer betrachtet werden.

Die Restart-Automaten sind ein theoretisches Modell für die in der Lin-
guistik verwendete ”Analyse durch Reduktion“. Dabei werden Sätze einer
natürlichen Sprache analysiert, indem sie durch das wiederholte Ersetzen
von Satzteilen vereinfacht werden. Dieser Ersetzungsprozess wird solange
iteriert, bis entweder ein Fehler entdeckt oder bis ein korrekter elementa-
rer Satz erreicht wird. Von zentraler Bedeutung ist dabei die Forderung,
dass die lokalen Ersetzungsschritte sowohl fehler- als auch korrektheitser-
haltend sein müssen. Nur deshalb kann von einem korrekten bzw. inkor-
rekten Endergebnis auf einen korrekten bzw. inkorrekten Ausgangssatz ge-
schlossen werden. Darüberhinaus dient die Analyse durch Reduktion der
Erkennung von Abhängigkeiten zwischen verschiedenen Satzteilen sowie
der Auflösung morphologischer Mehrdeutigkeiten, wobei sie hauptsächlich
bei Sprachen mit freier Wortordnung zum Einsatz kommt, z. B. Tschechisch,
Russisch oder auch Deutsch.

Der Hauptteil der Dissertation befasst sich mit der Verallgemeinerung der
Restart-Automaten auf Bäume. Ein ”Restart-Baumautomat“ ist im Wesentli-
chen ein iterierter Top-Down-Baumautomat, der zusätzlich die Möglichkeit
hat, während der Analyse des Baumes lokale Ersetzungen vorzunehmen.
Der Automat verfügt über eine endliche Kontrolleinheit, der eine Menge
von höhenbeschränkten Lese-/Schreibfenstern zugeordnet wird. Diese Fens-
ter erlauben – im Gegensatz zu endlichen Baumautomaten – eine begrenzte
Vorschau in den betrachteten Zweig des Baumes hinein. Eine Berechnung
des Automaten besteht aus endlich vielen Zyklen und endet mit einem
Schlussstück. Jeder Zyklus beginnt in einer Konfiguration, in der sich ge-
nau ein Lese-/Schreibfenster an der Wurzelposition des Baumes befindet.
Wie bei endlichen Top-Down-Baumautomaten üblich, wird der Baum dann
Ebene für Ebene und von oben nach unten gelesen. Dabei kommen bei
einer Verzweigung ggf. neue Fenster hinzu. Zusätzlich kann ein Restart-
Baumautomat in jedem Zweig maximal eine Ersetzung vornehmen, die je-
doch nur innerhalb des Lese-/Schreibfensters eine Veränderung bewirken
darf. Insbesondere wird kein aus dem Fenster herausragender Ast ’abge-
schnitten‘ oder ’vervielfacht‘. Nach einer solchen Ersetzung liest der Auto-
mat die restlichen Teile des Baumes, die sich ’unterhalb‘ der veränderten
Stelle befinden. Schließlich kommt es zu einem Neustart des Automaten,
falls alle Zweige einer regulären Bedingung genügen und mindestens eine

v

Ersetzung durchgeführt wurde. Dabei ’vergisst‘ der Automat alle Informa-
tionen, die er durch Lesen des Baumes bisher erhalten hat, und beginnt
einen neuen Zyklus. Im Schlussstück einer Berechnung verhält sich der Au-
tomat wie ein gewöhnlicher Top-Down-Automat, d. h. er führt keine Erset-
zung durch und prüft lediglich eine reguläre Bedingung. Sollte diese Bedin-
gung erfüllt sein, akzeptiert der Automat den anfänglichen Baum; andern-
falls weist er die Eingabe zurück.

Die Arbeit ist wie folgt gegliedert: Im ersten Kapitel wird die Analy-
se durch Reduktion anhand eines Beispiels näher erläutert. Ferner werden
Bezüge zu den verschiedenen Varianten der Restart-Automaten und zu Er-
setzungssystemen im Allgemeinen hergestellt. Schließlich werden die in
der Dissertation erzielten Ergebnisse kurz beschrieben und vor dem Hin-
tergrund verwandter Konzepte eingeordnet.

Im zweiten Kapitel werden einige grundlegende Begriffe und bekannte
Resultate aus dem Bereich der formalen Sprachen und der Ersetzungssyste-
me vorgestellt. Während sich der erste Teil des Kapitels mit Automaten und
Grammatiken für Wörter, d. h. endlichen Folgen von Symbolen, beschäftigt,
ist der zweite Teil solchen Modellen vorbehalten, die mit Bäumen, also nicht-
linearen Anordnungen von Symbolen, arbeiten. Desweiteren wird in diesem
Kapitel eine einheitliche Notation für die folgenden Teile entwickelt.

Darüberhinaus werden im zweiten Kapitel die sogenannten ”endersetzungs-
freien Restart-Automaten“ behandelt, die im Schlussstück einer Berechnung
keine Ersetzung mehr durchführen können. Diese Einschränkung wird be-
trachtet, weil sie die eigentliche Arbeitsweise der Restart-Baumautomaten
widerspiegelt. Es zeigt sich, dass für jeden beliebigen Restart-Automaten ein
nichtdeterministischer endersetzungsfreier Restart-Automat existiert, wel-
cher dieselbe Sprache akzeptiert. Für einige Typen von deterministischen
Restart-Automaten ist die betrachtete Endersetzungsfreiheit jedoch eine ech-
te Einschränkung.

Im dritten Kapitel wird eine weitere Normalform für lineare kontext-
freie Baumgrammatiken vorgestellt. Diese Normalform ist im Wesentlichen
durch die wachsende Form der Produktionsregeln einer streng monoto-
nen Chomsky-Grammatik inspiriert, allerdings sind in ”wachsend kontext-
freien Baumgrammatiken“ nur kontextfreie Regeln zugelassen, um eine ent-
sprechende Charakterisierung der linearen kontextfreien Baumsprachen zu
erhalten. Diese Klasse von Baumsprachen ist besonders vom linguistischen
Standpunkt aus interessant, da es enge Beziehungen zu Tree-Adjoining-
Grammatiken und anderen sprachwissenschaftlichen Formalismen gibt.

Das vierte Kapitel beginnt mit einer kurzen Diskussion verschiedener
Design-Kriterien für den Verallgemeinerungsprozess. Außerdem werden die
Unterschiede im Hinblick auf das ursprüngliche Modell herausgearbeitet.
Nach einer formalen Definition der Restart-Baumautomaten und der Dar-
stellung einiger erläuternder Beispiele werden Normalisierungsverfahren
gezeigt, die hauptsächlich der Vereinfachung späterer Konstruktionen die-
nen. Anschließend werden die grundlegenden Eigenschaften der Automa-
ten untersucht und die Ausdruckskraft verschiedener Typen im Detail be-
trachtet. Insgesamt stellt sich heraus, dass wichtige Eigenschaften, wie bei-

vi

spielsweise Korrektheits- und Fehlererhaltung, auch für Restart-Baumauto-
maten gelten. Die Automaten sind zudem sehr ausdrucksstark, da bereits
der am weitesten eingeschränkte Typ einige nicht-kontextfreie Baumspra-
chen erkennt. Ferner wird gezeigt, dass Restart-Baumautomaten mit Zu-
satzsymbolen jede lineare kontextfreie Baumsprache erkennen, wobei der
Beweis auf der im vorangehenden Kapitel eingeführten Normalform beruht.
Das Kapitel endet mit der Betrachtung von Abschlusseigenschaften und Ent-
scheidungsproblemen.

Im fünften Kapitel werden zwei spezielle Einschränkungen diskutiert: Ein
sogenannter ”nicht-verzweigender Restart-Baumautomat“ kann den Baum nur
entlang eines Pfades lesen und verarbeiten, d. h. in einem Zyklus werden
keine parallelen Teilberechnung ausgeführt, was eine praktische Implemen-
tierung erleichtert. Trotzdem erkennt ein solcher Automat mit Hilfe von
Zusatzsymbolen jede lineare kontextfreie Baumsprache. Die zweite betrach-
tete Einschränkung betrifft die Ersetzungsmöglichkeit: Ein ”grundersetzender
Restart-Baumautomat“ kann Ersetzungen nur in der Nähe der Blätter vorneh-
men, was seine Ausdruckskraft stark einschränkt. Jedoch kann auch diese
Variante nicht-reguläre Baumsprachen erkennen. Insgesamt zeigt sich, dass
beide Einschränkungen in einem gewissen Sinn orthogonal zueinander ste-
hen, d. h. die entsprechenden Baumsprachenklassen sind bezüglich Inklusi-
on unvergleichbar.

Im sechsten Kapitel werden die erzielten Ergebnisse resümiert. Den Ab-
schluss bildet eine detaillierte Liste offener Fragen und möglicher Erweite-
rungen. Ferner werden einige Ideen für Anwendungen skizziert.

vii

P U B L I C AT I O N S

Some of the ideas, results, and proof techniques presented in this thesis
appeared previously in the following refereed publications:

[SO07a] Heiko Stamer and Friedrich Otto. Restarting Tree Automata. In
Jan van Leeuwen et al., editors, Theory and Practice of Computer Science,
Proceedings of the 33rd Conference on Current Trends in Theory and Practice
of Computer Science (SOFSEM 2007), volume 4362 of Lecture Notes in
Computer Science, pages 510–521. Springer-Verlag, 2007.

[SO07b] Heiko Stamer and Friedrich Otto. Restarting Tree Automata and
Linear Context-Free Tree Languages. In Symeon Bozapalidis and
George Rahonis, editors, Algebraic Informatics, Revised Selected and In-
vited Papers of the Second International Conference on Algebraic Informatics
(CAI 2007), volume 4728 of Lecture Notes in Computer Science, pages
275–289. Springer-Verlag, 2007.

Moreover, some preliminary results and ideas have been announced in the
following non-refereed proceedings and technical reports:

[SO06] Heiko Stamer und Friedrich Otto. Restarting Tree Automata. Tag-
ungsband zum 16. Theorietag der Fachgruppe ”Automaten und For-
male Sprachen“ der Gesellschaft für Informatik e. V., Technische Uni-
versität Wien, 28.–29. September 2006.

[OS07] Friedrich Otto und Heiko Stamer. Eingeschränkte Restart-Baum-
automaten. Tagungsband zum 17. Theorietag der Fachgruppe ”Au-
tomaten und Formale Sprachen“ der Gesellschaft für Informatik e. V.,
Universität Leipzig, 28.–29. September 2007.

Specifically, in [SO07a] nondeterministic restarting tree automata have been
introduced and initially studied. However, the formerly defined transition
rules slightly differ from those considered in Chapter 4 of this thesis:

1. In general, the formerly introduced top-down transitions may shift the
read/write-windows down by more than only one level of the input.
However, for nondeterministic restarting tree automata this difference
does not lead to a restricted recognition power, because a nondetermin-
istic simulation technique can completely remedy the situation. In the
deterministic model the difference really matters, and thus, at the time
when considering deterministic automata, we have finally decided to
use only look-ahead transitions that exactly cover the behavior of a
restarting automaton.

2. Moreover, initially it was not required that the right-hand side of each
rewrite transition is a context, and thus the reordering of branches in

ix

unbounded subtrees was, in general, tolerated. But it turned out that
this additional power was never needed in order to faithfully mirror
the behavior of a restarting automaton. Thus, in this thesis the reorder-
ing capability has been abandoned, however, a deep analysis on the
induced loss of expressive power is left open.

Furthermore, some basic results (cf. Section 4.4), the expressive power (cf.
Section 4.5), and a few closure properties (cf. Section 4.6) of nondeterminis-
tic restarting tree automata was also studied there.

In [SO07b] the equivalence of linear context-free tree grammars and grow-
ing context-free tree grammars was shown, i.e., essentially Lemma 3.1 and
Lemma 3.2, however, again some minor deviations are due to a small dif-
ference in the definition of growing context-free tree grammars (cf. Defini-
tion 3.1). Moreover, the existence of a restarting tree automaton with aux-
iliary symbols for each linear context-free tree language (cf. Section 4.5.1)
was also established there.

The single-path restarting tree automaton and the ground-rewrite restart-
ing tree automaton were introduced in [OS07]. Moreover, a combination of
both restricted variants was announced there. The paper contains a prelim-
inary study of the expressive power which is revised in Chapter 5 of the
present thesis.

x

A C K N O W L E D G M E N T S

First of all, I am very grateful to my supervisor Prof. Dr. Friedrich Otto
for his valuable guidance, many constructive suggestions, and his continual
encouragement during the research and in the phase of writing down the
thesis as well. Moreover, his various hints and corrections have substantially
improved the readability of this work.

Secondly, I thank Prof. Dr. Heiko Vogler (TU Dresden) for his attendance
to referee this thesis and for inviting me to Dresden. In particular, I greatly
appreciate his helpful suggestions and comments.

Furthermore, I would like to thank my colleagues for their various tips
and fruitful discussions on restarting tree automata and related topics.

Especially, I would express my profound thanks to František Mráz and
Martin Plátek for inviting me several times to the beautiful city of Prague
and for giving me the opportunity to present parts of the work in form of a
seminar lecture at the Charles University.

I am also indebted to Eija Jurvanen for providing copies of several pa-
pers, which were not present in our library. Specifically, I am very obliged
for sending a signed hardcover edition of her PhD thesis entitled “On Tree
Languages Defined by Deterministic Root-to-Frontier Recognizers”.

Last but not least, I thank Sabine Klomfaß for her love and support.

This thesis was composed on a Lenovo/IBM Thinkpad X61s with Palatino and
AMS Euler typefaces created by Hermann Zapf and Donald E. Knuth. The type-
setting was performed by the TEX and METAFONT software originally developed
by Donald E. Knuth. Several LATEX macro packages and the program pdfTeXk
from the “TEX Live 2008” distribution have been used to produce the final output.
Many layout ideas, typographic elements, and macro definitions are taken from
the classicthesis style created by André Miede. The illustrations were produced
with the PGF/TikZ package, developed by Till Tantau, and the XY-pic package cre-
ated by Kristoffer H. Rose, Ross Moore, and others. I am also indebted to many
authors from the free/libre open source software community, in particular to the
developers of the GNU project, Gentoo Linux, and Debian GNU/Linux.

xi

C O N T E N T S

1 Introduction . 1

2 Preliminaries . 9
2.1 Relations, Orderings, and Mappings 9

2.2 Alphabets, Words, and Formal Languages 10

2.3 Terms, Trees, and Forests . 31

3 Growing Context-Free Tree Grammars 61
3.1 Linear Context-Free Tree Grammars 66

3.2 Growing Context-Free Tree Grammars 71

4 Restarting Tree Automata . 75
4.1 Transition Rules of Restarting Tree Automata 82

4.2 Definition and Examples . 84

4.3 Normalizations for Restarting Tree Automata 89

4.4 Basic Properties . 94

4.5 Expressive Power . 106

4.5.1 Recognition of Linear Context-Free Tree Languages . . 108

4.5.2 Look-Ahead Hierarchies of Restarting Tree Automata 110

4.5.3 Deterministic Restarting Tree Automata 114

4.5.4 Path Languages and Yield Languages 119

4.6 Closure Properties . 122

4.7 Decision Problems . 130

5 Variants of Restarting Tree Automata 135
5.1 Single-Path Top-Down Tree Automata 136

5.2 Single-Path Restarting Tree Automata 137

5.2.1 Monotone Single-Path Restarting Tree Automata . . . 143

5.3 Ground-Rewrite Restarting Tree Automata 144

5.4 Ground-Rewrite Single-Path Restarting Tree Automata 147

6 Conclusion . 149
6.1 Summary . 149

6.2 Open Problems . 151

6.3 Further Research . 153

6.4 Applications . 156

Bibliography . 159

Index . 180

xiii

L I S T O F F I G U R E S

2.1 Schematic representation of a restarting automaton 17

2.2 Chain of instructions performed by an RLWW-automaton 19

2.3 Taxonomy of nondeterministic restarting automata 25

2.4 Taxonomy of (monotone) deterministic restarting automata . . . 27

2.5 Chain of instructions performed by a trf-RRWW-automaton . . . 28

2.6 Graphical representation of terms 32

2.7 Comparing terms by different orderings 35

3.1 Proof of Proposition 3.1, Case (i) 65

3.2 Proof of Proposition 3.1, Case (ii) 66

4.1 Different kinds of tree-like structures 75

4.2 Incomparability of height- and size-reducing rewrite steps 77

4.3 Schematic representation of a restarting tree automaton 77

4.4 Phases of a cycle: Initial situation 79

4.5 Phases of a cycle: Reading . 79

4.6 Phases of a cycle: Reading . 80

4.7 Phases of a cycle: Rewriting . 80

4.8 Phases of a cycle: Reading after a rewrite 81

4.9 Phases of a cycle: Restart condition 81

4.10 Chain of transitions performed on each root-to-leaf path 86

4.11 Taxonomy of nondeterministic restarting tree automata 111

4.12 Taxonomy of deterministic restarting tree automata 120

5.1 Taxonomy of single-path restarting tree automata 143

5.2 Taxonomy of ground-rewrite restarting tree automata 148

L I S T O F TA B L E S

3.1 Transformations performed in Example 3.1 71

4.1 Summary of the closure properties for restarting tree automata . 130

xv

1I N T R O D U C T I O N

Restarting automata [JMPV95, PLO03] were introduced as a formal model
for the computational description of dependency phenomena as well as for
checking the syntactic correctness or incorrectness of natural languages. In
general a restarting automaton is a nondeterministic device with a finite
control unit and a read/write-window attached to a linear list of symbols.
A computation of the automaton consists of finitely many cycles and a fi-
nal part called tail. In each cycle the automaton can move the read/write-
window across the list depending on the state of its finite control unit. Thus,
it will see some contents of the list and can remember a finite amount of
information by changing its internal state. Eventually, the automaton can
rewrite the contents within the scope of its read/write-window by a some-
how ‘simpler’, possibly empty, sequence of symbols. Then the automaton
continues by moving the attached window again. Finally, it either will halt
by entering an accepting resp. rejecting state, or restart, i.e., the automa-
ton resets the control unit to the initial state and moves the window to
the left end of the list. Thus the next cycle starts on a modified list, how-
ever, the memorized information about the seen contents is lost. Essentially,
such an automaton can be viewed as a bottom-up syntactic analyzer or as
a regulated reduction system. In the last decades many variants of restart-
ing automata have been studied [JMPV96, MPJV97, JMPV98, MPP99, Plá01,
JOMP04a, MO05, JO06, JO07], however, until now only models that work
with strings, i.e., finite sequences of letters from a finite alphabet, were con-
sidered. This restriction is basically imposed by the linear storage of the
device, which almost implies a linear structure of the input.

In this thesis the scope of restarting automata is extended in order to
deal with trees, i.e., first-order terms over a finite ranked alphabet. During
the past twenty years tree automata [GS97, CDG+

07] have gained much at-
tention in the theoretical computer science community, mainly due to their
fruitful applications in abstract interpretation, automated theorem proving,
logical reasoning, and program verification. Thus, it seems to be promising
to merge these different facets of automata theory—both from a practical
and a theoretical point of view. Consequently, the present work will com-
bine the models of a restarting automaton and a finite tree automaton into
a common form: the restarting tree automaton. This kind of generalization
is particularly reasonable since generative formalisms, i.e., various classes
of tree grammars, have already turned out to be very useful in linguis-
tics [JS97, SW94, JSW94, AR00, dGP04, DC05], while the corresponding tree
recognizers are only sparsely studied [MC97, FK00, YAM00, Mor03, FK05].

On the following pages of the first chapter we will sketch the main lin-
guistic application of a restarting automaton—the analysis by reduction.
Furthermore, the fundamental concept of a rewriting system is informally

1

2 introduction

presented. Finally, the scientific contribution and the outline of the thesis
are stated, and some related work is briefly reviewed.

Analysis by reduction is a linguistic technique [Str99, Str00, LPK05] used to
analyze sentences of natural languages. This method is of particular interest
for languages that have a ‘free word order’ like Czech, Sorbian, and other
Slavic languages. Moreover, Finnish has this property as well, i.e., the order
of the main constituents of a sentence is relatively free, and it is not really
surprising that some similar parsing methods are known [NJL84].

Specifically, analysis by reduction consists of a stepwise simplification in
such a way that the syntactical correctness or incorrectness of the sentence
is not affected. That means, after a finite number of reduction steps either
a correct simple sentence is obtained, or an error is detected. In the former
case the initial sentence is recognized as being syntactically correct, however,
if all possible reduction sequences yield errors, then the given sentence was
not correct. The idea behind this method is illustrated by the following
analysis of an artificial sentence:

The three-toed sloth is hanging upside down from a huge branch of the tree.

The sentence is read from left to right until a phrase is found that can be
simplified. For example, the constituents “three-toed”, “upside down”, and
“huge” can be removed without affecting the syntactical correctness of the
sentence:

The sloth is hanging upside down from a huge branch of the tree.

The three-toed sloth is hanging from a huge branch of the tree.

The three-toed sloth is hanging upside down from a branch of the tree.

In fact, the phrases “three-toed”, “upside down”, and “huge” are not depen-
dent on each other, as each simplification yields a correct sentence. Thus,
analysis by reduction is also able to determine the dependency structure of
the various parts of a given sentence. By applying all three simplifications
in a sequence we obtain:

The sloth is hanging from a branch of the tree.

The result can be further simplified by deleting the phrases “from a branch”
and “of the tree”, respectively.

The sloth is hanging of the tree.

The sloth is hanging from a branch.

However, in contrast to the second sentence, the first sentence is not correct.
Thus, we can conclude that the phrase “of the tree” depends on the phrase
“from a branch”. Finally, from the second sentence we obtain the following
sentence by rewriting the phrase “from a branch” into “there”:

The sloth is hanging there.

3

This simple sentence is easily verified as being syntactically correct, and
thus we can conclude that the initial sentence was also correct. In addi-
tion some information about the dependency structure of the sentence has
been obtained, which is usually represented by means of dependency gram-
mars [Mod75, PHKO01, GMV06]. Moreover, analysis by reduction is ca-
pable to solve morphological ambiguities [PLO03] occurring in the given
sentence. That means, this linguistic method can determine the reading of
a constituent in a sentence, e.g., whether the word “branch” is a noun or
a verb. Such a disambiguation technique is particularly helpful for natural
languages with a free word order.

Restarting automata are a formal framework describing certain aspects of
analysis by reduction. Essentially, each cycle of a computation corresponds
to one step of simplification, and the so-called error preserving property and
correctness preserving property of an automaton characterize the preserva-
tion of the syntactical incorrectness and correctness of the processed in-
put. The initially considered model of a restarting automaton [JMPV95]
can shift the read/write-window only to the right. In addition, it is just
capable to delete some contents of the list within the scope of the win-
dow and then must immediately restart, i.e., the rewrite and the restart
are essentially combined into one rewrite/restart operation. These restric-
tions are expressed by the abbreviation “R”. Subsequently the model was
extended in various ways, for example, a restarting automaton with rewrit-
ing [JMPV96, JMPV97], “RW-automaton” for short, is able to replace the
contents of the window by a shorter string instead of just deleting some
symbols. Further, the use of auxiliary symbols, i.e., symbols not occurring
in the initial input, was proposed shortly later [JMPV98], which yields the
so-called “RWW-automaton”. In the same paper the rewrite/restart opera-
tion was separated, i.e., after a rewrite the window can still move further
before a restart must be performed. Consequently, the abbreviations “RR”,
“RRW”, and “RRWW” have been established, respectively.

As already pointed out, restarting automata can be viewed as regulated re-
duction systems. In fact, a characterization of RW- resp. RRW-automata by
means of certain regular prefix-rewriting systems is known [NO99a, NO03].
The classical notion of a rewriting system was introduced in the seminal work
of Axel Thue [Thu14] at the beginning of the 20th century. Essentially, a
rewriting system is a set R of rewrite rules of the form l → r, where l de-
notes the left-hand side and r the right-hand side, respectively. For example,
an object t that contains an occurrence of a left-hand side l can be rewritten
into an object t ′ such that the intended occurrence of l in t is replaced by
r. This relationship between objects is formalized by the binary one-step
rewriting relation →R, i.e., t →R t ′ holds, if and only if t can be rewritten
into t ′ using a rewrite rule from R. In the mid-1950’s and in the 1960’s,
string-rewriting systems [DJ90, BO93] received an increasing attention in
computational linguistics and in formal language theory since they consti-
tute a mathematical model for phrase-structure grammars [Cho56]. These
grammars were exhaustively studied in the context of adequate representa-
tion and machine translation of natural languages.

4 introduction

Already Thue suggests [Thu14, ST00] the extension of the rewriting ap-
proach to more structured combinatorial objects like trees or graphs. In fact,
trees are “the most important nonlinear structures that arise in computer al-
gorithms” [Knu97, Section 2.3, page 308]. Thus it is very natural that string-
rewriting systems have been generalized in order to deal with trees. The so-
called term-rewriting systems [BN98] are a well-studied formalism with many
interesting problems and applications. Similar to string-rewriting systems,
the left-hand sides of a set of rules describe all those patterns which will
be replaced by trees of the corresponding right-hand sides. Without any
further restriction string-rewriting systems and even more term-rewriting
systems are Turing-complete models of computation [Tur36, HMU06].

However, since analysis by reduction always performs a simplification
on the given sentences, the rewriting system of a corresponding restarting
automaton is not too powerful. Moreover, it is of a rather restricted form.
This is also one of the reasons for our commitment to define the new tree
automaton model in the framework of term-rewriting systems. Thus many
results, techniques, and notations developed in the context of term-rewriting
can easily be reused in order to study restarting tree automata.

Contribution and Outline of the Thesis

The present work is a comprehensive study of a novel tree automaton. More
precisely, it proposes a straight-forward generalization of the restarting au-
tomaton in order to deal with finite ranked trees. The expressive power and
the formal properties of the new model are studied, and some promising
variations are considered. Finally, the thesis concludes with a detailed list
of open questions, further variations, and ideas for possible usage scenarios.

In the second chapter, a uniform notation is established, which is then
used throughout the rest of the thesis. Moreover, some fundamental def-
initions and a few basic results on formal languages, rewriting systems,
automata, and grammars are given. The first novel contribution is the def-
inition of the so-called tail-rewrite-free restarting automaton. This model is
roughly studied with respect to its expressive power, because it mirrors the
behavior of the subsequently defined generalization in some sense more
faithfully than the original model. Specifically, it is required that a tail-
rewrite-free restarting automaton cannot perform any rewrite in the tail
of a computation. Obviously, R-, RW-, and RWW-automata are already
tail-rewrite-free, because after a rewrite step they will immediately restart.
Moreover, it is shown that, for each type of restarting automaton, there ex-
ists an equivalent nondeterministic tail-rewrite-free restarting automaton of
the same type. Thus, as long as the nondeterministic model is concerned
tail-rewrite-freeness does not limit the expressive power of restarting au-
tomata. However, for deterministic RR- and RRW-automata the property of
being tail-rewrite-free turns out to be a proper restriction.

In the third chapter a novel normal form for linear context-free tree gram-
mars is derived. A so-called growing context-free tree grammar is a straight-

5

forward generalization of a strictly monotonous phrase-structure grammar,
however, only linear and context-free productions are allowed. This restric-
tion is particularly needed in order to obtain a suitable characterization of
the linear context-free tree languages, which are of some interest from a
linguistic point of view. Using well-known techniques from the Chomsky
normal form construction and a recent result stating the irrelevance of the
derivational mode for linear context-free tree grammars the equivalence of
linear context-free tree grammars and growing context-free tree grammars
is shown. As a by-product the equivalence of linear context-free tree lan-
guages and simple context-free tree languages is obtained, which is quite a
‘folklore result’ in formal tree language theory.

The main part of the thesis is concerned with the proposed generaliza-
tion of the restarting automaton. Essentially, a restarting tree automaton is
an iterated top-down tree automaton which is equipped with an additional
rewriting capability and many height-bounded read/write-windows. These
windows will constitute a finite look-ahead on each branch of the tree. A
computation of the automaton consists of finitely many cycles and ends
with a tail. In each cycle the tree is read in a top-down manner by branch-
ing out in many parallel subcomputations. Initially, exactly one window
is attached to the finite control unit and it is placed at the root position.
Depending on the current state and the contents inside, the windows are
moved downwards level by level and possibly additional windows are at-
tached resp. existing windows are detached. While reading the tree at least
one position is determined where a size-reducing rewrite will be performed.
However, on each root-to-leaf path at most one such position may occur. Af-
ter the rewrite the remaining parts of the tree are read. Thus, depending on
the state of the finite control unit the automaton can decide, whether it will
restart or reject. In order to perform a restart, a so-called restarting condi-
tion must be met, i.e., all independent subcomputations uniformly decide
to restart. Specifically, this condition is satisfied, if all read/write-windows
are detached. Then, the automaton reenters its initial state and exactly one
read/write-window is placed at the root position of the modified tree. After
finitely many cycles a computation ends with a tail, i.e., an initial part of a
cycle where the restarting condition is met without performing any rewrite.

The fourth chapter starts with a brief discussion of several design crite-
ria of the generalization. Moreover, the induced differences with respect
to the original model are outlined. After providing a formal definition in
the framework of term-rewriting systems some normalization results are es-
tablished, mainly in order to simplify subsequent constructions accordingly.
Then the basic properties of restarting tree automata are explored and the
expressive power is studied in some detail. It turns out that most features
of the original model carry over to the introduced tree automaton model,
for example, the error preserving property, the correctness preserving prop-
erty, and a pigeonhole argument. Thus, restarting tree automata offer the
same nice properties that are particularly useful in linguistic applications.
Regarding the expressive power the following results are shown:

6 introduction

- Except a small deviation stemming from the tail-rewrite-freeness, the
new model faithfully mirrors the expressive power of restarting au-
tomata with respect to monadic tree structures. Thus, essentially the
same lower and upper bound languages can be used in order to show
the properness of the inclusions between the various tree language
classes defined by different types of restarting tree automata, i.e., RT-,
RWT-, RRT-, RRWT-, and RWWT-automata.

- Due to the derived normal form for linear context-free tree grammars
it is shown, that nondeterministic RWWT-automata are capable of
recognizing each linear context-free tree language. Perhaps this is
the most remarkable result of the thesis, because it establishes a re-
lationship to the languages obtained from generative formalisms, e.g.
tree-adjoining grammars. On the other hand, even deterministic RT-
automata can recognize tree languages that are not context-free. Thus
they are fairly expressive in contrast to the formerly known devices.

- Moreover, using a straight-forward pumping argument it is shown
that each regular tree language can be recognized by some determin-
istic RT-automaton.

Subsequently, a proper hierarchy of tree language families with respect to
the height of the look-ahead is obtained by using essentially the same wit-
ness languages known for restarting automata. Moreover, path languages
and yield languages will be considered. Finally, several closure and non-
closure properties are studied. Regarding the most common decision prob-
lems for tree automata the following results are obtained: The uniform mem-
bership problem is decidable in polynomial time, for any class of restarting
tree automata. The emptiness problem is also decidable, however, only for
restarting tree automata without auxiliary symbols. The intersection empti-
ness problem is undecidable, for any nondeterministic class of restarting
tree automata.

Last but not least, two restricted variants of restarting tree automata are
studied in the fifth chapter—the single-path restarting tree automaton and
the ground-rewrite restarting tree automaton. A single-path restarting tree
automaton will be able to explore and modify the tree along a single-path
only. However, due to its finite look-ahead a limited number of positions
around the path are still taken into account. As a side-effect of this restric-
tion it is enforced that rewrites are executed in a strictly sequential way, i.e.,
exactly one rewrite step per cycle is admitted. In fact, this offers the oppor-
tunity to define the notion of monotonicity of a computation in a similar
way as for restarting automata on words. However, at least for single-path
restarting tree automata with auxiliary symbols this does not limit the ex-
pressive power to a subclass of the context-free tree languages. Neverthe-
less, many of the results on general restarting tree automata carry over to
the single-path variant, in particular the recognition of linear context-free
tree languages, some closure properties, and the undecidability of the most
advanced decision problems. The second variant we study is the ground-

7

rewrite restarting tree automaton. Such an automaton is required to perform
the rewrites only at the ‘ground of the tree’. Accordingly, these automata
can be interpreted as ground term-rewriting systems with an additional reg-
ular control. Although ground-rewrite restarting tree automata are much
less expressive than the general model, it turns out that they still can recog-
nize non-regular tree languages. Finally, it is shown that both restrictions,
i.e., single-path and ground-rewrite, are in some sense orthogonal to each
other, i.e., the resulting tree language classes are incomparable with respect
to set inclusion.

Related Work

The concept of two-dimensional (planar) automata was studied by Jiřička
and Král [JK99] for the related model of forgetting automata [JMP93, JMP96].
However, to the best of my knowledge this generalization was not consid-
ered for restarting automata.

Furthermore, top-down rewriting [Mey04, Mey07] and one-pass term re-
writing [FJSV98] are related concepts studied in the area of term-rewriting
systems. However, at least for the general model of a restarting tree automa-
ton which can perform many rewrites in parallel, these rewriting strategies
are not really suitable.

Regarding the contents of Chapter 3 the following related work is known:
Leguy [Leg80, Leg81a] has already shown the result stated in Lemma 3.1.
Similar normal forms with respect to linear and nondeleting productions
were also obtained for IO-macro grammars [Fis68a] and multiple context-
free grammars [SMFK91]. Moreover, Fujiyoshi [Fuj04b, Fuj05] has shown a
similar result for linear context-free tree grammars that are monadic. Finally,
Seki and Kato [SK06, Lemma 7] have shown a corresponding normalization
result for macro grammars.

2P R E L I M I N A R I E S

The following sections are devoted to establish a uniform notation, some
fundamental definitions, and a few basic results on words [MS97a, AU72],
trees [GS97, CDG+

07], rewriting systems [DJ90, Klo92, BO93, Jan97, BN98],
automata [Tho90, HMU06], and grammars [MS97b, AU72]. Although this
chapter explains all terms necessary to understand the rest of the thesis,
it does not provide a complete introduction to the above topics. Thus the
interested reader is referred to the literature, for gathering further details.

We start with a short section about basic properties of relations, orderings,
and mappings. Then we turn to finite alphabets, words, and morphisms,
which are the essential building blocks for doing formal language theory.
Next, generalized phrase-structure grammars are introduced as one possi-
ble approach to describe formal languages and families of formal languages.
We sketch a few decision problems, closure properties, and the well-known
Chomsky hierarchy, in order to distinguish some important formal language
classes and corresponding complexity classes. Restarting automata are de-
scribed more deeply, whereas many of the examples and results are sum-
marized from the comprehensive survey of Otto [Ott06]. Finally, we fix our
notation for trees resp. terms and sketch formal languages of trees. In partic-
ular, term-rewriting systems, tree automata, and tree grammars are studied
and a few fundamental results about them are stated without proofs.

2.1 relations , orderings , and mappings

Let R ⊆ M ×M be a binary relation on a set M, and let U ⊆ M be a
subset of M. Then, R(U) := { v | (u, v) ∈ R for some u ∈ U } is the set of
elements that are related to the elements from U. The inverse relation of R is
R−1 := { (v,u) | (u, v) ∈ R } and the relation R itself is called

- reflexive, if (u,u) ∈ R,

- symmetric, if (u, v) ∈ R implies (v,u) ∈ R,

- transitive, if (u, v) ∈ R and (v,w) ∈ R imply (u,w) ∈ R,

- antisymmetric, if (u, v) ∈ R and (v,u) ∈ R imply u = v,

for all u, v,w ∈ M. An equivalence relation is a reflexive, symmetric, and
transitive relation. If R is an equivalence relation, then we denote by [u]R the
congruence class of u ∈M with respect to R, i.e., [u]R := { v ∈M | (u, v) ∈ R }.
The reflexive transitive closure of R, denoted by R∗, is the smallest reflexive
and transitive relation that contains R. Similarly, the transitive closure of R,
denoted by R+, is the smallest transitive relation that contains R.

9

10 preliminaries

A relation R is a partial ordering on M, if R is reflexive, transitive, and
antisymmetric. It is a strict partial ordering on M, if R is irreflexive and
transitive. A relation R is called a total ordering onM, if R is a partial ordering
and either (u, v) ∈ R or (v,u) ∈ R, for all u, v ∈ M. In fact, that means, all
elements u, v ∈ M are pairwise comparable with respect to R. However, if
the relation only satisfies the properties of a partial ordering, then some
elements from the set M may be incomparable, i.e., neither (u, v) ∈ R nor
(v,u) ∈ R holds for some u, v ∈M.

A unary mapping f which maps elements from a set A to elements from a
set B, written f : A → B, is a binary relation Rf ⊆ A× B. The sets A and
B are the domain and the range of f, respectively. We will write f(a) = b, if
(a,b) ∈ Rf, for some a ∈ A and b ∈ B. The mapping is called total, if for
all a ∈ A there exists a b ∈ B such that f(a) = b. Otherwise it is called a
partial mapping. If f has the property that for each b ∈ B there is at most
one a ∈ A such that f(a) = b, then it is called injective. Further, if f is a
total mapping such that for each b ∈ B there is exactly one a ∈ A satisfying
f(a) = b, i.e., f is injective and maps onto the entire set B, then it is called
bijective, also known as one-to-one correspondence. If f : A → B is injective,
then we can find an inverse mapping f−1 : B→ A which satisfies f−1(b) = a,
if and only if f(a) = b. Note that if f is bijective, then its corresponding
inverse mapping is even a total mapping.

2.2 alphabets , words , and formal languages

An alphabet is a nonempty finite set of distinct symbols. Often we write
uppercase Greek letters to denote finite alphabets. However, sometimes up-
percase Latin letters are used, although they more generally denote (infinite)
sets. A word or a string over an alphabet Σ is a finite sequence consisting
of zero or more symbols from Σ. The empty sequence, written ε, is called
the empty word. The set of all words over an alphabet Σ is denoted by Σ∗.
Further, Σ+ is the set of all nonempty words, i.e., Σ+ = Σ∗ r { ε }. If u and
v are words over the alphabet Σ, then their concatenation u · v, sometimes
also called product, is obtained by writing u and v directly one after another.
Thus the operation symbol · is often omitted. The concatenation is an asso-
ciative operation and the empty word ε acts as an identity, i.e., wε = εw = w

holds for all words w ∈ Σ∗. We may use the notation wi to express the fact
that w is repeated i times, and we define w0 := ε. From an algebraic point
of view, Σ∗ and Σ+ are the free monoid and the free semigroup generated by
Σ with respect to the operation of concatenation and the unit element ε. The
length of a word w, written as |w|, is the number of symbols in w and we
define |ε| := 0. The sets of all words over Σ of length k and of length at most
k are denoted by Σk and Σ6k, respectively. By |w|a, for a ∈ Σ, we denote
the total number of occurrences of the symbol a in w ∈ Σ∗. This notation
is extended to a finite alphabet and a subset Γ ⊆ Σ of a finite alphabet in
an obvious way, i.e., |w|Γ :=

∑
a∈Γ |w|a is the number of symbols from Γ

occurring in the word w.

2.2 alphabets , words , and formal languages 11

We denote by N the set of positive integers and by N0 the set N ∪ {0}.
Thus, N∗ (resp. N∗0) is the set of words over the alphabet N (resp. N0).

A word v is a subword or a factor of w, if there are (possibly empty) words
u1 and u2 such that w = u1vu2. The word v is called a prefix of w (resp.
a suffix of w), if u1 = ε (resp. u2 = ε). Let w = u1v1u2v2 · · ·unvn, for
some positive integer n and possibly empty words ui, vi ∈ Σ∗ (1 6 i 6 n).
Then the word v = v1v2 · · · vn is a scattered subword of w. Analogously,
u = u1u2 · · ·un is also a scattered subword of w. Moreover, for any word
w = a1a2 · · ·an, where ai ∈ Σ (1 6 i 6 n) is a single symbol, wR =

anan−1 · · ·a1 denotes the mirror image of w.
Subsets of Σ∗, regardless whether they are finite or infinite, are formal

languages over Σ. For any language L ⊆ Σ∗, we denote by |L| the cardinality
and by 2L the corresponding power set of L. The empty set is denoted
by ∅. As considering formal languages as sets of words, we can define
the so-called Boolean operations union, intersection, and complementation in
the usual way. We will write ∪ , ∩ , and { for these operations. Further,
the concatenation of words is extended to languages by L1 · L2 := {uv |

u ∈ L1 and v ∈ L2 }, for two languages L1,L2 ⊆ Σ∗. Sometimes we will
even write u · L1, whenever a single word u should be concatenated by a
language L1. That avoids the slightly longer notation {u } · L1 for the reason
of brevity. Similarly, the exponentiation of a language L ⊆ Σ∗, denoted by
Li, is obtained by repeating the words from L in any combination exactly i
times. For i = 0 we define L0 := { ε }. The closure of the concatenation, also
known as Kleene star (resp. Kleene plus), is defined as L∗ :=

⋃
i>0 L

i (resp.
L+ :=

⋃
i>1 L

i). However, if L is a singleton, say L = {a }, then we will
simply write a∗ and a+ to denote the languages L∗ and L+, respectively.

A mapping h : Σ∗ → Γ∗ between words over the finite alphabets Σ and Γ
is called homomorphism (or morphism for short), if h(uv) = h(u) · h(v) holds,
for all words u, v ∈ Σ∗. It follows immediately from the properties of the
concatenation that also h(ε) = ε holds. By the application of a morphism
h to a language L ⊆ Σ∗ we obtain h(L) := {h(u) | u ∈ L }. A morphism is
called ε-free, also known as nonerasing morphism, if h(a) 6= ε, for all symbols
a ∈ Σ. The inverse mapping h−1 : Γ∗ → 2Σ

∗
is defined by h−1(v) := {u ∈

Σ∗ | h(u) = v }, for all v ∈ Γ∗. Thus h−1 is a many-valued mapping from a
monoid into the monoid of subsets of a monoid.

A class of formal languages C is a set of languages, independently of the
underlying particular finite alphabet of each single language L ∈ C. Such
a family of languages is closed under a unary operation ◦ and a binary op-
eration �, if L ∈ C and L ′ ∈ C imply L◦ ∈ C and (L � L ′) ∈ C, respectively.
Well-known classes of formal languages are denoted by a short sequence of
sans-serif letters, e.g. REG and CSL.

Formal languages can be represented in various ways, however, often
finite and efficient descriptions are desirable. In theoretical computer sci-
ence the most common kinds of representation are generative systems, e.g.
rewriting systems and grammars, and recognizing devices, e.g. automata and
machines. Beside these natural forms of description, which are clearly moti-

12 preliminaries

vated from a practical point of view, also algebraic structures and concepts
from mathematical logic, e.g. syntactic monoids [Pin97], formal power se-
ries [Kui97], (monadic) second-order logic [Tho97], and other formal meth-
ods, can provide a convenient representation. Finally, in order to express
relationships between different formal languages syntax-directed translation
schemes [Iro61, AU72] and output generating devices, e.g. generalized sequen-
tial machines and transducers [HMU06], have been introduced.

Generalized Phrase-Structure Grammars

In the following paragraphs we will describe the generalized variant of
Chomsky’s phrase-structure grammar [Cho56] as one important type of a
language generating system. Although there are many other generative sys-
tems, formal grammars have gained an paramount position in language
theory and its applications over the last decades. This is mainly due to the
fact that they not only define a language but also provide a framework for
analyzing the structure of their elements in a natural way.

A generalized phrase-structure grammar, originally known as generative gram-
mar and transformational grammar, is a four-tuple G = (Σ,N,S,P), where Σ
and N are disjoint finite alphabets, S ∈ N is a start symbol (axiom), and
P ⊆ (N ∪ Σ)∗ × (N ∪ Σ)∗ is a finite set of ordered pairs (u, v) such that
|u|N > 1. The elements of N are the nonterminal symbols and the elements
of Σ are the terminal symbols of G. The ordered pairs (u, v) ∈ P are called
productions and they are written in the form of rewrite rules u → v. Without
loss of generality we can assume that the start symbol S does not appear on
the right-hand side of any production. The binary one-step derivation relation,
denoted ⇒G, is induced by the grammar G in the following way: the word
β ∈ (N ∪ Σ)∗ can be derived from α ∈ (N ∪ Σ)∗, written α ⇒G β, if and
only if there exist r, s ∈ (N ∪ Σ)∗ and a production (u → v) ∈ P such that
α = rus and β = rvs. The derivation relation ⇒∗G is the reflexive and transi-
tive closure of the one-step derivation relation ⇒G. The language generated
by G is defined as L(G) := {w ∈ Σ∗ | S⇒∗G w }. Two grammars G and G ′ are
equivalent, if they generate the same language, i.e., L(G) = L(G ′) holds.

A generalized phrase-structure grammar G = (Σ,N,S,P) is called

- left-linear resp. right-linear, if all productions from P are of the simple
form A→ v, where A ∈ N and v ∈ (Σ∗ ∪N ·Σ∗) resp. v ∈ (Σ∗ ∪Σ∗ ·N),

- regular, if it is either left-linear or right-linear,

- context-free, if all productions from P are of the form A → v, where
A ∈ N and v ∈ (N∪ Σ)∗, that means, P ⊆ N× (N∪ Σ)∗,

- context-sensitive, if all productions from P are of the form u1Au2 →
u1vu2, where A ∈ N, u1,u2 ∈ (N∪ Σ)∗, and v ∈ (N∪ Σ)+;
additionally the production S→ ε may be contained in P,

- strictly monotonous, if |u| < |v|, for all (u→ v) ∈ P satisfying u 6= S,

2.2 alphabets , words , and formal languages 13

- monotonous, if |u| 6 |v| holds, for all (u→ v) ∈ P satisfying u 6= S.

Normal forms play an essential role in order to make proofs more compact
and to simplify constructions accordingly. For context-free phrase-structure
grammars three different normal forms are commonly used: First of all, a
context-free grammar is in Chomsky normal form [Cho59], if each production
is either a terminal rule from N× Σ∗ or a nonterminal rule from N×N ·N,
i.e., each right-hand side consists of two nonterminal symbols only. Sec-
ondly, a context-free grammar is in Greibach normal form [Gre65], if each
production is from N× Σ ·N∗, i.e., the first letter of each right-hand side
is always a terminal symbol. However, sometimes an additional special
rule S → ε is needed to derive the empty word. Finally, the operator nor-
mal form [Flo63, Har78] has been introduced for the purposes of syntactical
analysis. Here it is required that no two nonterminal symbols can occur at
adjacent positions in each right-hand side of any production. The grammar
constructions and equivalence proofs for all these different normal forms
can be found in standard textbooks [AU72, Har78, JMAB97, HMU06] on
formal language theory.

Many basic questions can be formulated for languages and their corre-
sponding descriptions. In general, a decision problem is a statement which is
either true or false, depending on the value of some number of unknowns
of a designated type. Such a problem is usually presented in form of a
question, where the answer can be either “yes” or “no”. An instance of a
decision problem is a set of permitted values for the unknowns. For exam-
ple, let L1,L2 ⊆ Σ∗ be two arbitrary formal languages that are generated
by the grammars G1 and G2, respectively, i.e., we have L1 = L(G1) and
L2 = L(G2). Then, given as an instance the grammar G1 and a word w ∈ Σ∗,
the uniform membership problem asks, whether or not the word w belongs to
the language L1, i.e., does w ∈ L(G1) hold. The emptiness problem and the
finiteness problem are concerned with the question, whether or not L(G1) is
empty and whether or not L(G1) is finite, respectively. Finally, given the
grammars G1 and G2 as an instance, the question, whether or not L(G1)
is included in L(G2), and the question, whether or not L(G1) = L(G2) are
called the inclusion problem and the equivalence problem, respectively.

Related questions can be also asked for other representations of formal
languages, e.g. automata and rewriting systems. Moreover, in practical
applications it does not only matter that a decision problem is generally
solvable. The computational complexity of the decision algorithm and the
size of the concrete values determine whether it is really feasible in practice.

Families of Formal Languages

We are now ready to discuss some important formal language families
which are obtained from the restricted types of phrase-structure grammars.
Some equivalent characterizations, mostly in terms of an associated auto-
maton model, will also be mentioned. Moreover, the closure properties and
the state of common decision problems are summarized. Finally, the well-

14 preliminaries

known Chomsky hierarchy and some complexity classes are sketched.
Union, concatenation, and Kleene star are the so-called regular operations.

A language L ⊆ Σ∗ is called a regular language, if L can be obtained from
the atomic languages ∅ and {a }, where a is a letter from Σ, by applying
these operations finitely many times. On the other hand, L is regular, if
and only if can be generated by a regular phrase-structure grammar. The
class of regular languages, denoted by REG, is the set of all languages that are
regular over some finite alphabet. This family of languages is one of the
central objects in formal language theory, because it has a wide variety of
equivalent representations and a lot of desirable formal properties. For ex-
ample, the class corresponds to the well-known family of languages that are
accepted by finite automata [Per90, Yu97]. Moreover, it also corresponds to
the family of languages that are described by regular expressions. It is closed
under numerous operations, e.g. all Boolean operations, and the most de-
cision problems are efficiently decidable. In particular, the class REG is a
full abstract family of languages (AFL) [GG67, MS97b], i.e., it is closed under
union, concatenation, Kleene star, arbitrary morphisms, inverse morphisms,
and intersection (with regular languages). Almost all interesting questions
about regular languages are decidable, for example, the membership, the
emptiness, the finiteness, the inclusion, and the equivalence problem.

Another full AFL are the context-free languages, denoted by CFL. Lan-
guages from this class are generated by a restricted form of the phrase-
structure grammars: A language L ⊆ Σ∗ is called context-free, if it is gen-
erated by some context-free grammar. Equivalent representations are ob-
tained by pushdown automata, systems of polynomial equations, and the well-
known characterization of Chomsky-Schützeberger’s theorem [JMAB97].

The context-sensitive languages, denoted by CSL, are again obtained by
a restricted form of a phrase-structure grammar: A language L ⊆ Σ∗ is
called context-sensitive, if it is generated by some context-sensitive grammar.
This family of languages is also characterized by monotone phrase-structure
grammars. Another equivalent representation [Kur64] in terms of automata
is given through the model of a nondeterministic linear bounded automa-
ton [Myh60], which is a Turing machine [Tur36] with linear bounded space
complexity. Note that CSL is only an AFL, because it is not closed under
arbitrary morphisms. Emptiness, finiteness, inclusion, equivalence, regular-
ity, and context-freeness are in general undecidable for languages from this
class, however, at least the membership problem is decidable.

Finally, the recursively enumerable languages, denoted by RE, are again a
full abstract family of languages. Every language from this class is gen-
erated by an unrestricted phrase-structure grammar. Moreover, this fam-
ily corresponds to the class of languages, that are accepted by Turing ma-
chines [HMU06]. Unfortunately, every non-trivial property of such formal
languages is in general undecidable [Ric53], in particular, even the member-
ship problem is in general not solvable.

One of the most well-known results in formal language theory is the so-

2.2 alphabets , words , and formal languages 15

called Chomsky hierarchy [Cho59], i.e., the chain of proper inclusions

REG (CFL (CSL (RE

between the previously discussed families of languages. Consequently, each
main type of a phrase-structure grammar, i.e., regular grammars, context-
free grammars, context-sensitive grammars, and unrestricted grammars, con-
tributes properly to the expressiveness of the corresponding language class.
The same increasing expressive power is realized by an equivalent descrip-
tion in terms of an automaton model, i.e., the finite automaton, the push-
down automaton, the linear bounded automaton, and the Turing machine
constitute a proper hierarchy of devices with respect to their recognition
power.

When considering the computations performed by an automaton on a
given input, the concept of determinism often plays a central role. Roughly
speaking, determinism means that the outcome of a transition from one
state to another is unambiguously determined, and hence there is at most
one unique computation that leads to an acceptance of the input. By restrict-
ing the previously mentioned automaton models to be deterministic, some
further formal language classes are obtained, for example, the deterministic
context-free languages, denoted by DCFL, and the deterministic context-sensitive
languages, denoted by DCSL. Thus, we get an enlarged chain of inclusions

REG (DCFL (CFL (DCSL ⊆ CSL (RE,

because in general determinism is a restriction of the corresponding automa-
ton model. However, for finite automata and unrestricted Turing machines
the ability to use nondeterministic transitions does not contribute to the ex-
pressiveness, at least without considering complexity issues. On the other
hand, it is still an open question whether or not determinism is a true restric-
tion for a linear bounded automaton and hence whether or not the inclusion
DCSL ⊆ CSL is proper [HMU06].

From a practical point of view, formal languages between the regular
languages and the context-sensitive languages are of particular interest, be-
cause in general they enjoy ‘nice properties’, and some of their decision prob-
lems are even feasible rather than only decidable. However, with respect to
the required expressive power, language families beyond the context-free
languages are often desirable. For example, the class GCSL of growing
context-sensitive languages [BL92, McN99] is a proper subclass of CSL and
it is an AFL, which means that it has nice closure properties. GCSL was in-
troduced by Dahlhaus and Warmuth [DW86], who proved that the member-
ship problems for these languages are solvable in polynomial time. More-
over, GCSL contains all context-free languages, and also some languages,
e.g. Lexpo = {a2

n
| n > 0 } and Lcount = {anbncn | n > 1 }, which are

commonly known to be not context-free. Growing context-sensitive lan-
guages are generated by strictly monotonous phrase-structure grammars.
Note that an equivalent description is obtained by shrinking two-pushdown
automata [BO98] and length-reducing two-pushdown automata [Nie02].

16 preliminaries

Two other families of languages that are proper subclasses of CSL are the
indexed languages [Aho68, Aho69], denoted by IL, and the Church-Rosser lan-
guages [MNO88], denoted by CRL. The latter class is defined through finite,
length-reducing, confluent, string-rewriting systems [BO93]. Moreover, it
can be seen as the deterministic variant of GCSL, because this family is also
characterized by deterministic shrinking two-pushdown automata [NO05].
The membership problem for Church-Rosser languages is solvable in linear
time, however, the emptiness problem is even undecidable. On the other
hand, for indexed languages it is known that both, the membership and the
emptiness problem, are in general solvable. Unfortunately, these problems
turned out to be exponential time complete [TK86].

In addition to characterizing families of formal languages by structural or
computational properties of their corresponding descriptions, there is also
the possibility of classifying them by means of complexity theory [Joh91,
AB07]. In order to distinguish several complexity classes, the consumed re-
sources, e.g. time and space, for an accepting computation are measured in
a uniform machine model. Each kind of resource can be bounded by a some-
how well-behaved function with respect to the size of the input. For exam-
ple, the most well-known complexity classes P, NP, PSPACE, and EXPTIME
contain those formal languages, whose membership problems can be de-
cided in deterministic polynomial time, nondeterministic polynomial time,
deterministic polynomial space, and exponential time on a single-tape Tur-
ing machine, respectively. Note that there is also a hierarchy for these com-
plexity classes, i.e., P ⊆ NP ⊆ PSPACE ⊆ EXPTIME, however, it is the most
challenging problem in complexity theory—or even in theoretical computer
science as a whole—whether and which of these inclusions are proper.

Often there is a close relationship between a complexity class and a corre-
sponding class of formal languages. For example, DCSL and the determin-
istic linearly space bounded complexity class DSPACE(n) coincide.

From a practical point of view the complexity of the membership problem
plays an essential role, in order to obtain feasible algorithms for analyzing
languages, performing translations, and other applications. Regular lan-
guages can be recognized in deterministic linear time, however, in general
there might be more effort necessary to convert a nondeterministic represen-
tation into a deterministic representation [Yu97]. For context-free grammars
there exist parsing procedures that run in polynomial time [AU72], e.g. the
Cocke-Younger-Kasami algorithm and Earley’s algorithm. Obviously, these
algorithms solve the membership problem, but in fact they provide even
some additional structural information about the processed input. How-
ever, for more expressive families of languages the problem quickly becomes
harder. For example, the membership problem is PSPACE-complete for the
context-sensitive languages [HMU06]. This shows that it is only reasonable
to look for language representations which are still quite expressive but si-
multaneously have a feasible membership problem.

2.2 alphabets , words , and formal languages 17

c| a1 a2 a3 · · · an−2 an−1 an $

finite control unit

read/write-window

Figure 2.1: Schematic representation of a restarting automaton

Restarting Automata

Restarting automata have been introduced by Jančar, Mráz, Plátek, and Vo-
gel [JMPV95] in order to model the linguistic concept called analysis by
reduction [Str99, Str00], as outlined in the previous chapter. During the
last decade many variants and generalizations [JMPV96, JMPV97, JMPV98,
Plá99, MPP99, Plá01, JOMP04b, JOMP04a, JO06, JMOP06, JO07] have been
considered. However, we describe only those models which are believed
to be fundamental or in another respect somehow relevant for our main
goal—the generalization of the restarting automaton to trees.

Note that, similarly to the survey of Otto [Ott06], we will not follow the
historical development of restarting automata in our presentation. In fact,
we start with the most general model, the so-called two-way restarting auto-
maton [Plá01], and repeat some important results about this model. Finally,
we will mention some special variants, in order to provide the basic frame-
work for the generalized definitions in the following chapters.

In general, a restarting automaton is a nondeterministic machine model
that has a finite control unit attached to linear storage tape. The tape acts a
bit flexible like a ‘rubber hose’, that means, instead of just overwriting the
content of some erased cells by a distinct blank symbol, as usually done by
tape devices, the corresponding cells are really removed from the tape. Fur-
thermore, to access the contents of the tape there is a movable read/write-
window of fixed size. Figure 2.1 on page 17 shows a schematic sketch of
such an automaton.

The restarting automaton works on strings whose symbols a1, . . . ,an are
stored in form of a list delimited by end markers, say, ‘c| ’ and ‘$’. Depending
on the state of the finite control and the contents of the read/write-window,
the automaton has several possibilities: First of all, it can move its window
to the left or to the right by exactly one cell. However, the window cannot
be moved outside the tape, i.e., beyond the end marker symbols. Secondly,
the automaton can perform a length-reducing rewrite on the contents inside
the window. Finally, after this rewrite it can move the window again, before
the automaton must either accept or restart. Accepting means, it accepts the
initial tape contents and halts immediately. A restart causes the automaton
to move its read/write-window to the left end of the tape, and to re-enter
its initial state. Then the automaton can proceed in the same manner.

Formally, a two-way restarting automaton, RLWW-automaton for short, is

18 preliminaries

described by an 8-tuple M = (Q,Σ, Γ , c| , $,q0,k, δ), where Q is a finite set of
states, Σ is the finite input alphabet, Γ ⊇ Σ is the finite tape alphabet, c| , $ 6∈ Γ
are special symbols that act as markers for the left resp. right border of the
tape, q0 ∈ Q is the initial state, k > 1 is the size of the read/write-window,
and

δ : Q× PC(k) → 2(Q×({MVR,MVL } ∪ PC6(k−1))) ∪ {Restart,Accept }

is the transition relation. Here PC(k) denotes the set of possible contents
seen in the read/write-window of M, where

PC(i) :=
(
c| · Γ i−1

)
∪ Γ i ∪

(
Γ6i−1 · $

)
∪
(
c| · Γ6i−2 · $

)
,

for an integer i > 0, and PC6(k−1) :=
k−1⋃
i=0

PC(i).1

The transition relation δ contains five different types of transition steps
which describe the behavior of the two-way restarting automaton M:

1. A move-right step is of the form (q ′, MVR) ∈ δ(q,u), where q,q ′ ∈ Q
and u ∈ PC(k), u 6= $. If M is in state q and sees the string u in its
read/write-window, then this step causes M to shift the window one
position to the right and to enter state q ′. However, if the contents u
of the read/write-window is only the $-symbol, then no shift to the
right is possible.

2. A move-left step is of the form (q ′, MVL) ∈ δ(q,u), where q,q ′ ∈ Q and
u ∈ PC(k), u 6∈ c| · Γ∗. Analogously, it causes M to shift the read/write-
window one position to the left and to enter state q ′, whenever it is in
state q and sees the string u. Again, this step is only possible, if the
window is not already at the left end of the tape.

3. A rewrite step is of the form (q ′, v) ∈ δ(q,u), where q,q ′ ∈ Q, u ∈
PC(k), u 6= $, and v ∈ PC(k−1) such that |v| < |u|. It causes M to
replace the contents u of the read/write-window by the string v and to
enter state q ′. Further, the window is placed immediately to the right
of the string v. However, some additional restrictions require that the
border markers c| and $ must not disappear from the tape nor that new
occurrences of these markers are created. Moreover, the read/write-
window must not move across the right border marker $, i.e., if the
string u ends by $, then so does the string v, and after performing the
rewrite operation, the read/write-window is placed on this marker.

4. A restart step is of the form Restart ∈ δ(q,u), where q ∈ Q and u ∈
PC(k). It causes M to move its read/write-window to the left end of
the tape, thus the first symbol it sees is the left border marker c| , and
to re-enter the initial state q0.

5. Finally, an accept step is of the form Accept ∈ δ(q,u), where q ∈ Q and
u ∈ PC(k). This transition causes the automaton M to halt and accept.

1 Note that Γn := { ε } and Γ6n := { ε }, for all integers n 6 0.

2.2 alphabets , words , and formal languages 19

MVR/MVL Rewrite MVR/MVL Restart

Accept

Figure 2.2: Chain of instructions performed by an RLWW-automaton

If δ(q,u) = ∅, for some q ∈ Q and u ∈ PC(k), then M necessarily halts, and
we say that M rejects in this situation. Further, the elements from Γ r Σ are
called auxiliary symbols, and they are mostly written in capital Latin letters.

A configuration of M is a string αqβ, where q ∈ Q, and either α = ε and
β ∈ (c| · Γ∗ · $) or α ∈ (c| · Γ∗) and β ∈ (Γ∗ · $). In such a configuration q ∈ Q
represents the current state of the finite control unit, αβ is the current con-
tents of the tape, and it is understood that the read/write-window contains
the first k symbols of β or all of β provided that |β| 6 k. A restarting config-
uration is of the form q0c|w$, where w ∈ Γ∗, in particular, if w ∈ Σ∗, then
q0c|w$ is called an initial configuration. Further, Accept denotes the accepting
configurations, which are those configuration that M reaches by executing an
Accept instruction. A configuration of the form αqβ such that δ(q,β1) = ∅,
where β1 is the current contents of the read/write-window, is a rejecting
configuration. A halting configuration is either an accepting configuration or a
rejecting configuration.

In general, the automaton M is nondeterministic, i.e., there can be two or
more resulting instructions for the same element (q,u) of δ. Thus, there can
be more than one computation for an input word. If this is not the case, i.e.
we have |δ(q,u)| 6 1, then the automaton is deterministic. We will use the
prefix det- to denote the deterministic classes of restarting automata.

Observe that any finite computation of a two-way restarting automaton
M consists of certain phases. A phase, called a cycle, starts in a restart-
ing configuration, the window moves along the tape performing move-left
(MVL), move-right (MVR), and rewrite operations until a Restart operation
is performed, which results in a new restarting configuration. If no fur-
ther Restart operation is performed, then any finite computation necessarily
finishes in a halting configuration. This final phase is called a tail of the com-
putation. We require that M performs exactly one rewrite operation during
a cycle, thus each new phase starts on a shorter word than the previous
one. During a tail at most one rewrite operation may be executed. By `cM
we denote the execution of a complete cycle, and `c∗M is the reflexive tran-
sitive closure of this relation. Note that it can be considered as the rewrite
relation that is realized by M on the set of restarting configurations. The
chain of instructions performed by M during a computation is depicted in
Figure 2.2.

An input w ∈ Σ∗ is accepted by M, if there exists a computation of M
which starts with the initial configuration q0c|w$, and which finally ends

20 preliminaries

with executing an accept step. For an automaton M, the language accepted
by M is denoted as L(M), and for a class A of automata, L (A) denotes the
family of languages that can be accepted by the automata from that class.

Thus, the precise definition of the accepted language is

L(M) := {w ∈ Σ∗ | q0c|w$ `c∗M Accept }

which corresponds to the above informal description.
In some aspects a restarting automaton is closely related to the contraction

automaton [vS75]. In particular, it works in cycles, it has an operation for
deleting the contents of a cell, and it performs only a limited number of
changes during each cycle. However, more similarities are shared with the
list automaton [CPV85, PV86] and the forgetting automaton [JMP92, JMP93,
JMP96]. The latter model has stimulated the development of the restart-
ing automaton notably, see, e.g. [JMPV95], due to the different modes for
restricting the rewriting capabilities.

Before we continue with further definitions and some well-known results
about restarting automata, consider the following simple example.

Example 2.1 ([Ott06]). LetM = (Q,Σ,Σ, c| , $,q0, 3, δ) be a deterministic RLWW-
automaton that is defined by taking Q := {q0,qc,qd,qr }, Σ := {a,b, c,d }, and δ
as given by the following table:

(1) δ(q0, x) = (q0, MVR),
for all x ∈ {aaa,aab,abb,abc,bbb,bbc,bbd },

(2) δ(q0, c| c$) = Accept,
(3) δ(q0, c|d$) = Accept,
(4) δ(q0, c|ab) = (q0, MVR),
(5) δ(q0, c|aa) = (q0, MVR),
(6) δ(q0,bc$) = (qc, MVL),
(7) δ(q0,bd$) = (qc, MVL),
(8) δ(qr,y) = Restart,

(9) δ(qc,abc) = (qr, c),
(10) δ(qc,bbc) = (qc, MVL),
(11) δ(qc,bbb) = (qc, MVL),
(12) δ(qc,abb) = (qr,b),
(13) δ(qd,bbd) = (qd, MVL),
(14) δ(qd,bbb) = (qd, MVL),
(15) δ(qd,abb) = (qr, ε),

for all y ∈ PC(3).

Obviously, M accepts the strings c and d immediately. So let w ∈ Σ+ r { c,d }.
Then starting from the initial configuration q0c|w$, the automaton M will get
stuck and thus reject while scanning w from left to right, unless w is of the form
ambnc or ambnd, for some integers m,n > 1. After reaching the configuration
c|ambn−1q0bc$ or c|ambn−1q0bd$ by the transition steps (4) or (5) and (1) re-
peatedly, either the state qc (6) or the state qd (7) is entered. Now M performs
MVL-steps until the read/write-window gets back to the boundary between the syl-
lables am and bn. If the current state is qc, i.e., w ends in c, then a factor ab is
deleted from w by (12). On the other hand, if the current state is qd, i.e., w ends
in d, then a factor abb is deleted by (15). In both cases M enters the state qr and
restarts by the transition (8). Thus, it is easily seen that M accepts the language

L(M) = {anbnc | n > 0 } ∪
{
anb2nd | n > 0

}
,

2.2 alphabets , words , and formal languages 21

which is a well-known example of a context-free language that is not deterministic
context-free.

Now we restate some basic facts about computations of restarting automata:
Given an input of length n, an RLWW-automaton M can execute at most
n cycles, as in each cycle the tape is reduced by at least one symbol. Thus
we have L (RLWW) ⊆ (NP ∩ CSL) and L (det-RLWW) ⊆ (P ∩DCSL) respec-
tively, because a (deterministic) single-tape Turing machine can simulate M
accordingly. Note that this Turing machine runs in quadratic time using
only linear space due to the shortened tape in each cycle.

Based on the inherent principles of the underlying analysis by reduction
the following facts have been established [JMPV95, JMPV99, Plá01, Ott06].

Proposition 2.1 (Error Preserving Property).
Let M = (Q,Σ, Γ , c| , $,q0,k, δ) be an RLWW-automaton, and let u, v ∈ Σ∗ be two
strings over Σ. If q0c|u$ `c∗M q0c| v$ holds and u 6∈ L(M), then v 6∈ L(M), either.2

Proposition 2.2 (Correctness Preserving Property).
Let M = (Q,Σ, Γ , c| , $,q0,k, δ) be an RLWW-automaton, and let u, v ∈ Σ∗ be
two arbitrary words. If q0c|u$ `c∗M q0c| v$ is an initial segment of an accepting
computation of M, which of course implies u ∈ L(M), then also v ∈ L(M).

These properties turned out to be very useful, for example, in order to show
that a language is not accepted by any restarting automaton since it violates
one of these properties. Moreover, a simple ‘pigeonhole’ fact can also be
used for that purpose. The following proposition appeared first in [JMPV98,
JMPV99] and was later also adapted for RLWW-automata [Plá01, Ott06].

Proposition 2.3 (Pumping Lemma).
For any RLWW-automaton M = (Q,Σ, Γ , c| , $,q0,k, δ), there exists a constant
p such that the following holds. Assume that q0c|uvw$ `cM q0c|uv ′w$, where
u = u1u2u3 and |u2| = p. Then there exists a factorization u2 = z1z2z3 such
that z2 is nonempty, and

q0c|u1z1(z2)iz3u3vw$ `cM q0c|u1z1(z2)iz3u3v ′w$

holds for all i > 0, that is, z2 is a ‘pumping factor’ in the above cycle. Similarly,
such a pumping factor can be found in any factor of length p of w.

Moreover, such a pumping factor can be found in any factor of length p of a word
accepted in a tail of a computation.

Each cycle of each computation of an RLWW-automaton M consists of three
different phases: First of all, the automaton scans the tape performing MVL-
and MVR-instructions, then it executes a rewrite step, and finally it scans
the tape again by performing MVL- and MVR-transitions. Hence, in the first
and the last phase of each cycle M behaves like a nondeterministic two-
way finite-state acceptor (2NFA) [RS59]. A restarting automaton is called an

2 Note that equivalently, if q0c|u$ `c∗M q0c| v$ holds and v ∈ L(M), then u ∈ L(M).

22 preliminaries

RRWW-automaton, if it does not use any MVL-instructions. Thus, in each cy-
cle an RRWW-automaton can scan its tape only once from left to right. By us-
ing similar arguments as in the proof that the language accepted by a 2NFA
is regular [RS59, HMU06], the following result has been established [Plá01].

Proposition 2.4. Let ML = (QL,Σ, Γ , c| , $,q0,k, δL) be an RLWW-automaton.
Then there exists an RRWW-automaton MR = (QR,Σ, Γ , c| , $,q0,k, δR) such that
for all strings u, v ∈ Γ∗,

q0c|u$ `cML
q0c| v$, if and only if q0c|u$ `cMR

q0c| v$,

and the languages L(ML) and L(MR) coincide.

Thus, as far as nondeterministic restarting automata are concerned, the MVL-
instruction does not contribute to the expressiveness. However, this does not
hold for deterministic restarting automata in general, which can be shown,
for example, see [Ott06], by the language

Lcopy = {w#w | w ∈ {a,b }∗ } ∈ L (det-RLWW) r L (det-RRWW).

Moreover, for RRWW-automata the following normalization result holds:
Each RRWW-automaton is equivalent to an RRWW-automaton which per-
forms an accept- or restart-instruction only when it sees the right border
marker $ in its read/write-window. Obviously, this means, that in each cy-
cle of each computation and also in the tail of each accepting computation
the read/write-window moves all the way to the right end before a restart
is made, respectively, before the machine halts and accepts.

Based on this fact the transition relation δ of an RRWW-automaton can
be described through a sequence of so-called meta-instructions [NO01] of
the form (R1,u → v,R2), where R1,R2 are regular languages, called regu-
lar constraints of this instruction, and u, v are strings over the alphabet Γ
such that |u| > |v|. The rule u → v stands for a corresponding rewrite step
of the considered RRWW-automaton M. On trying to execute this meta-
instruction M will reject starting from the configuration q0c|w$, if w does
not admit a factorization of the form w = w1uw2 such that c|w1 ∈ R1
and w2$ ∈ R2. On the other hand, if w have a factorization of this form,
then one of these factorizations is chosen nondeterministically, and q0c|w$
is transformed into q0c|w1vw2$. In order to describe the tail of an accepting
computation special meta-instructions of the form (c| ·R · $, Accept) are intro-
duced. Thus, the words from the regular language R must be accepted by
M in a tail of a computation. We illustrate the concept of meta-instructions
by describing an RRWW-automaton for the language that is accepted by the
RLWW-automaton from Example 2.1.

Example 2.2 ([Ott06]). Let M = (Q,Σ,Σ, c| , $,q0, 3, δ) be an RRWW-automaton
without auxiliary symbols, where Σ := {a,b, c,d } and the transition relation δ is
determined by the following sequence of meta-instructions:

(1) (c| · a∗, ab→ ε, b∗ · c$),
(2) (c| · a∗, abb→ ε, b∗ · d$),

(3) (c| c$, Accept),
(4) (c|d$, Accept).

2.2 alphabets , words , and formal languages 23

It is easily seen that L(M) = {anbnc | n > 0 } ∪ {anb2nd | n > 0 }.

Note that this way of describing an RRWW-automaton corresponds to a
characterization of the class L (RRWW) by certain infinite prefix-rewriting
systems [NO03].

Now we introduce some restricted types of restarting automata. A restart-
ing automaton is called an RWW-automaton, if it makes a restart immediately
after performing a rewrite operation. Thus, a cycle of a computation of an
RWW-automaton M consists of two phases only. Accordingly, its transition
relation can be described by a finite number of restricted meta-instructions
of the form (R,u → v), where R is a regular language and u, v are strings
such that |u| > |v|, and a finite number of the previously introduced special
meta-instructions of the form (c| ·R · $, Accept), which represent the tail com-
putations. Again, this description corresponds to a characterization of the
class L (RWW) by certain infinite prefix-rewriting systems [NO03].

Interestingly, it is possible to construct an RWW-automaton for the lan-
guage that is accepted by the RLWW-automaton from Example 2.1 and the
RRWW-automaton from Example 2.2, respectively. However, auxiliary sym-
bols and a slightly larger read/write-window are needed in that case.

Example 2.3 ([Ott06]). Let M = (Q,Σ, Γ , c| , $,q0, 4, δ) be an RWW-automaton
with input alphabet Σ := {a,b, c,d } and tape alphabet Γ := Σ ∪ {C,D }. The
transition relation δ is given by the following sequence of meta-instructions:

(1) (c| · a∗, ab→ C),
(2) (c| · a∗, abb→ D),
(3) (c| · a∗, aCb→ C),
(4) (c| · a∗, aDbb→ D),

(5) (c|Cc$, Accept),
(6) (c|Dd$, Accept),
(7) (c| c$, Accept),
(8) (c|d$, Accept).

Again it is easily seen that L(M) = {anbnc | n > 0 } ∪ {anb2nd | n > 0 }.

An RLWW-automaton is called an RLW-automaton, if its tape alphabet Γ co-
incides with its input alphabet Σ, i.e., if no auxiliary symbols are available.
It is an RL-automaton, if it is an RLW-automaton for which the right-hand
side v of each rewrite step (q ′, v) ∈ δ(q,u) is a scattered subword of the
left-hand side u. Analogously, we obtain the RRW-automaton and the RR-
automaton from the RRWW-automaton and the RW-automaton and the R-
automaton from the RWW-automaton. Note that the automaton from Exam-
ple 2.1 is in fact a deterministic RL-automaton. On the other hand, the auto-
maton from Example 2.2 is even an RR-automaton. For RLW-automata and
RL-automata a result similar to Proposition 2.4 holds, i.e., MVL-instructions
are not needed in the nondeterministic case.

By using the somewhat artificially constructed separation languages

L1 = {anbnc | n > 0 } ∪ {anb2nd | n > 0 },
L2 = {anbn | n > 0 } ∪ {anbm | m > 2n > 0 },
L6 = L6,1 ∪ L6,2 ∪ L6,3, and
L7 = L7,1 ∪ L7,2,

24 preliminaries

where

L6,1 = { (ab)2
n−ic(ab)i | n > 0, 0 6 i 6 2n },

L6,2 = { (ab)2
n−2i(abb)i | n > 1, 0 6 i 6 2n−1 },

L6,3 = { (abb)2
n−i(ab)i | n > 0, 0 6 i 6 2n },

L7,1 = {a2
n−2icai | n > 1, 0 6 2i < 2n }, and

L7,2 = {aida2
n−2i | n > 1, 0 6 2i < 2n },

it was shown, that most of the trivial inclusions between language fami-
lies accepted by the various types of restarting automata are proper. Note
that already L (R) contains languages that are not growing context-sensitive.
Hence, already the R-automaton has a fairly large expressive power. On the
other hand, its recognition power is rather limited in some sense. Specifi-
cally, the language L2 is contained in CFL and CRL, respectively, but it is
not accepted by any RRW-automaton. Thus, L (R), L (RW), L (RR), and
L (RRW) are incomparable to the well-known formal language classes CFL,
CRL, and GCSL with respect to set inclusion [Ott06].

In Figure 2.3 on page 25 many of the results regarding the expressive
power of restarting automata are summarized. We use such diagrams also
in the remaining parts of the thesis. In general, an arrow denotes a proper
inclusion, while a dotted arrow shows that the inclusion is not known to be
proper. Sometimes an arrow is accompanied by a language which acts as
a witness for the properness of this inclusion. An equivalence between lan-
guage families is expressed by a double line or an equality sign. Classes that
are not connected, neither by an arrow nor by a line, are either incomparable
or their corresponding state is unknown with respect to inclusion.

Niemann and Otto [NO03] have shown that the capability of using auxil-
iary symbols in RRWW- resp. RWW-automata, is equivalent to the language
theoretical operation of intersecting the language accepted by an RRW- resp.
RW-automaton with a given regular language. Their result also extends to
RLWW-automata as described in the following proposition [Ott06].

Proposition 2.5. A language L is accepted by a (deterministic) RLWW-automaton,
if and only if there exists a (deterministic) RLW-automaton M ′ and a regular lan-
guage R such that L = L(M ′)∩ R holds.

Obviously, this characterization yields the closure under intersection with
regular languages, if auxiliary symbols are available. Moreover, some fur-
ther closure and non-closure properties [JMPV95, JLNO04, Nie02] have been
shown. These results are summarized in the following proposition.

Proposition 2.6.

(a) The language classes L (RLWW), L (RRWW), L (RWW), and their deter-
ministic counterparts are closed under intersection with regular languages,
but L (RRW) and L (RW) are not closed under this operation.

(b) The classes L (RLWW), L (RRWW), and L (RWW), are closed under union
and concatenation, but they are not closed under arbitrary morphisms.

2.2 alphabets , words , and formal languages 25

NP∩ CSL

L (RRWW) L (RLWW)

OO

L (RWW)

99

L (RRW)

L2

OO

L (RLW)

L2

OO

GCSL

Lcopy

;;wwwwwwwwwww
L (RW)

L2

OO

L6

99sssssssssssss
L (RR)

L7

OO

L (RL)

L7

OO

CFL

>>}}}}}}}}}}
CRL

OO

L (R)

L7

OO

L6

99sssssssssssss

REG

``AAAAAAAAAA

OO ;;wwwwwwwwwww

Figure 2.3: Inclusions between well-known language families and classes de-
fined by various types of nondeterministic restarting automata.

(c) All classes obtained from deterministic restarting automata, i.e., L (det-X),
for all X ∈ { R, RR, RL, RW, RRW, RLW, RWW, RRWW, RLWW }, are closed
under complementation.

It is still an open question whether the inclusion L (RWW) ⊆ L (RRWW)
is proper, and whether L (RRW) is contained in L (RWW). If the latter
questions can be answered in the affirmative, then by Proposition 2.5 the
equality L (RWW) = L (RRWW) follows. On the other hand, if L (RRW) 6⊂
L (RWW), then the inclusion L (RWW) ⊆ L (RRWW) is obviously strict.

Shortly after the invention of restarting automata the notion of monotonic-
ity was introduced [JMPV97]. We will use a slightly generalized definition
of monotonicity which was established somewhat later [JMPV98]. Let M
be an RLWW-automaton. Then each computation of M can be described
by a sequence of cycles C1, C2, . . . , Cn, where Cn is the last cycle, which is
followed by the tail of the computation. Each cycle Ci contains a unique con-
figuration of the form c|αquβ$ such that q is a state and (q ′, v) ∈ δ(q,u) is a
rewrite step that is applied during this cycle. By Dr(Ci) we denote the right
distance |β$| of this cycle, andDl(Ci) := |c|α| is the left distance of this cycle. A
sequence of cycles C1, C2, . . . , Cn is called monotone, if Dr(C1) > Dr(C2) >
· · · > Dr(Cn) holds. A computation of M is called monotone, if the corre-
sponding sequence of cycles is monotone. Observe that the tail of the com-
putation is not taken into account here. Finally, the RLWW-automaton M is
called monotone, if each of its computations that starts from an initial con-
figuration is monotone. We use the prefix mon- to denote classes of mono-

26 preliminaries

tone restarting automata. Regarding monotone restarting automata some
interesting characterizations of well-known language families have been ob-
tained [JMPV97, JMPV98, JMPV99, JMOP05, Ott06]. These results are noted
in the following proposition.

Proposition 2.7.

(a) L (mon-RLWW) = L (mon-RRWW) = L (mon-RWW) = CFL.

(b) L (det-mon-X) = DCFL, for all X ∈ { R, RR, RW, RRW, RWW, RRWW }.

(c) DCFL (L (det-mon-RL) = L (det-mon-RLWW) (CRL.

Moreover, it is decidable whether a given RLWW-automaton is monotone.
Similar to the above discussed monotonicity a seemingly symmetric no-

tion of left-monotonicity was studied [JO03, JOMP04a]. A sequence of cycles
C1, C2, . . . , Cn of an RLWW-automaton M is left-monotone, if Dl(C1) >
Dl(C2) > · · · > Dl(Cn), i.e., the left distance must not increase from one
cycle to the next. A computation of M is called left-monotone, if the cor-
responding sequence of cycles is left-monotone. As before the tail of the
computation is not taken into account. Finally, the RLWW-automaton M is
called left-monotone, if each of its computations that starts from an initial con-
figuration is left-monotone. We use the prefix left-mon- to denote classes of
left-monotone restarting automata, and we summarize some of the known
results on left-monotone restarting automata in the following proposition.

Proposition 2.8.

(a) L (left-mon-RLWW) = L (left-mon-RRWW) =

= L (left-mon-RWW) = CFL.

(b) L (det-left-mon-RLWW) = L (det-left-mon-RRWW) =

= L (det-left-mon-RWW) (CRL.

(c) DCFL 6⊆ L (det-left-mon-RLWW).

For deterministic restarting automata a close correspondence between cer-
tain types using auxiliary symbols and the Church-Rosser languages was
shown by Niemann and Otto [NO99b, NO03], i.e., CRL = L (det-RWW) =

L (det-RRWW). Further, it is known that L (det-R) forms a quotient basis
for the recursively enumerable languages. This underlines that already the
det-R-automaton forms quite an expressive class of languages. In Figure 2.4
on page 27 some further inclusion results are summarized.

One of the parameters that are essential for a restarting automaton is
the size of its read/write-window. Mráz [Mrá01] has studied the influ-
ence of this parameter on the expressive power for some types of restart-
ing automata. He showed that for automata without auxiliary symbols an
increasing size of the window also increases the recognition power. Let
X ∈ { R, RR, RL, RW, RRW, RLW, RWW, RRWW, RLWW } be any type restart-
ing automaton. Then L (X(`)) denotes the class of languages that are ac-
cepted by an X-automaton whose read/write-window has a size of at most
`, i.e., k 6 `. In particular, Mráz has obtained the following results.

2.2 alphabets , words , and formal languages 27

P∩DCSL

L (det-RLWW)

OO

CRL L (det-RWW) L (det-RRWW)
Lcopy

55jjjjjjjjjjjjjjj
L (det-RLW)

L2

OO

L (det-RRW)

L2

OO 55jjjjjjjjjjjjjjj

L (det-RW)

L2

OO

L6

55kkkkkkkkkkkkkk
L (det-RL)

L7

OO

L (det-RR)

L7

OO

55jjjjjjjjjjjjjjj
L (det-mon-RLWW)

OO

L (det-R)

L7

OO

L6

55kkkkkkkkkkkkkk
L (det-mon-RL)

DCFL L (det-mon-R)

OO

L (det-mon-RRWW)
L1

55jjjjjjjjjjjjjjj

Figure 2.4: Inclusions between well-known language families and classes de-
fined by various types of (monotone) deterministic restarting au-
tomata.

Proposition 2.9.

(a) L (R(1)) = L (RW(1)) = L (RWW(1)) = REG.

(b) REG (L (RR(1)) = L (RRW(1)) = L (RRWW(1)).

(c) Let ` > 1 be a positive integer. Then L (Z X(`)) (L (Z X(`+ 1)) and
L (Z X(`+ 1)) r L (Z̄ Y(`)) 6= ∅, for any type X, Y ∈ { R, RR, RW, RRW }

and any prefix Z, Z̄ ∈ { ε, mon-, det-, det-mon- } of a restarting automaton.

Most of these results can also be shown for restarting automata that use
MVL-instructions, in particular for the nondeterministic types.

Tail-Rewrite-Free Restarting Automata

Finally, we consider a restricted variant of a restarting automaton, which is
needed in one of the subsequent chapters. The restriction is placed on the
capability to perform a rewrite step in the tail of a computation.

Definition 2.1. An RRWW-automaton M = (Q,Σ, Γ , c| , $,q0,k, δ) is called tail-
rewrite-free, ifM cannot perform a rewrite instruction in the tail of a computation,
i.e., if there exists no w ∈ Γ∗ such that q0c|w$ `∗M αquβ ` αvq ′β `∗M Accept

28 preliminaries

MVR Rewrite MVR Restart

Accept

Figure 2.5: Chain of instructions performed by a trf-RRWW-automaton

is a valid tail of a computation, where q,q ′ ∈ Q, u ∈ PC(k), v ∈ PC(k−1),
(q ′, v) ∈ δ(q,u), and either α = ε and β ∈ (c| · Γ∗ · $) or α ∈ (c| · Γ∗) and
β ∈ (Γ∗ · $).

Accordingly, the chain of performed instructions changes slightly, as Fig-
ure 2.5 shows (cf. original situation in Figure 2.2). We use the prefix trf- to
denote classes of tail-rewrite-free restarting automata.

Obviously, R-, RW-, and RWW-automata are tail-rewrite-free by defini-
tion, because they will immediately restart after performing a rewrite step.
Specifically, for these types there is no difference between deterministic and
nondeterministic automata with respect to tail-rewrite-freeness.

Corollary 2.1. The language classes L (ZX) and L (trf-ZX) coincide, for each type
X ∈ { R, RW, RWW } and any prefix Z ∈ { ε, det- }.

Note that it is decidable in polynomial time, whether or not an RRWW-
automaton is tail-rewrite-free (see Algorithm 1 on page 29). The algorithm
terminates since the number of tuples that R can contain is finite. On the
other hand, the correctness of the algorithm is quite obvious.

Regarding nondeterministic automata the following result is easily seen.

Proposition 2.10. Let X ∈ { RR, RRW, RRWW } be a type of restarting automata.
Then, for each X-automaton M, there exists a nondeterministic trf-X-automaton
M ′ such that L(M) = L(M ′) holds. Moreover, M ′ can effectively be constructed
from M.

Proof. Essentially, the trf-X-automaton M ′ proceeds as the original automa-
ton M, however, in addition it will guess, whether the current cycle is ended
by a restart or by an accept step. Based on this decision it either simulates
the corresponding cycle or a modified tail of the computation of M. The
phrase ‘modified tail’ means that M ′ performs the simulation of the tail by
skipping the actual rewrite step using some additional MVR-instructions.

It is quite obvious that L(M) = L(M ′) holds, and that M ′ can effectively
be constructed from M.

Corollary 2.2. The language classes L (X) and L (trf-X) coincide, for each type
X ∈ { RR, RRW, RRWW } of restarting automaton.

However, for deterministic restarting automata the property of being tail-
rewrite-free is a proper restriction as the following proposition shows. The
proof is based on an example of Otto et al. [O+

08].

2.2 alphabets , words , and formal languages 29

Algorithm 1 Decides whether M = (Q,Σ, Γ , c| , $,q0,k, δ) is tail-rewrite-free

1: R := { (q0,u, 1) | u ∈ (c| · Γk−1 ∪ c| · Γ6k−2 · $) }

2: repeat
3: R ′ := R

4: for all (q,u, r) ∈ R ′ do
5: let u = a1a2 · · ·an be a factorization s.t. a1, . . . ,an ∈ (Γ ∪ { c| , $ })

6: if (q ′, MVR) ∈ δ(q,u) then
7: R := R∪ { (q ′,u ′, r) | u ′ ∈ PC(k) s.t. a2 · · ·an is a prefix of u ′ }
8: end if
9: if (q ′, v) ∈ δ(q,u) and r = 1 then

10: R := R∪ { (q ′,u ′, 0) | u ′ ∈ (Γk ∪ Γ6k−1 · $) }

11: end if
12: end for
13: until Rr R ′ = ∅
14: A := { (q,u, 0) | q ∈ Q and u ∈ PC(k) such that Accept ∈ δ(q,u) }

15: if R∩A = ∅ then
16: return M is tail-rewrite-free
17: else
18: return M is not tail-rewrite-free
19: end if

Proposition 2.11. L (det-RRW) r L (trf-det-RRW) 6= ∅.

Proof. Let

L
(1)
expo :=

{
a2

n
| n > 0

}
∪
{
aibaj | i, j > 0 and ∃m > 1 s.t. i+ 2j = 2m

}
and L̄

(1)
expo := {a,b }∗ r L(1)

expo. Then, the language L(1)
expo is accepted by the

det-RRW-automaton M = (Q,Σ,Σ, c| , $,q0, 5, δ), where Q := {q0,q1,q2 },
Σ := {a,b }, and δ as given by the following table:

(1) δ(q0, c| x$) = Accept, for all x ∈ {a,aa,ba,aab,baa },

(2) δ(q0, c|aaaa) = (q1, MVR),
(3) δ(q0, c|aaba) = (q2, c|aa),
(4) δ(q0, c|baaa) = (q2, c|aaa),
(5) δ(q1,aaaaa) = (q1, MVR),

(6) δ(q1,aaaab) = (q2,aaba),
(7) δ(q1,aaaa$) = (q2,baa$),
(8) δ(q2,aaaaa) = (q2, MVR),

(9) δ(q2,y$) = Restart, for all y ∈ { ε,a,aa,aaa,aaaa }.

Let w ∈ {a,b }∗. For each |w| 6 3, w ∈ L(M) if and only if w ∈ L(1)
expo due

to the Accept-instructions of group (1) and the look-ahead constraints of (2),
(3), and (4). Thus, assume that |w| > 4. If |w|b > 2, then M will get stuck
on reading w, because this condition is verified by each instruction. Now,
consider the remaining cases for a possible factorization of w:

1. If w = aibaj, j > 0, and i ∈ { 1, 3 }, then M rejects the input immedi-
ately. If i = 0, then M will transform w by (4) into w ′ = aj, and if

30 preliminaries

i = 2, then M rewrites w by (3) into w ′ = aj+1. Finally, if i > 4, then
M will transform w by (6) into w ′ = ai−2baj+1.

2. If w = am, for some integer m > 0, then w is rewritten into w ′ =

am−4ba2 by the rewrite step (7) of M.

Thus, in each case w ′ belongs to L(1)
expo, if and only if w does. For example,

if w = a2
n

and n > 3, then M will execute the following sequence of cycles:

q0c|a2
n

$ `cM q0c|a2
n−4ba2$ `c∗M q0c|a2ba2

n−1−2$ `cM
q0c|a2

n−1
$ `c∗M Accept.

As L (det-RRW) is closed under complement (cf. Proposition 2.6) the mem-
bership L̄(1)

expo ∈ L (det-RRW) is quite obvious.
On the other hand, assume that there exists a trf-det-RRW-automaton

M ′ = (Q ′,Σ,Σ, c| , $,q0,k ′, δ ′) such that L(M ′) = L̄
(1)
expo. Then, for a suffi-

ciently large integer n, the restarting automaton M ′ cannot reject the input
ba2

n 6∈ L̄(1)
expo immediately in the tail of a computation. Otherwise, it would

then also reject the input ba2
n+` ∈ L̄(1)

expo, for some integer ` > 1, due to a
simple pumping argument. Hence, starting from ba2

n
, M ′ executes a cy-

cle of the form q0c|ba2
n

$ `cM ′ q0c|w ′1$. Then |w1| < 2n + 1, and the error
preserving property (cf. Proposition 2.1) implies that w1 6∈ L̄

(1)
expo.

Note that the word w1 must be of the form a2
n

, because the other con-
ceivable cases, i.e., a2

m−1 ∈ L(1)
expo and aibaj ∈ L(1)

expo, where i+ 2j = 2m for
some integer 1 6 m < n, are impossible due to the limited size k ′ of the
read/write-window, provided that n is sufficiently large. Thus, M ′ executes
either the rewrite step δ ′(q0, c|bak

′−2) = (q, c|ak
′−2) or δ ′(q ′,bak

′−1) =

(q ′′,ak
′−1). Now consider the word w = ba2

n
ba2

n−1 ∈ L̄(1)
expo. As M ′ is

deterministic and n is sufficiently large, M ′ will execute the same rewrite
instructions yielding the configuration

c|ak
′−2qa2

n−k ′+2ba2
n−1

$ or c|ak
′−1q ′′a2

n−k ′+1ba2
n−1

$,

respectively. Consequently, M ′ will either reject, which contradicts the as-
sumption that w ∈ L̄(1)

expo, or it will restart since M ′ is tail-rewrite-free. How-
ever, in the latter case this would yield a cycle of the form q0c|w$ `cM ′

q0c|ak
′−2a2

n−k ′+2ba2
n−1

$ or q0c|w$ `cM ′ q0c|ak
′−1a2

n−k ′+1ba2
n−1

$. But
that is a contradiction to the correctness preserving property (cf. Proposi-
tion 2.2), because

ak
′−2a2

n−k ′+2ba2
n−1

= ak
′−1a2

n−k ′+1ba2
n−1

= a2
n
ba2

n−1 6∈ L̄(1)
expo.

Hence, L(M ′) 6= L̄
(1)
expo, which completes the proof.

Now let h : Σ∗ → Σ∗ be a homomorphism that is induced by the mapping
a 7→ ab and b 7→ b. Then, this homomorphism is an injective mapping, and

2.3 terms , trees , and forests 31

by applying h to the language L(1)
expo we obtain

h(L
(1)
expo) :=

{
(ab)2

n
| n > 0

}
∪{

(ab)ib(ab)j | i, j > 0 and ∃m > 1 such that i+ 2j = 2m
}

.

Note that the rewrite instructions (6) and (7) of the automaton M from
Proposition 2.11 can be modified accordingly, in order to obtain a det-RR-
automaton accepting the language h(L

(1)
expo). Thus, similar arguments as in

the previous proposition yield the following consequence.

Corollary 2.3. L (det-RR) r L (trf-det-RR) 6= ∅.

However, from the well-known characterization CRL = L (det-RWW) =

L (det-RRWW) and Corollary 2.1 we obtain the following equivalence.

Corollary 2.4. CRL = L (trf-det-RWW) = L (trf-det-RRWW).

2.3 terms , trees , and forests

The notation introduced in this section follows essentially the style of the so-
called ‘French school’, a group of researchers, of which many contributed
to the seminal textbook Tree Automata Techniques and Applications [CDG+

07].
However, sometimes our notation is also based on the more general sugges-
tions of Dershowitz and Jouannaud [DJ91]. We start this section by intro-
ducing terms, trees, and languages of trees, and then turn to automata and
grammars that represent certain tree languages.

A ranked alphabet, also known as signature, is a finite nonempty set of
symbols, where each element has a unique nonnegative arity. In this thesis
we will write ranked alphabets always in calligraphic letters in order to
distinguish them from finite alphabets. Formally, let F be a ranked alphabet
and let Rnk : F →N0 be an associated rank function. Every symbol f ∈ F of
rank Rnk(f) = n is said to have arity n. Nullary symbols are called constants.
The set of symbols of arity n is denoted by Fn. We use parenthesis, dots, and
commas for a short declaration of symbols with their corresponding arity.
For example, f(·, ·) denotes a binary symbol, i.e., f ∈ F2. In fact, without any
essential loss of generality, we will assume that each distinct symbol has a
unique arity. Further, let X be a countable set of variables, whose elements
are constants only. Note that X is always supposed to be disjoint from any
ranked alphabet. Then let Xn := { x1, . . . , xn } (with X0 = ∅) be a finite subset
of X that contains n variables, for each n > 0. Thus, an occurrence of Xi
should not be confused with a subset Fi of a ranked alphabet F, because Xi
contains only variables, i.e., symbols of arity zero, for each integer i > 1.

The set of finite first-order terms over F and with variables from X is the
smallest set, denoted by T(F, X), that is inductively defined by

1. F0 ⊆ T(F, X),

32 preliminaries

f

x1 g

x2

(a) Linear term t

f

f

x1 g

x2

g

x1

(b) Nonlinear term t ′

f

f

a g

a

g

a

(c) Ground term t ′′

Figure 2.6: Graphical representation of terms (see Example 2.4)

2. X ⊆ T(F, X), and

3. f(t1, . . . , tn) ∈ T(F, X), if n > 1, f ∈ Fn, and t1, . . . , tn ∈ T(F, X).

To avoid degenerated cases we will always assume that the set of constants
F0 is nonempty. Var(t) denotes the set of variables that occur in a term
t ∈ T(F, X). A term t is linear, if each variable occurs at most once in t. On
the other hand, if X = ∅ then T(F, X) is simply written as T(F). Terms from
the set T(F), in fact terms without variables, are called ground terms.

In mathematics a tree is often described as a connected nonempty acyclic
graph [Die00, Ser03]. The vertices of degree one in such a graph are called
leaves. If a distinct vertex is fixed to act as a root, then the whole tree is called
a rooted tree. However, we do not follow this approach further, because
defining a tree by using its corresponding representation as a term is much
more convenient in tree language theory.

Thus, a term is also viewed as a finite, ordered, rooted FX-labeled ranked
tree whose leaves are labeled with variables from X or with constants from
F0. The internal nodes of a tree are labeled with symbols f ∈ Fn of the
corresponding arity, i.e., with symbols of an out-degree n equal to the arity
of the label f. Note that, unlike e.g. [GS97], we do not use a special ranked
alphabet for additional leaf symbols, in order to keep things as simple as
possible. Hence some definitions will deviate from the basic literature.

Example 2.4. Let F = { f(·, ·),g(·),a } and X2 = { x1, x2 }. Here f(·, ·) is a binary
symbol, g(·) is a unary symbol, a is a constant, and x1, x2 are variables. The term
t = f(x1,g(x2)) is linear, but t ′ = f(f(x1,g(x2)),g(x1)) is not linear. On the
other hand, t ′′ = f(f(a,g(a)),g(a)) is a ground term.

Figure 2.6 shows the graphical representation of t, t ′, and t ′′, respectively.

Positions in a term resp. tree are represented by sequences of integers, i.e., in
the so-called Dewey notation.3 The empty sequence ε denotes the position

3 The Dewey Decimal Notation was originally developed in 1876 by Melvil Dewey in order to
obtain short decimal labels for a new system of library classification.

2.3 terms , trees , and forests 33

at the root of the corresponding tree.
Thus, a term t can be formally defined as a partial function from a finite

domain of positions into a set of labels, i.e., t : N∗ → (F ∪X). The set of
positions of a term t ∈ T(F, X), denoted by Pos(t), is inductively defined by

1. Pos(t) := { ε }, if either t = x ∈ X or t = a ∈ F0, and

2. Pos(t) :=
n⋃
i=1

{ ip | p ∈ Pos(ti) }, if n > 1, f ∈ Fn, and t = f(t1, . . . , tn).

Thus, for any position p ∈ Pos(t) the length |p| corresponds to the length of
the path which starts at the root and ends at p. The set Pos(t), sometimes
also called the tree domain, satisfies three main properties with respect to t:

1. It is nonempty and prefix-closed, i.e., if p ′ ∈ Pos(t) and p ∈ N∗ is a
prefix of p ′, then also p ∈ Pos(t) holds. At least the empty sequence ε
is contained in Pos(t), in order to make the tree domain nonempty.

2. The equality { j | pj ∈ Pos(t) } = { 1, . . . ,n } holds, for all p ∈ Pos(t),
where n > 1 and t(p) ∈ Fn.

3. Finally, { j | pj ∈ Pos(t) } = ∅, for all p ∈ Pos(t), where t(p) ∈ (X∪F0).

Hence the mapping t : N∗ → (F ∪ X) obeys the restrictions that are im-
posed by the corresponding rank of the symbols.

Let p1,p2 ∈ Pos(t) be two arbitrary positions in t ∈ T(F, X). The prefix
ordering on N∗ defines a partial ordering on Pos(t). We say that p1 is
above p2 (p1 6Pos p2, for short), if p1 is a prefix of p2. The positions are
incomparable, if p1 and p2 are incomparable with respect to 6Pos, i.e., neither
p1 6Pos p2 nor p2 6Pos p1 holds. As usual, <Pos denotes the strict part of
the ordering 6Pos.

A position p ∈ Pos(t) that points to a leaf of the corresponding tree t is
called a leaf position, i.e. t(p) ∈ (F0 ∪ X). In particular, each leaf position
where t(p) ∈ X is called a variable position, and X-Pos(t) denotes the set of
all variable positions. Finally, Top(t) denotes the outermost, topmost, or head
symbol of t, which is the unique symbol at the root of the corresponding
tree representation, i.e., Top(t) := t(ε).

A subterm of a term t ∈ T(F, X) at position p ∈ Pos(t), denoted by
t|p, is defined recursively by t|p = t(p), for t(p) ∈ (F0 ∪ X), and t|p =

f(t|p1, . . . , t|pn), for t(p) = f ∈ Fn, where n > 1. This yields Pos(t|p) = { j |

pj ∈ Pos(t) } and t|p(q) = t(pq), for all q ∈ Pos(t|p). Then Sub(t) denotes
the set of all subterms of t, i.e., Sub(t) := { t|p | p ∈ Pos(t) }. Further, let t[u]p
denote the term which is obtained by replacing in t the subterm t|p by u.
This operation is called subterm replacement. The subterm ordering 6T is a
partial ordering on terms. We write t 6T t ′, if t is a subterm of t ′, i.e., there
exists a position p ∈ Pos(t ′) such that t ′|p = t. Moreover, <T denotes the
strict part of this ordering, i.e., t <T t ′, if t 6T t ′ and t 6= t ′. The homeomor-
phic embedding, denoted by E, is the least relation satisfying the following
properties:

34 preliminaries

1. x = t E t ′, if x ∈ Var(t ′),

2. t E t ′ = f(t ′1, . . . , t ′n), if t E t ′i, for some 1 6 i 6 n, and

3. f(t1, . . . , tn) = t E t ′ = f(t ′1, . . . , t ′n), if ti E t ′i, for all 1 6 i 6 n.

Again, C denotes the strict part of this ordering, i.e., t C t ′, if t E t ′ and
t 6= t ′. A term t is a scattered subterm of t ′, if t E t ′ holds. Intuitively, this
definition means that t can be obtained from t ′ by ‘striking out’ some parts.

The size of a term t, denoted by ‖t‖, is inductively defined by

‖t‖ := 0, if t ∈ X,
‖t‖ := 1, if t ∈ F0, and

‖t‖ := 1+

n∑
i=1

‖(t|i)‖, if Top(t) ∈ Fn.

The height of a term t, denoted by Hgt(t), is defined in a similar way by

Hgt(t) := 0, if t ∈ X,
Hgt(t) := 0, if t ∈ F0, and
Hgt(t) := 1+ max

i=1,...,n
Hgt(t|i), if Top(t) ∈ Fn.

Note that in the above definition the height of constants is set to zero. This
choice is more convenient for our purposes since variables and constants
are then treated uniformly. However, most authors (see, e.g. [CDG+

07]),
use a height of one for constants. On the other hand, our convention has
the advantage that Hgt(t) = max{ |p| | p ∈ Pos(t) is a leaf position } holds.

A substitution (resp. ground-substitution) is a mapping from X into T(F, X)

(resp. T(F)), where only finitely many variables are not mapped to them-
selves. Every substitution σ can be extended to the domain T(F, X) by recur-
sively defining σ(f(t1, . . . , tn)) = f(σ(t1), . . . ,σ(tn)), for all f ∈ Fn and all
t1, . . . , tn ∈ T(F, X).

Usually we do not distinguish between a substitution σ : X → T(F, X)

and its extension σ : T(F, X) → T(F, X). And, in opposition to [CDG+
07],

we write an application of a substitution σ always in prefix notation. For
example, σt is the result of applying σ to the term t ∈ T(F, X).

Example 2.5. Consider the terms t, t ′, and t ′′ from the previous example. It is eas-
ily seen that Pos(t) = { ε, 1, 2, 21 }, Pos(t ′) = Pos(t ′′) = { ε, 1, 11, 12, 121, 2, 21 },
and Top(t) = t(ε) = Top(t ′) = t ′(ε) = Top(t ′′) = t ′′(ε) = f. The subterms of
t are Sub(t) = { f(x1,g(x2)),g(x2), x1, x2 }. Moreover, we have t 6T t ′, ‖t‖ = 2,
‖t ′‖ = 4, ‖t ′′‖ = 7, Hgt(t) = 2, Hgt(t ′) = Hgt(t ′′) = 3, t ′|2 = g(x1), and
t ′′ = σt ′, where σ = { x1 ← a, x2 ← a } is a ground-substitution.

The set of variables that a substitution σ does not map to themselves is
called the domain of σ and it is denoted by Dom(σ), i.e., Dom(σ) := { x ∈
X | σ(x) 6= x }. Conversely, the range of σ is Ran(σ) := {σ(x) | x ∈ X }, and
the variable range of σ is X-Ran(σ) := ∪x∈Dom(σ)Var(σ(x)). The composition of

2.3 terms , trees , and forests 35

f

f

x1 g

x2

g

x1

(a) Term t1

f

g

x2

x1

(b) Term t2

f

g

a

g

a

(c) Term t3

g

x1

(d) Term t4

Figure 2.7: Comparing terms by different orderings (see Example 2.6)

two substitutions σ and τ is defined as στ(t) := σ(τ(t)), for all t ∈ T(F, X).
A substitution τ is more general than a substitution ρ, whenever there exists a
substitution σ such that ρ = στ. Finally, an injective substitution σ is called
a variable renaming, if Ran(σ) ⊆ X. In fact, then σ is even bijective.

A term t is an instance of a term t ′, if there exists a substitution σ such
that σt ′ = t holds. On the other hand, two terms t, t ′ ∈ T(F, X) are called
unifiable whenever there exists a variable renaming ρ and a substitution σ
such that Var(ρt) ∩ Var(t ′) = ∅ and σρt = σt ′ hold. In that case the sub-
stitution σ is called a unifier. Specifically, σ is the most general unifier, if it
is more general than any other unifier of t and t ′. It is a well-know re-
sult [Rob65, MM82], that there exists an efficient algorithm which computes
the most general unifier, if it exists, and otherwise reports nonexistence.

For comparing terms there exists a wide variety of orderings. The sub-
term ordering and the homeomorphic embedding have been already de-
scribed, but we still need another one. For two terms t, t ′ ∈ T(F, X) and a
substitution σ we will write t 6σ t ′, called t ′ subsumes t, if σt = t ′ holds.

Example 2.6. Consider the terms t1, t2, t3, and t4 as shown in Figure 2.7 on
page 35. The terms t2 and t4 are homeomorphically embedded in t1, i.e., t2 E t1
and t4 E t1, but t3 is not embedded in t1. On the other hand, t3 subsumes t2,
i.e., t2 6σ t3, because σt2 = t3 holds for the ground-substitution σ = { x1 ←
g(a), x2 ← a }. That means, the term t2 is ‘less specific’ than the term t3.

Subsets of T(F, X) and T(F) are called FX-forests and F-forests, respectively.
Nowadays they are more commonly known as FX-tree languages resp. F-tree
languages. The prefix is always omitted, whenever the involved alphabets
are clear from the context. Note that in early papers on tree grammars and
parse trees of context-free languages [Rou70a, Mod75] subsets of T(F, X)

and T(F) have also been denoted as dendrolanguages.
Since tree languages are usual sets of trees the Boolean operations can be

defined in a natural way. In particular, the complement of a FX-tree language
and F-tree language T is T{ := T(F, X) r T and T{ := T(F) r T , respectively.
However, there are some additional operations for tree languages. Let n > 1

36 preliminaries

and f ∈ Fn. Then the f-product of the tree languages T1, . . . , Tn is the tree
language f(T1, . . . , Tn) := { f(t1, . . . , tn) | ti ∈ Ti for all 1 6 i 6 n }. On the
other hand, the concatenation of trees is more complicated to define than
in the case of words. The problem stems from the fact that the intended
leaves can be either replaced by the same trees or by different trees. Thus
we need a more general notion of concatenation: The x-product of two trees
t, t ′ ∈ T(F, X), denoted by t ·x t ′, is a tree obtained from t by replacing the
symbol x ∈ (F0 ∪ X) by t ′. The x-product of a tree t ∈ T(F, X) and a tree
language T ⊆ T(F, X), denoted by t ·x T , is inductively defined by

t ·x T := T , if Hgt(t) = 0 and t = x,
t ·x T := { t }, if Hgt(t) = 0 and t 6= x, and
t ·x T := f(t1 ·x T , . . . , tn ·x T), if Hgt(t) > 1 and t = f(t1, . . . , tn).

Thus, t ·x T contains all those trees that are obtained from t by replacing
x-labeled leaves by possible different trees from T . Finally, the x-product of
two tree languages T and T ′ is T ·x T ′ :=

⋃
t∈T t ·x T ′. Based on this notion

of tree concatenation the x-iteration and the x-quotient of tree languages can
be defined in the usual way (see, e.g., [GS97, CDG+

07]). Note that we
will use a natural order for the operands of ·x , which is quite different to
the established notation [GS97, Jur95]. However, our diction may be more
intentional for a reader who has the usual word concatenation in mind.

Now we will explain how ordinary words can be interpreted as monadic
trees [Mai74, GS97]. This interpretation provides a rough guideline for the
generalization of the restarting automaton to trees, because the different
types of restarting tree automata should at least recognize those monadic
trees that are obtained from words accepted by the corresponding restarting
automata. Let Σ = {a1,a2, . . . ,an } be a finite alphabet. With Σ we can as-
sociate a ranked alphabet FΣ := {a1(·), . . . ,an(·),⊥ }, where a1(·), . . . ,an(·)
are unary symbols and ⊥ is a special constant. Thus, FΣ is in fact a monadic
signature. Then for each string w = ai1ai2 · · ·aim over Σ there exists a corre-
sponding ground term of the form ŵ := ai1(ai2(· · · (aim(⊥)) · · ·)) over FΣ,
and conversely, each ground term t ∈ T(FΣ) corresponds to a unique string
over Σ. Thus, the free monoid Σ∗ and the set T(FΣ) are in one-to-one cor-
respondence modulo the mapping ̂ : Σ∗ → T(FΣ) as described above. If
L ⊆ Σ∗ is a formal language, then L̂ := { ŵ | w ∈ L } is the set of trees ob-
tained by applying the mapping to all words from L. Analogously, if C is a
family of word languages, then Ĉ denotes the corresponding family of tree
languages with respect to the introduced mapping.

Let F and F ′ be two ranked alphabets, not necessarily disjoint. Suppose
that we have a mapping hF which associates each symbol f ∈ Fn, n > 1,
with a term tf ∈ T(F ′, Xn), and each constant a ∈ F0 with a ground term
ta ∈ T(F ′). The tree homomorphism h : T(F) → T(F ′) determined by the
mapping hF is inductively defined such that

h(a) = ta, for each a ∈ F0, and
h(f(t1, . . . , tn)) = σtf, for each f ∈ Fn, n > 1,

2.3 terms , trees , and forests 37

where σ is a substitution that satisfies σ(xi) = h(ti), for all 1 6 i 6 n. A
tree homomorphism is called linear, if for each f ∈ Fn, n > 1, hF(f) = tf
is a linear term from T(F ′, Xn), and it is called nondeleting, also known as
complete, if Var(tf) = Xn, for all f ∈ Fn. Finally, a tree homomorphism is
called alphabetic, if hF(f) = f ′(x1, . . . , xn) and hF(a) = a ′, where f ′ ∈ F ′n
and a ′ ∈ F ′0, for each symbol f ∈ Fn, n > 1 and each constant a ∈ F0,
respectively. Thus an alphabetic tree homomorphism is necessarily linear
and nondeleting, in addition it does not even change the order of subtrees.

Example 2.7. Let F = { f(·, ·),g(·),a } and F ′ = { f ′(·, ·),g ′(·),a } be two ranked
alphabets. Now consider the corresponding tree homomorphisms h : T(F) →
T(F ′) determined by the following different mappings:

- If hF(f) := f ′(f ′(x1, x1), f ′(x1, x1)), hF(g) := g ′(g ′(x1)), and hF(a) :=

f(a,a), then h is neither linear nor nondeleting,

- if hF(f) := g ′(x2), hF(g) := g ′(g ′(x1)), and hF(a) := g(a), then h is
linear but not nondeleting,

- if hF(f) := f ′(x2, x1), hF(g) := g ′(x1), and hF(a) := a, then h is linear
and nondeleting, but it is not alphabetic, and

- if hF(f) := f ′(x1, x2), hF(g) := g ′(x1), and hF(a) := a, then h is even
alphabetic, because the order of subtrees is not changed.

A tree homomorphism is extended to h : T(F, X) → T(F ′, X) by defining
h(x) = x, for every variable x ∈ X. Moreover, we denote by h(T) the F ′-tree
language that is obtained from T ⊆ T(F) by applying the tree homomor-
phism h to each ground term t ∈ T , i.e., h(T) := {h(t) | t ∈ T }.

Let ε be a special constant from F0 and let ΣF := {a | a ∈ F0 \ { ε } } be
a finite alphabet which contains all constants from F0 but ε. Then the yield
of a ground term t ∈ T(F) is a string over ΣF defined by an appropriate
mapping Yld : T(F)→ Σ∗F such that

Yld(t) := a, if t = a and a ∈ F0 r { ε },
Yld(t) := ε, if t = ε, and
Yld(t) := Yld(t|1) ·Yld(t|2) · · ·Yld(t|n), if n > 1 and Top(t) ∈ Fn.

Thus, Yld(t) is the string of leaves of t read from left to right. Since variables
are constants we can define a similar mapping X-Yld : T(F, Xn)→ Σ∗Xn by

X-Yld(t) := x, if t = x and x ∈ Xn,
X-Yld(t) := ε, if t = a and a ∈ F0, and
X-Yld(t) := X-Yld(t|1) · · ·X-Yld(t|n), if n > 1 and Top(t) ∈ Fn.

We use the same notation for the yield language of a set of (ground) terms
T ⊆ T(F, Xn) (T ′ ⊆ T(F)), i.e., we define X-Yld(T) := { X-Yld(t) | t ∈ T } and
Yld(T ′) := { Yld(t) | t ∈ T }, respectively. Of course, the resulting languages
contain words from Σ∗Xn and Σ∗F, respectively.

38 preliminaries

Let n > 0 be an integer. Then a linear term t ∈ T(F, Xn) satisfying the con-
dition X-Yld(t) = x1x2 · · · xn is called an n-context, and by t[t1, . . . , tn] we
denote the term that is obtained from t by replacing each variable xi ∈ Xn
by ti ∈ T(F, Xn) (1 6 i 6 n). Thus, in a context each variable from X is in-
terpreted as a kind of ‘hole’, where the replacement is performed. Note
that a context sometimes is also known as pointed tree [NP97] or special
tree [Tho84, Jur95]. The set of all n-contexts is denoted as Ctx(F, Xn), and
Ctx(F, X) := ∪n>0Ctx(F, Xn) is the set of all contexts. Specifically, let x1 ∈ X

be a variable, t ∈ Ctx(F, { x1 }) a 1-context, and t ′ ∈ Ctx(F, X) an arbitrary
context. Then t ◦ t ′ denotes the resulting context that is obtained by replac-
ing x1 in t by t ′. It is easily seen that Ctx(F, { x1 }) is a monoid under the
operation ◦ and with x1 as its identity. Thus, in order to improve the read-
ability, we will sometimes write t ◦ u instead of t[u], where t ∈ Ctx(F, {x1})
and u ∈ Ctx(F, X). Apart from these exceptions we treat contexts like terms,
in particular, all 0-contexts are ground terms and thus Ctx(F, ∅) = T(F)

holds.
A context t ∈ Ctx(F, Xn) or a term t ∈ T(F, X) is called nonempty, if
‖t‖ > 0 holds, i.e., t is not only a single variable. Finally, we adopt the
definition of a k-normal tree introduced by Fülop and Vágvölgyi [FV90]:
Let k > 0 be an integer. An n-context t ∈ Ctx(F, Xn) is called k-normal, if
for every leaf position p ∈ Pos(t) either |p| = k and p ∈ X-Pos(t), or |p| < k

and p 6∈ X-Pos(t). For example, the only 0-normal 1-context is the term x1.
Further, f(a,g(x1)) is a 2-normal 1-context and f(g(x1),g(x2)) is a 2-normal
2-context. On the other hand, the term f(a, x1) is neither a 1-normal context
nor a 2-normal context since |p| 6< 1 and |p ′| 6= 2, for the leaf position p = 1

and the variable position p ′ = 2, respectively. It is a well-known fact [FV90]
that different k-normal contexts are not unifiable in T(F), for any k > 0.

Later we will need a notion for the ‘prefix of a tree’. For some integer
k > 0 the k-root rk(t) of a tree t ∈ T(F, X) is defined recursively as follows:

1. r0(t) := ε,

2. if k > 1, then

rk(t) := t, if t ∈ (F0 ∪X), and
rk(t) := f(rk−1(t|1), . . . , rk−1(t|n)), if n > 1 and Top(t) ∈ Fn.

For example, the k-roots of the term t ′ from Example 2.4 are r0(t ′) = ε,
r1(t

′) = f(ε, ε), r2(t ′) = f(f(ε, ε),g(ε)), r3(t ′) = f(f(x1,g(ε)),g(x1)), and
rk(t

′) = f(f(x1,g(x2)),g(x1)), for all k > 4.
Let ΣF := { f ∈ F } be a finite alphabet of the same cardinality as the

ranked alphabet F. Then the one-to-one mapping ˜ : F → ΣF maps each
symbol from F to a unique symbol from ΣF and vice versa. This mapping
is easily extended to ˜ : (F ∪X)→ (ΣF ∪ {⊥ }), where each variable from X

is mapped to the auxiliary symbol ⊥. However, that extension is no longer
injective, because distinct variables are mapped to the same symbol. But at
least for a restriction of ˜ to the domain F we can assume injectivity, which

2.3 terms , trees , and forests 39

is needed for counting symbols from F by abusing the straight-forward
notation |w|f, for some f ∈ F and w ∈ Σ∗F.

Finally we will define some basic notations concerning paths in trees. A
root-to-leaf path of t ∈ T(F, X) is a nonempty word

path(t,pn) := t̃(p1)t̃(p2) · · · t̃(pn)

over the alphabet ΣF∪X, where p1 = ε is the position at the root, pn is an
arbitrary leaf position, and pi <Pos pi+1, for all 1 6 i 6 n− 1. The set of all
paths in t is defined by

Pth(t) := { path(t,p) | p is a leaf position } ,

which is a finite language of words over the alphabet ΣF∪X, e.g. Pth(t ′′) =

{ ffa, ffga, fga } is the set of paths for the term t ′′ from Example 2.4. We
use the same notation for a set of (ground) terms T ⊆ T(F, X) (T ⊆ T(F)),
i.e., Pth(T) := ∪t∈TPth(t), which is again a formal language of words—the
so-called path language of T . Note that our notion of a path language slightly
differs from the standard notation, where the words from Pth(T) include
indices or special symbols showing the directions taken along the paths.
The path-closure of T , denoted by Pthcl(T), is defined by

Pthcl(T) := { t ∈ T(F, X) | Pth(t) ⊆ Pth(T) }.

A tree language T ⊆ T(F) is called path-closed, if T = Pthcl(T) holds.
Virágh [Vir81] has shown, that T ⊆ Pthcl(T), Pthcl(T) = Pthcl(Pthcl(T)),

and T ⊆ T ′ implies Pthcl(T) ⊆ Pthcl(T ′), for all tree languages T , T ′ ⊆ T(F).

Universal Algebra: Homomorphisms, Congruences, and Term Algebras

Universal algebra is a systematic theory [TM92] for studying general alge-
bras and their formal properties. Informally spoken, an algebra describes
calculations that are performed on a given carrier set through a sequence
of applications of well-defined operations. Often these operations are re-
stricted to act on a particular subset of the considered objects, and this sub-
set is called a sort. However, although many-sorted algebras [Hig63] are
frequently used in many applications, e.g. for the specification of abstract
data types [Wir90, LEW96], we restrict our attention to the single-sorted case
for the sake of briefness.

The general background why we sketch some parts of universal algebra
here is the following. Most of the early work on tree automata and many
of the papers published nowadays are using an algebraic rather than an
operational view for describing the behavior of an automaton. In order to
make at least a short digression when introducing the tree automaton model,
we need a few utilities and the basic notation from universal algebra.

Beside a purely syntactical consideration of terms there is often a seman-
tic interpretation for the symbols from a ranked alphabet. In general, each

40 preliminaries

function symbol f ∈ Fn can be interpreted as an operation of a correspond-
ing arity n. Formally, an F-algebra A = (A, { fA | f ∈ F }) consists of a
nonempty carrier set A and a mapping that, in a one-to-one manner, asso-
ciates a function fA : An → A with each symbol f ∈ Fn. In particular, each
constant a ∈ F0 fixes a unique element from A which is denoted by aA. An
F-algebra A is finite, if the corresponding carrier set A is finite.

From a given F-algebra we can construct subalgebras, homomorphic im-
ages, quotient algebras, and direct products in the usual way. First of all,
the F-algebra B = (B, { fB | f ∈ F }) is an F-subalgebra of A, if B ⊆ A and
fA(b1, . . . ,bn) = fB(b1, . . . ,bn) ∈ B, for all n > 0, all f ∈ Fn, and all
b1, . . . ,bn ∈ B. That means, each operation fB of B is the restriction of the
corresponding operation fA of A to the carrier set B.

A homomorphism of an F-algebra A = (A, { fA | f ∈ F }) into an F-algebra
B = (B, { fB | f ∈ F }) is a mappingϕ : A→ B such thatϕ(fA(a1, . . . ,an)) =

fB(ϕ(a1), . . . ,ϕ(an)), for all n > 0, all f ∈ Fn, and all a1, . . . ,an ∈ A. Thus,
a morphism is an operation-preserving mapping between these algebras. A
congruence of an F-algebra A = (A, { fA | f ∈ F }) is an equivalence relation
R ⊆ A×A on A which is invariant with respect to the operations of A, i.e.,
(a1,a ′1) ∈ R, . . . , (an,a ′n) ∈ R imply (fA(a1, . . . ,an), fA(a ′1, . . . ,a ′n)) ∈ R,
for all n > 0, all f ∈ Fn, and all a1, . . . ,an,a ′1, . . . ,a ′n ∈ A. If R is a con-
gruence of an F-algebra A, then we can define the quotient algebra A/R =

(A/R, { fA/R | f ∈ F }) such that fA/R([a1]R, . . . , [an]R) = [fA(a1, . . . ,an)]R,
for all n > 0, all f ∈ Fn, and all a1, . . . ,an ∈ A. Since the relation R

is a congruence of A it is guaranteed that the operations fA/R are well-
defined and that their definition is independent of the choice of represen-
tatives a1, . . . ,an from each congruence class. The direct product of two
F-algebras A = (A, { fA | f ∈ F }) and B = (B, { fB | f ∈ F }) is the F-algebra
A×B = (A×B, { fA×B | f ∈ F }), for which the operations fA×B are defined
such that

fA×B((a1,b1), . . . , (an,bn)) = (fA(a1, . . . ,an), fB(b1, . . . ,bn))

holds, for all n > 0, all f ∈ Fn, and all (a1,b1), . . . , (an,bb) ∈ A×B.

Example 2.8 ([BN98]). Consider the ranked alphabet F := { f(·, ·),g(·), s(·), 0 }

and the following F-algebra Z: The carrier set Z is the set of all integers, fZ :

Z×Z → Z is interpreted as addition of integers, gZ : Z → Z is interpreted as
negation, sZ : Z → Z is interpreted as a function z 7→ z+ 2, and 0Z = 0 ∈ Z is
interpreted as the identity with respect to the addition.

Then the value of the arithmetic expression 0 + (4 − 2) can be calculated by
evaluating the term f(0, f(s(s(0)),g(s(0)))) ∈ T(F) in the F-algebra Z.

Further, the set of all even integers is the carrier of a subalgebra of Z, and the rela-
tion≡2:= { (u, v) | ∃z ∈ Z : 2z = (u−v) } is a congruence on Z. Then the quotient
algebra Z/≡2 is the Abelian group of order two with the carrier { [0]≡2 , [1]≡2 }.

For a ranked alphabet F and a disjoint set of variables X we can use the set
of terms T(F, X) as carrier of an F-algebra T, where the function symbols
from F are interpreted by themselves. That means, the operations fT :

2.3 terms , trees , and forests 41

T(F, X)n → T(F, X) are defined by fT(t1, . . . , tn) = f(t1, . . . , tn), for all n >
0, all f ∈ Fn, and all t1, . . . , tn ∈ T(F, X). Thus, T can be considered as
the free FX-term algebra generated by F0 and X. For example, the term
t = f(x1,g(a)) ∈ T(F, X) is obtained by computing fT(x1,gT(aT)) = tT

using the unique F-algebra homomorphism T : T(F, X)→ T.

Term-Rewriting Systems

In this thesis we will study tree automata and tree grammars using the
general framework of term-rewriting systems. Additionally, some of the
applications discussed in Chapter 6 need rewriting systems in their formal
treatment. Thus we repeat the basic notation and a few important results
about term-rewriting systems in this section.

Term-rewriting systems [DJ90, Klo92, Jan97, BN98] are a very general and
simple formal model for describing a broad range of computing systems.
For example, state transition systems, functional programming languages,
deduction systems, and other applications have been successfully specified
and investigated using term-rewriting systems. Due to the universality and
simplicity of the term-rewriting paradigm it is often convenient to model
state transitions, function evaluation, and logical deduction by means of a
strategy-driven rewriting process on terms, even when a combination of
them in the form of a parallel execution is necessary.

Let F be ranked alphabet. Then a rewrite rule is a pair of terms, denoted
by l → r, where l, r ∈ T(F, X), l 6∈ X, and Var(l) ⊇ Var(r). The terms l
and r are the left-hand side and the right-hand side of the rule, respectively.
A rewrite rule is called left-linear (resp. right-linear), if each variable occurs
at most once in l (resp. r), and it is called linear, if it is both left-linear and
right-linear. Note that this notion of linearity is a straight-forward extension
of the linearity for terms, introduced in one of the previous subsections. A
rule is called nondeleting, if all variables from l occur at least once in r, i.e.,
Var(l) = Var(r) holds, and it is called ground, if l and r are ground terms.
Finally, a rewrite rule is called size-reducing, if ‖l‖ > ‖r‖ holds, and it is
called height-reducing, if Hgt(l) > Hgt(r) holds.

A term-rewriting system (TRS) on F is a set R ⊆ T(F, X)× T(F, X) of rewrite
rules. If R is finite, then it is called a finite term-rewriting system. If all
rewrite rules from R are ground, then R is called a ground term-rewriting
system (GTRS). The size of a term-rewriting system R, denoted by ‖R‖, is
defined as ‖R‖ :=

∑
(l→r)∈R(‖l‖+ ‖r‖). Furthermore, R is called

- linear (resp. left-linear and right-linear), if every rewrite rule from R is
linear (resp. left-linear and right-linear),

- monadic, if Hgt(l) > 1 and Hgt(r) 6 1, for every rule (l→ r) ∈ R,

- semi-monadic, if every rule (l → r) ∈ R satisfies Hgt(l) > 1 and either
Hgt(r) = 0 or r = f(r1, . . . , rn) such that n > 1, f ∈ Fn, and either
ri ∈ X or ri ∈ T(F) holds, for all 1 6 i 6 n,

42 preliminaries

- nondeleting, if all rewrite rules from R are nondeleting,

- size-reducing, if all rewrite rules from R are size-reducing, and

- height-reducing, if all rewrite rules from R are height-reducing.

A term t rewrites to t ′, simply written t→R t
′, if there exists a rewrite rule

(l → r) ∈ R, a substitution σ : X → T(F, X), and a redex at the position
p ∈ Pos(t) such that t|p = σl and t ′ = t[σr]p hold. The induced rewriting
relation →R over T(F, X) is the least binary relation containing R that is
closed under subterm replacement and substitution. We denote by →+

R the
transitive closure, by →∗R the reflexive transitive closure, and by ↔∗R the
equivalence closure of this rewriting relation. Thus, the notation t →+

R t ′

means that for some integer k > 1, there is an R-derivation

t→R t1 →R t2 →R · · · →R tk−1 →R t
′

of length k from t to t ′. An R-derivation is called self-embedding, if ti E tj
holds for some integers i < j, and a term-rewriting system is called self-
embedding, if it admits a self-embedding derivation.

The term t ′ is an immediate R-descendant of t, if t→R t
′, it is a R-descendant

of t, if t →∗R t ′, and it is a proper R-descendant of t, if t →+
R t ′. The

corresponding notations for ancestors are defined in a similar way. The
term t ′ is R-equivalent to t, if t ↔∗R t ′ holds. The set of R-descendants of
t is R∗(t) := { t ′ ∈ T(F, X) | t →∗R t ′ } and the set of R-ancestors of t is
pre∗R(t) := { t ′ ∈ T(F, X) | t ′ →∗R t }. A term is R-irreducible, if it has no
proper R-descendants. The set of R-irreducible ground terms is denoted
by IRR(R). The term t ′ is a ground R-normal form of t, if t →∗R t ′ and
t ′ ∈ IRR(R). The set of ground R-normal forms of t is denoted by R!(t).
A ground R-normal form of t is unique, if R!(t) is a singleton. Two terms
u, v ∈ T(F, X) are called R-joinable, if they have a common R-descendant, i.e.,
R∗(u)∩R∗(v) 6= ∅.

Let l1 → r1 and l2 → r2 be two not necessarily distinct rewrite rules
whose variables have been renamed such that Var(l1) ∩ Var(l2) = ∅ holds.
Further, let p ∈ Pos(l1) r X-Pos(l1) be a non-variable position and let σ
be a substitution such that σl1|p = l2. Then (σr1, (σl1)[σr2]p) is called a
critical pair and CP(R) denotes the set of all critical pairs between rules from
R. Roughly speaking, these pairs characterize situations where rules may
yield a divergent rewriting process. Example 2.9 on page 43 shows such
a case. If two rules give rise to a critical pair, we say that they overlap. A
term-rewriting system R is called non-overlapping, if no left-hand side from
R overlaps another left-hand side or itself at a proper subterm.

Let E ⊆ T(F) be a set of ground terms. The set of ground R-descendants of
E is R∗(E) := { t ′ ∈ T(F) | ∃t ∈ E such that t→∗R t ′ } and the set of ground R-
normal forms of E is R!(E) := R∗(E)∩ IRR(R). Analogously, the set of ground
R-ancestors of E is pre∗R(E) := { t ′ ∈ T(F) | ∃t ∈ E such that t ′ →∗R t }.

A term-rewriting system R is terminating, also known as Noetherian, if
there is no infinite R-derivation t0 →R t1 →R t2 →R · · · , and it is confluent,

2.3 terms , trees , and forests 43

if t →∗R u and t →∗R v imply the existence of a t ′ such that u →∗R t ′ and
v →∗R t ′. A term-rewriting system is convergent, also known as canonical or
complete, if it is terminating and confluent.

Example 2.9 ([BN98]). Consider the term-rewriting system R consisting only of
a single rewrite rule f(f(x1)) → g(x1). It has exactly one critical pair as a result
of overlapping the rule with a renamed variant f(f(x2)) → g(x2) of itself. In par-
ticular, the substitution σ = { x2 ← f(x1) } unifies the left-hand side f(f(x1)) with
the subterm f(x2) of the renamed variant, which results in the following divergent
rewriting process:

f(f(f(x1)))

g(f(x1)) f(g(x1))

Thus, we have CP(R) = { (g(f(x1)), f(g(x1))) } and R is not confluent, because
both components of the critical pair are R-irreducible and hence not R-joinable.

The Church-Rosser property [CR36] is strongly related to the confluence of
rewriting systems. A term-rewriting system R is called Church-Rosser, if
u ↔∗R v implies the existence of a term t such that u →∗R t and v →∗R t, for
all u, v ∈ T(F, X), i.e., all R-equivalent terms have a common R-descendant.
In fact, R is confluent if and only if R is Church-Rosser [BN98].

If a term-rewriting system R is not terminating, then there exists an infi-
nite self-embedding R-derivation [Der82]. On the other hand, note that the
existence of a self-embedding derivation does not necessarily imply non-
termination. For example, the system consisting of the single rewrite rule
f(f(x1)) → f(g(f(x1))) is both—self-embedding and terminating. Moreover,
it is undecidable in general whether or not a given term-rewriting system is
self-embedding [Pla85].

In rewriting theory it is a well-known fact [GB85], that for every conver-
gent term-rewriting system R each ground term has a unique R-ground nor-
mal form which can be obtained as the result of a finite R-derivation. Unfor-
tunately, in general it is undecidable whether or not a finite term-rewriting
system is terminating [HL78], and it is also undecidable whether or not
it is confluent [BO84]. Termination is even undecidable [Dau88, Dau89,
Dau92] for a one-rule term-rewriting system that is left-linear and nondelet-
ing. However, for finite ground term-rewriting systems both properties are
decidable [HL78] in polynomial time [Pla93, CGN01]. On the other hand, if
a finite term-rewriting system is terminating, then its confluence property
can be checked by considering the critical pairs. Specifically, if all critical
pairs are joinable, then the term-rewriting system is confluent [KB70].

Another important decision problem for term-rewriting systems is the
first-order reachability problem [GT95]: Let (t, t ′, R) be an instance, where
t, t ′ ∈ T(F, X) are two arbitrary terms and R is a finite term-rewriting system.
Then the problem asks, whether or not the term t can be rewritten in finitely
many steps to t ′ using only rules from R. In other words, t ′ is reachable

44 preliminaries

from t, if and only if t →∗R t ′ holds. This problem has a lot of promising
applications [FGT04], e.g. in theorem proving and in verification, however,
in general it is undecidable. Thus, additional restrictions are necessary.

Obviously, under the assumption that R is terminating, the problem be-
comes decidable. In that case one can simply check whether t ′ is contained
in R∗(t), because the set of R-descendants is finite and computable. How-
ever, this procedure is in general far from being efficient. On the other hand,
if R is not terminating, then we usually need a finite representation of R∗(t)
and an ‘efficient algorithm’ in order to check the containment of t ′. Some
tree automata have been constructed to address this issue for restricted types
of term-rewriting systems [Bra69, Sal88, CDGV94, Jac96].

Tree Automata

Finite tree automata have been introduced by Thatcher and Wright [TW65,
Tha67, TW68] and Doner [Don65, Don70], independently. The aim of their
research was to generalize the model of finite automata to an arbitrary F-
algebra, in order to show the decidability of the weak second-order the-
ory of multiple successors. Shortly after the initial work, Eilenberg and
Wright [EW67], Brainerd [Bra68, Bra69], and other authors [MW67, AG68]
started a deep investigation of tree automata and their formal properties.
Moreover, similar to automata on infinite words [Büc60] also tree automata
on infinite trees [Rab68, Rab69] have been studied, see, e.g. [Tho90] for a
comprehensive survey of automata on infinite objects. However, we will
restrict our attention to devices that process only finite trees.

Note that in almost all early papers the definition of tree automata re-
lied on an algebraic approach and thus heavily differs from the ‘mechanical
way’ of description that is commonly used nowadays. To avoid confusion,
basically we will follow the style of the book Tree Automata Techniques and
Applications [CDG+

07], however, a ‘more algebraic’ description in terms of
calculations in the corresponding F-algebra will also be sketched briefly.

Let F be a ranked alphabet. In general, a tree automaton is a device
that walks along the paths of a given tree t ∈ T(F) according to a finite
set of transition rules. This may happen in independent parallel steps and
thus it is in general not sufficient to assume that only one reading head
exists. Depending on the current state of its control unit and the currently
seen part of the input, a corresponding successor state is determined, and,
if necessary, the walking direction is changed. The ‘run through the tree’
continues until each position has been visited at least once. The input tree
t is accepted, if eventually a distinct set of final states has been reached or
another acceptance criterion is met. Otherwise the input is rejected.

Tree automata can walk along the paths of a tree in different directions.
Assuming a graphical representation of trees with the root symbol at the
top, we will distinguish the following classes of devices:

1. Automata which always walk from the leaves upwards to the root are
called bottom-up tree automata. In some older papers they have also

2.3 terms , trees , and forests 45

been known as frontier-to-root tree recognizers.

2. Automata that only walk from the root downwards to the leaves are
called top-down tree automata. Note that in early papers they sometimes
have also been called root-to-frontier tree recognizers.

3. Finally, there are automata which are able to change their walking
direction during a run and thus do not fit into the above classes, e.g.,
tree-walking automata [AU71, ERS80, KS81] and two-way finite tree
automata [Mor94, BKW02].

Since tree automata from the first two classes have a unique moving direc-
tion they usually need a parallel processing capability, in order to visit incom-
parable positions of the input simultaneously. That means, these automata
must be able to branch resp. merge their computation on the siblings below
the current position. We will come back to that point later.

As usual in automata theory, the internal states of the finite control unit
will be described by a special set of symbols which is disjoint from any other
ranked alphabet. Simultaneously these symbols shall be used to mark the
current position of the tree automaton during its walk through the input.
Therefore they should have at least an arity of one, in order to be fully em-
bedded into a tree. So let Q be a finite set of unary symbols called states
such that Q ∩ F = ∅. We have already mentioned in the previous section
that we will use term-rewriting systems to specify a transition between con-
figurations (also known as instantaneous descriptions) of tree automata in
a uniform way. Thus, on the following pages a transition between internal
states of a tree automaton is always a linear rewrite rule t→ t ′, where t and
t ′ are terms from T(F∪Q, X). However, particular syntactical restrictions on
the rules will characterize different types of automata.

For each tree automaton A the tree language recognized by A is denoted
by L(A), and for any class A of tree automata, L (A) denotes the class of
tree languages that are recognized by automata from this class. Finally, two
tree automata A and A ′ are called equivalent, if they recognize the same tree
language, i.e., if L(A) = L(A ′) holds.

Finite Bottom-Up Tree Automata

The transition relation of these automata is defined by a set of appropriate
rewrite rules. In fact, many papers on tree automata use somehow normal-
ized transitions. We follow this approach here.

A normalized bottom-up transition is a transition of the form

f(q1(x1), . . . ,qn(xn))→ q(f(x1, . . . , xn)),

where n > 1, f ∈ Fn, x1, . . . , xn ∈ X, q,q1, . . . ,qn ∈ Q. Roughly speaking,
these transitions merge some parallel and independently obtained states
q1, . . . ,qn into one successor state q provided that the suitable symbol f is
read. However, we need a special kind of transition for the initial step at
the leaves of the input. Such a rule has the simple form a → q(a) and is

46 preliminaries

called normalized initial transition. Now we are ready to provide the formal
definition of finite bottom-up tree automata.

A nondeterministic finite bottom-up tree automaton, ↑NFT-automaton for
short, is a four-tuple A = (F, Q, Qf,∆), where F is a ranked alphabet, Q

is a finite set of states, Qf ⊆ Q is a set of final states, and ∆ is a finite
term-rewriting system on F ∪ Q consisting of normalized bottom-up and
initial transitions only. A configuration of the automaton A is a ground term
c ∈ T(F ∪ Q) satisfying

∑
q∈Q |w|q 6 1, for all paths w ∈ Pth(c). The move

relation of A, denoted by →A, and its reflexive transitive closure, denoted
by →∗A, are induced by the term-rewriting system ∆. In fact, →A and →∗A
directly correspond to the rewriting relations →∆ and →∗∆, respectively. Fi-
nally, the tree language recognized by A is

L(A) := { t ∈ T(F) | ∃q ∈ Qf such that t→∗A q(t) } .

The languages recognized by ↑NFT-automata are called recognizable tree lan-
guages. In general, the above definition of ∆ implies a nondeterministic
behavior of A, because it allows zero, one or even more transitions to have
the same left-hand side. Thus there are possibly more than one ∆-derivation
starting from the same input t ∈ T(F). Hence, a ground term t is recognized
by A, if and only if there is at least one ∆-derivation t→∗∆ q(t) such that q is
a final state from Qf. To enforce a deterministic behavior we need some ad-
ditional restrictions on the transitions. A finite bottom-up tree automaton A

is called deterministic, ↑DFT-automaton for short, if there are no two rewrite
rules in ∆ with the same left-hand side. Moreover, a finite bottom-up tree
automaton is called complete, if there is at least one normalized bottom-up
transition with left-hand side f(q1(x1), . . . ,qn(xn)) in ∆, for all n > 1, all
f ∈ Fn, all q1, . . . ,qn ∈ Q, and at least one normalized initial transition with
left-hand side a in ∆, for all a ∈ F0. This property ensures that in the end a
final configuration of the form q(t) is always reached.

Before we continue with some basic results about finite bottom-up tree
automata, consider the following example.

Example 2.10 ([CDG+
07]). Let A = (F, Q, Qf,∆) be an ↑NFT-automaton, where

F = { f(·, ·),g(·),a }, Q = {qa(·),qg(·),qf(·) }, Qf = {qf(·) }, and ∆ is defined by
the following rewrite rules:

(1) a→ qa(a),
(2) g(qg(x1))→ qg(g(x1)),

(3) g(qa(x1))→ qg(g(x1)),
(4) f(qg(x1),qg(x2))→ qf(f(x1, x2)).

On the one hand, the ground term f(a,a) ∈ T(F) is not recognized by A, because
there in no ∆-derivation leading to the final configuration qf(f(a,a)). The follow-
ing picture shows one of the two possible computations ending in f(qa(a),qa(a)):

f

a a

(1)→A

f

qa

a

a (1)→A

f

qa

a

qa

a

2.3 terms , trees , and forests 47

On the other hand, the term f(g(a),g(a)) ∈ T(F) is recognized by A, that means,
f(g(a),g(a)) ∈ L(A), as the following accepting computation shows:

f

g

a

g

a

(1)

→∗A

f

g

qa

a

g

qa

a

(3)

→∗A

f

qg

g

a

qg

g

a

(4)→A

qf

f

g

a

g

a

Obviously, the tree language recognized is L(A) = { f(gn(a),gm(a)) | n,m > 1 }.
Note that the described tree automaton is deterministic since no two rules from ∆

have the same left-hand side. Thus A is in fact an ↑DFT-automaton.

The transitions of an ↑NFT-automaton A can also be defined by means of
a size-reducing ground term-rewriting system [CDG+

07], i.e., all rewrite
rules from ∆ are of the form f(q1, . . . ,qn) → q, where n > 0 and f ∈ Fn.
However, in that case the set of states Q only contains constants. The move
relation →A and its reflexive transitive closure →∗A are defined as before.
The main difference is that a part of the input is rewritten to a state symbol.
Hence, L(A) := { t ∈ T(F) | ∃q ∈ Qf such that t →∗A q} is the recognized
tree language of A. In general, a state q ∈ Q is accessible or reachable, if there
exists a ground term t ∈ T(F) such that t→∗A q holds. An ↑NFT-automaton
is called reduced, if all its states are accessible.

Sometimes it can be useful to express the computation of a finite bottom-
up tree automaton by a corresponding mapping. Therefore a run r of A on
a ground term t ∈ T(F) is defined as a mapping r : Pos(t) → Q, such that
for every position p ∈ Pos(t), if t(p) = f ∈ Fn, r(p) = q, and r(pi) = qi
for each 1 6 i 6 n, then f(q1, . . . ,qn) → q is in ∆. A run r of A on t is
successful (or accepting), if r(ε) is a final state from Qf. Thus a ground term t

is recognized by A, if there is a successful run r of A on t.
A somewhat different definition of a finite bottom-up tree automaton can

be obtained by looking at it from a more algebraic point of view. With
respect to that notion a tree recognizer is specified by a tuple A = (A, Qf),
where A = (2Q, { fA | f ∈ F }) is a finite F-algebra and Qf ⊆ Q is a set of final
states. The power set of Q acts as the carrier of A and the transitions from ∆

correspond to the interpretations fA in the following sense: For all a ∈ F0
we have aA = {q ∈ Q | (a→ q) ∈ ∆ }, and for all f ∈ Fn, n > 1, we have

fA(Q1, . . . , Qn) =

{
q ∈ Q

∣∣∣∣ (f(q1, . . . ,qn)→ q) ∈ ∆
and qi ∈ Qi, for all 1 6 i 6 n

}
.

Then the tree language recognized by A is L(A) := { t ∈ T(F) | tA ∩ Qf 6= ∅ }.
Note that the above description slightly differs from the established alge-
braic definition [TW68, Géc77, GS97]. This difference is due to the following
reason: We have not introduced a separate leaf alphabet and thus we need
a different mechanism to allow nondeterministic choices for the constants
a ∈ F0. In particular, the initial assignment of states to each symbol from the
leaf alphabet is missing. On the other hand, the used ‘subset construction’

48 preliminaries

shows a guideline for the equivalence proof [TW68] of deterministic and
nondeterministic finite bottom-up tree automata. Obviously, a determinis-
tic tree recognizer is obtained in a natural way by using a ‘deterministic’
F-algebra A = (Q, { fA | f ∈ F }) such that L(A) := { t ∈ T(F) | tA ∈ Qf } is the
recognized tree language.

Using straight-forward constructions [CDG+
07] some normalization re-

sults of bottom-up tree automata have been established. For the sake of
completeness we will only mention two of them. First of all, by adding a
‘sink state’ q⊥ to Q r Qf and new transitions f(q1(x1), . . . ,qn(xn))→ q⊥ to
∆, for all n > 0, all f ∈ Fn, and all q1, . . . ,qn, we can obtain a complete
↑NFT-automaton which recognizes the same tree language. Secondly, a sim-
ple marking algorithm computes the set of accessible states for every finite
bottom-up tree automaton. Thus, an equivalent reduced ↑NFT-automaton
can be effectively constructed in polynomial time.

The most basic result for bottom-up tree automata is the equivalence of
the nondeterministic and the deterministic computation model, i.e., for ev-
ery nondeterministic finite bottom-up tree automaton there exists an deter-
ministic finite bottom-up tree automaton which recognizes the same tree
language [TW68, CDG+

07]. This result is based on a subset construction,
similar like the construction for finite automata on words. Thus, the lan-
guage classes L (↑NFT) and L (↑DFT) coincide, since the other direction
of the discussed equivalence is trivial. Moreover, deterministic finite tree
automata can be minimized using a version of the Myhill-Nerode theo-
rem [Myh57, Ner58] that was generalized to trees [Bra68, AG68, CDG+

07].
For proving that a tree language is not recognized by any finite tree auto-

maton the following pumping lemma [GS97, CDG+
07] turned out to be use-

ful. On the one hand, the statement is very similar to the pumping lemma
for regular languages [BHPS61, HMU06] and it relies on the fact, that on
a root-to-leaf path of sufficient height the tree automaton necessarily must
choose the same state twice, because the set Q is always finite. Thus the part
of the tree between these positions can be pumped up without changing the
behavior of the automaton with respect to the recognized inputs. On the
other hand, it can be seen as a generalization of the pumping lemma for
context-free languages [BHPS61], as there is a close relationship between a
recognizable tree language and the derivation trees of a context-free phrase-
structure grammar [CDG+

07]. We will explore this point later when we
discuss the properties of regular tree grammars.

Proposition 2.12 (Pumping Lemma). Let T ⊆ T(F) be tree language that is
recognizable by a finite bottom-up tree automaton. Then there exists a constant
c > 1 such that the following holds. For every t ∈ T satisfying Hgt(t) > c there
are 1-contexts u1,u2 ∈ Ctx(F, { x1 }) and a ground term u3 ∈ T(F) such that u2
is nonempty, t = u1 ◦ u2 ◦ u3, and (u1 ◦ (u2)

i ◦ u3) ∈ T , for all i > 0.

For example, suppose that f ∈ F2 and a,b ∈ F0. Then the pumping lemma
implies that neither { f(t, t) | t ∈ T(F) } nor the set of all ground terms with
the same number of a’s and b’s are recognizable by a finite tree automaton.

2.3 terms , trees , and forests 49

Furthermore, it implies that the emptiness and the finiteness problem for
tree languages from L (↑NFT) are decidable.

Corollary 2.5. Let A = (F, Q, Qf,∆) be a ↑NFT-automaton. Then

(a) L(A) 6= ∅, if and only if there exists a ground term t ∈ L(A) such that
Hgt(t) 6 |Q|, and

(b) L(A) is infinite, if and only if there exists a ground term t ∈ L(A) such that
|Q| < Hgt(t) 6 2|Q|.

The discussion of further decision problems and closure properties of recog-
nizable tree languages is postponed to the section about tree grammars.

Finite Top-Down Tree Automata

Finite top-down tree automata have been introduced by Rabin [Rab69]. Al-
though their definition is basically a straight-forward reversal of the defini-
tion of bottom-up tree automata, there are some remarkable differences.

A normalized top-down transition is a transition of the form

q(f(x1, . . . , xn))→ f(q1(x1), . . . ,qn(xn)),

where n > 1, f ∈ Fn, x1, . . . , xn ∈ X, q,q1, . . . ,qn ∈ Q. For a constant
a ∈ F0 the corresponding transition is called normalized final transition and
it is of the form q(a) → a. Note that both types of rewrite rules exactly
look like the transitions of finite bottom-up automata, beside the fact that
the left-hand and right-hand sides are interchanged.

A nondeterministic finite top-down tree automaton, ↓NFT-automaton for short,
is again a four-tuple A = (F, Q, Q0,∆), where F is a ranked alphabet, Q

is a finite set of states, Q0 ⊆ Q is a set of initial states, and ∆ is a finite
term-rewriting system on F ∪ Q consisting of normalized top-down and fi-
nal transitions only. As for finite bottom-up tree automata, a configuration
of A is a ground term c ∈ T(F ∪ Q) satisfying

∑
q∈Q |w|q 6 1, for all paths

w ∈ Pth(c), and the move relation →A resp. its reflexive transitive closure
→∗A are induced by the term-rewriting system ∆. Finally, the tree language
recognized by A is

L(A) := { t ∈ T(F) | ∃q ∈ Q0 such thatq(t)→∗A t } .

The automaton is called deterministic, ↓DFT-automaton for short, if Q0 =

{q0 } is a singleton and there are no two rewrite rules in ∆with the same left-
hand side. The rule set ∆ of a complete ↓NFT-automaton must contain at least
one normalized top-down transition with left-hand side q(f(x1, . . . , xn)), for
all q ∈ Q, all n > 1, and all f ∈ Fn, and at least one normalized final
transition with left-hand side q(a), for all q ∈ Q and all a ∈ F0.

It is a well-known fact [GS97, CDG+
07] that for nondeterministic finite

tree automata the walking direction is of no concern, i.e., the language
classes L (↑NFT) and L (↓NFT) coincide. However, regarding the expres-
sive power of the deterministic tree automata it is known that L (↓DFT) is

50 preliminaries

properly contained in L (↓NFT), because deterministic finite top-down tree
automata cannot even recognize all finite tree languages [MM69, Jur95]. For
example, the finite tree language { f(a,b), f(b,a) } ∈ L (↑DFT) cannot be rec-
ognized by any ↓DFT-automaton A, because such an automaton has to make
the decision about acceptance of a ground term at each leaf, and that deci-
sion is based only on the information gathered in the corresponding root-
to-leaf path. Thus, if f(a,b) ∈ L(A) and f(b,a) ∈ L(A), then f(a,a) ∈ L(A)

and f(b,b) ∈ L(A) as well. In fact, a tree language T is recognized by an
L (↓DFT)-automaton, if and only if T is path-closed [Cou78, Vir81].

Tree Grammars

We turn now to tree grammars which are an equivalent representation for
certain tree languages. First of all, we consider some restricted types of tree
grammars and mention a relationship to finite tree automata. Then we will
repeat some results on closure properties and decision problems [CDG+

07]
of regular and context-free tree languages, and finally we will introduce
some other well-known classes of tree languages [GS97] that are particularly
relevant for the results obtained in the following chapters.

Tree grammars as a natural counterpart of phrase-structure grammars are
defined in a straight-forward way, however, the terminal and nonterminal
symbols now originate from a ranked alphabet rather than from a finite
alphabet. Formally, a tree grammar (TG) is a four-tuple G = (F, N, P,S)
consisting of two disjoint ranked alphabets F and N, a finite term-rewriting
system P on F ∪ N, and a start symbol S ∈ N0. A general requirement
on the productions (l → r) ∈ P is |l|N > 1, that means, the left-hand side
of each rewrite rule contains at least one nonterminal symbol, which will
be replaced by a part of the right-hand side whenever the rule is applied.
Obviously, the derivation relation ⇒G corresponds closely to the rewriting
relation →P, and { t ∈ T(F) | S ⇒∗G t } is the tree language generated by G.
However, without any further restrictions the concept of tree grammars is
extremely powerful, because the computation of any Turing machine can be
simulated by such a grammar [Dau89, Dau92]. Thus, in this thesis we will
only consider some reasonably restricted tree grammars as defined below.

In general, for each tree grammar G, the tree language generated by G is
denoted by L(G), and for each class G of tree grammars, L (G) denotes the
class of tree languages that are generated by grammars from this class. Two
tree grammars G and G ′ are called equivalent, if they generate the same tree
language, i.e., if the equality L(G) = L(G ′) holds.

Context-free tree grammars have been introduced by Rounds [Rou70a] as
a special kind of tree generating system. Note that these tree grammars
were originally called “one-state creative dendrogrammars” resp. “context-
free dendrogrammars”. Simultaneously, Brainerd [Bra69] has studied tree
generating regular systems which are based on a somewhat weaker con-
cept that corresponds to regular tree grammars. The following definition
is a straight-forward generalization of the well-known context-free phrase-

2.3 terms , trees , and forests 51

structure grammars [CDG+
07, Section 2.5.1].

Definition 2.2. A context-free tree grammar (CFTG) is a 4-tuple (F, N, P,S)
that consists of two disjoint ranked alphabets, a finite term-rewriting system P, and
a distinct initial symbol S ∈ N0. The ranked alphabet F contains the terminal
symbols and N the nonterminal symbols. Each production from P is of the form
A(x1, . . . , xn) → t, where A ∈ Nn is a nonterminal symbol for some n > 0,
x1, . . . , xn ∈ X are distinct variables, and t ∈ T(F ∪N, Xn) is a term.

Let G = (F, N, P,S) be a context-free tree grammar. Then the unrestricted
derivation relation ⇒G, the transitive closure ⇒+

G, and the reflexive transi-
tive closure ⇒∗G are induced by the term-rewriting system P. In fact, even
⇒G=→P, ⇒+

G=→+
P , and ⇒∗G=→∗P hold, and a derivation in G is simply a

P-derivation. Further, by ⇒6`
G we denote the relation obtained from ⇒∗G

by restricting the number of single derivation steps to be at most `, i.e.,
⇒6`
G := { (s, t) | s, t ∈ T(F ∪N),∃n 6 ` s.t. s⇒G t1 ⇒G · · · ⇒G tn︸ ︷︷ ︸

n-times

= t }.

The tree language generated by G is defined as

L(G) := { t ∈ T(F) | S⇒∗G t } .

If A ∈ N0 is a constant, then we denote by LA(G) the tree language gener-
ated from this symbol, i.e., LA(G) := { t ∈ T(F) | A ⇒∗G t }. This notion is
extended to nonterminal symbols of an arity greater than zero by

LA(G) := { t ∈ T(F) | ∃t1, . . . , tn ∈ T(F ∪N) s.t. A(t1, . . . , tn)⇒∗G t } .

Furthermore, a nonterminal symbol A ∈ N is called reachable, if for some
t ∈ T(F ∪N) there exists a derivation S⇒∗G t containing this symbol, and it
is called productive, if LA(G) is nonempty. Tree grammars can be restricted
in several ways. A context-free tree grammar G = (F, N, P,S) is called

- linear (lin-CFTG), if the term-rewriting system P is linear,

- nondeleting, also known as complete, if P is nondeleting,

- simple (sim-CFTG), if it is linear and nondeleting,

- strict, if the right-hand side of no production is a single variable,

- ordered, if the indices of the variables are in a not decreasing order from
left to right in the yield of the right-hand side of every production,

- top-context-free (top-CFTG), if the right-hand side of every production
contains symbols from N only at the top-most position,

- monadic (mon-CFTG), if the nonterminal symbols are either constants
or unary functions, i.e., N = N0 ∪N1, and

- reduced, if all nonterminal symbols are reachable and productive.

52 preliminaries

A context-free tree grammar is called regular tree grammar (RTG) , if all non-
terminal symbols are constants, i.e., N = N0. The generative power of gen-
eral context-free tree grammars is illustrated by the following Example 2.11.

Example 2.11. Consider the context-free tree grammar G = (F, N, P,S), where
F := { f(·, ·),a } and N := {S,B(·) } are the sets of terminal and nonterminal sym-
bols, respectively. The term-rewriting system P consists of the productions

B(x1)→ B(f(x1, x1)), B(x1)→ x1, and S→ B(a).

For example, the ground term f(f(a,a), f(a,a)) ∈ T(F) can be obtained from the
initial symbol S by the following unrestricted derivation steps:

S ⇒G
B

a
⇒G

B

f

a a

⇒G

B

f

f

a a

f

a a

⇒G

f

f

a a

f

a a

.

It is easily seen that the tree language generated by G contains

a, f(a,a), f(f(a,a), f(a,a)), f(f(f(a,a), f(a,a)), f(f(a,a), f(a,a))), . . .

Thus L(G) is the language of all balanced binary trees over F, and Yld(L(G)) =

{a2
n

| n > 0 } is the corresponding set of yields. Note that G is nondeleting,
ordered, and top-context-free, but it is neither linear nor strict. Moreover, all non-
terminal symbols are reachable and productive, and thus G is also reduced. Finally,
the grammar is monadic but not regular, because N contains the unary nonterminal
symbol B. In fact, L(G) is a nonregular top-context-free tree language.

On the other hand, the nonregular tree language {gn(hn(a)) | n > 0 } cannot
be generated by any top-context-free tree grammar, however, there exists a linear
context-free tree grammar which generates this tree language. Moreover, there are
even some regular tree languages which cannot be generated by any top-context-free
tree grammar [AD76]: For example, the regular tree language T(F), where F is the
ranked alphabet as defined above, cannot be generated by any top-context-free tree
grammar, because ‘nested nonterminals’ are needed to obtain unbalanced branches.

An arbitrary set of ground terms T ⊆ T(F) is called a regular (monadic, top-
context-free, linear context-free, simple context-free, context-free) tree language, if
there exists a regular (monadic, top-context-free, linear context-free, simple
context-free, context-free) tree grammar G such that L(G) = T holds.

For each regular tree grammar an equivalent reduced tree grammar can
be obtained by applying standard techniques [CDG+

07]. Moreover, starting
from a reduced grammar an even simpler equivalent type of tree gram-
mar can be constructed: A normalized regular tree grammar contains only
productions that are either of the form A → f(A1, . . . ,An) or of the form
A → a, for some n > 1, f ∈ Fn, a ∈ F0, and A,A1, . . . ,An ∈ N. Given

2.3 terms , trees , and forests 53

a normalized regular tree grammar G = (F, N, P,S) we can build an ↓NFT-
automaton A = (F, Q, Q0,∆) satisfying L(G) = L(A) in a straight-forward
way: Q := {qA | A ∈ N } is the finite set of states, Q0 := {qS } is the set
of initial states, and qA(f(x1, . . . , xn)) → f(qA1(x1), . . . ,qAn(xn)) is in ∆,
if and only if A → f(A1, . . . ,An) is in P. The equivalence of the tree lan-
guage generated by G and the tree language recognized by A is shown
by induction on the derivation length. On the other hand, for each ↓NFT-
automaton A = (F, Q, Q0,∆) a regular tree grammar G = (F, N, P,S) can be
constructed such that L(A) = L(G). Again, the idea is very simple: Take
N := {Aq | q ∈ Q }, and Aq → f(Aq1 , . . . ,Aqn) is in P, if and only if
q(f(x1, . . . , xn)) → f(q1(x1), . . . ,qn(xn)) is in ∆. Additionally, P will con-
tain a production S → Aq, for each q ∈ Q0. Thus, the class of regular tree
languages and the class of recognizable tree languages coincide.

From an algebraic point of view it is only natural to consider tree lan-
guages as subsets of term algebras. This view corresponds to the consid-
eration of string languages as subsets of free monoids, as usually done in
formal language theory. Thus algebra homomorphisms and their inverses
are in fact tree language operations. Under that light the property of be-
ing regular can also be seen as a manifestation of an algebraic character-
ization [MW67, GS97]: A tree language T ⊆ T(F) is regular, if and only
if there exists a finite F-algebra A = (A, { fA | f ∈ F }), a homomorphism
ϕ : T(F) → A, and a finite subset F ⊆ A such that T = ϕ−1(F) holds. The
characterization leads to the counterpart of Nerode’s statement [Ner58] for
regular word languages, i.e., T is regular, if and only if the syntactic con-
gruence of T is of finite index. This fact is the basis of the minimization
algorithm for finite tree automata.

Moreover, for regular tree languages there exists a characterization analog
to the well-known theorem of Kleene [Kle56] for regular word languages. It
leads to the notion of regular tree expressions as a natural generalization of
regular expressions for words. Furthermore, there are some close connec-
tions to logical concepts [Tho84, Tho97], for example, a tree language is
definable in monadic second-order logic, if and only if it is regular [GS97].

Obviously, regular tree languages are a generalization of regular word
languages. Thus it is not surprising that this class has a lot of nice closure
properties. Moreover, there exist efficient algorithms to decide the empti-
ness, the finiteness, the inclusion, and the equality problem. Some of the
fundamental results [GS97, CDG+

07] on regular tree languages are summa-
rized in the following proposition.

Proposition 2.13.

(a) L (RTG) = L (↓NFT) = L (↑NFT) = L (↑DFT).

(b) L (RTG) is closed under union, intersection, complementation, f-product, x-
product, linear tree homomorphisms, and inverse tree homomorphisms.

(c) The membership, the emptiness, and the finiteness problem are decidable in
polynomial time. However, for nondeterministic finite tree automata the in-
clusion and the equivalence problem are known to be EXPTIME-complete.

54 preliminaries

The yield of any regular tree language is a context-free language. Moreover,
for every context-free language L ⊆ Σ∗ generated by a context-free phrase-
structure grammar G there exists a ranked alphabet F and a regular tree
grammar G ′ such that L = Yld(L(G ′)) [GS97, CDG+

07]. In fact, L(G ′) is
the set of derivation trees [AU72] of the grammar G. Consequently, a lan-
guage is context-free, if and only if it is the yield of a regular tree language.
However, note that there are regular tree languages which are not the set of
derivation trees of any context-free phrase-structure grammar.

There are also some remarkable relationships between term-rewriting sys-
tems and regular tree languages. For example, Gallier and Book [GB85]
have shown that for each finite left-linear term-rewriting system R the set
of irreducible ground terms is recognizable by an ↑NFT-automaton AR and
hence IRR(R) is a regular tree language. However, not every regular tree
language can be obtained by this way. Furthermore, some restricted types
of term-rewriting systems preserve the regularity of tree languages, which
is of particular interest in order to solve the corresponding reachability prob-
lem. Let T ⊆ T(F) be a regular tree language and R a term-rewriting
system on F. Then R∗(T) ∈ L (RTG), if R is a ground term-rewriting sys-
tem [Bra69, DT90], a right-linear and monadic term-rewriting system [Sal88],
or a linear and semi-monadic term-rewriting system [CDGV94]. Hence, for
all these restricted types of term-rewriting systems, the reachability problem
is decidable. On the other hand, R∗(T) is not necessarily regular, even if R

is a linear and convergent term-rewriting system [GT95].
Finally, we turn back to context-free tree languages in general. Thus,

let G = (F, N, P,S) be context-free tree grammar. Since nonterminal sym-
bols can occur everywhere in a right-hand side of the productions from P

some more sophisticated derivation strategies have been considered [Fis68a,
ES77]:

Inside-Out (IO): A derivation step is called inside-out, denoted by t IO⇒G t ′,
if t ′ ∈ T(F∪N) is obtained from t ∈ T(F∪N) by applying a production
at a position p ∈ Pos(t) such that Top(t|p ′) 6∈ N, for all p ′ ∈ Pos(t) sat-
isfying p <Pos p

′. That means, the production is applied at a position
where none of the nodes below is labeled by a nonterminal symbol.

Outside-In (OI): On the other hand, a derivation step is called outside-in,
denoted by t OI⇒G t ′, if t ′ ∈ T(F ∪N) is obtained from t ∈ T(F ∪N) by
applying a production at a position p ∈ Pos(t) such that Top(t|p ′) 6∈ N,
for all p ′ ∈ Pos(t) satisfying p ′ <Pos p. Consequently, the production
is applied at a position where none of the nodes above is labeled by a
nonterminal symbol.

An outside-in derivation, also known as top-down derivation, is a derivation
consisting of outside-in steps only. In fact, this mode of derivation corre-
sponds to the well-known left-most strategy of phrase-structure grammars.

We denote by IO⇒
∗
G and OI⇒

∗
G the reflexive transitive closure of IO⇒G and OI⇒G,

respectively. The tree language generated by a context-free tree grammar

2.3 terms , trees , and forests 55

G using only inside-out derivation steps is LIO(G) := { t ∈ T(F) | S
IO⇒
∗
G t }.

Similarly, LOI(G) := { t ∈ T(F) | S
OI⇒
∗
G t } is the tree language generated by

using only outside-in derivation steps.
Regarding the expressive power of the different derivation modes the fol-

lowing result is well-known [Fis68a, Mai74, CDG+
07].

Proposition 2.14. LIO(G) ⊆ LOI(G) = L(G) holds, for any context-free tree gram-
mar G. The properness of the inclusion LIO(G) ⊆ LOI(G) depends on the grammar.

However, when considering the families of tree languages obtained by ap-
plying different derivation modes, i.e., L (IO-CFTG) := {LIO(G) | G ∈ CFTG }

and L (OI-CFTG) := {LOI(G) | G ∈ CFTG }, then it turns out that these classes
are incomparable with respect to set inclusion.

Recently, it was shown that the applied derivation mode is of no concern,
if the context-free tree grammar has only linear productions [dGP04, KM06].
We will use this fact extensively in Chapter 3 and sketch the proof there.

Context-free tree grammars are closely related to the concept of nondeter-
ministic recursive program schemes [Niv75, AN77, AN80, Cou86, Cou90],
because for each nonterminal symbol F ∈ Nn a production F(x1, . . . , xn)→ t

can be interpreted as a definition of an n-ary function. This definition is ‘re-
cursive’ since the nonterminal symbol F may occur in the right-hand side
t ∈ T(F ∪N, Xn). Then the notion of outside-in and inside-out derivation
steps is connected to the desired evaluation strategy for computing the func-
tion F, i.e., the inside-out derivation mode corresponds to the call by value
evaluation and the outside-in mode to the call by name evaluation.

For every context-free tree language T ⊆ T(F) the corresponding yield
language Yld(T) ⊆ Σ∗F is an indexed language [Fis68a, Rou70b]. The con-
verse of this statement is also true, since our definition of the Yld-mapping
incorporates the special constant ε ∈ F0 which is mapped to the empty
word ε. Thus, for every indexed language L ∈ IL there exists a context-free
tree language T such that Yld(T) = L [Fis68a, Theorem 5.3].

Maibaum has generalized the well-known pumping lemma for context-
free languages to the case of trees [Mai78]. Moreover, many normal forms of
context-free tree grammars have been proposed, for example, see [Rou70b,
Mai74, AD76, AL80, AN80]. We will only need the following variant that
was originally introduced by Rounds [Rou70b], and which was later refined
by Maibaum [Mai74], Schimpf [Sch82], and Schimpf and Gallier [SG85].

Definition 2.3. A context-free tree grammar G = (F, N, P,S) is in Chomsky
normal form (CNF), if each production from P is of one of the following types

A(x1, . . . , xn)→ B(C1(x1, . . . , xn), . . . ,Cm(x1, . . . , xn)),
A(x1, . . . , xn)→ f(xj1 , . . . , xjm),
A(x1, . . . , xn)→ xk,

where m,n > 0, j1, . . . , jm,k ∈ { 1, . . . ,n } are integers, A ∈ Nn, B ∈ Nm,
C1, . . . ,Cm ∈ Nn are nonterminal symbols, and f ∈ Fm is a terminal symbol.

56 preliminaries

Rounds [Rou70b], Maibaum [Mai74], and Schimpf [Sch82] have shown that
every context-free tree grammar G can be transformed into a grammar G ′

in Chomsky normal form such that L(G) = L(G ′) holds. In fact, their proofs
are a straight-forward extension of the well-known construction for context-
free phrase-structure grammars [Cho59, AU72, HMU06].

The following proposition summarizes some further results on context-
free tree languages and their corresponding subclasses:

Proposition 2.15.

(a) L (CFTG) is closed under union, intersection with regular tree languages,
f-product, x-product, and linear tree homomorphisms. It is not closed under
intersection and arbitrary tree homomorphisms [Rou69, AD76, ES77].

(b) The membership, the emptiness, and the finiteness problem are decidable for
context-free tree languages [Fis68a, Rou70b]. The exact complexity of these
problems is not known, but there are indexed languages which have an NP-
complete [Rou73] or even EXPTIME-complete membership problem [TK86].

(c) For every context-free tree grammar G, the language of root-to-leaf paths, i.e.,
the word language Pth(L(G)), is context-free [Rou70b].

(d) Let F be a ranked alphabet that does not contain the symbol f(·, ·), and let
T ⊆ T(F) be a tree language over F. Then T ′ := { f(t, t) | t ∈ T } is
context-free, if and only if T and T ′ are top-context-free [AD76, Duplication
Theorem].

(e) L (lin-CFTG) (L (CFTG), L (top-CFTG) (L (CFTG), and L (top-CFTG)
and L (RTG) are incomparable with respect to set inclusion [Leg81b, AD76].

(f) L (lin-CFTG) is closed under union, intersection with regular tree languages,
f-product, and x-product. It is not closed under intersection and arbitrary
tree homomorphisms [HHK94, KM06].

(g) The class L (sim-CFTG) and the family of tree languages generated by context-
free hyperedge replacement graph grammars (TR(HRtr)) coincide [EM98].

Now we sketch another representation for context-free tree languages: Gues-
sarian has defined an equivalent type of tree automaton—the so-called push-
down tree automaton [Gue81, Gue83]. This automaton is equipped with an
auxiliary pushdown storage and works in top-down manner.

Formally, a nondeterministic top-down pushdown tree automaton, often de-
noted as PDT-automaton for short, is a six-tuple A = (F, G, Q,q0,Z0,∆),
where F is a ranked input alphabet, G is a ranked pushdown alphabet such
that F and G are disjoint, Q is a finite set of states, q0 ∈ Q is the initial state,
Z0 ∈ G0 is the initial pushdown symbol, and ∆ is a finite term-rewriting
system. Note that, in contrast to finite tree automata, each state q ∈ Q is
a binary symbol, whose first argument is interpreted as the unread part of
the input and the second argument corresponds to the current contents of
the pushdown store. The term-rewriting system ∆ only contains transition
rules of the following types:

2.3 terms , trees , and forests 57

(i) Read rules of the form

q(f(x1, . . . , xn),G(xn+1, . . . , xn+m))→ f(q1(x1, s1), . . . ,qn(xn, sn)),

where n > 0, f ∈ Fn, q,q1, . . . ,qn ∈ Q, m > 0, G ∈ Gm, and
s1, . . . , sn ∈ T(G, { xn+1, . . . , xn+m }), and

(ii) ε-rules of the form

q(x1,G(x2, . . . , xm+1))→ q ′(x1, s),

where m > 0, G ∈ Gm, q,q ′ ∈ Q, and s ∈ T(G, { x2, . . . , xm+1 }).

As usual, the move relation →A and its reflexive transitive closure →∗A are
induced by the term-rewriting system ∆. The tree language recognized by A

is L(A) := { t ∈ T(F) | q0(t,Z0)→∗A t }. Note that the acceptance criterion of
a pushdown tree automaton is related to ’acceptance by final states’ known
from ordinary pushdown automata [JMAB97]. This is mainly due to the
fact that for every read rule q(a,G(x1, . . . , xm))→ a applied at a leaf, there
is a unique set of ‘final states’ for each a ∈ F0 and G ∈ N.

The expressive power of nondeterministic pushdown tree automata is il-
lustrated by the following example.

Example 2.12. Let A = (F, G, Q,q0,Z0,∆) be a nondeterministic PDT-automaton,
where F := { f(·, ·),a } is the input alphabet, G := {B(·),S,Z0 } is the pushdown
alphabet, Q := {q0,q1 } is the set of states, and ∆ contains the following transitions:

(1) q0(x1,Z0)→ q0(x1,B(S)),
(2) q0(x1,Z0)→ q0(x1,S),
(3) q0(x1,B(x2))→ q0(x1,B(B(x2))),
(4) q0(f(x1, x2),B(x3))→ f(q1(x1, x3),q1(x2, x3)),
(5) q1(f(x1, x2),B(x3))→ f(q1(x1, x3),q1(x2, x3)),
(6) q1(a,S)→ a.

It is easily seen that L(A) is the language of all balanced binary trees over F, which
is also generated by the context-free tree grammar from Example 2.11. The PDT-
automaton A works in an opposite way: First, it guesses the height of the input and
stores a corresponding number of B’s followed by S in its pushdown by using the
ε-rules (1), (2), and (3), respectively. Then the input is read by the rules (4) and (5)
such that for each level of f’s one B is popped and the remaining pushdown store is
duplicated. Finally, the constants at the leaves are read by rule (6), if and only if all
B’s have been removed and the symbol S is on top of each pushdown store.

Guessarian [Gue81, Gue83] has shown that a tree language is context-free,
if and only if it is recognized by a nondeterministic pushdown tree auto-
maton. This yields an automaton theoretic characterization of the context-
free tree languages similar to the case of words. Kuich [Kui01] presented
another characterization by means of algebraic tree systems and tree se-
ries. Also the model of a two-way pushdown tree automaton has been

58 preliminaries

studied by Moriya [Mor94] and Salomaa [Sal96], however, it is more ex-
pressive than the original model. Moreover, Schimpf and Gallier intro-
duced a tree pushdown automaton that processes its input from the leaves
to the root, i.e., in a bottom-up manner. It has been shown that this au-
tomaton yields another equivalent representation for the context-free tree
languages [SG85]. Gallier and Book [GB85] studied a different concept of
bottom-up tree pushdown automata and established a relation to the con-
gruence classes of monadic Church-Rosser term-rewriting systems. The in-
vestigation of this kind of tree automaton was continued by Salomaa [Sal88].
Other authors [CDG94] have introduced an even more powerful tree push-
down device which is able to simulate any Turing machine. On the other
hand, recently Fujiyoshi and Kawaharada [FK05] have studied a pushdown
tree automaton with a restricted duplication capability of the pushdown
store. From an extension of the CYK-algorithm [AU72] they obtained a de-
terministic parsing procedure for linear monadic context-free tree languages
that runs in time O(n4). Linear monadic context-free tree languages are of
some interest, in particular for natural language processing, because their
yield languages coincide with the class of yield languages generated by
tree adjoining grammars [JS97, FK00] and some other formalisms studied
in linguistics [WJ88, SW94, dGP04, Fuj04a, Mic05]. The restriction of be-
ing linear and monadic admits efficient parsing procedures while preserv-
ing enough expressive power to describe linguistic phenomena like mildly
context-sensitive properties and crossing dependencies [JSW94].

Last but not least, we introduce some further tree language families that
are occasionally used in the following chapters:

Finite Tree Languages: A tree language is called finite, if it contains only
finitely many trees. The class of finite tree languages is denoted by FIN.
Obviously, all finite tree languages are regular, i.e., FIN (L (RTG).

Definite Tree Languages: For definite tree languages the membership can
be tested by looking at the symbols near the root of the tree. Let k > 0

be some integer. Then a tree language T ⊆ T(F) is called k-definite, if
t ∈ T and rk(t) = rk(s) imply s ∈ T , for all s, t ∈ T(F). The family of
all k-definite tree languages is denoted by k-DEF. A tree language is
called definite, if it is k-definite, for some k > 0. Then the class of definite
tree languages, denoted by DEF, is DEF := ∪k>0 k-DEF. For example,
the finite tree language { f(a,b), f(b,a) } belongs to 2-DEF.

Reverse Definite Tree Languages: This class of tree languages is defined
very similar. In order to decide whether a tree belongs to a reverse
definite tree language, the subtrees of height lower than a given bound
must be considered. Let h > 0 be some integer and t ∈ T(F). Then
Sh(t) := { s ∈ Sub(t) | Hgt(s) < h } is the set of subterms of t of height
at most h− 1. A tree language T ⊆ T(F) is called reverse h-definite, if
t ∈ T and Sh(t) = Sh(s) imply s ∈ T , for all s, t ∈ T(F). The family
of all reverse h-definite tree languages is denoted by h-RDEF. A tree
language is called reverse definite, if it is reverse h-definite, for some

2.3 terms , trees , and forests 59

h > 0. Finally, the class of reverse definite tree languages, denoted by
RDEF, is RDEF := ∪h>0 h-RDEF.

Generalized Definite Tree Languages: A tree language is generalized def-
inite, if it is k-definite and reverse h-definite for some k,h > 0. Ob-
viously, a tree language T ⊆ T(F) is called generalized (k,h)-definite, if
t ∈ T , rk(t) = rk(s), and Sh(t) = Sh(s) imply s ∈ T , for all s, t ∈ T(F).
The family of all tree languages that are generalized (k,h)-definite is
denoted by (k,h)-GDEF. Finally, the class of generalized definite tree lan-
guages, denoted by GDEF, is GDEF := ∪k>0 ∪h>0 (k,h)-GDEF.

Definite, reverse definite, and generalized definite tree languages have been
introduced by Heuter [Heu88] and studied by Heuter, Nivat, Péladeau, and
Podelski [Heu89a, Heu89b, NP89, PP92]. The following results [Ste92, Jur95]
are known about these families of tree languages.

Proposition 2.16. Let k,h > 0 be some integers.

(a) 0-DEF (1-DEF ⊆ 2-DEF ⊆ · · · ⊆ DEF (L (RTG).

(b) 0-RDEF (1-RDEF ⊆ 2-RDEF ⊆ · · · ⊆ RDEF (L (RTG).

(c) (k, 0)-GDEF = k-DEF and (0,h)-GDEF = h-RDEF.

(d) (k,h)-GDEF ⊆ ((k+ 1,h)-GDEF∩ (k,h+ 1)-GDEF).

(e) (k,h)-GDEF ⊆ GDEF (L (RTG).

(f) FIN (DEF, FIN (RDEF, and FIN (GDEF.

(g) 0-DEF = 0-RDEF = (0, 0)-GDEF = { ∅, T(F) }.

Note that the regular tree language Teven := {gi(a) | i ∈ N0 is even } is nei-
ther definite nor reverse definite, which shows the properness of the inclu-
sions DEF (L (RTG), RDEF (L (RTG), and GDEF (L (RTG). Moreover, it
is decidable whether a regular tree language is definite, reverse definite, and
generalized definite, because for each type of these languages there exists a
representation as a minimal finite bottom-up tree automaton [Heu89a] and
the equivalence problem for regular tree languages is decidable. Note that
there are even more efficient decision procedures [NP89, PP92, Wil96].

Finally, it is noteworthy that a hierarchy with respect to the expressive
power of tree grammars exists, which is quite similar to the Chomsky hier-
archy for the corresponding families of word languages:

FIN (L (RTG) (L (lin-CFTG) (L (CFTG) (L (TG).

3G R O W I N G C O N T E X T- F R E E T R E E G R A M M A R S

In this chapter we derive a normal form for linear context-free tree gram-
mars that will be used in the following chapters to establish a connection be-
tween restarting tree automata and linear context-free tree languages. How-
ever, the derived normal form may be of independent interest, for example,
in linguistics. The importance of linear context-free tree languages for natu-
ral language processing basically stems from the following facts:

1. The yield languages of linear context-free tree languages have suffi-
cient expressive power to render most natural language phenomena.
The additional power beyond that provided by context-free languages
is required to express sentences known to have some mildly context-
sensitive properties [SW94, JSW94, dGP04], for example, nested depen-
dencies and certain limited kinds of crossing dependencies.

2. The class L (lin-CFTG) enjoys nice closure properties [KM06].

3. Linear context-free tree languages have a decidable membership prob-
lem. In fact, by adding some further restrictions they admit efficient
parsing procedures, either for the sets of trees themselves [FK05] or
for the corresponding restricted yield languages [SJ85, Raj96, RY98].

Keeping these aspects in mind the derived normal form and the established
relationship to a different automaton model could be useful tools for lin-
guistic purposes. Moreover, the suitable tree recognizers seem to be only
sparsely studied [MC97, FK00, YAM00, Mor03, FK05].

Specifically, in this chapter we will show that each linear context-free
tree grammar can be transformed into an equivalent linear context-free tree
grammar that contains only ‘growing productions’. Moreover, the right-
hand side of every production is even a context, i.e., the variables occurring
in its yield are ordered from left to right with respect to their indices. The
desired transformation is achieved in two consecutive steps: First we show
how to transform a linear context-free tree grammar into an equivalent sim-
ple context-free tree grammar that is also strict. Then, in a second step, we
present a transformation into an equivalent growing context-free tree gram-
mar, whereas we will give an exact definition for this type of tree grammar
in the remaining part of the section.

The first transformation step is somehow a ‘folklore result’ in formal
language theory. It was rigorously proved by Leguy in his doctoral the-
sis [Leg80], and a similar normal form has been also obtained for IO-macro
grammars [Fis68a] and multiple context-free grammars [SMFK91]. Recently
Fujiyoshi [Fuj04b, Fuj05] has rediscovered Leguy’s result for linear context-
free tree grammars that contain only monadic productions. Based on his

61

62 growing context-free tree grammars

work Kepser and Rogers [KR07] have proved that every monadic and sim-
ple context-free tree grammar can be transformed into a tree grammar that
is also strict. Moreover, they obtained a characterization of generalized tree-
adjoining grammars by monadic linear context-free tree grammars. Finally,
Seki and Kato [SK06, SK08] reported a corresponding normalization proce-
dure for macro grammars. However, our construction in Section 3.1 relies
on the fact, that the derivation mode does not matter for linear context-
free tree grammars, which was already mentioned by De Groote and Pogo-
dalla [dGP04] and finally proved by Kepser and Mönnich [KM06] in 2006.
Consequently the proof is probably simpler than that of Leguy, but the
idea is quite similar to that of Fischer and Fujiyoshi. Our second trans-
formation uses some well-known techniques from the construction of the
Chomsky normal form for context-free phrase-structure grammars [Cho59,
AU72, Har78, JMAB97, HMU06] and context-free tree grammars [Mai74,
Sch82, SG85] to obtain only growing productions. Recently, Fujiyoshi has
described a Greibach-like normal form for linear monadic context-free tree
grammars [Fuj06] by applying similar arguments.

The rest of this section is devoted to introduce growing context-free tree
grammars and to specify a modified Chomsky normal form for linear tree
grammars. The latter step is necessary since this type of normal form will
serve as the basis for our construction in the following section. Finally, we
will present the proof for the result of Kepser and Mönnich, because it is so
central for our exposition.

The following definition of a ‘growing property’ for productions of a
context-free tree grammars is inspired by the strictly monotonous phrase-
structure grammars, i.e., the type of grammar that generates the growing
context-sensitive languages. However, we restrict our attention to context-
free productions only, in order to obtain a reasonable subclass of L (CFTG).
We avoid even nonlinear productions, because an unrestricted copying of
subtrees leads, in general, to some odd phenomena [CDG+

07] of the gener-
ated forests and thus often results in inefficient parsing procedures or slow
tree recognizers.

Definition 3.1. A context-free tree grammar G = (F, N, P,S) is called growing
(grow-CFTG, for short), if each production (l→ r) ∈ P is either of the form

A(x1, . . . , xn)→ t, (3.1)

where n > 0 is an integer, A ∈ Nn r {S } is a nonterminal symbol different from
S, and t ∈ Ctx(F ∪N, Xn) is an n-context satisfying ‖t‖ > 2, or it is of the form

S→ s, (3.2)

where S is the initial symbol of G and s ∈ T(F ∪N) is a ground term.

Observe that a growing context-free tree grammar is necessarily simple, be-
cause its rewrite rules are linear and nondeleting. Note further that the
productions of type (3.2) allow to derive all constants from F, which cannot

63

be generated by rewrite rules of type (3.1) only. Obviously, we have the
trivial inclusion L (grow-CFTG) ⊆ L (sim-CFTG). However, we will show in
the rest of this chapter that also the converse inclusion holds.

Recall that a context-free tree grammar is in Chomsky normal form (CNF),
if every production is of one of the following types:

A(x1, . . . , xn)→ B(C1(x1, . . . , xn), . . . ,Cm(x1, . . . , xn)), (3.3)
A(x1, . . . , xn)→ f(xj1 , . . . , xjm), (3.4)
A(x1, . . . , xn)→ xk, (3.5)

where n > 0, m > 0, A ∈ Nn, B ∈ Nm, Ci ∈ Nn (1 6 i 6 m), f ∈ Fm,
j1, . . . , jm,k ∈ { 1, . . . ,n }, and xi ∈ Xn (1 6 i 6 n). Productions of type (3.5)
are called projection rules, also known as collapsing rules, because they replace
the nonterminal symbol A by one of its arguments.

However, in this chapter we only deal with linear context-free grammars,
for the reason explained in the previous paragraphs. Thus, in order to
transform a linear context-free tree grammar into a similar Chomsky normal
form, the productions of type (3.3) have to be modified. Specifically, they
must be of the form

A(x1, . . . , xn)→ B
(
C1(xj1,1 , . . . , xj1,c1

), . . . ,Cm(xjm,1 , . . . , xjm,cm
)
)
,

(3.6)

where xj1,1 , . . . , xj1,c1
, . . . , xjm,1 , . . . , xjm,cm

are distinct variables from Xn, A ∈
Nn, B ∈ Nm, and Ci ∈ Nci are nonterminal symbols, for some integers
ci ∈ { 0, . . . ,n } (1 6 i 6 m). However, such a modified Chomsky normal form
can be obtained by adjusting the standard construction accordingly.

For the sake of completeness we outline the procedure briefly. Let G =

(F, N, P,S) be a linear context-free tree grammar. Then, we construct G ′ =

(F, N ′, P ′,S) as follows: Initially, take N ′ := N and P ′ := ∅. For every termi-
nal symbol f ∈ Fn add a new nonterminal symbol Af of the same arity to
N ′ and insert a production Af(x1, . . . , xn) → f(x1, . . . , xn) of type (3.4) into
P ′. These productions will generate the terminal symbols from F. Next,
for each production A(x1, . . . , xn) → t from P, where A ∈ Nn is a non-
terminal symbol and t ∈ T(F ∪ N, Xn) is a linear term, add productions
of type (3.6) and (3.5) to P ′ depending on the form of t. For example, if
t = f(B(g(x2), x4), x1) and n = 4, then we must insert the productions
A(x1, x2, x3, x4)→ Af(B

′(x2, x4),D(x1)), B ′(x1, x2)→ B(Ag(x1),D(x2)), and
D(x1) → x1 into P ′, where B ′ and D are new nonterminal symbols that
are added to N ′. On the other hand, if t = g(x3), then the production
A(x1, x2, x3, x4) → g(x3) of type (3.4) is inserted. Last but not least, if
t = B(x3, x1), i.e., the considered production from P is a unit production,
then we must insert A(x1, x2, x3, x4) → B(D(x3),D(x1)) and D(x1) → x1
into P ′. Obviously, after applying the transformation G ′ has the desired
modified Chomsky normal form and L(G) = L(G ′) holds.

Finally we repeat the result and the proof of Kepser and Mönnich [KM06],
whereof small changes have been made in order to improve readability. In

64 growing context-free tree grammars

fact, the proof is a special case of the situation considered in the strong
confluence lemma [BN98, Lemma 6.3.3] for linear term-rewriting systems.

Proposition 3.1 ([KM06]). Let t ∈ T(F ∪N) be a ground term with occurrences
of the nonterminal symbols A ∈ Nn and B ∈ Nm at distinct positions. Further, let
(1) A(x1, . . . , xn)→ s and (2) B(x1, . . . , xm)→ r be two arbitrary productions of
a linear context-free tree grammar.

Then, t
(1)⇒ s ′

(2)⇒61t ′ and t
(2)⇒ r ′

(1)⇒61t ′ holds, i.e., applying first rule (1) and
then, if possible, rule (2) yields the same term t ′ as applying (2) first and then (1).

Proof. Let p and p ′ be those distinct positions in t where the nonterminal
symbols A and B occur, respectively, i.e., Top(t|p) = A, Top(t| ′p) = B, and
p 6= p ′. If p and p ′ are incomparable with respect to 6Pos, then the statement
is obviously true, because the rules (1) and (2) are applied to independent
subtrees of t. This case (i) is illustrated in Figure 3.1. Thus, without loss
of generality, let p 6Pos p

′, i.e., the occurrence of the nonterminal symbol
B is found in the subtree dominated by A. This situation (ii) is depicted in
Figure 3.2. Now consider the factorization t = u1[A(v1, . . . , vn)], where u1
is a 1-context and v1, . . . , vn ∈ T(F ∪N) are ground terms, such that there
exists an index j ∈ { 1, . . . ,n } satisfying vj = u3[B(w1, . . . ,wm)], where u3
is another 1-context and w1, . . . ,wm ∈ T(F ∪N) are ground terms. Then,
applying first rule (1) to t yields either

1. s ′ = u1 ◦ u2 ◦ u3[B(w1, . . . ,wm)], where u2 is a 1-context obtained
from s by replacing xi by vi, for all i ∈ { 1, . . . ,n } r { j }, and renaming
the variable xj to x1, or

2. s ′ = u1[u], where u ∈ T(F ∪N) is a ground term.

That means, the intended occurrence of Bmay still be in s ′ exactly once, due
to the linearity of the rule (1), or it may have been deleted by the application
of rule (1). If it has been deleted, then rule (2) cannot be applied in the
intended way and t ′ = s ′ = u1[u]. If it has not been deleted, then applying
rule (2) yields t ′ = u1 ◦ u2 ◦ u3[u ′], where u ′ ∈ T(F ∪N) is a ground term
obtained from r by replacing xi by wi, for all i ∈ { 1, . . . ,m }.

On the other hand, applying first rule (2) to t has no effect on the intended
occurrence of A and yields r ′ = u1[A(v1, . . . , v ′j, . . . , vn)], where v ′j = u3[u

′]
is a ground term. Then, applying rule (1) to the term r ′ yields either t ′ =

u1 ◦u2 ◦u3[u ′], or t ′ = u1[u], depending on whether the subtree containing
v ′j was deleted or not.

Thus, in both cases (i) and (ii) the same ground term t ′ is obtained.

Note that in the above proof the linearity of the rules (1) and (2) is essential,
because then the intended occurrence of B cannot be duplicated by rule
(1). On the other hand, the context-freeness of the rules avoids that there
are nontrivial overlapping left-hand sides. The trivial case of overlapping
left-hand sides, i.e., A = B, is covered by the arguments stated in the proof.
However, linearity of the productions of a context-free tree grammar G is
not sufficient, in order to ensure the equality of the languages LIO(G) and

65

LOI(G) (cf. [KM06, Corollary 5]). For example, consider the grammar G =

(F, N, P,S), where F := {a }, N := {A(·),B,S }, and P := {S→ A(B),A(x1)→
a }. Then LIO(G) = ∅, because there is no production with a left-hand side
B, and thus A(B) cannot be rewritten in IO-mode. Applying the outside-in
strategy we obtain the derivation S OI⇒G A(B)

OI⇒G a and hence LOI(G) = {a }.

tp

p ′
A

B

s ′p

p ′
s

B

r ′p

p ′
A

r

t ′p

p ′
s

r

(2)(1)

(1)(2)

Figure 3.1: Proof of Proposition 3.1, Case (i)

66 growing context-free tree grammars

u1
p

p ′

A

B

· · · · · ·
u3

v1 vn

w1 · · · wm

Figure 3.2: Proof of Proposition 3.1, Case (ii)

3.1 linear context-free tree grammars

The first partial result of this thesis shows how to transform a linear context-
free tree grammar into an equivalent simple context-free tree grammar, i.e.,
all productions of the grammar are linear and nondeleting. Moreover, the
construction also removes all rewrite rules of the form A(x1)→ x1, and thus
the resulting grammar is even strict.

The general idea for removing the unwanted deleting rules has been al-
ready used by Fischer [Fis68b, Theorem 3.1.10], Leguy [Leg80], Engelfriet
and Maneth [EM99], and many others [SMFK91, Fuj04b, Fuj05, SK06, KR07,
SK08]. Thus, the following lemma is only proved for the sake of complete-
ness.

Lemma 3.1. From a given linear context-free tree grammar G a simple and strict
context-free tree grammar G ′ can be constructed such that L(G) = L(G ′).

Proof. Let G = (F, N, P,S) be a linear context-free tree grammar in modified
Chomsky normal form. We will construct a sequence of linear context-free
tree grammars G = G0,G1, . . . ,G` = G ′, where Gk = (F, Nk, Pk,S) for
0 6 k 6 `, such that all these grammars generate the same tree language,
and the last grammar G` is simple and strict, i.e., all rules (l → r) ∈ P` are
linear context-free productions satisfying the conditions Var(l) = Var(r) and
‖r‖ > 1. Throughout this construction we will maintain a set P ′ that will
contain all those rules which have already been processed before.

Our construction consists of three transformation rules T1, T2, and T3.
First T1 is applied as long as it is applicable, then T2 is applied iteratively

3.1 linear context-free tree grammars 67

as long as possible, and then the same is done with T3. Once this process
terminates, the linear context-free tree grammar obtained has the desired
properties.

We start with the tree grammar G0 = G, that is, N0 := N, P0 := P, and
P ′ := ∅. Below we describe the various transformation rules in detail. If Gk

is the current tree grammar, then the next transformation step will generate
the tree grammar Gk+1 from Gk. It always starts by taking Nk+1 := Nk and
Pk+1 := Pk to subsume the intermediate results from the previous steps.

transformation rule T1 : Choose a projection rule A(x1, . . . , xn) →
xj from Pk+1, i.e., a production of type (3.5), delete it from Pk+1, and add
it to the set P ′. Now consider all rules (l→ r) ∈ Pk+1 that contain an occur-
rence of the symbol A in their right-hand side r. Let R consist of all terms
that are obtained from r by replacing one or more subterms with outermost
symbol A by their j-th subterm, respectively, i.e., if r|p = A(s1, . . . , sn) for
any position p ∈ Pos(r), then r[sj]p is contained in R. For all r ′ ∈ R, if l 6= r ′

and (l → r ′) 6∈ P ′, then add the rule l → r ′ to the set Pk+1. Here the test
(l → r ′) 6∈ P ′ is used to ensure that no production is introduced that has
already been processed in a previous step. This completes the description
of transformation rule T1.

Unfortunately, in general this transformation will destroy the initially as-
sumed Chomsky normal form, as we may obtain rules A(x1, . . . , xm) →
B(x1, . . . , xm) or even new projection rules like A(x1, . . . , xm) → xj. How-
ever, the process of iterating T1 will terminate eventually, since for each
introduced rule l → r ′ the inequality ||r ′|| < ||r|| holds. Thus, there exists
a point from where on no new projection rules are produced, in fact, all
projection rules that are generated later are already contained in P ′.

transformation rule T2 : Now we choose a rule A(x1, . . . , xn) →
f(xj1 , . . . , xjn̄) from Pk+1 such that 0 6 n̄ < n and 1 6 ji 6 n, for all
i ∈ { 1, . . . , n̄ }. Since Gk is linear all productions of type (3.4) have this form.
Let α := { 1, . . . ,n } r { j1, . . . , jn̄ } be a label that indicates the arguments re-
moved. If Āα 6∈ Nk+1, add a fresh nonterminal symbol Āα of arity n̄ to
Nk+1. Then, delete the above rule from Pk+1 and create a new rule

Āα(xµ1 , . . . , xµn̄)→ f(xj1 , . . . , xjn̄),

where 1 6 µ1 < µ2 < · · · < µn̄ 6 n and µi = π(ji), for all i ∈ { 1, . . . , n̄ } and
an appropriate permutation π of the index set { 1, . . . ,n }.

By replacing the variable xµi by xi, for all i ∈ { 1, . . . , n̄ }, we obtain a nor-
malized variant of this rule with respect to the occurring indices, which is fi-
nally added to Pk+1. Further, the chosen ruleA(x1, . . . , xn)→ f(xj1 , . . . , xjn̄)
is incorporated into the set P ′.

Next, consider all productions (l → r) ∈ Pk+1 with at least one occur-
rence of A in the right-hand side. Let p1, . . . ,pm ∈ Pos(r) be those positions
such that Top(r|pi) = A holds for all i ∈ { 1, . . . ,m }. Then, build all pos-
sible variants of the rule l → r, where the subterm A(s1, . . . , sn) of r is

68 growing context-free tree grammars

replaced by Āα(sµ1 , . . . , sµn̄) at some or at all of the positions p1, . . . ,pm.
All these new rules are added to Pk+1. Note that the original production
l → r must remain in Pk+1, as there may exist other rules with left-hand
side A(x1, . . . , xn). However, if no such rule exists, then l → r has become
nonproductive, and we can even remove it from Pk+1 in order to keep the
set of productions reasonably small.

transformation rule T3 : Choose A(x1 , . . . , xn) → B(t1 , . . . , tm)

from Pk+1 such that t1 , . . . , tm ∈ T (N , Xn) and n̂ := |
⋃m
i=1 Var(ti) | <

n, i.e., the intended production is of type (3.6). First, delete this rule from
Pk+1 and add it to P ′. If Âα 6∈ Nk+1 , where α := {1 , . . . , n} r { j | xj ∈⋃m
i=1 Var(ti) } is a label that indicates the arguments removed, then add a

fresh nonterminal Âα of arity n̂ to Nk+1 . Further, if Âα(xµ1 , . . . , xµn̂) 6=
B(t1 , . . . , tm), then create a new rule

Âα(xµ1 , . . . , xµn̂) → B(t1 , . . . , tm) ,

where 1 6 µ1 < µ2 < · · · < µn̂ 6 n and µi is appropriately chosen for
all i ∈ { 1 , . . . , n̂ }. As in transformation T2 , we must normalize this rule
by replacing the variable xµi by xi , for all i ∈ { 1 , . . . , n̂ }. If the resulting
normalized rule is not contained in P ′, then we add it to Pk+1 .

Obviously, for all productions (l → r) ∈ Pk+1 with at least one occur-
rence of the nonterminal symbol A in the right-hand side, we must enlarge
Pk+1 with all possible combinations that are obtained from r by replacing a
subterm A(s1 , . . . , sn) of r by the term Âα(sµ1 , . . . , sµn̂). However, these
new rules l → r ′ are only inserted into Pk+1 , if l 6= r ′, (l → r ′) 6∈ Pk+1 ,
and (l → r ′) 6∈ P ′, that means, if they are not trivial, not already contained
in Pk+1 , and have not already been processed before.

termination : Each transformation removes or replaces a rule l → r

by some rules l ′ → r ′ such that either Rnk(Top(l ′)) < Rnk(Top(l))

holds, or that a subterm of r is replaced in r ′ by a term with an outer-
most symbol of smaller arity. Moreover, the number of newly introduced
nonterminal symbols is bounded by a constant depending only on the ini-
tial grammar G0 . Finally, loops are avoided by using the set P ′, which is
carefully maintained during the construction. Thus it follows that each se-
quence of transformations, where first T1 , then T2 , and finally T3 is applied
arbitrary many times, will terminate after finitely many steps.

correctness : Each of the outlined transformations preserves linearity
and context-freeness. The projection rules of G0 are removed by T1 , and
no new projection rules are introduced by T2 and T3 , as these transforma-
tions only replace nonterminal symbols by other nonterminal symbols. Note
that variable-deleting rules of the form A(x1 , . . . , xn) → f(xj1 , . . . , xjn̄),
which are replaced by T2 , cannot be reintroduced by T3 . Thus, when the
transformation process terminates after ` steps, then P` contains no variable-
deleting productions. Moreover, all nonstrict rules of the form A(x1) → x1

3.1 linear context-free tree grammars 69

have been removed by transformation T1 . Hence, G` is a simple and strict
context-free tree grammar. It remains to show that L(G`) = L(G0). For
that goal it suffices to prove L(Gk) = L(Gk+1) and then to proceed by
induction.

claim 1 . L(Gk) ⊆ L(Gk+1).

Proof. Let S ⇒∗
Gk

u ⇒
Gk

v ⇒∗
Gk

t be a derivation of minimal length of
the ground term t ∈ T(F), where u ⇒Gk v is the first step that uses a
production (l → r) ∈ Pk r Pk+1. Hence, there exist a position p ∈ Pos(u)

and a substitution σ such that u|p = σ(l) and v = u[σ(r)]p. Note that for
linear context-free tree grammars the derivation strategy is of no concern,
as shown in Proposition 3.1. Thus, we may assume that some steps of a
derivation occur adjacent to each other. Now consider each transformation
rule separately:

- T1: Then (l → r) is of the form A(x1, . . . , xn) → xj, that is, u|p =

A(t1, . . . , tn) and v = u[tj]p. Let u ′ ⇒
Gk
v ′ be the derivation step at

which the occurrence of the nonterminal symbol A at position p ∈
Pos(u) is generated, that is, at this step a rule (l ′ → r ′) ∈ Pk is
used such that the corresponding subterm r ′|q of r ′ is of the form
A(s1, . . . , sn) for any q ∈ Pos(r ′). However, Pk+1 contains the rule
l ′ → r ′[sj]q and by applying it to u ′ we obtain a Gk+1-derivation of v
from u ′.

- T2: Then (l → r) is of the form A(x1, . . . , xn) → f(xj1 , . . . , xjn̄), where
n̄ < n. Thus, u|p = A(t1, . . . , tn) and v|p = f(tj1 , . . . , tjn̄). Again,
let u ′ ⇒

Gk
v ′ be the derivation step at which the occurrence of the

nonterminal symbol A at position p ∈ Pos(u) is generated, that is, at
this step a rule (l ′ → r ′) ∈ Pk is used such that the corresponding
subterm r ′|q of r ′ is of the form A(s1, . . . , sn) for some q ∈ Pos(r ′).
Now Pk+1 contains the added rule l ′ → r ′[Āα(sµ1 , . . . , sµn̄)]q and
by using this rule instead of the original rule l ′ → r ′, we obtain a
derivation S ⇒∗

Gk+1 u[Āα(tµ1 , . . . , tµn̄)]p. As Pk+1 also contains the
normalized form of the rule Āα(xµ1 , . . . , xµn̄)→ f(xj1 , . . . , xjn̄), we see
that even u[Āα(tµ1 , . . . , tµn̄)]p ⇒Gk+1 v holds.

- T3: Then (l→ r) is of the form A(x1, . . . , xn)→ B(t1, . . . , tm) such that
n̂ := |

⋃m
i=1Var(ti)| < n, that is, Top(u|p) = A and Top(v|p) = B. As

before, let u ′ ⇒
Gk
v ′ be the derivation step at which the occurrence of

the nonterminal symbol A at position p ∈ Pos(u) is generated, that is,
at this step a rule (l ′ → r ′) ∈ Pk is used such that the corresponding
subterm r ′|q of r ′ is of the form A(s1, . . . , sn) for some q ∈ Pos(r ′).
Now Pk+1 contains the added rule l ′ → r ′[Âα(sµ1 , . . . , sµn̄)]q and
by using this rule instead of the original rule l ′ → r ′, we obtain a
derivation S ⇒∗

Gk+1 u[Âα(tµ1 , . . . , tµn̄)]p. As Pk+1 also contains the
normalized form of the rule Âα(xµ1 , . . . , xµn̄)→ B(t1, . . . , tm), we see
that even u[Âα(tµ1 , . . . , tµn̄)]p ⇒Gk+1 v holds.

70 growing context-free tree grammars

Proceeding by induction we obtain a derivation S⇒∗
Gk+1 t.

claim 2 . L(Gk) ⊇ L(Gk+1).

Proof. Note that the newly introduced nonterminal symbols Āα and Âα are
only put at places where the symbol A occurred previously. Thus, the addi-
tional rules of the form (l→ r) ∈ Pk+1, where Top(l) = Āα or Top(l) = Âα,
will not lead to more ground terms. Also the effect of the productions intro-
duced by transformation rule T1 can be simulated by the original projection
rules from Pk accordingly.

This completes the proof of Lemma 3.1.

Note that the constructed grammar G ′ contains only linear productions of
the two types

A(x1, . . . , xn)→ B(t1, . . . , tm) (3.7)

and

A(x1, . . . , xn)→ f(xj1 , . . . , xjn), (3.8)

where n,m > 0 are integers, A ∈ Nn, B ∈ Nm are nonterminal symbols,
f ∈ Fn is a terminal symbol, and t1, . . . , tm ∈ T(N, Xn) are terms such that,
for all 1 6 i 6 m, either ti ∈ Xn is a single variable or ti = C(xj1 , . . . , xjci),
for some nonterminal symbol C ∈ Nci . Thus, for each production l → r

from G ′, the property Hgt(r) 6 2 holds.
We illustrate the transformation described in Lemma 3.1 by an example.

Example 3.1. Consider the linear context-free tree grammar G = (F, N, P,S),
where F := { f(·, ·),g(·),a } is the set of terminal symbols, N := { F(·, ·),B(·),A,S }

is the set of nonterminal symbols, and P contains only the following productions in
modified Chomsky normal form:

F(x1, x2)→ F(B(x1),B(x2)), B(x1)→ g(x1),
F(x1, x2)→ f(x2, x1), A→ a,
F(x1, x2)→ x2, S→ F(A,A).

Obviously, the generated tree language is

L(G) = { f(gn(a),gn(a)) | n > 0 } ∪ {gn(a) | n > 0 }.

Table 3.1 on page 71 shows the transformation steps performed until the simple
grammar G ′ = (F, N3, P3,S) is obtained, where N3 := { F(·, ·), F̂{1}(·),B(·),A,S }

is the set of nonterminal symbols and P3 contains the following productions, that
obviously are simple and strict:

F(x1, x2)→ F(B(x1),B(x2)), B(x1)→ g(x1),
F(x1, x2)→ f(x2, x1), A→ a,

S→ F(A,A), S→ A,

S→ F̂{1}(A),

F̂{1}(x1)→ B(x1), F̂{1}(x1)→ F̂{1}(B(x1)).

3.2 growing context-free tree grammars 71

k added
nonter-
minals

rules added to Pk rules added to P ′

1 T1
S→ A

F(x1, x2)→ B(x2)
F(x1, x2)→ x2

2 T3 F̂{1}(·)
F̂{1}(x1)→ B(x1)

S→ F̂{1}(A)

F(x1, x2)→ F̂{1}(B(x2))

F(x1, x2)→ B(x2)

3 T3 F̂{1}(x1)→ F̂{1}(B(x1)) F(x1, x2)→ F̂{1}(B(x2))

Table 3.1: Transformations performed in Example 3.1

As straight-forward consequences of Lemma 3.1 and Proposition 2.15 we
obtain the following results.

Corollary 3.1. The classes L (lin-CFTG) and L (sim-CFTG) coincide.

Corollary 3.2. The class L (lin-CFTG) and the family of tree languages generated
by context-free hyperedge replacement graph grammars (TR(HRtr)) coincide.

Corollary 3.3. The tree language family TR(HRtr) is closed under union, inter-
section with regular tree languages, f-product, and x-product, but it is not closed
under intersection and arbitrary tree homomorphisms. Moreover, the membership
problem, the emptiness problem, and the finiteness problem are decidable.

Finally, it is even remarkable that a result similar to Lemma 3.1 cannot be
achieved for general context-free tree grammars. This is due to the fact,
that projection rules are unavoidable in the nonlinear case [Leg81a, Leg81b].
However, projection-freeness can effectively be obtained up to a certain de-
gree with respect to a special form of the productions [HHK98].

3.2 growing context-free tree grammars

In a second step we show how to transform a simple context-free tree gram-
mar into an equivalent growing context-free tree grammar.

In fact, the proof is a generalization of some steps from the Chomsky
normal form construction [Cho59, AU72, JMAB97, HMU06] for context-
free phrase-structure grammars. However, it is accompanied by a straight-
forward procedure that ensures an increasing order of the variables in the
right-hand side of every production. Specifically, this additional procedure
is necessary to obtain a context in every right-hand side.

Lemma 3.2. For every linear context-free tree grammar G a growing context-free
tree grammar G ′ can be constructed such that L(G) = L(G ′) holds.

72 growing context-free tree grammars

Proof. Let G = (F, N, P,S) be the given linear context-free tree grammar. By
the previous Lemma 3.1 we can assume that G is simple and strict. We
now apply the following transformations iteratively to derive G ′ from G.
If neither of them is applicable anymore, then the process terminates. The
grammar G ′ obtained at that point has the intended properties. Of course,
during the construction we can also remove productions with an unreach-
able or nonproductive nonterminal symbol in the left-hand side. The sim-
plification is achieved by applying standard techniques [Rou70b, CDG+

07],
however, these additional procedures are not outlined here.

transformation rule T4 : This transformation reorders the subterms
of all right-hand sides in order to obtain contexts on both sides of a pro-
duction. Let A(x1 , . . . , xn) → t be an unordered production from P, i.e.,
X-Yld(t) = xj1 · · · xjn contains at least two indices jk and j` such that
k < ` and jk > j`. Further, let α := (j1 , . . . , jn) be a label that in-
dicates the order of the variables in t. Then, we remove this production
from P, add a new nonterminal symbol Aα to N, and insert a new pro-
duction Aα(x1 , . . . , xn) → σt, where σ is a variable renaming satisfying
X-Yld(σt) = x1x2 · · · xn.

Finally, if Aα is already contained in N, then we can skip the following
step, because the subterm reordering for that situation has already been
performed. If not, we proceed by considering all productions (l → r) ∈ P

with at least one occurrence of A in the right-hand side r. Let p1 , . . . , pm ∈
Pos(r) be those positions such that Top(r |pi) = A holds for all 1 6 i 6 m,
and let π be a permutation of the index set { 1 , . . . , n } that is determined by
α. Now we build all possible variants of the rule l → r, where the subterm
A(s1 , . . . , sn) of r is replaced by Aα(sπ(1) , . . . , sπ(n)) at some or at all
of the positions p1 , . . . , pm. All these rules are added to P.

Transformation rule T4 is repeated until all unordered productions have
been removed from P. Note that this process terminates, because in each
step one unordered production is removed and there are only finitely many
nonterminal symbols of the form Aα. Thus the step described in the second
paragraph may be skipped later, whenever one or more unordered rewrite
rules of the same type are introduced by the first invocation of this step.

transformation rule T5 : A rule A(x1 , . . . , xn) → B(x1 , . . . , xn),
where n > 0 and A , B ∈ Nn , is called a unit production of G. To remove
these unit productions we apply a well-known technique from the construc-
tion of so-called proper context-free phrase-structure grammars. In particu-
lar, we inductively determine the set of reachable nonterminal symbols

NG(A) :=

{
B

∣∣∣∣∣ ∃t1 , . . . , tn ∈ T (F ∪ N) such that
A(t1 , . . . , tn) ⇒+

G B(t1 , . . . , tn)

}
,

for each n > 0 and each A ∈ Nn. Note that the elements in NG(A) are
those nonterminal symbols which are derived from A by using only unit
productions, because at this stage G is ordered, nondeleting, and strict.

3.2 growing context-free tree grammars 73

Then, all unit productions are deleted and for each of the remaining rules
all possible rules are created in which each reachable nonterminal symbol
from NG(A) is replaced by its representative symbol A:

1. Delete all unit productions A(x1, . . . , xn)→ B(x1, . . . , xn).

2. Insert rules A(x1, . . . , xn) → r, for all productions B(x1, . . . , xn) → r

and all nonterminal symbols A ∈ Nn such that B ∈ NG(A).

transformation rule T6 : If A(x1, . . . , xn) → f(x1, . . . , xn) is a rule,
where n > 0, A ∈ Nn r {S }, and f ∈ Fn, then we remove this production.
For each remaining rewrite rule with occurrences of the nonterminal symbol
A in a right-hand side, we enlarge the set of productions by adding all com-
binations of that rule, where some or even all occurrences of A(t1, . . . , tn)

are replaced by the term f(t1, . . . , tn).

Note that each of the transformations T4, T5, and T6 preserves the proper-
ties of being simple and strict. Moreover, it is rather obvious that the whole
transformation process terminates, and that the resulting context-free tree
grammar G ′ is growing. The inclusion L(G) ⊆ L(G ′) follows by simple
inductive arguments similar to those of Lemma 3.1:

- T4: All ground terms generated by G using at least one unordered
production can also be derived by those rewrite rules introduced in
the second paragraph of this transformation step.

- T5 and T6: It is easily seen that the removed unit productions and the
removed productions of the form A(x1, . . . , xn)→ f(x1, . . . , xn) can be
simulated by the introduced rules, respectively.

On the other hand, the inclusion L(G) ⊇ L(G ′) holds since no productions
are added in T4, T5, and T6, which cannot also be simulated by the original
rewrite rules. This completes the proof of Lemma 3.2.

Again, we illustrate the construction from Lemma 3.2 by an example.

Example 3.2. Starting with the grammar G ′ from Example 3.1, the transformation
step T4 removes F(x1, x2)→ f(x2, x1) and yields the new rewrite rules

F(2,1)(x1, x2)→ f(x1, x2), S→ F(2,1)(A,A), and

F(2,1)(x1, x2)→ F(2,1)(B(x1),B(x2)),

because all other productions are already ordered. According to the procedure de-
scribed in T4 some of the occurrences of F in the right-hand side of productions
from P3 have been reordered and replaced by the nonterminal symbol F(2,1). As
an intermediate result the production F(x1, x2) → F(2,1)(B(x2),B(x1)) was gen-
erated. However, this production itself is not ordered and thus it is replaced by
F(2,1)(x1, x2)→ F(2,1)(B(x1),B(x2)) in a second iteration of T4.

74 growing context-free tree grammars

Next, the transformation T5 is applied in order to remove the unit productions
F̂{1}(x1) → B(x1) and S → A. Observe that NG′(F) = NG′(B) = NG′(A) = ∅,
NG′(F̂{1}) = {B(·) }, and NG′(S) = {A }. Thus we obtain the additional rules

F̂{1}(x1)→ g(x1) and S→ a.

Finally, the productions F(2,1)(x1, x2) → f(x1, x2), B(x1) → g(x1), F̂{1}(x1) →
g(x1), and A → a must be processed according to the transformation rule T6. For
the first of these productions we remove F(2,1)(x1, x2)→ f(x1, x2) and insert

F(2,1)(x1, x2)→ f(B(x1),B(x2)) and S→ f(A,A).

When we remove the production B(x1)→ g(x1), we obtain a lot of new rules:

F(x1, x2)→ F(B(x1),g(x2)), F(x1, x2)→ F(g(x1),B(x2)),

F(x1, x2)→ F(g(x1),g(x2)), F̂{1}(x1)→ F̂{1}(g(x1)),

F(2,1)(x1, x2)→ F(2,1)(B(x1),g(x2)), F(2,1)(x1, x2)→ f(B(x1),g(x2)),

F(2,1)(x1, x2)→ F(2,1)(g(x1),B(x2)), F(2,1)(x1, x2)→ f(g(x1),B(x2)),

F(2,1)(x1, x2)→ F(2,1)(g(x1),g(x2)), F(2,1)(x1, x2)→ f(g(x1),g(x2)).

Then, applying the transformation step T6 to F̂{1}(x1)→ g(x1) yields

F̂{1}(x1)→ g(B(x1)), F̂{1}(x1)→ g(g(x1)), and S→ g(A).

Finally, the removal of the intended rule A→ a leads to the additional productions:

S→ F(A,a), S→ F(a,A), S→ F(a,a),
S→ F(2,1)(A,a), S→ F(2,1)(a,A), S→ F(2,1)(a,a),

S→ f(A,a), S→ f(a,A), S→ f(a,a),

S→ F̂{1}(a), S→ g(a).

At this point no productions with a left-hand side A or B are left. On the other
hand, F is not productive since LF(G ′′) = ∅. Therefore, all productions containing
these nonterminal symbols have become useless, that means, we can now safely
remove these productions. In this way we finally obtain the growing context-free
tree grammar G ′′ with the following productions:

F(2,1)(x1, x2)→ F(2,1)(g(x1),g(x2)), F̂{1}(x1)→ F̂{1}(g(x1)),

F(2,1)(x1, x2)→ f(g(x1),g(x2)), F̂{1}(x1)→ g(g(x1)),

S→ F(2,1)(a,a), S→ F̂{1}(a),

S→ f(a,a), S→ g(a), S→ a.

It is rather obvious that L(G ′′) = { f(gn(a),gn(a)) | n > 0 } ∪ {gn(a) | n > 0 }.

Summarizing the main result of this chapter we obtain the following char-
acterization, which will be exploited later in order to show a result on the
expressive power of restarting tree automata.

Corollary 3.4. The language classes L (lin-CFTG) and L (grow-CFTG) coincide.

4R E S TA RT I N G T R E E A U T O M ATA

The fourth chapter comprises the main topic of this thesis, i.e., the lifting of
the restarting automaton to the case of trees. One major goal of this lifting
is to obtain a somehow ‘faithful extension’ of restarting automata in order
to deal with nonlinear tree structures and monadic tree structures, which
are interpreted as ‘strings’, simultaneously. That means, that the introduced
tree automaton should recognize at least all those monadic trees that are ob-
tained from words accepted by a corresponding restarting automaton mod-
ulo the mapping ̂ : Σ∗ → T(FΣ). Figure 4.1 depicts the different kinds of
tree-like structures restarting tree automata should deal with.

f

g

a b

h

f

g h

c

g

g

a b

(a) Nonlinear branching tree

f

h

f

h

⊥
(b) Monadic tree (string)

Figure 4.1: Different kinds of tree-like structures

Moreover, our model should retain the efficiently decidable membership
problem and other ‘nice properties’ of restarting automata, in order to be
suitable for applications. During the development of restarting tree au-
tomata attention was payed to the following design criteria:

Reading Direction. First of all, for tree automata the reading direction
is one important operational commitment, and thus we must decide
whether a restarting tree automaton should process its input by top-
down, bottom-up, or arbitrary movement. With respect to monadic
tree structures the top-down direction corresponds to the one-way left-
to-right reading of RRWW-automata. On the other hand, an arbitrary
movement can reflect the two-way behavior of RLWW-automata.

For brevity, we have decided to provide only the generalization for

75

76 restarting tree automata

the RRWW-automaton model in this thesis, because here the restart-
ing state and the corresponding restarting condition can be defined
in a natural way. Another advantage is that the move relation of the
tree automaton can be reasonably expressed by a terminating term-
rewriting system. Thus, only one additional relation for connecting
the cycles of a restarting tree automaton is necessary.

We leave the extension of restarting tree automata in order to cover
also the RLWW-automaton model as a topic for further research. On
the other hand, bottom-up restarting tree automata could be defined
in a similar way, however, probably they will not provide additional
expressive power.

Ranked Alphabet. Secondly, restarting tree automata will only deal with
finite trees composed of symbols from a ranked alphabet. Again it
is an open research project to generalize restarting tree automata to
unranked trees [CDG+

07, Chapter 8].

Finite Look-Ahead. As in the word case a restarting tree automaton will
be equipped with a read/write-window which acts as a finite look-
ahead. In order to be finite it must be somehow bounded. This bound
is also an additional constraint for the rewrite steps, because each
rewrite has to take place on the contents inside the window. Since
trees in general have a nonlinear branching structure the question
arises, whether the window should be bounded by a constant with
respect to the height and/or by a constant with respect to the size of
the contents.

Similar considerations as in the previous criteria, including the inspec-
tion of monadic tree structures, lead to the decision, that only the
height of the read/write-window should be restricted. However, since
the ranked alphabet is finite and the arity of the symbols is fixed, this
also implies a bound on the size of the contents.

Simplification. Restarting automata can modify the contents of the tape
in a limited way. In fact, each rewrite step has to be size-reducing
in order to simplify the tape contents accordingly. In the tree case
we have to make a decision whether the rewrite steps should be size-
reducing or height-reducing. Note that these two properties are in
general incomparable as Figure 4.2 shows, i.e., a rewrite step can be
size-reducing but not height-reducing and vice versa. Of course, both
properties correspond to each other, if only monadic tree structures
are considered.

The model of restarting tree automata considered in this thesis allows
only size-reducing rewrite steps, because this property seems to be
more intuitive and more commonly studied. However, in Chapter 6

height-reducing restarting tree automata are introduced and some re-
lated questions are posed for further research.

77

f

a a a
→

g

g

a

(a) Size-reducing but height-
increasing rewrite step

g

g

a

→
f

a a a

(b) Height-reducing but size-
increasing rewrite step

Figure 4.2: Incomparability of height- and size-reducing rewrite steps

Locality of the Replacement. Another design decision concerns the place
and the structure of the rewrite step. In order to faithfully mirror the
properties of restarting automata we have finally decided to allow only
linear rewrite rules whose left-hand and right-hand sides are contexts.
That means, neither copying nor reordering of unbounded subtrees
can be performed, and thus the replacement has only a local impact
on the structure of the affected tree. Moreover, from a practical point
of view it supports an efficient implementation since no subtrees must
be compared when applying only linear transition rules.

Parallelism. Last but not least, in general restarting tree automata will
maintain the limited parallelism of top-down tree automata. That
means, that they use independent computations in order to visit all
branches of the tree. Hence, there must exist one read/write-window
for each branch of a computation and thus the automaton can per-
form more than one rewrite step per cycle. However, in Chapter 5

a restricted variant of restarting tree automata is studied, where this
kind of massive parallelism is dropped.

f

g

a b

h

f

g h

c

g

g

a b
finite control unit
q1 ‖ q2 ‖ q3

Figure 4.3: Schematic representation of a restarting tree automaton

78 restarting tree automata

Summarizing the discussed criteria, a restarting tree automaton is basi-
cally an iterated top-down tree automaton equipped with several height-
bounded read/write-windows. Each window is attached to the finite con-
trol unit. Depending on the corresponding current state and the contents
inside, the windows are moved downwards level by level and possibly ad-
ditional windows are attached resp. existing windows are detached. More-
over, the automaton has a capability to rewrite the tree in a limited way.
Figure 4.3 shows a schematic sketch of a restarting tree automaton.

Generally speaking, a restarting tree automaton should work like a restart-
ing automaton, however, the input is now a tree. Since the automaton can
recognize whether the currently read symbol is at a leaf and since the pro-
cessing direction is only one-way, the automaton needs no additional end
markers in opposition to the word case. A computation of the automaton
consists of finitely many cycles and ends with a tail. In each cycle the tree is
read in a top-down manner using the height-bounded read/write-windows
as a kind of look-ahead. Initially, exactly one window is attached to the fi-
nite control unit and it is placed at the root position. While reading the
tree at least one position is determined where a size-reducing rewrite will
be performed. However, on each root-to-leaf path at most one such posi-
tion may occur. After the rewrite the remaining parts of the tree are read.
Thus, depending on this kind of regular control the automaton can decide
whether it will restart or reject. In order to perform a restart, the restarting
condition must be met, i.e., all independent computation branches uniformly
decide to restart. This condition is satisfied, if all read/write-windows are
detached at the leaves of the tree, because the corresponding root-to-leaf
path has fulfilled a regular condition expressed by the states of the finite
control unit. Then, the automaton reenters its initial state and exactly one
read/write-window is attached and placed at the root position of the mod-
ified tree. After finitely many cycles a computation ends with a tail, i.e., an
initial part of a cycle where the restarting condition is met without perform-
ing any rewrite steps.

Note that the different behavior in the tail of a computation leads to an
unintentional side effect, which has influence on the faithful simulation
of restarting automata. In fact, restarting automata are able to perform a
rewrite step followed by some MVR-steps and finally an accept step in a tail
of a computation (cf. Figure 2.2 on page 19). However, restarting tree au-
tomata cannot perform any rewrites in the tail of the computation. Thus, at
least in this sense our generalization will notably deviate from the original
model. As we will see later, the difference is a consequence of the formal
definition of restarting tree automata based on the description of finite top-
down tree automata. In order to keep the restarting condition as simple
as possible, a constraint is placed on the term-rewriting system describing
the read/write- and restart-capability of a restarting tree automaton. Conse-
quently, rewrite steps are not allowed in the tail of a computation since the
distinction between a cycle and a tail is based on that condition.

The following sequence of figures (Figure 4.4–Figure 4.9) illustrates the
different phases of a cycle of a restarting tree automaton.

79

f

g

a b

h

f

g h

c

g

g

a b
finite control unit

q0

Figure 4.4: Initially, exactly one read/write-window of height 2 is attached
at the root position and the finite control unit is in its initial state
q0.

f

g

a b

h

f

g h

c

g

g

a b
finite control unit
q1 ‖ q2 ‖ q3

Figure 4.5: The automaton is reading and branches out to independent com-
putations like a finite top-down tree automaton. For each branch,
an additional read/write-window is attached at the correspond-
ing child position.

80 restarting tree automata

f

g

a b

h

f

g h

c

g

g

a b
finite control unit
q1 ‖ q ′2 ‖ q31 ‖ q32

Figure 4.6: After some further reading steps the read/write-windows on the
right side of the picture are shrunken due to the limited height
of the remaining branches.

f

g

a b

h

f

g h

c

g

g

a b
finite control unit

q1 ‖ q ′2

Figure 4.7: The two read/write-windows on the right side of Figure 4.6
have been detached, because the corresponding branches sat-
isfy a regular condition verified by the states of the finite
control unit. Now, a size-reducing rewrite of the form
f(g(x1, x2),h(x3),g(x4, x5)) → f(g(x1, x2), x3,g(x4, x5)) is per-
formed in the right of the remaining windows.

81

f

g

a b

h

f

g c g

g

a b
finite control unit
q1 ‖ q21 ‖ · · · ‖ q25

Figure 4.8: After the rewrite the automaton is still reading, however, in the
affected branches no further rewrite steps can be performed.

f

g

a b

h

f

g c g

g

a b
finite control unit

Figure 4.9: Finally, the rewrite condition is met, because all read/write-
windows have been successfully detached. Thus, the automaton
will restart in a similar initial situation as shown in Figure 4.4.

82 restarting tree automata

4.1 transition rules of restarting tree automata

In this section we will define some basic types of transition rules that are
frequently used in the rest of the chapter. These transition rules cover many
of the previously presented ideas and build the syntactic ground for most
of our proofs and constructions.

Remember that we have described the behavior of a tree automaton using
the framework of term-rewriting systems. Consequently, a transition is in
fact a syntactically restricted rewrite rule of a term-rewriting system. For
practical reasons this term-rewriting system is finite, but it still can induce
an infinite rewrite relation on a set of configurations. In general, the aim of
a configuration, also known as instantaneous description, is to represent an
intrinsic state of a device. For a restarting tree automaton it is a ground term
composed of symbols from a ranked working alphabet, say G, and symbols
from a finite set of states Q. However, some further syntactic restrictions
apply and we will give a precise definition later. Note that in our case the
set Q contains unary symbols only and it is supposed to be disjoint from
any other ranked alphabet.

We start by extending the normalized top-down transitions of a finite
tree automaton, as restarting tree automata will be equipped with height
bounded read/write-windows and thus they see more than only one symbol
at once. Following the discussed guidelines, we can consider the contents of
a window as height bounded m-context that is read in one step rather than
level by level. At the ‘holes’ of a context the automaton branches out to
independent computations that can be executed in parallel. Note that such
a ‘parallel processing’ is the usual policy of a top-down tree automaton in
order to read its input. Technically this behavior is achieved by introducing
finitely many successor states above the variables in the right-hand side of
a read transition.

Definition 4.1. Let k > 1 be an integer and G a ranked alphabet. Then a k-
height bounded top-down read transition is a linear rewrite rule of the form
q(t)→ t[q1(x1), . . . ,qm(xm)], wherem > 1 is an integer, q,q1, . . . ,qm ∈ Q are
states, and t ∈ Ctx(G, Xm) is a nonempty m-context such that 1 6 Hgt(t) 6 k.

On the other hand, the final transition step for reading a height-bounded
ground term is described by a special type of rewrite rule, which does not
introduce any successor states.

Definition 4.2. Let k > 0 be an integer and G a ranked alphabet. Then a rewrite
rule is called a k-height bounded final read transition, if it has the form q(t)→
t, where q ∈ Q and t ∈ T(G) satisfying 0 6 Hgt(t) 6 k.

Let us discuss these extended transitions in the context of finite tree au-
tomata: Obviously, 1-height bounded top-down read transitions and 0-height
bounded final read transitions directly correspond to the normalized top-
down transitions of finite tree automata. Note that the expressive power
of a nondeterministic finite top-down tree automaton is not increased, if

4.1 transition rules of restarting tree automata 83

k-height bounded final read transitions and k-height bounded top-down
read transitions are admitted, because they can easily be transformed into
a set of normalized top-down transitions by introducing only finitely many
new states. However, the situation is quite different in the deterministic
case. For example, the finite tree language { f(a,b), f(b,a) } 6∈ L (↓DFT) is
recognizable using only two simple 1-height bounded final read transitions,
i.e.,

q0(f(a,b))→ f(a,b) and q0(f(b,a))→ f(b,a).

In general a finite look-ahead capability increases the recognition power of
an ↓DFT-automaton. Jurvanen has shown, that by increasing the height
bound an infinite hierarchy of families of tree languages is obtained, but
this hierarchy does not exhaust all regular tree languages [Jur95, GS97].

Finally, a particular transition rule is used to describe the specific behavior
of a restarting tree automaton—the capability of doing a rewrite step.

Definition 4.3. Let k > 1 be an integer and G a ranked alphabet. Then a size-
reducing k-height bounded top-down rewrite transition is a rewrite rule of the
form q(t)→ t ′[q1(x1), . . . ,qm(xm)], wherem > 0 is an integer, q, q1, . . . ,qm ∈
Q are states, t ∈ T(G, Xm) is a linear term satisfying Hgt(t) 6 k, and t ′ ∈
Ctx(G, Xm) is an m-context such that ‖t‖ > ‖t ′‖.

If m = 0, then the transition rule is of the simple form q(t) → t ′, where q ∈ Q

and t, t ′ ∈ T(G), and it is called k-height bounded final rewrite transition.

Note that the previously outlined transitions are those types of transition
rules which have been originally considered for nondeterministic restarting
tree automata [SO07a, SO07b]. However, in order to satisfy some of our
final design criteria we will introduce two particular deviations here.

First, to obtain a faithful generalization of deterministic restarting au-
tomata we need a modified type of read transition. In fact, the contents
of the read/write-window should not be read at once, but rather level by
level with respect to their height. In opposition to the normalized top-down
transitions of an ↓NFT-automaton we still require some kind of finite look-
ahead, and, for convenience, final read transitions should be subsumed. We
achieve all these objections by introducing the following type of transition,
which is parametrized by an integer k and a specific set of states Q ′ ⊆ Q.

Definition 4.4. Let k > 1 be an integer and G a ranked alphabet. A k-height
bounded look-ahead Q ′-transition is a linear rewrite rule of the form q(t) →
f(q1(s1), . . . ,qn(sn)), where n > 0 is an integer, f ∈ Gn is a symbol from the
ranked alphabet, q,q1, . . . ,qn ∈ Q ′ are states, and either

1. m > 1 is an integer, t ∈ Ctx(G, Xm) is a nonempty m-context, and s1, . . . ,
sn ∈ T(G, Xm) are terms such that t = f(s1, . . . , sn) and 1 6 Hgt(t) 6 k,
or

2. t and s1, . . . , sn ∈ T(G) are ground terms such that t = f(s1, . . . , sn) and
0 6 Hgt(t) 6 k holds.

84 restarting tree automata

The above type of transition exactly covers the idea of a MVR-step from the
definition of restarting automata, i.e., the read/write-window is only shifted
down by one position and we still have the possibility to see a subsequent
part of the tree. Obviously, the difference between the original top-down
read transitions and these look-ahead transitions only matters for deter-
ministic automata, because nondeterministic automata can guess the cor-
responding MVR-steps and verify them in subsequent steps. On the other
hand, the above definition includes final read transitions in the 0-height
bounded case, i.e., if the rules look like q(a)→ a, for some constant a ∈ G0.
However, in general a k-height bounded final read transition of the form
q(t) → t, where t = f(s1, . . . , sn), for some integer n > 1, some symbol
f ∈ Gn, and some ground terms s1, . . . , sn ∈ T(G), can be simulated by a
k-height bounded look-ahead Q ′-transition of the form q(f(s1, . . . , sn)) →
f(q ′(s1), . . . ,q ′(sn)) and some additional 1-height bounded look-ahead Q ′-
transitions of the form q ′(f(x1, . . . , xn)) → f(q ′(x1), . . . ,q ′(xn)), for all f ∈
Gn. Note that q ′ ∈ Q ′ is a state which reflects a ‘don’t care’-style reading.

Secondly, we refine the top-down rewrite transitions in such a way that
also the term t is required to be an m-context, and thus the locality of
the tree replacement is guaranteed. Otherwise, a restarting tree automa-
ton would be able to perform a reordering of unbounded subtrees. These
transitions are also parametrized by an integer k and two specific sets of
states Q1, Q2 ⊆ Q.

Definition 4.5. Let k > 1 be an integer and G a ranked alphabet. Then a k-height
bounded rewrite (Q1, Q2)-transition is a linear rewrite rule of the form q(t) →
t ′[q1(x1), . . . ,qm(xm)], wherem > 0 is an integer, q ∈ Q1, q1, . . . ,qm ∈ Q2 are
states, and t, t ′ ∈ Ctx(G, Xm) are m-contexts such that the conditions Hgt(t) 6 k

and ‖t‖ > ‖t ′‖ hold.
If m = 0, then the transition is of the simple form q(t)→ t ′, where q ∈ Q1 and

t, t ′ ∈ T(G), and it is called k-height bounded final rewrite transition.

Finally, we introduce the notion of an `-normalized transition rule.

Definition 4.6. Let ` > 1 be an integer. A transition rule l → r is called `-
normalized, if the first level subterm l|1 of the left-hand side is an `-normal context.

This completes the discussion of the basic types of transition rules. How-
ever, in the following section and in the next chapter we will introduce
some further restrictions on Definition 4.4 and Definition 4.5. These derived
transition rules are needed in order to express the limited capabilities of the
various different types of a restarting tree automaton.

4.2 definition and examples

We are now ready to generalize the restarting automaton to trees. A top-
down restarting tree automaton, RRWWT-automaton for short, is formally
described by a six-tuple A = (F, G, Q,q0,k,∆), where

- F is a ranked input alphabet,

4.2 definition and examples 85

- G ⊇ F is a ranked working alphabet that contains F,

- Q = Q1 ∪Q2 is a finite set of states consisting of a partition Q1 and Q2
such that Q1 ∩Q2 = ∅ and Q∩ G = ∅,

- q0 ∈ Q1 is the initial state and simultaneously the restart state,

- k > 1 is the height of the read/write-windows, and

- ∆ = ∆1 ∪∆2 is a finite term-rewriting system on G∪Q.

The term-rewriting system ∆ consists of two separate rule sets: The rule
set ∆1 contains only k-height bounded look-ahead Q1-transitions, and ∆2 con-
tains only k-height bounded look-ahead Q2-transitions and k-height bounded
rewrite (Q1, Q2)-transitions. Note that all transitions from ∆ are nondeleting
and linear rewrite rules, i.e., each variable occurs exactly once in both sides
of a transition. Moreover, the indices of the variables are in an increasing
order, because each left-hand side and each right-hand side is an m-context,
for some integer m > 0. In fact, by this restriction it is guaranteed that only
‘local changes’ inside a read/write-window can be performed by any rewrite
transition. On the other hand, the look-ahead transitions from ∆1 can only
be applied before a rewrite has taken place, and similarly, the look-ahead
transitions from ∆2 can only be applied after a rewrite has taken place in
the affected branch. This behavior of A is enforced by the switch between
the disjoint state partitions Q1 and Q2 performed in every rewrite transition.

In general, the restarting tree automaton is a nondeterministic device, i.e.,
there can be two or more transitions with the same or with somehow over-
lapping left-hand sides. In such a case the automaton nondeterministically
guesses which of the matching transition rules it has to apply.

A configuration of A is a ground term t ∈ T(G∪Q) such that
∑
q∈Q |w|q 6 1

holds, for all w ∈ Pth(t), i.e., at most one state symbol from Q may occur in
each root-to-leaf path of t. In particular, a stateless configuration is a ground
term from T(G) without any occurrences of states. A computation of A pro-
ceeds in a finite number of cycles and ends with a tail. Each cycle starts
with a configuration of the form q0(t), where t is a ground term from T(G).
The first cycle starts with an initial configuration q0(t0), where t0 ∈ T(F) is
the given input. First, the look-ahead transitions from ∆1 can be applied
until a configuration is reached, for which one or more rewrite transitions
from ∆2 are admissible. Then one of these rewrite transitions can be ap-
plied. Thereafter A proceeds in the affected branch with the look-ahead
transitions from ∆2. Finally, if at least one size-reducing rewrite transition
has been applied and a stateless configuration t ′ ∈ T(G) is obtained, then
a restart is performed, i.e., A continues its computation on q0(t ′). The tail
of a computation consists of applications of transition rules from ∆1 only.
In particular, no rewrite transitions can be performed anymore. If the look-
ahead transitions from ∆1 eventually yield a stateless configuration, then
we say that the input t0 ∈ T(F) is accepted by a computation of A. Other-
wise, the input is rejected. That means, that if all computations of A yield an
irreducible configuration from T(G ∪ Q) r T(G), then the input t0 ∈ T(F) is

86 restarting tree automata

look-ahead Q1-
transition from ∆1

rewrite (Q1, Q2)-
transition from ∆2

look-ahead Q2-
transition from ∆2

Figure 4.10: Chain of transitions performed on each root-to-leaf path during
a single cycle of a restarting tree automaton

rejected, regardless of whether this happens in a cycle or in the tail of the
corresponding computation.

Observe that in each cycle at least one size-reducing rewrite transition is
used. Of course, as the computation branches out proceeding from the root
down to the leaves, rewrite transitions can be applied at several different po-
sitions within the same cycle. However, all these positions are incomparable
with respect to the ordering 6Pos.

The cycle move relation →∆ and its reflexive transitive closure →∗∆ are in-
duced by the term-rewriting system ∆. Analogously, the tail move relation
→∆1 and its reflexive transitive closure →∗∆1 are induced by the subsystem
∆1 ⊆ ∆. Note that →∗∆1 ⊆ →

∗
∆ obviously holds. Let u, v ∈ T(G) be ground

terms. We use the notation u ↪→A v to express the fact, that there exists a
cycle which starts with the configuration q0(u) and ends with the stateless
configuration v, i.e., q0(u) (→∗∆ r→+

∆1
) v holds. Informally speaking, at

least one transition rule from ∆2 is applied in a cycle. Then, the relation
↪→∗A is the reflexive transitive closure of ↪→A, and the tree language recog-
nized by an RRWWT-automaton A is

L(A) :=
{
t0 ∈ T(F) | ∃t ′ ∈ T(G) such that t0 ↪→∗A t ′ and q0(t ′)→∗∆1 t

′ } .

The symbols from G r F are called auxiliary symbols. The simple tree language
recognized by an RRWWT-automaton is SF(A) := { t ∈ T(F) | q0(t)→∗∆1 t },
i.e., all ground terms from T(F) which are accepted in a tail of a computation.
Analogously, SG(A) := { t ∈ T(G) | q0(t) →∗∆1 t } is the auxiliary simple tree
language recognized by A. Note that L(A) = (↪→∗A)−1(SG(A)) ∩ T(F) holds,
which is an equivalent description of the recognized tree language.

Obviously, the inclusions L(A) ⊇ SF(A) ⊆ SG(A) follow immediately
from the preceding definitions. The simple tree language SF(A) and the
auxiliary simple tree language SG(A) are both regular tree languages, be-
cause any set of k-height bounded look-ahead transitions can be simulated
by a nondeterministic finite top-down tree automaton.

A restarting tree automaton is called deterministic (det-RRWWT), if there
are no two distinct transition rules (l1 → r1) and (l2 → r2) from ∆ such that
their left-hand sides l1 and l2 are unifiable. Note that CP(∆) = ∅ implies
this property, i.e., if there are no overlapping rewrite rules in ∆, then the
corresponding tree automaton is deterministic.

Let ` > 1 be an integer. Then, a restarting tree automaton is called `-
normalized, whenever all transition rules from ∆ are `-normalized transitions,
and it is called `-look-ahead normalized, if only its look-ahead transitions are
required to be `-normalized. Moreover, a restarting tree automaton is called

4.2 definition and examples 87

canonical, if it is k-normalized and the initial state q0 does not occur in the
right-hand side of any transition rule from ∆.

Finally, we introduce some restricted types of restarting tree automata.
These types are a straight-forward generalization of the variants known
from restarting automata on words. The different ways of restriction are
expressed by removing some letters of the abbreviation “RRWWT”. On the
one hand, if a restriction affects the movement of the read/write-windows,
then the prefix of “RRWWT” is modified:

- A restarting tree automaton A = (F, G, Q,q0,k,∆) is called an RWWT-
automaton, if all its rewrite transitions are of the form q(t)→ t ′, where
m > 0, q ∈ Q1, and t, t ′ ∈ Ctx(G, Xm) such that ||t ′|| < ||t|| and
Hgt(t) 6 k. Note that for m > 0 the resulting rewrite transitions are
not a special case of the k-height bounded rewrite (Q1, Q2)-transitions
(cf. Definition 4.5). However, each transition q(t) → t ′ can be simu-
lated by a (Q1, Q2)-transition q(t) → t ′[q ′(x1), . . . ,q ′(xm)] and a par-
ticular set of look-ahead Q2-transitions

∆ ′ :=
{
q ′(f(x1, . . . , xn))→ f(q ′(x1), . . . ,q ′(xn)) | n > 0 and f ∈ Gn

}
.

The state q ′ ∈ Q2 reflects the ‘don’t care’-behavior of an RWWT-
automaton, because it will not propagate any state information to the
affected branches after a rewrite has been performed. In fact, a transi-
tion of the form q(t) → t ′ can be seen as an abbreviating notation,
which implies this behavior through its interpretation as a rewrite
rule of the term-rewriting system ∆. Furthermore, we can assume
that Q2 = ∅ holds, for any RWWT-automaton, because all look-ahead
Q2-transitions beyond ∆ ′ are effectively useless.

As ∆ is still a term-rewriting system, all definitions from the previous
pages carry over to RWWT-automata, and by the above construction it
is easily seen that the inclusion L (RWWT) ⊆ L (RRWWT) holds.

On the other hand, the suffix of “RRWWT” is modified, whenever the
rewrite capability itself is somehow restricted:

- A restarting tree automaton is called an RRWT-automaton, if its work-
ing alphabet G coincides with the input alphabet F, i.e., no auxiliary
symbols are available.

- A restarting tree automaton is called an RRT-automaton, if it is an
RRWT-automaton and the term t ′ in the right-hand side of every
rewrite transition is a scattered subterm of the corresponding term
t in the left-hand side, i.e., t ′ E t holds, for every rewrite transition
q(t)→ t ′[q1(x1), . . . ,qm(xm)] from ∆.

Analogously, we obtain the RWT-automaton and the RT-automaton from the
RWWT-automaton. Note that the same restrictions are also introduced for
deterministic restarting tree automata.

We conclude this section by pointing out the mode of operation and the
expressive power of restarting tree automata in several examples.

88 restarting tree automata

Example 4.1. The tree language T1 := { f(gi(a),gi(a)) | i > 0 } ∈ L (CFTG) r
L (RTG) is recognized by the RT-automaton A = (F, F, Q,q0,k,∆), where F :=

{ f(·, ·),g(·),a } is the ranked input alphabet, Q = Q1 ∪Q2 is the finite set of states
with the partition Q1 := {q0,q1 } and Q2 := ∅, and k := 2 is the height of the
read/write-window of A.

The corresponding term-rewriting system ∆ is given by the following set of rules:

q0

f

g

x1

g

x2

→
f

x1 x2

is a rewrite transition from ∆2, and

q0

f

a a

→

f

q1

a

q1

a

and
q1

a

→ a
are the look-ahead
transitions from ∆1.

First, note that A is indeed a deterministic RT-automaton since the transition rules
are suitably restricted and all left-hand sides are not unifiable. In fact, the automaton
is even 2-normalized. In every cycle the automaton removes one g in each branch,
whereas the rewrite is performed at the root position. This process continues until
the simple tree f(a,a) is obtained and accepted in the tail of the computation.

However, the language T1 can be also recognized by means of the inherent syn-
chronization of restarting tree automata. Let A ′ = (F, F, Q ′,q0,k ′,∆ ′) be a nonde-
terministic RT-automaton, where Q ′ = Q ′1 ∪Q ′2 such that Q ′1 := {q0,q1,q2 } and
Q ′2 := ∅, k ′ := 1, and ∆ ′ is specified by the following transition rules:

q1

g

a

→ a is a final rewrite transition from ∆ ′2, and

q0

f

x1 x2

→

f

q1

x1

q1

x2

,

q1

g

x1

→

g

q1

x1

,

q0

f

a a

→

f

q2

a

q2

a

, and
q2

a

→ a
are the look-ahead
transitions from ∆ ′1.

4.3 normalizations for restarting tree automata 89

In each cycle the automaton A ′ removes two g’s at the bottom of the tree. The
synchronization between both branches is forced through the parallel processing and
the bilateral application of the rewrite transition q1(g(a)) → a. The automaton
rejects by reaching an irreducible configuration from T(G ∪ Q) r T(G), if one of
these rewrites is not possible. Again, A ′ continues until the simple tree f(a,a) is
obtained, which is immediately accepted in the tail of the computation. However,
the automaton must nondeterministically guess the right transition, because the
left-hand sides q0(f(x1, x2)) and q0(f(a,a)) are unifiable.

Example 4.2. The finite tree language T2 = { f(a,b), f(b,a) } ∈ L (RTG) r
L (↓DFT) is recognized by a deterministic RT-automaton A = (F, F, Q,q0,k,∆),
where F := { f(·, ·),a,b }, Q := {q0,q1 }, and k := 1.

The term-rewriting system ∆ consists of the 2-normalized look-ahead transitions

q0

f

a b

→

f

q1

a

q1

b

,

q0

f

b a

→

f

q1

b

q1

a

,
q1

a

→ a,
q1

b

→ b.

Since all left-hand sides from ∆ are distinct 3-normal contexts the automaton is in-
deed deterministic. In fact, essentially ∆ = ∆1 and thus only a tail of a computation
can be performed by A. Hence L(A) = T2, because SF(A) = { f(a,b), f(b,a) }.

4.3 normalizations for restarting tree automata

A somehow ‘normalized’ but equivalent variant of an automaton or a gram-
mar is very useful to simplify proofs and constructions accordingly. Thus,
we prove several normalization results for the general model of a restarting
tree automaton in this section. Most of the results can also be obtained
for the restricted types, i.e., for RT-, RWT-, RRT-, RRWT-, and RWWT-
automata, however, often nondeterminism is essentially needed.

First, note that every RRWWT-automaton can be look-ahead normalized.

Lemma 4.1. Let k > 1 be an integer. Then, for every RRWWT-automaton A =

(F, G, Q,q0,k,∆) there exists a k+ 1-look-ahead normalized RRWWT-automaton
A ′ = (F, G, Q,q0,k+ 1,∆ ′) such that L(A) = L(A ′) holds.

Proof. The construction of the automaton A ′ from A is straight-forward: Ini-
tially, take ∆ ′ := ∆. However, we must replace each not k+ 1-normalized
look-ahead transition α := q(t)→ f(q1(s1), . . . ,qn(sn)), where q,q1, . . . ,qn
are states from Q and t = f(s1, . . . , sn) is an m-context, by a set ∆ ′α contain-
ing all extended k+ 1-normalized look-ahead transitions of the form

q(σt)→ f(q1(σs1), . . . ,qn(σsn)),

where σ is an appropriate substitution satisfying

1. Dom(σ) ⊆ Xm,

90 restarting tree automata

2. σt is either a ground term or an m ′-context, for some 0 < m ′ 6 m,

3. |p| = k+ 1, for all variable positions p ∈ X-Pos(σt), and

4. |p| 6 k, for all leaf positions p ∈ (Pos(σt) r X-Pos(σt)).

The four conditions imply that only finitely many substitutions have to be
considered during the construction. Moreover, they ensure that all transi-
tions from ∆ ′α are valid and indeed k + 1-normalized. In particular, the
third and fourth condition imply that Hgt(σt) 6 k+ 1.

Note that L(A) ⊆ L(A ′) follows immediately, because each transition step

r[q(t[r1, . . . , rm])]→{α} r[f(q1(s1), . . . ,qn(sn))][r1, . . . , rm],

where r ∈ Ctx(G∪Q, X1) and r1, . . . , rm ∈ T(G), can be simulated by a corre-
sponding transition rule from the obtained set ∆ ′α. Conversely, all computa-
tions that yield a stateless configuration and which contain a transition from
∆ ′α can be simulated using the original look-ahead transition α, because it is
more general than any rewrite rule from ∆ ′α. Thus, L(A) = L(A ′) holds.

Moreover, every restarting tree automaton can be transformed into an equiv-
alent automaton which is even 1-look-ahead normalized, i.e., all its look-
ahead transitions are of the form q(f(x1, . . . , xn)) → f(q1(x1), . . . ,qn(xn)),
for some integer n > 0 and some states q,q1, . . . ,qn ∈ Q.

Lemma 4.2. Let k > 1 be an integer. Then, for each RRWWT-automaton A =

(F, G, Q,q0,k,∆) there exists an equivalent 1-look-ahead normalized RRWWT-
automaton A ′ = (F, G, Q ′,q0,k,∆ ′).

Proof. Initially, take Q ′ := Q and ∆ ′ := ∅. First, add all rewrite transitions
from ∆ to ∆ ′, because they need no look-ahead normalization. Further,
already 1-normalized look-ahead transitions from ∆ are immediately added
to the term-rewriting system ∆ ′.

For each state q ∈ Q`, where ` ∈ { 1, 2 } denotes the particular partition
of the state set, we will have some new states q(`,s) ∈ Q ′`. These states are
associated with a label (`, s), where s ∈ Ctx(G, Xm) is an m-context, which is
used to check, whether a subsequent look-ahead or rewrite transition may
be applied. The superscript (`,s) is omitted, if no checks are necessary, i.e.,
we will confuse the states q and q(`,s), if s is only a variable from Xm. In
that case we will say that the context s is empty.

The normalization procedure consists of the following four steps:

1. For each ` ∈ { 1, 2 }, and each remaining look-ahead transition q(t) →
f(q1(s1), . . . ,qn(sn)) from ∆`r∆ ′`, we add a 1-normalized look-ahead
transition of the form

q(f(x1, . . . , xn))→ f(q
(`,s ′1)
1 (x1), . . . ,q

(`,s ′n)
n (xn)) (4.1)

to ∆ ′`. The mi-context s ′i is obtained from the linear term si by ap-
plying an appropriate variable renaming ρi, i.e., s ′i = ρisi, for all

4.3 normalizations for restarting tree automata 91

1 6 i 6 n. Of course, we also add the states q(`,s ′1)
1 , . . . ,q(`,s ′n)

n to
Q ′`, if they are not already contained in Q ′`.

Note that this step transforms all not 1-normalized look-ahead transi-
tions into 1-normalized look-ahead transitions. However, we will need
some additional transition rules to reach the introduced new states.

2. Let n > 1 be an integer. For each ` ∈ { 1, 2 }, for all look-ahead transi-
tions q(`,s)(f(x1, . . . , xn)) → f(q

(`,s1)
1 (x1), . . . ,q

(`,sn)
n (xn)) ∈ ∆ ′`, where

the contexts s, s1, . . . , sn may be empty, and for all states q(`,s ′) ∈ Q ′`
such that s ′ = f(s ′1, . . . , s ′n), i.e., the topmost symbol of s ′ corresponds
to the symbol of the considered 1-normalized look-ahead transition,
compute the most general unifier σ for the set { s, s ′ }. If such a unifier
exists, then there are also variable renamings ρ, ρi satisfying

a) ρσs ′ is either a ground term or an m ′-context, for some m ′ > 0,

b) ρiσs ′i is either a ground term or a context, and

c) |p| 6 k, for all leaf positions p ∈ (Pos(ρσs ′)∪ Pos(ρiσs ′i)),

for all 1 6 i 6 n. Thus we add a 1-normalized look-ahead transition

q(`,ρσs ′)(f(x1, . . . , xn))→ f(q
(`,ρ1σs ′1)
1 (x1), . . . ,q

(`,ρnσs ′n)
n (xn)) (4.2)

to ∆ ′`. Of course, we must extend Q ′` by adding a new state, for each
symbol q(`,ρ1σs ′1), . . . ,q(`,ρnσs ′n) that is not already present there.

The whole step must be repeated until the set of states is saturated, i.e.,
no new states are added to Q ′`. Note that this procedure terminates,
because Hgt(ρiσs ′i) < Hgt(ρσs ′) 6 k holds, for all 1 6 i 6 n.

3. For each ` ∈ { 1, 2 } and for all constants a ∈ G0, we add 1-normalized
look-ahead transitions of the form

q(`,a)(a)→ a (4.3)

to ∆ ′`, if and only if a corresponding look-ahead transition q(a) → a

is already in ∆ ′`.

4. Last but not least, some additional rewrite transitions are necessary.
Since rewrite transitions need not to be 1-normalized we can simply
extend their contexts as done in the previous lemma. Let m > 0 be an
integer. For all rewrite transitions q(t)→ t ′[q1(x1), . . . ,qm(xm)] from
∆2, for all states q(1,s) ∈ Q ′1, and for all substitutions σ satisfying

a) s 6σ t, i.e., s is more general than t,

we add the modified rewrite transitions

q(1,s)(t)→ t ′[q1(x1), . . . ,qm(xm)] (4.4)

to ∆ ′2. Finally, for all rewrite transitions q(t)→ t ′[q1(x1), . . . ,qm(xm)]

from ∆2, for all states q(1,s) ∈ Q ′1, and for all substitutions σ satisfying

92 restarting tree automata

a) σt is either a ground term or an m ′-context, for some m ′ > 0,

b) |p| < k, for all leaf positions p ∈ Pos(σt), and

c) t 6σ s, i.e., t is more general than s,

we add the modified rewrite transitions

q(1,s)(σt)→ σt ′[q1(x1), . . . ,qm(xm)] (4.5)

to ∆ ′2.

Note that in general the above construction leads to a nondeterministic
automaton, because A ′ must guess, which 1-normalized look-ahead tran-
sition of type (4.1) it will apply for the removed transition rule q(t) →
f(q1(s1), . . . ,qn(sn)). Later this guess is verified by the labelled states in the
subsequent transition steps using rules of type (4.2), (4.3), (4.4), and (4.5).

claim 1 . L(A) ⊆ L(A ′).

Proof. Consider a cycle u ↪→A v, where a removed transition rule from ∆r
∆ ′ has been applied in the step u ′ →∆ v ′. Then, A ′ guesses this situation
and applies instead a corresponding transition rule of type (4.1). Later on
it is verified, using the specific states, that the rule was correctly applied
in that situation. However, by the additional transition rules of type (4.2),
(4.3), (4.4), and (4.5) it is guaranteed that eventually the same configuration
v ′ will be obtained. Note that the states q(`,s) ∈ Q ′` and q ∈ Q ′` are confused,
if s is an empty context, i.e., if all conditions have been successfully checked
on that path. Hence u ↪→A ′ v holds.

The same arguments apply, if the removed transition rule has been used
in the tail of a computation.

claim 2 . L(A) ⊇ L(A ′).

Proof. It is obvious that A ′ does not accept additional ground terms, because
the additional transitions of type (4.2), (4.3), (4.4), and (4.5) are only invoked
by the specific states from Q ′ r Q. In particular, the transitions of type (4.1)
ensure that only those transitions are applied in subsequent steps, which
are compatible with an original transition rule from ∆.

This completes the proof of Lemma 4.2.

We illustrate this normalization procedure by an example.

Example 4.3. Let A = (F, F, Q,q0,k,∆) be the det-RT-automaton from Exam-
ple 4.2, where F := { f(·, ·),a,b }, Q := {q0,q1 }, k := 1, and ∆ consists of the
following 2-normalized look-ahead transitions:

(1) q0(f(a,b))→ f(q1(a),q1(b)), (2) q1(a)→ a,
(3) q0(f(b,a))→ f(q1(b),q1(a)), (4) q1(b)→ b.

4.3 normalizations for restarting tree automata 93

The nondeterministic RT-automaton A ′ = (F, F, Q ′,q0,k,∆ ′) is obtained by the
construction from Lemma 4.2 as follows. Initially, take Q ′ := {q0,q1 } and ∆ ′ := ∅.
The transition rules (2) and (4) are added to ∆ ′, because they need no normalization.
Next, the four main steps are performed:

1. For the transition rules (1) and (3) the 1-normalized look-ahead transitions

q0(f(x1, x2))→ f(q
(1,a)
1 (x1),q

(1,b)
1 (x2))

and

q0(f(x1, x2))→ f(q
(1,b)
1 (x1),q

(1,a)
1 (x2))

are added to ∆ ′, and the new states q(1,a)
1 and q(1,b)

1 are inserted into Q ′.

2. This step yields no additional transition rule, because Top(s ′) 6= f holds,
for all q(1,s ′) ∈ Q ′ and all look-ahead transitions q(1,s)(f(x1, . . . , xn)) →
f(q

(1,s1)
1 (x1), . . . ,q

(1,sn)
n (xn)) from ∆ ′, where n > 1.

3. For the constants a,b ∈ F0 the 1-normalized look-ahead transitions

q
(1,a)
1 (a)→ a and q

(1,b)
1 (b)→ b

are added to ∆ ′ since q1(a)→ a and q1(b)→ b are already in ∆ ′.

4. This step yields no additional transition rule, because ∆ ′ contains no rewrite
transitions.

Finally, Q ′ = {q0,q1,q(1,a)
1 ,q(1,b)

1 } and ∆ ′ contains the following transitions:

q0(f(x1, x2))→ f(q
(1,a)
1 (x1),q

(1,b)
1 (x2)), q1(a)→ a,

q0(f(x1, x2))→ f(q
(1,b)
1 (x1),q

(1,a)
1 (x2)), q1(b)→ b,

q
(1,a)
1 (a)→ a, q

(1,b)
1 (b)→ b.

Thus, the RT-automaton A ′ is 1-look-ahead normalized, in fact, it is even canonical,
and obviously L(A) = L(A ′) holds.

Note that the original look-ahead transitions q1(a) → a and q1(b) → b are
useless, because the state q1 cannot be reached from any restarting configuration.
However, in general we are not aware of any algorithm that computes a ‘reduced
restarting tree automaton’ containing no useless transition rules.

Last but not least, our definition of restarting tree automata does not require
that each rewrite transition has a nonempty context as its right-hand side.
However, this can easily be enforced as long as the height of the read/write-
window is not bounded by a fixed constant.

Lemma 4.3. For each RRWWT-automaton A = (F, G, Q,q0,k,∆), there exists
an equivalent RRWWT-automaton A ′ = (F, G, Q ′,q0,k + 1,∆ ′) such that each
transition from ∆ ′ has a nonempty context as its right-hand side.

94 restarting tree automata

Proof. By Lemma 4.2 we can assume that A is 1-look-ahead normalized. Ini-
tially, take Q ′ := Q and ∆ ′ := ∅. First, add to ∆ ′ all k-height bounded
look-ahead transitions from ∆, because they need no normalization. Fur-
ther, those rewrite transitions which already have the desired property are
immediately added to ∆ ′.

Observe that in general a normalization of a rewrite transition

q(t)→ t ′[q1(x1), . . . ,qm(xm)]

is only necessary, if m = 1, because otherwise t ′ is already a nonempty
context. Thus, all the remaining transitions to normalize are of the form
q(t)→ q ′(x1), where t ∈ Ctx(G, X1) is a 1-context, q ∈ Q1, and q ′ ∈ Q2. For
each of these transitions and each look-ahead transition q ′(f(x1, . . . , xn))→
f(q1(x1), . . . ,qn(xn)) from ∆ ′, where n > 0 is some integer, we add a modi-
fied rewrite transition

q(t[f(x1, . . . , xn)])→ f(q1(x1), . . . ,qn(xn))

to ∆ ′, where q ∈ Q1 is the state from the original transition. Obviously, the
outlined transformation does not change the recognized tree language.

4.4 basic properties

In this section we will show that our generalization of restarting automata
is to a large extent ‘faithful’, i.e., it preserves the well-known properties and
the expressive power of the original model. With respect to the latter, we
will establish an obvious correspondence between restarting automata and
restarting tree automata modulo the mapping ̂. However, due to the differ-
ent behavior of restarting tree automata during a tail of a computation some
small issues have to be resolved. Regarding the former aspect, the error
preserving property, the correctness preserving property, and the pumping
lemma (cf. Chapter 2, page 21) are obtained in a rather generalized form.

The straight-forward way for converting words over a finite alphabet Σ
to monadic trees over a corresponding ranked alphabet FΣ is the already
discussed one-to-one mapping ̂ : Σ∗ → T(FΣ). It associates each symbol
from Σ with a unary symbol from FΣ. The additional symbol ⊥ is a spe-
cial constant from FΣ which is needed in order to avoid degenerated trees
without leaves.

The first result shows that, for every R-automaton, RW-automaton, and
RWW-automaton that accepts a language L ⊆ Σ∗, there exists a restarting
tree automaton of the same type recognizing the tree language L̂ ⊆ T(FΣ).

Proposition 4.1. Let X ∈ { R, RW, RWW } be a type of restarting automaton. Then
for each X-automaton M, there exists an XT-automaton AM that accepts the tree
language L̂(M).

In fact, AM simulates M cycle by cycle, and if M is deterministic, then so AM.

4.4 basic properties 95

Proof. Let M = (Q,Σ, Γ , c| , $,q0,k, δ) be an X-automaton with input alpha-
bet Σ and tape alphabet Γ . For M we construct an XT-automaton AM =

(FΣ, FΓ , Q,q0,k,∆) with ranked input alphabet FΣ and ranked working al-
phabet FΓ . The set of states of AM is Q = Q1 := { q̇ | q ∈ Q } ∪ {q0,q1 },
and initially ∆ will contain the look-ahead transitions q1(⊥) → ⊥ and
q1(f(x1)) → f(q1(x1)), for all f ∈ FΓ . These transitions are used as some
kind of ‘don’t care’ rules, whenever AM enters the state q1.

A restarting configuration q0c|a1a2 · · ·an$ of M will correspond to the
configuration q0(a1(a2(· · · (an(⊥)) · · ·))) of AM, and an arbitrary configu-
ration c|w1quw2$ ofMwill correspond to the configuration ŵ1 ·⊥ q̇(û) ·⊥ ŵ2
of AM, for all w1 ∈ Γ+, w2 ∈ Γ+, and q ∈ Q.

The move-right steps and the rewrite steps of M are easily translated into
corresponding look-ahead transitions and rewrite transitions of AM. How-
ever, MVR-steps and Rewrite-steps that transform a restarting resp. initial
configuration q0c|w$ into c|w1q ′w2$ resp. c| v1q ′w2$, must be combined
with a subsequent step, because the read/write-window of AM is initially
placed at the same level as the topmost symbol from ŵ.

- A move-right step (q ′, MVR) ∈ δ(q,u), where q,q ′ ∈ Q and u =

c|u1u2 · · ·uk−1 ∈ (c| · Γk−1), and a subsequent second move-right step
(q ′′, MVR) ∈ δ(q ′,u ′), where q ′′ ∈ Q and u ′ = u1u2 · · ·uk ∈ Γk, is
simulated by a k-height bounded look-ahead transition of the form

q0(u1(· · · (uk(x1))))→ u1(q̇
′′(u2(· · · (uk(x1))))).

- A move-right step (q ′, MVR) ∈ δ(q,u), where q,q ′ ∈ Q and u =

c|u1u2 · · ·uk−1 ∈ (c| · Γk−1), and a subsequent second move-right step
(q ′′, MVR) ∈ δ(q ′,u ′), where q ′′ ∈ Q and u ′ = u1u2 · · ·uk−1$ ∈
(Γk−1 · $), is simulated by a k-height bounded look-ahead transition
of the form

q0(u1(· · · (uk−1(⊥))))→ u1(q̇
′′(u2(· · · (uk−1(⊥))))).

- A move-right step (q ′, MVR) ∈ δ(q,u), where q,q ′ ∈ Q and u =

c|u1u2 · · ·uk−1 ∈ (c| · Γk−1), and a subsequent accept step Accept ∈
δ(q ′,u1u2 · · ·uk), is simulated by a k-height bounded look-ahead tran-
sition of the form

q0(u1(· · · (uk(x1))))→ u1(q1(u2(· · · (uk(x1))))).

- A move-right step (q ′, MVR) ∈ δ(q,u), where q,q ′ ∈ Q and u =

c|u1u2 · · ·uk−1 ∈ (c| · Γk−1), and a subsequent accept step Accept ∈
δ(q ′,u1u2 · · ·uk−1$), is simulated by a k-height bounded look-ahead
transition of the form

q0(u1(· · · (uk−1(⊥))))→ u1(q1(u2(· · · (uk−1(⊥))))).

96 restarting tree automata

- A move-right step (q ′, MVR) ∈ δ(q,u), where q,q ′ ∈ Q and u =

c|u1u2 · · ·uk−1 ∈ (c| · Γk−1), and a subsequent rewrite step (q ′′, v) ∈
δ(q ′,u ′), where q ′′ ∈ Q, u ′ = u1u2 · · ·uk ∈ Γk, and v = v1v2 · · · vn ∈
Γn, is simulated by a k-height bounded rewrite transition of the form

q0(u1(· · · (uk(x1))))→ v1(· · · (vn(x1))).

Note that after a rewrite step an X-automaton immediately restarts,
which is simulated by entering the restart condition of AM.

- A move-right step (q ′, MVR) ∈ δ(q,u), where q,q ′ ∈ Q and u =

u1u2 · · ·uk ∈ Γk, is simulated by a k-height bounded look-ahead tran-
sition of the form

q̇(u1(· · · (uk(x1))))→ u1(q̇
′(u2(· · · (uk(x1))))).

- A move-right step (q ′, MVR) ∈ δ(q,u), where q,q ′ ∈ Q and u =

u1u2 · · ·un$ ∈ (Γ6k−1 · $), is simulated by a k-height bounded look-
ahead transition of the form

q̇(u1(· · · (un(⊥))))→ u1(q̇
′(u2(· · · (un(⊥))))).

Note that in this case n > 1 since u 6= $, for every MVR-step.

- A move-right step (q ′, MVR) ∈ δ(q,u), where q,q ′ ∈ Q and u =

u1u2 · · ·un$ ∈ (Γ6k−1 · $), and a subsequent accept step Accept ∈
δ(q ′,u2 · · ·un$), is simulated by a k-height bounded look-ahead tran-
sition of the form

q̇(u1(· · · (un(⊥))))→ u1(q1(u2(· · · (un(⊥))))).

- A move-right step (q ′, MVR) ∈ δ(q,u), where q,q ′ ∈ Q and u =

c|u1u2 · · ·un$ ∈ (c| · Γ6k−2 · $), and a subsequent second move-right
step (q ′′, MVR) ∈ δ(q ′,u ′), where q ′′ ∈ Q and u ′ = u1u2 · · ·un−1$ ∈
(Γ6k−1 · $), is simulated by a k-height bounded look-ahead transition
of the form

q0(u1(· · · (un(⊥))))→ u1(q̇
′′(u2(· · · (un(⊥))))).

- A move-right step (q ′, MVR) ∈ δ(q,u), where q,q ′ ∈ Q and u =

c|u1u2 · · ·un$ ∈ (c| · Γ6k−2 · $), a subsequent rewrite step (q ′′, v) ∈
δ(q ′,u ′), where q ′′ ∈ Q, u ′ = u1u2 · · ·un$ ∈ (Γn · $), and v =

v1v2 · · · vm$ ∈ (Γm · $), is simulated by a k-height bounded final rewrite
transition of the form

q0(u1(· · · (un(⊥))))→ v1(· · · (vn(⊥))).

4.4 basic properties 97

- A move-right step (q ′, MVR) ∈ δ(q,u), where q,q ′ ∈ Q and u =

c|u1u2 · · ·un$ ∈ (c| · Γ6k−2 · $), and a subsequent accept step Accept ∈
δ(q ′,u1 · · ·un$), is simulated by a k-height bounded look-ahead tran-
sition of the form

q0(u1(· · · (un(⊥))))→ u1(q1(u2(· · · (un(⊥))))).

Note that if u = c| $, then this sequence of steps is simulated by the
look-ahead transition q0(⊥)→ ⊥.

- A rewrite step (q ′, v) ∈ δ(q,u), where q,q ′ ∈ Q, u = c|u1u2 · · ·uk−1 ∈
(c| · Γk−1), and v = c| v1v2 · · · vn ∈ (c| · Γn), is simulated by a k-height
bounded rewrite transition of the form

q0(u1(· · · (uk−1(x1))))→ v1(· · · (vn(x1))).

If n = 0, then the right-hand side is of the form x1 only.

- A rewrite step (q ′, v) ∈ δ(q,u), where q,q ′ ∈ Q, u = u1u2 · · ·uk ∈ Γk,
and v = v1v2 · · · vn ∈ Γn, is simulated by a k-height bounded rewrite
transition of the form

q̇(u1(· · · (uk(x1))))→ v1(· · · (vn(x1))).

- A rewrite step (q ′, v) ∈ δ(q,u), where q,q ′ ∈ Q, u = u1u2 · · ·un$ ∈
(Γ6k−1 · $), and v = v1v2 · · · vm$ ∈ (Γ6k−2 · $), is simulated by a k-
height bounded final rewrite transition of the form

q̇(u1(· · · (un(⊥))))→ v1(· · · (vm(⊥))).

- A rewrite step (q ′, v) ∈ δ(q,u), where q,q ′ ∈ Q, u = c|u1u2 · · ·un$ ∈
(c| · Γ6k−2 · $), and v = c| v1v2 · · · vm$ ∈ (c| · Γ6k−3 · $), is simulated by
a k-height bounded final rewrite transition of the form

q0(u1(· · · (un(⊥))))→ v1(· · · (vm(⊥))).

- An accept step Accept ∈ δ(q, c|u1 · · ·uk−1), is simulated by a k-height
bounded look-ahead transition of the form

q0(u1(· · · (uk−1(x1))))→ u1(q1(u2(· · · (uk−1(x1))))).

- An accept step Accept ∈ δ(q,u1 · · ·uk), is simulated by a k-height
bounded look-ahead transition of the form

q̇(u1(· · · (uk(x1))))→ u1(q1(u2(· · · (uk(x1))))).

- An accept step Accept ∈ δ(q,u1 · · ·un$), is simulated by a k-height
bounded look-ahead transition of the form

q̇(u1(· · · (un(⊥))))→ u1(q1(u2(· · · (un(⊥))))).

98 restarting tree automata

- An accept step Accept ∈ δ(q, c|u1 · · ·un$), is simulated by a k-height
bounded look-ahead transition of the form

q0(u1(· · · (un(⊥))))→ u1(q1(u2(· · · (un(⊥))))).

Since AM simulates M cycle by cycle, i.e., û ↪→A v̂ if and only if u `cM v,
the equality L(A) = L̂(M) is quite obvious. Note that if M is deterministic,
then the left-hand sides of the transition rules from ∆ are distinct k + 1-
normal contexts, except the ‘don’t care’ rules which have q1 resp. q2 at
their topmost position, and therefore are not unifiable as well. Thus, AM is
also deterministic.

However, for RR-automata, RRW-automata, and RRWW-automata the small
deviation imposed by the definition of →∆1 matters, because a restarting
tree automaton cannot perform any rewrite step in a tail of a computation.
Fortunately, as long as nondeterministic automata are concerned rewrite
steps in a tail can be avoided (cf. Proposition 2.10). Consequently, we can
remedy the situation by adapting Proposition 4.1 to tail-rewrite-free restart-
ing automata.

Proposition 4.2. Let X ∈ { RR, RRW, RRWW } be a type of restarting automaton.
Then, for each trf-X-automaton M, there exists an XT-automaton AM that accepts
the tree language L̂(M). Moreover, if M is deterministic, then so is AM.

Proof. Let M = (Q,Σ, Γ , c| , $,q0,k, δ) be a tail-rewrite-free X-automaton with
input alphabet Σ and tape alphabet Γ . ForMwe construct an XT-automaton
AM = (FΣ, FΓ , Q,q0,k,∆) with ranked input alphabet FΣ and ranked work-
ing alphabet FΓ . The set of states of AM is Q = Q1 ∪ Q2, where Q1 := { q̇ |

q ∈ Q }∪ {q0,q1 } and Q2 := { q̈ | q ∈ Q }∪ {q2 }, and initially ∆ will contain
the look-ahead transitions q1(⊥) → ⊥, q2(⊥) → ⊥, q1(f(x1)) → f(q1(x1)),
and q2(f(x1))→ f(q2(x1)), for all f ∈ FΓ .

A restarting configuration q0c|a1a2 · · ·an$ of M will correspond to the
configuration q0(a1(a2(· · · (an(⊥)) · · ·))) of AM. For all w1,w2 ∈ Γ+ and
q ∈ Q, an arbitrary configuration c|w1quw2$ of M will either correspond to
the configuration ŵ1 ·⊥ q̇(û) ·⊥ ŵ2 of AM, if M has not performed a rewrite
step as far, or it will correspond to the configuration ŵ1 ·⊥ q̈(û) ·⊥ ŵ2 of AM,
if M has already performed a rewrite step.

Essentially, the simulation proceeds as in the proof of Proposition 4.1,
however, the transition rules of AM are slightly modified. Moreover, we can
assume that M is in the special normal form (cf. Chapter 2, page 22), i.e., an
accept resp. restart step is only performed when M sees the right marker $
in its read/write-window.

- A move-right step (q ′, MVR) ∈ δ(q,u), where q,q ′ ∈ Q and u =

c|u1u2 · · ·uk−1 ∈ (c| · Γk−1), and a subsequent second move-right step
(q ′′, MVR) ∈ δ(q ′,u ′), where q ′′ ∈ Q and u ′ = u1u2 · · ·uk ∈ Γk, is
simulated by a k-height bounded look-ahead transition of the form

q0(u1(· · · (uk(x1))))→ u1(q̇
′′(u2(· · · (uk(x1))))).

4.4 basic properties 99

- A move-right step (q ′, MVR) ∈ δ(q,u), where q,q ′ ∈ Q and u =

c|u1u2 · · ·uk−1 ∈ (c| · Γk−1), and a subsequent second move-right step
(q ′′, MVR) ∈ δ(q ′,u ′), where q ′′ ∈ Q and u ′ = u1u2 · · ·uk−1$ ∈
(Γk−1 · $), is simulated by a k-height bounded look-ahead transition
of the form

q0(u1(· · · (uk−1(⊥))))→ u1(q̇
′′(u2(· · · (uk−1(⊥))))).

- A move-right step (q ′, MVR) ∈ δ(q,u), where q,q ′ ∈ Q and u =

c|u1u2 · · ·uk−1 ∈ (c| · Γk−1), and a subsequent accept step Accept ∈
δ(q ′,u1u2 · · ·uk−1$), is simulated by a k-height bounded look-ahead
transition of the form

q0(u1(· · · (uk−1(⊥))))→ u1(q1(u2(· · · (uk−1(⊥))))).

- A move-right step (q ′, MVR) ∈ δ(q,u), where q,q ′ ∈ Q and u =

c|u1u2 · · ·uk−1 ∈ (c| · Γk−1), and a subsequent rewrite step (q ′′, v) ∈
δ(q ′,u ′), where q ′′ ∈ Q, u ′ = u1u2 · · ·uk ∈ Γk, and v = v1v2 · · · vn ∈
Γn, is simulated by a k-height bounded rewrite transition of the form

q0(u1(· · · (uk(x1))))→ v1(· · · (vn(q̈ ′′(x1)))).

- A move-right step (q ′, MVR) ∈ δ(q,u), where q,q ′ ∈ Q and u =

c|u1u2 · · ·uk−1 ∈ (c| · Γk−1), a subsequent rewrite step (q ′′, v) ∈ δ(q ′,u ′),
where q ′′ ∈ Q, u ′ = u1u2 · · ·uk−1$ ∈ (Γk−1 · $), and v = v1v2 · · · vn$ ∈
(Γn · $), and a subsequent restart step Restart ∈ δ(q ′′, $), is simulated
by a k-height bounded final rewrite transition of the form

q0(u1(· · · (uk−1(⊥))))→ v1(· · · (vn(⊥))).

- A move-right step (q ′, MVR) ∈ δ(q,u), where q,q ′ ∈ Q and u =

u1u2 · · ·uk ∈ Γk, is either simulated by a k-height bounded look-
ahead transition of the form

q̇(u1(· · · (uk(x1))))→ u1(q̇
′(u2(· · · (uk(x1))))),

or it is simulated by a k-height bounded look-ahead transition of the
form

q̈(u1(· · · (uk(x1))))→ u1(q̈
′(u2(· · · (uk(x1))))).

In fact, even both transition rules can be added to ∆.

- A move-right step (q ′, MVR) ∈ δ(q,u), where q,q ′ ∈ Q and u =

u1u2 · · ·un$ ∈ (Γ6k−1 · $), is either simulated by a k-height bounded
look-ahead transition of the form

q̇(u1(· · · (un(⊥))))→ u1(q̇
′(u2(· · · (un(⊥))))),

100 restarting tree automata

or it is simulated by a k-height bounded look-ahead transition of the
form

q̈(u1(· · · (un(⊥))))→ u1(q̈
′(u2(· · · (un(⊥))))).

Note that in this case n > 1 since u 6= $ holds, for every MVR-step.

- A move-right step (q ′, MVR) ∈ δ(q,u), where q,q ′ ∈ Q and u =

u1u2 · · ·un$ ∈ (Γ6k−1 · $), and a subsequent restart step Restart ∈
δ(q ′,u2 · · ·un$) resp. accept step Accept ∈ δ(q ′,u2 · · ·un$), is simu-
lated by a k-height bounded look-ahead transition of the form

q̈(u1(· · · (un(⊥))))→ u1(q2(u2(· · · (un(⊥)))))

resp.

q̇(u1(· · · (un(⊥))))→ u1(q1(u2(· · · (un(⊥))))).

In fact, even both transition rules can be added to ∆ without interfer-
ing themselves, because states from a different partition are used.

- A move-right step (q ′, MVR) ∈ δ(q,u), where q,q ′ ∈ Q and u =

c|u1u2 · · ·un$ ∈ (c| · Γ6k−2 · $), and a subsequent second move-right
step (q ′′, MVR) ∈ δ(q ′,u ′), where q ′′ ∈ Q and u ′ = u1u2 · · ·un−1$ ∈
(Γ6k−1 · $), is simulated by the k-height bounded look-ahead transi-
tion of the form

q0(u1(· · · (un(⊥))))→ u1(q̇
′′(u2(· · · (un(⊥))))).

- A move-right step (q ′, MVR) ∈ δ(q,u), where q,q ′ ∈ Q and u =

c|u1u2 · · ·un$ ∈ (c| · Γ6k−2 · $), a subsequent rewrite step (q ′′, v) ∈
δ(q ′,u ′), where q ′′ ∈ Q, u ′ = u1u2 · · ·un$ ∈ (Γn · $), and v =

v1v2 · · · vm$ ∈ (Γm · $), and a subsequent restart step Restart ∈ δ(q ′′, $),
is simulated by a k-height bounded final rewrite transition of the form

q0(u1(· · · (un(⊥))))→ v1(· · · (vn(⊥))).

- A move-right step (q ′, MVR) ∈ δ(q,u), where q,q ′ ∈ Q and u =

c|u1u2 · · ·un$ ∈ (c| · Γ6k−2 · $), and a subsequent accept step Accept ∈
δ(q ′,u1 · · ·un$), is simulated by a k-height bounded look-ahead tran-
sition of the form

q0(u1(· · · (un(⊥))))→ u1(q1(u2(· · · (un(⊥))))).

Note that if u = c| $, then this sequence of steps is simulated by the
look-ahead transition q0(⊥)→ ⊥.

- A rewrite step (q ′, v) ∈ δ(q,u), where q,q ′ ∈ Q, u = c|u1u2 · · ·uk−1 ∈
(c| · Γk−1), and v = c| v1v2 · · · vn ∈ (c| · Γn), is simulated by a k-height
bounded rewrite transition of the form

q0(u1(· · · (uk−1(x1))))→ v1(· · · (vn(q̈ ′(x1)))).

For n = 0 the right-hand side is of the form q̈ ′(x1) only.

4.4 basic properties 101

- A rewrite step (q ′, v) ∈ δ(q,u), where q,q ′ ∈ Q, u = c|u1u2 · · ·uk−1 ∈
(c| · Γk−1), and v = c| v1v2 · · · vn ∈ (c| · Γn), and a subsequent restart step
Restart ∈ δ(q ′, $), is simulated by a k-height bounded final rewrite
transition of the form

q0(u1(· · · (uk−1(⊥))))→ v1(· · · (vn(⊥))).

- A rewrite step (q ′, v) ∈ δ(q,u), where q,q ′ ∈ Q, u = u1u2 · · ·uk ∈ Γk,
and v = v1v2 · · · vn ∈ Γn, is simulated by a k-height bounded rewrite
transition of the form

q̇(u1(· · · (uk(x1))))→ v1(· · · (vn(q̈ ′(x1)))).

- A rewrite step (q ′, v) ∈ δ(q,u), where q,q ′ ∈ Q, u = u1u2 · · ·un$ ∈
(Γ6k−1 · $), and v = v1v2 · · · vm$ ∈ (Γ6k−2 · $), and a subsequent
restart step Restart ∈ δ(q ′, $), is simulated by a k-height bounded final
rewrite transition of the form

q̇(u1(· · · (un(⊥))))→ v1(· · · (vm(⊥))).

- A rewrite step (q ′, v) ∈ δ(q,u), where q,q ′ ∈ Q, u = c|u1u2 · · ·un$ ∈
(c| · Γ6k−2 · $), and v = c| v1v2 · · · vm$ ∈ (c| · Γ6k−3 · $), and a subsequent
restart step Restart ∈ δ(q ′, $), is simulated by a k-height bounded final
rewrite transition of the form

q0(u1(· · · (un(⊥))))→ v1(· · · (vm(⊥))).

- An accept step Accept ∈ δ(q,u1 · · ·un$), is simulated by a k-height
bounded look-ahead transition of the form

q̇(u1(· · · (un(⊥))))→ u1(q1(u2(· · · (un(⊥))))).

- An accept step Accept ∈ δ(q, c|u1 · · ·un$), is simulated by a k-height
bounded look-ahead transition of the form

q0(u1(· · · (un(⊥))))→ u1(q1(u2(· · · (un(⊥))))).

Since AM simulates M cycle by cycle, i.e., û ↪→A v̂ if and only if u `cM v,
the equality L(A) = L̂(M) is quite obvious. Note that if M is deterministic,
then the left-hand sides of the transition rules from ∆ are distinct k + 1-
normal contexts, except the ‘don’t care’ rules which have q1 resp. q2 at
their topmost position, and therefore are not unifiable as well. Thus, AM is
also deterministic.

Conversely, if A is an RRWT-automaton with a monadic ranked input alpha-
bet FΣ, then A can be simulated in an obvious way by a corresponding RRW-
automaton. This yields a converse result with respect to Proposition 4.1 and
Proposition 4.2, however, only for restarting tree automata without auxiliary
symbols.

102 restarting tree automata

Proposition 4.3. Let X ∈ { R, RR, RW, RRW } be a type of restarting automaton.
Then, for each XT-automaton A with ranked input alphabet FΣ, there is an X-
automaton MA with input alphabet Σ such that L(A) = L̂(MA). Moreover, if A

is deterministic, then also MA is deterministic.

Proof. As FΣ contains only monadic symbols and the bottom constant ⊥, the
reverse simulation technique from the proof of Proposition 4.1 resp. Propo-
sition 4.2 can be applied in a straight-forward way.

Thus, we see that modulo the mapping ̂ the various types of restarting
tree automata without auxiliary symbols can only recognize those word
languages that the corresponding types of restarting automata accept. In
particular, this implies that between these types of nondeterministic restart-
ing tree automata we have exactly the same inclusion and non-inclusion
results that hold for the corresponding classes of restarting automata (see
Figure 4.11 on page 111).

Note that Proposition 4.3 cannot be extended to deterministic restarting
tree automata that use auxiliary symbols of arity greater than one. For in-
stance, such a det-RWWT-automaton can recognize the tree language L̂Gladkij

(cf. Example 4.4), where LGladkij :=
{
w#wR#w | w ∈ {a,b }∗

}
is a context-

sensitive language that is known to be not growing context-sensitive [Gla64,
Bun96]. Thus, the expressive power of these automata is fairly enlarged.

Example 4.4. Let A = (FΣ, FΓ , Q,q0,k,∆) be a deterministic RWWT-automaton
with ranked input alphabet FΣ := {a(·),b(·), #(·),⊥ } and ranked working alphabet
FΓ := { &(·, ·) } ∪ FΣ, where Q := {q0,q∗,q1,qaa,qab,qba,qbb } and k := 5.
The term-rewriting system ∆ contains the following transition rules:

qi(f(g(h(x1))))→ f(q1(g(h(x1)))),
for all f,g,h ∈ {a(·),b(·) } and for all i ∈ { 0, 1 }, (4.6)

qi(f(g(#(g(f(x1))))))→ &(f(g(⊥)), x1),
for all f,g ∈ {a(·),b(·) } and for all i ∈ { 0, 1 }, (4.7)

qi(f(g(&(x1, x2))))→ f(q1(g(&(x1, x2)))),
for all f,g ∈ {a(·),b(·) } and for all i ∈ { 0, 1 }, (4.8)

qi(f(&(x1, x2)))→ f(q1(&(x1, x2))),
for all f ∈ {a(·),b(·) } and for all i ∈ { 0, 1 }, (4.9)

qi(&(f(g(⊥)), x1))→ &(qfg(f(g(⊥))),qfg(x1)),
for all f,g ∈ {a(·),b(·) } and for all i ∈ { 0, 1 }, (4.10)

4.4 basic properties 103

qfg(h(h ′(h ′′(x1))))→ h(qfg(h
′(h ′′(x1)))),

for all f,g ∈ {a(·),b(·) } and for all h,h ′,h ′′ ∈ {a(·),b(·), #(·) }, (4.11)

qfg(f(g(⊥)))→ ⊥,
for all f,g ∈ {a(·),b(·) }, (4.12)

qi(&(⊥, x1))→ #(x1),
for all i ∈ { 0, 1 }, (4.13)

q0(f(#(f(#(f(⊥))))))→ f(q∗(#(f(#(f(⊥)))))),
for all f ∈ {a(·),b(·) }, (4.14)

q0(#(#(⊥)))→ #(q∗(#(⊥))) and q∗(f(x1))→ f(q∗(x1)),
for all f ∈ {a(·),b(·), #(·),⊥ }. (4.15)

First of all, note that the left-hand sides of all transitions from ∆ are not unifiable
and thus A is indeed deterministic. The given det-RWWT-automaton works as
follows: Starting from an initial configuration, A reads the input until it sees the
first #-symbol using the rules from group (4.6). Then the automaton compares the
other symbols around the #-symbol and rewrites the subterm f(g(#(g(f(t))))) into
&(f(g(⊥)), t), for some t ∈ T(FΣ) (cf. group (4.7)). Consequently, the monadic
structure is lost and therefore A can fork into both branches in the next cycle. Now
the automaton uses its synchronization feature (cf. group (4.10)) to verify and
rewrite the subterm f(g(⊥)) in both branches (cf. group (4.12)). Finally, A rewrites
the special symbol & into # (cf. group (4.13)) and starts all over again.

The rules from group (4.14) and (4.15) are necessary in order to recognize the
ground terms a(#(a(#(a(⊥))))), b(#(b(#(b(⊥))))), and #(#(⊥)), respectively.
Hence, it is not hard to see that L(A) = L̂Gladkij holds.

Now we turn to some general results about restarting tree automata. They
are mainly consequences of the definition through term-rewriting systems.
Note that k-height bounded look-ahead transitions and rewrite transitions
always shift states from outer to inner positions. Moreover, the rewrite tran-
sitions are size-reducing. Thus, neither →∆ nor ↪→A admit infinite chains
of derivation steps, i.e., the corresponding term-rewriting system ∆ is termi-
nating and the relation ↪→A is Noetherian.

Proposition 4.4. Let X ∈ { R, RR, RW, RRW, RWW, RRWW } be a type of restart-
ing tree automaton. The number of cycles performed by an XT-automaton during a
computation on a given input t ∈ T(F) is bounded from above by its size ‖t‖.

Proof. Note that each restarting tree automaton must perform at least one
size-reducing rewrite transition in each cycle. Thus, starting with the initial
configuration q0(t), for some t ∈ T(F), the automaton can perform at most
‖t‖− 1 cycles until a constant a ∈ G0 is obtained.

104 restarting tree automata

Hence, the uniform membership problem is decidable nondeterministically
in polynomial time for any restarting tree automaton. The exact complexity
and some further decision problems are discussed in Section 4.7.

Moreover, we have the following property for RRWWT-automata.

Proposition 4.5. For each RRWWT-automaton A = (F, G, Q,q0,k,∆), the set
of ∆-irreducible ground terms from T(G ∪ Q) is regular. In fact, the tree language
IRR(∆) is effectively recognizable by a finite tree automaton.

Proof. A finite tree automaton recognizing the set of ∆-irreducible ground
terms from T(G ∪ Q) can be effectively constructed as follows. First, we in-
stantiate all left-hand sides in any possible context to obtain a bottom-up
tree automaton for the language T(G ∪ Q) r IRR(∆). As ∆ is linear, we are
not faced with problematic left-hand sides like q(f(x1, x1)) that cannot be
handled by a finite automaton. Then the determinization algorithm (see,
e.g. [CDG+

07]) is applied which, however, may result in an exponential
blow-up in the number of states. Finally, we build the complementary auto-
maton that recognizes the tree language IRR(∆) ⊆ T(G∪Q).

In the rest of this section we will consider the well-known properties of
restarting automata. An RRWWT-automaton can propagate information
about its internal state from one cycle to the next only by using auxiliary
symbols. Thus, the error preserving property and the correctness preserv-
ing property can be adapted for restarting tree automata.

Proposition 4.6 (Error Preserving Property). Let A = (F, G, Q,q0,k,∆) be an
RRWWT-automaton, and let u, v ∈ T(F). If u ↪→∗A v holds and u 6∈ L(A), then
v 6∈ L(A). Equivalently, if u ↪→∗A v and v ∈ L(A), then u ∈ L(A).

Proof. Let u, v ∈ T(F) be two ground terms such that u ↪→∗A v and v ∈ L(A).
Since v ∈ L(A) there exists some v ′ ∈ T(G) such that v ↪→∗A v ′ and v ′ ∈ SG(A).
Hence, u ↪→∗A v ′ holds by transitive closure and thus u ∈ L(A).

Proposition 4.7 (Correctness Preserving Property). Let A be a deterministic
RRWWT-automaton, and let u, v ∈ T(F) be two ground terms. If u ↪→∗A v and
u ∈ L(A), then also v ∈ L(A) holds.

Proof. Let u, v ∈ T(F) be two ground terms such that u ↪→∗A v and u ∈ L(A).
Because of the determinism of A there is exactly one computation starting
from q0(u), and this computation accepts u. Thus, it can be uniquely repre-
sented by a sequence of cycles u ↪→A u1 ↪→A u2 ↪→A · · · ↪→A un and a tail
un ∈ SG(A). Note that u ↪→∗A v is a prefix of this sequence and v = ui holds,
for some integer 1 6 i 6 n. Then obviously v ∈ L(A) follows.

Corollary 4.1. Let A = (F, G, Q,q0,k,∆) be an RRWWT-automaton, and let
u, v ∈ T(F) be two ground terms. If u ↪→∗A v is an initial segment of an accepting
computation of A, then v ∈ L(A) holds.

Also the ‘pigeonhole lemma’ for restarting automata can be generalized in
a straight-forward way.

4.4 basic properties 105

Lemma 4.4 (Pumping Lemma). For each RRWWT-automaton A, there exists
a constant c > 1 such that the following holds: Assume that we have 1-contexts
u1,u2 ∈ Ctx(G, X1), arbitrary contexts u,u3 ∈ Ctx(G, Xn), for some n > 1,
arbitrary contexts vj, v ′j ∈ Ctx(G, Xmj

), for all 1 6 j 6 n, and ground terms
w1,1, . . . ,wn,mn ∈ T(G) such that

u
[
v1[w1,1, . . . ,w1,m1

], . . . , vn[wn,1, . . . ,wn,mn]
]

↪→A

u
[
v ′1[w1,1, . . . ,w1,m1

], . . . , v ′n[wn,1, . . . ,wn,mn]
]
,

where u = u1 ◦ u2 ◦ u3 and Hgt(u2) = c. Then there exists a factorization
u2 = z1 ◦ z2 ◦ z3, where z1, z2, z3 ∈ Ctx(G, X1) are 1-contexts, such that z2 is not
empty and(
u1 ◦ z1 ◦ (z2)

i ◦ z3 ◦ u3
) [
v1[w1,1, . . . ,w1,m1

], . . . , vn[wn,1, . . . ,wn,mn]
]

↪→A(
u1 ◦ z1 ◦ (z2)

i ◦ z3 ◦ u3
) [
v ′1[w1,1, . . . ,w1,m1

], . . . , v ′n[wn,1, . . . ,wn,mn]
]

holds, for all i > 0. That means, z2 is a ‘pumping 1-context’ in this cycle.
In fact, such a nonempty 1-context can also be found in any subterm of height at

least c ′ of the ground terms w1,1, . . . ,wn,mn , where c ′ > 1 is a different constant.

Proof. Let A = (F, G, Q,q0,k,∆) be a 1-look-ahead normalized RRWWT-
automaton. First of all, choose the pumping constant c := |Q1|, which is
the cardinality of the first partition of the state set Q. Then, consider a cycle
t ↪→A t ′, where Hgt(t) > c and

t = (u1 ◦ z1 ◦ z2 ◦ z3 ◦ u3)
[
v1[w1,1, . . . ,w1,m1

], . . . , vn[wn,1, . . . ,wn,mn]
]

has the desired factorization. Now look at a partial computation of the form
t0 ↪→∗A t ↪→A t ′ ↪→∗A t ′′ and observe the following.

Obviously, there exists a leaf position p ∈ Pos(t) such that the length of
path(t,p) ∈ Pth(t) is strictly greater than c. Thus, we can find at least two
positions p1,p2 ∈ Pos(t) on that root-to-leaf path such that p1 <Pos p2,

t|p1 = (z2 ◦ z3 ◦ u3)
[
v1[w1,1, . . . ,w1,m1

], . . . , vn[wn,1, . . . ,wn,mn]
]
,

t|p2 = (z3 ◦ u3)
[
v1[w1,1, . . . ,w1,m1

], . . . , vn[wn,1, . . . ,wn,mn]
]
,

and A is in the same state before and after reading the z2-part of t. Hence
we can pump or even remove the nonempty 1-context z2 without changing
the behavior of A with respect to t, i.e., a partial computation

t0 ↪→∗A
(
u1 ◦ z1 ◦ (z2)

i ◦ z3 ◦ u3
) [
v1[. . .], . . . , vn[. . .]

]
↪→A(

u1 ◦ z1 ◦ (z2)
i ◦ z3 ◦ u3

) [
v ′1[. . .], . . . , v

′
n[. . .]

]
↪→∗A t ′′

exists, for all integer i > 0.
The same argument applies to those ground termsw1,1, . . . ,wn,mn , which

have a height greater or equal than c ′ := |Q2|. Note that here the pumping
constant is determined by the cardinality of the second partition of Q.

106 restarting tree automata

4.5 expressive power

In this section we study the expressive power of nondeterministic restarting
tree automata. Obviously, we obtain the trivial chains of inclusions

L (RT) ⊆ L (RRT) ⊆ L (RRWT) ⊆ L (RRWWT),

L (RT) ⊆ L (RWT) ⊆ L (RRWT) ⊆ L (RRWWT),

and

L (RT) ⊆ L (RWT) ⊆ L (RWWT) ⊆ L (RRWWT)

immediately from the definition. However, from the tight correspondence of
restarting automata and restarting tree automata shown in Proposition 4.2
and Proposition 4.3, we get exactly the same proper inclusion results that
hold for restarting automata. More precisely, if the word language L ⊆
Σ∗ is a witness for separating the automaton classes L (X) and L (Y), i.e.,
L ∈ L (Y) r L (X), then the tree language L̂ ⊆ T(FΣ) is a witness for sep-
arating the tree language classes L (XT) and L (YT), for all types X, Y ∈
{ R, RR, RW, RRW, RWW, RRWW } of restarting automata.

Corollary 4.2.

(a) L̂6 ∈ L (RRT) r L (RT) and L̂6 ∈ L (RRWT) r L (RWT).

(b) L̂7 ∈ L (RWT) r L (RT) and L̂7 ∈ L (RRWT) r L (RRT).

(c) L̂2 ∈ L (RWWT) r L (RWT) and L̂2 ∈ L (RRWWT) r L (RRWT).

Proposition 4.8. For every regular tree language T ⊆ T(F) there exists a 1-
normalized nondeterministic RT-automaton A such that L(A) and T coincide.

Proof. Let B = (F, Q, Q0,∆) be an ↓NFT-automaton recognizing the reg-
ular tree language T ⊆ T(F). Then, a nondeterministic RT-automaton
A = (F, F, Q ′,q0, 1,∆ ′) which recognizes T can be constructed as follows.

Take Q ′ := Q ∪ {q0 }, where q0 6∈ Q is a new state. Finally, take ∆ ′ := ∆

and append an additional look-ahead transition

q0(f(x1, . . . , xn))→ f(q1(x1), . . . ,qn(xn)),

for each transition q(f(x1, . . . , xn)) → f(q1(x1), . . . ,qn(xn)) from ∆, where
q ∈ Q0 is an initial state of B. Obviously, SF(A) = L(A) and L(A) = L(B)

since each normalized top-down transition is simulated by a corresponding
look-ahead transition. On the other hand, there are no rewrite transitions
and the additional rewrite rules q0(f(x1, . . . , xn)) → f(q1(x1), . . . ,qn(xn))

simulate exactly the initial transitions of B. Moreover, from the form of the
rewrite rules of ∆ ′ it follows that A is 1-normalized.

By the previous proposition and by Example 4.1 we obtain the following
consequence.

4.5 expressive power 107

Corollary 4.3. L (RTG) (L (RT).

We continue our study on the expressiveness of RT-automata by considering
another witness for the strictness of the previous inclusion result.

Example 4.5. The language of completely balanced binary trees (cf. Example 2.11)
over the ranked alphabet F := { f(·, ·),a } is recognized by the nondeterministic RT-
automaton A = (F, F, Q,q0,k,∆), where Q := {q0,q1 }, k := 1, and ∆ is given by
the following transition rules:

q0(f(a,a))→ f(q0(a),q0(a)), q0(a)→ a,
q0(f(x1, x2))→ f(q1(x1),q1(x2)),
q1(f(x1, x2))→ f(q1(x1),q1(x2)), q1(f(a,a))→ a .

Note that SF(A) = {a, f(a,a) } and that q1(f(a,a)) → a is the only rewrite
transition in ∆. Due to the enforced parallelism each cycle ends in a stateless
configuration, if and only if on each root-to-leaf path a subterm f(a,a) is rewritten
to a. Because of this invariant property each completely balanced binary tree over
F is reduced to some element from SF(A).

Moreover, a separation result with respect to the context-free tree languages
can be obtained by considering the following example. It shows that already
the weakest type of nondeterministic restarting tree automata, i.e., the RT-
automaton, is quite powerful.

Example 4.6. According to the duplication theorem (cf. Proposition 2.15) the tree
language T4 = { f(gi(hi(a)),gi(hi(a))) | i > 0 } is not context-free, because
{gi(hi(a)) | i > 0 } is not top-context-free. Let A = (F, F, Q,q0,k,∆) be the non-
deterministic RT-automaton, where F := { f(·, ·),g(·),h(·),a }, Q := {q0,q1,q2 },
and k := 3. The term-rewriting system ∆ is given by the following rewrite rules:

(1) q0(f(x1, x2))→ f(q2(x1),q2(x2)), (2) q2(a)→ a,
(3) q0(f(x1, x2))→ f(q1(x1),q1(x2)),
(4) q1(g(x1))→ g(q1(x1)), (5) q1(g(h(a)))→ a,
(6) q1(g(h(h(x1))))→ h(x1).

Note that the transitions of A are 1-look-ahead normalized. Further, they ensure
that the correct form of the input is verified in the end, because SF(A) = { f(a,a) }

holds. In particular, the additional symbol h in the transition rule (6) avoids that
ground terms like f(g(h(g(h(a)))),g(h(g(h(a)))) are recognized by A. On the
other hand, the rewrite transitions (5) and (6) preserve the incorrectness of an input
t0 6∈ T4 (cf. Proposition 4.6). Hence, L(A) ⊆ T4 holds.

The RT-automaton reduces both branches uniformly until the simple tree f(a,a) ∈
SF(A) is obtained: First, it guesses whether the remaining tree is simple or not, and
then applies the transitions (1) or (3) accordingly. If the guess is that the remaining
tree t = f(gi(hj(a)),gm(hn(a))) is not simple, then A must reduce t simultane-
ously in both branches using (4), (5), and (6). Otherwise, it accepts f(a,a) by tran-
sition (2) in the tail of the computation. The transition rule (4) is needed to plunge

108 restarting tree automata

into t. Observe that a restart can only be performed, whenever the rules (5) or (6)
have been applied, i.e., exactly one g is canceled against one h in both branches.
This leads to the stateless configuration t ′ = f(gi−1(hj−1(a)),gm−1(hn−1(a)))

which can further be simplified in subsequent cycles. Induction on the height of the
input yields L(A) ⊇ T4.

As a simple consequence we obtain the following corollary.

Corollary 4.4. Even L (RT) contains tree languages that are not context-free.

Unfortunately, it is an open question whether or not every context-free tree
language can be recognized by a certain type of restarting tree automa-
ton. The problem is mainly due to the non-linearity of the productions
of a context-free tree grammar or the transition rules of a PDT-automaton.
Since restarting tree automata permit only linear transition rules it is hard to
imagine, how a simulation in general could work. However, in the following
section we will make a partial step in this direction by showing that at least
all linear context-free tree languages are recognized by RWWT-automata.

4.5.1 Recognition of Linear Context-Free Tree Languages

Based on the normal form for linear context-free tree grammars presented in
Chapter 3, we now derive one of our main results on the expressive power of
restarting tree automata. In fact, we will show that every linear context-free
tree language can be recognized by an RWWT-automaton.

Theorem 4.1. Given a linear context-free tree grammar G an RWWT-automaton
A can be constructed such that L(G) = L(A) holds.

Proof. Let G = (F, N, P,S) be an arbitrary linear context-free tree grammar.
By Lemma 3.2 we can assume that G is growing. Further, let CS be the set
of all constants a ∈ (F0 ∪N0) such that P contains a production S→ a. For
each rewrite rule (l→ r) ∈ P, where the initial symbol S occurs at least once
in the right-hand side r, we enlarge P by all combinations of that rule in
which some occurrences of S in the right-hand side are replaced by symbols
from CS. This modified grammar is called G ′ = (F, N, P ′,S) and it is easily
seen that L(G) = L(G ′) holds.

We construct an RWWT-automaton A = (F, G, Q,q0,k,∆) by taking G :=

F ∪ N, Q := {q0,q1,q2 }, and by defining ∆ as follows. Recall that ∆ =

∆1 ∪ ∆2. For each production F(x1, . . . , xn) → t from P ′, where n > 0,
F ∈ Nn, ||t|| > 1, and t ∈ T(F ∪N, Xn), we add the rewrite transitions

q0(t)→ F(x1, . . . , xn) and q1(t)→ F(x1, . . . , xn) (4.16)

to ∆2. Note that all these rewrite rules are size-reducing and linear, and that
t is in fact an n-context. Then, for each constant a ∈ (CS ∪ {S }), we add a
look-ahead transition

q0(a)→ a (4.17)

4.5 expressive power 109

to ∆1. Additionally, for each symbol f ∈ Gn of arity n > 1, ∆1 will contain
all look-ahead transitions

q0(f(x1, . . . , xn))→ f(qj1(x1), . . . ,qjn(xn)) (4.18)

and

q1(f(x1, . . . , xn))→ f(qj1(x1), . . . ,qjn(xn)) (4.19)

such that for all 1 6 ` 6 n and all 1 6 i 6 n we have ji = 1, if and only if
i = `, and ji = 2 otherwise, i.e., the state q1 occurs exactly once in each right-
hand side of type (4.18) and (4.19). Here the state q1 is used to guarantee
that in every cycle only one rewrite transition is performed. Last but not
least, for each symbol f ∈ Gn we insert a look-ahead transition of the form

q2(f(x1, . . . , xn))→ f(q2(x1), . . . ,q2(xn)) (4.20)

into ∆1. Again, these transitions will act as ‘don’t care’ rules.
The automaton A simulates all derivations of G ′ nondeterministically and

in reverse order. Let t ∈ T(F) be a ground term generated by G ′, and let

S⇒G ′ t1 ⇒G ′ · · · ⇒G ′ ti ⇒G ′ ti+1 ⇒G ′ · · · ⇒G ′ t` = t

be an arbitrary P ′-derivation of G ′. The automaton guesses in each cycle the
used production from P ′ and applies the corresponding reverse transition
rule of type (4.16) from ∆2 on ti+1 in order to obtain ti. With the help of the
look-ahead transitions of type (4.20) the automaton reaches a stateless con-
figuration and restarts immediately. Finally, in the tail of the computation
A obtains a constant t1 ∈ (CS ∪ {S }) and accepts, because the additional
look-ahead transitions of type (4.17) imply that t1 ∈ SG(A) is accepted.

On the other hand, for each accepting computation

t ↪→A t`−1, . . . , t2 ↪→A t1, and q0(t1)→∗∆1 t1, where t1 ∈ (CS ∪ {S }),

there is a corresponding derivation starting with S⇒61
G ′ t1 ⇒G ′ t2 ⇒G ′ · · · .

Hence, we have t ∈ L(G ′) if and only if t ∈ L(A).

We continue with our running example from Chapter 3.

Example 4.7. Performing the construction outlined in Theorem 4.1 we obtain from
the growing context-free tree grammar G ′′ of Example 3.2 the following RWWT-
automaton A = (F, F ∪ { F(2,1)(·, ·), F̂{1}(·),S }, {q0,q1,q2 },q0, 2,∆), where ∆1

110 restarting tree automata

contains the following normalized look-ahead transitions, for each i ∈ { 0, 1 }:

q0(S)→ S, q0(a)→ a,
qi(F(2,1)(x1, x2))→ F(2,1)(q1(x1),q2(x2)),

qi(F(2,1)(x1, x2))→ F(2,1)(q2(x1),q1(x2)),

qi(f(x1, x2))→ f(q1(x1),q2(x2)),
qi(f(x1, x2))→ f(q2(x1),q1(x2)),

qi(F̂{1}(x1))→ F̂{1}(q1(x1)),

qi(g(x1))→ g(q1(x1)),
q2(S)→ S, q2(a)→ a,

q2(F̂{1}(x1)→ F̂{1}(q2(x1)),

q2(g(x1))→ g(q2(x1)),
q2(F(2,1)(x1, x2))→ F(2,1)(q2(x1),q2(x2)),

q2(f(x1, x2))→ f(q2(x1),q2(x2)).

Additionally, for each i ∈ { 0, 1 }, ∆2 contains the following rewrite transitions:

qi(F(2,1)(g(x1),g(x2)))→ F(2,1)(x1, x2), qi(F̂{1}(g(x1)))→ F̂{1}(x1),

qi(f(g(x1),g(x2)))→ F(2,1)(x1, x2), qi(g(g(x1)))→ F̂{1}(x1),

and qi(t) → S for all t ∈ {g(a), F̂{1}(a), f(a,a), F(2,1)(a,a) }. It is easily seen
that L(A) = L(G ′′) = { f(gn(a),gn(a)) | n > 0 } ∪ {gn(a) | n > 0 }.

The tree language T4 = { f(gi(hi(a)),gi(hi(a))) | i > 0 } considered in Exam-
ple 4.6 is not context-free according to the duplication theorem of Arnold
and Dauchet [AD76]. Thus, we obtain the following corollary.

Corollary 4.5. L (lin-CFTG) ⊆ L (RWWT) holds, and this inclusion is proper.

The results obtained so far are summarized in Figure 4.11 on page 111.

4.5.2 Look-Ahead Hierarchies of Restarting Tree Automata

One of the parameters that can be restricted for a restarting automaton is the
size of its read/write-window. Mráz [Mrá01] has studied the influence of
this measure on the expressive power for some types of restarting automata.
He showed that for automata without auxiliary symbols an increasing size
of the window also increases the recognition power.

In this section we will investigate the influence of the height of the win-
dow on the expressive power for restarting tree automata. Due to the tight
correspondence of restarting automata and restarting tree automata modulo
the mapping ̂, it is not really surprising that we obtain similar results.

Let X ∈ { R, RR, RW, RRW, RWW, RRWW } be any type restarting tree au-
tomaton and let ` > 1 be an integer. Then L (XT(`)) denotes the class
of tree languages that are recognized by XT-automata whose read/write-
windows have a height of at most `. That means, a tree language T ⊆ T(F)

4.5 expressive power 111

L (RRWWT)

L (RWWT)

44

L (lin-CFTG) T4

44iiiiiiiii
L (RRWT)

L̂2

OO

L (RWT)

L̂2

OO

L̂6

44iiiiiiiii

L (RRT)

L̂7

OO

L (RT)

L̂7

OO

L̂6

44iiiiiiiiii

L (RTG)

OO

T1

44iiiiiiiiii

Figure 4.11: Inclusions between tree language classes defined by the basic
types of nondeterministic restarting tree automata and other
well-known tree language families.

is from the class L (XT(`)) if and only if, there exists an XT-automaton
A = (F, G, Q,q0,k,∆) such that k 6 ` and L(A) = T .

First of all, by Proposition 4.8 and the second automaton from Example 4.1
we obtain the following straight-forward consequence.

Corollary 4.6. L (RTG) ⊆ L (RT(1)) holds, and this inclusion is proper.

In this aspect restarting tree automata differ from restarting automata, be-
cause a read/write-window of height one permits rewrite transitions of the
form q(g(a)) → a, where two working symbols are involved. However,
even a modified definition of the height does not revise the situation, since
the automaton from Example 4.1 can be changed to have the transition rules

q0(f(x1, x2))→ f(q1(x1),q1(x2)), q1(g(x1))→ x1,
q0(f(x1, x2))→ f(q2(x1),q2(x2)), q2(a)→ a.

On the other hand, observe that the RWWT-automaton constructed in
Theorem 4.1 needs at most a read/write-window of height k = 2, because
starting with a linear context-free tree grammar in modified Chomsky nor-
mal form (cf. Lemma 3.1) the applied transformations preserve or even
decrease the height of the right-hand sides.

Corollary 4.7. L (lin-CFTG) ⊆ L (RWWT(2)).

This inclusion is even proper, as the following result shows.

Proposition 4.9. L (RT(2)) contains tree languages that are not context-free.

112 restarting tree automata

Proof. Let

T5 :=

{
f(gi1(hr1(· · · (gim(hrm(a))))),gj1(hs1(· · · (gjn(hsn(a))))))

∣∣∣∣∣
i1 + · · ·+ im = r1 + · · ·+ rm = j1 + · · ·+ jn = s1 + · · ·+ sn,
r1 6 i1, r1 + r2 6 i1 + i2, . . . , s1 6 j1, s1 + s2 6 j1 + j2, . . . ,

for some integers m,n > 0

}
.

claim 1 . The tree language T5 is not context-free.

Proof. Assume that T5 is context-free. Then

T4 = T5 ∩ { f(gi(hr(a)),gj(hs(a))) | i, r, j, s > 0 }

would be also context-free, because L (CFTG) is closed under intersection
with regular tree languages (cf. Proposition 2.15). A contradiction.

claim 2 . The tree language T5 can be recognized by an RT(2)-automaton.

Proof. Let A = (F, F, Q,q0, 2,∆) be the nondeterministic RT(2)-automaton,
where F := { f(·, ·),g(·),h(·),a }, and Q := {q0,q1,q2 }. The term-rewriting
system ∆ is given by the following rewrite rules:

(1) q0(f(x1, x2))→ f(q2(x1),q2(x2)), (2) q2(a)→ a,
(3) q0(f(x1, x2))→ f(q1(x1),q1(x2)),
(4) q1(g(x1))→ g(q1(x1)), (5) q1(g(h(x1)))→ x1.

The arguments for L(A) = T5 are similar to those of Example 4.6.

This completes the proof of Proposition 4.9

By the correspondence of restarting automata and restarting tree automata
(cf. Proposition 4.2 and Proposition 4.3) the following results are obtained.

Proposition 4.10. L (RRT(1)) contains tree languages that are not context-free.

Proof. Mráz has shown [Mrá01, Lemma 3.2] that there exists a nondeter-
ministic RR(1)-automaton M accepting a non-context-free language. Then
Proposition 4.2 yields an RRT(1)-automaton AM such that L(AM) = L̂(M).
However, L(AM) cannot be context-free unless the word language L(M) =

Pth(L(AM)) is context-free (cf. Proposition 2.15 (c)).

Proposition 4.11. For each ` > 1, L (det-RT(`+ 1)) r L (RRWT(`)) 6= ∅ holds.

Proof. The proof is along the lines of Mráz’s proof [Mrá01, Lemma 3.5]. We
distinguish two cases depending on the height of the read/write-window.

4.5 expressive power 113

case ` = 1.
Let D1 denote the Dyck language over the finite alphabet Σ := {a, ā } gener-
ated by the context-free phrase-structure grammar G = (Σ, {S },S,P), where
the set P contains the following productions:

S→ aSā, S→ SS, and S→ ε

Then D1 is accepted by a det-R(2)-automaton [Mrá01, Lemma 3.4]. Thus,
by Proposition 4.1 there exists a det-RT(2)-automaton recognizing D̂1. Now
assume that D̂1 is recognized by an RRWT(1)-automaton A. Then, for a
sufficiently large n the tree ânān ∈ D̂1 cannot be accepted by A in a tail of
a computation. Consequently, in each cycle of an accepting computation the
input must be reduced, but all trees from D̂1 of height lower than 2n have
a height of at most 2n− 2. As an RRWT(1)-automaton can reduce a tree by
height at most one, our assumption is contradicted.

case ` > 2.
Let L` := {anc`−1bn | n > 0 } be a word language. Then by similar argu-
ments as above it can be shown that L̂` ∈ L (det-RT(`+ 1)) r L (RRWT(`)).

Corollary 4.8. Let ` > 1 be a positive integer. Then, for any type of restarting
tree automaton X, Y ∈ { R, RR, RW, RRW } and any prefix Z, Z̄ ∈ { ε, det-, } the
following holds:

L (Z XT(`)) (L (Z XT(`+ 1)) and L (Z XT(`+ 1)) r L (Z̄ YT(`)) 6= ∅.

Specifically, we obtain infinite hierarchies of tree language classes for some
restricted types of restarting tree automata with respect to the height of the
read/write-window. For example,

L (RTG) (L (RT(1)) (· · · (L (RT(k)) (L (RT(k+ 1)) · · · ,

but it is still an open question whether or not L (XT(1)) contains tree lan-
guages that are not context-free, for any type X ∈ { R, RW, RWW }.

Moreover, also some other results of Mráz [Mrá01] can be generalized
for restarting tree automata. We only summarize the consequences in the
following enumeration and omit the proofs, because they essentially use the
same arguments as in Proposition 4.11. For each integer ` > 2 we have

1. L (RT(`)) (L (RWT(`)) and L (RRT(`)) (L (RRWT(`)),

2. L (RT(1)) (L (RRT(1)) and L (RWT(1)) (L (RRWT(1)),

3. L (RT(`)) (L (RRT(`)) and L (RWT(`)) (L (RRWT(`)), and

4. for each integer ` ′ > 1, the tree language classes L (RWT(`)) and
L (RRT(` ′)) are incomparable with respect to set inclusion.

114 restarting tree automata

4.5.3 Deterministic Restarting Tree Automata

In this section we show some results on the expressive power of determinis-
tic restarting tree automata. Recall that a restarting tree automaton is called
deterministic, if there are no two distinct transition rules (l1 → r1) and
(l2 → r2) from ∆ such that their left-hand sides l1 and l2 are unifiable.

We start with an automaton that is a slight modification of Example 4.6.

Example 4.8. Let A = (F, F, Q,q0,k,∆) be the det-RT-automaton, where F :=

{ f(·, ·),g(·),h(·),a }, Q := {q0,q1,q2 }, and k := 3. The term-rewriting system ∆

is given by the following rewrite rules:

(1) q0(f(a,a))→ f(q2(a),q2(a)),
(2) q2(a)→ a,
(3) q0(f(g(x1),g(x2)))→ f(q1(g(x1)),q1(g(x2))),
(4) q1(g(g(x1)))→ g(q1(g(x1))),
(5) q1(g(h(a)))→ a,
(6) q1(g(h(h(x1))))→ h(x1).

Note that the transitions of A are 2-look-ahead normalized and that the automaton
is indeed deterministic, because all the left-hand sides{

q0(f(a,a)), q2(a), q0(f(g(x1),g(x2))),
q1(g(g(x1))), q1(g(h(a))), q1(g(h(h(x1))))

}
from ∆ are not unifiable. On the other hand, the transitions (1), (3), and (4) are
more specific than those of the automaton from Example 4.6 and thus L(A) ⊆ T4.
Finally, L(A) = T4 follows by similar considerations as in Example 4.6.

Corollary 4.9. L (det-RT) contains tree languages that are not context-free.

On the other hand, we also obtain the trivial chains of inclusions

L (det-RT) ⊆ L (det-RRT) ⊆ L (det-RRWT) ⊆ L (det-RRWWT),

L (det-RT) ⊆ L (det-RWT) ⊆ L (det-RRWT) ⊆ L (det-RRWWT),

and

L (det-RT) ⊆ L (det-RWT) ⊆ L (det-RWWT) ⊆ L (det-RRWWT)

immediately from the definition, and from the correspondence of deter-
ministic restarting automata and deterministic restarting tree automata (cf.
Proposition 4.1, Proposition 4.2, and Proposition 4.3), we get exactly the
same proper inclusion results that hold for deterministic restarting automata.

Corollary 4.10.

(a) L̂6 ∈ L (det-RRT) r L (det-RT) and L̂6 ∈ L (det-RRWT) r L (det-RWT).

(b) L̂7 ∈ L (det-RWT) r L (det-RT) and L̂7 ∈ L (det-RRWT) r L (det-RRT).

4.5 expressive power 115

(c) L̂2 ∈ L (det-RWWT) r L (det-RWT) and
L̂2 ∈ L (det-RRWWT) r L (det-RRWT).

Proof. The non-containment results follow immediately from Proposition 4.3
and the results known for deterministic restarting automata. The recog-
nition of L̂7 and L̂2 by a det-RWT-automaton and det-RWWT-automaton,
respectively, are direct consequences of Proposition 4.1 and the results sum-
marized in Figure 2.4. Moreover, by the trivial inclusions L (det-RWT) ⊆
L (det-RRWT) and L (det-RWWT) ⊆ L (det-RRWWT) the containment of
L̂7 ∈ L (det-RRWT) resp. L̂2 ∈ L (det-RRWWT) is obvious.

Only the fact L̂6 ∈ L (det-RRT) remains to show: Let M be the det-RR-
automaton defined by the following sequence of meta-instructions:

(1) (c| · (ab)∗, c→ ε, (ab)∗ · $),
(2) (c| · (ab)∗, abab→ abb, (abb)∗ · $),
(3) (c| · (abb)∗, abb→ ab, (ab)∗ · $),
(4) (c|ab$, Accept).

Obviously, M will perform the following computation:

(ab)2
n−ic(ab)i `c(1) (ab)2

n `c(2) (ab)2
n−2abb `c∗(2) (abb)2

n−1

`c(3) (abb)2
n−1−1ab `c∗(3) (ab)2

n−1 `c∗ ab `(4) Accept.

Thus, it is easily seen that L(M) = L6. Moreover, M is tail-rewrite-free
since the meta-instruction (4) can be transformed to a sequence of MVR-
steps followed by an Accept-step. Hence, by Proposition 4.2 there exists a
det-RRT-automaton recognizing L̂6. As L (det-RRT) ⊆ L (det-RRWT) the
other remaining containment L̂6 ∈ L (det-RRWT) is quite obvious.

Moreover, it is rather obvious that L (↓DFT) (L (det-RT) holds. In particu-
lar, the properness of the inclusion is due to Example 4.2.

However, since the RT-automaton constructed in Proposition 4.8 is nonde-
terministic and there is the well-known difference between nondeterministic
and deterministic finite top-down tree automata with respect to their expres-
sive power, i.e., L (↓DFT) (L (↓NFT), it is quite natural to ask, whether or
not each regular tree language can be recognized by a det-RT-automaton. In
the rest of this section we make small steps in this direction, and finally we
are able to answer this question in the affirmative.

We start our consideration with the tree language family FIN, because it is
known that ↓DFT-automata cannot even recognize all finite tree languages.
However, due to the look-ahead capability of restarting tree automata the
following result can be obtained easily.

Proposition 4.12. For every finite tree language T ⊆ T(F) there exists a determin-
istic RT-automaton A = (F, F, Q,q0,k,∆) such that L(A) = T holds.

116 restarting tree automata

Proof. Let T ⊆ T(F) be a finite tree language. Then, there exists an integer
` > 0 such that Hgt(t) 6 `, for all t ∈ T . First, take Q := {q0,q1 } and
k := `+ 1. Secondly, a look-ahead transition q0(t) → f(q1(s1), . . . ,q1(sn))

is in ∆, if and only if t ∈ T , where t = f(s1, . . . , sn), f ∈ Fn, and s1, . . . , sn
are ground terms, for some n > 0. Finally, ∆will also contain the ‘don’t care’
rules q1(f(x1, . . . , xn))→ f(q1(x1), . . . ,q1(xn)), for all f ∈ Fn and n > 0.

Obviously, the automaton is deterministic since all left-hand sides from
∆ are not unifiable. Moreover, t ∈ SF(A), if and only if t ∈ T , because the
look-ahead of A is used to verify t initially.

Corollary 4.11. FIN ⊆ L (det-RT), and this inclusion is proper.

Proof. The inclusion follows from Proposition 4.12 and the properness is
due to Example 4.8.

Next, we will consider k-definite tree languages which are characterized
by the following property. Let k > 0 be an integer. Then a tree language
T ⊆ T(F) is k-definite, if t ∈ T and rk(t) = rk(s) imply s ∈ T , for all
s, t ∈ T(F), i.e., if all trees from T have the same k-root. Again, the look-
ahead capability of a restarting tree automaton is the key for recognizing
those languages.

Proposition 4.13. Let k > 0 be some integer. For each k-definite tree language
T ⊆ T(F) there exists a deterministic RT-automaton A such that L(A) = T holds.

Proof. Let T ⊆ T(F) be a k-definite tree language, for some integer k > 0.
The we distinguish the following cases:

case k = 0. Note that T is either empty or equal to T(F) in this case. Thus
it is trivial to construct a deterministic RT-automaton A such that L(A) = ∅
and L(A) = T(F), respectively.

case k > 0. We construct a det-RT-automaton A = (F, F, Q,q0,k,∆) as
follows. Take Q := {q0,q1 }, where q1 acts again as a ‘don’t care’ state.
Thus, for all n > 0 and all f ∈ Fn, we have a corresponding look-ahead
transition q1(f(x1, . . . , xn))→ f(q1(x1), . . . ,q1(xn)) in ∆.

Moreover, for all t ∈ T such that Hgt(t) < k and t = f(s1, . . . , sn), the
term-rewriting system contains a look-ahead transition of the form

q0(t)→ f(q1(s1), . . . ,q1(sn)), (4.21)

where f ∈ Fn and s1, . . . , sn are ground terms, for some n > 0.
Finally, for all k-normal m-contexts t ∈ Ctx(F, Xm) satisfying the prop-

erties t = f(s1, . . . , sn) and t[a1, . . . ,am] ∈ T , for some m,n > 1 and
a1, . . . ,am ∈ F0, a look-ahead transition

q0(t)→ f(q1(s1), . . . ,q1(sn)) (4.22)

is in ∆. Note that s1, . . . , sn are not necessarily ground terms.

4.5 expressive power 117

The ‘don’t care’ rules together with the transitions of type (4.21) recognize
those trees t ∈ T satisfying Hgt(t) < k. All other trees from T have a
common k-root which is verified by the transitions of type (4.22). Thus a
simple tree induction yields L(A) = T . On the other hand, the automaton A

is deterministic since all left-hand sides from ∆ are not unifiable.

Corollary 4.12. DEF ⊆ L (det-RT), and this inclusion is proper.

Proof. The inclusion follows from Proposition 4.13 and the properness is
due to the following example.

Let A = (F, F, Q,q0,k,∆) be a deterministic RT-automaton, where F :=

{g(·),a }, Q := {q0 }, k := 2, and ∆ contains the two transition rules:

q0(g(g(x1)))→ x1 and q0(a)→ a.

Obviously, L(A) = Teven and Teven ∈ L (det-RT) r DEF.

So far we have not used the rewriting capability of restarting tree automata.
However, to recognize each regular tree language by a deterministic RT-
automaton this property is essentially needed. The main idea is to apply the
pumping lemma for regular tree languages in a tricky way. We repeatedly
cut out parts of the input until it has a height lower than the pumping
constant. In fact, the replacement is performed by final rewrite transitions
adjacent to the leaves. Finally, all trees of height lower than the pumping
constant are recognized by look-ahead transitions. In order to make the
automaton deterministic some further technical difficulties must be solved.

Theorem 4.2. For every regular tree language T ⊆ T(F) there exists a determinis-
tic RT-automaton A = (F, F, Q,q0,k,∆) such that L(A) = T holds.

Proof. Let T ⊆ T(F) be a regular tree language. Then, there exists a ↑DFT-
automaton B = (F, Q(B), Q(B)

f ,∆(B)) such that L(B) = T . Without loss of
generality we can assume that B is complete. We construct a corresponding
det-RT-automaton A = (F, F, Q,q0,k,∆) by taking Q := {q0,q1,q2 } and
k := |Q(B)| + 2. The term-rewriting system ∆ contains the following four
groups of transition rules:

q0(t)→ f(q2(s1), . . . ,q2(sn)), (4.23)

for all t ∈ T satisfying t = f(s1, . . . , sn) and Hgt(t) < k− 1, for some integer
n > 0 and corresponding ground terms s1, . . . , sn ∈ T(F),

q2(f(x1, . . . , xn))→ f(q2(x1), . . . ,q2(xn)), (4.24)

for all f ∈ Fn and n > 0,

q0(t)→ u1 ◦ u3 and q1(t)→ u1 ◦ u3, (4.25)

118 restarting tree automata

for all t ∈ T(F) satisfying t = u1 ◦ u2 ◦ u3 and Hgt(t) = k − 1, where
u1,u2 ∈ Ctx(F, X1) are 1-contexts and u3 ∈ T(F) is a ground term such that
u3 →∗∆(B) q and u2 ◦ u3 →∗∆(B) q holds, for some q ∈ Q(B), and

q0(t)→ f(q1(s1), . . . ,q1(sn)) and q1(t)→ f(q1(s1), . . . ,q1(sn)),
(4.26)

for all k-normal m-contexts t ∈ Ctx(F, Xm) satisfying t = f(s1, . . . , sn), for
some integer m > 0.

Here the state q1 is used to ensure that the transitions of the group (4.23)
can only be applied at the root of a tree. On the other hand, the state q2 acts
as ‘don’t care’ state in combination with the transitions from group (4.24).

The automaton A is indeed deterministic, since all left-hand sides of rules
from ∆ are not unifiable. Specifically, observe the following facts:

- The left-hand sides of the transitions from group (4.24) are different
due to the unique state q2 at the topmost position.

- Note that Hgt(l) < k holds, for all left-hand sides l of transitions
from group (4.23). Consequently, they differ from any other transition,
because the left-hand sides from group (4.25) and (4.26) have at least
a height of k.

- Similarly, the left-hand sides of transitions from group (4.25) have
height k and those from group (4.26) have height k + 1. Thus they
are also not unifiable.

Now we show that the recognized tree languages of A and B coincide.

claim 1 . L(A) ⊆ L(B).

Proof. First, note that SF(A) ⊆ L(B) holds by inspecting the rules from
group (4.23) and (4.24). Transitions from other groups imply that A either
rejects or restarts. Now assume that t ∈ L(A) is a ground term such that
t ↪→A t ′ and t ′ ∈ SF(A). Then t ′ ∈ L(B) and t can be written as t =

u1 ◦ u2 ◦ u3 such that u3 →∗∆(B) q and u2 ◦ u3 →∗∆(B) q, for some state
q ∈ Q(B). On the other hand, we have the factorization t ′ = u1 ◦ u3. Thus,
if t ′ ∈ L(B), then so is t. Note that this argument also holds for a situation,
where u1 is an m-context such that t = u1[u2,1 ◦ u3,1, . . . ,u2,m ◦ u3,m] and
t ′ = u1[u3,1, . . . ,u3,m], for some integer m > 1, because the performed
rewrites are independent. Finally, induction on the number of cycles yields
t ∈ L(B), for any t ∈ L(A).

claim 2 . L(A) ⊇ L(B).

Proof. If t ∈ L(B) satisfies Hgt(t) < k− 1, then t is immediately recognized
by A due to the rules from group (4.23) and (4.24). In fact, t ∈ SF(A)

holds. So let t ∈ L(B) such that Hgt(t) > k − 1. For each position p ∈
Pos(t), there exists a unique state q ∈ Q(B) such that t|p →∗∆(B) q holds,

4.5 expressive power 119

because B is deterministic and complete. Now let p1, . . . ,pm ∈ Pos(t) be
leaf positions of maximal depth, i.e., |pi| > k − 1, for all 1 6 i 6 m. By
the pumping lemma for regular tree languages (cf. Proposition 2.12) there
exists a constant c = |Q(B)|, and since k− 1 > c, there exists an m-context
u0 ∈ Ctx(F, Xm), 1-contexts u1,1, . . . ,u1,m,u2,1, . . . ,u2,m ∈ Ctx(F, X1), and
ground terms u3,1, . . . ,u3,m ∈ T(F) such that

t = u0 [u1,1 ◦ u2,1 ◦ u3,1, . . . ,u1,m ◦ u2,m ◦ u3,m]

and the following conditions are satisfied, for all 1 6 i 6 m:

1. Hgt(u1,i ◦ u2,i ◦ u3,i) = k− 1, and

2. u3,i →∗∆(B) q and u2,i ◦ u3,i →∗∆(B) q holds, for some q ∈ Q(B).

Hence, the det-RT-automaton A can execute the cycle

t = u0 [u1,1 ◦ u2,1 ◦ u3,1, . . . ,u1,m ◦ u2,m ◦ u3,m]

↪→A

u0 [u1,1 ◦ u3,1, . . . ,u1,m ◦ u3,m] = t ′.

Note that t ′ is obtained from t by executing m rewrite steps in parallel.
However, multiple applications of the pumping lemma imply that also t ′

belongs to L(B). As it is strictly smaller than t, i.e., Hgt(t ′) < Hgt(t), induc-
tion on the height of t yields t ∈ L(A).

This completes the proof of Theorem 4.2.

Note that the construction from the previous theorem is far from being effi-
cient. In fact, the number of transition rules may grow exponentially in the
number of states of B, if T is initially defined through a nondeterministic
finite tree automaton B. However, in combination with Example 4.8 it yields
the following consequence.

Corollary 4.13. L (RTG) ⊆ L (det-RT), and this inclusion is proper.

Finally, the results obtained for deterministic restarting tree automata are
summarized in Figure 4.12 on page 120.

4.5.4 Path Languages and Yield Languages

Recall that a root-to-leaf path of a ground term t ∈ T(F) is a nonempty word

path(t,pn) := t̃(p1)̃t(p2) · · · t̃(pn)

over the alphabet ΣF := { f ∈ F }, where p1 = ε is the position at the root,
pn is a leaf position, and pi <Pos pi+1, for all 1 6 i 6 n − 1. Note that
the one-to-one mapping ˜ : F → ΣF associates each symbol from F with a
unique symbol from ΣF. The set of all paths in t was defined by

Pth(t) := { path(t,p) | p is a leaf position } .

120 restarting tree automata

L (det-RRWWT)

L (det-RWWT)

33

L (det-RRWT)

L̂2

OO

L (det-RWT)

L̂2

OO

L̂6

33ggggggggggg

L (det-RRT)

L̂7

OO

L (det-RT)

L̂7

OO

L̂6

33ggggggggggg

L (RTG) T4

44iiiiiiiii

L (↓DFT)

T2

OO

jjUUUUUUUUU

L (DEF)

Teven

OO

L (FIN)

OO

Figure 4.12: Inclusions between tree language classes defined by the basic
types of deterministic restarting tree automata and other well-
known tree language families.

For any t ∈ T(F), Pth(t) is a finite language of words over ΣF, and for any
tree language T ⊆ T(F), Pth(T) := { Pth(t) | t ∈ T } is the path language of T .

On the other hand, the yield of a ground term t ∈ T(F) is a word over ΣF

defined by the mapping Yld : T(F) → Σ∗F. Note that the special constant
ε ∈ F is mapped to the empty word ε. In fact, Yld(t) is the string of leaves
of t read from left to right. Thus, the yield language of a tree language
T ⊆ T(F) is the word language Yld(T) := { Yld(t) | t ∈ T }.

First of all, by the correspondence of restarting automata and restarting
tree automata with respect to monadic trees and the results of the previous
sections we obtain the following straight-forward consequences concerning
the path languages of restarting tree automata.

Corollary 4.14.

(a) L (RT) contains tree languages whose path languages are not context-free.

(b) For each Church-Rosser language L ∈ CRL, there exists a deterministic
RWWT-automaton A such that Pth(L(A)) = L holds.

The following example shows that even deterministic RWT-automata can
recognize tree languages whose path language is not context-free. The ba-
sic idea is due to Réty and Vuotto [RV04], who originally used this trick
in order to obtain counter-examples for constructor-based term-rewriting
systems which do not preserve context-freeness.

4.5 expressive power 121

Example 4.9. Let A = (F, F, Q,q0,k,∆), where F := {g(·, ·),p(·), s(·),a }, Q :=

{q0,q1,q2 }, k := 3, and ∆ contains the following rewrite rules:

(1) q0(g(a,a))→ g(q1(a),q1(a)), (2) q1(a)→ a,
(3) q0(s(s(x1)))→ s(q2(s(x1))),
(4) q0(s(g(x1, s(x2))))→ g(p(x1), x2),
(5) q2(s(s(x1)))→ s(q2(s(x1))),
(6) q2(s(g(x1, s(x2))))→ g(p(x1), x2),
(7) q0(p(p(x1)))→ p(q2(p(x1))),
(8) q0(p(g(p(x1),a)))→ g(x1,a),
(9) q2(p(p(x1)))→ p(q2(p(x1))),

(10) q2(p(g(p(x1),a)))→ g(x1,a).

First of all, note that SF(A) = {g(a,a) } and that A is indeed deterministic by
inspecting the left-hand sides of the rules from ∆. Secondly, the rewrite transitions
(4) and (6) remove two s, one from the branch above the g and one from the right
branch below the g, and insert one p to the left branch below the g. The rewrite
transitions (8) and (10) remove two p’s, one from the branch above the g and one
from the left branch below the g. Thus, it is not hard to see that A recognizes the
tree language

L(A) =
{
pi(g(pi(a),a)) | i > 0

}
∪
{
pi(si(g(a, si(a)))) | i > 1

}
∪
{
pi(sj(g(pm(a), sj(a)))) | j > 1,m > 1, and i = j+m

}
.

Finally, Pth(L(A)) ∩ p+s+gs+a = {pisjgsja | i > j > 1 }, which is a word
language that is not context-free.

The previous result can be even improved since there exists a determinis-
tic R-automaton accepting a non-context-free word language L [JMPV97].
Thus, by Proposition 4.1 there is a corresponding det-RT-automaton that
recognizes L̂ and whose path language Pth(L̂) = L · ⊥ is not context-free.

Corollary 4.15. There exists a deterministic RT-automaton that recognizes a tree
language whose path language is not context-free.

The nondeterministic RT-automaton from Example 4.5 is easily transformed
into a det-RT-automaton by increasing the height of the read/write-window.
Then, observe that Yld(L(A)) = {a2

n
| n > 0 }, which is a well-known

language that is not context-free. This yields the following consequence.

Corollary 4.16. There exists a deterministic RT-automaton that recognizes a tree
language whose yield language is not context-free.

However, it is an open question whether restarting tree automata can recog-
nize tree languages whose yield languages are not indexed languages.

122 restarting tree automata

4.6 closure properties

In the following section several closure and non-closure properties of restart-
ing tree automata are studied. We start with the Boolean operations and
then turn to more specific operations for trees. Most of the constructions are
a straight-forward adaptation of their word language counterparts. How-
ever, in the case of trees more sophisticated simulation strategies are needed
to retain the power of auxiliary symbols.

union. We start with a negative result using the word language L2 =

{anbn | n > 0 } ∪ {anbm | m > 2n > 0 } and the already established fact
that L̂2 is not recognized by any det-RRWT-automaton.

Proposition 4.14. The tree language classes L (ZXT) are not closed under union,
for each type ZXT ∈ { R, RR, RW, RRW } and any prefix Z ∈ { ε, det- }.

Proof. Let A(1) = (FΣ, FΣ, {q0,q1 },q0, 3,∆(1)) be a det-RT-automaton, where
FΣ := {a(·),b(·),⊥ } and ∆(1) contains the following transitions:

q0(a(b(⊥)))→ ⊥, q0(⊥)→ ⊥,
q0(a(a(x1)))→ a(q1(a(x1))), q1(a(a(x1)))→ a(q1(a(x1))),

q1(a(b(b(x1))))→ b(x1).

Obviously, L(A(1)) = {an(bn(⊥)) | n > 0 } holds. On the other hand,
let A(2) = (FΣ, FΣ, {q0,q1,q2 },q0, 4,∆(2)) be the det-RT-automaton, where
FΣ := {a(·),b(·),⊥ } and ∆(2) contains the following rewrite rules:

q0(a(b(b(b(x1)))))→ b(x1), q0(b(x1))→ b(q2(x1)),
q2(b(x1))→ b(q2(x1)), q2(⊥)→ ⊥,

q0(a(a(x1)))→ a(q1(a(x1))), q1(a(a(x1)))→ a(q1(a(x1))),
q1(a(b(b(b(x1)))))→ b(x1).

Again it is easily seen that L(A(2)) = {an(bm(⊥)) | m > 2n > 0 } holds and
that A(2) is indeed deterministic.

Now assume that L (det-RT) is closed under union. Then, there exists a
det-RT-automaton A such that L(A) = L(A(1))∪L(A(2)), however, L(A(1))∪
L(A(2)) = L̂2 and L̂2 6∈ L (det-RRWT) by Corollary 4.10. A contradiction.

The situation changes, if auxiliary symbols are available. In fact, the closure
under union can essentially be proved as for nondeterministic restarting
automata [JLNO04]. However, the simulation is even more elaborate since
the committing rewrite step will not necessarily be performed at the top of
the input.

Proposition 4.15. The tree language classes L (RWWT) and L (RRWWT) are
closed under union.

4.6 closure properties 123

Proof. Let A(1) and A(2) be two RWWT-automata recognizing the tree lan-
guages T1 ⊆ T(F) and T2 ⊆ T(F), respectively. An RWWT-automaton
A = (F, G, Q,q0,k,∆) for the tree language T := T1 ∪ T2 would proceed as fol-
lows: First, it nondeterministically guesses whether to simulate A(1) or A(2)

on the given input t, and whether it will simulate a cycle or a tail of the cor-
responding computation. To fix the former guess i ∈ { 1, 2 } for subsequent
cycles, the automaton introduces an additional auxiliary symbol Jf, iK from
the ranked working alphabet G, whenever a rewrite transition is performed.
By Lemma 4.3 we can assume that both A(1) and A(2) have nonempty con-
texts on the right-hand side of every rewrite transition. Specifically, each
rewrite transition of the form q(t) → t ′, where t ′ = f(s1, . . . , sn) for some
f ∈ G

(i)
n and s1, . . . , sn ∈ T(G(i), X), is replaced by a rewrite transition of

the form q(t) → Jf, iK (s1, . . . , sn), where the auxiliary symbol Jf, iK ∈ Gn
has arity n > 0. In subsequent cycles the indicators Jf, iK are preserved,
updated, or possibly merged, if a rewrite is performed that involves such
auxiliary symbols. Moreover, on each root-to-leaf path it is verified that the
occurring indicators correspond to the respective guess of the current cycle.
Of course, as A is an RWWT-automaton, it can guess wrongly, and thus
A may introduce competing indicators, i.e., Jf, iK and Jg, jK such that i 6= j.
However, eventually these problematic cases are detected and accordingly
the original input is rejected. If this does not happen in a cycle, then at last
the tail of the computation will reveal the competitiveness of the indicators.
Hence, A recognizes a ground term t ∈ T(F), if and only if t ∈ T1 or t ∈ T2.

For RRWWT-automata a similar construction is used, however, here an
early detection of competing indicators can be performed in each cycle.

intersection. Consider the two word languages Lw := {w#wR#u |

w,u ∈ {a,b }∗ } and Lu := {w#uR#u | w,u ∈ {a,b }∗ }. Both languages
are deterministic context-free, i.e., there exist det-R-automata Mw and Mu

such that L(Mw) = Lw and L(Mu) = Lu hold. However, note that LGladkij =

Lw ∩ Lu is not accepted by any det-RRWW-automaton [NO99b, Nie02], be-
cause the language LGladkij is not even growing context-sensitive [Gla64,
DW86, Bun96] and hence not a Church-Rosser language [BO98]. Thus, by
Proposition 4.1 resp. Proposition 4.2 in combination with Proposition 4.3 we
obtain the non-closure under intersection for those classes of deterministic
restarting tree automata without auxiliary symbols.

Corollary 4.17. The tree language classes L (det-XT) are not closed under inter-
section, for each type X ∈ { R, RR, RW, RRW } of restarting automata.

In the next section we will also see that L (XT) is not effectively closed
under intersection, for any type X ∈ { R, RR, RW, RRW } of restarting tree
automaton, due to two competing decision problems.

complementation. It is known that deterministic restarting automata
are closed under complementation [JMPV95, JMPV97], because accepting
and rejecting states can simply be exchanged in order to construct a corre-
sponding automaton for the complement of the input language. However,

124 restarting tree automata

for restarting tree automata it is a serious open question, whether a similar
result holds. The main troubles of a construction are due to the existing
synchronization between parallel branches of a computation.

f-product. It is easily seen that a given restarting tree automaton can be
modified in order to recognize the f-product of the accepted tree language.
A more general result is stated in the following proposition.

Proposition 4.16. The tree language class L (ZXT) is closed under f-product, for
any type X ∈ { R, RR, RW, RRW, RWW, RRWW } and any prefix Z ∈ { ε , det- }.

Proof. Let n > 1 be an integer, A(1) , . . . , A(n) a sequence of XT-automata,
where A

(i)
= (F

(i) , G
(i) , Q

(i) , q(i)
0 , k(i) , ∆(i)

) for all 1 6 i 6 n, and
f ∈ Fn a symbol from the input alphabet F ⊇

⋃n
i=1 F(i) . Moreover,

assume that Q(i) ∩ Q(j) = ∅ holds, for all 1 6 i < j 6 n, i.e., the
sets of states are pairwise disjoint. Then, we construct an XT-automaton
A = (F , G , Q , q0 , k , ∆) as follows:

- Take G :=
⋃n
i=1 G(i) and Q := (

⋃n
i=1 Q(i)) ∪ { q0 }, where q0 6∈

Q(i) , for all 1 6 i 6 n, is a new state that is simultaneously the initial
state of the constructed automaton A. Further, take k := maxni=1 k

(i)

as the height of the read/write-window of A.

- Finally, take

∆ :=

(
n⋃
i=1

∆(i)

)
∪
{
q0(f(x1 , . . . , xn)) → f(q

(1)
0 (x1) , . . . , q(n)

0 (xn))
}

.

Obviously, L(A) = f(L(A(1)) , . . . , L(A(n))) holds, because A invokes the
corresponding XT-automaton A(i) for each i-th argument of the input tree.
Thus, f(t1 , . . . , tn) ∈ L(A), if and only if ti ∈ L(A(i)) for all 1 6 i 6 n.
Finally, if all A(1) , . . . , A(n) are deterministic, then so is A.

x-product. The language classes obtained from nondeterministic restart-
ing tree automata with auxiliary symbols are closed under x-product. The
basic idea of the proof is similar to the case of restarting automata on
strings [JLNO04]. First, the constructed automaton guesses all positions
where a concatenation has been taken place. At those positions it inserts an
auxiliary symbol which combines the last input symbol from the first part
and first input symbol from the second part of the tree, in order to fix the
previously made guesses. Finally, the actual simulation on the second part is
performed, and if it is successfully finished, then the simulation on the first
part is started. However, the situation is a bit more complicated for trees,
because in general the concatenation can simultaneously be performed at
many positions at the same level. For example, let t = f(a , g(a) , a) and
T = { b , g(c) }. Then t ′ = f(b , g(b) , g(c)) is one of the x-products of t
and T , for the concatenation point x = a. Thus, we must fix the places of
the concatenation in a more general way using special auxiliary symbols,

4.6 closure properties 125

i.e., Jf , b , g , {1 , 3}K(Jg , b , {1}K , c) is a corresponding encoding of t ′ that
also contains these positions my means of the sets {1 , 3} and {1}.

Proposition 4.17. The tree language classes L (RWWT) and L (RRWWT) are
closed under x-product.

Proof. Let A(1) and A(2) be two RWWT-automata recognizing the tree lan-
guages L(A(1)) and L(A(2)), respectively. Then, an RWWT-automaton A =

(F, G, Q,q0,k,∆) for the language L(A(1)) ·x L(A(2)) is obtained as follows.
Let t ∈ (t1 ·x L(A(2))) be a ground term such that t1 ∈ L(A(1)). First,

A guesses all the positions in t where a concatenation has taken place, i.e.,
all positions p1, . . . ,p` ∈ Pos(t) such that t1(pi) = x holds, for all 1 6 i 6
`. Now let p ∈ Pos(t) be a position such that phi = pji holds, for some
indices ji ∈ { 1, . . . , ` } and hi ∈ { 1, . . . , Rnk(t(p)) } for all 1 6 i 6 ` ′. In
order to fix these guesses, A combines the symbol at the position p in t,
say f ∈ Fn, and the symbols at the root of the first level subterms of t|p,
say g1 ∈ Fn1 , . . . ,g` ′ ∈ Fn` ′ , into a special symbol Jf,g1, . . . ,g` ′ ,PK of arity
n+n1 + · · ·+n` ′ − ` ′ by a size-reducing rewrite transition of the form

q
(
f(x1, . . . , xh1−1,g1(xh1+ν1 , . . . , xh1+ν1−1+n1), xh1+ν1+n1 , . . . ,

xh` ′+ν` ′−` ′ ,g` ′(xh` ′+ν` ′−` ′+1, . . . , xh` ′+ν` ′−` ′+n` ′),

xh` ′+ν` ′−` ′+n` ′+1, . . . , xh` ′+ν` ′−` ′+n` ′+n)
)

→
Jf,g1, . . . ,g` ′ ,PK

(
x1, . . . , xn+n1+···+n` ′−` ′

)
,

where νi =
∑i−1
j=1 nj, for all 1 6 i 6 ` ′, and P := {h1, . . . ,h` ′ } is a set

indicating those positions of the first level subterms of t|p that are supposed
to be a concatenation point. In fact, A guesses that t|phi ∈ L(A(2)), for all
1 6 i 6 ` ′. Note that ` ′ is bounded by the greatest possible arity of symbols
from F, i.e., 1 6 ` ′ 6 maxf∈F Rnk(f). Thus we will need only finitely many
additional auxiliary symbols in G. Regular constraints are used to ensure
that at most one special symbol appears on each root-to-leaf path of t. As
restarting tree automata only accept ground terms which are completely
read, these regular conditions will eventually be checked, at last in the tail
of a computation.

Then, in subsequent cycles A simulates the cycles performed by the auto-
maton A(2) below the supposed concatenation points. Note that the com-
ponents g1, . . . ,g` ′ of each Jf,g1, . . . ,g` ′ ,PK will not disappear, because A(2)

transforms some of them at most into constants. In that special case the
arity of the corresponding auxiliary symbol is immediately adjusted.

Next, A will guess that all cycles of A(2) have been finished, which is
verified in the end due to the regularity of IRR(∆(2)) and SG(A(2)). In
fact, A starts to simulate the tails of A(2) in parallel, however, an additional
auxiliary symbol X ∈ G0 is used to mark the leaves of those paths starting in
Jf,g1, . . . ,g` ′ ,PK which are recognized by A(2). For example, the look-ahead
transitions q(f(x1, x2,b)) → f(q ′(x1),q ′′(x2),b), q ′(b) → b, and q ′′(c) → c

from ∆
(2)
1 are combined into the final rewrite transition q(f(b, c,b)) → X.

126 restarting tree automata

By some additional rules of the form f(X, . . . ,X) → X, for all f ∈ G
(2)
n and

n > 1, the information about the accepting paths is propagated up to the
symbol Jf,g1, . . . ,g` ′ ,PK. Hence, the marking symbols X are seen by A, if
the read/write-window is of sufficient height.

Again it is guessed by A, whether the simulation of A(1) on t1 can be
started: The transitions of A(1) are modified such that rewrites containing
the symbol Jf,g1, . . . ,g` ′ ,PK are only performed, if all paths at the positions
from P are marked with an X. Moreover, the set P is necessary in order to
distinguish those paths starting in p, where the simulation of A(1) should
be continued.

Finally, A will guess to simulate the tail of A(1), where also some regular
constraints are verified:

1. At most one auxiliary symbol Jf,g1, . . . ,g` ′ ,PK may occur on each root-
to-leaf path.

2. For each remaining symbol Jf,g1, . . . ,g` ′ ,PK it holds that all paths at
the positions from P are marked with an X.

3. The concatenation constant x may not occur in those parts of the re-
maining input that belong to t1.

For RRWWT-automata the simulation is realized in exactly the same way.

alphabetic tree homomorphisms . With respect to alphabetic tree
homomorphisms the following result is easily seen. Note that an alphabetic
tree homomorphism is simply a relabeling of the symbols, i.e., the branching
structure of the tree is preserved.

Proposition 4.18. The tree language class L (XT) is closed under alphabetic tree
homomorphisms, for any type X ∈ { R, RR, RW, RRW, RWW, RRWW }.

Proof. Let A(1) = (F(1), G(1), Q,q0,k,∆(1)) be an XT-automaton and further
let h : T(F(1)) → T(F) be an alphabetic tree homomorphism that is de-
termined by hF(1) . We construct an XT-automaton A = (F, G, Q,q0,k,∆)

recognizing the tree language h(L(A(1))) as follows.
Let h ′ : T(G(1) ∪ Q, X) → T(G ∪ Q, X) be the unique extension of the tree

homomorphism h that is inductively defined by

h ′(x) = x, for each x ∈ X,

h ′(a) = hF(1)(a), for each a ∈ F
(1)
0 ,

h ′(A) = A, for each A ∈ G
(1)
0 r F

(1)
0 ,

h ′(q(t)) = q(h ′(t)), for each q ∈ Q,

h ′(f(t1, . . . , tn)) = hF(1)(f)(h ′(t1), . . . ,h ′(tn)), for each f ∈ F
(1)
n , n > 1,

h ′(F(t1, . . . , tn)) = F(h ′(t1), . . . ,h ′(tn)), for each F ∈ G
(1)
n r F

(1)
n , n > 1.

For each look-ahead transition q(t)→ f(q1(s1), . . . ,qn(sn)) from ∆(1) insert
a corresponding transition h ′(q(t))→ h ′(f(q1(s1), . . . ,qn(sn))) into ∆, and

4.6 closure properties 127

for each rewrite transition q(t) → t ′[q1(x1), . . . ,qm(xm)] from ∆(1) insert
the rewrite rule h ′(q(t)) → h ′(t ′)[q1(x1), . . . ,qm(xm)] into ∆. Since h is
alphabetic h ′(t) and h ′(t ′) are m-contexts, and the transitions from ∆ are
of the appropriate form. Moreover, it is easily seen that L(A) = h(L(A(1))),
because A simulates A(1) cycle by cycle on the homomorphic image of the
corresponding configurations.

Note that the previous construction may yield a nondeterministic automa-
ton A, even if A(1) is deterministic. This effect is due to the possible ‘nonde-
terminism’ of h. For example, if there exist two distinct symbols f,g ∈ F

(1)
n

such that hF(1)(f) = hF(1)(g) = f, for some integer n > 0, then the left-hand
sides of the transition rules

q(f(s1, . . . , sn))→ f(q1(s1), . . . ,q1(sn))

and

q(g(s1, . . . , sn))→ g(q2(s1), . . . ,q2(sn))

are not unifiable. However, applying h ′ the construction yields

q(f(s1, . . . , sn))→ f(q1(s1), . . . ,q1(sn))

and

q(f(s1, . . . , sn))→ f(q2(s1), . . . ,q2(sn)),

which have the same left-hand sides. Only if the mapping hF(1) is injective,
then the resulting automaton is even deterministic.

linear tree homomorphisms . The tree language classes L (RWWT)
and L (RRWWT) are not closed under linear tree homomorphisms, because
they contain the class ĜCSL by Proposition 4.1. As GCSL is a basis for the re-
cursively enumerable languages [Bun96], L (RWWT) and L (RRWWT) also
have this basis property. That means, for each recursively enumerable lan-
guage L ⊆ Σ∗, there exists a tree language T ⊆ T(FΣ) that is recognized
by some RWWT-automaton or RRWWT-automaton, respectively, such that
L̂ = h(T), where h is a linear tree homomorphism.

On the other hand, L (det-RWWT) and L (det-RRWWT) contain the tree
language class ĈRL. Hence, even L (det-RWWT) and L (det-RRWWT) are
not closed under linear tree homomorphisms, because CRL is also a basis
for the recursively enumerable languages [OKK98].

Corollary 4.18. The tree language classes L (ZXT) are not closed under linear tree
homomorphisms, for each type X ∈ { RWW, RRWW } and any prefix Z ∈ { ε, det- }.

128 restarting tree automata

intersection with regular tree languages . For restarting au-
tomata there exists a language-theoretical equivalent operation [NO03] to
the use of auxiliary symbols. An analog result can be also established for
restarting tree automata. Specifically, we use the same idea for the simu-
lation of an RRWWT-automaton resp. RWWT-automaton, and only some
small modifications are necessary in the case of trees.

Proposition 4.19. A tree language T ⊆ T(F) is recognized by an RRWWT-
automaton, if and only if there exists an RRWT-automaton A ′ and a regular tree
language R ⊆ T(F) such that T = L(A ′)∩ R holds.

Proof. Let A = (F, G, Q,q0,k,∆) be an RRWWT-automaton recognizing the
tree language T . Thus, for all t ∈ T(F), t ∈ T if and only if there exists
t ′ ∈ SG(A) such that t ↪→∗A t ′. Now take R := T(F), and let A ′ the RRWT-
automaton defined by A ′ = (G, G, Q,q0,k,∆). The only difference between
these two automata is that A ′ works on an extended input alphabet and thus
↪→∗A = ↪→∗A ′ and SG(A) = SG(A ′) obviously hold. Then, for each t ∈ T(G),
we have t ∈ L(A ′) ∩ R if and only if t ∈ T(F) and there exists t ′ ∈ SG(A ′)
such that t ↪→∗A ′ t ′. Hence, it is clear that T = L(A ′)∩ R holds.

Conversely, let A ′ = (F, F, Q ′,q0,k,∆ ′) be an RRWT-automaton, and let R
be a regular tree language. From A ′ we construct a corresponding RRWWT-
automaton A = (F, G, Q,q0,k+ 1,∆). First, we apply the construction from
Lemma 4.3 to obtain transitions that all have a nonempty context on the
right-hand side. Let h : T(F)→ T(F̄) be the alphabetic tree homomorphism
that maps each symbol from F to its marked copy from F̄ := { f̄ | f ∈ F }, and
take G := F ∪ F̄. For each rewrite transition q(t) → t ′[q1(x1), . . . ,qm(xm)]

from ∆ ′ we add a corresponding rewrite transition

q(t)→ h(t ′)[q1(x1), . . . ,qm(xm)]

to ∆. Hence, the corresponding right-hand sides contain only marked sym-
bols from F̄. The automaton A behaves essentially like the RRWT-automaton
A ′, but in addition it internally simulates an ↓NFT-automaton B recogniz-
ing R. If A switches to a configuration by a rewrite transition, it introduces
at least one marked symbol. Thus a marked symbol indicates that the sim-
ulation of B must not be continued in subsequent cycles. Consequently, A

will simulate the look-ahead transitions of A ′ and the normalized top-down
transitions of B in parallel until a stateless configuration is reached. How-
ever, if A encounters a marked symbol from F̄, which means that A is not
in the first cycle, then it aborts the simulation of B. It is easily seen that
L(A) = L(A ′)∩ R holds.

Also the following characterization holds.

Proposition 4.20. An arbitrary tree language T ⊆ T(F) is recognized by an
RWWT-automaton, if and only if there exists an RWT-automaton A ′ and a reg-
ular tree language R ⊆ T(F) such that T = L(A ′)∩ R holds.

4.6 closure properties 129

Proof. The if-part of the proof is essentially the same as in Proposition 4.19.
However, the converse implication is more involved since RWWT-automata
not necessarily see the whole remaining branches after a rewrite has been
performed. Thus, an RWWT-automaton simulating A ′ and B in parallel
cannot exactly determine whether or not it is still in the first cycle.

Let A ′ be an RWT-automaton, and let R ⊆ T(F) be a regular tree language
that is recognized by an ↓NFT-automaton B. From A ′ and B we will con-
struct an RWWT-automaton A such that L(A) = L(A ′)∩ R holds. The main
problem stems from the fact that, during the first cycle of a computation, A ′

in general will not traverse the input tree t completely. Thus A must simu-
late A ′ and B cycle by cycle, and hence it cannot check immediately whether
or not t ∈ R holds. Therefore A has to simulate the ‘early parts’ of the com-
putation of the ↓NFT-automaton B until it is interrupted by a restart. In fact,
the full simulation is split over several cycles and it is partially completed
whenever a look-ahead transition q(f(s1, . . . , sn)) → f(q1(s1), . . . ,qn(sn))

is applied, where s1, . . . , sn ∈ T(G). Accordingly A operates as follows.
Starting from a configuration q0(t), A will simulate the RWT-automaton

A ′ and the ↓NFT-automaton B in parallel, while moving its read/write-
window downwards. Now assume that A reaches a configuration where
A ′ has to perform a rewrite transition q(t) → t ′[x1, . . . , xm] next. Thus we
must introduce an extended rewrite transition for A such that the current
state of B is encoded in the corresponding right-hand side. Again we need
the normalization result from Lemma 4.3 to obtain a nonempty context for
every right-hand side. During a subsequent cycle A may encounter such an
auxiliary symbol Jf,q(B)K ∈ G, where f is a symbol from the working alpha-
bet of A ′, and q(B) is the resulting state of B from the previous simulation.
Now the automaton A can continue the simulation of A ′ as before, but the
parallel simulation of B will start in state q(B) reading the symbol f.

However, during its computation A may encounter several occurrences of
encoded symbols Jf,q(B)K in a root-to-leaf path. But it is easily seen that the
bottom-most occurrence satisfies the following conditions:

1. The RWWT-automaton A has not yet seen the remaining subtrees be-
low this symbol.

2. The state q(B) contained in the auxiliary symbol is one of the states
which B enters after reading the original input t0 from the root down
to the current position.

Note that whenever A performs a final rewrite transition, it can insert the
special symbol Ja, !K to indicate that the simulation of B has been finished
successfully in the corresponding root-to-leaf path. Consequently, the look-
ahead transitions of A ′ are modified such that A recognizes t ∈ T(F), if and
only if A ′ recognizes t and simultaneously B recognizes t.

The above characterizations yield the following closure properties.

Corollary 4.19. The classes L (RWWT) and L (RRWWT) are closed under inter-
section with regular tree languages.

130 restarting tree automata

∪ ∩ { f(· · ·) ·x halp hlin ∩ R

L (det-RT) No No ? Yes ? ? ? ?
L (RT) No ? ? Yes ? Yes ? ?
L (det-RRT) No No ? Yes ? ? ? ?
L (RRT) No ? ? Yes ? Yes ? ?
L (det-RWT) No No ? Yes ? ? ? ?
L (RWT) No ? ? Yes ? Yes ? No
L (det-RRWT) No No ? Yes ? ? ? ?
L (RRWT) No ? ? Yes ? Yes ? No
L (det-RWWT) ? ? ? Yes ? ? No ?
L (RWWT) Yes ? ? Yes Yes Yes No Yes
L (det-RRWWT) ? ? ? Yes ? ? No ?
L (RRWWT) Yes ? ? Yes Yes Yes No Yes

Table 4.1: Summary of the closure properties for restarting tree automata

Proof. Let T ⊆ T(F) be a tree language recognized by the RWWT-automaton
A and let R ⊆ T(F) be a regular tree language. Then T = L(A ′) ∩ R ′ holds,
for some RWT-automaton A ′ and a regular tree language R ′, by Proposi-
tion 4.19. Hence, T ∩ R = (L(A ′) ∩ R ′) ∩ R = L(A ′) ∩ (R ′ ∩ R) holds, and
finally (T ∩ R) ∈ L (RWWT) since regular tree languages are closed under
intersection. The closure for L (RRWWT) follows by similar arguments.

Finally, the characterizations obtained from Proposition 4.19 resp. Proposi-
tion 4.20 and the separation results stated in Corollary 4.2 yield the follow-
ing consequences.

Corollary 4.20. Neither L (RRWT) nor L (RWT) are closed under intersection
with regular tree languages.

Table 4.1 on page 130 summarizes the results obtained in this section.

4.7 decision problems

In this section we study some decision problems and their complexity. Thus,
it is necessary to specify the size of an automaton, which is usually the
size of its representation. In fact, the size of a restarting tree automaton
A = (F, G, Q,q0,k,∆), denoted by ‖A‖, is defined by

‖A‖ := |G| + |Q| +
∑

(l→r)∈∆

(‖l‖+ ‖r‖) .

For example, the restarting tree automaton from Example 4.9 on page 121

has size 69, because |F| = 4, |Q| = 3, and ‖∆‖ = 62. Finally, we define the
considered decision problems.

4.7 decision problems 131

Definition 4.7.

Uniform Membership Problem:
Instance: A restarting tree automaton A and a ground term t ∈ T(F).
Question: Does t ∈ L(A) hold?

Emptiness Problem:
Instance: A restarting tree automaton A.
Question: Does L(A) = ∅ hold?

Intersection Emptiness Problem:
Instance: Two restarting tree automata A and B of the same type.
Question: Does L(A)∩ L(B) = ∅ hold?

Inclusion Problem:
Instance: Two restarting tree automata A and B of the same type.
Question: Does L(A) ⊆ L(B) hold?

Equivalence Problem:
Instance: Two restarting tree automata A and B of the same type.
Question: Does L(A) = L(B) hold?

uniform membership. As already mentioned in the previous sections,
the uniform membership problem for restarting tree automata is decidable
nondeterministically in polynomial time, because in every cycle the size of
the input t ∈ T(F) is reduced by at least one. Thus, at most ‖t‖ cycles can
be performed, and in each cycle each symbol is read. However, the exact
complexity depends on the underlying computation model, i.e., random
access machine, single-tape Turing machine, and others.

Corollary 4.21. The uniform membership problem is decidable nondeterministi-
cally in polynomial time, for any type of restarting tree automaton.

emptiness . For every RRWT-automaton A, the question whether or not
the recognized tree language L(A) is empty is decidable in nondeterministic
polynomial time. This holds, because L(A) = ∅ if and only if SF(A) = ∅. As
SF(A) is a regular tree language and a corresponding finite tree automaton
can be effectively constructed in polynomial time, the latter question can be
solved with the algorithm for finite tree automata [CDG+

07]. Note that the
latter problem is known to be P-complete [Vea97].

Corollary 4.22. The emptiness problem for ZXT-automata is decidable, for each
type X ∈ { R, RR, RW, RRW } and any prefix Z ∈ { ε, det- }.

On the other hand, the problem becomes undecidable, if auxiliary symbols
are involved. This follows from the undecidability of the emptiness problem
for det-RWW-automata [Nie02] and Proposition 4.1.

Corollary 4.23. The emptiness problem for ZXT-automata is undecidable, for each
type X ∈ { RWW, RRWW } and any prefix Z ∈ { ε, det- }.

132 restarting tree automata

intersection emptiness . The intersection emptiness problem is un-
decidable, even for restarting tree automata without auxiliary symbols, as a
simple reduction to the Post Correspondence Problem [Pos46, Pos47] shows.

Proposition 4.21. The intersection emptiness problem for XT-automata is unde-
cidable, for each type X ∈ { R, RR, RW, RRW, RWW, RRWW }.

Proof. Let Σ be a finite alphabet and let (u1, v1), . . . , (um, vm) be an instance
of the Post Correspondence Problem (PCP), where ui, vi ∈ Σ+ are some
nonempty words, for all 1 6 i 6 m. The problem is to decide whether
there exists a nonempty sequence of integers j1, . . . , j` ∈ { 1, . . . ,m } such
that uj1uj2 · · ·uj` = vj1vj2 · · · vj` holds.

Now let F := FΣ ∪ { f(·, ·) } be a ranked alphabet. For all 1 6 i 6 m we de-
note by ui(x1) the 1-context a1(a2(· · · (a|ui|(x1)))), where a1,a2, . . . ,a|ui| ∈
Σ and ui = a1a2 · · ·a|ui|. The same notation vi(x1) is used for the vi’s,
respectively. Then we construct two different RT-automata as follows. The
first automaton is called A = (F, F, {q0,q1 },q0,k,∆(A)), where k := 1 +

maxmi=1{ |ui|, |vi| } is the size of the read/write-window and ∆(A) contains
the transition rules

q0(f(ûi, v̂i))→ f(q1(ûi),q1(v̂i)), for all 1 6 i 6 m,
q1(g(x1, . . . , xn))→ g(q1(x1), . . . ,q1(xn)), for all g ∈ Fn, and

q0(f(ui(x1), vi(x2)))→ f(x1, x2), for all 1 6 i 6 m.

Thus, A recognizes all terms f(û, v̂) such that u = uj1uj2 · · ·uj` and v =

vj1vj2 · · · vj` holds, for some integer ` > 1. The second automaton B =

(F, F, {q0,q1 },q0, 1,∆(B)) verifies that both branches below the symbol f
are indeed equal. Therefore ∆(B) contains the following transition rules:

q0(f(g(x1),g(x2)))→ f(x1, x2), for all g ∈ F1, and
q0(f(⊥,⊥))→ f(q1(⊥),q1(⊥)), q1(⊥)→ ⊥.

Obviously, L(A)∩ L(B) 6= ∅ if and only if the instance (u1, v1), . . . , (um, vm)

of the PCP has a solution. Since the PCP is in general undecidable, the
claimed result follows immediately.

As the emptiness problem for restarting tree automata without auxiliary is
decidable, we obtain the following consequence.

Corollary 4.24. The tree language classes L (XT) are not effectively closed under
intersection, for any type X ∈ { R, RR, RW, RRW } of restarting tree automaton.

Proof. Assume that L (XT) is effectively closed under intersection. Then, for
all tree languages T , T ′ ∈ L (XT), we can construct an XT-automaton A such
that L(A) = T ∩ T ′ holds. However, as the emptiness problem is solvable for
XT-automata, the question L(A) = ∅ can be answered. This yields a decision
procedure for the intersection emptiness problem. A contradiction.

4.7 decision problems 133

inclusion and equivalence . It is very easy to construct a det-RWWT-
automaton B recognizing the empty tree language, i.e., L(B) = ∅, by taking
∆ := ∅. Now assume that the inclusion problem or the equivalence problem
for det-RWWT-automata would be decidable. Then, for each det-RWWT-
automaton A, the affirmative answers L(A) ⊆ L(B) and L(A) = L(B) imply
L(A) = ∅, respectively. However, this contradicts the undecidability of the
emptiness problem.

Corollary 4.25. The equivalence problem and the inclusion problem for ZXT-
automata are undecidable, for each type X ∈ { RWW, RRWW } and any prefix
Z ∈ { ε, det- }.

However, for restarting tree automata without auxiliary symbols it is an
open question whether or not the inclusion problem and the equivalence
problem are decidable.

5VA R I A N T S O F R E S TA RT I N G T R E E A U T O M ATA

In the previous chapter it turned out that in general restarting tree automata
are very powerful. Even the weakest model, the RT-automaton, recognizes
tree languages that are not context-free. Thus it is only natural to restrict
the transition rules, in order to get less expressive variants.

For example, from a practical point of view the massive parallelism may
be a disadvantage when implementing restarting tree automata. Thus, one
can think about variants, where branching out to many successor states
is somehow limited. On the other hand, the capability to perform more
than one rewrite per cycle can be weakened in order to make the affinity to
the original restarting automaton more lucid. Finally, the position where a
rewrite is performed could be subject to restriction.

In this chapter we introduce and briefly study such restricted types of
restarting tree automata. We obtain the new types by restricting the options
for the regular control and the rewriting capability in two different ways.

The first variant we consider is the single-path restarting tree automaton.
It is obtained from the general model by restricting the ability to read and
rewrite the input along multiple paths. A single-path restarting tree auto-
maton will be able to explore and modify the tree along a single-path only.
However, due to its finite look-ahead a limited number of positions around
the path are still taken into account. As a side-effect of this restriction it is en-
forced that the rewrites are executed in a strictly sequential way, i.e., exactly
one rewrite step per cycle is admitted. In fact, this offers the opportunity
to define the notion of monotonicity of a computation in a similar way as
for restarting automata on words. However, at least for single-path restart-
ing tree automata with auxiliary symbols this does not limit the expressive
power to a subclass of the context-free tree languages, as one perhaps would
expect from Proposition 2.7. Interestingly, single-path restarting tree au-
tomata reduce the tree languages they recognize to a proper subclass of the
class of regular tree languages, i.e., the auxiliary simple tree language SG(A)

is even more restricted than in the general model. Nevertheless, many of the
results on restarting tree automata carry over to the single-path variant, in
particular some closure properties and decision problems.

The second variant we study is the ground-rewrite restarting tree automa-
ton. Such an automaton is required to perform size-reducing rewrite steps
only on ground terms of bounded height. Accordingly, these automata can
be interpreted as ground term-rewriting systems with an additional regular
control. Although they are much less expressive than the general model,
it turns out that they still can recognize non-regular tree languages. This
is mainly due to the inherent synchronization mechanism of restarting tree
automata, which carries over to the ground-rewrite variant.

For the considered restarting tree automata without auxiliary symbols we

135

136 variants of restarting tree automata

are able to show that both types of restriction are in some sense orthogonal
to each other, i.e., the corresponding tree language classes are incomparable
with respect to set inclusion. However, it remains open whether this result
also holds for automata with auxiliary symbols.

Finally, we consider the combination of both restrictions. This type of
restarting tree automaton can still recognize all regular tree languages, but
here it remains open whether it accepts any non-regular tree languages.

5.1 single-path top-down tree automata

First we introduce the so-called single-path top-down tree automaton, sp↓NFT-
automaton for short, which will serve as the basis for the single-path restart-
ing tree automaton in the next section. Formally, an sp↓NFT-automaton is
defined through a five-tuple A = (F, Q,q0,k,∆), where F is a ranked al-
phabet, Q is a finite set of states, q0 ∈ Q is the initial state, k > 1 is the
height of the look-ahead window, and ∆ is a finite term-rewriting system
that contains k-height bounded single-path look-ahead Q-transitions of the form

q(t)→ f(s1, . . . , sj−1,q ′(sj), sj+1, . . . , sn),

where n > 0 is an integer, f ∈ Fn is a symbol from the ranked alphabet,
j ∈ { 1, . . . ,n } is a particular index, q,q ′ ∈ Q are states, and either

1. m > 1 is a positive integer, t ∈ Ctx(F, Xm) is a nonempty m-context,
and s1, . . . , sn ∈ T(F, Xm) are terms such that t = f(s1, . . . , sn) and
1 6 Hgt(t) 6 k, or

2. t and s1, . . . , sn ∈ T(F) are ground terms such that t = f(s1, . . . , sn)

and 0 6 Hgt(t) 6 k holds.

Thus, the only difference with respect to Definition 4.4 is the single successor
state q ′ in the right-hand side. Consequently, the automaton A will not
branch out to independent parallel computations.

The tree language recognized by A is L(A) := { t ∈ T(F) | q0(t) →∗∆ t }, i.e.,
all those ground terms t ∈ T(F), for which A has an accepting run starting
from the initial configuration q0(t).

Obviously, single-path top-down tree automata have no additional expres-
sive power beyond ↓NFT-automata, although they are equipped with a finite
look-ahead window. On the other hand, for each sp↓NFT-automaton A, the
regular tree language L(A) is of a rather restricted form.

Example 5.1. Let F := { f(·, ·),a }, and let Tu be the tree language that is generated
by the regular tree grammar Gu = (F, N, P,S), where N := {S,A }, and P =

{S → f(S,S),S → f(A,A),A → a }. Then, t ∈ T(F) is an element of Tu if
and only if, for all p ∈ Pos(t), if Top(t|p) = f, then either t|p = f(a,a) or
t|p = f(f(t1, t2), f(t3, t4)), for some t1, . . . , t4 ∈ T(F). We claim that Tu 6= L(A),
for each sp↓NFT-automaton A.

Assume that A = (F, Q,q0,k,∆) is an sp↓NFT-automaton such that L(A) = Tu.
Note that the completely balanced binary tree t of height 2k is an element of Tu. As

5.2 single-path restarting tree automata 137

Tu = L(A) we have q0(t)→∗∆ t. In this computation A walks down a single path
from the root of t to its leaves. During this process the automaton always sees the
same contents in its look-ahead window, i.e., the partial term of height k that has
an occurrence of the binary symbol f at every position, until it reaches the leaves
of t. Thus, there exists a position p ∈ Pos(t) such that t|p = f(f(a,a), f(a,a)),
but this particular subterm is not read by A during the whole computation. Hence,
we can simply replace the subterm t|p by the term f(f(a,a),a), which yields the
term t ′ = t[f(f(a,a),a)]p 6∈ Tu. However, starting from q0(t

′), the automaton A

can perform the same transition steps as in the previous computation, which yields
q0(t

′)→∗∆ t ′. Thus, t ′ ∈ L(A), which implies that L(A) 6= Tu.

Due to the finite look-ahead window, each finite tree language is recognized
by some sp↓NFT-automaton. From this fact it follows that L (sp↓NFT) is
not contained in L (↓DFT), as, for example, the finite tree language T2 =

{ f(a,b), f(b,a) } is not recognized by any ↓DFT-automaton. On the other
hand, by arguing as in Example 5.1 it can be shown, that the tree language
Td = { f(gn(a),gm(b)) | n,m > 0 } ∈ L (↓DFT) is not recognized by any
sp↓NFT-automaton. All in all, we obtain the following result.

Corollary 5.1. FIN (L (sp↓NFT) (L (RTG), but the tree language family
L (sp↓NFT) is incomparable to L (↓DFT) with respect to set inclusion.

Currently no characterization in terms of more classical tree automata, tree
grammars or term-rewriting systems is known for the class L (sp↓NFT).

5.2 single-path restarting tree automata

Now we are ready to define the single-path variant of the restarting tree
automaton. Moreover, we will also prove some basic results concerning its
expressive power.

Definition 5.1. A single-path restarting tree automaton, spRRWWT-automa-
ton for short, is formally described by a six-tuple A = (F, G, Q,q0,k,∆), where

- F is a ranked input alphabet,

- G ⊇ F is a ranked working alphabet containing F,

- Q = Q1 ∪Q2 is a finite set of states such that Q1 ∩Q2 = ∅ and Q∩ G = ∅,

- q0 ∈ Q1 is the initial state and simultaneously the restart state,

- k > 1 is the height of the read/write-window, and

- ∆ = ∆1 ∪∆2 is a finite term-rewriting system on G∪Q.

In fact, (G, Q1,q0,k,∆1) is an sp↓NFT-automaton. Specifically, the rule set ∆1
only contains k-height bounded single-path look-ahead Q1-transitions, and ∆2
only contains k-height bounded single-path look-ahead Q2-transitions and k-
height bounded single-path rewrite (Q1, Q2)-transitions of the form

q(t)→ t ′
[
x1, . . . , xj−1,q ′(xj), xj+1, . . . , xm

]
,

138 variants of restarting tree automata

where m > 0, t, t ′ ∈ Ctx(G, Xm), j ∈ { 1, . . . ,m }, q ∈ Q1, and q ′ ∈ Q2.
As usual it is required that these transitions are size-reducing and that the height

of t is bounded by the height of the read/write-window, i.e., the conditions ||t|| > ||t ′||
and Hgt(t) 6 k must hold, for every single-path rewrite transition.

Essentially, an spRRWWT-automaton works like an RRWWT-automaton, the
only difference is due to the fact, that during the computation the automaton
reads and rewrites the tree along a single path only. Thus, the move relation
→∆, the relation ↪→A, and the tree language recognized by A are defined as
before, in particular,

L(A) :=
{
t0 ∈ T(F) | ∃t ′ ∈ T(G) such that t0 ↪→∗A t ′ and q0(t ′)→∗∆1 t

′ } .

Observe that the recognized tree language L(A) consists of those trees t0 ∈
T(F), that can be reduced by the relation ↪→∗A to a ‘simple tree’, which is
finally recognized by the sp↓NFT-automaton B = (G, Q1,q0,k,∆1).

As the simple tree language SF(A) is the intersection of the tree language
recognized by the sp↓NFT-automaton B with the set of ground terms T(F),
i.e., SF(A) = L(B) ∩ T(F) resp. SG(A) = L(B), we can deduce from Corol-
lary 5.1 that the family of (auxiliary) simple tree languages of spRRWWT-
automata is properly contained in the class of regular tree languages.

For any ranked alphabet containing only unary symbols and constants
single-path restarting tree automata coincide with restarting tree automata.
Hence, the correspondence between restarting tree automata and restarting
automata on words (cf. Proposition 4.1 and Proposition 4.3) carries over to
single-path restarting tree automata. Further, the following result is seen
easily, where the various restricted types of an spRRWWT-automaton are
obtained as for the corresponding RRWWT-automaton.

Proposition 5.1. Let X ∈ { R, RR, RW, RRW, RWW, RRWW } be a type of restart-
ing automaton. Then, for each spXT-automaton A, there exists an XT-automaton
A ′ such that L(A) = L(A ′). If A is deterministic, then so A ′.

Proof. A straight-forward simulation of the spXT-automaton by the more
general XT-automaton using ‘don’t care’ states yields the desired result.

Observe that the RT-automaton from Example 4.1 is in fact an spRT-automa-
ton, if the look-ahead transition q0(f(a,a))→ f(q1(a),q1(a)) is modified to
q0(f(a,a))→ f(q1(a),a) or q0(f(a,a))→ f(a,q1(a)).

Using the same technique as in the proof of Theorem 4.2 we can show,
that even spRT-automata can recognize each regular tree language.

Theorem 5.1. For every regular tree language T ⊆ T(F), there exists a nondeter-
ministic spRT-automaton A = (F, F, Q,q0,k,∆) such that L(A) = T holds.

Proof. Let T ⊆ T(F) be a regular tree language. Then, there exists a ↑DFT-
automaton B = (F, Q(B), Q(B)

f ,∆(B)) such that L(B) = T . Without loss
of generality we can assume that B is complete. We construct a corre-
sponding nondeterministic spRT-automaton A = (F, F, Q,q0,k,∆) by taking

5.2 single-path restarting tree automata 139

Q := {q0,q1,q2 } and k := |Q(B)| + 1. The term-rewriting system ∆ contains
the following groups of transition rules:

q0(t)→ f(q2(s1), s2, . . . , sn), (5.1)

for all t ∈ T satisfying t = f(s1, . . . , sn) and Hgt(t) 6 k, for some integer
n > 0 and corresponding ground terms s1, . . . , sn ∈ T(F),

q2(f(x1, . . . , xn))→ f(q2(x1), x2, . . . , xn), (5.2)

for all f ∈ Fn and n > 0,

q0(t)→ u1 ◦ u3 and q1(t)→ u1 ◦ u3, (5.3)

for all t ∈ T(F) satisfying t = u1 ◦ u2 ◦ u3 and Hgt(t) = k, where u1,u2 ∈
Ctx(F, X1) are 1-contexts and u3 ∈ T(F) is a ground term such that u3 →∗∆(B)

q and u2 ◦ u3 →∗∆(B) q holds, for some q ∈ Q(B), and

q0(f(x1, . . . , xn))→ f(x1, . . . , xj−1,q1(xj), xj+1, . . . , xn) (5.4)

and

q1(f(x1, . . . , xn))→ f(x1, . . . , xj−1,q1(xj), xj+1, . . . , xn), (5.5)

for all n > 0, all f ∈ Fn, and all indices j ∈ { 1, . . . ,n }.
The state q1 is used to ensure that the transitions of the group (5.1) can

only be applied at the root of a tree. On the other hand, the state q2 acts as
‘don’t care’ state in combination with the transitions from group (5.2).

Now we will show that the recognized tree languages of A and B coincide.

claim 1 . L(A) ⊆ L(B).

Proof. First, note that SF(A) ⊆ L(B) holds by inspecting the rules from
group (5.1) and (5.2). Applying transitions from other groups imply that
A either rejects or restarts. Now assume that t ∈ L(A) is a ground term
such that t ↪→A t ′ and t ′ ∈ SF(A). Then t ′ ∈ L(B) and t can be written as
t = u1 ◦ u2 ◦ u3 such that u3 →∗∆(B) q and u2 ◦ u3 →∗∆(B) q, for some state
q ∈ Q(B). On the other hand, by the construction we have the factorization
t ′ = u1 ◦ u3. Thus, if t ′ ∈ L(B), then so is t. Finally, induction on the
number of cycles yields t ∈ L(B), for any t ∈ L(A).

claim 2 . L(A) ⊇ L(B).

Proof. If t ∈ L(B) satisfies Hgt(t) 6 k, then t is immediately recognized by
A due to the rules from group (5.1) and (5.2). In fact, t ∈ SF(A) holds. So
let t ∈ L(B) such that Hgt(t) > k. For each position p ∈ Pos(t), there exists
a unique state q ∈ Q(B) such that t|p →∗∆(B) q holds, because B is deter-
ministic and complete. Now let p ′ ∈ Pos(t) be a leaf position of maximal
depth, i.e., |p| > k. By the pumping lemma for regular tree languages (cf.
Proposition 2.12) there exists a constant c = |Q(B)|, and since k > c, there
exist 1-contexts u0,u1,u2 ∈ Ctx(F, X1) and a ground term u3 ∈ T(F) such
that t = u0 ◦ u1 ◦ u2 ◦ u3 and the following conditions are satisfied:

140 variants of restarting tree automata

1. Hgt(u1 ◦ u2 ◦ u3) = k, and

2. u3 →∗∆(B) q and u2 ◦ u3 →∗∆(B) q holds, for some q ∈ Q(B).

Hence, the det-RT-automaton A can execute the cycle

t = u0 ◦ u1 ◦ u2 ◦ u3 ↪→A u0 ◦ u1 ◦ u3 = t ′.

However, the pumping lemma implies that also t ′ belongs to L(B). As it is
strictly smaller than t, i.e., Hgt(t ′) < Hgt(t), induction on the height of t
yields t ∈ L(A).

This completes the proof of Theorem 5.1.

Corollary 5.2. L (RTG) ⊆ L (spRT), and this inclusion is proper.

The next example shows that spRWWT-automata are still very powerful.

Example 5.2. From Example 4.6 we know that the non-context-free tree language
T4 = { f(gi(hi(a)),gi(hi(a))) | i > 0 } is recognized by an RT-automaton. Here
we present an spRWWT-automaton A = (F, G, Q,q0,k,∆) for this language.

Let F := { f(·, ·),g(·),h(·),a }, G := F ∪ {G(·) }, Q := {q0,q1,q2 }, and k := 3,
and let ∆ consist of the following groups of transition rules:

I: Single-path look-ahead transitions of ∆1:
(1) q0(G(x1))→ G(q1(x1)),
(2) q1(G(x1))→ G(q1(x1)),
(3) q0(f(a,a))→ f(q2(a),a),
(4) q2(a)→ a.

II: Single-path rewrite transitions of ∆2:
(5) q0(f(g(x1),g(x2)))→ G(f(x1, x2)),
(6) q1(f(g(x1),g(x2)))→ G(f(x1, x2)),
(7) q0(G(f(h(a),h(a))))→ f(a,a),
(8) q1(G(f(h(h(x1)),h(h(x2)))))→ f(h(x1),h(x2)).

The automaton A works in two phases. First, it removes one g in each branch
and inserts in exchange one G above the f using the transitions (5) and (6). This
step is continued until all g’s have been removed. Secondly, by the transitions (7)
and (8) the automaton removes one h in each branch and simultaneously it cancels
the symbol G above the f. This process is repeated until the simple tree f(a,a) is
obtained, which is then verified in the tail of the computation by (3) and (4).

claim . L(A) ⊇ T4.

Proof. Let t ∈ T4 be an arbitrary tree from the language T4. Then, there
exists an integer i > 0 such that t = f(gi(hi(a)),gi(hi(a))). If i = 0, then
t = f(a,a) is immediately accepted by the transitions (3) and (4). If i > 1,
then A can execute the following sequence of cycles:

t = f(gi(hi(a)),gi(hi(a))) ↪→A G(f(gi−1(hi(a)),gi−1(hi(a))))

↪→i−1A Gi(f(hi(a),hi(a))) ↪→A Gi−1(f(hi−1(a),hi−1(a)))

↪→i−1A f(a,a),

5.2 single-path restarting tree automata 141

which is recognized by the transitions (3) and (4). Thus, T4 ⊆ L(A).

claim . L(A) ⊆ T4.

Proof. Each single-path rewrite transition, except (7) and (8), has a nonter-
minal symbol in its right-hand side. On the other hand, the transitions (7)
and (8) have the nonterminal symbol G in their left-hand sides. In fact, only
(7) leads to the only ground term f(a,a) from SG(A). Thus, a term t ∈ T(F)

is accepted by A, if either t = f(a,a) or t ↪→+
A G(f(h(a),h(a))) holds. In the

former case, t ∈ T4. Thus, it remains to study the latter case.
It t ∈ T(F) such that t ↪→+

A G(f(h(a),h(a))), then it follows from the form
of the transition rules of A that Top(t) = f and that |t|f = 1, i.e., t is of the
form f(g(t1),g(t2)), where t1, t2 ∈ T({g(·),h(·),a }). Again from the form of
the rewrite transitions it follows that t1 = gi−1(hi(a)) = t2, for some i > 1.
Thus, t = f(gi(hi(a)),gi(hi(a))), that means, t ∈ L4.

Thus, L(A4) = L4 holds, implying that L4 ∈ L (spRWWT).

The previous example yields the following consequence.

Corollary 5.3. L (spRWWT) contains tree languages that are not context-free.

However, without auxiliary symbols single-path restarting tree automata
are strictly less expressive, as the following lemma shows.

Lemma 5.1. T4 6∈ L (spRRWT), that means, the tree language T4 is not recognized
by any single-path restarting tree automaton that has no auxiliary symbols.

Proof. Let F = { f(·, ·),g(·),h(·),a }, and assume that A = (F, F, Q,q0,k,∆)

is an spRRWT-automaton recognizing the language T4. Further, let tn =

f(gn(hn(a)),gn(hn(a))) for a sufficiently large integer n. Then tn ∈ T4, i.e.,
A has an accepting computation on the input tn. Clearly this computation
cannot be a single tail, i.e., it has the form tn ↪→A s1 ↪→A · · · ↪→A sm such
that q0(sm) →∗∆1 sm. As A has no auxiliary symbols, s1, . . . , sm ∈ T(F)

holds and the correctness preserving property implies that s1, . . . , sm ∈
L(A). In particular, this means that s1 ∈ T4. However, in the cycle tn ↪→A s1
a single size-reducing rewrite transition is applied. This rewrite transi-
tion is either applied at the root of tn, replacing the k-root of the form
f(gk−1(ε),gk−1(ε)) of tn by a smaller term, or it is applied inside one of
the two subterms gn(hn(a)) below f. In either case the resulting term s1
does not belong to the tree language T4. Thus, we see that L(A) 6= T4, i.e.,
T4 is not recognized by any spRRWT-automaton.

The next result improves upon the corresponding result for unrestricted
restarting tree automata (cf. Theorem 4.1) from the previous chapter.

Theorem 5.2. For each linear context-free tree grammar G, there exists a corre-
sponding spRWWT-automaton A such that L(G) = L(A) holds.

142 variants of restarting tree automata

Proof. Let G = (F, N, P,S) be an arbitrary linear context-free tree grammar.
By the derived normal form (cf. Lemma 3.1 and Lemma 3.2) we can assume
that G is growing. Let CS be the set of all constants a ∈ (F0 ∪N0) such that
P contains a production S → a. Then, by the similar steps as in the proof
of Theorem 4.1 we can assume that the initial symbol S does not occur in a
right-hand side of any production from P.

We construct an spRWWT-automaton A = (F, G, Q,q0,k,∆) by taking G :=

F ∪N, Q := {q0,q1 }, and by defining ∆ as follows. Recall that ∆ = ∆1 ∪∆2.
For each production F(x1, . . . , xn)→ t from P, where n > 0, F ∈ Nn, ||t|| > 1,
and t ∈ T(F ∪N, Xn), we add the single-path rewrite transitions

q0(t)→ F(x1, . . . , xn) and q1(t)→ F(x1, . . . , xn) (5.6)

to ∆2. Note that all these rewrite rules are size-reducing and linear, and that
t is in fact an n-context. Then, for each constant a ∈ (CS ∪ {S }), we add a
single-path look-ahead transition

q0(a)→ a (5.7)

to ∆1. Additionally, for each symbol f ∈ Gn of arity n > 1, ∆1 will contain
all single-path look-ahead transitions

q0(f(x1, . . . , xn))→ f(x1, . . . , xj−1,q1(xj), xj+1, . . . , xn) (5.8)

and

q1(f(x1, . . . , xn))→ f(x1, . . . , xj−1,q1(xj), xj+1, . . . , xn), (5.9)

where j ∈ { 1, . . . ,n } is an arbitrary index. The state q1 is used to guarantee
that the transitions of type (5.7) can only be applied at the root of a tree.

The automaton A simulates all derivations of G nondeterministically and
in reverse order. Let t ∈ T(F) be a ground term generated by G, and let

S⇒G t1 ⇒G · · · ⇒G ti ⇒G ti+1 ⇒G · · · ⇒G t` = t

be an arbitrary P-derivation of G. The automaton guesses in each cycle the
used production from P and applies the corresponding single-path rewrite
transition of type (5.6) from ∆2 on ti+1 in order to obtain the ancestor ti.
Then it restarts immediately. Finally, in the tail of the computation A obtains
a constant t1 ∈ (CS ∪ {S }) and accepts, because the single-path look-ahead
transitions of type (5.7) imply that t1 ∈ SG(A) is recognized.

On the other hand, for each accepting computation

t ↪→A t`−1, . . . , t2 ↪→A t1, and q0(t1)→∗∆1 t1, where t1 ∈ (CS ∪ {S }),

there is a corresponding derivation starting with S ⇒61
G t1 ⇒G t2 ⇒G · · · .

Hence, we have t ∈ L(G) if and only if t ∈ L(A).

As the tree language T4 considered in Example 5.2 is not context-free, we
obtain the following consequence.

Corollary 5.4. L (lin-CFTG) ⊆ L (spRWWT), and this inclusion is proper.

The obtained results about the expressiveness of the various types of single-
path restarting tree automata are summarized in Figure 5.1.

5.2 single-path restarting tree automata 143

L (RRWWT)

L (RWWT)

22

L (spRRWWT)

::

L (spRWWT)

22

;;

L (RRWT)

OO

L (lin-CFTG) T4

44iiiiiiii
L (RWT)

eeeeeeeeee

22eeeeeeeeee

OO

L (spRRWT)

T4

OO

T4

::uuuuuuuuuuuuuu

L (spRWT)

22eeeeeeeeeeeeeeee

T4

OO

T4

;;wwwwwwwwwwwww
L (RRT)

OO

L (RT)
eeeeeeeeeee

22eeeeeeeeeee

OO

L (spRRT)

OO

T4

::uuuuuuuuuuuuuu

L (spRT)

22eeeeeeeeeeeeeeeeeee

OO

T4

;;wwwwwwwwwwwww

L (RTG)

OO

T1

44iiiiiiii

L (↓DFT)

OO

L (sp↓NFT)

Tu

eeKKKKKKKKKKKKKK

OO

Figure 5.1: Inclusions between language classes defined by single-path
restarting tree automata and general restarting tree automata.

5.2.1 Monotone Single-Path Restarting Tree Automata

In this section we adapt the concept of monotonicity [JMPV98] for single-
path restarting tree automata. Intuitively, a restarting tree automaton is
monotone, whenever the distance of a rewrite position to the bottom of the
tree is not increasing between two consecutive cycles. However, if in a cycle
two or more rewrite transitions are applied, then the notion of a monotone
computation is not quite clear. Thus we restrict our adaption only to those
variants of restarting tree automata, which can perform at most one size-
reducing rewrite step per cycle.

Let A be a spRRWWT-automaton. Then each computation of A can be
described by a sequence of cycles C1, C2, . . . , Cn, where Cn is the last cycle,
which is followed by the tail of the computation. Each cycle Ci contains
a unique configuration of the form u1 ◦ q(t[u2,1, . . . ,u2,m]), where u1 ∈
Ctx(G, X1) is a 1-context, t ∈ Ctx(G, Xm) is an m-context, u2,1, . . . ,u2,m ∈
T(G) are ground terms, and q ∈ Q1 is a state such that a single-path rewrite
transition q(t) → t ′[x1, . . . ,q ′(xj), . . . , xm] from ∆2 is applied during this
cycle. Note that in the case m = 0 the applied transition is a final rewrite

144 variants of restarting tree automata

transition. By Db(Ci) we denote the bottom distance of this cycle, that is
defined by Db(Ci) := 1 + maxmi=1Hgt(u2,i), if m > 0, and Db(Ci) := 0

otherwise. A sequence of cycles C1, C2, . . . , Cn is called monotone, if
Db(C1) > Db(C2) > · · · > Db(Cn) holds. A computation of A is called
monotone, if the corresponding sequence of cycles is monotone. Observe
that the tail of the computation is not taken into account. Finally, the
spRRWWT-automaton A is called monotone, if each of its computations start-
ing from an initial configuration is monotone. We will use the prefix mon-
to denote classes of monotone restarting tree automata.

Example 5.3. The tree language T1 ∈ L (CFTG) r L (RTG) is recognized by the
monotone spRT-automaton A = (F, F, Q,q0,k,∆), where F := { f(·, ·),g(·),a },
Q := {q0,q1 }, and k := 2. The term-rewriting system ∆ is given by the following
single-path transition rules:

q0(f(g(x1),g(x2)))→ f(x1, x2),
q0(f(a,a))→ f(q1(a),a), q1(a)→ a.

The spRT-automaton is monotone since rewrites occur only at the root position and
the rewrite transition q0(f(g(x1),g(x2)))→ f(x1, x2) is even height-reducing.

Corollary 5.5. L (RTG) ⊆ L (mon-spRT), and this inclusion is proper.

Proof. The properness follows from Example 5.3. On the other hand, it can
easily be verified that the constructed automaton from Theorem 5.1 is in fact
monotone, because it has only final rewrite transitions in group (5.3).

On the other hand, note that the spRWWT-automaton from Example 5.2
is monotone. Thus, at least for single-path restarting tree automata with
auxiliary symbols the restriction of being monotone is not as strong as for
restarting automata on words (cf. Proposition 2.7).

Corollary 5.6. T4 ∈ L (mon-spRWWT), i.e., even monotone spRWWT-automata
can recognize tree languages that are not context-free.

5.3 ground-rewrite restarting tree automata

In this section we consider a variant, for which only the position where
rewrite transitions may be applied is somehow restricted. That means, these
automata have the full parallel reading capabilities of an ↓NFT-automaton,
however, the rewrite transitions are required to consist of ground terms only.

Definition 5.2. A ground-rewrite restarting tree automaton, gr-RWWT-auto-
maton for short, is an RWWT-automaton A = (F, G, Q,q0,k,∆) for which ∆2 only
contains final rewrite transitions, i.e., Var(l) = Var(r) = ∅, for all (l→ r) ∈ ∆2.

Obviously, for ground-rewrite restarting tree automata it is reasonable to
consider only the subtypes gr-RWWT, gr-RWT, and gr-RT, as final rewrite

5.3 ground-rewrite restarting tree automata 145

transitions do not offer the option of further regular control below a rewrit-
ten position. Thus we omit to study the gr-RRWWT-, gr-RRWT-, and gr-RRT-
automaton, because it is quite evident that they correspond to the men-
tioned subtypes, respectively.

Recall the transition rules of the second automaton from Example 4.1.
This automaton A ′ recognizes the non-regular tree language T1, and it is
in fact an gr-RT-automaton. On the other hand, from the proof of Propo-
sition 4.8 it is quite obvious that nondeterministic gr-RT-automata can still
recognize all regular tree languages without using any rewrite transition.

Corollary 5.7. L (RTG) ⊆ L (gr-RT), and this inclusion is proper.

However, from Theorem 4.2 even L (RTG) ⊆ L (det-gr-RT) follows.
In the rest of this section we will compare single-path restarting tree au-

tomata and ground-rewrite restarting tree automata with respect to their
expressive power. Only two characteristic tree languages are necessary in
order to show that both restrictions are orthogonal to each other.

First of all, it is easily seen that the tree language T6 := {gi(h(gi(a))) |

i > 0 } is recognized by an spRT-automaton since there is no branching
transition required to recognize the unary trees of this non-regular tree lan-
guage. Specifically, let F := {g(·),h(·),a } be the ranked input alphabet of
an spRT-automaton A = (F, F, {q0,q1,q2 },q0, 3,∆), where ∆ contains the
single-path look-ahead transitions

q0(g(x1))→ g(q1(x1)), q1(g(x1))→ g(q1(x1)),
q0(h(a))→ h(q2(a)), q2(a)→ a,

and the single-path rewrite transitions

q0(g(h(g(x1))))→ h(x1), q1(g(h(g(x1))))→ h(x1).

Then A accepts a ground term t ∈ T(F), if and only if t ∈ T6. However, T6
is not recognized by any gr-RWWT-automaton.

Proposition 5.2. T6 6∈ L (gr-RWWT).

Proof. Assume that a gr-RWWT-automaton A = (F, G, Q,q0,k,∆) can recog-
nize T6. Let t = gn(h(gn(a))) ∈ T6 be a ground term of sufficient height
2n+ 1. Then t 6∈ SF(A), because otherwise A would also recognize some
trees that do not belong to T6. Since A can only perform final rewrite transi-
tions, each accepting computation will contain a sequence of configurations
of the form t

(i)
1 ◦q

(i)(t
(i)
2), where t(i)1 ∈ Ctx(F, X1) is a 1-context, t(i)2 ∈ T(G)

is a ground term, and q(i) ∈ Q is a state such that t(i)1 = gn(h(gn−`(i)(x1))).
Note that A can only remember a finite amount of information about the
integer `(i) by using its internal states q(i) and the height-bounded ground
term t

(i)
2 . Thus, for a large enough value of n, there exist indices i < j

such that q(i) = q(j), t(i)2 = t
(j)
2 , and t

(j)
1 ◦ g

`(x1) = t
(i)
1 for some ` > 1.

Hence, A can rewrite the input gn(h(gn+`(a))) 6∈ T6 into a configuration
t
(j)
1 ◦ g

`(q(j)(t
(j)
2)) = t

(i)
1 ◦ q

(i)(t
(i)
2). Thus, A will also accept the term

gn(h(gn+`(a))), which contradicts our assumption.

146 variants of restarting tree automata

On the other hand, the non-regular tree language

T7 :=
{
f(gi(a),gi(a)) | i > 0

}
∪
{
f(gi(a),g2i(b)) | i > 0

}
can be recognized by the gr-RT-automaton A = (F, F, Q,q0,k,∆), where
F := { f(·, ·),g(·),a,b }, Q := {q0,q1,q2,q3 }, k := 2, and ∆ contains the
following set of transition rules:

q0(f(a,a))→ f(q3(a),q3(a)), q3(a)→ a,
q0(f(a,b))→ f(q3(a),q3(b)), q3(b)→ b,

q0(f(x1, x2))→ f(q1(x1),q2(x2)),
q1(g(x1))→ g(q1(x1)), q2(g(x1))→ g(q2(x1)),
q1(g(a))→ a, q2(g(a))→ a,

q2(g(g(b)))→ b.

Note that the automaton A can use the inherent synchronization mechanism
of restarting tree automata to compare the number of g’s in each branch. In
particular it performs in parallel a corresponding reduction at the bottom of
the tree, depending on the respective constant at the leaf. Thus it is easily
seen that L(A) = T7 holds.

On the other hand, T7 is not recognized by any spRWT-automaton, be-
cause no synchronization between the branches can be established without
using auxiliary symbols.

Proposition 5.3. T7 6∈ L (spRWT).

Proof. Assume that a spRWT-automaton A = (F, F, Q,q0,k,∆) can recognize
the tree language T7. Let t = f(gn(a),gn(a)) ∈ T7 be a ground term of
sufficient height n + 1. Of course, if n is large enough, then t cannot be
recognized in a tail only. Now consider the following two cases:

1. Assume that t is accepted by A in a computation using at least one
rewrite transition that has the outermost symbol f in its scope, i.e., a
single-path rewrite transition of the form

q0(f(g
i(x1),gj(x2)))→ f(gi−`(x1),gj−`(x2))

is applied, where w.l.o.g. 0 < ` 6 i 6 j < k are some integers. Then A

can use this transition to rewrite the input f(gn+`(a),g2n+`(b)) 6∈ T7
to the ground term f(gn(a),g2n(b)), which is finally accepted by A.
However, this contradicts the error preserving property. On the other
hand, if a single-path rewrite transition of the form

q0(f(g
i(x1),gj(x2)))→ f(gi−`(x1),gj−2`(x2))

is applied to f(gn+`(a),gn+2`(a)) 6∈ T7, then f(gn(a),gn(a)) ∈ L(A) is
obtained. This violates the error preserving property again.

5.4 ground-rewrite single-path restarting tree automata 147

2. Assume that t is recognized by A in a computation using only rewrite
transitions that do not include the symbol f. Then A must decide in
which branch it will reduce the number of g’s, because it is a single-
path automaton. W.l.o.g. assume that after the first cycle a stateless
configuration of the form f(gn(a),gn−`(a)) is obtained, for some inte-
ger ` > 1. Thus by the correctness preserving property A also accepts
the ground term f(gn(a),gn−`(a)) 6∈ T7. Again this contradicts our
assumption, which completes the proof.

Proposition 5.2 and Proposition 5.3 yield the following consequences.

Corollary 5.8. T6 ∈ L (spRT) r L (gr-RWWT).

Corollary 5.9. T7 ∈ L (gr-RT) r L (spRWT).

In particular, from these results it follows that the tree language classes
L (spXT) and L (gr-YT) are incomparable with respect to set inclusion, for
any type X ∈ { R, RR, RW, RRW } and Y ∈ { R, RW }.

On the other hand, note that the tree language T7 can be recognized by
an spRWWT-automaton using a similar technique as in Example 5.2. Thus
it remains open, whether the inclusion L (gr-RWWT) (L (spRWWT) holds.

5.4 ground-rewrite single-path restarting tree automata

By combining the restriction of admitting only final rewrite transitions and
the restriction of walking down a single path only we obtain the ground-
rewrite single-path restarting tree automaton.

Definition 5.3. A ground-rewrite single-path RWWT-automaton, for short
gr-spRWWT-automaton, is a spRWWT-automaton A = (F, G, Q,q0,k,∆) such
that ∆2 contains only final rewrite transitions.

In the proof of Theorem 5.1 it is shown how to construct a nondeterministic
spRT-automaton that recognizes a given regular tree language. In fact, all
rewrite transitions of that spRT-automaton are ground. Thus, we obtain the
following corollary.

Corollary 5.10. L (RTG) ⊆ L (gr-spRT).

However, it remains open whether gr-spXT-automata can recognize any non-
regular tree language, for some X ∈ { R, RW, RWW }. On the other hand, by
combining the arguments used in the proofs of Proposition 5.2 and Proposi-
tion 5.3 it can be shown that neither T6 nor T7 is recognized by a gr-spRWWT-
automaton.

148 variants of restarting tree automata

L (RWWT)

L (gr-RWWT)
T6

22eeeeeeeeeeeeeeeee

L (spRWWT)

;;

L (gr-spRWWT)

T6 22dddddddddddddddddd
T7

99rrrrrrrrrrrrrrr
L (RWT)

OO

L (gr-RWT) T6

eeeeeeeeee

22eeeeeeeeee

OO

L (lin-CFTG)
T4

44ii
L (spRWT)

T4

OO

T4

;;vvvvvvvvvvvvv

L (gr-spRWT)
T6

22dddddddddddddddddddd

OO

T7

99rrrrrrrrrrrrrrr
L (RT)

OO

L (gr-RT) T6

eeeeeeeeeee

22eeeeeeeeeee

OO

L (spRT)

OO

T4

;;vvvvvvvvvvvvv

L (gr-spRT)
T6

22dddddddddddddddddddddd

OO

T7

99rrrrrrrrrrrrrrr

L (RTG)

OO

44

Figure 5.2: Inclusions between tree language classes defined by single-path
resp. ground-rewrite restarting tree automata and their combi-
nation.

6C O N C L U S I O N

The last chapter is devoted to summarize the results obtained in the pre-
vious chapters. Moreover, some open problems and further research direc-
tions are briefly discussed. Finally, we will address a few ideas and thoughts
that may stimulate applications for restarting tree automata.

6.1 summary

The main purpose of this work was the generalization of an automaton
model originating from the linguistic concept called analysis by reduction.
Due to the increasing impact of tree automata and term-rewriting systems
in many applications [CDG+

07] it is quite natural to study restarting au-
tomata on trees. This generalization seems to be particularly promising in
the context of linguistic applications, for example, as syntactic and depen-
dency information of natural languages [Pal99, Mod75, KM07] can be rep-
resented in form of trees. Thus, as the main topic of this thesis restarting
tree automata were studied, essentially in order to extend the scope of the
original restarting automaton. However, the contribution is manifold.

1. Tail-rewrite-free restarting automata have been introduced and studied
in a short section of the second chapter. This restricted variant of
a restarting automaton is not able to perform a rewrite step in the
tail of any computation. Obviously, R-, RW-, and RWW-automata are
tail-rewrite-free by definition, because after a rewrite step they will im-
mediately restart. Moreover, it has been shown that, for each type of
restarting automaton, there exists an equivalent nondeterministic tail-
rewrite-free restarting automaton of the same type. Thus, as long as
the nondeterministic model is concerned tail-rewrite-freeness does not
limit the expressive power of restarting automata. However, for deter-
ministic RR- and RRW-automata the property of being tail-rewrite-free
turned out to be a proper restriction.

2. In the third chapter we have derived a normal form for linear context-
free tree grammars. The so-called growing context-free tree grammars are
a straight-forward generalization of the strictly monotonous phrase-
structure grammars, however, only linear and context-free productions
are allowed. This restriction was particularly needed in order to ob-
tain a suitable characterization of the linear context-free tree languages,
which are of paramount interest for linguistic purposes. Moreover,
growing context-free tree grammars require that the right-hand side
of every production is a context rather than only a linear term. Never-
theless it was shown that this restriction does not matter in the linear
case, and thus L (lin-CFTG) = L (grow-CFTG) holds.

149

150 conclusion

3. The main part was concerned with the generalization of the restarting
automaton. The model of iterated top-down tree automata has been
served as a template in order to adapt the concept of analysis by re-
duction for nonlinear data structures, i.e., for finite ordered ranked
trees and equivalently for finite first-order terms over a single-sorted
signature. First of all, the design criteria for the proposed generaliza-
tion of restarting automata and the induced differences with respect to
the original automaton model were discussed. After providing a for-
mal definition in the framework of term-rewriting systems some nor-
malization results have been established, mainly in order to simplify
subsequent constructions accordingly. Then the basic properties of
restarting tree automata were explored and the expressive power was
studied in some detail. It turned out that most features of the original
model carry over to the suggested tree automaton model, for exam-
ple, the error preserving property, the correctness preserving property,
and the ‘pumping lemma’. Thus, restarting tree automata offer the
same nice properties that are particularly useful for linguistic applica-
tions. Regarding the expressive power the following results have been
shown:

- Apart from a small deviation coming from the property of being
tail-rewrite-free, the introduced tree automaton model faithfully
mirrors the expressive power of restarting automata with respect
to monadic tree structures. However, this holds only for those
types of restarting tree automata that cannot make use of aux-
iliary symbols, i.e., RT-, RRT-, RWT-, and RRWT-automata, as
Example 4.4 shows. Thus, essentially the same lower and upper
bound languages could be used in order to show the properness
of the inclusions between the various tree language classes (cf.
Figure 4.11 and Figure 4.12) defined by different types of (deter-
ministic) restarting tree automata.

- Due to the derived normal form for linear context-free tree gram-
mars it was shown, that nondeterministic RWWT-automata are
capable of recognizing each linear context-free tree language. On
the other hand, even deterministic RT-automata can recognize
tree languages that are not context-free. Thus they are fairly ex-
pressive in contrast to PDT-automata.

- Moreover, using a straight-forward pumping argument it was
shown that each regular tree language is recognized by some de-
terministic RT-automaton.

Then the hierarchy results of Mraź [Mrá01] with respect to the height
of the look-ahead were adapted, and the induced path languages resp.
yield languages were rudimentary considered. Finally, several closure
and non-closure properties (cf. Table 4.1) were established. Regarding
the most common decision problems of tree automata the following
results have been obtained:

6.2 open problems 151

- The uniform membership problem is decidable in polynomial
time, for any class of restarting tree automata. This result is essen-
tially due to the size-reducing rewrite transitions which impose
an upper bound on the total number of executed cycles.

- The emptiness problem is decidable, however, only for restarting
tree automata without auxiliary symbols. The problem is even un-
decidable for deterministic RWWT- and RRWWT-automata due
to the characterization of the Church-Rosser languages by RWW-
and RRWW-automata and the correspondence of restarting au-
tomata and restarting tree automata.

- The intersection emptiness problem is undecidable, for any non-
deterministic class of restarting tree automata.

4. Last but not least, two restricted variants of restarting tree automata
were studied in the fifth chapter—the single-path restarting tree au-
tomaton and the ground-rewrite restarting tree automaton. It turned
out that both kinds of restriction are in some sense orthogonal to each
other. However, both types of automata are still capable of recogniz-
ing each regular tree language. Single-path restarting tree automata
with auxiliary symbols can even recognize all linear context-free tree
languages, i.e., the inclusion L (lin-CFTG) (L (spRWWT) holds.

To sum up, the present work is essentially a comprehensive study of a new
tree automaton model. It proposes a straight-forward generalization of the
restarting automaton to the case of trees, studies its expressive power and
formal properties, and outlines some possible variations.

6.2 open problems

Unfortunately, some important questions about restarting tree automata and
the derived variants remain still open. The following list sketches only those
questions which seem to have crucial impact.

Chapter 4, Section “Basic Properties”

1. Does there exist a normalization procedure which transforms each
restarting tree automaton into a reduced automaton, i.e., an automa-
ton whose representation contains no useless transition rules?

2. For which restricted type of restarting tree automaton is it possible
to describe the inverse of the cycle move relation ↪→∗A by a somehow
‘well-behaved’ tree transformation [Eng75, GV96, GS97, FV01, FT02]?

Chapter 4, Section “Expressive Power”

1. Does the inclusion L (CFTG) (L (RWWT) hold, i.e., does there exist a
corresponding RWWT-automaton for each context-free tree language?

152 conclusion

An affirmative answer to this question suffers from the following prob-
lem: In general, a one-to-one simulation of a nonlinear context-free
production or a corresponding transition of a PDT-automaton seems
to be hard to achieve, because the definition of a restarting tree au-
tomaton permits only linear transition rules. Specifically, checking
whether two or more unbounded branches are equal while simultane-
ously preserving one untouched copy is probably a challenging task.
Moreover, for nonlinear context-free tree grammars the used deriva-
tion mode matters and thus the simulation must pay attention to the
order of the applied productions.

On the other hand, we are not aware of any context-free tree language
that is not recognized by a restarting tree automaton. This leads to the
following opposite question.

2. Does there exist a context-free tree language that is not recognized by
any XT-automaton, for some X ∈ { R, RW, RR, RRW, RWW, RRWW }?

This would imply that L (CFTG) and L (XT) are incomparable with
respect to set inclusion, since the tree language T4 6∈ L (CFTG) is rec-
ognized by a deterministic RT-automaton.

3. Are there any relationships to synchronized tree automata [Sal94], syn-
chronized (contextfree) tree-tuple languages [LR97, GRS01, RCC05], and
branching pushdown tree automata [AC06]?

For example, the tree language T4 ∈ L (det-RT) is generated by the fol-
lowing non-copying synchronized-contextfree logic program [CCR06]:

Prog =


S(f̂(x,y)← P(x̂, ŷ,a,a).

P(ĝ(x), ĝ(y), x ′,y ′)← P(x̂, ŷ,h(x ′),h(y ′)).
P(x̂, ŷ, x,y)← .

 .

Note that the hat accent denotes the output arguments of the corre-
sponding predicate symbol P resp S and should not be confused with
the mapping ̂ : Σ∗ → T(FΣ) defined in Chapter 2.

On the other hand, it is known that synchronized-contextfree tree-
tuple languages have a decidable emptiness problem and that they
are closed under union. Thus, this family of tree languages is not a su-
perset of any class defined by restarting tree automata with auxiliary
symbols. However, an exact relationship with respect to set inclusion
remains open.

Chapter 4, Section “Closure Properties”

1. Does there exist a class of deterministic restarting tree automata that
is closed under complementation?

It is known that all deterministic classes of restarting automata are
closed under complementation. However, for restarting tree automata

6.3 further research 153

it is currently open, whether a similar result holds. The main troubles
of a corresponding construction are due to the needed synchronization
between parallel branches of a computation.

Chapter 5, Section “Single-Path Restarting Tree Automata”

1. How should the definition of monotonicity be modified in order to
limit the expressive power of mon-spRRWWT-automata to a subclass
of the context-free tree languages?

Chapter 5, Section “Ground-Rewrite Restarting Tree Automata”

1. Is any of the inclusions L (gr-RT) ⊆ L (gr-RWT) ⊆ L (gr-RWWT)
proper?

2. Are the tree language classes L (gr-RWWT) and L (spRWWT) incom-
parable with respect to set inclusion?

Chapter 5, Section “Ground-Rewrite Single-Path Restarting Tree Automata”

1. Does there exist a gr-spRT-, gr-spRWT-, or gr-spRWWT-automaton rec-
ognizing any non-regular tree language?

If L (RTG) = L (gr-spRWT), then L (RTG) = L (gr-spRWWT) follows.
Obviously, for each gr-spRWWT-automaton A = (F, G, Q,q0,k,∆) there
exists a gr-spRWT-automaton A ′ = (G, G, Q,q0,k,∆) such that L(A) =

L(A ′) ∩ T(F). If L(A ′) is regular, then so is L(A) since regular tree
languages are closed under intersection.

2. Can each gr-spRWWT-automaton be converted into an equivalent auto-
maton A of the same type whose auxiliary simple tree language SG(A)

is finite?

This question is related to the notion of weak cyclic form [Plá99, MPP99]
for restarting automata on words.

3. How does the expressive power change, if a ground-rewrite single-
path restarting tree automaton is allowed to perform rewrite steps that
are size-preserving or size-increasing?

6.3 further research

Now we will discuss a few questions and ideas that are perhaps a good
starting point for further research. First of all, there are some specific ques-
tions regarding the introduced generalization of restarting automata that
are worth to be considered in more detail:

- For a compact description of the term-rewriting system ∆ of a given
restarting tree automaton A it is reasonable to look for something like

154 conclusion

meta-instructions [NO01]. In general a rewrite transition from ∆ can be
applied in each root-to-leaf path of the current tree and after perform-
ing the rewrite some further regular conditions are verified. Thus, a
combination of several regular tree expressions [CDG+

07] embedded in
a modified rewrite transition seems to be the most promising approach
in order to obtain such a compact form of description.

- In [MPP99] three different levels of determinism for restarting au-
tomata have been studied. Regarding restarting tree automata there
are even some further possibilities. For example, a variant can be
based on the confluence property [Mrá04], i.e., a restarting tree au-
tomaton A is called confluent, if the induced reduction system RA =

(T(G), ↪→∗A) is confluent. Obviously, this is a relaxation of the deter-
minism defined in Chapter 4. However, here the following question
is raised: Is it decidable, whether or not an RRWWT-automaton A is
confluent?

Note that the answer to this question is not trivial since in general
a regular control and multiple rewrites are involved. Of course, it is
decidable whether the size-reducing term-rewriting system

R =

{
(t→ t ′)

∣∣∣ q(t)→ t ′[q1(x1), . . . ,qm(xm)]

is a rewrite transition from ∆

}
is confluent. However, RA can be confluent, even if R is not.

Secondly, we will mention some further restricted or further generalized
variants of restarting tree automata. In fact, we argue that these variations
have the potential to stimulate new usage scenarios and research directions.

Single-Rewrite Restarting Tree Automata

A single-rewrite restarting tree automata is a restricted variant which can ap-
ply only one rewrite transition per cycle. This specific behavior is achieved
through a similar technique as initially used in the proof of Theorem 4.1.
That means, the first partition Q1 of the state set Q is further divided into
the partition Q1,1 and Q1,2. Then, q0 ∈ Q1,2 and the rewrite transitions are
required to be of the form q(t) → t ′[q1(x1), . . . ,qm(xm)], where q ∈ Q1,2
and q1, . . . ,qm ∈ Q2. Moreover, each look-ahead transition from ∆1 is of
the form

q(f(s1, . . . , sn))→ f(q1(s1), . . . ,qn(sn))

such that either q ∈ Q1,1 and q1, . . . ,qn ∈ Q1,1 or q ∈ Q1,2 and there exists
an integer i ∈ { 1, . . . ,n } satisfying qi ∈ Q1,2 and q1, . . . ,qi−1,qi+1, . . . ,qn ∈
Q1,1. Thus, in contrast to a single-path restarting tree automaton this variant
still permits to verify regular conditions on each root-to-leaf path.

Obviously, for each single-path restarting tree automaton there exists an
equivalent single-rewrite restarting tree automaton. Moreover, by similar

6.3 further research 155

arguments as in the proof of Lemma 5.1 it can be shown that the tree lan-
guage T4 is not recognized by a single-rewrite automaton without auxiliary
symbols. However, it is not that obvious whether the single-path variant
forms a proper subclass of single-rewrite restarting tree automata.

Generalized-Rewrite Restarting Tree Automata

This variant discards the restriction that the right-hand side of every rewrite
transition q(t) → t ′[· · ·] is an m-context, for some integer m > 0. Now it
is only required that t ′ is a linear term from T(G, Xm) such that ‖t‖ > ‖t ′‖
and Hgt(t) < k. Thus, a generalized-rewrite restarting tree automaton is
able to reorder or even to remove unbounded subtrees, e.g. using rewrite
transitions like q(f(g(x1),g(x2)))→ g(q ′(x1)). However, such a generalized
automaton model no longer obeys the notion of ‘local replacements’.

Height-Reducing Restarting Tree Automata

Another variant is obtained by requiring the rewrite transitions to be height-
reducing rather than size-reducing. A restarting tree automaton A is called
height-reducing, if each rewrite transition is height-reducing, i.e., Hgt(t) >
Hgt(t ′), for all rewrite transitions q(t) → t ′[q1(x1), . . . ,qm(xm)] from ∆.
It is quite obvious that a size-reducing rewrite transition is not necessarily
height-reducing, however, similarly a height-reducing rewrite transition can
be size-preserving or even size-increasing.

Observe that a height-reducing restarting tree automaton can only per-
form finitely many subsequent cycles in which only size-preserving or size-
increasing rewrites will take place, because the working alphabet and thus
the arity of each symbol is fixed. However, it is not clear whether this fact
helps in order to prove an equivalence of the recognized tree languages.

If G is a ranked working alphabet that only contains unary symbols and
constants, then the properties of being height-reducing and size-reducing
are equivalent, i.e., the corresponding tree language families coincide.

Unranked Restarting Tree Automata

So far restarting tree automata have only recognized finite trees composed
of symbols from a ranked alphabet. In fact, it is an open research project to
generalize restarting tree automata for unranked trees [CDG+

07, Chapter 8].
Such a generalized variant may be of particular interest from a practical
point of view, as finite unranked trees constitute a formal model for semi-
structured data represented, for example, by XML documents.

Specifically, the representation of restarting tree automata by means of a fi-
nite term-rewriting system must be dropped, either in favor of iterated hedge
automata [Cou89, Mur99, CDG+

07] with an additional rewriting capability
or in favor of a hedge-rewriting system [JR08].

156 conclusion

Two-Way Restarting Tree Automata

Moreover, it is also an open project to extend restarting tree automata in
order to cover the RLWW-automaton model, i.e., if MVL-instructions are
involved. Such an extension can be either based on reversed look-ahead
transitions of the form

f(q1(s1), . . . ,qn(sn))→ q(f(s1, . . . , sn))

leading to the classical branching two-way tree automaton [Mor94, BKW02]
or a more sophisticated walking strategy. For the latter variant, i.e., the
restarting tree walking automaton, many different strategies could be consid-
ered [AU71, ERS80, KS81, EH99].

6.4 applications

Finally, we will outline some usage scenarios for restarting tree automata.
However, most of the sketched ideas need an even more generalized model
of restarting tree automaton as presented on the previous pages.

Linguistic

As already pointed out, restarting tree automata may be utilized in order
to take care of the syntactic structure and tree-like dependency information
in natural language processing. Specifically, annotated linguistic data is
often represented in form of trees stored in so-called treebanks, e.g. the Penn
Treebank [MSM93, M+

95] and the Prague Dependency Treebank [Haj98,
H+

01]. Thus, on the one hand, restarting tree automata can constitute a
compact representation for certain parts of a treebank, and thus they are
able to describe the core of some natural language phenomena. On the
other hand, they may be helpful in carrying out analysis by reduction on
an annotated corpus itself, for instance, in order to determine the inherent
dependency structure of a treebank.

Moreover, since RWWT-automata are able to recognize all linear context-
free tree languages, many different linguistic formalisms [SW94, dGP04]
are subsumed by restarting tree automata. Thus, the presented automaton
model can constitute a uniform framework for those linguistic formalisms.

Rewriting and Narrowing Strategies

Finite tree automata have already been used to express the descendants of
a regular set of ground terms of a constructor-based rewrite system with
respect to a given rewriting strategy [Rét99, RV05]. Similarly, restarting
tree automata can verify several regular conditions in a tree and finally ap-
ply a rewrite transition. Thus, the proposed model is able to simulate cer-
tain reduction strategies [O’D77, Klo92, BN98], e.g. parallel-outermost and
leftmost-outermost, for restricted term-rewriting systems [AM96, HLM98].

6.4 applications 157

A sequence of reductions t0 →R,Z t1 →R,Z · · · →R,Z tn, where Z is a spe-
cific strategy for selecting a redex in t0, . . . , tn−1, can be represented by a
sequence of cycles t0 ↪→A t1 ↪→A · · · ↪→A tn and a regular set of normal
forms SF(A) described by the restarting tree automaton A. Hence, some
properties of the term-rewriting system R with respect to the strategy Z can
be deduced from the recognized tree language L(A). Of course, the rewrit-
ing system R must fulfill the constraints of the rewrite transitions of A, i.e.,
it has to be finite, linear, and size-reducing, if generalized-rewrite restarting
tree automata are considered.

Representation of Biological Sequences

Recently, tree-adjoining grammars and macro grammars have gained atten-
tion in bioinformatics [UHKY99, SK05, KSK05, MSS05]. In particular, they
have been used to represent the secondary structure of biological sequences
such as ribonucleic acid (RNA) and protein. As tree adjoining grammars
are in some sense equivalent to linear context-free tree grammars, restarting
tree automata may be an adequate tool for analyzing these sequences.

B I B L I O G R A P H Y

[AB81] Egidio Astesiano and Corrado Böhm, editors. CAAP ’81, Trees
in Algebra and Programming, 6th Colloquium, Genoa, Italy, March
5–7, 1981, Proceedings, volume 112 of Lecture Notes in Computer
Science. Springer-Verlag, 1981.

[AB07] Sanjeev Arora and Boaz Barak. Complexity Theory: A Mod-
ern Approach. Internet Draft available on: http://www.cs.
princeton.edu/theory/complexity/, January 2007. Princeton
University.

[AC06] Rajeev Alur and Swarat Chaudhuri. Branching Pushdown
Tree Automata. In S. Arun-Kumar and Naveen Garg, editors,
FSTTCS, volume 4337 of Lecture Notes in Computer Science, pages
393–404. Springer-Verlag, 2006.

[AD76] André Arnold and Max Dauchet. Un Théorème de Duplication
pour les Forêts Algébriques. Journal of Computer and System Sci-
ences, 13:223–244, 1976.

[AG68] Michael A. Arbib and Yehoshafat Give’on. Algebra Automata
I: Parallel Programming as a Prolegomena to the Categorical
Approach. Information and Control, 12(4):331–345, 1968.

[Aho68] Alfred V. Aho. Indexed Grammars—An Extension of Context-
Free Grammars. Journal of the ACM, 15(4):647–671, 1968.

[Aho69] Alfred V. Aho. Nested Stack Automata. Journal of the ACM,
16(3):383–406, 1969.

[AL80] André Arnold and Bernard Leguy. Une Propriété des Forêts
Algébriques “de Greibach”. Information and Control, 46(2):108–
134, 1980.

[AM96] Sergio Antoy and Aart Middeldorp. A Sequential Reduction
Strategy. Theoretical Computer Science, 165(1):75–95, 1996.

[AN77] André Arnold and Maurice Nivat. Non Deterministic Recursive
Program Schemes. In Karpinski [Kar77], pages 12–21.

[AN80] André Arnold and Maurice Nivat. Formal Computations of
Non Deterministic Recursive Program Schemes. Mathematical
Systems Theory, 13:219–236, 1980.

[AR00] Anne Abeillé and Owen Rambow, editors. Tree Adjoining Gram-
mars: Formalisms, Linguistic Analysis and Processing. Mathemati-
cal, Computational and Linguistic Properties. CSLI Publications,
Stanford, 2000.

159

http://www.cs.princeton.edu/theory/complexity/
http://www.cs.princeton.edu/theory/complexity/

160 bibliography

[AU71] Alfred V. Aho and Jeffrey D. Ullman. Translations on a Context-
Free Grammar. Information and Control, 19(5):439–475, 1971.

[AU72] Alfred V. Aho and Jeffry D. Ullman. The Theory of Parsing, Trans-
lation, and Compiling, volume I: Parsing. Prentice-Hall, 1972.

[BHPS61] Yehoshua Bar-Hillel, Micha Perles, and Eliyahu Shamir. On For-
mal Properties of Simple Phrase Structure Grammars. Zeitschrift
für Phonetik, Sprachwissenschaft und Kommunikationsforschung,
14:143–172, 1961.

[BKW02] Anne Brüggemann-Klein and Derick Wood. The Regularity of
Two-Way Nondeterministic Tree Automata Languages. Inter-
national Journal of Foundations of Computer Science, 13(1):67–81,
2002.

[BL92] Gerhard Buntrock and Krzysztof Loryś. On Growing Context-
Sensitive Languages. In Kuich [Kui92], pages 77–88.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That.
Cambridge University Press, 1998.

[BO84] Günther Bauer and Friedrich Otto. Finite Complete Rewriting
Systems and the Complexity of the Word Problem. Acta Infor-
matica, 21(5):521–540, 1984.

[BO93] Ronald V. Book and Friedrich Otto. String-Rewriting Systems.
Texts and Monographs in Computer Science. Springer-Verlag,
1993.

[BO98] Gerhard Buntrock and Friedrich Otto. Growing Context-
Sensitive Languages and Church-Rosser Languages. Information
and Computation, 141(1):1–36, 1998.

[Bra68] Walter S. Brainerd. The Minimalization of Tree Automata. Infor-
mation and Control, 13(5):484–491, 1968.

[Bra69] Walter S. Brainerd. Tree Generating Regular Systems. Informa-
tion and Control, 14(2):217–231, 1969.

[Büc60] J. Richard Büchi. On a Decision Method in Restricted Second
Order Arithmetic. In Ernest Nagel, Patrick Suppes, and Alfred
Tarski, editors, Proceedings of the International Congress on Logic
Methodology and Philosophy of Science, pages 1–11, 1960.

[Bun96] Gerhard Buntrock. Wachsende kontext-sensitive Sprachen. Ha-
bilitationsschrift, University of Würzburg, 1996.

[CCD04] Cristian Calude, Elena Calude, and Michael J. Dinneen, edi-
tors. Developments in Language Theory, 8th International Confer-
ence, DLT 2004, Auckland, New Zealand, December 13-17, 2004,

bibliography 161

Proceedings, volume 3340 of Lecture Notes in Computer Science.
Springer-Verlag, 2004.

[CCR06] Jacques Chabin, Jing Chen, and Pierre Réty. Synchronized-
ContextFree Tree-tuple Languages. Technical Report 2006-13,
Laboratoire d’Informatique Fondamentale d’Orléans, Univer-
site d’Orléans, 2006.

[CDG94] Jean-Luc Coquidé, Max Dauchet, and Rémi Gilleron. Bottom-up
Tree Pushdown Automata: Classification and Connection with
Rewrite Systems. Theoretical Computer Science, 127:69–98, 1994.

[CDG+
07] Hubert Comon, Max Dauchet, Rémi Gilleron, Christof Löding,

Florent Jacquemard, Denis Lugiez, Sophie Tison, and Marc Tom-
masi. Tree Automata Techniques and Applications. Available
on: http://tata.gforge.inria.fr/, 2007. Release October,
12th 2007.

[CDGV94] Jean-Luc Coquidé, Max Dauchet, Rémi Gilleron, and Sándor
Vágvölgyi. Bottom-Up Tree Pushdown Automata: Classifica-
tion and Connection with Rewrite Systems. Theoretical Computer
Science, 127(1):69–98, 1994.

[CGN01] Hubert Comon, Guillem Godoy, and Robert Nieuwenhuis. The
Confluence of Ground Term Rewrite Systems is Decidable in
Polynomial Time. In Foundations of Computer Science, Proceedings
of the 42nd IEEE Symposium, pages 298–307, 2001.

[Cho56] Noam Chomsky. Three Models for the Description of Language.
IRE Transactions on Information Theory, 2(3):113–124, 1956.

[Cho59] Noam Chomsky. On Certain Formal Properties of Grammars.
Information and Control, 2(2):137–167, 1959.

[Cou78] Bruno Courcelle. A Representation of Trees by Languages (Part
I). Theoretical Computer Science, 6:255–279, 1978.

[Cou86] Bruno Courcelle. Equivalences and Transformations of Regu-
lar Systems-Applications to Recursive Program Schemes and
Grammars. Theoretical Computer Science, 42:1–122, 1986.

[Cou89] Bruno Courcelle. Resolution of Equations in Algebraic Structures,
chapter On Recognizable Sets and Tree Automata, pages 93–126.
Academic Press, 1989.

[Cou90] Bruno Courcelle. Handbook of Theoretical Computer Science, vol-
ume B, chapter Recursive Applicative Program Schemes, pages
459–492. Elsevier, 1990.

[CPV85] Michal P. Chytil, Martin Plátek, and Jörg Vogel. A Note on
the Chomsky Hierarchy. Bulletin of the European Association for
Theoretical Computer Science, 27:23–29, 1985.

http://tata.gforge.inria.fr/

162 bibliography

[CR36] Alonzo Church and J. Barkley Rosser. Some Properties of
Conversion. Transactions of the American Mathematical Society,
39(3):472–482, 1936.

[Dau88] Max Dauchet. Termination of Rewriting is Undecidable in the
One-Rule Case. In Proceedings of the 14th International Symposium
on Mathematical Foundations of Computer Science (MFCS), volume
324 of Lecture Notes in Computer Science, pages 262–270, 1988.

[Dau89] Max Dauchet. Simulation of Turning Machines by a Left-Linear
Rewrite Rule. In Proceedings of the 3rd International Conference
on Rewriting Techniques and Applications (RTA), volume 355 of
Lecture Notes in Computer Science, pages 109–120, 1989.

[Dau92] Max Dauchet. Simulation of Turing Machines by a Regular
Rewrite Rule. Theoretical Computer Science, 103(2):409–420, 1992.

[DC05] Mark Dras and Steve Cassidy. Formal Grammars for Linguistic
Treebank Queries. In Proceedings of the Australasian Language
Technology Workshop 2005 (ALTW 2005), pages 96–104, 2005.

[Der82] Nachum Dershowitz. Ordering for Term-Rewriting Systems.
Theoretical Computer Science, 17:279–301, 1982.

[dGP04] Philippe de Groote and Sylvain Pogodalla. On the Expressive
Power of Abstract Categorial Grammars: Representing Context-
Free Formalisms. Journal of Logic, Language and Information,
13(4):421–438, 2004.

[Die00] Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in
Mathematics. Springer-Verlag, 2000. Second Edition.

[DJ90] Nachum Dershowitz and Jean-Pierre Jouannaud. Handbook of
Theoretical Computer Science, volume B, chapter Rewrite Systems,
pages 243–320. Elsevier, 1990.

[DJ91] Nachum Dershowitz and Jean-Pierre Jouannaud. Notations for
Rewriting. Bulletin of the EATCS, 43:162–172, 1991.

[Don65] John E. Doner. Decidability of the Weak Second-Order Theory
of Two Successors. Notices of the American Mathematical Society,
12:819, 1965. Abstract 65T-468.

[Don70] John E. Doner. Tree Acceptors and Some of Their Applications.
Journal of Computer and System Sciences, 4(5):406–451, 1970.

[DT90] Max Dauchet and Sophie Tison. The Theory of Ground Rewrite
Systems is Decidable. In LICS, pages 242–248. IEEE Computer
Society, 1990.

bibliography 163

[DW86] Elias Dahlhaus and Manfred K. Warmuth. Membership for
Growing Context-Sensitive Grammars is Polynomial. Journal
of Computer and System Sciences, 33(3):456–472, 1986.

[EH99] Joost Engelfriet and Hendrik Jan Hoogeboom. Tree-Walking
Pebble Automata. In Karhumäki et al. [KMPR99], pages 72–83.

[EM98] Joost Engelfriet and Sebastian Maneth. Tree Languages Gen-
erated be Context-Free Graph Grammars. In Hartmut Ehrig,
Gregor Engels, Hans-Jörg Kreowski, and Grzegorz Rozenberg,
editors, TAGT, volume 1764 of Lecture Notes in Computer Science,
pages 15–29. Springer-Verlag, 1998.

[EM99] Joost Engelfriet and Sebastian Maneth. Macro Tree Transduc-
ers, Attribute Grammars, and MSO Definable Tree Translations.
Information and Computation, 154(1):34–91, 1999.

[Eng75] Joost Engelfriet. Bottom-up and Top-down Tree Transforma-
tions – A Comparison. Mathematical Systems Theory, 9(3):198–
231, 1975.

[ERS80] Joost Engelfriet, Grzegorz Rozenberg, and Giora Slutzki. Tree
Transducers, L Systems, and Two-Way Machines. Journal of Com-
puter and System Sciences, 20(2):150–202, 1980.

[ES77] Joost Engelfriet and Erik M. Schmidt. IO and OI. (Part I). Journal
of Computer and System Sciences, 15(3):328–353, 1977.

[EW67] Samuel Eilenberg and Jesse B. Wright. Automata in General
Algebras. Information and Control, 11(4):452–470, 1967.

[FGT04] Guillaume Feuillade, Thomas Genet, and Valérie Viet Triem
Tong. Reachability Analysis over Term Rewriting Systems. Jour-
nal of Automated Reasoning, 33(3–4):341–383, 2004.

[Fis68a] Michael J. Fischer. Grammars with Macro-Like Productions. In
IEEE Conference Record of 9th Annual Symposium on Switching and
Automata Theory, pages 131–142, 1968.

[Fis68b] Michael J. Fischer. Grammars with Macro-Like Productions. PhD
thesis, Harvard University, U.S.A., 1968.

[FJSV98] Zoltán Fülöp, Eija Jurvanen, Magnus Steinby, and Sándor
Vágvölgyi. On One-Pass Term Rewriting. In Lubos Brim, Jozef
Gruska, and Jirı́ Zlatuska, editors, MFCS, volume 1450 of Lec-
ture Notes in Computer Science, pages 248–256. Springer-Verlag,
1998.

[FK00] Akio Fujiyoshi and Takumi Kasai. Spinal-Formed Context-Free
Tree Grammars. Theory of Computing Systems, 33(1):59–83, 2000.

164 bibliography

[FK05] Akio Fujiyoshi and Ikuo Kawaharada. Deterministic Recogni-
tion of Trees Accepted by a Linear Pushdown Tree Automaton.
In Jacques Farré, Igor Litovsky, and Sylvain Schmitz, editors,
CIAA, volume 3845 of Lecture Notes in Computer Science, pages
129–140. Springer-Verlag, 2005.

[Flo63] Robert W. Floyd. Syntactic Analysis and Operator Precedence.
Journal of the ACM, 10(3):316–333, 1963.

[FT02] Zoltán Fülöp and Alain Terlutte. Iterated Relabeling Tree Trans-
ducers. Theoretical Computer Science, 276(1–2):221–244, 2002.

[Fuj04a] Akio Fujiyoshi. Epsilon-Free Grammars and Lexicalized Gram-
mars that Generate the Class of Mildly Context-Sensitive Lan-
guages. In Proceedings of the 7th International Workshop on Tree
Adjoining Grammars and Related Formalisms (TAG+7), pages 16–
23, Vancouver, Canada, May 20–May 22 2004.

[Fuj04b] Akio Fujiyoshi. Restrictions on Monadic Context-Free Tree
Grammars. In Proceedings of COLING 2004, pages 78–84, Geneva,
Switzerland, Aug 23–Aug 27 2004.

[Fuj05] Akio Fujiyoshi. Linearity and Nondeletion on Monadic Context-
Free Tree Grammars. Information Processing Letters, 93(3):103–
107, 2005.

[Fuj06] Akio Fujiyoshi. Analogical Conception of Chomsky Normal
Form and Greibach Normal Form for Linear, Monadic Context-
Free Tree Grammars. IEICE Transactions on Information and Sys-
tems, E89-D(12):2933–2938, 2006.

[FV90] Zoltán Fülop and Sándor Vágvölgyi. A Characterization of Ir-
reducible Sets Modulo Left-Linear Term Rewriting Systems by
Tree Automata. Fundamenta Informaticae, 13(2):211–226, 1990.

[FV01] Zoltán Fülöp and Sándor Vágvölgyi. Restricted Ground Tree
Transducers. Theoretical Computer Science, 250(1–2):219–233,
2001.

[GB85] Jean H. Gallier and Ronald V. Book. Reductions in Tree Replace-
ment Systems. Theoretical Computer Science, 37:123–150, 1985.

[Géc77] Ferenc Gécseg. Universal Algebras and Tree Automata. In
Karpinski [Kar77], pages 98–112.

[GG67] Seymour Ginsburg and Sheila A. Greibach. Abstract Families
of Languages. In FOCS, pages 128–139. IEEE, 1967.

[Gla64] Alexej V. Gladkij. On the Complexity of Derivations in Context-
Sensitive Grammars. Algebra i Logika, 3(5–6):29–44, 1964.

bibliography 165

[GMV06] Radu Gramatovici and Carlos Martı́n-Vide. Sorted Dependency
Insertion Grammars. Theoretical Computer Science, 354(1):142–
152, 2006.

[Gre65] Sheila A. Greibach. A New Normal-Form Theorem for Context-
Free Phrase Structure Grammars. Journal of the ACM, 12(1):42–
52, 1965.

[GRS01] Valérie Gouranton, Pierre Réty, and Helmut Seidl. Synchro-
nized Tree Languages Revisited and New Applications. In Furio
Honsell and Marino Miculan, editors, FoSSaCS, volume 2030

of Lecture Notes in Computer Science, pages 214–229. Springer-
Verlag, 2001.

[GS97] Ferenc Gécseg and Magnus Steinby. Handbook of Formal Lan-
guages, volume 3, chapter Tree Languages, pages 1–68. Springer-
Verlag, 1997.

[GT95] Rémi Gilleron and Sophie Tison. Regular Tree Languages and
Rewrite Systems. Fundamenta Informaticae, 24:157–175, 1995.

[Gue81] Irène Guessarian. On Pushdown Tree Automata. In Astesiano
and Böhm [AB81], pages 211–223.

[Gue83] Irène Guessarian. Pushdown Tree Automata. Mathematical Sys-
tems Theory, 16:237–263, 1983.

[GV96] Pál Gyenizse and Sándor Vágvölgyi. Compositions of Deter-
ministic Bottom-Up, Top-Down, and Regular Look-Ahead Tree
Transformations. Theoretical Computer Science, 156(1–2):71–97,
1996.

[H+
01] Jan Hajič et al. The Prague Dependency Treebank 1.0. Available

online: http://ufal.mff.cuni.cz/pdt, 2001.

[Haj98] Jan Hajič. Building a Syntactically Annotated Corpus: The
Prague Dependency Treebank. In Eva Hajičová, editor, Issues of
Valency and Meaning. Studies in Honor of Jarmila Panevová, pages
12–19. Prague Karolinum, Charles University Press, 1998.

[Har78] Michael A. Harrison. Introduction to Formal Language Theory.
Addison-Wesley, 1978.

[Heu88] Uschi Heuter. Definite Tree Languages. Bulletin of the EATCS,
35:137–142, 1988.

[Heu89a] Uschi Heuter. Generalized Definite Tree Languages. In Antoni
Kreczmar and Grazyna Mirkowska, editors, MFCS, volume 379

of Lecture Notes in Computer Science, pages 270–280. Springer-
Verlag, 1989.

http://ufal.mff.cuni.cz/pdt

166 bibliography

[Heu89b] Uschi Heuter. Zur Klassifizierung regulärer Baumsprachen. PhD
thesis, RWTH, Technical University of Aachen, 1989.

[HHK94] Dieter Hofbauer, Maria Huber, and Gregory Kucherov. Some
Results on Top-Context-Free Tree Languages. In Sophie Tison,
editor, CAAP, volume 787 of Lecture Notes in Computer Science,
pages 157–171. Springer-Verlag, 1994.

[HHK98] Dieter Hofbauer, Maria Huber, and Gregory Kucherov. How
to Get Rid of Projection Rules in Context-free Tree Grammars.
In Jonathan Ginzburg, Zurab Khasidashvili, Carl Vogel, Jean-
Jacques Lévy, and Enric Vallduvı́, editors, The Tbilisi Symposium
on Logic, Language and Computation: Selected Papers, Studies in
Logic, Language and Information, chapter 15, pages 235–247.
CSLI (Center for the Study of Language and Information, Stan-
ford) and FoLLI (The European Association for Logic, Language
and Information), 1998.

[Hig63] Phillip J. Higgins. Algebras with a Scheme of Operators. Math-
ematische Nachrichten, 27:115–132, 1963.

[HL78] Gérard Huet and Dallas S. Lankford. On the Uniform Halting
Problem for Term Rewriting Systems. Rapport laboria 283, In-
stitut de Recherche en Informatique et en Automatique (IRIA),
Le Chesnay, France, 1978.

[HLM98] Michael Hanus, Salvador Lucas, and Aart Middeldorp. Strongly
Sequential and Inductively Sequential Term Rewriting Systems.
Information Processing Letters, 67(1):1–8, 1998.

[HMU06] John E. Hopcroft, Rajeev Motwani, and Jeffry D. Ullman. Intro-
duction to Automata Theory, Languages, and Computation. Addison-
Wesley, 2006.

[Iro61] Edgar T. Irons. A Syntax Directed Compiler for ALGOL 60.
Communications of the ACM, 4(1):51–55, 1961.

[Jac96] Florent Jacquemard. Decidable Approximations of Term Rewrit-
ing Systems. In Harald Ganzinger, editor, RTA, volume 1103

of Lecture Notes in Computer Science, pages 362–376. Springer-
Verlag, 1996.

[Jan97] Matthias Jantzen. Handbook of Formal Languages, volume 3, chap-
ter Basics of Term Rewriting, pages 269–337. Springer-Verlag,
1997.

[JK99] Petr Jiřička and Jaroslav Král. Deterministic Forgetting Pla-
nar Automata are more Powerful than Non-Deterministic Finite-
State Planar Automata. In Rozenberg and Thomas [RT00], pages
71–80.

bibliography 167

[JLNO04] Thomasz Jurdziński, Krzysztof Loryś, Gundula Niemann, and
Friedrich Otto. Some Results on RWW- and RRWW-Automata
and Their Relationship to the Class of Growing Context-
Sensitive Languages. Journal of Automata, Languages and Com-
binatorics, 9:407–437, 2004.

[JMAB97] Jean Berstel Jean-Michel Autebert and Luc Boasson. Hand-
book of Formal Languages, volume 1, chapter Context-Free Lan-
guages and Pushdown Automata, pages 111–174. Springer-
Verlag, 1997.

[JMOP05] Tomasz Jurdziński, František Mráz, Friedrich Otto, and Martin
Plátek. Monotone Deterministic RL-Automata Don’t Need Aux-
iliary Symbols. In Clelia de Felice and Antonio Restivo, editors,
Developments in Language Theory, volume 3572 of Lecture Notes in
Computer Science, pages 284–295. Springer-Verlag, 2005.

[JMOP06] Tomasz Jurdziński, František Mráz, Friedrich Otto, and Martin
Plátek. Degrees of Non-Monotonicity for Restarting Automata.
Theoretical Computer Science, 369(1-3):1–34, 2006.

[JMP92] Petr Jančar, František Mráz, and Martin Plátek. Forgetting Au-
tomata and the Chomsky Hierarchy. In Proceedings of SOFSEM
’92, pages 41–44, 1992.

[JMP93] Petr Jančar, František Mráz, and Martin Plátek. A Taxonomy
of Forgetting Automata. In Andrzej M. Borzyszkowski and Ste-
fan Sokolowski, editors, MFCS, volume 711 of Lecture Notes in
Computer Science, pages 527–536. Springer-Verlag, 1993.

[JMP96] Petr Jančar, František Mráz, and Martin Plátek. Forgetting Au-
tomata and Context-Free Languages. Acta Informatica, 33(5):409–
420, 1996.

[JMPV95] Petr Jančar, František Mráz, Martin Plátek, and Jörg Vogel.
Restarting Automata. In Horst Reichel, editor, Fundamentals of
Computation Theory, 10th International Symposium, FCT ’95, Pro-
ceedings, volume 965 of Lecture Notes in Computer Science, pages
283–292. Springer-Verlag, 1995.

[JMPV96] Petr Jančar, František Mráz, Martin Plátek, and Jörg Vogel.
Restarting Automata with Rewriting. In Keith G. Jeffery,
Jaroslav Král, and Miroslav Bartosek, editors, SOFSEM, vol-
ume 1175 of Lecture Notes in Computer Science, pages 401–408.
Springer-Verlag, 1996.

[JMPV97] Petr Jančar, František Mráz, Martin Plátek, and Jörg Vogel. On
Restarting Automata with Rewriting. In Gheorghe Paun and
Arto Salomaa, editors, New Trends in Formal Languages, vol-
ume 1218 of Lecture Notes in Computer Science, pages 119–136.
Springer-Verlag, 1997.

168 bibliography

[JMPV98] Petr Jančar, František Mráz, Martin Plátek, and Jörg Vogel. Dif-
ferent Types of Monotonicity for Restarting Automata. In Vikra-
man Arvind and Ramaswamy Ramanujam, editors, FSTTCS,
volume 1530 of Lecture Notes in Computer Science, pages 343–354.
Springer-Verlag, 1998.

[JMPV99] Petr Jančar, František Mráz, Martin Plátek, and Jörg Vogel. On
Monotonic Automata with a Restart Operation. Journal of Au-
tomata, Languages and Combinatorics, 4(4):287–312, 1999.

[JO03] Tomasz Jurdziński and Friedrich Otto. On Left-Monotone
Restarting Automata. Mathematische Schriften Kassel 17/03, Fach-
bereich Mathematik/Informatik, Universität Kassel, 2003.

[JO06] Tomasz Jurdziński and Friedrich Otto. Restarting Automata
with Restricted Utilization of Auxiliary Symbols. Theoretical
Computer Science, 363(2):162–181, 2006.

[JO07] Tomasz Jurdziński and Friedrich Otto. Shrinking Restarting Au-
tomata. International Journal of Foundations of Computer Science,
18(2):361–385, 2007.

[Joh91] David S. Johnson. Handbook of Theoretical Computer Science, vol-
ume A, chapter A Catalog of Complexity Classes, pages 67–161.
Elsevier, 1991.

[JOMP04a] Tomasz Jurdziński, Friedrich Otto, František Mráz, and Martin
Plátek. On Left-Monotone Deterministic Restarting Automata.
In Calude et al. [CCD04], pages 249–260.

[JOMP04b] Tomasz Jurdziński, Friedrich Otto, František Mráz, and Martin
Plátek. On the Complexity of 2-Monotone Restarting Automata.
In Calude et al. [CCD04], pages 237–248.

[JR08] Florent Jacquemard and Michaël Rusinowitch. Closure of
Hedge-Automata Languages by Hedge Rewriting. In Andrei
Voronkov, editor, RTA, volume 5117 of Lecture Notes in Computer
Science, pages 157–171. Springer-Verlag, 2008.

[JS97] Aravind K. Joshi and Yves Schabes. Handbook of Formal Lan-
guages, volume 3, chapter Tree-Adjoining Grammars, pages 69–
123. Springer-Verlag, 1997.

[JSW94] Aravind K. Joshi, Vijay K. Shanker, and David Weir. Foundational
Issues in Natural Language Processing, chapter The Convergence
of Mildly Context-Sensitive Grammar Formalisms, pages 31–81.
MIT Press, 1994.

[Jur95] Eija Jurvanen. On Tree Languages Defined by Deterministic Root-
to-frontier Recognizers. PhD thesis, University of Turku, Finland,
1995.

bibliography 169

[Kar77] Marek Karpinski, editor. Fundamentals of Computation The-
ory, Proceedings of the 1977 International FCT-Conference, Poznan-
Kórnik, Poland, September 19–23, 1977, volume 56 of Lecture Notes
in Computer Science. Springer-Verlag, 1977.

[KB70] Donald E. Knuth and Peter B. Bendix. Simple Word Problems in
Universal Algebras. In J. Leech, editor, Computational Problems
in Abstract Algebra, pages 263–297. Pergamon Press, 1970.

[Kle56] Stephen C. Kleene. Representation of Events in Nerve Nets and
Finite Automata. In Claude E. Shannon and John McCarthy,
editors, Automata Studies, volume 34 of Annals of Mathematics
Studies, pages 2–42. Princeton University Press, 1956.

[Klo92] Jan W. Klop. Handbook of Logic in Computer Science, volume 2,
chapter Term Rewriting Systems, pages 1–116. Oxford Univer-
sity Press, 1992.

[KM06] Stephan Kepser and Uwe Mönnich. Closure Properties of Linear
Context-Free Tree Languages with an Application to Optimality
Theory. Theoretical Computer Science, 354(1):82–97, 2006.

[KM07] Marco Kuhlmann and Mathias Möhl. Mildly Context-Sensitive
Dependency Languages. In ACL. The Association for Computer
Linguistics, 2007.

[KMPR99] Juhani Karhumäki, Hermann A. Maurer, Gheorghe Paun, and
Grzegorz Rozenberg, editors. Jewels are Forever, Contributions on
Theoretical Computer Science in Honor of Arto Salomaa. Springer-
Verlag, 1999.

[Knu97] Donald E. Knuth. The Art of Computer Programming, Volume 1:
Fundamental Algorithms (3rd Edition). Addison-Wesley, 1997.

[KR07] Stephan Kepser and Jim Rogers. The Equivalence of Tree Ad-
joining Grammars and Monadic Linear Context-free Tree Gram-
mars. In Marcus Kracht, Gerald Penn, and Ed Stabler, editors,
Proceedings of the 10th Meeting on Mathematics of Language, 2007.

[KS81] Tsutomu Kamimura and Giora Slutzki. Parallel and Two-Way
Automata on Directed Ordered Acyclic Graphs. Information and
Control, 49(1):10–51, 1981.

[KSK05] Yuki Kato, Hiroyuki Seki, and Tadao Kasami. On the Genera-
tive Power of Grammars for RNA Secondary Structure. IEICE
Transactions, 88-D(1):53–64, 2005.

[Kui92] Werner Kuich, editor. Automata, Languages and Programming,
19th International Colloquium, ICALP92, Vienna, Austria, July 13-
17, 1992, Proceedings, volume 623 of Lecture Notes in Computer
Science. Springer-Verlag, 1992.

170 bibliography

[Kui97] Werner Kuich. Handbook of Formal Languages, volume 1, chapter
Semirings and Formal Power Series, pages 609–677. Springer-
Verlag, 1997.

[Kui01] Werner Kuich. Pushdown Tree Automata, Algebraic Tree Sys-
tems, and Algebraic Tree Series. Information and Computation,
165(1):69–99, 2001.

[Kur64] S.-Y. Kuroda. Classes of Languages and Linear-Bounded Au-
tomata. Information and Control, 7(2):207–223, 1964.

[Leg80] Bernard Leguy. Réductions, Transformations et Classification des
Grammaires Algébriques d’Arbres. PhD thesis, University of Lille,
France, 1980.

[Leg81a] Bernard Leguy. Grammars Without Erasing Rules – The OI Case.
In Astesiano and Böhm [AB81], pages 268–279.

[Leg81b] Bernard Leguy. Reducing Algebraic Tree Grammars. In Ferenc
Gécseg, editor, Proceedings of the International Conference on Fun-
damentals of Computation Theory (FCT ’81), volume 117 of Lecture
Notes in Computer Science, pages 226–233. Springer-Verlag, 1981.

[LEW96] Jacques Loeckx, Hand-Dieter Ehrich, and Markus Wolf. Specifi-
cation of Abstract Data Types. Wiley-Teubner, 1996.

[LPK05] Markéta Lopatková, Martin Plátek, and Vladislav Kubon. Mod-
eling Syntax of Free Word-Order Languages: Dependency Anal-
ysis by Reduction. In Václav Matousek, Pavel Mautner, and
Tomás Pavelka, editors, TSD, volume 3658 of Lecture Notes in
Computer Science, pages 140–147. Springer-Verlag, 2005.

[LR97] Sébastien Limet and Pierre Réty. E-unification by Means of Tree
Tuple Synchronized Grammars. Discrete Mathematics & Theoreti-
cal Computer Science, 1(1):69–98, 1997.

[M+
95] Mitchell P. Marcus et al. The Penn Treebank Project. Available

online: http://www.cis.upenn.edu/∼treebank, 1995.

[Mai74] Thomas S.E. Maibaum. A Generalized Approach to Formal Lan-
guages. Journal of Computer and System Sciences, 8(3):409–439,
1974.

[Mai78] Thomas S.E. Maibaum. Pumping Lemmas for Term Languages.
Journal of Computer and System Sciences, 17(3):319–330, 1978.

[MC97] Frank Morawietz and Tom Cornell. The MSO Logic-Automaton
Connection in Linguistics. In Alain Lecomte, François
Lamarche, and Guy Perrier, editors, LACL, volume 1582 of Lec-
ture Notes in Computer Science, pages 112–131. Springer-Verlag,
1997.

http://www.cis.upenn.edu/~treebank

bibliography 171

[McN99] Robert McNaughton. An Insertion into the Chomsky Hierar-
chy? In Karhumäki et al. [KMPR99], pages 204–212.

[Mey04] Antoine Meyer. On Term Rewriting Systems Having a Rational
Derivation. In Igor Walukiewicz, editor, FoSSaCS, volume 2987

of Lecture Notes in Computer Science, pages 378–392. Springer-
Verlag, 2004.

[Mey07] Antoine Meyer. On Term Rewriting Systems Having a Rational
Derivation. CoRR, abs/0705.4064, 2007.

[Mic05] Jens Michaelis. An Additional Observation on Strict Deriva-
tional Minimalism. In Proceedings of the 10th Conference on Formal
Grammar and the 9th Meeting on Mathematics of Language, Edin-
burgh, August 5–7, 2005, 2005. Available online.

[MM69] Menachem Magidor and Gadi Moran. Finite Automata over
Finite Trees. Technical Report 30, Hebrew University, Jerusalem,
1969.

[MM82] Alberto Martelli and Ugo Montanari. An Efficient Unification
Algorithm. ACM Transactions on Programming Languages and Sys-
tems, 4(2):258–282, 1982.

[MNO88] Robert McNaughton, Paliath Narendran, and Friedrich Otto.
Church-Rosser Thue Systems and Formal Languages. Journal
of the ACM, 35(2):324–344, 1988.

[MO05] František Mráz and Friedrich Otto. Hierachies of Weakly Mono-
tone Restarting Automata. RAIRO – Theoretical Informatics and
Applications, 39(2):325–342, 2005.

[Mod75] Larisa S. Modina. On Some Formal Grammars Generating De-
pendency Trees. In Jirı́ Becvár, editor, MFCS, volume 32 of Lec-
ture Notes in Computer Science, pages 326–329. Springer-Verlag,
1975.

[Mor94] Etsuro Moriya. On Two-Way Tree Automata. Information Pro-
cessing Letters, 50(3):117–121, 1994.

[Mor03] Frank Morawietz. Two-step Approaches to Natural Language For-
malisms. Walter de Gruyter, 2003.

[MPJV97] František Mráz, Martin Plátek, Petr Jančar, and Jörg Vogel.
Monotonic Rewriting Automata with a Restart Operation. In
František Plasil and Keith G. Jeffery, editors, SOFSEM, vol-
ume 1338 of Lecture Notes in Computer Science, pages 505–512.
Springer-Verlag, 1997.

[MPP99] František Mráz, Martin Plátek, and Martin Procházka. On Spe-
cial Forms of Restarting Automata. Grammars, 2(3):223–233,
1999.

172 bibliography

[Mrá01] František Mráz. Lookahead Hierachies of Restarting Automata.
Journal of Automata, Languages and Combinatorics, 6(4):493–506,
2001.

[Mrá04] František Mráz. Confluent Restarting Automata. Personal com-
munication, 2004.

[MS97a] Alexandru Mateescu and Arto Salomaa. Handbook of Formal Lan-
guages, volume 1, chapter Formal Languages: an Introduction
and a Synopsis, pages 1–39. Springer-Verlag, 1997.

[MS97b] Alexandru Mateescu and Arto Salomaa. Handbook of Formal Lan-
guages, volume 1, chapter Aspects of Classical Language Theory,
pages 175–251. Springer-Verlag, 1997.

[MSM93] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. Building a Large Annotated Corpus of English:
The Penn Treebank. Computational Linguistics, 19(2):313–330,
1993.

[MSS05] Hiroshi Matsui, Kengo Sato, and Yasubumi Sakakibara. Pair
Stochastic Tree Adjoining Grammars for Aligning and Predict-
ing Pseudoknot RNA Structures. Bioinformatics, 21(11):2611–
2617, 2005.

[Mur99] Makoto Murata. Hedge Automata: A Formal Model for
XML Schemata. Available online: http://www.horobi.com/
Projects/RELAX/Archive/hedge nice.html, 1999.

[MW67] Jorge E. Mezei and Jesse B. Wright. Algebraic Automata and
Context-Free Sets. Information and Control, 11(1–2):3–29, 1967.

[Myh57] John R. Myhill. Finite Automata an the Representation of Events.
Technical Report TR-57-624, Wright Air Development Division
(WADD), Ohio, 1957.

[Myh60] John R. Myhill. Linar Bounded Automata. Technical Report TR-
60-165, Wright Air Development Division (WADD), Ohio, 1960.

[Ner58] Anil Nerode. Linear Automaton Transformations. Proceedings of
the American Mathematical Society, 9(4):541–544, 1958.

[Nie02] Gundula Niemann. Church-Rosser Languages and Related Classes.
PhD thesis, Universität Kassel, 2002.

[Niv75] Maurice Nivat. On the Interpretation of Recursive Polyadic Pro-
gram Schemes. Symposia Mathematica, 15:255–281, 1975.

[NJL84] Esa Nelimarkka, Harri Jäppinen, and Aarno Lehtola. Two-Way
Finite Automata and Dependency Grammar: A Parsing Method
for Inflectional Free Word Order Languages. In Proceedings of the

http://www.horobi.com/Projects/RELAX/Archive/hedge_nice.html
http://www.horobi.com/Projects/RELAX/Archive/hedge_nice.html

bibliography 173

10th International Conference on Computational Linguistics, pages
389–392. Association for Computational Linguistics, 1984.

[NO99a] Gundula Niemann and Friedrich Otto. Restarting Automata
and Prefix-Rewriting Systems. Technical report, Fachbereich
Mathematik/Informatik, Universität Kassel, December 1999.

[NO99b] Gundula Niemann and Friedrich Otto. Restarting Automata,
Church-Rosser Languages, and Representations of r.e. Lan-
guages. In Rozenberg and Thomas [RT00], pages 103–114.

[NO01] Gundula Niemann and Friedrich Otto. On the Power of RRWW-
Automata. In Masami Ito, Gheorghe Păun, and Sheng Yu, edi-
tors, Words, Semigroups, and Transductions, pages 341–355. World
Scientific, 2001.

[NO03] Gundula Niemann and Friedrich Otto. Further Results on
Restarting Automata. In Masami Ito and Teruo Imaoka, editors,
Proceedings of the Third International Colloquium on Words, Lan-
guages and Combinatorics, pages 352–369. World Scientific, 2003.

[NO05] Gundula Niemann and Friedrich Otto. The Church-Rosser Lan-
guages are the Deterministic Variants of the Growing Context-
Sensitive Languages. Information and Computation, 197(1–2):1–21,
2005.

[NP89] Maurice Nivat and Andreas Podelski. Definite Tree Languages.
Bulletin of the EATCS, 38:186–190, 1989.

[NP97] Maurice Nivat and Andreas Podelski. Minimal Ascending
and Descending Tree Automata. SIAM Journal on Computing,
26(1):39–58, 1997.

[O+
08] Friedrich Otto et al. Tail-Rewrite-Free Restarting Automata. Per-

sonal communication, September 2008.

[O’D77] Michael J. O’Donnell. Computing in Systems Described by Equa-
tions. Lecture Notes in Computer Science. Springer-Verlag, 1977.

[OKK98] Friedrich Otto, Masashi Katsura, and Yuji Kobayashi. Infinite
Convergent String-Rewriting Systems and Cross-Sections for
Finitely Presented Monoids. Journal of Symbolic Computation,
26(5):621–648, 1998.

[Ott06] Friedrich Otto. Recent Advances in Formal Languages and Applica-
tions, volume 25 of Studies in Computational Intelligence, chapter
Restarting Automata, pages 269–303. Springer-Verlag, 2006.

[Pal99] Adi Palm. The Mathematics of Syntactic Structure: Trees and Their
Logics, volume 44 of Studies in Generative Grammar, chapter The
Expressivity of Tree Languages for Syntactic Structure, pages
113–152. Mouton de Gruyter, 1999.

174 bibliography

[Per90] Dominique Perrin. Handbook of Theoretical Computer Science, vol-
ume B, chapter Finite Automata, pages 1–57. Elsevier, 1990.

[PHKO01] Martin Plátek, Tomás Holan, Vladislav Kubon, and Karel Oliva.
Word-Order Relaxations & Restrictions within a Dependency
Grammar. In IWPT. Tsinghua University Press, 2001.

[Pin97] Jean-Eric Pin. Handbook of Formal Languages, volume 1, chapter
Syntactic Semigroups, pages 679–746. Springer-Verlag, 1997.

[Pla85] David A. Plaisted. The Undecidability of Self-Embedding for
Term Rewriting Systems. Information Processing Letters, 20(2):61–
65, 1985.

[Pla93] David A. Plaisted. Polynomial Time Termination and Constraint
Satisfaction Tests. In Claude Kirchner, editor, Rewriting Tech-
niques and Applications, Proceedings of the 5th International Confer-
ence (RTA-93), volume 690 of Lecture Notes in Computer Science,
pages 405–420. Springer-Verlag, 1993.

[Plá99] Martin Plátek. Weak Cyclic Forms of RW-Automata. In Rozen-
berg and Thomas [RT00], pages 115–124.

[Plá01] Martin Plátek. Two-Way Restarting Automata and j-
Monotonicity. In Leszek Pacholski and Peter Ruzicka, edi-
tors, SOFSEM, volume 2234 of Lecture Notes in Computer Science,
pages 316–325. Springer-Verlag, 2001.

[PLO03] Martin Plátek, Markéta Lopatková, and Karel Oliva. Restarting
Automata: Motivations and Applications. In Markus Holzer,
editor, Tagungsband zum 13. Theorietag der Fachgruppe ”Automaten
und Formale Sprachen“ der Gesellschaft für Informatik e. V., Technis-
che Universität München, pages 90–96, 2003.

[Pos46] Emil L. Post. A Variant of a Recursively Unsolvable Problem.
Bulletin of the American Mathematical Society, 52:264–268, 1946.

[Pos47] Emil L. Post. Recursive Unsolvability of a Problem of Thue.
Journal of Symbolic Logic, 12:1–11, 1947.

[PP92] Pierre Péladeau and Andreas Podelski. On Reverse and General
Definite Tree Languages. In Kuich [Kui92], pages 150–161.

[PV86] Martin Plátek and Jörg Vogel. Deterministic List Automata and
Erasing Graphs. The Prague Bulletin of Mathematical Linguistics,
45, 1986.

[Rab68] Michael O. Rabin. Decidability of Second-Order Theories and
Automata on Infinite Trees. Bulletin of the American Mathematical
Society, 74(5):1025–1029, 1968.

bibliography 175

[Rab69] Michael O. Rabin. Decidability of Second-Order Theories and
Automata on Infinite Trees. Transactions of the American Mathe-
matical Society, 141:1–35, 1969.

[Raj96] Sanguthevar Rajasekaran. Tree-Adjoining Language Parsing in
O(n6) Time. SIAM Journal on Computing, 25(4):862–873, 1996.

[RCC05] Pierre Réty, Jacques Chabin, and Jing Chen. R-Unification
thanks to Synchronized Context-Free Tree Languages. In Pro-
ceedings of the 19th Workshop on Unification, pages 41–46, 2005.

[Rét99] Pierre Réty. Regular Sets of Descendants for Constructor-Based
Rewrite Systems. In Harald Ganzinger, David A. McAllester,
and Andrei Voronkov, editors, Proceedings of the 6th Interna-
tional Conference on Logic Programming and Automated Reasoning
(LPAR’99), volume 1705 of Lecture Notes in Computer Science,
pages 148–160. Springer-Verlag, 1999.

[Ric53] Henry G. Rice. Classes of Recursively Enumerable Sets and
Their Decision Problems. Transactions of the American Mathemat-
ical Society, 74(2):358–366, 1953.

[Rob65] John A. Robinson. A Machine-Oriented Logic Based on the Res-
olution Principle. Communications of the ACM, 12(1):23–41, 1965.

[Rou69] William C. Rounds. Context-Free Grammars on Trees. In Pro-
ceedings of the First Annual ACM Symposium on Theory of Comput-
ing (STOC ’69), pages 143–148, 1969.

[Rou70a] William C. Rounds. Mappings and Grammars on Trees. Mathe-
matical Systems Theory, 4(3):257–287, 1970.

[Rou70b] William C. Rounds. Tree-oriented Proofs of some Theorems on
Context-free and Indexed Languages. In Proceedings of the Sec-
ond Annual ACM Symposium on Theory of Computing (STOC ’70),
pages 109–116, 1970.

[Rou73] William C. Rounds. Complexity of Recognition in Intermediate-
Level Languages. In FOCS, pages 145–158. IEEE, 1973.

[RS59] Michael O. Rabin and Dana Scott. Finite Automata and Their
Decision Problems. IBM Journal of Research and Development,
3(2):114–125, 1959.

[RT00] Grzegorz Rozenberg and Wolfgang Thomas, editors. Develop-
ments in Language Theory, Foundations, Applications, and Perspec-
tives, Aachen, Germany, 6-9 July 1999. World Scientific, 2000.

[RV04] Pierre Réty and Julie Vuotto. Context-Free Tree Languages
for Descendants. Technical Report 2004-04, Laboratoire
d’Informatique Fondamentale d’Orléans, Universite d’Orléans,
2004.

176 bibliography

[RV05] Pierre Réty and Julie Vuotto. Tree Automata for Rewrite Strate-
gies. Journal of Symbolic Computation, 40(1):749–794, 2005.

[RY98] Sanguthevar Rajasekaran and Shibu Yooseph. TAL Recogni-
tion in O(M(n2)) Time. Journal of Computer and System Sciences,
56(1):83–89, 1998.

[Sal88] Kai Salomaa. Deterministic Tree Pushdown Automata and
Monadic Tree Rewriting Systems. Journal of Computer and Sys-
tem Sciences, 37(3):367–394, 1988.

[Sal94] Kai Salomaa. Synchronized Tree Automata. Theoretical Computer
Science, 127(1):25–51, 1994.

[Sal96] Kai Salomaa. Yield-Languages of Two-Way Pushdown Tree Au-
tomata. Information Processing Letters, 58(4):195–199, 1996.

[Sch82] Karl M. Schimpf. A Parsing Method for Context-Free Tree Lan-
guages. PhD thesis, University of Pennsylvania, 1982.

[Ser03] Jean-Pierre Serre. Trees. Springer Monographs in Mathematics.
Springer-Verlag, 2003. Corrected Second Printing of the First En-
glish Edition of 1980, Translation of “Arbres, Amalgames, SL2”.

[SG85] Karl M. Schimpf and Jean H. Gallier. Tree Pushdown Automata.
Journal of Computer and System Sciences, 30:25–40, 1985.

[SJ85] Vijay K. Shankar and Aravind K. Joshi. Some Computational
Properties of Tree Adjoining Grammars. In Proceedings of the
23rd Annual Meeting on Association for Computational Linguistics,
pages 82–93. Association for Computational Linguistics, 1985.

[SK05] Shinnosuke Seki and Satoshi Kobayashi. A Grammatical Ap-
proach to the Alignment of Structure-Annotated Strings. IEICE
Transactions, 88-D(12):2727–2737, 2005.

[SK06] Hiroyuki Seki and Yuki Kato. On the Generative Power of Multi-
ple Context-Free Grammars and Macro Grammars. Information
Science Technical Report, NAIST-IS-TR2006007, Nara Institute
of Science and Technology, September 2006.

[SK08] Hiroyuki Seki and Yuki Kato. On the Generative Power of Multi-
ple Context-Free Grammars and Macro Grammars. IEICE Trans-
actions on Information and Systems, E91-D(2):209–221, 2008.

[SMFK91] Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and Tadao
Kasami. On Multiple Context-Free Grammars. Theoretical Com-
puter Science, 88(2):191–229, 1991.

[SO07a] Heiko Stamer and Friedrich Otto. Restarting Tree Automata.
In Jan van Leeuwen et al., editors, SOFSEM 2007: Theory and

bibliography 177

Practice of Computer Science, Proceedings of the 33rd Conference on
Current Trends in Theory and Practice of Computer Science, vol-
ume 4362 of Lecture Notes in Computer Science, pages 510–521.
Springer-Verlag, 2007.

[SO07b] Heiko Stamer and Friedrich Otto. Restarting Tree Automata and
Linear Context-Free Tree Languages. In Symeon Bozapalidis
and George Rahonis, editors, Algebraic Informatics, Proceedings of
the Second International Conference (CAI 2007), volume 4728 of Lec-
ture Notes in Computer Science, pages 275–289. Springer-Verlag,
2007.

[ST00] Magnus Steinby and Wolfgang Thomas. Trees and Term Rewrit-
ing in 1910: On a Paper by Axel Thue. Bulletin of the European
Association for Theoretical Computer Science, 72:256–269, 2000.

[Ste92] Magnus Steinby. A Theory of Tree Language Varieties. In Mau-
rice Nivat and Andreas Podelski, editors, Tree Automata and Lan-
guages, pages 57–82. North-Holland, 1992.

[Str99] Markéta Stranáková. Selected Types of Pg-Ambiguity. The
Prague Bulletin of Mathematical Linguistics, 72:29–57, 1999.

[Str00] Markéta Stranáková. Selected Types of Pg-Ambiguity: Pro-
cessing Based on Analysis by Reduction. In Petr Sojka, Ivan
Kopecek, and Karel Pala, editors, TSD, volume 1902 of Lecture
Notes in Computer Science, pages 139–144. Springer-Verlag, 2000.

[SW94] Vijay K. Shanker and David J. Weir. The Equivalence of Four Ex-
tensions of Context-Free Grammars. Mathematical Systems The-
ory, 27(6):511–546, 1994.

[Tha67] James W. Thatcher. Characterizing Derivation Trees of Context-
Free Grammars through a Generalization of Finite Automata
Theory. Journal of Computer and System Sciences, 1(4):317–322,
1967.

[Tho84] Wolfgang Thomas. Logical Aspects in the Study of Tree Lan-
guages. In Bruno Courcelle, editor, CAAP, pages 31–50. Cam-
bridge University Press, 1984.

[Tho90] Wolfgang Thomas. Handbook of Theoretical Computer Science, vol-
ume B, chapter Automata on Infinite Objects, pages 133–191.
Elsevier, 1990.

[Tho97] Wolfgang Thomas. Handbook of Formal Languages, volume 3,
chapter Languages, Automata, and Logic, pages 389–455.
Springer-Verlag, 1997.

[Thu14] Axel Thue. Probleme über Veränderungen von Zeichenreihen
nach gegebenen Regeln. Skrifter utgit av Videnskapsselskapet i Kris-
tiania, I Mathematische und Naturwissenschaftliche Klasse, 10, 1914.

178 bibliography

[TK86] Shinichi Tanaka and Takumi Kasai. The Emptiness Problem for
Indexed Languages is Exponential-Time Complete. Systems and
Computers in Japan, 17(9):29–37, 1986.

[TM92] John V. Tucker and Karl Meinke. Handbook of Logic in Computer
Science, volume 1, chapter Universal Algebra, pages 189–411.
Oxford University Press, 1992.

[Tur36] Alan M. Turing. On Computable Numbers with an Application
to the Entscheidungsproblem. Proceedings of the London Mathe-
matical Society, 42(2), 1936.

[TW65] James W. Thatcher and Jesse B. Wright. Generalized Finite Au-
tomata. Notices of the American Mathematical Society, 12:820, 1965.
Abstract 65T-469.

[TW68] James W. Thatcher and Jesse B. Wright. Generalized Finite Au-
tomata Theory with an Application to a Decision Problem of
Second-Order Logic. Mathematical Systems Theory, 2(1):57–81,
1968.

[UHKY99] Yasuo Uemura, Aki Hasegawa, Satoshi Kobayashi, and Takashi
Yokomori. Tree Adjoining Grammars for RNA Structure Predic-
tion. Theoretical Computer Science, 210(2):277–303, 1999.

[Vea97] Margus Veanes. On Computational Complexity of Basic Deci-
sion Problems of Finite Tree Automata. Technical report, Com-
puting Science Department, Uppsala University, 1997.

[Vir81] János Virágh. Deterministic Ascending Tree Automata (Part I).
Acta Cybernetica, 5:33–42, 1981.

[vS75] Sebastiaan H. von Solms. The Characterization by Automata
of Certain Classes of Languages in the Context Sensititve Area.
Information and Control, 27(3):262–271, 1975.

[Wil96] Thomas Wilke. An Algebraic Characterization of Frontier
Testable Tree Languages. Theoretical Computer Science, 154(1):85–
106, 1996.

[Wir90] Martin Wirsing. Handbook of Theoretical Computer Science, vol-
ume B, chapter Algebraic Specification, pages 675–788. Elsevier,
1990.

[WJ88] David J. Weir and Aravind K. Joshi. Combinatory Catego-
rial Grammars: Generative Power and Relationship to Linear
Context-Free Rewriting Systems. In Proceedings of the 26th An-
nual Meeting of the Association for Computational Linguistics, 7–10
June, 1988, Buffalo, USA, pages 278–285, 1988.

bibliography 179

[YAM00] Kiyoshi Yamabana, Shinichi Ando, and Kiyomi Mimura. Lexi-
calized Tree Automata-based Grammars for translating conver-
sational texts. In Proceedings of the 18th International Conference on
Computational Linguistics, pages 926–932. Association for Com-
putational Linguistics, 2000.

[Yu97] Sheng Yu. Handbook of Formal Languages, volume 1, chapter Reg-
ular Languages, pages 41–110. Springer-Verlag, 1997.

I N D E X

A
abstract family of languages . . . 14

algebra . 39

congruence 40

direct product 40

homomorphism 40

quotient 40

alphabet . 10

ranked . 31

analysis by reduction 2

arity . 31

automaton
deterministic 15

C
CFL . 14

closure
concatenation 11

reflexive transitive 9

transitive 9

concatenation 10

congruence class 9

context . 38

1-context 38

composition 38

k-normal 38

nonempty 38

context-free language 14

context-sensitive language 14

correctness preserving property21

critical pair . 42

CSL . 14

D
DEF . 58

dendrolanguage 35

determinism 15

E
error preserving property 21

F
F-algebra . 40

FIN . 58

forest . 35

formal language 11

G
GDEF . 59

ground term-rewriting system . 41

ground-substitution.34

H
homomorphism.11

ε-free . 11

K
k-root . 38

L
leaf position 33

M
mapping . 10

bijective 10

injective 10

inverse . 10

partial . 10

total . 10

O
ordering . 10

homeomorphic embedding 33

position 33

subsumption 35

subterm 33

P
path language 39

path-closure 39

phrase structure grammar 12

181

182 index

positions . 33

R
rank . 31

RDEF . 59

RE . 14

reachability problem 43

recursively enumerable language
14

redex . 42

REG . 14

regular language.14

relation . 9

antisymmetric 9

equivalence 9

reflexive . 9

rewriting 42

symmetric 9

transitive 9

restarting automaton
RRWW . 22

bounded window size 26

cycle . 19

deterministic 19

end markers 17

left distance 25

left-monotone 26

meta-instruction 22

monotone 25

R . 23

right distance 25

RL . 23

RLW . 23

RLWW . 17

RR . 23

RRW .23

RW . 23

RWW . 23

tail . 19

tail-rewrite-free27–31

restarting condition 78

restarting tree automaton . 84–113

`-look-ahead normalized. . .86

`-normalized 86

RRT . 87

RRWT . 87

RRWWT 84

RT . 87

RWT .87

RWWT . 87

gr-RWWT144

gr-spRWWT147

spRRWWT 137

bounded window size 110

canonical 87

configuration 85

confluent 154

cycle . 85

deterministic 86, 114–119

ground-rewrite 144

height-reducing 155

normalizations 89–94

path languages119–121

single-path 137

bottom distance 144

monotone 144

size . 130

tail . 85

transition rules 82–84

yield languages 119–121

rewrite rule . 41

S
signature . 31

sort . 39

substitution . 34

composition 34

domain . 34

more general 35

range . 34

variable range 34

T
term . 31

ground . 32

instance 35

linear . 32

Pos . 33

reachable 43

scattered subterm.34

Sub . 33

subterm 33

index 183

replacement 33

Top . 33

unifiable 35

X-Pos . 33

term algebra 41

term-rewriting system 41–44

Church-Rosser 43

confluent 42

convergent 43

derivation 42

finite .41

ground . 41

height-reducing 42

linear . 41

monadic 41

non-overlapping 42

nondeleting.42

semi-monadic.41

size . 41

size-reducing 42

terminating 42

transition . 45

bottom-up 45

final . 49

final read 82

initial . 46

look-ahead 83

normalized.45, 49

rewrite . 84

single-path look-ahead . . . 136

single-path rewrite 137

top-down 49

top-down read.82

top-down rewrite 83

tree
domain . 33

graph . 32

monadic 36

path . 39

prefix . 38

ranked. .32

yield .37

tree automaton 44–50, 56–58

finite
bottom-up 46

↑DFT . 46

↑NFT . 46

complete 46, 49

deterministic 46, 49

top-down 49

↓DFT . 49

↓NFT . 49

PDT . 56

pushdown 56

single-path 136

sp↓NFT 136

two-way 45

tree grammar.50–56

context-free 51

complete 51

growing 62

linear . 51

monadic 51

nondeleting.51

ordered 51

simple 51

strict . 51

reduced.51

regular . 52

normalized 52

top-context-free 51

tree homomorphism 36

alphabetic 37

complete 37

linear . 37

nondeleting37

tree language 35

complement 35

context-free 52

monadic 52

definite . 58

f-product 36

finite . 58

generalized definite59

generalized (k,h)-definite . 59

k-definite 58

linear context-free 52

path-closed 39

recognizable 46

regular . 52

reverse definite 58

reverse h-definite 58

simple context-free 52

top-context-free 52

184 index

x-product 36

tree-walking automaton 45

U
unifier . 35

V
variable . 31

variable position 33

variable renaming 35

W
word. .10

empty . 10

factor . 11

length . 10

mirror image 11

prefix . 11

subword 11

scattered11

suffix . 11

Y
yield language 37

	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Preliminaries
	2.1 Relations, Orderings, and Mappings
	2.2 Alphabets, Words, and Formal Languages
	2.3 Terms, Trees, and Forests

	3 Growing Context-Free Tree Grammars
	3.1 Linear Context-Free Tree Grammars
	3.2 Growing Context-Free Tree Grammars

	4 Restarting Tree Automata
	4.1 Transition Rules of Restarting Tree Automata
	4.2 Definition and Examples
	4.3 Normalizations for Restarting Tree Automata
	4.4 Basic Properties
	4.5 Expressive Power
	4.5.1 Recognition of Linear Context-Free Tree Languages
	4.5.2 Look-Ahead Hierarchies of Restarting Tree Automata
	4.5.3 Deterministic Restarting Tree Automata
	4.5.4 Path Languages and Yield Languages

	4.6 Closure Properties
	4.7 Decision Problems

	5 Variants of Restarting Tree Automata
	5.1 Single-Path Top-Down Tree Automata
	5.2 Single-Path Restarting Tree Automata
	5.2.1 Monotone Single-Path Restarting Tree Automata

	5.3 Ground-Rewrite Restarting Tree Automata
	5.4 Ground-Rewrite Single-Path Restarting Tree Automata

	6 Conclusion
	6.1 Summary
	6.2 Open Problems
	6.3 Further Research
	6.4 Applications

	Bibliography
	Index

