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Preface

Fluid-structure interactions (FSI), that means the interaction of some deformable structure with a surrounding or
internal fluid flow, belong nowadays to the most important andchallenging multi-physics problems which are
aimed to treat by numerical simulations. Since such multi-physics problems, ranging from small-scale micro
pumps over blood flow in arteries to objects in a wind tunnel upto huge buildings, involve more than one physical
effect, the challenges with respect to mathematical modelling, numerical discretization and solution techniques and
realization as software tools on modern computer architectures are still huge, even today, particularly if accurate,
flexible and highly efficient simulation tools shall be realized.

Most of todays software packages for computational fluid dynamics (CFD) and computational structural mechan-
ics (CSM) are already on a quite high level and allow, at leastto some extent, the simulation of certain classes of
FSI applications. However, although a lot of research has been invested in this challenging field, many of the key
questions in FSI regarding accuracy, robustness, flexibility and efficiency of the developed simulation techniques
have not been answered yet in a satisfying way: These key questions address, for instance, the appropriate cou-
pling between structural and fluid parts, i.e. monolithic vs. partitioned coupling schemes, and the advantages and
drawbacks of various discretization schemes used on the flowand on the structure side. Moreover, the reliability
of the simulation results and underlying error estimators,or flexible data structures and geometry models for large
geometrical or even topological changes, are still in the center of research activities. And, finally, the design of
robust and efficient solvers for the resulting huge nonlinear systems and the realization of the numerical approaches
as flexible software tools allowing techniques from high performance computing still have to be treated with very
high priority.

This book contains the proceedings of a 3-day workshop on fluid-structure interactions held in Herrsching am
Ammersee, Germany, in September 2008 which was organized bythe Collaborative Research Center SFB TRR
30 Process-integrated development of functional graded structures on the basis of thermo-mechanically coupled
phenomenaand the Research Unit 493Fluid-Structure Interaction: Modelling, Simulation, Optimization, both
established by the Deutsche Forschungsgemeinschaft (DFG). Designed as a forum for presenting recent results as
well as for exchanging ideas with leading international experts, this workshop consisted of 29 lectures on all kind
of mathematical and computational aspects of fluid-structure interactions. The topics in this volume cover a broad
spectrum of up-to-date FSI issues, ranging from more methodical aspects to applications and experimental settings
for validation and evaluation.

We would like to thank the “Gesellschaft zur Förderung des technischen und kaufmännischen F̈uhrungsnach-
wuchses in Nordhessen Informatik (GFF-I)” for financial support, and Mrs. Ilona Blaschek for her enormous
engagement and administrative work. Finally, we are grateful for the Deutsche Forschungsgemeinschaft (DFG).
Without this financial support, neither many of the results presented in this book nor the book itself would have
been possible.

Stefan Hartmann
Andreas Meister
Michael Scḧafer
Stefan Turek

Clausthal, Kassel, Darmstadt, Dortmund March 2009
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Fluid-Structure Interaction.
Theory, Numerics and Applications

pp. 7– 20

Herrsching am Ammersee, 29.9.-1.10.2008

Shape Optimization with Higher-Order Surfaces in Consideration of
Fluid-Structure Interaction

G. Becker, U. Falk, M. Scḧafer

This paper proposes the first step towards an efficient and entirely integrated shape optimization of fluid-structure
interaction problems. The presented approach utilizes NURBS surfaces to approximate and alter grid based opti-
mization surfaces. Due to the usage of the already availabe FSI grid generation routines it is possible to handle
even large grid deformations. Furthermore, this approach allows the user to address the optimization surfaces
easily via boundary condition. The design variables can be set very intuitively. The presented implementation
works with any derivative free optimization tool.

1 Introduction

Fluid-structure interactions (FSI) arise in many disciplines and applications, e.g. elastic artery modeling, airfoil
flutter or wind loads on structures (Mittal and Tezduyar, 1995; Kalro and Tezduyar, 2000; Tezduyar and Osawa,
2001). Therefore, the significance of efficient numerical methods to solve these problems has increased steadily.
Thus, the demand for shape optimization has arisen, e.g. thedrag and lift force optimization of airfoils. Throughout
the last years, researchers have improved the numerical methods concerning fluid-structure interactions. Efficient
codes are available now. Furthermore, in the field of structural mechanics shape optimization is already commer-
cially receivable and fluid mechanics researchers make goodprogress. However, simulations combining fluid-
structure interactions and shape optimizations have not been deeply investigated yet (Mohammadi and Pironneau,
2001).

Therefore, it is aspired to establish shape optimizations within fluid-structure interaction applications. Since the
optimal shape is calculated, numerical shape optimizationof coupled problems may reduce the costs of time
consuming experiments (Harth and Schäfer, 2004).

Shape optimization
with higher-order

surfaces
+ Efficient time

dependent
optimization

= Fluid-structure-
interaction shape

optimization

Figure 1: Classification of this paper’s content within the context of FSI optimization

This paper proposes a new deformation approach for optimizing shapes. It allows a straightforward application
towards coupled problems, i.e. the coupled code’s routinesfor grid deformation and generation are utilized for
the shape movement within the optimization process as well.The new method is implemented within the fluid
region and works aside the fluid-structure coupling surfaces. Because of the time dependence in fluid-structure
interactions, an efficient time dependent optimization approach needs to be considered. This paper handles the first
step towards an efficient FSI optimization (see Fig. 1).
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1.1 Shape optimization approaches

Samareh (1999) gives a general review of shape parameterization techniques for multidisciplinary optimization
based on the work of Haftka and Grandhi (1986). In addition tothe obvious discrete approach using the surface
grid points as design variables, there are three general shape optimization techniques. The main intention of these
methods is the reduction of design variables to accelerate the optimization.

Thebasis vector approachuses a small number of trial designs. These are weighted by design variables and added
to the original design to achieve an optimal shape (Pickett et al., 1973). The trial designs are generated by a variety
of methods, e.g. free form deformation (Sederberg and Parry, 1986; Barr, 1984). Drawback of this method is that
the shape is restricted only to the possible combinations ofthe trial shapes.

CAD-based methodsutilize geometric shape design parameters defined in a CAD model as design variables, e.g.
the height of an object. First the shape is altered in an external CAD application. If necessary a new grid is
generated in a meshing tool. A new objective function value is evaluated using this grid within a FEM- or FVM-
solver (Olhoff et al., 1991; Grindeanu et al., 2002). The disadvantage of this approach is the time costly serial
usage of different exteral programs.

The polynomial and spline approachutilizes polynomial functions to represent the shape beingoptimized. B-
spline functions allow an easy and local control of the object’s shape by manipulating the control points, which
serve as design variables. Furthermore, B-spline surfacescan represent any shape and allows the approximation
of given sets of grid points (Piegl, 1991; Tiller, 1983). It is possible to completely integrate them into the availabe
FSI grid deformation routines. Hence, no external programms are necessary. Thus, nonuniform rational B-spline
(NURBS) surfaces are chosen in this paper (Bazilevs et al., 2006, 2008).

1.2 Development environment

The applied code solves fluid-structure interactions via animplicit partitioned approach (Schäfer et al., 2006). It
is based on FASTEST, a parallel multigrid flow solver, utilizing an entirely conservative finite-volume method to
solve the incompressible Navier-Stokes equation on a non-staggered, block structured and cell centered grid (Durst
and Scḧafer, 1996). Furthermore, FEAP is used as a finite-element based structural solver (Taylor, 2003). The
coupling interface is realized via MpCCI, which sends forces of the flow region to the structural solver and returns
resulting deformations (MpCCI, 2006). For these, an efficient block-based grid deformation tool is implemented
for the fluid region, allowing large grid movements by algebraic and elliptic mesh generation techniques (Schäfer
et al., 2006).

2 Mathematical background

In this section the mathematical background of nonuniform rational B-spline surfaces (NURBS surfaces) and the
approximation of a set of points with such surfaces is brieflyreviewed.

According to Piegl (1991), NURBS curves are vector-valued piecewise rational polynomial functions (Piegl and
Tiller, 1987; Rogers and Adams, 1976; Tiller, 1983). NURBS are used within this work to calculate an approxi-
mation of given surface grid points. Those represent the shape of the objects we like to optimize with respect to
minimize a defined objective function. NURBS surfaces are a powerful technique to change the grid point position
and therefore the shape of the objects by adjusting the control points. In contrast to the amount of grid points the
amount of control points is small. Starting from splines thedefinition of NURBS surfaces is shown step by step.
In addition the key benefits regarding the application of NURBS surfaces in shape optimization are stated.

A linear regression problem has to be solved in order to fit a NURBS surface to the provided surface grid points and
gives us a first set of control points. Therefore, different methods of solving such overdetermined linear equation
systems are given.
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2.1 NURBS surfaces

2.1.1 Splines

According to Piegl and Tiller (1996), a splineC : [0, 1] → R
n is a piecewise defined polynomial function of order

p̃ ∈ N. Therefore, parameter values (knots)

ϕ̃ = (ϕ̃1, . . . , ϕ̃m̃), whereϕ̃i ∈ [0, 1], i ∈ {1, . . . , m̃}, (1)

need to be defined. They represent the endpoints of the piecewise defined polynomial functions. Let̃p ≥ 2 and
Ci := C|[ϕ̃i,ϕ̃i+1]

∈ C p̃−2[0, 1]. Then forj = {0, 1, . . . , p̃ − 2} we demand for thejth derivative

C
(j)
i (ϕ̃i+1) = C

(j)
i+1(ϕ̃i+1), ∀i ∈ {1, . . . , m̃ − 2}. (2)

Regarding the approximation of data points, splines offer the following advantages compared to a single polyno-
mial:

• Due to the low degree of the piecewise defined spline-function, splines are easy to process and numerically
stable even with a high number of interpolation points (Piegl and Tiller, 1996).

• Splines are well-suited to shape any design. With control points the shape can be locally manipulated (Piegl,
1991).

2.1.2 B-spline-surfaces

In contrast to general splines, B-splines are constructed using a particular class of polynomial functions. These
functions are called B-spline basis functions (Tiller, 1983).

The finite polynomial B-spline surfaceS : [0, 1] × [0, 1] → R
3 is a product of two piecewise defined polynomial

functions of orderp, q respectively. Therefore, we define two knot vectorsξ = (ξ1, ξ2, . . . , ξn̂+p) and ν =
(ν1, ν2, . . . , νm̂+q) by

ξi =







0 if i < p
i−p
n̂−p

if p ≤ i ≤ n̂

1 if i > n̂

for i = 1, . . . , n̂ + p (3)

andν analogously.

According to Zeid (2005) the above definition generates a uniform knot vector, which leads to auniformB-spline
surface. Furthermore, the end knots are repeatedp (resp.q) times. As a consequence the surface’s corner points
coincide with the corresponding control points. This allows a direct manipulation. A nonuniform knot vector
would lead to anonuniformB-spline surface (see Section 3.1.3).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Figure 2: B-spline basis functionsN p=3
i∈{1,...,6} using the nonuniform knot vectorξ = (0, 0, 0, 0.2, 0.6, 0.8, 1, 1, 1).
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The B-Spline basis functionsN p,N q : [0, 1] → R, with N p
i := N p

|[ξi,ξi+1]
(N q

j using ν analogously) are

computed piecewisely and recursively with the Cox-deBoor recurrence (see De Boor (2001) and Fig. 2). Note,
that we follow the convention of Farin et al. (2002):0/0 := 0.

N 1
i (u) =

{

1 if ξi ≤ u < ξi+1

0 otherwise,

N p
i (u) =

u − ξi

ξi+p − ξi

N p−1
i (u) +

ξi+p+1 − u

ξi+p+1 − ξi+1
N p−1

i+1 (u), (N q
j (v) analogously). (4)

Therefore, following Piegl and Tiller (1996),

S(u, v) =

n̂∑

i=1

m̂∑

j=1

N p
i (u)N q

j (v)Pi,j , u, v ∈ [0, 1], (5)

wherePi,j ∈ R
3 denotes the(i, j)th entry ofP ∈ R

n̂ × R
m̂ × R

3.

2.1.3 Nonuniform rational B-spline surfaces (NURBS surfaces)

A NURBS surface is a B-spline surface with a nonuniform knot vector (Tiller, 1983) and is defined as follows:

S(u, v) =

n̂∑

i=1

m̂∑

j=1

wi,jPi,jN
p
i (u)N q

j (v)

n̂∑

r=1

m̂∑

s=1
wr,sN

p
r (u)N q

s (v)

, u, v ∈ [0, 1] (6)

with weightsw = (wi,j)i,j and the nonuniform knot vectorsξ,ν. The computation of the nonuniform knot vectors
can be found in Section 3.1.3.

Let

Rp;q
i,j (u, v) =

wi,jN
p
i (u)N q

j (v)

n̂∑

r=1

m̂∑

s=1
wr,sN

p
r (u)N q

s (v)

(7)

be a bivariate basis function (Piegl, 1991), thus

S(u, v) =

n̂∑

i=1

m̂∑

j=1

Pi,jR
p;q
i,j (u, v). (8)

Piegl (1991) stated the following important properties of bivariate basis functions:

• Locality:

Rp;q
i,j (u, v) = 0 if u /∈ [ξi, ξi+p] andv /∈ [νj , νj+q] (9)

• Partition of unity:

∑

i,j

Rp;q
i,j (u, v) = 1 ∀ u, v ∈ [0, 1] (10)

• Differentiability:

Rp;q
i,j (ξi, νj) ∈ Cp−k;q−l, if ξi = ξi+r̂ for r̂ ∈ {1, . . . , k}; νj = νj+ŝ for ŝ ∈ {1, . . . , l}, (11)

wherek, l denote the amount of recurrences of the same knot value.
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As a result we obtain the following properties for NURBS surfaces (Piegl, 1991):

• The surface is only affected in ap knot span (orq knot span respectively) if a control point is moved or a
weight is changed.

• If all wi,j = 1, Eq. (6) simplifies to Eq. (5). In particular, B-spline surfaces are a special case of nonuniform
rational B-spline (NURBS) surfaces.

2.2 Approximation of surface grids with NURBS

Throughout this paper surface fitting is defined as the construction of a NURBS surface which fits a set of geometric
data, such as the grid points representing the shape of an object during a numerical flow simulation.

The input of the fitting process consists of the geometric grid point dataX ∈ R
n × R

m × R
3, the knot vectors

ξ andν, the weightsw, the number of control points inu- andv-directionn̂ andm̂ as well as the ordersp andq
of the B-spline basis functions.X is specified by the problem;ξ,ν, n̂, m̂, p, q andw have to be preselected. The
resulting output is a set of control pointsP ∈ R

n̂ × R
m̂ × R

3. According to Piegl and Tiller (1996) very little has
been published on setting the weights in the fitting process,therefore we set

w = 1 (12)

in this paper.

Given a set of data pointsX and weightsw = 1, a nonuniform B-spline surface approximating the given grid
points has to be constructed. First,X has to be parameterized to receive the discrete pointsuk, vl (see Section
3.1.2). Thus, the following system of linear equations needs to be solved:

S(uk, vl) =

n̂∑

i=1

m̂∑

j=1

N p
i (uk)N q

j (vl)Pi,j . (13)

2.3 Linear regression problem

To finish the data fitting process presented in the previous section, Eq. (13) needs to be solved. However, there are
notably less control points compared to surface grid pointsand hence significantly less unknowns compared to the
provided equations. Thus, an overdetermined linear systemhas to be solved which is also known as a regression
problem. For the examination of possible strategies (see also Duff and Reid (1976)) to solve such problems and to
simplify matters this chapter considers the following overdetermined linear system of equations:

Ax = b, with A ∈ R
m × R

n, x ∈ R
n, b ∈ R

m, m > n. (14)

According to Peters and Wilkinson (1970) and using the simplified Eq. (14), a linear regression problem can be
defined as follows:

‖Ax∗ − b‖2 = min
x∈Rn

‖Ax − b‖2. (15)

In general‖Ax∗ − b‖2 = r, r ≥ 0. The resulting valuer is called the residuum ofx∗.

From a geometrical point of view the optimal solution of the minimization problem is orthogonal to the image
space Im(A) = {Ax | x ∈ R

n}, i.e.

‖Ax∗ − b‖2 = min
x∈Rn

‖Ax − b‖2 ⇔ Ax∗ − b ⊥ Im(A) (16)

The following methods are suitable to solve such overdetermined linear system, i.e. the minimization problem
defined in Eq. (15):

• Normal equations
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• Singular value decomposition

• QR-decomposition

According to Dahmen and Reusken (2008) the major drawback ofthe normal equations approach is the squared
condition number. This leads to a high sensitivity in respect to truncation errors during the utilizedCholesky
decomposition and can result in an unstable solution process. Whereas the singular value decomposition needs
considerably more time to solve a linear regression problemthan the normal equations or the QR-decomposition.
Furthermore, the QR-decomposition offers a stable algorithm. Thus, we choose the QR-decomposition to solve
our overdetermined linear system of equations.

2.3.1 QR-decomposition

The QR-decomposition is based on the following property of orthogonal matrices:

‖QA‖2 = ‖A‖2, since‖Q‖2 = 1 (17)

Thus, the linear regression problem as defined in Eq. (15) canbe rewritten as:

min
x∈Rn

‖Ax − b‖2 = ‖QAx∗ − Qb‖2, with Q ∈ R
m×m A ∈ R

m×n, x ∈ R
n, b ∈ R

m (18)

whereQ has to be chosen such that

QA = R :=

(
R̃

0

)

with R̃ ∈ R
n × R

n (19)

and

Qb =

(
b1

b2

)

with b1 ∈ R
n, b2 ∈ R

m−n (20)

whereR̃ is an upper triangular matrix. WhileQ having the characteristics of Eq. (19) and (20) the approximate
solution of the overdetermined linear equation system can be achieved by

x∗ = R̃−1b1. (21)

Q is the product ofn orthogonal matricesQi. In order to generate the upper triangular matrixR̃, n matricesQi

have to be chosen such that the multiplication by the matrixA results in zeros below the main diagonal in theith
column of matrixA.









x x x
x x x
x x x
x x x
x x x









Q1A
−−−→









x x x
0 x x
0 x x
0 x x
0 x x









Q2Q1A
−−−−−→









x x x
0 x x
0 0 x
0 0 x
0 0 x









Q3Q2Q1A
−−−−−−−→









x x x
0 x x
0 0 x
0 0 0
0 0 0









Figure 3: Creation of an upper triangular matrix with orthogonal matricesQi

To generate the orthogonal matricesQi we apply the Householder reflection which is the most effective method
according to B̈arwolff (2007).

The Householder reflection uses a(n− 1) dimensional hyperplane through the origin and reflectsQi at this plane.
The corresponding hyperplane ofQi is defined by the normal vectorhi (Householder vector).

hi = (hi
1, . . . , h

i
n)T ∈ R

n, hi 6= 0 (22)
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Using the Householder-vectorhi the orthogonal matricesQi can be defined as:

Qi =

[
I 0
0 F

]

with unity matrixI ∈ R
i−1 × R

i−1, F ∈ R
m−i+1 × R

m−i+1, (23)

where

F = I − 2
hi(hi)T

(hi)T hi
. (24)

In order to be able to reduce the matrixA to the upper triangular matrix̃R by multiplying it with the orthogonal
matricesQi the components of the Householder-vectorh have to be selected as

hi = αi + sign(αi
i)‖α

i‖2e
i, (25)

whereαi is theith column of the matrixA andei is the unit vector of theith direction. The linear regression
problem can be solved by QR-decomposition using the following algorithm (Dahmen and Reusken, 2008):

• QR-decomposition via Householder-reflection (complexitymn2)

• Calculation ofQb (complexity2mn)

• SolvingR̃x = b1 (complexity 1
2n2)

According to Dahmen and Reusken (2008) a unique solution of such an overdetermined linear equation system
with the previous algorithm is possible ifA has a full rank, i.e.

rank(A) = n. (26)

Schoenberg and Whitney (1953) stated that condition (26) is allways fulfilled if at least one ofn parameterized
gridpointsuk exists between every pair of subsequent knots, i.e.

ξi < uk < ξi+1, i = 1, . . . , n̂ + p, k = 1, . . . , n, (ν, v,m, m̂, q analogously) (27)

For that reason Eq. (37) is chosen to generate the knot vectorsξ andν.

3 Implementation

In this section the workflow ofFASTEST ShapeOptusing a derivative free optimizer is presented. The optimizer is
treated as a black box, i.e. it is exchangeable by any derivative free optimization tool. For computing the example
in section 4 the free available toolDFO by Conn et al. (1997) was implemented into theFASTEST ShapeOpt
environment.

Evaluation Phase

Start Preparation
Phase

Derivative Free
Optimizer

Converged? Stop

No

Yes

Figure 4: General workflow ofFASTEST ShapeOpt, utilizing a derivative free optimizer as black box

FASTEST ShapeOptis split into three main parts (see Figure 4). The preparation phase, where the optimization
surface is approximated with a NURBS surface. Basis for the approximation is the blockstructured grid of the
FASTEST Flow solver. Furthermore, the initial set of design variables is defined. A derivative free optimizer
typically interpolates the objective function by a polynomial of fixed degree and computes the optimum based on
it. Hence, this kind of optimizers need evaluations to enhance the approximation of the objective function with
further values. A new set of design variables is passed to theevaluation phase in order to receive a new point of
the objective function. Within this evaluation phase, a newsurface shape based on the new set of design variables
is calculated, the grid is updated and new flow properties arecalculated to compute the new value of the objective
function.
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3.1 Preperation Phase

The preparation phase is necessary to approximate a given surface grid with a NURBS surface. Afterwards the
surface’s control points can be used as design variables (see section 3.2). In order to use this part ofFASTEST
ShapeOpt, a blockstructured grid of the flow domain needs to be createdand the optimization surfaces are marked
with a special optimization boundary condition. This boundary condition will be reassigned as “wall” after the
surface grid points are stored. The preparation phase can besubdivided into the parts described in the following.

3.1.1 Grid data

First, we need to find all initial surface grid points lying onan optimization surface and store them into a tensor

Xd ∈ R
nd × R

md × R
3, d ∈ {1, . . . , κ}, (28)

whereκ denotes the number of optimization surfaces,nd andmd are the number of grid points in the two spatial
edge directions of each surface. Now the boundary condition“optimization surface” can be reassigned as “wall”.

Henceforth we omit the surface numberd to simplify matters and present all equations for a single optimization
surface.

3.1.2 Parameterization

The next step is to parameterizeX ∈ R
n × R

m × R
3 with uk, vl ∈ [0, 1]. We use the following parameterization

method based on Ma and Kruth (1998). Let

û1,l = 0, ûk,l =

k−1∑

i=1

(‖Xi+1,l − Xi,l‖)
e

n−1∑

i=1

(‖Xi+1,l − Xi,l‖)
e

, k ∈ {2, . . . , n}, l ∈ {1, . . . ,m} (29)

and

v̂k,1 = 0, v̂k,l =

l−1∑

j=1

(‖Xk,j+1 − Xk,j‖)
e

m−1∑

j=1

(‖Xk,j+1 − Xk,j‖)
e

, k ∈ {1, . . . , n}, l ∈ {2, . . . ,m}. (30)

Now we can deriveu = (u1, . . . , un) andv = (v1, . . . , vm) with

u1 = 0, uk =
1

m

m∑

j=1

ûk,j , k ∈ {2, . . . , n} (31)

and

v1 = 0, vl =
1

n

n∑

i=1

v̂i,l, l ∈ {2, . . . ,m}. (32)

The parametere ∈ [0, 1], introduced by Jung and Kim (2000) offers the possibilty to influence the type of para-
meterization. Fore = 0, a uniform parameterization, fore = 1, a chordlength parameterization and fore = 0.5, a
centripedal parameterization is performed. However,e can be chosen within[0, 1], dependent on the setting.

3.1.3 Knot vector

In order to calculate the knot vectors, several boundary conditions have to be considered. To obtain a unique set of
control points, it is necessary to fulfill condition (26). Hence, at least one grid point needs to be located between
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every pair of subsequent knots (Eq. (27) and see also Section2.3.1). Furthermore, the grid density should be
considered and the corner points of the NURBS surface shouldcoincide with the corresponding control points.

Therefore, the following algorithm was developed: Let us consider the discrete parametersuk, k ∈ {1, . . . , n}
andvl, l ∈ {1, . . . ,m} as a data basis to compute the knot vectorsξ,ν using

ξ = (0, . . . , 0
︸ ︷︷ ︸

p

, ξp+1, . . . , ξn̂, 1, . . . , 1
︸ ︷︷ ︸

p

)

ν = (0, . . . , 0
︸ ︷︷ ︸

q

, νq+1, . . . , νm̂, 1, . . . , 1
︸ ︷︷ ︸

q

) (33)

with lengthp + n̂ andq + m̂, respectively. Recall that̂n, m̂ denote the numbers of control points andp, q ∈ N the
orders of the B-spline basis functions in each boundary direction. Additional conditions aren > n̂ − p + 1 and
m > m̂ − q + 1, to assure having a grid point between two subsequent knots.

For the purpose of simplification the following algorithm ispresented for the knot vectorξ (ν analogously).

As we can see in Eq. (33), we need to calulate(n̂ − p) entries for this vector. Therefore, we split all entries of
vectoru = (u1, . . . , uk, . . . , un) into (n̂− p) intervalls. To compute the interval length we introduce an integerG
and the remainderR:

G =

⌊
n

n̂ − p + 1

⌋

(34)

R = n mod(n̂ − p + 1) (35)

We set the interval lengthL of then̂ − p intervals to

L = 2G + R. (36)

Now the knot vector entries can be computed by

ξp+h+1 =
1

2G + R

hG+L∑

i=hG+1

uk, h ∈ {0, 1, . . . , n̂ − p − 1}. (37)

3.1.4 Basis functions

With known knot vectorsξ andν, as well as all discrete grid pointsuk, k = 1, . . . , n andvl, l = 1, . . . ,m we are
able to calculate the B-spline basis functions by Eq. (4) andstore them into the following matrices:

Np ∈ R
n̂ × R

n, in u-direction and (38)

Nq ∈ R
m̂ × R

m, in v-direction. (39)

3.1.5 Solving the linear regression problem

Finally, using nonuniform B-spline surfaces (Eq. (13)) andgrid pointsXγ ∈ R
n × R

m we have to solve the
overdetermined linear equation system

Xγ = (Np)T Pγ Nq, (40)

where γ ∈ {1, 2, 3} denotes the directions inR3. For solving Eq. (40) we use the above presented QR-
decomposition algorithm (Section 2.3.1) and obtain the initial set of control pointsPγ ∈ R

n̂ × R
m̂.

3.2 Initialize design variables

To finish the preparation phase a relation between the set of control pointsP(g), whereP
(g)
i,j ∈ R

3 denotes the
(i, j)th entry at thegth evaluation call, and the following set of design variables has to be established.

α(g) ∈ R
M , subject toLτ ≤ α(g)

τ ≤ Uτ , τ ∈ {1, . . . ,M}, andα = (ατ )τ (41)
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whereM ∈ N denotes the number of design variables. The initial set of design variables is always defined as

α0 = 0. (42)

The control points of thegth evaluation call are derived as follows:

P
(g)
i,j =






a
(g)
i,j

b
(g)
i,j

c
(g)
i,j




 + P

(g−1)
i,j . (43)

For each pair(i, j) we distinguish four cases for the usage of the control points:

• Case I: Fixed control points

a
(g)
i,j = b

(g)
i,j = c

(g)
i,j = 0. (44)

• Case II: One design variable per control point utilizing a direction vectorsτ = (sτ
i )i∈{1,2,3}

a
(g)
i,j = sτ

1α(g)
τ ,

b
(g)
i,j = sτ

2α(g)
τ ,

c
(g)
i,j = sτ

3α(g)
τ ,

‖sτ‖2 = 1. (45)

• Case III: Three design variables per control point in each spatial direction

a
(g)
i,j = α(g)

τ ,

b
(g)
i,j = α

(g)
τ+1,

c
(g)
i,j = α

(g)
τ+2. (46)

• Case IV: The control point depends on another control point’s design variable with a scaling factortτ =
(tτi )i∈{1,2,3}. This is an important feature to reduce the number of design variables, e.g. in symmetric cases.

a
(g)
i,j = tτ1a

(g)
k,l , (i, j) 6= (k, l),

b
(g)
i,j = tτ2b

(g)
k,l , (i, j) 6= (k, l),

c
(g)
i,j = tτ3c

(g)
k,l , (i, j) 6= (k, l). (47)

The above definitions allow the user to connect the design variables intuitively with the control points. In this
approach, the design variable’s valueα

(g)
τ ∈ [Lτ , Uτ ] represents the displacement along either a direction vector

(case II) or a single direction in space (case III).

3.3 Evaluation Phase

The functions we intend to optimize frequently appear to be either unknown or not differentiable. Hence, we
can only use the class of derivative free optimizers. These interpolate the objective function with a lower degree
polynomial using known values ofF(α(g)). Thus, the derivative is known and the optimizer can use standard
optimization methods to identify the optimum. In order to compute such an interpolation, it is necessary to calculate
the unknown relation between the design variablesα(g) and the objective functionF during an evaluation phase.
Hence, the objective function

F(f(α(g))) : Θ → R, (48)

whereΘ denotes an arbitrary set of parameters, is defined implicitly by a function

f(α(g)) : R
M → Θ, (49)

which is computed by theFASTEST Flow Solver.

The evaluation phase is divided into three sections. First,a new grid is generated using a new set of design
variables. Afterwards the flow problem is solved and finally anew value of the objective function is calculated and
returned to the optimizer.
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3.3.1 Grid generation

In the evaluation phase a new set of control pointsP(g) ∈ R
n̂ × R

m̂ × R
3 is calculated with Eq. (43) using a new

set of design variablesα(g) and the already calculated B-spline basis functions (see Section 3.1.4) as input. Now,
a new set of surface grid pointsX(g) ∈ R

n × R
m × R

3 can be calculated using the NURBS equation (40), where
X

(g)
i,j,k denotes the(i, j, k)th entry of the tensorX(g).

Note that this method generates the new surface gridX(g) only. To move the remaining grid according to the
displaced optimization surface, grid generation techniques already used for FSI grid displacements are applied.
Within the FSI approach introduced in Section 1.2, the FSI grid generation routine receives computed displace-
ments of the coupling surface from the structural solverFEAP(Scḧafer et al., 2006). To utilize this routine for the
purpose of shape optimization we need to compute the displacements betweenX(g) and the original optimization
surfaceX0, i.e.

∆i,j,k =
∣
∣
∣X

(g)
i,j,k − X0

i,j,k

∣
∣
∣ , ∀ i, j, k. (50)

The grid generation routine uses∆ = (∆i,j,k)i,j,k to generate new grids within the optimization surface’s neigh-
boring blocks. This is performed either via linear or transfinite interpolation or via elliptic grid generation (Thomp-
son and Soni, 1999).

3.3.2 Flow solver

In contrast to many other shape optimization approaches this implementation generates the grid internally. In
particular, the grid’s topology remains unchanged. Hence,all flow related values of the control volume’s centers
which have been calculated in a former evaluation call can beused as initial values for the next solver run. This
allows fast convergence and supersedes new mapping or restarting. Thus, a new evaluation run in a figurative sense
is the same as a new FSI coupling step. Nevertheless, the fullfunctionality of the flow solver can be applied (see
Section 1.2 as well as Durst and Schäfer (1996)).

3.3.3 Objective function

After obtaining all problem related variables at the control volume centers, the objective function can be calculated.
For instance

min
α(g)

F(f(α(g),x)), (51)

wheref denotes a function dependent on the set of design variableα(g) andx, a further set of variables. The
resulting value of the objective function is passed back to the optimizer.

4 Example: 2D Flow over a hill

A simple test example was set up to validate the implementation using DFO as optimization tool (Conn et al.,
1997). It is based on the optimizer test of Burkhardt and Peterson (1995) being slightly modified.

The basic setup is a 2D-channel with a small hill (see Figure 5) to derange the ideal laminar Hagen-Poiseuille flow.
The Hagen-Poiseuille flow of this channel can be described analytically by

û(y) =
uy(3h − y)

(1.5h)2
, (52)

whereu denotes the maximum velocity inx-direction and3h denotes the height of the channel.

We optimize the hill’s shape with one design variableα(g) to receive an ideal Hagen-Poiseuille flow downstream
the hill. For this case we know the optimum shape in advance: The hill’s height has to be zero. The ideal Hagen-
Poiseuille flow and the actual flow at(x0, yi) are shown in Figure 6(a).
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Figure 5: The flow problem’s discretized domain

Thus, we define the objective function

min
α(g)

F(u(α(g), x, y), û(yi), x0,y) =

N∑

i=1

∣
∣
∣u(α(g), x0, yi) − û(yi)

∣
∣
∣ , with y = (y1, y2, . . . , yN ) (53)

whereu(α(g), x0, yi) denotes the current velocity inx-direction dependent on the shape of the flow domain (con-
trolled byα), at the position(x0, yi), i = 1, . . . , N (see Figure 5).

Due to the 3D-based implementation ofFASTEST, it is necessary to add a third direction in space to the flow
domain. Note that we need to add several layers of control volumes in the new third direction to be able to use
a geometric multigrid approach for solving. Hence, we need aNURBS surface instead of a NURBS spline to
approximate the hill. In Figure 6(b) this surface is shown. It was approximated witĥnm̂ (n̂ = 3 andm̂ = 2)
control points and ordersp = 3 andq = 2.
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Figure 6: Flow profiles, optimization surface approximation and results

TheFASTEST flow solverusing a geometric multigrid on three grid levels is set to solve an incompressible, steady
state and isotherm flow with Re= 1 and40960 control volumes at the finest grid level. The grid deformation
within the block above the hill is performed with a linear interpolation, while the remaining grid stays unchanged.

Furthermore, the relation between control points and design variables is set to

P
(g)
1,1 = P

(g)
2,1 = P

(g)
1,3 = P

(g)
2,3 = 0 (Case I), (54)

P
(g)
1,2 =






a
(g)
1,2

b
(g)
1,2

c
(g)
1,2




 + P

(g−1)
1,2 , with a

(g)
1,2 = c

(g)
1,2 = 0 andb

(g)
1,2 = α(g) ∈ [−0.12, 0] (Case II), (55)

whereα(0) = 0 and

P
(g)
2,2 =






a
(g)
1,2

b
(g)
1,2

c
(g)
1,2




 + P

(g−1)
2,2 (Case VI). (56)
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The initial position of control pointP(0)
1,2 is (0.2h, 0.1h, 0). After 20 evaluation runs, the optimizer returns a design

variable with valueα(20) = 0.09997, which computes a control point positionP(20)
1,2 = (0.2h, 2.9h × 10−6, 0)

applying Eq. (55). The objective function’s value is expected to be zero. After 20 evaluation calls it isF =
27.1 × 10−4 (see Fig. 6(c)). The result lies within the flow solver’s and the optimizer’s numerical accurracies.

5 Conclusions

The presented shape optimization approach utilizes NURBS surfaces to approximate and alter grid based shapes.
This reduces the number of design variables and allows an accurate and reliable shape optimization. Furthermore,
NURBS surfaces can represent any surface shape without restrictions.

In contrast to other shape optimization tools, this approach is fully integrated within the partitioned FSI environ-
ment. In particular, the FSI grid deformation routine is also applied to the shape optimization. It allows large
deformations due to a blockwise generation of the grid. Thisis done either with a linear or transfinite interpola-
tion or an elliptic grid generation. Furthermore, all flow related values can be reused as starting values for a new
evaluation run. This allows fast grid deformation, flow solving and evaluating the objective function without using
external software like CAD or meshing tools.

The complete functionality of theFASTEST flow solvercan be used to solve laminar, turbulent (RANS, LES) and
thermal flow problems. The implementation ofFASTEST ShapeOptallows the user to address the optimization
surfaces easily via boundary condition. Furthermore, the design variables can be set intuitively. The presented
implementation works with any derivative free optimization tool.

The next step is to add a sensitivity analysis and an efficienttime dependent optimization strategy to this new
approach to receive an efficient and accurate FSI shape optimization.
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On Coupling Schemes for Heat Transfer in FSI Applications

P. Birken, K. J. Quint, S. Hartmann, A. Meister

In this article, the coupling of the temperature-dependent, compressible Navier-Stokes equations solved by a com-
pressible finite volume scheme together with the finite element solution of the heat equation is considered. The
application is focused on the cooling process of a heated metal bar treated in the field of metal forming technology.
This is done both by loose and strong numerical coupling methods based on the Backward-Euler scheme, where,
particularly, Gauss-Seidel and fixed-point solvers are considered.

Keywords: Fluid-Structure Interaction, Thermal Coupling, Partitioned Approach

1 Introduction

Many industrial applications of metal forming involve a simultaneous or subsequent heat treatment. The purpose
of this treatment is to improve the mechanical properties such as ductility, hardness, yield strength, or impact
resistance. For this purpose the steel is heated up to a certain temperature (austenitic temperature) and then cooled
with a critical rate. The thermal evolution (cooling rate) defines the final material properties and, accordingly, its
prediction is of particular interest. This complicated process has to be handled by numerical simulations implying
thermo-mechanical coupling effects in the gas (fluid-mechanical part), which is used for cooling the metal spe-
cimen, the heat transport within the solid (solid mechanical part) and thermo-mechanical coupling effects in the
solid itself. The mechanical effects are out of the scope of the investigations here. We will treat the heat transfer
from the solid region into the fluid region through a fluid-structure interaction problem.

In our application a metal bar is heated and then cooled at thesurface by cold compressed air. This results in an
unsteady thermal coupling problem, where the hot steel heats the cold air, which is of low to medium speed. The
effect of radiation is neglected for the purpose of getting amore clear picture of the numerical methods with a
special focus on the coupling procedure.

Thus, we will look at a model problem, which serves as a stepping stone for further work: the compressible Navier-
Stokes-equations as a model for air, coupled along a non-moving boundary with the heat equation as a model for the
temperature distribution in the steel. While a lot of work hasbeen done on the thermal coupling of incompressible
fluids with structure, we are looking at thermal coupling of acompressible fluid and a structure. Research on
numerical simulation of this problem was so far mainly driven by problems where hot gas heats the structure, for
example supersonic reentry of vehicles from space or heating of gas-turbine blades (Hinderks and Radespiel, 2006;
Mehta, 2005). The results are mainly qualitative, describing numerical methods and the comparison of numerical
results to experimental data, with the conclusion that the results are not always in agreement with experiments
(Hinderks and Radespiel, 2006).

For the fluid-structure interaction, we consider a partitioned approach (Farhat, 2004), where different codes are
used for the subproblems and the coupling is done by a master program which calls by interface functions the
other codes. This allows to use existing software for the subproblems, by contrast to a monolithic approach,
where a new code is tailored for the coupled equations. This problem is solved numerically using a finite volume
method (FVM) for the fluid and a finite element method (FEM) forthe heat equation as the methods for space-
discretization. Another distinction is made between loosecoupling and strong coupling approaches. In the first
approach, only one step of each solver is performed in each time step, while the latter approach adds a convergence
criterion and an inner loop. We will consider both loose and strong coupling and compare the results on the thermal
coupling problem.

21



The method of lines then implies the time-discretization, where it is common to apply low order time integration
in both methods, FVM and FEM, respectively and in the coupling solver.

2 Governing equations and discretization

In the following a thermal coupling problem is considered, where a fluid domainΩ1 ⊂ R
2 and a structure domain

Ω2 ⊂ R
2 are given. Within theΩ1-domain use is made of the temperature-dependent Navier-Stokes equations

for compressible flow consisting of the continuity equation, the balance of momentum and the energy relation to
describe the thermally coupled fluid flow. In theΩ2-domain the transient heat equation is assumed. The domains
meet at an interfaceΓ consisting of a curve inR2, where we require that temperature and heat flux are continuous.
No further coupling conditions of the interface are taken into account. For the fluid use is made of the DLR TAU-
Code, see (Gerhold et al., 1997), and for the structural partthe in-house FEM-program TASAFEM for high-order
time-integration is applied, see both (Hartmann, 2006) and, for example, (Hartmann, 2002).

To comply with the condition that temperature and heat flux are continuous at the interfaceΓ, a so-called Dirichlet-
Neumann-coupling is used. Namely, the boundary conditionsfor the two solvers are chosen such that we prescribe
Neumann data for one solver and Dirichlet data for the other.Following the analysis of Giles (1997), temperature
is prescribed for the equation with smaller heat conductivity, namely the fluid and heat flux for the structure.
Convergence of this approach has been proved for a system of coupled Laplace equations, but not for the case
considered here.

2.1 Structure Discretization

The finite element code TASAFEM is a high-order time-integration program originally based on stiffly accurate,
diagonally implicit Runge-Kutta methods, see (Ellsiepen and Hartmann, 2001), here extended to the unsteady heat
conduction case. The heat conduction problem is, although unsteady, in a first approximation linear. We start from
the balance of energy

ρ(x)cDΘ̇(x, t) = −div q(x, t), (1)

wherex defines the spatial coordinates andt the time. The dot symbolizes the time derivative and

q(x, t) = −λ grad Θ(x, t)

denotes the heat flux vector depending by Fourier’s law on thecoefficient of heat conductionλ (which is assumed
to define an isotropic heat conductivity). Furthermore,Θ(x, t) is the absolute temperature,ρ(x) the density andcD

denotes the specific heat at constant deformation. On the boundary, we have Neumann conditions, where the heat
flux q(x, t) ·n(x) = q(x, t) is given on∂Aq with the outer normal vectorn(x). Furthermore, initial conditions
Θ(x, 0) = Θ0(x) are required.

In view of the classical finite element setting, multiplyingEq. (1) with a virtual temperature fieldδΘ(x), the weak
formulation reads ∫

Ω2

ρcDΘ̇δΘ dV = −

∫

Ω2

λ grad Θgrad δΘ dV −

∫

∂Aq

qδΘ dA. (2)

Next, one inserts an ansatz

Θh(x, t) = N T (x)Θ(t) (3)

δΘh(x) = N T (x) δΘ (4)

into Eq. (2). The temperature gradient reads in matrix notation

grad Θh =

{

∂x1
Θh

∂x2
Θh

}

=

{

N T
,1

N T
,2

}

Θ(t) = B(x)Θ(t) (5)

with the temperature gradient- nodal temperature matrixB(x). If we insert ansatz (3) and (4) into the weak
formulation (2), we obtain a system of ordinary differential equations

g(t,Θ, Θ̇) = MΘ̇(t) + K(Θ)Θ(t) − q̄(t,u) = 0. (6)
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The heat flux on the coupling boundary is defined by

q̄(t,u) = −

∫

∂Aq

N qh(t,u) dA, (7)

whereu was introduced to denote the dependence on the fluid data as explained in the next section.

M =

∫

Ω2

ρcDN N T dV K =

∫

Ω2

λ(Θh)BT B dV (8)

are the matrices concerned. In the case of a constant domain,no volumetric distributed heat sources and temperature-
independent material parameters, a Backward-Euler step ofEq.(6) reads

[M + ∆tn K]Θn+1 = MΘn + q̄(tn+1,u
n+1) (9)

implying the solution of a symmetric, sparse linear system of equations to obtain the nodal temperatures at time
tn+1.

2.2 Fluid discretization

Concerning the fluid part, the flow is assumed to be governed bythe two dimensional temperature-dependent com-
pressible Navier-Stokes equations. The common non-dimensional integral form of the corresponding conservation
laws reads

d

dt

∫

σ

udV +

2∑

j=1

∫

∂σ

f c
j(u) njdA =

1

Re∞

2∑

j=1

∫

∂σ

fυ
j (u) njdA, (10)

wheren = {n1, n2}
T represents the outwards unit normal vector at the boundary of the control volumeσ. Fur-

thermore,
u = {ρ, ρv1, ρv2, ρE}T

is the vector of the conserved variables andf c
j ,f

υ
j , j = 1, 2 are the convective and viscous fluxes which are given

by

f c
j(u) =







ρvj

ρv1vj + δ1jp
ρv2vj + δ2jp

ρHvj







and fυ
j (u) =







0
τ1j

τ2j
∑2

i=1 viτij + µγ

Pr∞
∂xj

e







,

respectively. The quantitye denotes the internal energy, which is given bye = E−1/2
(
v2
1 + v2

2

)
andH is defined

by H = E + p/ρ. The pressure is determined by the equation of statep = (γ − 1)ρ
(
E − 1/2

(
v2
1 + v2

2

))
, where

γ denotes the ratio of specific heats. The temperature is givenby Θ = γ(γ − 1)Ma2
∞e, where Ma∞ denotes the

Mach number at infinity. The elements of the shear stress tensor are

τij = µ
(
∂xj

vi + ∂xi
vj

)
+ δij λ̃ (∂x1

v1 + ∂x2
v2) ,

with the viscosity assumed to follow the Sutherland lawµ = Θ1.5(1 + S)/(Θ + S), whereS = 110K/Θ∞ and
Θ∞ denote the temperature at infinity measured in degree of Kelvin. Moreover, the relation between the thermal
conductivity and the viscosity is defined by the Stokes’ hypothesis to bẽλ = −2/3µ and Re∞ and Pr∞ denote the
Reynolds and Prandtl number at infinity, respectively.

In order to solve (10) numerically, we consider a conformingtriangulationTh of the spatial domain is the sense
of Delaunay, see (Friedrich, 1993). Based on this primary grid, we define a discrete control volumeσi as the
volume of the barycentric subdivision ofTh enclosing the nodexi = {xi1, xi2}

T and bounded by the straight line
segmentslkij connecting the midpoint of the edge with the inner pointxs (see Fig. 1). For a detailed description,
we refer to Meister and Sonar (1998). Utilizing our notion ofcontrol volumes and introducing the cell average on
σi by ui(t) :=

∫

σi
u(x, t)dV/|σi| into the Navier-Stokes equations (10), we obtain the form

u̇i(t) =
1

|σi|

∑

j∈N(i)

2∑

k=1

∫

lkij

2∑

ℓ=1

(
1

Re∞
fυ

ℓ (u) − f c
ℓ(u)

)

nℓdA,

whereN(i) denote the index set of all control volumesσj neighboring boxσi. To overcome the difficulty that the
line integrals are usually not defined ifu is discontinuous, we introduce the concept of numerical fluxfunctions.
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Figure 1: General form of a control volume

Concerning the convective part, we make use of the well-known AUSMDV scheme, see (Wada and Liou, 1994).
Furthermore, the viscous fluxes are discretized by central differences. Therefore, for each physical quantityφ
appearing within the viscous flux, the unique linear distribution with respect to the triangleτ is calculated by
means of the cell averages of the three adjacent control volumesσi satisfyingσi ∩ τ 6= ∅. In this procedure the cell
averages are considered to be located at the vertices of the triangle. Due to this reconstruction the value as well as
the gradient of each quantity can easily be evaluated at the midpoint of the inner line segmentlkij ⊂ τ . Thus, the
semi-discrete form of the governing equations reads

u̇i(t) =
1

|σi|

∑

j∈N(i)

2∑

k=1

|lkij |
(
hυ(un+1

i ,un+1
j ,un+1

m ;nk
ij) − hc(ûn+1

i , ûn+1
j ;nk

ij)
)
,

wherehc is the AUDMDV flux andhv corresponds to the discretization of the viscous fluxes. Note that the
notationûi emphasizes that we increase the order of accuracy for the convective part by utilizing a well-known
TVD-like reconstruction technique and, accordingly,ûi denotes the one-sided limit with respect to the boxσi at
the midpoint of the line segmentlkij . If we write this as an equation for the complete domain, we obtain

u̇(t) = σ−1h(u,Θ). (11)

The underlined vectors represent the respective vectors onthe whole fluid grid and we have included the depen-
dence on the structural temperature on the coupling interface through the vector of the structure temperaturesΘ.
The matrixσ is a diagonal matrix with the volumes of the corresponding cells on the diagonal.

Similar to TASAFEM the restrictive time-step constraint ofan explicit discretization technique for the time deriva-
tive is overcome using an Backward-Euler approach. Thus, the discrete form of the governing equations reads

un+1 = un + ∆tnσ−1h(un+1,Θn+1), (12)

whereun+1 ≈ u(tn+1) andtn+1 = tn + ∆tn. It is easily seen that each time step within the fluid solver requires
the solution of a sparse non-linear system of equations, which is performed by a dual time-stepping approach, see
(Jameson, 2004). The precise choice of the solver for this non-linear system is not important here, so instead, a
Newton-Krylov method could be used.

2.3 Coupled equations

If we combine the semidiscrete equations (6) for the domainΩ1 and (11) for the domainΩ2, we obtain a coupled
system of ODEs

u̇(t) = σ−1h(u,Θ), (13)

MΘ̇(t) = −KΘ(t) − q̄(t,u),
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where we prescribe the additional algebraic constraint that temperature and heat flux are continuous at the coupling
interfaceΓ. The application of the Backward-Euler method to the coupled system is straightforward. The question
is now, how the coupled system can be solved accurately and efficiently.

3 Fluid-Structure-Coupling

As described above, we pursue a partitioned approach. The technical difficulty of different programming languages
(FORTRAN for TASAFEM and C++ for TAU) in the partitioned approach is dealt by means of the C++-library
called Component Template Library (CTL), see (Matthies et al., 2006).

It is assumed that at timetn the fluid dataun, the structure dataΘn and a global step-size∆tn are given. As
described above, the fluid and the structural equations are both treated implicitly with associated solvers for the
time-stepping procedure. In the coupling context, it is useful to regard the two solvers as mappings that, for given
fixed dataun at tn, respectivelyΘn, take an approximation of the boundary data attn+1 from the other solver and
provide a new approximation to their data attn+1, which provides new boundary data for the other solver. The
fluid solver provides a solution to (12) and can be written as

un+1 = F (P (Θ)),

whereas the structure solver provides a solution to (9) and can be represented by

Θn+1 = S(qΓ(u)).

P is a projection of the temperature onto the boundary ofΩ2 and qΓ provides the boundary heat flux in the
fluid. Using this notation, it is possible to define coupling methods. The most simple coupling procedures are
loose coupling methods, where no convergence criterion is used in the coupling iteration. In particular, there is
Gauss-Seidel coupling

un+1 = F (P (Θn)), (14)

Θn+1 = S(qΓ(un+1)), (15)

and Jacobi-coupling, which can be done in parallel:

un+1 = F (P (Θn)), (16)

Θn+1 = S(qΓ(un)). (17)

These can be iterated leading to fixed point coupling, here for the Gauss-Seidel case:

un+1
k+1 = F (P (Θn+1

k )), (18)

Θn+1
k+1 = S(qΓ(un+1

k+1)), k = 0, 1, . . . . (19)

As a fixed point equation this is given by

P (Θ) = P (S(qΓ(F (P (Θ))))), (20)

which can be used as a convergence criterion for the fixed point iteration. Various methods have been proposed to
increase the convergence speed of the fixed point iteration by decreasing the interface error between subsequent
steps, for example Relaxation (Le Tallec and Mouro, 2001; Küttler and Wall, 2008), Interface-GMRES (Michler
et al., 2006) or ROM-coupling (Vierendeels et al., 2007). For the purpose of looking at the qualitative behavior of
loose and strong coupling, it is sufficient to analyze the more simple methods described here.

4 Numerical Results

4.1 Test case

To analyze the properties of the coupling method, the test example is chosen as simple as possible. The reason is
that this comparably simple coupling problem is already beyond the current solution theory, respectively conver-
gence theory of numerical methods. Therefore, we choose a test case where the exact solutions for the uncoupled
problems are known in order to make sure that no additional side effects are present, which cannot be controlled.
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Accordingly, the cooling of a flat plate resembling a simple work piece is considered (described in Fig. 2 as solid).
This example has also been studied by other authors (Yarrington and Thornton, 1994) and (Huebner et al., 2001,
p. 465) in conjunction with the cooling of structural parts in hypersonic vehicles. There localized heating was of
special interest. In our case the work piece is initially at atemperature ofΘ(x, 0) = 900 K and is cooled by a
constant air stream. The latter is modeled in a first approximation as a laminar flow along the plate, see Fig. 2. For
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Figure 2: Test case for the coupling method

the work piece the following constant material properties are assumed: mass densityρ = 7836 kg/m3, specific
heat capacitycD = 443 J/(kgK) and thermal conductivityλ = 48.9 W/(mK). The inlet is at the left, where the
air enters the domain with an initial velocity of Ma∞ = 0.8 in horizontal direction and a temperature of273 K.
Then, there are two succeeding regularization regions of50 mm to obtain an unperturbed boundary layer. In the
first region,0 ≤ x ≤ 50, symmetry boundary conditions,vy = 0, q = 0, are applied. In the second region,
50 ≤ x ≤ 100, a constant wall temperature of300 K is specified. Within this region the velocity boundary
layer fully develops. The third part is the solid (work piece) of length200 mm, which exchanges heat with the
fluid, but is assumed insulated otherwise,q = 0. Therefore, the corresponding Neumann boundary conditions are
applied throughout. Finally, the flow domain is closed by a second regularization region of100 mm with symmetry
boundary conditions and the outlet.

The grid, see Fig. 3, in the structural part is chosen cartesian and equidistant, whereas the thinnest cells in the fluid

(a) Entire mesh (b) Mesh zoom

Figure 3: Full grid (left) and zoom into coupling region (right)

region have an aspect ratio of 1:200 and then become coarser in y-direction. The points of the primary fluid grid
and the nodes of the structure grid match on the interface, which avoids additional difficulties from interpolation.
Thus, we have9660 cells in the fluid region andnx × ny = 120 × 9 = 1080 elements with121 × 10 = 1210
nodes in the region of the structure.

To specify reasonable initial conditions within the fluid a steady state solution of the flow with constant wall
temperature is computed. To cope with convergence problemswe first compute a solution with a medium boundary
temperature. In a second step the temperature at the boundary is increased up to the valueΘ = 900 K. Due to
the constant boundary temperature we are able to compare theresults with the theoretical solution of Blasius for
the velocity boundary layer and of van Driest for the temperature boundary layer (Van Driest, 1952) and thereby
verify the quality of our grid and our fluid solver. In the structure, a constant temperature of900 K at t = 0 s is
chosen throughout.

4.2 Numerical tests

In Fig. 4 one can see the temporal evolution of the temperature at the middle of the coupling interface. As expected,
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Figure 4: Temperature evolution at the middle point of the interface

the temperature decreases monotonously with a large gradient at the beginning of the process, which decreases in
the following. At t = 1 s, the temperature has dropped down from900 K to approximately895 K. This solution
is obtained using fixed point coupling and∆tn = 0.0025 s. Since no exact solution is available, it will be used as
reference solution.

As for strong coupling methods, the fixed point method is iterated until the vector 2-norm of the interface residual
(20) has dropped belowǫ = 0.1, i.e.

∥
∥P

(
Θn+1

k+1

)
− P

(
Θn+1

k

)∥
∥

2
≤ ǫ. As mentioned beforeP is a projection of

the temperature onto the boundary andk is the iteration number of the fixed point iteration. Except for the first
time-step, two iterations are sufficient to fulfill this criterion. In this case, for∆t = 0.1 s and∆t = 0.05 s, three
iterations are needed.

Next, the Gauss-Seidel coupling is compared with the iterated Gauss-Seidel (fixed point) coupling for time step
sizes∆t of 0.1 s, 0.05 s and0.025 s. To this end, we consider the resulting error att = 1 s, using the 2-norm of
the difference of temperatures at the interface to the reference solution. In Fig. 5(a) one can see the error over the
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Figure 5: Relative error behavior

time step size and in Fig. 5(b), compared to the number of coupling iterations. As can be seen, in the investigated
application fixed point coupling does not improve the accuracy of the solution ifǫ = 0.1 is employed as dropping
tolerance. The relative error of the numerical method is practically unaltered but the computational cost is at least
doubled, depending on the specified toleranceǫ of the fixed point coupling. On the other hand the time step size
∆t has, as expected, a significant influence on the accuracy.
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5 Conclusions

The coupling of the temperature-dependent compressible Navier-Stokes equations using a finite volume code and
the heat equation using finite elements, both based on a Backward-Euler time-integration step, are considered. In
the investigated test example the fluid cools the structure.We compare loose to strong coupling methods for this
problem occurring in the field of hot metal forming processesand it can be seen that for a simple example of a
plain metal specimen and a dropping tolerance ofǫ = 0.1, loose coupling methods are completely sufficient.
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FSI of the Turbulent Flow around a Swiveling Flat Plate Using
Large–Eddy Simulation

M. Breuer, M. Münsch

The topic is of fluid–structure interaction plays a dominantrole in many fields of engineering. Therefore, a strong
need for appropriate numerical simulation tools exists with a variety of numerical and physical aspects. The
special task of the present investigation is to take care about fluid–structure interaction of turbulent flows using
modern simulation techniques such as large–eddy simulation. For that purpose, a new coupling scheme was re-
cently developed which guarantees a strong coupling between the fluid and the structure but still relies on an
explicit predictor–corrector scheme for time marching. Thus the specific features of numerical methods typically
applied for large–eddy simulations are conserved and extended to the coupled problem. The methodology is briefly
described in the paper. Furthermore, two test cases, a laminar and a turbulent flow around elastically supported
cylindrical structures, were taken into account to validate the numerical scheme. Finally, the coupling algorithm
is applied to a challenging test case, i.e., the turbulent flow around a swiveling flat at Re≈ 68,000.

1 Introduction

Fluid–structure interaction (FSI) is of major importance for many fields of engineering such as mechanical engi-
neering (e.g. rotor blades and airfoils), process engineering (e.g. flexible tubes and stirrers), medicine technique
(e.g. artificial heart valves and substitute vocal folds), or civil engineering (e.g. stadium roofage and suspension
bridges). To solve these multi–physical problems, numerical simulations have become an important tool. In order
to develop and investigate such numerical methods for the robust and efficient simulation of coupled problems
related to the interaction of a fluid with a structure, the DFGspecial research group FOR 493’Fluid–Structure
Interaction – Modeling, Simulation and Optimization’was initiated. It is concerned with a variety of different as-
pects of FSI algorithms including different solvers for thefluid mechanical and the structural parts and especially
with the coupling schemes.
To solve coupled FSI problems a partitioned approach can be used, i.e., two highly specialized codes for the fluid
mechanical part and the structural part are coupled via a coupling interface. This has the advantage that adequate
codes and with this the most accurate simulation approach can be applied on each problem of interest. In contrast
to the counterpart, i.e., a monolithic approach based on a unique numerical method and a common code for both
disciplines, the partitioned approach allows an easy exchange of single codes for each field separately. Thus it is
much more flexible than the monolithic approach.
In terms of flow computation the simulation approach used strongly depends on the expected flow properties. For
the computation of turbulent flows one can make use among others of three categories of numerical simulation
methodologies. The most accurate one for turbulence computations by solving the Navier–Stokes equations with-
out averaging or approximations for all motions in the flow field is the direct numerical simulation (DNS), see e.g.,
Ferziger and Perić (2002) and Breuer (2002). For this methodology a high number of grid points and time steps
are required which makes the simulations expensive and restricts them to moderate Reynolds numbers. Averaging
the Navier–Stokes equations leads to the second group of methods, the so-called Reynolds-averaged Navier Stokes
(RANS) equations which have to be closed by a statistical turbulence model. The flow is described in a statistical
sense which leads to a time–averaged flow field. In previous studies, laminar as well as turbulent FSI applica-
tions using the Reynolds–Averaged Navier–Stokes approachwere investigated (Glück et al., 2001, 2003). For that
purpose, a partitioned fully implicit scheme was applied which coupled a three–dimensional finite–volume based
multi–block flow solver for incompressible fluids with a finite–element code for the structural problem. This cou-
pling scheme works efficiently for large time step sizes typically used for implicit time–stepping schemes within
RANS predictions. However, flow problems involving large–scale flow structures such as vortex shedding or in-
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stantaneous separation and reattachment are often not reliably predicted by RANS and more advanced techniques
such as large–eddy simulation (LES) are required (Breuer, 1998, 2000, 2002). The LES technique is based on spa-
tial filtering of the Navier–Stokes equations. Here, the large scales are computed directly while the small scales are
modeled leading to an unsteady field of physical values, which enables predictions of flows past bluff and inclined
bodies and makes LES to the tool of choice regarding to FSI in turbulent flows when large–scale flow structures
are expected.

2 Numerical Methodology

2.1 Governing Equations

For the intended purpose, a finite–volume scheme is used to discretize the filtered Navier–Stokes equations for an
incompressible fluid based on a curvilinear, blockstructured body–fitted grid with colocated variable arrangement.
The present study relies on the inhouse code FASTEST–3D (Durst and Scḧafer, 1996; Durst et al., 1996) which
was extended for the LES–FSI problem as will be described below. For the discretization standard schemes are
applied. A second–order accurate central scheme is obtained by linear interpolation of the flow variables to the
cell faces and a midpoint rule approximation of the integrals. Compared to computations on fixed grids, for FSI
the grid movement caused by the structural displacement at the boundaries of the computational domain has to be
taken into account. That is achieved in a consistent manner by applying the well–known Arbitrary–Lagrangian–
Eulerian (ALE) formulation. Thus the mass and momentum conservation equations in integral form are formulated
for a control volume (CV) with time-dependent volumeV (t) and surfaceS(t). The governing equations in ALE
formulation read:

Mass Conservation:
d

dt

∫

V (t)

ρ dV +

∫

S(t)

ρ(uj − ug,j) · nj dS = 0 (1)

Momentum Conservation:

d

dt

∫

V (t)

ρui dV +

∫

S(t)

ρui(uj − ug,j) · nj dS =

∫

S(t)

τij · nj dS −

∫

S(t)

p · ni dS (2)

Here,ρ denotes the density,p the pressure,ui the velocity vector with three Cartesian components, andτij the
molecular momentum transport tensor. Furthermore,nj stands for the unit normal vector directed outwards. Fi-
nally, ug,j describes the grid velocity with which the CV surface is moving. Since an incompressible fluid with
temperature–independent fluid properties is considered here, the conservation equation for the energy can be omit-
ted. To close the governing equations in case of LES, a classical Smagorinsky subgrid–scale model (Smagorinsky,
1963) with Van–Driest damping near solid walls or a dynamic model by Germano et al. (1991) and Lilly (1992) is
applied.

2.2 Space Conservation Law

The decisive differences between these conservation equations and their counterpart on a fixed grid are the volume
integrals which now describe the local changes within a moving or deformable CV and the additional mass and
momentum fluxes resulting from the movement of the CV surfacegiven byug,j . In order to end up with a closed
system of equations again, this new unknown has to be determined. If the grid movement between two or more
successive time steps is known,ug,j can in principle be calculated by a simple finite–differenceapproximation.
However, this procedure is not recommended since it often leads to serious problems because the conservation
principle is not necessarily satisfied and thus mass or momentum is lost. As a remedy the so-calledspace con-
servation law (SCL)(Demirďzić and Períc, 1988, 1990) should be taken into account in order to determine the
unknown grid velocityug,j . It represents an extra conservation equation guaranteeing that no space is lost when
the CV changes its shape or position. It reads:

d

dt

∫

V (t)

dV −

∫

S(t)

ug,j · nj dS = 0 (3)
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In discretized form theSCL is expressed by the swept volumes of the corresponding cell faces. The nice feature
of the SCL is that in combination with the mass conservation equation (1) on a moving grid, the original mass
conservation equation for a fixed grid is obtained. Thus the pressure–correction scheme for the solution of the
incompressible Navier–Stokes equations does not have to bechanged. Furthermore, theSCL is applied to con-
sistently determine the newly appearing grid fluxes in the momentum equations (2). Consequently, in the final
numerical scheme no extra conservation equation has to be solved.

2.3 FSI Coupling Scheme

In LES small time steps are required to resolve the turbulentflow field in time. Accordingly, the usage of explicit
time–marching schemes is preferred, i.e., a predictor–corrector scheme of second–order accuracy. In the predictor
step an explicit three substeps low–storage Runge–Kutta scheme advances the momentum equations in time. In
the following corrector step the mass conservation has to befulfilled by solving a Poisson equation for the pressure
correction based on an incomplete LU decomposition solver.Whereas the predictor step is solely carried out once
per time step, the pressure–correction algorithm is repeated until a predefined convergence criterionε is reached.
It guarantees that the mass conservation equation at the endof the corrector step is numerically satisfied, e.g.,
∆ṁ < ε = O(10−8). For that purpose, typically 5 to 10 pressure–correction iterations are required.

For solving FSI problems, this scheme has to be adapted and a corresponding coupling scheme has to be incor-
porated. The coupling scheme developed (Breuer and Münsch, 2008a,b) is shown in Figure 1(a). The new time

step starts with an estimation of the structural displacement X̃ and the structural velocitẏ̃X. Here, a second–order
extrapolation for the displacement̃X is used [Eq. (4)] taking the displacement values of the threeformer time steps
denoted by the superscriptst−1, t−2, andt−3 into account:

X̃t = 3Xt−1 − 3Xt−2 + Xt−3 . (4)

In order to be consistent, a first–order extrapolation is applied on the structural velocitẏ̃X:

˙̃Xt = 2Ẋt−1 − Ẋt−2 . (5)

Thus the interface between the fluid and the structure, whichrepresents a boundary of the CFD domain, is de-
formed. According to these estimated values at the boundary, the entire computational grid has to be adapted.
Presently, this grid adjustment is performed based on a transfinite interpolation in each FSI–subiteration defined
below. It has the advantage to be fast and efficient, but can lead to a deterioration of the grid quality regarding
orthogonality and smoothness for larger deformations of the structure. In this case other techniques such as elliptic
grid smoothing based on composite mapping as suggested by Spekreijse (1995) and used by Yigit et al. (2007) are
more appropriate and will be used in the near future to maintain the grid quality within the coupled simulation.

After the grid adaption the predictor–corrector scheme is applied and a preliminary flow solution is obtained.
Based on this solution the corresponding forces and/or moments on the structure are computed. These forces and
moments are in general transferred to a computational structure dynamics code (CSD), or in the case of a rigid
structure with only one or a few degrees of freedom, to an equation of motion describing the behavior of the
structure. The resulting displacementXnew of the structure is underrelaxed by an underrelaxation factor α. If an
FSI convergence criterion is already fulfilled, i.e., the dynamic equilibrium between fluid and structure is achieved,
the computation would go on with the next time step. In this configuration the method described represents aloose
coupling schemewhich is generally only stable for low ratios of the fluid density to the structural density, i.e., a
low so-called added mass effect typical for aeroelastic flowproblems. Thus alternatives are required if the added
mass effect plays a dominant role as it is the case in the examples shown in Sections 3 and 4.
Such an alternative is the scheme sketched in Figure 1(a). Ifthe FSI convergence criterion is not fulfilled after
the first sweep, a new grid adaption is done based on the underrelaxed displacement. Subsequently, the corrector
step of the predictor–corrector scheme is performed again until mass conservation is accomplished. Afterwards
the pressure and shear forces on the structure are recomputed and transferred to the structural solver leading to
an update of the displacementXnew. This so-called FSI–subiteration loop is performed until the convergence
criterion is fulfilled, typically only 3 to 5 times. Presently, the residual of the governing equation of motion has
to reach a predefined minimum guaranteeing that the dynamic equilibrium between the fluid and the structure is
achieved. In summary, a FSI coupling scheme is designed, which on the one hand is appropriate for an explicit
time–stepping scheme and on the other hand avoids instabilities known from loose coupling schemes.
For comparison a coupling scheme for fully implicit time marching is presented in Figure 1(b). Beside the fact that
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(a) explicit scheme

(b) implicit scheme

Figure 1: Coupling scheme for (a) an explicit time–marchingscheme (presently applied), and for (b) an implicit
time–marching scheme shown for comparison (see Glück et al. (2001, 2003)).
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the flow is solved with a fully implicit scheme and therefore an inner CFD loop is necessary, both schemes differ
with respect to the momentum equations within the FSI–subiteration loop. For the implicit scheme the momentum
equations are solved repeatedly in each subiteration sweep. In contrast they are only solved once per time step for
the explicit case which strongly reduces the computationaleffort. Furthermore, the number of FSI–subiterations
required to reach the convergence criterion is typically atleast one order of magnitude smaller within the explicit
scheme compared to the implicit variant. In conclusion, instabilities due to the added mass effect known from
loose coupling schemes are avoided by the newly developed coupling scheme. However, the explicit character of
the time–stepping scheme is still maintained perceptibly reducing the computational effort.

3 Validation of the Coupling Scheme

3.1 Laminar Flow Around an Elastically Supported Circular C ylinder

The new coupling scheme was tested on laminar and turbulent flows around cylindrical structures. According to
the paper of Zhou et al. (1999) the laminar flow around a circular cylinder at Re = 200 (based on the cylinder
diameterD = 6 · 10−3m and the reference velocityU∞ = 0.514 m/s) for different values of the reduced damping
parameterSg defined below has been computed. A sketch of the configurationincluding the elastically supported
cylinder is given in Figure 2.
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Figure 2: Spring-mass-damper model of the circular cylinder test case at Re = 200.

The flow prediction was performed on a grid with 262,144 control volumes. Since the flow is assumed to be two–
dimensional, only 8 CVs are used in the spanwise direction and symmetry boundary conditions are applied. At the
inflow a constant undisturbed inflow velocityU∞ was set. A convective outflow boundary condition and a no–slip
boundary condition were prescribed at the outflow and the cylinder surface, respectively. The time step size in this
case was∆t = 1.5 · 10−5 seconds according to a CFL number of0.2.

For the fixed cylinder case the well–known vortex shedding phenomenon in the wake of the cylinder occurs. The
shedding frequency is measured tofs = 16.7 Hz with a corresponding Strouhal number of St= fs · D/U∞ ≈
0.2. Starting from this initial solution for the fixed structure at an arbitrarily chosen time step, the cylinder is
released. The movement of the center of the cylinder inx andy direction is described by equations of motion,
i.e., a spring-mass-damper model [Eq. (6)], withm denoting the cylinder mass, the damping coefficientd and the
spring constantc which are assumed to be identical for both directions.

m ẍ(t) + d ẋ(t) + c x(t) = Fx(t)
m ÿ(t) + d ẏ(t) + c y(t) = Fy(t)

(6)

Mass, damping and spring parameters are defined according tothe reduced damping parameterSg = 8π2 St2 d∗ M∗

with mass ratioM∗ and normalized damping parameterd∗. Here, the mass ratio is defined asM∗ = m∗/ρD2 with
normalized cylinder massm∗ = m/lc, cylinder diameterD, fluid densityρ and cylinder lengthlc. The normal-
ized damping parameterd∗ is equal tod∗ = d/lc. Spring constantc and cylinder massm are given fromfn =
√

c/m 1/(2π) = 1.3fs with fn denoting the natural cylinder frequency. These ordinary differential equations are
solved numerically by a classical Runge–Kutta scheme. The flow field of the normalized velocity magnitude for
Sg = 1.0 is shown exemplarily in Figure 3(a). Beside the vortex shedding phenomenon downstream of the cylin-
der a deflection of the recirculation area can be seen. These deflection indicates the movement of the cylinder,
here in positive y–direction. Figure 3(b) shows the normalized displacements∆x/D and∆y/D of the cylinder
as a function of time. Due to the drag force the cylinder is displaced in x–direction during the transition phase
and starts to oscillate around∆x/D = 0.34. In y–direction the cylinder moves around∆y/D = 0. In Figure 4 the
results forSg = 0.01 andSg = 1.0 are exemplarily shown. As observed by Zhou et al. (1999)the trace in the
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Figure 3: (a) Flow field of the normalized velocity magnitudefor Sg = 1.0 and Re = 200; (b) Normalized displace-
ments of the cylinder center as a function of time.
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Figure 4: Normalized displacements of the cylinder center for (a)Sg = 0.01 and for (b)Sg = 1.0 in comparison
with the original data set presented by Zhou et al. (1999)(c).

x–y plot describes an asymmetric 8 where the intersection points are found to be off–centered. ForSg = 0.01
the trace slightly changes from cycle to cycle, whereas forSg = 1.0 nearly but not completely the same trace is
observed. The oscillations found withSg = 0.01 range from(X/D)min = 0.325 to(X/D)max = 0.55 and from
(Y/D)min = -0.64 to(Y/D)max = 0.61. The results of Zhou et al. (1999) are limited by(X/D)min = 0.309 and
(X/D)max = 0.47 in X-direction and by(Y/D)min = -0.62 and(Y/D)max = 0.56 in Y-direction. With increasing
reduced damping parameterSg the normalized displacements decrease (Note the differentscalings of the axes in
Figures 4 (a) to (c)). ForSg = 1.0 values of(X/D)min = 0.319,(X/D)max = 0.342,(Y/D)min = -0.29 and
(Y/D)min = 0.28 are computed. Zhou et al. (1999) found(X/D)min = 0.283,(X/D)max = 0.386,(Y/D)min =
-0.27 and(Y/D)min = 0.27, respectively. Thus, overall the results computed bythe new coupling scheme show
satisfactory correspondence with the results of Zhou et al.(1999). Here, the agreement of the Y/D values, which
fits very well especially forSg = 1.0, is better than for the X/D values. The deviations maybegenerally attributed
to the different solution techniques, i.e., the present finite–volume method versus the discrete–vortex method by
Zhou et al. (1999), and/or to the unsteadiness of the flow leading to slightly different solutions due to bifurcation
effects. Here, the maximal number of FSI subiteration was NFSI = 1.

3.2 Sub–critical Flow Around an Elastically Supported Square Cylinder

In a next step, the coupling scheme was tested for the turbulent flow around an elastically supported square cylinder
at Re =13, 000 as depicted in Figure 5. The Reynolds number is based on the edge lengthb = 0.02 m of the
cylinder and the free–stream velocityU∞ = 10 m/s. For the computation of the flow field a LES prediction with the
Smagorinsky model and a Smagorinsky constant ofCS = 0.1 was performed. The grid consisted of 2,228,224 CVs,
where 130 CVs are used to discretize the spanwise direction which has an extension of 4 times the edge lengthb.
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At the inflow a velocity block profile was set withU∞. The outflow is described by a convective outflow condition
with Uc = U∞. In spanwise direction periodic boundary conditions were set. Slip–wall boundary conditions were
used on the upper and lower face of the domain. The cylinder itself is defined by a no-slip boundary condition. The
movement of the structure was described by the same equations of motion inx andy directions as for the previous
test case.
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Figure 5: Spring-mass-damper model of the square cylinder test case at Re =13, 000.

The aim of this computation is the comparison of both coupling schemes presented in Figure 1(a) and (b). It should
be mentioned that according to their numerical characteristics both schemes use different time step sizes. In the
implicit case, the time step size is set to∆t = 10−4 seconds leading to a CFL number of20, whereas the explicit
scheme applied∆t = 3 · 10−6 seconds according to a CFL number of0.59, which is much more appropriate for
LES than the implicit counterpart.

In the sub–critical case considered, the oncoming flow is laminar. The flow separates at the leading and partially
at the trailing edges forming free shear layers. Transitionto turbulence takes place within the free shear layers.
Alternately, vortices are shed from the cylinder. This vortex shedding observed past the cylinder makes the cylinder
oscillate inx andy directions. Beside this there is a drag–induced movement ofthe cylinder inx direction. Figure 6
shows a snapshot of the normalized velocity magnitude

√

(Ux)2 + (Uy)2 + (Uz)2/U∞ and the streamlines. The
vortex shedding phenomenon is visible in the wake of the structure. The normalized displacement∆x/b and∆y/b

X

Y

0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

U/U*

1.9
1.7
1.5
1.3
1.1
0.9
0.7
0.5
0.3
0.1

Figure 6: Normalized velocity magnitude and streamlines ofthe flow around an oscillating cylinder at Re =13, 000.

are shown in Figure 7. For both time–marching schemes, i.e.,both corresponding coupling schemes, a transitional
behavior in the∆x/b component is visible which represents the initial excursion after the release of the square
cylinder. Thus, starting from∆x/b = 0 and∆y/b = 0 the cylinder is displaced inx direction with an maximal
displacement after about 0.1 seconds real time until the displacement reduces and the transitional time interval
ends at about 0.5 seconds. Owing to the vortex shedding cyclethe∆y/b component oscillates around∆y/b = 0.

Comparing the result for the two time–stepping schemes a perfect match of the displacement values is not visible.
Thex-displacement seems to be slightly overdetermined by the explicit time–marching scheme compared to the
implicit method. Furthermore, they-component only corresponds in the displacement magnitudes but not in their
time histories. However, in general a perfect fit cannot be expected here. The differences are attributed to different
starting time steps of the fluid–structure interaction within the LES and especially to the non–deterministic nature
of turbulence.

For further investigations a Fast–Fourier–Transformation (FFT) was performed for the displacement data sets
of Figure 7. For this purpose, the transitional period was neglected and displacements for time instants greater
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Figure 7: Normalized displacements of the square cylinder for the explicit and the implicit time–marching schemes.

than 0.8 seconds were used for the evaluation. The result forthe FFT according to both directions are plotted in
Figure 8. In the frequency spectra of thex–displacements no characteristic peak is visible for the data predicted by
both time–marching schemes. In the spectra of they–displacement a peak is visible forf = 69 Hz for the implicit
time–marching scheme which equals the well–known sheddingfrequency of the von Ḱarmán vortices as observed
by Kniesburges (2007). This peak can also be found in the datapredicted by the explicit time–marching scheme
but with a slightly shifted frequency off = 71 Hz.
In summary, the result for the square cylinder case obtainedby different time–marching schemes and accordingly

Frequency [Hz]
0 50 100 150 200 250 300

x/b Expl. TM
x/b Impl. TM

P
ow

er
S

pe
ct

ra
lD

en
si

ty
[m

2
/H

z]

(a)

Frequency [Hz]
50 100 150 200 250 300

y/b Expl. TM
y/b Impl. TM

P
ow

er
S

pe
ct

ra
lD

en
si

ty
[m

2
/H

z]

(b)

Figure 8: Fast–Fourier–Transformation of the cylinder displacements in (a) x–direction and (b) in y–direction.

with different coupling strategies show good correspondence and confirm the functionality of the developed explicit
but strong coupling algorithm within a LES prediction. The maximal number of FSI–subiterations was very low,
i.e., NFSI = 3, for the explicit time-stepping algorithm.
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4 FSI Prediction of the Swiveling Plate

4.1 Numerical Setup

Besides the above mentioned test cases, this new FSI scheme was evaluated based on simulations of the flow
around a swiveling flat plate at Re =68, 000 for which experimental investigations were carried out at LSTM
Erlangen (Gomes et al., 2009). In Figure 9 the computationaldomain is plotted. A flat plate of 177 mm× 64 mm
× 2 mm with chord length c = 64 mm is placed in a channel with rectangular cross–section. The plate possesses
one rotational degree of freedom around the axis in z–direction located 20 mm from the leading edge.

U=1.07m/s

c

1.7c

3.75c

x
ϕ

y

3c
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Figure 9: Setting of the computational domain for the channel flow around a flat plate at Re≈ 68,000.

For the flow computation a LES using the Smagorinsky model (CS = 0.1) with Van Driest damping near solid walls
is performed. At the inflow a block velocity profile withU∞ = 1.07 m/s is set. A convective outflow condition
with the convective velocityUc = U∞ is applied at the outlet of the domain. For a first computationof the FSI
problem, only a section of one chord length of the full spanwise extension of the plate used in the experimental
setup is taken into account. This leads to the usage of periodic boundary conditions in spanwise direction and thus
the influence of the sidewalls is neglected. For the upper andlower walls of the channel as well as the swiveling
plate itself, the no-slip condition is applied. This preliminary simulation was performed on a grid with 434,176
control volumes by resolving the spanwise direction with only 4 control volumes. For the non–deflected plate a
wall–normal resolution given byy+ = 3 for the wall–nearest grid point is applied to resolve the flow at the trailing
edge of the plate. The time step size in this case was∆t = 10−5 seconds. The response of the plate on the outer
momentMz(t) imposed by pressure and shear forces is described by a spring–mass–model leading to an ordinary
differential equation for the plate angleϕ, which is solved by a classical Runge–Kutta scheme.

I ϕ̈(t) + C sin(ϕ(t)) = Mz(t) (7)

Here,I describes the moment of inertia of the plate and the axle andC is equal to the resulting moment due to
gravity and buoyancy forces. The latter results from density difference between the fluid and the structure.

4.2 Results

In Figure 10 the development of the momentMz(t) and the resulting angleϕ(t) is shown. For initialization of
the flow field, the plate is kept fixed, i.e.,ϕ = 0◦, for about 0.36 seconds real time. Then the plate is releasedand
the swiveling motion starts. After a transitional time of approximately 2 seconds amplitudes in a range ofϕmin =
-45◦ to ϕmax = 49◦ are observed. Amplitudes like this make great demands on thegrid adaption but can barely
be tackled with a transfinite interpolation in this case. Similar to the amplitudes also the frequency of the motion
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obtained is not absolutely constant but takes values of about 3.14 Hz. The mean number of FSI–subiterationNFSI
is equal to five for this case.
The instantaneous flow fields of the normalized velocity magnitude with the corresponding time-phase resolved

time [sec]

m
om

en
t[

N
m

]

1 2 3 4 5 6 7

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

(a)

time [sec]

an
g

le
[d

eg
]

1 2 3 4 5 6 7

-40

-20

0

20

40

(b)

Figure 10: (a) Computed angular moment acting on the plate asa function of time. (b) Resulting angular displace-
ment of the plate.

plate angles for time-phase angles of 0◦, 66◦, 122◦ and 179◦ are shown in Figure 11. The time-phase angle is
defined as tpa = t/T· 360◦ with T denoting the swiveling period and t describing the passed real time within the
period. Thus the figure depicts half of a period of a full cycle.
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Figure 11: Computed instantaneous velocity field and plate deflection at four different instants of the swiveling
motion period at Re = 68,000.
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Starting from a plate angle of 0◦ the plate starts to deviate from its initial position. With increasing plate angle
also the velocity at the leading edge on the suction side of the plate increases and a vortex generates which can be
seen in Figure 11(b). The vortex travels downstream (Figure11(c)) and with it a zone of low pressure. Passing
the center of rotation this vortex, i.e., the correspondinglow pressure region, together with the higher pressure on
the pressure side of the plate reduces the rotational speed of the plate and finally changes the direction of rotation.
Then a similar cycle starts at the opposite side of the plate.
When comparing the computed results with the experimentallymeasured data, differences become apparent. The
maximal values of the amplitudes are±27◦ and also the frequency with f = 2.49 Hz is clearly lower than the
computed one. Possible reasons for the deviations observedmight be the too coarse (spanwise) resolution or
the restriction to a section of the rigid plate. Nevertheless, when comparing the velocity fields of a full cycle the
computational and the experimental results show good qualitative correspondence concerning the spots of high and
low velocity magnitudes (Gomes et al., 2009). A more detailed comparison has to be carried out when a coupled
simulation without the restrictions mentioned above has been performed.

5 Conclusions and Outlook

FSI in turbulent flows requires advanced techniques such as LES for a reliable flow prediction. To resolve the
turbulent structures in time, small time–step sizes are used for LES which makes explicit time–marching schemes
such as predictor–corrector schemes favorable. To conserve the character of this explicit time–marching scheme on
the one hand and to obtain a stable FSI algorithm on the other hand, a coupling scheme was proposed in which the
corrector step and the structural computation are directlyconnected in a FSI–subiteration loop. Due to this feature,
the dynamic equilibrium between the fluid and the structure is achieved within the explicit time–marching scheme.
Compared to the implicit variant, the explicit scheme seemsto be more efficient and less CPU–time consuming,
but a detailed verification of this impression still has to bedone.
Results of this coupling scheme have been presented for the flow around cylindrical structures for laminar (Re =
200) and sub–critical (Re = 13,000) flows. For the laminar case the result showed good compliance to the values
presented by Zhou et al. (1999). The sub–critical test case was used to compare the results obtained by a classical
fully implicit scheme (see Glück et al. (2001, 2003)) with the proposed explicit couplingscheme. Satisfying results
were obtained with respect to the displacement magnitudes and frequencies of the structure oscillation.
A challenging test case was performed for the flow around a loosely mounted plate at Re = 68,000. Here, the
results presently deviate from the experimental ones. As a consequence previously introduced simplifications of
the computational case with respect to the experimental onehave to be reconsidered, i.e., the computational domain
has to be extended in spanwise direction and the effect of sidewalls has to be taken into account. That also includes
that the spanwise resolution has to be increased.
In a next step, a study is thought to be done for more complex geometries like nominally two–dimensional flexible
structures. For this purpose, the coupling with a CSD–code has to be realized. In addition, a more powerful
grid adaption has to be introduced such as an elliptic grid smoothing algorithm proposed by Spekreijse (1995) for
example. This has not only to be done for tackling more complex displacements of a flexible structure. More
important is to maintain the grid quality within the FSI algorithm since the demands for LES are high (see Breuer
and Münsch (2008b)).
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Demirďzić, I.; Períc, M.: Space conservation law in finite–volume calculationsof fluid flow. Int. Journal for
Numerical Methods in Fluids, 8, (1988), 1037–1050.
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Durst, F.; Scḧafer, M.: A parallel block–structured multigrid method forthe prediction of incompressible flows.
Int. Journal for Numerical Methods in Fluids, 22, (1996), 549–565.
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An Overset-Grid Strategy for Aeroacoustics and Aeroelasticity of Moving
Bodies

F. Daude, P. Lafon, F. Crouzet and C. Bailly

A high-order finite-difference algorithm is proposed in theaim of LES for Computational Aeroacoustics (CAA)
and Aeroelasticity applications. The subgrid scale dissipation is performed by the explicit high-order numerical
filter used for numerical stability purpose. In order to tackle complex geometries and moving grids, while pre-
serving grid quality, an overset-grid approach is used. High-order interpolations make it possible to ensure the
communication between overlapping domains. The whole algorithm is validated on canonical flow problems to
illustrate its capability to preserve accuracy for moving configurations.

1 Introduction

In a wide range of technical fields such as aircrafts, automotive engineering, trains, turbomachinery, power plants,
non-linear interactions between the turbulent flow and the acoustic fields produce undesirable high pressure levels,
see Colonius and Lele (2004). They are sources of noise pollution which is a major environmental issue. The
radiated noise can also induce vibrations and damages. Thisis particularly the case in confined flows. In addition,
turbulent flows or acoustic waves can couple with moving structures involving fluid/structure interaction (FSI).
The energy industry has to deal with many FSI phenomena ranging from Vortex-Induced Noise or Vortex-Induced
Vibrations (VIV) to aeroelasticity. The related applications are respectively cable aeolian tones, tube bundle vibra-
tions, see Longatte et al. (2003), or blade flutter, see Crouzet (2006).

In many such coupled configurations, the calculation of boththe unsteady flow and the radiated sound must be
performed in the same computation. This is referred as Direct Noise Computation (DNC) in the literature, see
Bailly et al. (2008). UsingDNC is an efficient way to identify the fluid mechanism contributing to the sound
production and therefore, a useful tool to reduce noise radiation. The feasibility ofDNC is now demonstrated in
the literature via Direct Numerical Simulation (DNS), see Colonius et al. (1997), Freund (2001), Gloerfelt et al.
(2003), and Large-Eddy Simulation (LES), see Bodony and Lele (2005), Bogey and Bailly (2006, 2007),Emmert
et al. (2007, 2008).

Application of compressibleLES to computational aeroacoustics (CAA) problems makes it possible to tackle
applications with industrial or practical relevance. The large disparity in the characteristic scales of the acoustic
and the flow fluctuations, and the need to accurately resolve high wavenumber fluctuations require the use of
numerical methods with minimal dissipation and dispersionerrors, see Colonius and Lele (2004). In this context,
the Dispersion-Relation-Preserving (DRP), see Tam and Webb (1993), or optimized high-order finite-difference
schemes in conjunction with selective filter, see Bogey and Bailly (2004), are an attractive choice forLES to
reduce both amplitude and phase numerical errors.

For moving grids, the mainly used method is the classical ALEmethod associated with deforming and/or remesh-
ing procedures. In order to allow body displacements while preserving grid quality, the overset-grid (Chimera)
method is best suited. It is based on different body-fitted overlapping grids associated with interpolation pro-
cedures for the communication between the different component grids. This method also makes it possible to
tackle complex geometries on fixed or moving grids. In this context, a new numerical code calledCodeSafari
(Simulation of Aeroacoustic Flows And Resonance and Interaction) has been developed to handle industrial con-
figurations. To maintain the high accuracy of the algorithm,the communication between non-coincident grids are
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made by high-order interpolation, see Delfs (2001), Shererand Scott (2005), Desquesnes et al. (2006).

2 Governing equations

2.1 Fluid dynamics

The three-dimensional Navier-Stokes equations are expressed in Cartesian coordinates for a viscous compress-
ible Newtonian fluid. After the application of a general time-dependent curvilinear transformation(x, y, z, t) →
(ξ, η, ζ, τ), see Viviand (1974) and Vinokur (1974), these equations arewritten in the following strong conservative
form:

∂τ Û + ∂ξ

(

E − Eν
)

+ ∂η

(

F − F ν
)

+ ∂ζ

(

G − Gν
)

= 0. (1)

with Û = U/J whereU = (ρ, ρu, ρv, ρw, ρe) is the vector of conservative variables,ρ is the density,u, v andw

are the Cartesian velocity components of the vector~V , e is the total specific energy:

ρe =
p

γ − 1
+

1

2
ρ

(
u2 + v2 + w2

)
,

wherep is the pressure,γ the specific heat ratio andJ the Jacobian of the coordinate transformation(x, y, z) →
(ξ, η, ζ). E,F andG are the inviscid flux-vectors which can be expressed as:

E = ξtÛ +
1

J









ρΘξ

ρuΘξ + pξx

ρvΘξ + pξy

ρwΘξ + pξz

(ρe + p) Θξ









, F = ηtÛ +
1

J









ρΘη

ρuΘη + pηx

ρvΘη + pηy

ρwΘη + pηz

(ρe + p) Θη









, G = ζtÛ +
1

J









ρΘζ

ρuΘζ + pζx

ρvΘζ + pζy

ρwΘζ + pζz

(ρe + p) Θζ









.

The contravariant velocity componentsΘξ,Θη andΘζ are defined as:

Θξ = uξx + vξy + wξz, Θη = uηx + vηy + wηz and Θζ = uζx + vζy + wζz.

The quantitiesξt, ηt andζt are the time metrics;ξx, ξy, ξz, ηx, ηy, ηz, ζx, ζy andζz designate the spatial metrics.
The subscripts denote the partial derivatives.Eν , F ν andGν are the viscous flux-vectors. Their expression are the
same as in the case of time-invariant generalized coordinates, see Marsden et al. (2005) and Suh et al. (2006).

2.2 Geometrical conservation

With the strong-conservation form in Equation (1), the following relations must be satisfied numerically to ensure
free-stream preservation when a finite-difference discretization is used, see Visbal and Gaitonde (2002):







(
1

J
ξx

)

ξ

+

(
1

J
ηx

)

η

+

(
1

J
ζx

)

ζ

= 0

(
1

J
ξy

)

ξ

+

(
1

J
ηy

)

η

+

(
1

J
ζy

)

ζ

= 0

(
1

J
ξz

)

ξ

+

(
1

J
ηz

)

η

+

(
1

J
ζz

)

ζ

= 0

(
1

J

)

τ

+

(
1

J
ξt

)

ξ

+

(
1

J
ηt

)

η

+

(
1

J
ζt

)

ζ

= 0

(2)

The last relation only concerns time-dependent meshes and is called the geometric conservation law (GCL), see
Thomas and Lombard (1979). In order to satisfy the numericalmetric error cancellation and to ensure the free-
stream preservation, the spatial metrics are expressed in the conservative form proposed by Thomas and Lombard
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(1979): 





1

J
ξx = (yηz)

ζ
− (yζz)

η

1

J
ξx = (yζz)

ξ
− (yξz)

ζ

1

J
ξx = (yξz)

ζ
− (yηz)

ξ

(3)

Time metrics are used for moving/deforming grid computations. Their expression are given in the next section.

2.3 Application to moving grids

To tackle moving/deforming grid configurations, the respect of GCL is a key issue to enforce metric cancellation
and free-stream preservation. In this aim, non-conservative corrector terms are used to ensure the GCL identity, as
proposed by Visbal and Gaitonde (2002). In practice, the time derivative in Equation (1) is split into two parts and
the second term is evaluated using the GCL condition. And, finally, the following equation is obtained:

∂τU + J

{

∂ξ

(

E − Eν
)

+ ∂η

(

F − F ν
)

+ ∂ζ

(

G − Gν
)

− U

[

∂ξ

(ξt

J

)

+ ∂η

(ηt

J

)

+ ∂ζ

(ζt

J

)]}

︸ ︷︷ ︸

R

= 0 (4)

In addition, the time metrics are evaluated using the grid velocity Xτ = (xτ , yτ , zτ )T via the following relations:






ξt

J
= −

(

xτ

ξx

J
+ yτ

ξy

J
+ zτ

ξz

J

)

ηt

J
= −

(

xτ

ηx

J
+ yτ

ηy

J
+ zτ

ηz

J

)

ζt

J
= −

(

xτ

ζx

J
+ yτ

ζy

J
+ zτ

ζz

J

)

(5)

These relations are similar to the classical ALE (ArbitraryLagrangian Eulerian) expression in a finite-volume
framework.

3 Numerical method

3.1 Discretization

First derivatives at interior grid points are determined using the optimized 11-point centered finite-difference
scheme proposed by Bogey and Bailly (2004):

∂ξEi,j,k ≈
1

∆ξ

5∑

m=1

sm

(

Ei+m,j,k − Ei−m,j,k

)

. (6)

This non-dissipative scheme is optimized in the wavenumberspace to reduce the dispersion error following the
idea of Tam and Webb (1993). The linear analysis shows that this scheme is able to resolve accurately perturbations
with only four points per wavelength such as shown in Figure 1(a). The same scheme has been applied successfully
for the direct computation of jet noise usingLES, see Bogey and Bailly (2006, 2007).

The time integration is performed with the classical explicit four-stage Runge-Kutta scheme (RK4) yielding:

U
(l)
i,j,k = Un

i,j,k − ∆τβ(l)R
(l−1)
i,j,k ∀l ∈ {1, ..., 4} (7)

with U (0) = Un andRi,j,k the discretization of the residualR. The Courant-Friedrich-Lewy number in the
ξ-direction is defined by:

CFLξ =
∆t

(

|ξt + Θξ| + c||~∇ξ||
)

∆ξ
(8)
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and the numerical stability requires to satisfy the following relation:

CFL = max(CFLξ, CFLη, CFLζ) ≤ 1

In the same way, the mesh displacement is linked to a new stability requirement. In order to introduce this new
stability constraint, a 1-D model is considered. In the physical space, the time and spatial variables are independent
which is equivalent to a non-linear advection equation in the computational domain using the chain-derivative rules:

dx

dt
= 0 ⇐⇒ ∂τx + ξt∂ξx = 0

For this equation, the stability constraint is based on the ratio Cξ =
|ξt|∆τ

∆ξ
. According to Equations (5) and (8),

it follows that:
|dξ|

∆ξ
||~∇ξ|| < CFLξ (9)

wheredξ = ~Ve.~∇ξ/||~∇ξ|| is the displacement in theξ-direction. Thus, the mesh displacement is limited and the
maximal allowed value is driven by theCFL value linked by the fluid dynamics.

In order to ensure the synchronization between the flow variables and the grid coordinates, the RK4 scheme is also
used for the grid motion:

X
(l)
i,j,k = Xn

i,j,k + ∆τβ(l)(Xτ )
(l−1)
i,j,k ∀l ∈ {1, ..., 4} (10)

with X = (x, y, z), X(0) = Xn andXn+1 = X(4).

After the application of the Runge-Kutta scheme, the explicit optimized 11-point spatial low-pass filter proposed
by Bogey and Bailly (2004) is used to remove spurious high-frequency spatial oscillations:

W
(5)
i,j,k = W

(4)
i,j,k − σf

[

F ξ
(

W
(4)
i,j,k

)

+ F η
(

W
(4)
i,j,k

)

+ F ζ
(

W
(4)
i,j,k

)]

(11)

where

F ξ
(

W
(4)
i,j,k

)

= d0W
(4)
i,j,k +

5∑

m=1

dm

(

W
(4)
i+m,j,k + W

(4)
i−m,j,k

)

with 0 ≤ σf ≤ 1 for the filtering strength ; andW = (ρ, ρu, ρv, ρw, p)T .

This filter is optimized in the wavenumber space: the linear analysis shows that this filter only damps the pertur-
bations not accurately resolved by the spatial scheme of Equation (6) as shown in Figure 1 (b).
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Figure 1: (a) Comparison between the exact – and the effective - - wavenumber of the spatial discretization; (b)
Damping function of the selective filter as a function of the wavenumberk∆x; (c) Dissipative characteristic of the
RK4 scheme as a function of the pulsationω∆t.
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3.2 LES strategy

The LES strategy used in the present work is the same as the one employed by Bogey and Bailly (2006, 2007)
and by Rizzetta et al. (2003). The compressibleLES formalism of Vreman et al. (1995), is retained to express the
filtered equations in conservative form. The selective filter used to improve the numerical stability of the centered
non-dissipative spatial discretization is also employed to separate the large scales from the small ones. In addition,
this linear filter takes into account the dissipative effects of the subgrid scales by draining energy at the cut-off
frequency. Indeed, the selective filter leaves flow featureslarger than the cut-off wavelengths unaffected, while
properly removing the energy being transferred to smaller wave lengths. In addition, the interactions between the
resolved and the unresolved scales are neglected. Thus, no additional explicit subgrid scale model is used.

3.3 Linear Analysis

The von Neumann method is used to analyze the damping and dispersive properties of the algorithm presented
previously. This analysis is only applied on linear equations with periodic boundary conditions. For non-linear
equations, the results obtained with the linear analysis are not sufficient. However, linear stability is a necessary
condition for non-linear problems, see Hirsch (1988).

The von Neumann method is applied to the global algorithm (spatial, temporal discretizations and low-pass filter)
for the following linear advection equation:

∂tu + a∂xu = 0 (12)

The algorithm can be decomposed into three steps as:







Ri(u) =
a

∆x

5∑

m=1

sm(ui+m − ui−m) (spatial discretization)

u
(l)
i = un

i − ∆tβ(l)Ri(u
(l−1)) ∀l ∈ {1, ..., 4} (time discretization)

un+1
i = u

(4)
i − σf

[

d0u
(4)
i +

5∑

m=1

dm

(

u
(4)
i+m + u

(4)
i−m

) ]

(low-pass filter)

with u
(0)
i = un

i .

The von Neumann method is based on the Fourier transform. We consider a single harmonicun
i = ûneIik∆x with

ûn the amplitude,k∆x the phase angle corresponding to the wavenumberk andI2 = −1. In order to evaluate the
algorithm amplification factor defined asg = ûn+1/ûn, the Fourier transform is applied to the three stages of the
computation:







R̂(u) = I
a

∆x
ûk∗∆x with k∗∆x = 2

5∑

m=1

sm sin(mk∆x) (spatial discret.)

û(4) =

(

1 +

4∑

l=1

γl(−∆tI
a

∆x
k∗∆x)l

)

ûn with γl =

4∏

q=4−l+1

β(q) (time discret.)

ûn+1 = (1 − σf D̂)û(4) with D̂ = d0 + 2

5∑

m=1

dm cos(mk∆x) (low-pass filter)

Finally, the amplification factor of the global algorithm can be written as:

g = (1 − σdD̂)

(

1 +

4∑

l=1

γl(−Iσk∗∆x)l

)

(13)

with theCFL numberσ =
a∆t

∆x
.
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The amplification factorg which can be rewritten asg = |g|eIφ is now compared with the exact factor:
gex = e−Iσk∆x. The algorithm damping property is given by the norm|g| and the dispersive one by the relative
phase error:φ + σk∆x. The results withCFL = 1 andσf = 0.2 are displayed in Figure 2. With respect to the
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Figure 2: Damping and dispersion errors as a function of the wavenumberk∆x: (a) Norm of the amplification
factor|g| ; (b) relative phase errorφ + σk∆x.

damping character of the spatial scheme and the linear filterpresented in Figure 1, by takingCFL = 1, the explicit
time integration damages the upper bound of the range of well-resolved wavenumber:k∆x ≤ π/2. To known
quantitatively the accuracy domain of the global algorithm, an accuracy limit is estimated from the following
arbitrary criterion:

|1 −H| ≤ 5 × 10−4 (14)

with the ratioH = g/gex. The accuracy domain of the global algorithm is thus reducedto 0 ≤ k∆x ≤ 0.65, that
is to say in term of number of points per wavelength:λa/∆x ≈ 9.66.

3.4 Boundary conditions

3.4.1 Wall boundaries

In order to preserve low-dissipation and low-dispersion properties near wall boundaries, 11-point non-centered
finite-difference schemes in conjunction with explicit 11-point non-centered low-pass filter proposed by Berland
et al. (2007) are used. These two procedures are optimized inthe wavenumber space to recover the bandwidth
properties of the centered ones in Equations (6) and (11). However, the non-centered schemes suffer from numer-
ical instability. Therefore, in the case of strong flow gradients near wall boundaries, explicit centered filtering of
lower order can optionally be used to ensure this numerical stability.

3.4.2 Non-reflecting boundary conditions

Inlet and outlet boundary conditions are based on the Thompson’s characteristic boundary conditions, see Thomp-
son (1990). The conditions are supposed to locally be one-dimensional and inviscid. Then, the convective terms in
the boundary-normal direction are split into several waveswith different characteristic velocities. Finally, the un-
known incoming waves are expressed as a function of known outgoing waves. The 3-D far-field radiation boundary
conditions generalized by Bogey and Bailly (2002) are applied on the boundaries only reached by acoustic pertur-
bations.

4 Extension to complex geometries

The high-order finite-difference algorithm satisfying conservation laws on generalized coordinates are limited to
cylindrical geometries. In order to go beyond this limit, overset-grid techniques are used with high-order interpola-
tion procedure to preserve the high-order spatial accuracy, see Delfs (2001), Sherer and Scott (2005), Desquesnes
et al. (2006). This is addressed in the following.
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4.1 Overset-grid strategy and high-order interpolation

In order to handle complex configurations as those includingmultiple bodies, the high-order algorithm presented in
the previous sections is extended to general overset-grid topologies. In practice,CodeSafari is interfaced with the
freely availableOverturelibrary developed by the Lawrence Livermore National Laboratory, see Henshaw (1998).
The mesh including different component grids are given byOverture. In addition, the interpolation data such as
overlapping zones, interpolation stencils and offsets aregenerated withOverture.

In the overset-grid approach, points of the different overlapping regions are non coincident. Therefore, the com-
munication between overlapping component grids is performed with high-order interpolation. Following Sherer
and Scott (2005), high-order explicit non-optimized Lagrangian polynomials are used to perform the interpola-
tion stage. The interpolation process is performed in the computational domain(ξ, η, ζ, τ) as in Figure 3. The
evaluation of the variableφ at the pointP is performed via the interpolation ofφ atP as:

φP ≈

Mξ−1
∑

i=0

Mη−1
∑

j=0

Lξ
i L

η
j φIQ+i,JQ+j . (15)

whereMξ andMη are the interpolation stencil length in theξ- andη-direction respectively.Q is the first donor
point of the interpolation stencil (in green in Figure 3) andits coordinates are(IQ, JQ) in the computational
domain.Lξ

i andLη
j are the Lagrangian coefficients in the two directions definedas:

P

x

y η

ξ

η

ξ

η

δη

M
ξ

δξ

M
P

Q

Figure 3: Example of a 2-D interpolation stencil: 2-D communication between a circular and a Cartesian compo-
nent grids.

Lξ
i =

Mξ−1
∏

m=0,m 6=i

δξ − m

i − m
and Lη

j =

Mη−1
∏

m=0,m 6=j

δη − m

j − m

whereδξ andδη called the offsets are the coordinates ofP , the receiver point, with respect toQ in the computational
domain. For simplicity and isotropic reason, in the following, we have chosenMξ = Mη = M which is also the
Lagrangian polynomial order in the computational domain.

In addition, CodeSafari is parallelized by domain decomposition on each component grid for application to
massively-parallel platforms. The communication betweeneach domain is performed via the MPI library.

For moving grid applications, as the relative position of the overlapping grids changes continuously during the
flow simulation, the interpolation data used for the communications between the component grids must be updated
at each stage of the RK4 scheme. In practice, this updating isperformed via the overlapping grid generatorOgen
of the libraryOverture, see Henshaw (1998).

4.2 Linear analysis

The interpolation errors are assessed via a linear analysisto ensure that the interpolation procedure preserves the
high accuracy of the present algorithm.
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Figure 4: Example of a 1-D interpolation stencil.

In 1-D, the Lagrangian interpolation procedure in Equation(15) can be rewritten as follows:

φ(xP ) ≈
M−1∑

i=0

Liφ(xQ + i∆x) with Li =

M−1∏

m=0,m 6=i

δ − m

i − m
(16)

with xP = xQ + δ∆x. The interpolation error is now quantified using a one-dimensional Fourier error analysis
following Sherer and Scott (2005). Thus, we consider a single harmonic:φ(x) = eIkx as previously in Section 3
with the wavenumberk andI2 = −1. The interpolation error factor can be defined as:

Hitp =
eIδk∆x

M−1∑

i=0

Lie
Iik∆x

For a centered Lagrangian interpolation, we haveδ ≈ (M − 1)/2. The local error is displayed in Figure 5. The
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Figure 5: Local error of the interpolation process as a function of the wavenumberk∆x with M = 2, 4, 6 and8:
(a) dissipation error or norm ofHitp and (b) dispersion error or phase ofHitp.

Lagrangian interpolation procedure withM = 2 or M = 4 implies numerical errors in the wavenumber range
not damped by the present algorithm according to the resultsin Section 3. This can lead to the generation of
spurious waves. In contrast, Lagrangian interpolation with M = 6 or M = 8 seems to be suitable with the present
numerical algorithm. To compare quantitatively the different polynomial interpolation, the limit accuracy limit in
Equation (14) is still used:|1 −Hitp| ≤ 5 × 10−4. The accuracy domains are given in the table 1. The range of

M ka∆x λa/∆x
2 0.04 169.81
4 0.34 18.48
6 0.65 9.59
8 0.90 6.94

Table 1: Accuracy limit of the Lagrangian polynomial interpolations withM = 2, 4, 6 and8.

wavenumber well resolved by the present algorithm is thus incorporated in the one of the Lagrangian polynomial
interpolation withM = 6 andM = 8.
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5 Canonical tests on moving grids

The present high-order algorithm has shown to be suitable for LES of compressible flows with acoustic coupling
on fixed grids in both subsonic and supersonic regimes, see Emmert et al. (2007, 2008). The validation proce-
dure of the application of our high-order algorithm on dynamic meshes is performed in two stages. The first one
concerns single-block computations in order to validate the calculation of the time metrics and the grid coordi-
nate updating. Then, multi-block computations is used to couple the updating of the interpolation data with the
numerical algorithm.

5.1 Inviscid vortex advection

The first validation test case is the vortex advection on a dynamically deforming 2-D mesh. The computational
domain is taken as[−2, 2] × [−1, 1]. Initially, an uniform mesh is retained with∆x0 = ∆y0 = 1/100. The grid
speed is analytically specified by the following equations:







(xτ )i,j = 2πωAx∆x0 cos(2πωt) sin

(

nxπ
yi,j(0) − ymin

ymax− ymin

)

αx

(yτ )i,j = 2πωAy∆y0 cos(2πωt) sin

(

nyπ
xi,j(0) − xmin

xmax− xmin

)

αy

(17)

with

αx = exp

(

−4 log(2)
xi,j(0)2 + yi,j(0)2

(xmax− xmin)2

)

αy = exp

(

−4 log(2)
xi,j(0)2 + yi,j(0)2

(ymax− ymin)2

)

The grid coordinates are then provided via the RK4 scheme with the assumption that the grid speed is constant
during a time step:(Xτ )(l−1) = Xn

τ ∀l ∈ {1, .., 4} in Equation (10).

(a) (b)

Figure 6: Comparison of the swirl velocity field: (a) in the static case ; (b) in the deforming case.

In fact, only the domain[xmin, xmax] × [ymin, ymax] is dynamically deformed. The different parameters are:Ax =
Ay = 2, nx = ny = 6, xmin = ymin = −0.5, xmax = ymax = 0.5 andω = 2.

Two computations are performed: one on a static grid, the initial uniform grid, and the other with the grid velocity
expressed in Equation (17). These two computations are performed with the same time step leading toCFL = 0.5,
designed with the initial non deformed grid, in order to underline the effect of the mesh dynamic deformation on
the high-order discretizations performance. The vortex isinitially placed on(xc, yc) = (0, 0) and results given in
this section are visualized when the vortex returns at its initial position. Comparison is given in Figures 6 and 7.
The velocity fields in the static and deforming cases are similar which makes it possible to preserve the high-order
schemes propagation properties on dynamically deforming meshes. The profile of the swirl velocity ony = 0 in
Figure 7 shows the excellent agreement between the two computations. In addition, the dynamic deformation of
the mesh implies a kind of numerical dissipation in the spatial high-order discretization characterized by a damping
in the profile amplitude, as reported by Visbal and Gaitonde (2002).

51



(a) (b)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x

v

Figure 7: (a) Snapshot the grid deformation; (b) effect of the mesh dynamic deformation on the swirl velocity: .
static case ; - - deforming case.

5.2 Cylinder advection in an inviscid uniform flow

The advection of a cylinder in a uniform flow at rest is now considered. The computational domain taken as
[−2, 2] × [−2, 2] is divided in two grids. A cylindrical body-fitted grid moveswith respect to a fixed Cartesian
uniform grid with∆x = ∆y = 1/50. The overlapping meshes are plotted in Figure 8. Initially,the center of the
cylinder is located atxc = 0.85.

Figure 8: General view of the computational domain for the cylinder advection.

At every time step, a constant displacement of the cylindrical domain in thex-direction is imposed:dx =
−0.08∆x. Then, the mesh velocity is computed using the relationx(l+1) − x(l) = dx/4 for every stage of
the RK4 scheme. The computation is performed withCFL = 0.5. Thus, the cylinder is shifted at the Mach num-
berMe ≈ 0.3. The radiation boundary conditions are applied to all the boundaries of the fixed Cartesian domain.
Then, at the wall, a no-slip condition is used following the displacement of the cylinder.

The velocity field of the inviscid flow over an moving cylinderis plotted in Figure 9 for three different positions.
First, a transient acoustic wave is generated by the initialmotion of the cylinder. Then, the wave leaves the
computational domain and a symmetric stationary solution with respect to the cylinder is reached.

6 Conclusion and future works

A numerical method has been described for performing compressibleLES in CAA and aeroelasticity applications.
The scheme is based on a 11-point explicit optimized finite-difference algorithm in conjunction with a 11-point
optimized spatial low-pass filter. In order to address complex geometrical configurations, overlapping grids are
used and the communications between domains are performed via high-order Lagrangian interpolation. The high-
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(a) (b) (c)

Figure 9: Time evolution of the streamwise velocity around the cylinder.

order overset-grid technique has proved to maintain the algorithm accuracy for moving grid applications.

To address fluid/structure interaction, the coupling algorithm between flow and structure has been implemented
and a detailed validation procedure is in progress. The nextconfiguration to be addressed is a moving cylinder in a
2-D low-Reynolds number flow. Forced oscillations will be simulated. Then the Vortex-Induced Vibration and the
resulting radiated acoustic field will be computed for several mean flows. Finally the cylinder behaviour at lock-in
will be investigated.

The choice of the time integration method is also to be considered. In the explicit method used in this work, the
time step is imposed by stability constraints. However, thetime step needed to respect the physical time scales
of the turbulent flow may be larger. This is the case for turbulent wall-bounded flows, for example. The use of
implicit time integration method would make it possible to circumvent the numerical stability by using a time step
only driven by the flow physics, see Rizzetta et al. (2003), Daude et al. (2006).
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An interface quasi-Newton algorithm for partitioned simulation of
fluid-structure interaction

J. Degroote, R. Haelterman, S. Annerel, A. Swillens, P. Segers, J. Vierendeels

To solve a fluid-structure interaction problem efficiently in a partitioned way with a “black-box” flow solver and
structure solver, an interface quasi-Newton technique with an approximation for the inverse of the Jacobian from
a least-squares model (IQN-ILS) has been developed. In this work, the implementation of the IQN-ILS algorithm
without explicit creation of the approximation for the inverse of the Jacobian is explained and it is demonstrated
that the IQN-ILS technique can be implemented easily in simulation environments which currently use relaxation
methods. Simulations of a flexible beam behind a cylinder and the propagation of a pressure wave in a carotid
artery indicate that the IQN-ILS algorithm outperforms Aitken relaxation and that it has similar performance as
the interface block quasi-Newton algorithm with approximate Jacobians from least-squares reduced-order models.

1 Introduction

The simulation of fluid-structure interaction (FSI) and other coupled problems has gained importance over the last
decade. Nowadays, FSI simulations are used to avoid flutter of airplane wings (Farhat et al., 2006) and of blades
in turbomachinery (Willcox et al., 1999). The design and analysis of artificial heart valves (dos Santos et al., 2006;
Dumont et al., 2007), the prediction of the rupture of aneurysms or of the outcome of surgery (Taylor et al., 1999;
Wilson et al., 2005) also rely on FSI simulations.

An FSI problem can be solved in either a monolithic or a partitioned way. The monolithic approach is to solve the
flow equations and structural equations simultaneously such that their mutual influence can be taken into account
during the solution process. In a partitioned FSI simulation, the flow equations and the structural equations are
solved with separate codes which means that the flow does not change while the solution of the structural equations
is calculated and vice versa. The partitioned approach thus requires a coupling algorithm to take the interaction
between fluid and solid into account. However, the partitioned approach preserves software modularity and differ-
ent, possibly more efficient solution techniques can be used for the flow equations and structural equations. This
paper focuses on partitioned fluid-structure interaction simulations with “black-box” solvers.

In partitioned FSI simulations, coupling iterations between the flow solver and the structural solver have to be per-
formed. In every coupling iteration, information on the fluid-structure interface is exchanged between the solvers.
In case of a Dirichlet-Neumann decomposition of the FSI problem, the stress distribution on the fluid-structure
interface is passed from the flow solver to the structural solver and the position of the interface is transferred the
other way around. If the interaction between the fluid and the structure is weak, e.g. in aeroelastic simulations,
so-called staggered or loosely-coupled methods (Farhat et al., 2006; Lesoinne and Farhat, 1998; Piperno et al.,
1995) which require only one coupling iteration per time step can be used but these algorithms do not enforce the
equilibrium conditions on the fluid-structure interface and are unstable in cases with strong interaction.

Gauss-Seidel coupling iterations are also unstable in simulations with an incompressible fluid that has a high added-
mass effect (Causin et al., 2005; Förster et al., 2007). This instability has been explained by Causin et al. (2005)
who rewrite the flow equations as an added-mass operator in the structural equations and by Degroote et al. (2008)
who substitute a linearized model for the structure in the flow equations. Coupling algorithms that can be used
in these simulations with strong interaction are e.g. Gauss-Seidel iterations with Aitken relaxation (Küttler and
Wall, 2008) and the method with two reduced-order models from Vierendeels et al. (2007) which further will be
denoted as interface block quasi-Newton of the Gauss-Seidel type with approximate Jacobians from least-squares
reduced-order models (IBQN-LS) .
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In Degroote et al. (2008), it is demonstrated that IBQN-LS outperforms Aitken relaxation for incompressible
flow in a flexible tube. The difference in performance becomes larger when information from previous time
steps is reused to improve the approximate Jacobians in the IBQN-LS method. However, the Aitken relaxation
is significantly easier to implement as it only consists of a scalar relaxation factor which is modified in every
coupling iteration. The IBQN-LS method requires action every time the flow problem or structural problem is
solved whereas the Aitken relaxation only intervenes after the solution of both problems. Moreover, two linear
systems with as dimension respectively the number of degrees-of-freedom in the interface’s position and stress
distribution have to be solved in every coupling iteration of the IBQN-LS method. These linear systems can be
solved quickly and efficiently with a matrix-free iterative solver such that even large simulations with the IBQN-LS
method are faster than with Aitken relaxation but the matrix-free implementation of IBQN-LS is more complex.

To combine a straightforward implementation with fast convergence, an interface quasi-Newton technique with
an approximation for the inverse of the Jacobian from a least-squares model (IQN-ILS) has been developed. This
technique uses quasi-Newton iterations to solve the fluid-structure problem reformulated as a set of equations with
the discretized position of the fluid-structure interface as unknowns. The approximation for the inverse Jacobian is
obtained from a least-squares reduced-order model with the technique from Vierendeels et al. (2007). Because the
inverse of the Jacobian is approximated, no linear systems with as dimension the number of degrees-of-freedom
in the interface’s position have to be solved which is important for simulations with a high number of degrees-of-
freedom in the interface’s position. Moreover, the IQN-ILS method only intervenes in the coupling iterations after
the solution of both the flow and structural problem like relaxation techniques and hence it can be implemented
easily in an existing FSI framework that currently uses relaxation to accelerate the convergence of the coupling
iterations.

The remainder of this work is organized as follows. Section 2 gives an abstract definition of the flow solver
and structural solver and Section 3 explains the implementation of the IQN-ILS coupling technique with reuse of
information from previous time steps. Section 4 demonstrates two examples for which the performance of IQN-
ILS and IBQN-LS is similar and higher than the performance of Aitken relaxation with respect to both number of
coupling iterations and duration of the simulation, followed by the conclusion in Section 5.

2 Definition of the flow solver and structural solver

This section gives a brief definition of the functions F and S that represent respectively the flow solver and
structural solver. Because the solvers are black-box codes, the Jacobians of these functions are not available.

The expression
y = F(x) (1)

concisely represents several operations. First, the discretized position x ∈ Ru of the fluid-structure interface is
passed to the flow code and the grid of the fluid domain adjacent to the interface is adapted accordingly. Subse-
quently, the flow equations are solved for the fluid state in the entire domain which results in a distribution of the
stress on the interface y ∈ Rw.

The actions of the structural solver are represented by

x = S(y), (2)

indicating that the stress on the interface is passed to the structural code which then solves the entire structural
problem and returns the new position of the fluid-structure interface.

With these definitions, the FSI problem is given by

R(x) ≡ S ◦ F(x)− x = 0 (3)

with R the residual operator of the coupled problem and with the symbol ◦ denoting that F(x) is calculated first
and that the result is the argument of S.

In the remainder of this paper, all values and functions are at the new time level n + 1, unless indicated otherwise
with a left superscript. A right superscript indicates the coupling iteration while a subscript denotes the element in
a vector. Capital letters denote matrices, bold lower case letters indicate vectors and lower case letters represent
scalars. Approximations are indicated with a hat. As the output of the solvers F and S is only an intermediate
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value that is not passed on to the next coupling iteration, this value is indicated with a tilde. Once the final value
that will be used in the next iteration has been calculated, the tilde is dropped. Depending on the context, the
equality sign can denote either assignment or equality.

3 Interface quasi-Newton with an approximation for the inverse of the Jacobian from a least-squares model
(IQN-ILS)

The FSI problem reformulated as a set of nonlinear equations in the interface’s position

R(x) = 0 (4)

can be solved with several techniques. If the Jacobian matrix dR/dx would be available, equation (4) could be
solved with Newton iterations

solve
dR
dx

∣∣∣∣
xk

∆xk = −rk (5a)

xk+1 = xk + ∆xk. (5b)

However, the exact Jacobian ofR is unknown as the Jacobians of F and S are unavailable. Moreover, a linear sys-
tem (5a) with as dimension the number of degrees-of-freedom in the position of the fluid-structure interface has to
be solved in every Newton iteration. Although the number of degrees-of-freedom in the interface’s position is gen-
erally smaller than the number of degrees-of-freedom in the entire fluid and structure domain, the Jacobian matrix
dR/dx is usually dense such that the solution of the linear system (5a) corresponds to a significant computational
cost in large simulations.

If the Jacobian dR/dx is approximated and quasi-Newtons iterations are performed, black-box solvers can be used
but this approach does not avoid that the linear system (5a) has to be solved. It is more advantageous to approximate
the inverse of the Jacobian instead by applying the least-squares technique introduced by Vierendeels et al. (2007)
on a particular set of vectors as will be explained later. The quasi-Newton iterations with the approximation for the
inverse of the Jacobian can be written as

xk+1 = xk +
¤�Å
dR
dx

∣∣∣∣
xk

ã−1 (−rk
)

(6)

and these iterations solve R(x) = 0 for the interface’s position, hence the name interface quasi-Newton with
an approximation for the inverse of the Jacobian from a least-squares model (IQN-ILS). The initial guess for the
quasi-Newton iterations is obtained from an extrapolation of the interface’s position

x0 =
5
2
(nx)− 2(n−1x) +

1
2
(n−2x), (7)

based on the previous time steps. Lower order extrapolations are used in the first two time steps. The residual in
Eq. (6) is calculated as

rk = R(xk) = S ◦ F(xk)− xk = x̃k+1 − xk (8)

and the quasi-Newton iterations in the time step have converged when ||rk||2 ≤ ε.

It can be seen from equation (6) that the approximation for the inverse of the Jacobian does not have to be created
explicitly, a procedure to calculate the product of this matrix with the vector −rk is sufficient. The vector −rk

is the difference between the desired residual, i.e. 0, and the current residual rk and it is further denoted as
∆r = 0− rk = −rk. In this work, the matrix-vector product is calculated from information obtained during the
previous quasi-Newton iterations. Equation (8) shows that the flow equations and structural equations are solved
in quasi-Newton iteration k, resulting in x̃k+1 = S ◦F(xk) and the corresponding residual rk. The vectors x̃ and
r from all previous coupling iterations are also available, giving a set of known residual vectors

rk, rk−1, . . . , r1, r0 (9a)

and the corresponding set of vectors x̃

x̃k+1, x̃k, . . . , x̃2, x̃1. (9b)
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The differences between all vectors from previous iterations (superscript i) and the most recent vector (superscript
k) are calculated

∆ri = ri − rk (10a)

∆x̃i+1 = x̃i+1 − x̃k+1 (10b)

for i = 0, . . . , k−1. Each ∆ri corresponds to a ∆x̃i+1 and these vectors are stored as the columns of the matrices

n+1V k =
[
∆rk−1 ∆rk−2 . . . ∆r1 ∆r0

]
(11a)

and
n+1W k =

[
∆x̃k ∆x̃k−1 . . . ∆x̃2 ∆x̃1

]
. (11b)

The matrices n+1V k and n+1W k can be combined with those from s previous time steps (if at least s time steps
have already been performed), giving

V k =
[
n+1V k nV . . . n−s+2V n−s+1V

]
(12a)

and
W k =

[
n+1W k nW . . . n−s+2W n−s+1W

]
. (12b)

The columns of the matrices n−i+1V and n−i+1W are calculated by subtracting the vector of the last iteration of
time step n − i + 1 from all previous vectors in that time step, in the same way as in equation (10). By including
the information for s previous time steps, the convergence of the coupling iterations is accelerated remarkably.
However, if information from too many time steps is reused, the convergence can slow down again as information
from time step n − s + 1 might no longer be relevant in time step n + 1. The optimal value of s is problem
dependent but the convergence of the coupling iterations does not change significantly near the optimum such that
the performance of the method is robust with respect to the parameter s.

The number of columns in V k and W k is indicated with v and is generally much smaller than the number of rows
u. Nevertheless, in simulations with a low number of degrees-of-freedom on the interface, it is possible that the
number of columns has to be limited to u by discarding the rightmost columns.

The vector ∆r = 0− rk is approximated as a linear combination of the known ∆ri

∆r ≈ V kck (13)

with ck ∈ Rv the coefficients of the decomposition. Because v ≤ u, equation (13) is an overdetermined set
of equations for the elements of ck and hence the least-squares solution to this linear system is calculated. For
that reason, the so-called economy size QR-decomposition of V k is calculated using Householder transformations
(Golub and Van Loan, 1996)

V k = QkRk (14)

with Qk ∈ Ru×v an orthogonal matrix and Rk ∈ Rv×v an upper triangular matrix. The coefficient vector ck is
then determined by solving the triangular system

Rkck = QkT
∆r (15)

using back substitution. If a ∆ri vector is (almost) a linear combination of other ∆rj vectors, one of the diagonal
elements of Rk will (almost) be zero. Consequently, the equation corresponding to that row of Rk cannot be solved
during the back substitution and the corresponding element of ck is set to zero.

The ∆x̃ that corresponds to ∆r is subsequently calculated as a linear combination of the previous ∆x̃i, similar to
equation (13), giving

∆x̃ = W kck. (16)

From equation (8), it follows that
∆r = ∆x̃−∆x (17)

and substitution of equation (16) in equation (17) results in

∆x = W kck −∆r. (18)
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Because the coefficients ck are a function of ∆r, equation (18) shows how ∆x can be approximated for a given
∆r. Hence, equation (18) can be seen as a procedure to calculate the product of the approximation for the inverse
of the Jacobian and a vector ∆r = −rk

∆x =
¤�Ç
dR
dx

∣∣∣∣
xk

å−1

∆r = W kck + rk. (19)

The relation between ∆r and ∆x is thus found by means of the ∆x̃ values. If a direct relation between ∆r and
∆x is constructed instead, the quasi-Newton iterations will not converge as the new input for S ◦ F would be a
linear combination of the previous inputs.

The complete IQN-ILS technique is shown in Algorithm 1. For steady calculations, one time step (nmax = 1) has
to be performed with the same algorithm. Because the matrices V k and W k have to contain at least one column,
an relaxation with factor ω (line 9) is performed in the second coupling iteration of the first time step if information
from the previous time steps is reused (s > 0) and in the second coupling iteration of every time step without reuse
(s = 0).

Algorithm 1 Interface quasi-Newton with an approximation for the inverse of the Jacobian from a least-squares
model (IQN-ILS)

1: n = 0
2: while n < nmax do
3: x0 = 5

2 (nx)− 2(n−1x) + 1
2 (n−2x) (if n ≥ 2, lower order otherwise)

4: k = 0
5: x̃1 = S ◦ F(x0)
6: r0 = x̃1 − x0

7: while ||rk||2 > ε do
8: if k = 0 and (s = 0 or n = 0) then
9: xk+1 = xk + ωrk

10: else
11: construct V k and W k as shown in equation (10) to (12)
12: calculate QR-decomposition V k = QkRk

13: solve Rkck = −QkT
rk with back substitution

14: xk+1 = W kck + rk

15: end if
16: k = k + 1
17: x̃k+1 = S ◦ F(xk)
18: rk = x̃k+1 − xk

19: end while
20: n = n + 1
21: end while

Figure 1 depicts a simplified representation of the IBQN-LS, IQN-ILS and (Aitken) relaxation algorithm. The
IBQN-LS algorithm creates a least-squares approximation for dF/dx and dS/dy and uses them to solve

y −F(x) = 0 (20a)
x− S(y) = 0 (20b)

with block quasi-Newton iterations of the Gauss-Seidel type. Relaxation methods solve x = S◦F(x) with relaxed
fixed-point iterations, possibly with adaptation of the relaxation factor ωk in every coupling iteration.

Both Algorithm 1 and Figure 1 demonstrate that IQN-ILS can be implemented easily in an existing FSI framework
with relaxation. A conditional statement has to be wrapped around the existing relaxation on line 9 such that the
relaxation is only performed if not enough information is available to approximate the product of the inverse of
the Jacobian and −rk, otherwise the procedure of the IQN-ILS algorithm on line 11 to 14 has to be executed.
The IQN-ILS algorithm consists of vector operations, two matrix-vector products, a QR-decomposition and the
solution of a triangular system which are all available in standard linear algebra packages. Moreover, as v is
generally much smaller than u, the procedure described above is significantly faster and less memory consuming
than explicit creation of the approximation for the inverse of the Jacobian as¤�Ç

dR
dx

∣∣∣∣
xk

å−1

= W kRk−1
QkT − I (21)
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with I ∈ Ru×u the identity matrix. The results will demonstrate that only a small fraction of the total simulation
time is spent on line 11 to 14.

nx, ny

ỹk+1 = F(xk)

Update d̂F
dx and calculate yk+1

x̃k+1 = S(yk+1)

Update d̂S
dy and calculate xk+1

?

k + +

n+1x, n+1y

1

(a) IBQN-LS

nx, ny

yk+1 = F(xk)

x̃k+1 = S(yk+1)

rk = x̃k+1 − xk

xk+1 = xk − ̂(
dR
dx

)−1
rk

?

k + +

n+1x, n+1y

1

(b) IQN-ILS

nx, ny

yk+1 = F(xk)

x̃k+1 = S(yk+1)

rk = x̃k+1 − xk

xk+1 = xk + ωkrk

?

k + +

n+1x, n+1y

1

(c) Relaxation

Figure 1: Simplified representation of the (a) IBQN-LS, (b) IQN-ILS and (c) (Aitken) relaxation algorithm for
partitioned FSI with black-box solvers.

4 Results

In this section, the IBQN-LS, IQN-ILS and Aitken relaxation are compared with respect to both the number of
coupling iterations per time step and the total duration of the simulation. Two examples are given, namely the
oscillation of a 2D flexible beam and the propagation of a pressure pulse in a 3D carotid artery. In both examples,
the flow field is calculated by a finite volume flow solver with second order discretization of the pressure, second
order upwind discretization of the momentum and first order time accuracy on moving meshes. The mesh of
the fluid domain is adapted to the position of the fluid-structure interface with a spring analogy and the mesh is
adapted if cells are too distorted. The structural solver is a finite element code with implicit time integration which
takes geometric nonlinearity due to large deformations into account. The coupling algorithm, the flow solver and
structural solver are all executed on a dedicated machine with two quad-core processors.

4.1 2D Flexible beam

The first example is the oscillation of a flexible beam, specifically the unsteady FSI2 test as described in detail in
the benchmark paper by Turek and Hron (2006). The geometry consists of a horizontal channel of 0.41 m high
which contains a rigid cylinder with center positioned 0.2 m above the bottom of the channel. A laminar, viscous
flow with density 103 kg/m3 and kinematic viscosity 10−3 m2/s enters the channel from the left hand side with
a parabolic velocity profile and a mean inlet velocity of 1.0 m/s. A constant pressure is imposed at the outlet of
the channel and a no-slip condition is applied to the top and bottom of the channel. A linearly elastic beam with
density 104 kg/m3, Young’s modulus 1.40 · 106 N/m2 and Poisson’s ratio 0.4 is attached to the right hand side of
the cylinder.

The fluid domain is initially discretized with 24806 triangular and quadrilateral cells, a number that varies slightly
due to mesh adaptation, and the solid domain consists of 1200 quadrilateral continuum elements. After validating
the flow solver and the structural solver with the tests listed by Turek and Hron (2006), the FSI2 test has been
executed. The pressure contours in the vicinity of the structure are shown in Figure 2.

The point at the right end of the beam (as indicated in Figure 2) is called A. The displacement u of this point in the
x and y direction and the drag and lift on the entire structure are given in Table 1 and Figure 3 in the same format
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A

(a)

A

(b)

Figure 2: Pressure contours in the 2D unsteady FSI2 test with the flexible beam after (a) 12 s; (b) 16 s.

as in the benchmark paper. The residual ||ri||2 is reduced five orders of magnitude with respect to its initial value
and the same results have been found with IQN-ILS, IBQN-LS and Aitken relaxation. The deviations between the
simulations and the benchmark are reasonable, given that the flow solver is only first order accurate in time.

ux [10−3 m] uy [10−3 m] drag [N] lift [N]
Simulation -14.07±12.37[3.7] 1.18±76.5[1.9] 217.52±84.65[3.7] -0.74±267.6[1.9]
Benchmark -14.58±12.44[3.8] 1.23±80.6[2.0] 208.83±73.75[3.8] 0.88±234.2[2.0]

Table 1: Results of the 2D unsteady FSI2 test with the flexible beam. Displacement of point A in the x and y
direction, and drag and lift on the entire structure. All data are given in the format mean±amplitude[frequency].

The number of coupling iterations per time step (averaged over the last period of the oscillation) and the relative
duration of the simulations is given in Table 2. The notations IQN-ILS(s) and IBQN-LS(s) denote that information
from the s previous time steps has been reused. When information from the last 3 time steps is reused, the average
number of coupling iterations per time step reduces with approximately 30 % for both IQN-ILS and IBQN-LS
compared to the simulations without reuse. The performance of IQN-ILS(3) and IBQN-LS(3) is comparable and
both techniques complete the FSI2 test nearly twice as fast as Aitken relaxation.

In the FSI2 test with IQN-ILS(3), only 0.04 % of the total simulation time was spent on line 11 to 14 in Algorithm 1.
The computational cost of the IQN-ILS algorithm is hence negligible compared to the computational cost of the
flow problem and the structural problem. This can also be seen from Table 2 which shows that the difference
between IQN-ILS and Aitken relaxation is almost the same with respect to average number of coupling iterations
and duration of the simulation.

Iterations Duration
IQN-ILS 9.4 1.84

IQN-ILS(3) 6.1 1.07
IBQN-LS 7.2 1.54

IBQN-LS(3) 4.8 1.00
Aitken relaxation 9.9 1.81

Table 2: Number of coupling iterations per time step (averaged over the last period of the oscillation) and relative
duration of the simulations for the 2D unsteady FSI2 test with the flexible beam. The notations IQN-ILS(s) and
IBQN-LS(s) denote that information from the s previous time steps has been reused.

4.2 3D Carotid bifurcation

The second example is the propagation of a pressure wave in the geometry of a carotid artery. Fernandez and
Moubachir (2005), among others, described the propagation of a pressure wave in a straight cylindrical tube and the
same material properties and boundary conditions have been used in this work with a more complicated geometry.
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Figure 3: Results of the 2D unsteady FSI2 test with the flexible beam. Displacement of point A in (a) the x
direction and (b) the y direction, (c) drag and (d) lift on the entire structure.

The model for the carotid artery is based on a geometry from a healthy volunteer in which an eccentric plaque was
added. Starting from CT-scans, the geometry was three-dimensionally reconstructed. The fluid domain is initially
discretized with 148054 tetrahedral cells and the structural model consists of one layer with 19062 triangular shell
elements. The distance between the inlet at the common carotid artery and the two outlets (interna and externa)
is 0.095 m. This simulation does not aim at reproducing the reality but nevertheless it is a tough test for the
algorithms.

The solid is linear elastic with Young’s modulus 3·105 N/m2 and Poisson’s ratio 0.3 and it has a density of
1200 kg/m3. The structure is clamped at both ends. The viscosity of the fluid is 0.003 Pa·s and its density is
1000 kg/m3. At the inlet, a pressure of 1333.2 Pa is applied during 0.003 s and 0 Pa is applied afterwards. At the
outlets a pressure of 0 Pa is imposed and the fluid-structure interface is a no-slip boundary. The wave propagation
is followed during 0.01 s with time steps of 0.0001 s. The pressure contours on the fluid-structure interface are
shown in Figure 4.

The average number of coupling iterations per time step and the relative duration of the simulations with IQN-ILS,
IBQN-LS and Aitken relaxation are given in Table 3. The residual is reduced with 3 orders of magnitude with
respect to its initial value in the time step. The simulation with Aitken relaxation has been stopped after 10 time
steps because the convergence criterion has not been reached in any of the first 10 time steps within 50 coupling
iterations. In this simulation with a much higher number of degrees-of-freedom, the IQN-ILS algorithm is 10 %
faster than the IBQN-LS algorithm although the average number of coupling iterations is only 5 % lower because
no linear systems have to be solved in the IQN-ILS method. The linear systems in the IBQN-LS method are solved
with a matrix-free iterative solver which reduces the L2-norm of the residual of the linear systems by a factor
10−10.
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(a) t = 0.0050 s (b) t = 0.0100 s

(c) t = 0.0150 s (d) t = 0.0200 s

1.50e+031.31e+031.02e+037.40e+024.55e+021.70e+02-1.15e+02-4.00e+02

Figure 4: Pressure contours on the fluid-structure interface for the simulation of the wave propagation in the carotid
bifurcation.

Iterations Duration
IQN-ILS(2) 11.9 1.00

IBQN-LS(2) 12.5 1.11
Aitken relaxation — —

Table 3: Number of coupling iterations per time step (averaged over the entire simulation) and relative duration of
the simulations for the 3D propagation of the pressure wave in the carotid artery. The notations IQN-ILS(s) and
IBQN-LS(s) denote that information from the s previous time steps has been reused. The simulation with Aitken
relaxation has been stopped after 10 time steps because the convergence criterion had not been reached in any of
those time steps within 50 coupling iterations.

5 Conclusion

The interface quasi-Newton technique with an approximation for the inverse of the Jacobian from a least-squares
model (IQN-ILS) has a similar performance as the interface block quasi-Newton technique (IBQN-LS), but it
is significantly easier to implement. Moreover, it avoids that linear systems with as dimension the number of
degrees-of-freedom in the position of the fluid-structure interface have to be solved which is an advantage for large
simulations. In the examples presented here, IQN-ILS outperforms Aitken relaxation and it has been demonstrated
how the IQN-ILS algorithm can be implemented in existing FSI codes that currently rely on relaxation.
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The fluid-structure interaction simulation of shock-loaded thin-walled structures requires numerical methods that
can cope with large deformations as well as local topology changes. We present a robust level-set-based approach
that integrates a Lagrangian thin-shell finite element solver with fracture and fragmentation capabilities into an
Eulerian Cartesian fluid solver with embedded boundary and mesh adaptation capability. As main computational
applications, we consider the plastic deformation and rupture of thin plates subjected to explosion and piston-
induced pressure waves in water.

1 Introduction

The construction of efficient and scalable algorithms for simulating shock-driven fluid-structure interaction (FSI)
problems is an area of active research. The discretizationsboth in fluid and solid are usually time-explicit and
therefore computationally comparably inexpensive. On theother hand, major geometric complexities, such as
large structural deformations, fracture, and even fragmentation might have to be considered. An approach to this
problem is to employ an immersed or embedded boundary methodin the fluid solver (Mittal and Iaccarino, 2005),
in which moving solid structures slide through a fixed (Eulerian) fluid background mesh.

We have developed a generic software framework for shock-driven FSI simulation, namedVirtual Test Facility
(Deiterding et al., 2006b), that imposes embedded moving wall boundary conditions on a Cartesian fluid solver
with a ghost fluid approach, as proposed by Fedkiw (2002) and Arienti et al. (2003). A scalar level set function
storing the distance to the nearest element of the solid’s triangulation is utilized to represent the embedded geom-
etry on the fluid grid and block-based dynamic mesh adaptation is employed to mitigate boundary approximation
inaccuracies. The Virtual Test Facility (VTF) specificallytargets coupled problems in the high-speed regime, such
as the transient deformation of metallic structures due to explosive detonations or the fracture and fragmentation
of brittle or ductile materials under shock wave impact, cf.Aivazis et al. (2000) and Mauch et al. (2003). Compu-
tational fluid and solid mechanics solvers are time-accurate and consider all arising supersonic wave phenomena
(e.g., shear and dilatation waves in the viscoplastic solid, shock waves in the compressible fluid) correctly. For
coupling, a temporal splitting technique, in which solversexchange data only at the interface between disjoint com-
putational domains after consecutive time steps, is adopted. For compressible fluids, stable solutions are obtained
reliably with such aweakly coupledmethod, when the evolving interface geometry and velocities are imposed as
boundary conditions on the fluid solver and the hydrodynamicpressure is used as force boundary condition acting
on the solid exterior, cf. L̈ohner et al. (2003), Cirak and Radovitzky (2005), and Specht(2000).

While the VTF approach has been successfully applied to verification and validation examples driven by shock
and detonation waves in gases, cf. Deiterding et al. (2006a)and Deiterding et al. (2006c), we focus in here
primarily on thin-walled solid structures subjected to strong pressure waves in water. In Section 2, we sketch
the adaptive Cartesian finite volume fluid solver with level-set-based embedded boundary capability and briefly
describe the employed multiphase Riemann solver. Section 3outlines the solid mechanics solver that has been
developed to enable FSI simulations of thin-walled (possibly fracturing) shell structures. In Section 4, we outline
the highly efficient auxiliary algorithm based on geometriccharacteristic reconstruction and scan conversion that
we have developed to transform evolving triangulated surface meshes efficiently into signed or unsigned distance
functions. The fluid-structure coupling algorithm, highlighting its incorporation into the adaptive fluid mesh re-
finement framework is detailed in Section 5. The simple verification test of an elastic beam under shock loading is
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discussed in Section 6.1. Sections 6.2 and 6.3 present FSI simulation results for two setups involving viscoplastic
deformation and fracture of thin circular isotropic metal plates subjected to shock loadings from or comparable
to underwater explosions. Good agreement with experimental results and the level of detail provided make the
computations excellent test cases for explicit FSI software.

2 Eulerian fluid mechanics solver

In this section, we are concerned with the construction of anEulerian fluid solver suitable for efficient fluid-
structure coupling. Although the presentation is tailoredto the two-component solver employed throughout this
paper, the concepts are equally applicable to other conservation laws with or without source terms, cf. Deiterding
et al. (2006c).

2.1 Governing equations

The simulation of trans- or supersonic wave phenomena in fluids requires the consideration of the compressibility
while viscosity can typically be neglected. The basic system of governing equations are the Euler equations:

∂tρ + ∇ · (ρu) = 0 , ∂t(ρu) + ∇ · (ρu ⊗ u) + ∇p = 0 , ∂t(ρE) + ∇ · ((ρE + p)u) = 0 . (1)

Herein,ρ is the density,u the velocity vector andE the specific total energy. In order to close (1), an equation of
statep = p(ρ, e) is required for modeling the dependency of the hydrostatic pressurep on densityρ and specific
internal energye := E − 1

2uT u. For a single polytropic gas, the equation of state (EOS) reads

p = (γ − 1)ρe (2)

with γ denoting the constant adiabatic exponent. For Eq. (2), the speed of sound in the fluidc is found to be
c = (γ p/ρ)

1/2. For very high pressures, as they appear for instance in underwater explosions, a simple extension
of Eq. (2) to thestiffenedgas EOS of the form

p = (γ − 1)ρe − γp∞ (3)

is sufficient to model pressure waves in liquids with speed ofsoundc = (γ (p + p∞)/ρ)
1/2. Equation (3) becomes

the EOS of a multi-component mixture if we assume a model based on the volume fractionsαi, with
∑m

i=1 αi = 1,
that defines the mixture quantities as

ρ =

m∑

i=1

αiρi , ρu =

m∑

i=1

αiρiui , ρe =

m∑

i=1

αiρiei ,
p

γ − 1
=

m∑

i=1

αipi

γi − 1
,

γp∞
γ − 1

=

m∑

i=1

αiγipi
∞

γi − 1
,

and in which each component satisfies a stiffened gas EOS of the formpi =
(
γi − 1

)
ρiei − γipi

∞. At this point,
several possibilities would exist to derive different setsof governing transport equations for a two-fluid model,
however, we choose to follow the approach of Shyue (1998) that supplements system (1) with the two advection
equations

∂

∂t

(
1

γ − 1

)

+ u · ∇

(
1

γ − 1

)

= 0 ,
∂

∂t

(
γp∞
γ − 1

)

+ u · ∇

(
γp∞
γ − 1

)

= 0 . (4)

Abgrall (1996) proved that a multi-component continuum scheme needs to satisfy Eq. (4.1) in the discrete sense to
prevent unphysical oscillations at material boundaries. Although different scheme alterations are possible to satisfy
this requirement, cf. Abgrall and Karni (2001), the utilization of (4) in the governing equations and therefore direct
discretization together with (1) is the simplest remedy to the problem, cf. Shyue (1998) and Shyue (2006).

2.2 Finite volume scheme

The appropriate discretization technique for hyperbolic problems with discontinuities (shocks, material boundaries,
etc.) is the finite volume approach. For simplicity, we restrict ourselves in the following to the two-dimensional
case and assume an equidistant discretization with mesh widths∆x1, ∆x2 and a constant time step∆t. Since the
equations (4) are not in conservation form, we use the Wave Propagation Method by LeVeque (2002) to discretize
the system (1), (4). An explicit two-dimensional wave propagation scheme has the formal structure

Ql+1
jk = Ql

jk −
∆t

∆x1

(

A−∆j+ 1
2 ,k + A+∆j− 1

2 ,k

)

−
∆t

∆x2

(

B−∆j,k+ 1
2

+ B+∆j,k− 1
2

)

.
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While thefluctuationsA±∆, B±∆ can be supplemented with (limited) second-order and cross-derivative con-
tributions resulting in a truly multi-dimensional high-resolution Godunov-type method (LeVeque, 2002), the key
component is an approximate Riemann solver that provides a linearized decomposition of the Riemann prob-
lem (RP) normal to each cell boundary. In here, we use the HLLC1 approach by Toro et al. (1994) that is tailored
specifically for the Euler equations and approximates the RP(herex1-direction) with three discontinuous jumps by

x1

q
l q

r

q
⋆

l q
⋆

r

s
l
t

sr t

s⋆ t

Figure 1: Approximation of the RP
by the HLLC scheme.

qHLLC(x1, t) =







q
l
, x1 < sl t,

q⋆

l
, sl t ≤ x1 < s⋆ t,

q⋆
r
, s⋆ t ≤ x1 ≤ sr t,

qr , x1 > sr t,

which is also depicted in Fig. 1. For the wave speedssl/r we use the
estimationssl = min{u1,l−cl, u1,r−cr}, sr = max{u1,l+cl, u1,r+cr}
suggested by Davis (1988) ands⋆ is given in the HLLC approach by

s⋆ =
pr − pl + slu1,l(sl − u1,l) − ρru1,r(sr − u1,r)

ρl(sl − u1,l) − ρr(sr − u1,r)
.

Conservation arguments and consideration of the structureof the RP for Euler equations lead to the specification
of the unknown solution values as

q⋆

k
=

[

η, ηs⋆, ηu2, η

[
(ρE)k

ρk

+ (s⋆ − u1,k)

(

sk +
pk

ρk(sk − u1,k)

)]

,
1

γk − 1
,
γkp∞,k

γk − 1

]T

, η = ρk

sk − u1,k

sk − s⋆

for k = {l, r}, cf. Toro (1999). Knowledge of the intermediate state then allows the direct evaluation of thewaves
asW1 = q⋆

l
− q

l
, W2 = q⋆

r
− q⋆

l
, W3 = qr − q⋆

r
and by settingλ1 = sl, λ2 = s⋆, λ3 = sr the fluctuations in

thex1-direction are defined asA−∆ =
∑

λν<0 λν Wν , A+∆ =
∑

λν≥0 λν Wν for ν = {1, 2, 3}.

Note that the robustness and positivity preservation of theHLLC approach is essential for obtaining reliable simu-
lation results when multiple fluids with disparate materialproperties are involved as it the case in the computations
presented in the Sections 6.2 and 6.3.

2.3 Numerical treatment of thin-walled structures

Geometrically complex moving boundaries are incorporatedinto the finite volume scheme by using some of the
cells as ghost cells for enforcing immersed moving wall boundary conditions, cf. Arienti et al. (2003) and Fedkiw
et al. (1999). The boundary geometry is mapped onto the Cartesian mesh by employing a scalar level set function
φ that stores the distance to the boundary surface and allows the efficient evaluation of the boundary outer normal
in every mesh point asn = −∇φ/|∇φ|. Since, throughout this paper, we employ only thin-shell and beam solid
mechanics solvers that discretize the structure with a topologically possibly open lower dimensional manifold
surface mesh, we useunsigneddistance as level set information and employ those fluid cells as exterior ghost cells
for which the cellmidpointsatisfiesφ < h/2.2 The latter condition is a straightforward, unambiguous solution

p
+

p
-

Figure 2: Ghost cells (shaded gray)
around shell elements (dark seg-
ments) and construction of mirrored
values.

to achieve the mandatory thickening of the surface mesh by the element
thicknessh. The contour lineφ = h/2 effectively represents the embedded
boundary for the fluid solver (depicted as dotted line aroundshell elements
in Fig. 2). The hydrodynamic load on each thin element is thenevaluated as
the difference between the approximated pressure values atφ = h/2 in the
positive and negative direction of each element’s normal, i.e.pF := p+−p−.

For the governing equations (1), the boundary condition at arigid wall mov-
ing with velocityv is u · n = v · n. Enforcing the latter with ghost cells, in
which the discrete values are located at the cell centers, requires the mirror-
ing of the valuesρ, u, p, 1/(γ − 1), andγp∞/(γ − 1) across the embedded
boundary. The normal velocity in the ghost cells is set to(2v · n − u · n)n,
while the mirrored tangential velocity remains unmodified.Mirrored val-
ues are constructed by calculating spatially interpolatedvalues in the point
x̃ = x + 2φn from neighboring interior cells. We employ a dimension-wise

1HLLC:Harten-Lax-van Leer Riemann solver with restored Contact surface
2For topologically closed boundary surfaces it is also possible to use signed distance instead, cf. (Deiterding, 2006) and (Cirak and

Radovitzky, 2005).
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linear interpolation for this operation, but it has to be emphasized that directly near the boundary the number of
interpolants needs to be decreased to ensure the monotonicity of the numerical solution. This property is essential
in simulating hyperbolic problems with discontinuities. Figure 2 also highlights the necessary reduction of the in-
terpolation stencil for some exemplary cases. The interpolation locations are indicated by the origins of the arrows
normal to the contour line that defines the embedded boundary. After the application of the numerical scheme,
cells that have been used to impose internal boundary conditions are set to the entire state vector of the nearest cell
in the fluid interior. This operation ensures proper values in case such a cell becomes a regular interior cell in the
next step due to boundary movement. The consideration ofv in the ghost cells also guarantees that the embedded
boundary propagates at most one cell in every time step.

Note that the described technique does not require a modification of the numerical stencil itself and is therefore
generically applicable, but causes a slight diffusion of the boundary location throughout the method and results in
an overall non-conservative scheme. The boundary undergoes a staircase approximation that potentially can give
rise to considerable errors in the computed solution. However, by refining the embedded boundary, typically up
to the highest available resolution, with the dynamic mesh adaptation method described in next subsection, we
alleviate these problems effectively. A refinement criterion based onφ ≡ 0 has been implemented for this purpose.

2.4 Structured adaptive mesh refinement

In order to supply a fine local temporal and spatial resolution efficiently, we use the block-structured adaptive mesh
refinement (SAMR) method by Berger and Colella (1988). Characteristic for the SAMR method is that a specific
finite volume method is technically not implemented in a cell-based fashion, but rather in a routine operating on
equidistant subgrids. The subgrids become computationally decoupled during one update cycle through the use
of ghost or halo cells. Starting from the base mesh on level 0,the time step size and all spatial mesh widths on
level l > 0 arerl-times finer than on levell− 1 and a time-explicit finite volume scheme will (in principle)remain
stable on all levels of the recursively nested refinement hierarchy. Ghost cell values at coarse-fine interfaces are
constructed by interpolating coarse level data, which mandates a recursive order of update (cf. Sec. 5.1). SAMR in
the VTF is provided generically by the AMROC (Adaptive Mesh Refinement in Object-oriented C++) framework
(Deiterding, 2002) that can be used on all parallel systems that provide the MPI library.

3 Lagrangian thin-shell solver

The Kirchhoff-Love thin-shell model applied here for three-dimensional thin-shell simulation has been discretized
with smooth subdivision finite elements, as previously described by Cirak and Ortiz (2001) and Cirak et al. (2000).
Notably, the underlying kinematic assumptions allow for finite strains, displacements and rotations. The subdivi-
sion shell elements have also been extended to the range of applications that involve fracture and fragmentation, cf.
Cirak et al. (2005). Thereby, fracture initiation and propagation is considered as a progressive failure phenomenon
in which the separation of the crack flanks is modeled with a cohesive law. In the present implementation, cohe-
sive interface elements are inserted at all inter-element edges and constrain the opening of the crack flanks to the
deformation of the shell mid-surface and its normal.

3.1 Governing equations in weak form

To kinematically describe a possibly fractured thin-shellas sketched in Fig. 3(a), we first consider the shell in its
undeformed configurationV . The position vectorϕ of a material point on the undeformed shellϕ of a material
point on the undeformed shell body is assumed to be

ϕ = x + θ3n (5)

with the uniform thicknessh and−h/2 ≤ θ3 ≤ h/2. The position vector of the shell mid-surface is denoted
by x and its out-of-surface unit normal byn. In other words, the shell mid-surface represents a two-dimensional
manifold inIR3. The deformation mappingϕ maps the shell body into the deformed configurationV

ϕ = x + θ3λn (6)

wherex andn are the deformed mid-surface and its normal. The thickness stretch parameterλ is the ratio of the
deformed shell thicknessh to the reference thicknessh. In the presence of a crack, the deformation is discontinuous
across the crack and has a jump, i.e.

[[ϕ]] = ϕ+ − ϕ− = [[x]] + θ3[[n]] , (7)
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Figure 3: (a) Fractured shell body: opposite crack flanks andcorresponding normals. (b) A cohesive edge and its
two adjacent elements.

where the superscripts+ and− refer to the opposing crack flanks. Further, the first term describes the discontinuity
of the deformation of the shell mid-surface, and the second term the discontinuity in the shell out-of-surface normal.
The discontinuities in the deformations can also be interpreted as the opening displacement of the crack. Further,
note that the Kirchhoff-Love constraint is satisfied, i.e.x · n = 0, on both sides of the crack.

A standard semi-inverse approach is followed for obtainingthe shell equilibrium equations in weak form. To
this end, the assumed reduced kinematic equations for the shell body (Equations (5) and (7)) are introduced into
the conventional virtual work expression for the three-dimensional body. As previously mentioned, we consider
fracture as a gradual separation phenomenon, resisted by cohesive tractions. Consequently, the internal virtual
work expression contains the virtual work of the cohesive interface (δΠC,int) in addition to the virtual work of the
bulk material (δΠS,int)

δΠS,int + δΠC,int − δΠext = 0 (8)

with the external virtual workδΠext and

δΠS,int =

∫

Ω

∫ h/2

−h/2

P : δF µdθ3dΩ , δΠC,int =

∫

ΓC

∫ h/2

−h/2

T · [[ϕ]]µdθ3dΓC ,

whereP is the first Piola-Kirchhoff stress tensor,T the related traction vector at the cohesive surface, andF the
deformation gradient. The virtual work expression for the bulk material is integrated over the undeformed shell
mid-surfaceΩ and for the cohesive interface over the crack pathΓC . The scalar factorµ accounts for the curvature
of the shell in the volume computation, cf. Cirak and Ortiz (2001).

3.2 Subdivision thin-shell elements

Next, we briefly outline the discretization of the governingequation (8) firstly for the non-fractured case. A detailed
presentation of the used subdivision finite element discretization technique can be found in (Cirak et al., 2000) and
(Cirak and Ortiz, 2001). In this approach, the reference (x) and deformed (x) shell surfaces are approximated using
smooth subdivision surfaces belonging to the Sobolev spaceH2 with square-integrable curvatures. The subdivision
interpolation within one element is accomplished with shape functions, which have support on the element as well
as on the one-ring of neighboring elements. The overlappinglocal subdivision interpolants, each defined over one
patch, together lead to a global interpolant with square-integrable curvatures. Importantly, smoothness is achieved
without introducing nodal rotations as degrees of freedom.The absence of nodal rotations is particularly appealing
in the presence of finite rotations.

In the presence of fracture, the smoothness and/or continuity of the interpolation has to be relaxed and the subdi-
vision interpolant needs to be modified, cf. Cirak et al. (2005). The topological changes necessary to the non-local
subdivision functions and the underlying control mesh in order to describe the dynamic propagation of a single
crack are complicated. Therefore, we chose to pre-fracturethe element patches, such that each patch possesses
its own nodes and acts independently for the purpose of interpolation, see Fig. 3(b). Prior to crack nucleation,
the coupling of the elements is enforced by applying stiff elastic cohesive interfaces at all edges. Once fracture
nucleates along an element edge, the element patches on bothsides of the cracked edge interact through cohesive
tractions. The cohesive tractions are self-balanced internal forces derived from a cohesive fracture model.
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3.3 Constitutive models for the shell

An irreversible cohesive constitutive model as proposed byOrtiz and Pandolfi (1999) is used for modeling the
cracks. Thereby, the opening displacement[[ϕ]] plays the role of a deformation measure while the tractionT is the
conjugate stress measure. Further, a scalar effective opening displacement is defined by

δ =
√

β2|δt|2 + |δn|2 ,

whereδt andδn are the tangential and normal displacement components of[[ϕ]] with respect to the crack surface.
The parameterβ assigns different weights to the tangential and normal opening displacements. The cohesive
tractionsT are given by

T =
t

δ
(β2δt + δn) .

0

0

σ
C

t

δ
C

δ

Figure 4: Irreversible linear cohesive law.
Note that the initial stiff elastic response
enforces the displacement continuity prior
to crack initiation atσc. The dashed line
represents the loading-unloading rule.

The scalar effective tractiont is computed from a cohesive law as
shown in Fig. 4. In addition to the parameterβ, the model param-
eters are the maximal tensile stressσc and the critical opening dis-
placementδc. The following relationship between the cohesive law
and the critical fracture energy rateGc exists:

Gc =

∫ ∞

0

t dδ

which can be used for determiningδc. For further details see Ortiz
and Pandolfi (1999).

The inelastic behavior of the bulk material, i.e. the relation between
P andF, is described with a conventionalJ2 viscoplasticity model
with isotropic power-law hardening as described by Cuitinoand Ortiz
(1992). The power-law hardening for the flow stressg has the form

g(ǫp) = σy

(

1 +
ǫp

ǫp
0

)1/n

,

whereσy is the initial yield stress,ǫp andǫp
0 are the total and the reference plastic strains, respectively, and1/n is

the hardening exponent. The rate-dependent behavior is described in terms of the effective von Mises stressσeff

with a power viscosity law and constant rate sensitivity

σeff = g(ǫp)

(

1 +
ǫ̇p

ǫ̇p
0

)1/m

,

whereǫ̇p
0 is the reference plastic strain rate and1/m the strain rate sensitivity exponent.

The thin-shell typical plane stress condition is enforced with a local Newton-Raphson iteration at each quadrature
point, cf. deBorst (1991). Thereby, the thickness stretch parameterλ (Eq. 6) is the unknown variable in the
iteration.

4 Efficient level set evaluation

In Section 2, we have sketched the concept of employing a distance function to represent a complex embedded
boundary on a Cartesian mesh. While distance functions are easily prescribed for single elementary geometric
objects, their evaluation can be cumbersome for complex shapes. In coupled Eulerian-Lagrangian simulations, this
complex shape is defined by the deforming shell surface mesh.

One can efficiently compute the distance on a grid by solving the eikonal equation with the method of charac-
teristics and utilizing polyhedron scan conversion, cf. Mauch (2003). For a given grid point, the relevant closest
point on the triangular mesh lies on one of the primitives (faces, edges and vertices) that comprise the surface. The
characteristics emanating from each of these primitives form polyhedral shapes. Such acharacteristic polyhedron
contains all of the points which are possibly closest to its corresponding face, edge or vertex. The closest points to
a triangle face must lie within a triangular prism defined by the face and its normal; the closest points to an edge
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Figure 5: The characteristic polyhedra for faces and
edges of an icosahedron.

Figure 6: Slicing of a polyhedron to form two-
dimensional polygons (right) and scan conversion of an
exemplary case (left).

lie in a cylindrical wedge defined by the line segment and the normals to the two incident faces (see Fig. 5 for
face (a) and edge (b) polyhedra for a particular example). Analogously, polygonal pyramids emanating from the
vertices are also possible (not shown). We then determine the grid points that lie inside a characteristic polyhedron
with polyhedron scan conversion. The polyhedron is first sliced along each sheet of the grid lattice to produce
polygons, cf. Fig. 6. Simple geometric formulas are finally used to calculate the distance once a polyhedron has
been assigned uniquely to each grid point.

By utilizing the outlined techniques, and evaluating the distance exactly only within a small distance around the
surface, a highly efficient algorithm can be formulated thathas linear computational complexity both in the number
of Cartesian mesh points and the surface triangles, cf. Mauch (2003) and Deiterding et al. (2006c).

5 Fluid-structure coupling

The explicit fluid and solid solvers are weakly coupled by successively applying appropriate boundary conditions
in a time-operator splitting technique. In the case of inviscid flows, the compatibility conditions are the continuity
of the velocity component normal to the embedded boundaryun in solid (S) and fluid (F), i.e.uS

n = uF
n , and the

continuity of the normal component of the solid’s Cauchy traction vector,pS = (σn)n with σ = 1/det(F)FP, and
the hydrodynamic pressurepF , i.epS = pF . We use the following update algorithm to implement these coupling
conditions numerically:

updateφ(t)

v+/−
F := uS(t)

updatefluid( ∆t )
pS := pF (t + ∆t)
updatesolid(∆t )
t := t + ∆t

After evaluating the distance functionφ for the currently available shell surface mesh, the embedded wall bound-
ary velocities for the fluid solver are set to the solid velocities in the nearest shell element midplane. The same
velocity v is enforced in the fluid on upper (+) and lower (−) side of each element. After setting embedded rigid
wall boundary conditions and the fluid update, a new hydrodynamic pressure loadpF := p+ − p− on each shell
element (compare Fig. 2) is derived by evaluatingp± with the linear interpolation / extrapolation operation already
sketched in Section 2.3. With these new boundary conditions, the cycle is completed by advancing the solid by
∆t, which in practice is typically done by taking multiple, smaller time steps in the solid solver to effectively
accommodate the more restrictive stability condition in the solid.

5.1 Application of SAMR in the fluid solver

While the implementation of a loosely coupled FSI method is straightforward with conventional solvers with con-
secutive time update, the utilization of the recursive SAMRmethod with hierarchical time step refinement in the
fluid is non-apparent. In the VTF, we treat the fluid-solid interface as a discontinuity that is a-priori refined at least
up to a coupling levellc. The resolution at levellc has to be sufficiently fine to ensure an accurate wave transmission
between fluid and structure, but might not be the highest level of refinement. To incorporate the fluid-structure data
exchange into the recursive SAMR algorithm it has to be ensured that the updated mesh positions and nodal veloci-
ties are receivedbeforea regridding of the coupling levellc is initiated and that the hydrodynamic pressure loadings
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Figure 7: Data exchange between the recursive
fluid solver and the linear thin-shell solver during
one SAMR root level time step.

on the interface are evaluatedafter the highest available re-
finement level has reached the same discrete time as the up-
dated levellc. We visualize the data exchange between solid
and SAMR fluid solver in Fig. 7 for an exemplary SAMR
hierarchy with two additional levels withr1,2 = 2. Figure
7 pictures the recursion in the SAMR method by numbering
the fluid update steps (F) according to the order determined
by the SAMR method. The order of the solid update steps (S)
on the other hand is strictly linear. The red diagonal arrows
correspond to the sending of the interface pressurespF from
fluid to solid at the end of each time step on levellc. The blue
upward arrows visualize the sending of the interface mesh and
its nodal velocitiesuS after each solid update. The modifica-
tion of refinement meshes is indicated in Fig. 7 by the gray
arrows; the initiating base level, that remains fixed throughout
the regridding operation, is indicated by the gray circles.

5.2 Software implementation

The fluid-structure coupling software VTF is a collection ofC++ classes for implementing high-speed FSI prob-
lems on distributed memory machines. At present, only the loose coupling of time-explicit solvers is supported.
The design follows a classical framework approach in which the instantiation of the main objects is usually done
in a short generic main program and customization is achieved through subclass derivation.

In our current implementation, computational fluid and solid dynamics solvers are parallelized separately for dis-
tributed memory machines using independent rigorous domain decomposition methods. In order to facilitate an
efficient communication of the distributed fluid-shell boundary information we have implemented a non-blocking
high-level communication library that determines the necessary point-to-point communication patterns by inter-
secting Cartesian bounding boxes enclosing the local domains. Details on this communication library and also a
detailed algorithmic description of the coupled SAMR method can be found in (Deiterding et al., 2006c).

6 Computational results

In the following sub-sections, we consider three differentconfigurations to demonstrate the versatility of our fluid-
structure coupling approach. While Section 6.1 discusses a verification test of linearly elastic motion due to the
impact of a shock wave in air, the computations in Sections 6.2 and 6.3 simulate viscoplastic deformation and
fracture driven by strong pressure waves in water. In both cases the induced solid motion causes tension in the
liquid that results in cavitation when the pressure falls below the water vapor pressure. Since cavitation inception
limits the maximal tension, and thereby the minimal pressure the liquid can support, we employ an additional
pressure cutoff model (see also Xie et al. (2006)) in these computations. It is implemented by applying the non-
conservative energy correction

E :=
pc + γp∞
ρ(γ − 1)

+
1

2
uT u , for p < pc (9)

after every fluid time step and its purpose is to limit all hydrodynamic pressures to the cutoff valuepc.

6.1 Verification

As a first test for the coupled method, we consider the verification configuration of a thin-walled steel panel
impacted by a planar shock wave in air (γA = 1.4, pA

∞ = 0) proposed by Giordano et al. (2005). The panel has
the thicknessh = 1mm and extends50mm from a mounting with forward-facing step geometry into which it is

r=1.6458 kg/m
=112.61 m/s, =0

=156.18 kPa

3

u u

p
1 2

r=1.2 kg/m
=0, =0

=100 kPa

3

u u

p
1 2

400 mm

80 mm

265 mm

250 mm

130 mm

65 mm

Figure 8: Geometry of the computational setup for the shock-panel testcase.

firmly clamped. Figure 8 de-
picts the computational domain
and initial conditions. Inflow
boundary conditions are applied
on the left side, rigid wall bound-
ary conditions anywhere else.
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(a) (b)

Figure 9: Snapshots att = 0.43ms (a) andt = 1.56ms (b) visualize the evolution of the fluid mesh adaptation
(different levels indicated by gray scales) according to the flow field and the deflection of the thin-shell panel.

.

First, we model the panel as a one-dimensional elastic beam immersed into a two-dimensional fluid domain and
solve the Euler-Bernoulli beam equation

ρsh
∂2w

∂t2
+ EI

∂4w

∂x̄4
= pF (10)

for ρs = 7600 kg/m3, E = 220GPa, andI = h3/12 to calculate the deflectionw(x̄, t) of the beam middle axis
with updated hydrodynamic loadingpF after every time step of the fluid solver. Equation (10) is approximated
with a straightforward time-implicit finite difference approach and the resulting linear system is solved by QR
decomposition. An equidistant mesh of101 points is used to discretize the beam middle axis. The fluid mesh uses
a base grid of320 × 64 cells and allows up to two additional levels of dynamic isotropic refinement (based onφ
and scaled gradients ofρ andp) with refinement factorsr1,2 = 2. Calculating18, 660 coupled time steps atlc = 2
to te = 5.0ms required∼ 12.3 h CPU on a3.4GHz processor.

Second, the panel is modeled as a two-dimensional plate strip of 5mm width (325 triangular elements) and em-
bedded into a three-dimensional fluid base mesh of320 × 64 × 2 cells. The structural motion is computed with
the previously described three-dimensional thin-shell finite element solver. Linear elastic material behavior with
the parameters given above and the Poisson ratioν = 0.3 is assumed. Figure 9 shows the dynamic bending of the
plate strip and the evolving fluid mesh adaptation with two additional levels (depicted by gray scales) as the initial
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Figure 10: Tip motion for both FSI computations
and reference computation with constant loading.

shock is partially reflected (a) and increased vortex shedding
occurs at the panel tip (b). The three-dimensional computation
reachedte = 5.0ms after18, 000 coupled time steps, where 5
solid solver sub-steps were used, and required∼ 322 h CPU.

A comparison of the predicted panel tip displacement versus
time for both FSI simulations is given in Fig. 10. Slight diver-
gences at later times are expectable considering the apparent
differences in beam and shell theory. However, both FSI con-
figurations show excellent agreement at earlier times and are
in proximity to a-priori predictions based on Eq. (10) alone
(Beam) for the constant instantaneous loadingpF ≡ 100 kPa
that has been found to be a rough approximation for the pres-
sure loading for approximatelyt < 2.5ms, cf. Giordano et al.
(2005).

6.2 Underwater explosion

As a first test for shock waves in water, we simulate a fluid-structure experiment by Ashani and Ghamsari (2008).
A small charge (mC4 = 20 g andmC4 = 30 g) of the explosive C4 (1.34× TNT) is detonated in a water-filled
basin at the standoff distancesd = 25 cm or d = 30 cm above a circular air-backed aluminum plate (exposed
radius85mm) of thicknessh = 3mm. We model the basin with a fluid domain of2m × 1.6m × 2m, where the
origin is placed at the domain center. Outflow is assumed at all domain boundaries. In analogy to the experiment,
air-backed conditions are represented by inserting a rigidcylinder of radius150mm from x2 = −0.8m to x2 = 0
into the domain. The cylinder is sealed by the test plate of radius150mm, discretized with 8148 triangles, which
is treated as rigid forr > 85mm. The material parameters for viscoplastic material behavior of aluminum, that
were used in these simulations, are detailed in Table 1. It isassumed that the aluminum is strain-rate insensitive
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(a)

(b) (c)
Figure 11: (a) Isolines ofp on domains of refinement lev-
els (indicated by color) att = 0.31ms. (b), (c) The
plane shows a color plot ofp and isolines ofαA, the plate
displays the normal vertex velocity att = 0.14ms and
0.31ms.

and strain-softening effects have not been considered. Thecylinder is filled with air (γA = 1.4, pA
∞ = 0) at density

ρA = 1.29 kg/m3, the basin with water (γW = 7.415, pW
∞ = 296.2MPa) at ρW = 1027 kg/m3, which are both

initially at rest and assumed to be at atmospheric pressurep0 = 100 kPA (the static pressure increase due the
water depth can safely be neglected). The modification by Eq.(9) with pc = −1MPa is employed in the fluid
solver to consider cavitation inception. The shock from theexplosion is modeled as a spherical energy deposition
(mC4 · 6.06MJ/kg) uniformly distributed over a sphere of radius5mm of air at temperature1500oC located at
(0, d, 0).

The fluid domain is discretized with an SAMR base mesh of50 × 40 × 50 cells. Four additional levels with
refinement factorsr1,2,3 = 2, r4 = 4 are employed. The highest level refinement is static and restricted to the
explosion center. Fluid mesh adaptation on all other levelsis dynamic and based onφ and the scaled gradient of
p. However, refinement at levels 2 and 3 is restricted to the immediate vicinity of the structure and the shock as it
impinges onto it. Figure 11(a) depicts a snapshot of the fluidmesh in a plane through the center of the domain for
the casemC4 = 20 g, d = 25 cm. The FSI simulation useslc = 3 with 2 solid solver sub-steps, and 1296 coupled
time steps were computed to reach the final timete = 1ms.

Table 1: Material properties for aluminum.

Mass density ρs = 2719 kg/m3

Young’s modulus E = 69GPa
Poisson’s ratio ν = 0.33
Yield stress σy = 217.6MPa
Reference plastic strain ǫp

0 = 0.025
Hardening exponent 1/n = 0.6
Rate sensitivity exponent 1/m = 0
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Figure 12: Left: center displacement versus time.

The impact of the spherical shock onto the plate and its partial reflection are visualized in graphics (b) and (c) of
Fig. 11, respectively. The induced motion of the exposed part of the test specimen is clearly visible. Figure 12
displays the plate center motion versus time for both cases considered. Note that during the first∼ 0.2ms after
the shock impact the deformation occurs with constant velocity since the water near the plates cavitates and does
not transmit significant forces onto the plate. The maximal computed deflection for the casem = 20 g, d = 25 cm
is 25.88mm, for the casemC4 = 30 g, d = 30 cm it is 27.31mm. Those values compare reasonably well to the
experimental measurements of28.83mm and30.09mm by Ashani and Ghamsari (2008), where the differences
are primarily due to our rather simplistic modeling of the initial shock wave created by the explosion. Both
computations were run on 12 nodes of a parallel cluster with Intel-3.4GHz-Xeon dual processors (10 nodes fluid,
2 nodes solid dynamics solver) and required∼ 130 h CPU each (∼ 5.4 h wall time).

6.3 Plate deformation from water hammer

The final configuration considered is an experimental setup developed by Deshpande et al. (2006) that reproduces
loading conditions of large-scale underwater explosions in the laboratory. By firing a steel projectile onto a piston
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Figure 13: Loading conditions forpmax = 34MPa. (a) Comparison of the traveling wave approximation Eq. (12)
(dotted) with computed pressure traces (solid) atx1 = 1.1m (left) andx1 = 0.2m (right). (b) Computed piston
acceleration for the entire simulation time.

inserted into the end of a water shock tube, a strong pressurewave is created that propagates through the water
column and impinges onto a circular copper plate sealing theother end. The shock tube has a length of1.3m
and a radius of32mm, which is modeled with an additional signed distance level set function. The tube is filled
with water (γW = 7.415, pW

∞ = 296.2MPa, pc = 0) of densityρw = 1000 kg/m3 at atmospheric pressure
p0 = 101.3 kPa. The copper plate has a thickness of0.25mm and a radius ofr = 56mm, but is unconstrained
only for r < 32mm. Again, the plate is air-backed (ρA = 1.0 kg/m3, γA = 1.4, pA

∞ = 0) at pressurep0. The
center of the plate is initially located at the coordinate origin and the shock tube middle axis is aligned with the
x1-axis.

Verification of loading conditions

The motion of the piston creates a quasi one-dimensional pressure spike with exponential decay rate that propagates
through the water column. We incorporate the piston movement into the computational setup by employing a
second signed distance level set function that correspondsto the piston boundary in contact with the fluid. The
level set is initially positioned atx1 = 1.3m and assumed to move with constant velocityb0. During a simulation,
we integrate the law of motion for the piston

m̄ḃ = −(p̄ − p0) (11)

with the forward Euler method and update level set position and velocityb in direction of the tube middle axis (to
be used as wall normal velocityvn for this level set, cf. Sec. 2.3) in every time step. As the piston is constrained
in all other directions, it suffices to consider the hydrodynamic pressure averaged across the piston boundaryp̄ and
to use the averaged piston mass per unit aream̄. In all subsequent computations the valuem̄ = 74.1 kg/m2 was
used.

By assuming the wave to propagate with the constant speed of sound in watercw = 1482m/s, a traveling wave
solution of the form

p(x1, t) =







pmax exp

(

−
t − x1/cw

m̄/(ρwcw)

)

, t ≥
x1

cw

0 , otherwise
(12)

can be derived for the pressure evolution at a fixed spatial location that is found to be in reasonable agreement with
experimental measurements close to the piston boundary (Deshpande et al., 2006). The maximum of the traveling
wave is set topmax = ρwcwb0, which permits the computation of the initial piston velocity b0 for given pmax.
Plot (a) of Fig. 13 compares Eq. (12) evaluated at the locationsx1 = 1.1m andx1 = 0.2m with pressure traces
derived from a one-dimensional unigrid finite volume simulation with 2700 cells on the domain[0m, 1.35m] for
pmax = 34MPa. The agreement at early times is very good, verifying the correctness of our computational setup.
At later times, the simulation necessarily differs from theunaltered (non-dispersive) traveling wave, because our
computational model considers the density rise in the compression wave and the resulting change of the speed of
sound. Plot (b) of Fig. 13 displays the computed piston acceleration, where the time is shifted by−0.82ms setting
the start of the FSI simulations tot = 0.
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Table 2: Material and cohesive model parameters
for annealed copper.

Mass density ρs = 8920 kg/m3

Young’s modulus E = 130GPa
Poisson’s ratio ν = 0.31
Yield stress σy = 38.5MPa
Reference plastic strain ǫp

0 = 0.0091
Hardening exponent 1/n = 0.627
Reference plastic strain rate ǫ̇p

0 = 1000
Rate sensitivity exponent 1/m = 1.0
Maximal tensile stress σc = 525MPa,
Critical opening displacement δc ≈ 0.3mm
Tangential weight parameter β2 = 0.8
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Figure 14: Fluid pressure traces along tube middle axis at
x1 = 0 andx1 = 0.2m for pmax = 34MPa.

Fluid-structure interaction simulations

While the thin copper plate exhibits just viscoplastic deformation forpmax = 34MPa, fracture occurs for larger
values ofpmax. All computations were therefore run with activated cohesive interface element capability of the
thin-shell solver. The parameters for theJ2 plasticity and the cohesive interface model used for annealed copper
are given in Table 2. The mesh for the plate considers the mounting holes for purely optical reasons and consists
of 8896 triangles. In order to ensure the correct boundary conditions throughout the whole simulation, the three-
dimensional fluid domain covers with[−0.146m, 1.35m] × [−0.04m, 0.04m] × [−0.04m, 0.04m] the entire
shock tube.

To concentrate the computational resources for the fluid in the region of interest, the computation uses an SAMR
base mesh of374 × 20 × 20 cells and two additional levels with refinement factorsr1,2 = 2. The fluid mesh
is always fully refined along the plate boundary and at the front of the incoming pressure wave. The shock tube
boundary is statically refined at level 2 forx1 < 0.206m and at level 1 forx1 < 0.43m. The coupling level
for the fluid-structure data exchange is set tolc = 2. The simulations were run on 12 nodes of a parallel cluster
consisting of Intel-3.4GHz-Xeon dual processors CPUs, where 6 nodes were employed for the fluid and the solid
solver, respectively. Using 2 solid solver sub-steps the casepmax = 34MPa took 4120 coupled time steps to reach
te = 1.0ms, which required∼ 48 h wallclock time (∼ 1150 h CPU).

Results from the non-rupture case are displayed in the Figs.14 and 15. Figure 14 shows pressure traces along
the tube middle axis at the locationsx1 = 0.2m andx1 = 0. The impact of the pressure wave onto the plate at
t ≈ 0.03ms and the water cavitation immediately after can be clearly inferred. An expansion wave due to the
resulting structural motion travels upstream through the water column inducing a small piston acceleration around
t = 0.9ms, cf. Fig. 13(b).
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Figure 15: (a) Plate center displacement versus time and (b)deflection history of the plate midplane during the
coupled simulation.

Similarly to the previous section, the plate deformation isseparated into two phases. As can be seen in Fig. 15(a)
cavitation leads to a constant displacement velocity during the first∼ 0.15ms. The deflection of the plate is
characterized by the appearance of a stationary plastic hinge at the boundary and a second instationary plastic
hinge traveling towards the plate center, cf Fig. 15(b). Shortly after the fluid expansion wave leaves the plate
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boundary, a hydrodynamic pressure of∼ 4MPa builds up again directly at the plate until it declines finally
from t ≈ 0.76ms on, cf. Fig. 14. During this phase, the plate deformation is nonlinear and the plate deflection
is convex. The displacement reaches its maximum att ≈ 0.76ms and remains almost unaltered until the end
of the simulation atte = 1.0ms. A visual comparison of the finally deformed solid mesh in theFSI simula-
tion with a photograph of a target plate by Deshpande et al. isgiven in Fig. 16. The agreement is apparently

Figure 16: Comparison of simulated specimen with
the experiment forpmax = 34MPa.

very good. The obtained maximum deflection of15.6mm
is also in good agreement with the analytic estimate of
16.1mm by Qui et al. (2004) (Equation 21a in (Qui et al.,
2004)). Note that Qui et al.’s estimate is for an ideally
plastic material. In contrast, the presented computations
include a strain-hardening effect, which has a reducing ef-
fect on the maximum displacements. Further, Qui et al.
base their analysis on the traveling wave (12) that over-
predicts the pressure maximum exposed to the plate, cf.
Fig. 13(a).

We present two exemplary results for plate rupture. Whenpmax is moderately increased, the plate first bulges
severely but then undergoes localized cracking at the platecenter. This failure mode is shown in Fig. 17(a) for
pmax = 64MPa that displays the situation att = 0.85ms simulation time when the fracture pattern is clearly
established and the water splashes into the air behind the plate. Note also the similarity in longitudinal cracking
behavior in simulation and experiment. When the loading is increased further, rupture occurs primarily at the
supports. We display only one case for the high loadingpmax = 173MPa that clearly exhibits tearing at the
support from the initial impulse, cf. Fig. 17(b). Finally, it is worth mentioning that the reliable simulation of
cracking phenomena with two coupled explicit solvers mandatorily requires a careful computational analysis of
the stability condition in each sub-solver after every timestep, which in our case also considers the temporal
recursion in the SAMR approach. See Deiterding et al. (2006c) for details.

(a) (b)

Figure 17: Plate fracture forpmax = 64MPa at t = 0.85ms (a) andpmax = 173MPa at t = 0.177ms (b),
when the fracture patterns are fully established. The colormidplane showing the volume fractionαW in the fluid
visualizes the water splash.

7 Conclusions

We have presented all computational components of a level-set-based fluid-structure coupling approach for the
time-accurate simulation of thin flexible shells responding dynamically to strong pressure waves in water. The
approach has been demonstrated to handle arbitrarily evolving thin-shells surrounded by fluid without problems.
Three different fluid-structure interaction configurations of increasing complexity have been given to verify and
validate the approach. The obtained results are found to be in good to excellent agreement with experimental
observations, depending on the level of effort spent to reproduce the hydrodynamic loading conditions and to care-
fully adjust material model parameters that cannot be deduced unambiguously from tabulated data, namely for
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viscoplasticity and fracture. The level of detail given should allow the easy reproducibility of our results thereby
proving good verification tests for explicit FSI software. The integrated implementation of all presented compo-
nents, including further documented explicit FSI testcases, is freely available from http://www.cacr.caltech.edu/asc.
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Wind Induced Ovalling Oscillations of Thin-Walled Cylindrical
Structures

D. Dooms, G. De Roeck, G. Degrande

Circular cylindrical shells, like silos, are perceptible to wind induced ovalling oscillations, an aeroelastic phe-
nomenon, where the cross section deforms as a shell without bending deformation of the longitudinal axis of
symmetry. During a storm in October 2002, ovalling was observed on several empty silos of a group of forty silos
in the port of Antwerp. A coupled numerical analysis of the wind flow around one silo aims to predict the ovalling
onset flow velocity.

A three-dimensional finite element model of the silo is sequentially coupled to the three-dimensional wind flow
around a single cylinder with a conventional serial staggered algorithm and an iteratively staggered algorithm. In
the iteratively staggered algorithm, the transferred displacements are not relaxed. The accuracy of the conventional
serial staggered algorithm is lower than the accuracy of theiteratively staggered algorithm. The response of the
silo is dominated by the eigenmodes with circumferential wavenumbern = 3 and4.

In order to reduce the computational cost of the fluid-structure interaction computations, the model of the structure
is reduced to two dimensions using the finite strip method. This finite strip model of the cylinder is coupled to a two
dimensional model of the flow. The coupling procedure is validated by means of experimental results of wind tunnel
tests reported in the literature (Laneville and Mazouzi, 1995). As ovalling occurs when the negative aerodynamic
damping cancels the structural modal damping, the structural damping is reduced step-by-step in order to find the
damping ratio at which ovalling occurs.

1 Introduction

Circular cylindrical shells are widely used in civil engineering structures as silos, chimneys and water towers. The
use of high tensile strength aluminium has resulted in slender structures that are more perceptible to wind induced
ovalling oscillations, an aeroelastic phenomenon, where the cross section deforms as a shell without bending
deformation of the longitudinal axis of symmetry. Resonance occurs when the negative aerodynamic damping
cancels the structural modal damping. During a storm in October 2002, ovalling was observed on several empty
silos of a group consisting of forty silos in the port of Antwerp (figure 1). The forty silos are placed in five rows of
eight silos with gaps of 30 cm between two neighbouring silos. Similar cases indicate that storm damage is mainly
located on silos on the corners of the group.

A fluid-structure interaction analysis aims to predict the ovalling onset flow velocity and to investigate in a later
stage the influence of the distance between the silos. The configuration of this group strongly modifies the pressure
distribution around the silos (Dooms et al., 2006a).

The structural mode shapes and eigenfrequencies of a singlesilo are computed with a three-dimensional fi-
nite element model. The transient three-dimensional incompressible turbulent flow around a single cylinder at
Re = 12.4 × 106 is computed using the Shear Stress Transport turbulence model (Menter, 1994). The three-
dimensional finite element model of the silo is sequentiallycoupled to the three-dimensional wind flow around
a single cylinder with two different algorithms. In order toreduce the computational cost of the fluid-structure
interaction computations, the model of the structure is reduced to two dimensions using the finite strip method.
This finite strip model of the cylinder is coupled to a two dimensional flow. The coupling procedure is validated
by means of experimental results of wind tunnel tests reported in the literature (Laneville and Mazouzi, 1995).
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Figure 1: Photograph of the silo group.

2 Silo structure

The silos are circular cylindrical shell structures with a diameter ofD = 5.5m and a height of25 m. One cylinder
consists of 10 aluminium sheets with a height of2.5 m and a thickness that decreases with the height from10.5 mm
at the bottom to6 mm at the top. The length-to-radius ratioL/R = 9.1 and the radius-to-thickness ratio ranges
from R/t = 262 at the bottom toR/t = 458 at the top. At the top and the bottom, a cone is welded to the cylinder
at an angle of15◦ and60◦ with the horizontal plane, respectively. The bottom of the cylinder is supported by an
octagonal beam and is bolted to the beam at 4 points around thecircumference. The silos are made of aluminium
with a Young’s modulusE = 67600 × 106 N/m2, a Poisson’s ratioν = 0.35 and a densityρ = 2700 kg/m3.

A finite element model of the silo has been validated by means of modal parameters derived from in situ mea-
surements of radial accelerations under ambient loading (Dooms et al., 2006c). For the eight central aluminium
sheets (with a height of2.5m each), sixty 8-node quadrilateral shell elements are used around the circumferential
direction and sixteen elements are used along the vertical direction. In the zones near the lower and upper edges
of the silo and on both cones, smaller finite elements are usedas to take into account the local bending waves
(Billington, 1965). The total number of shell elements is equal to 18988. The eigenfrequencies and mode shapes
of a circular cylindrical shell structure are very sensitive to the boundary conditions imposed on the axial displace-
mentsuz, while the influence of the boundary condition for the rotation ϕθ is almost negligible (Forsberg, 1964).
At the bottom of the cylinder all degrees of freedom are constrained in 4 points around the circumference. Figure
2 shows a top and a three-dimensional view of the five mode shapes with the lowest eigenfrequencies. Each mode
shape is referred to by a couple(m,n), wherem denotes the half wave number in the axial direction (m/2 is the
number of axial waves) andn is the number of circumferential waves. Two similar mode shapes with possibly
slightly different eigenfrequencies are associated with every couple(m,n). The in situ measurements indicate that
the eigenmodes with(1, 3) or (1, 4) have the highest contribution to the response of the silos under wind loading
(Dooms et al., 2003).

In order to limit the computational cost for the fluid-structure interaction computations, a coarser finite element
model without the local refinements near the boundaries is used. In this model, the cylindrical part of the silo
is meshed with sixty shell elements in the circumferential direction and twenty in the axial direction. The total
number of shell elements in this model is equal to 1756. Table1 compares the eigenfrequencies of the coarser
model with eigenfrequencies of the experimentally validated model. For the lowest eigenfrequencies around4Hz,
the differences between eigenfrequencies computed with the two models are smaller than2%.

In order to advance the finite element solution of the structure in time, the Newmark method withα = 0.25
and δ = 0.5 is used. The time step∆t is equal to0.005 s, which is small enough to compute accurately the
contributions of eigenmodes up to10Hz. For the structure Rayleigh damping is added. The damping matrix C is
constructed as a linear combination of the mass and the stiffness matrix:

C = αM + βK (1)

The modal damping ratiosξk at two different frequenciesωk determine the multipliersα andβ for respectively
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n = 3 n = 4 n = 5 n = 6 n = 2

3.93 Hz 3.93 Hz 5.25 Hz 7.37 Hz 7.75 Hz

Figure 2: Top and three-dimensional view of the five mode shapes of the silo with the lowest eigenfrequencies.

(m,n) Coarser mesh Validated mesh
(1,2) 7.90 8.80 7.75 8.48
(1,3) 4.00 4.00 3.93 3.93
(1,4) 3.93 4.05 3.93 4.04
(1,5) 5.37 5.37 5.25 5.25
(1,6) 7.37 7.37 7.37 7.37
(1,7) 9.72 9.72 9.72 9.72
(2,4) 8.71 8.97 8.71 8.94
(2,5) 5.93 5.93 5.56 5.56
(2,5) 8.08 8.08 8.01 8.01
(2,6) 9.29 9.49 9.29 9.39

Table 1: Eigenfrequencies (in Hz) computed with the coarserand the validated three-dimensional finite element
model.

the mass and the stiffness matrix by means of the following system of equations:

2ωkξk = α + βω2
k (2)

A modal damping ratioξ1 = 0.25% atf1 = 3.93Hz andξ2 = 0.50% atf2 = 20Hz corresponds toα = 0.078 s−1

andβ = 0.75 · 10−4 s. The modal damping ratios are estimated from the measured modal damping ratios for all
eigenmodes between3.93Hz and20Hz (Dooms et al., 2003).

3 Turbulent air flow around a single silo

First, the wind flow around a silo is simplified to a two-dimensional unsteady flow around a cylinder. In all
computations air with a densityρ = 1.25 kg/m3 and a dynamic viscosityµ = 1.76×10−5 Pa s is used. The mean
wind velocity at a height ofz = 30m for terrain category II (BIN, 1995) is equal tovm = 31.84m/s. At the inlet,
a turbulence intensityI =

√

2k/3/vm = 1.00% is imposed.

As the Reynolds numberRe = Dvm/ν = 12.4 × 106 is larger thanRe = 3.5 − 6 × 106, the regime of the flow
around the cylinder is post-critical (Zdravkovich, 1997).The wake and the shear layers are fully turbulent and the
boundary layers become fully turbulent prior to separation. In the boundary layers, the transition from laminar
to turbulent flow takes place between the stagnation and the separation point. In the post-critical regime, regular
vortex shedding reappears, while it was absent at lower Reynolds numbers.
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The pressure coefficient is a dimensionless expression for the pressure at the cylinder’s surface:

Cp =
p − pf

ρv2
f

2

(3)

wherepf andvf are the free stream pressure and velocity, respectively. Eurocode 1 (BIN, 1995) describes the
pressure coefficient as a function of the angle forRe = 107. At the stagnation point, the pressure coefficient is
equal to1. The minimum value of the pressure coefficientCmin

p equals−1.5 at an angle of75◦. The boundary layer
separates at105◦. After separation, the base pressure coefficientCb

p is constant and equal to−0.8. Zdravkovich
(1997) gives an overview of available experimental data. There is a lack of detailed experimental data at post-
critical Reynolds numbers, while available data show considerable scatter, which may be explained by the high
sensitivity of the flow to perturbations due to surface roughness and free-stream turbulence.

A two-dimensional URANS simulation is performed with the CFX finite volume code (Ansys, 2005a). The High
Resolution spatial discretization is used, which is an automatically determined blend of a first and a second order
accurate scheme. The coupled algorithm solves the momentumand continuity equation as a single system.

The boundaries of the computational domain should be sufficiently far from the region close to the silo where the
accuracy of solution is important. Behr et al. (1995, 1991) suggest a distance of at least8D for the inlet and the
lateral boundaries and a distance of22.5D for the outlet, withD the diameter of the silo. Here, a distance of9D is
adopted for the inlet and the lateral boundaries and30D for the outlet. Results on a larger problem domain, where
the inlet and the lateral boundaries are located at12D and the outlet at40D, are comparable.

Far away from the silo wall, an unstructured mesh, consisting of triangles, is used. Close to the silo wall and
in the wake of the silo, the mesh is structured and consists ofquadrilaterals. The nodes next to the silo wall are
placed in the logarithmic law region, where a logarithmic relation exists between the dimensionless wall distance
y+ = vτy/ν and the dimensionless velocityv+ = v/vτ , wherevτ =

√

τw/ρ is the friction velocity,y the wall
distance andτw the wall shear stress:

v+ =
1

κ
ln y+ + B (4)

The von Karman constantκ is equal to 0.41 andB is equal to 5.2. In the outer layer (y+ > 50), direct effects of
the viscosity on the main flow are negligible. Nevertheless,the region of validity of the logarithmic law can be
extended toy+ > 30. The mesh consists of 53530 elements and 90798 nodes. At time4.68 s the dimensionless
wall distancey+ of the nodes next to the silo wall varies from 0 at the stagnation points to 220 (figure 3). In
practice, so-called wall functions apply the logarithmic law as boundary conditions on the nodes next to the silo
wall.
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Figure 3: Dimensionless distancey+ of the nodes next to the silo wall as a function of the angleθ for a single silo.

The Shear Stress Transport (SST) (Menter, 1994) turbulencemodel combines through a blending function the
robust and accurate formulation of thek-ω model in the near wall region with the free stream independence of
the k-ε model in the outer part of the boundary layer. It is used as it is suited to predict the onset and amount
of separation under adverse pressure gradients and produces of all turbulence models in CFX the best overall
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correspondence with a set of experimental results from the literature (Zdravkovich, 1997) for the flow around a
cylinder (Dooms et al., 2006b).

As in the post-critical regime regular vortex shedding is present, an unsteady RANS computation (Iaccarino et al.,
2003) is performed. The transient solution is integrated bythe three-point backward difference scheme with a time
step∆t = 0.005 s, which corresponds to approximately 100 time steps per vortex shedding period. Within every
time step, 5 iterations are performed to obtain a converged solution. The computed time window corresponds to
ten vortex shedding periods. 937 time steps are computed, which results in a time window of4.68 s. The vortex
shedding frequencyfvs = 2.13Hz is described by the dimensionless Strouhal number:

St =
fvsD

vf
= 0.37 (5)

For flows withRe ≈ 107, experimental values for the Strouhal number (Zdravkovich, 1997) range from 0.27
to 0.32. Eurocode 1 suggests a constant value of0.2, independent of the Reynolds number. If the streamlines
would separate a little bit earlier from the cylinder wall, the Strouhal number would be reduced. Placing the lateral
boundaries further away might decrease the Strouhal numberas well.

Figure 4 shows the time history and the frequency content of the pressure in a point at the silo’s surface. The vortex
shedding frequency and some higher harmonics are clearly visible in the frequency content.

0 1 2 3 4

−350

−300

−250

−200

Time [s]

P
re

ss
ur

e 
[P

a]

(a)
0 5 10 15 20

0

50

100

150

200

250

Frequency [Hz]

P
re

ss
ur

e 
[P

a/
H

z]

(b)

Figure 4: (a) Time history and (b) frequency content of the pressure in a point at the silo’s surface for a single silo.

Figure 5 shows the time average and the standard deviation ofthe pressurep. The stagnation pressure at the
windward side and the suction in the wake are clearly visible. The largest time variations of the pressure occur in
the wake.

(a) (b)

Figure 5: (a) Time average and (b) standard deviation of the pressurep for a single silo.

Figure 6 compares the time-averaged pressure coefficientCp of the transient computation with experimental data
from the literature. The range of the available experimental data for the pressure coefficients at Reynolds numbers
from 0.73 × 107 to 3.65 × 107 is plotted in light grey at the background. The time average of the transient

computation predicts a too low minimum pressure coefficientCp
min

, while the base pressure coefficientCp
b

is
quite high. The maxima and minima of the pressure coefficientduring the transient computation are depicted as
well.
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Figure 6: Comparison of the time average (solid line), minimum (dash-dotted line) and maximum (dotted line) of
the pressure coefficient with experimental data for a singlesilo.

The drag coefficientCd =
∫ 2π

0
Cp cos αdα is, according to Eurocode 1, equal to0.72 for a smooth surface

(k/b = 10−5). Drag coefficients derived from the experimental pressurecoefficients vary from0.45 to 0.73. The
computations predict 0.35, which is an underestimation.

Next, in order to couple the flow to the three-dimensional shell model of the structure, the three-dimensional
wind flow around a single cylinder is modelled with symmetry boundary conditions on top and bottom surfaces.
The velocity profile at the inlet is uniform along the height.The three-dimensional mesh is obtained by copying
the mesh used for the two-dimensional flow around a single silo 12 times in the axial direction. The number
of elements in the axial direction is sufficient to compute the flow around a silo which deforms according to an
eigenmode withm = 1. This number is however too low to generate any variation in the vortex shedding pattern
along the axial direction. The total number of elements is equal to 642360.

In order to obtain an initial solution for the fluid-structure computation, first 1080 time steps are computed just for
the fluid field, which results in a time window of5.4 s. Figure 7 shows the time history and the frequency content
of the pressure betweent = 3.55 s andt = 5.4 s at the cylinder’s surface at mid-height forθ = 112◦, θ = 174◦

andθ = 180◦. The vortex shedding frequency at2.16Hz and a higher harmonic at4.31Hz are clearly visible
in the frequency content. This vortex shedding frequency isslightly higher than the frequency obtained with a
two-dimensional computation (2.13Hz).
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Figure 7: (a) Time history and (b) frequency content of the pressure at the cylinder’s surface at mid-height for
θ = 112◦ ( ), θ = 174◦ ( ) andθ = 180◦( ). The angleθ = 0◦ coincides with the stagnation point.

4 Fluid-structure interaction

In this section the wind induced ovalling oscillations of the silos located in the port of Antwerp, are studied for
one silo using fluid-structure interaction. The shell modelof the structure is coupled with the three-dimensional
incompressible turbulent wind flow around a cylinder (figure8).
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Figure 8: Model for the coupled simulation of the three-dimensional wind flow around a cylinder and the response
of the silo structure.

Between the structure and a cylindrical surface with a diameter equal to twice the silo diameter, the fluid flow is
computed on a deforming mesh. The Navier-Stokes equations for incompressible flow are written in an Arbitrary
Lagrangian Eulerian formulation (Hughes et al., 1981):

∇x · v = 0 (6)

∂v

∂t

∣
∣
∣
∣
χ

+ (c · ∇x)v + ∇xp⋆ = 2ν∇x · ǫ + b (7)

whereχ andx denote the referential domain and the spatial domain respectively. The convective velocityc is
defined as the difference between the material particle velocity v and the grid point velocitŷv. On the outer
boundaries of the fluid domain, the grid point velocityv̂ should remain zero, while on the fluid-structure interface
the grid point velocitŷv should be equal to the velocity of the structure.

The grid point displacementŝu of the fluid mesh are obtained by diffusing the displacementsof the structure
through this domain:

∇ · (k∇û) = 0 (8)

As to preserve the quality of the mesh in refined regions, the diffusivity of a finite volume is equal to the inverse of
its volume.

For the load transfer between the non-matching grids, the traction is first integrated over the surface of the fluid
independently of the structure. The resulting nodal force is transferred to the structure using a point to element
mapping: each node of the fluid mesh is mapped onto one elementof the mesh of the structure. The transferred
force is distributed over the nodes of this element according to the value of the shape functions of the structure.
As the sum of the shape functions is equal to one the total force is conserved. For the displacement transfer, the
consistent interpolation method is used. The consistent interpolation method is based on the same point to element
mapping: each node of the fluid mesh is mapped onto one elementof the mesh of the structure. The value of the
displacement at the projection of the fluid node onto the structural element is interpolated using the shape functions
of the structure mesh.

As initial conditions the undeformed structure and the transient solution of the fluid flow without interaction at
t = 5.4 s are used. 500 time steps are computed, which results in a timewindow of2.5 s.
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First the conventional serial staggered algorithm (algorithm A) is applied, in which every field is computed once
at each time leveltn. In a second computation an iteratively staggered algorithm (algorithm B) ensures the equi-
librium between the two fields at each time leveltn. A relaxation parameterωn+1(i) can be introduced for the
interface displacements:

u
n+1(i+1)
Γ = ωn+1(i)ũ

n+1(i+1)
Γ + (1 − ωn+1(i))u

n+1(i)
Γ (9)

= u
n+1(i)
Γ + ωn+1(i)(ũ

n+1(i+1)
Γ − u

n+1(i)
Γ ) (10)

The interface displacementsun+1(i+1)
Γ that will be transferred in the next iteration to the fluid, are a linear combi-

nation of the newly computed interface displacementsũ
n+1(i+1)
Γ in the structure and the interface displacements

u
n+1(i)
Γ transferred to the fluid at the beginning of the iteration. Inthis case the interface displacements are not

relaxed.

The convergence of the interfield iterations is reached if:

‖φ̃
n+1(i+1)
Γ − φ

n+1(i)
Γ ‖L2

‖φ̃
n+1(i+1)
Γ ‖L2

< ǫφ (11)

whereφΓ are the interface displacements or forces. Maximum four interfield iterations are needed to obtain a
relative change of the transferred quantities smaller thanǫφ = 0.001 (equation (11)).

Figure 9a compares the time history of the radial displacements in three points at mid-height of the silo com-
puted with algorithm A and B. Within this short time window both computations are stable. For a more rigourous
evaluation of the stability more time steps should be computed. Clearly, the results computed with algorithm A
show differences that increase in time with the results of algorithm B because the accuracy of the conventional
serial staggered algorithm is lower than the accuracy of theiteratively staggered algorithm. The accuracy of the
conventional serial staggered algorithm could be improvedby the use of a prediction for the structural displace-
ments and a corrected fluid force, but this option is not available in the coupling between Ansys and CFX. As the
staggered coupling algorithm is stable for this example, the time step could be as well reduced in order to improve
the accuracy. This might be cheaper than the use of interfielditerations.
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Figure 9: (a) Time history of the radial displacements at mid-height forθ = 66◦ ( ), θ = 120◦ ( ) andθ = 180◦

( ) computed with algorithm A (dashed lines) and algorithm B (solid lines) and (b) frequency content of these
radial displacements computed with algorithm B. The angleθ = 0◦ coincides with the stagnation point.

Figure 9b shows the frequency content of the radial displacements in the same points computed with algorithm B.
The response of the silo is dominated by eigenmodes (1,3) and(1,4) around4Hz. The peak around2Hz indicates
the effects of vortex shedding on the silo structure. The smaller peaks above4Hz are related to the eigenmodes
with higher frequencies.

Figure 10 shows the deformations (enlarged with a factor 5) of the structure between a height of11.25m and
13.75m at three different times. At all times a antinode faces the free stream direction. Att = 5.905 s and
t = 6.805 s the response is dominated by eigenmodes (1,4) with respectively a negative and a positive radial
displacement atθ = 0◦. At t = 7.250 s eigenmode (1,3) is dominant. The maximal radial displacement is0.105m
at t = 6.415 s and occurs at a height of15m andθ = 0◦.
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(a) (b) (c)

Figure 10: Deformations (enlarged with a factor 5) of the structure between11.25m and13.75m high at (a)
t = 5.905 s, (b) t = 6.805 s and (c)t = 7.250 s. The wind flows from the left.

Figure 11 shows the time history and frequency content of thepressure betweent = 5.4 s andt = 7.9 s at the
cylinder’s surface at mid-height forθ = 112◦, θ = 174◦ andθ = 180◦. The comparison with figure 7 indicates
that the structural deformations influence the pressure field near the wall. While the pressure time histories of the
flow simulation around a rigid silo mainly showed contributions at2.16 and4.31Hz, in the coupled computation
contributions are present as well at higher frequencies. Animportant contribution is present around4Hz which
corresponds to the eigenfrequencies of eigenmodes (1,3) and (1,4). Due to the interaction the magnitude of the
pressure fluctuations around2Hz has clearly increased, which indicates an amplification of the vortex shedding.
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Figure 11: (a) Time history and (b) frequency content of the pressure at the cylinder’s surface at mid-height for
θ = 112◦ ( ), θ = 174◦ ( ) andθ = 180◦( ) using algorithm B. The angleθ = 0◦ coincides with the stagnation
point.

The pressure field on the vertical plane through the cylinderaxis parallel with the inlet flow direction att = 7.9 s
is shown in figure 12. The pressure field behind the cylinder isclearly three-dimensional. Figure 13 shows the
pressure at the cylinder’s surface along the height at five time levels for three circumferential angles. At the
beginning of the simulation (att = 5.4 s), the pressure is constant along the height in the stagnation point (θ = 0◦)
and forθ = 180◦. At θ = 112◦ the pressure varies slightly with the height. During the coupled simulation the
largest variations along the height occur atθ = 112◦, but also atθ = 0◦ andθ = 180◦ considerable variations take
place.

At every time level the radial displacements along the circumference at mid-height are decomposed into a Fourier
series of modes with circumferential wavenumbersn. For each mode principle component analysis (Pearson,
1901) of the time series yields the position of the first and the second principle component with respect to the silo.
For all circumferential wavenumbersn the first principle component is positioned roughly with an antinode facing
the flow and the second with a node facing the flow. Figure 14 shows the time history and frequency content of
the first and the second principle component corresponding to circumferential wavenumbersn = 2, 3 or 4. The
response of the silo mainly consists of modes with circumferential wavenumbern = 3 and 4. Their contribution
varies strongly with time.
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Figure 12: Pressure field on the vertical plane through the cylinder axis parallel with the inlet flow direction at
t = 7.9 s.
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Figure 13: Pressure at the cylinder’s surface along the height for (a)θ = 0◦, (b) θ = 112◦ and (c)θ = 180◦ at
t = 5.4 s ( ), t = 5.475 s ( ) andt = 5.925 s ( ) t = 6.35 s ( ) t = 6.605 s ( ).
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Figure 14: (a) Time history and (b) frequency content of the first (solid line) and second principal component
(dashed line) of the displacements at mid-height with circumferential wavenumbern = 2 ( ), n = 3 ( ) and
n = 4 ( ).

In order to evaluate the occurrence of ovalling oscillations, the response of the structure should be computed during
a much longer time interval (e.g.40 s), as the structure is suddenly loaded and the modal damping ratios are very
low. However, the computation times using a single processor are very high. The major part is spent on the fluid
partition.

5 The finite strip method

A reduction of the dimensions of the problem decreases the computational cost substantially. The finite strip
method enables to build an approximate model of the structure in two dimensions. This finite strip model of the
silo is coupled to a two dimensional flow.
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Using a finite strip formulation (Cheung, 1976), the displacements of the three-dimensional structure are decom-
posed into a series of orthogonal functions that satisfy a priori the Dirichlet boundary conditions in the axial
z-direction and a two-dimensional displacement field in the(r, θ)-plane. The use of orthogonal functions results
in a decoupled system of equations for every term in the series. The sine functions reflect that the radial and cir-
cumferential displacements are assumed to be zero at both ends of the cylinder, while the cosine function allows
for free axial displacements at both ends:





ur(r, θ, z, t)
uθ(r, θ, z, t)
uz(r, θ, z, t)



 =

∞∑

m=0





sin(mπz
h

) 0 0
0 sin(mπz

h
) 0

0 0 cos(mπz
h

)









urm(r, θ, t)
uθm(r, θ, t)
uzm(r, θ, t)



 (12)

The coupling procedure is validated by means of experimental results of wind tunnel tests reported in the literature.
Laneville and Mazouzi (1995) studied the ovalling phenomenon of five different cylindrical shells in a wind tunnel.
The cylinders were clamped at their base to a turntable over aheight of 10 cm and did not have an end plate at
the top. The flexible part of the shell was located outside theboundary layer of the wind tunnel. At the top of
the cylinder, an adjustable false ceiling was fixed within a distance of 0.02 times the diameter of the cylinder in
order to reduce the three-dimensional effects in the flow. The cylinders were made of aluminium with a Young’s
modulusE = 68960MPa, a densityρ = 2643 kg/m3 and a Poisson’s ratioν = 0.3. Cylinder L1, with a height
of 91 cm, a radius of6 cm and a shell thickness of0.0127 cm, started vibrating in mode (1,3) at a wind speed of
5m/s (figure 15).

Figure 15: Mode occurrence and vibration amplitude as a function of the flow velocity (Laneville and Mazouzi,
1995).

The finite strip formulation of equation (12) is justified forstructures which are simply supported at both ends.
Here, the cylinder is clamped at its base and open at the top. If, however, a quarter (co)sine is assumed for the
variation of the displacements in the axial direction, the eigenmodes can be approximated by doubling the height
of the cylinder in the finite strip model: finite strip model 1 has a height of2× (0.91− 0.10) = 1.62m. The series
in equation (12) can be limited to the termm = 1. The resulting 2-node elements have four degrees of freedom
per node: the displacements in the radial, circumferentialand axial directions and the rotation around thez-axis.

As CFX (Ansys, 2005a) inherently is a three-dimensional fluid solver, the fluid mesh is one element thick in the
third dimension and symmetry is applied to both planes. As toenable coupling with this fluid model, a finite
strip model with one element in the third dimension is obtained by combining a dummy four node Kirchhoff plate
element with two user defined matrix elements (Ansys, 2005b). The finite strip elements are implemented through
the user-defined elements. The stiffness matrix of the user defined elements is independent of the deformation, so
that geometrical non-linear effects are not included in these terms. The dummy plate elements transfer the fluid
loads to the two user defined matrix elements. They are1.62m high and have a Young’s modulus and a density
which is a factor10−6 smaller than the values of aluminium.

The lowest eigenfrequency computed with model 1 corresponds well to the measured value (table 2). In order to
achieve a better correspondence for the other eigenfrequencies, in a second model, the height is changed to1.55m,
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the Young’s modulus to65000MPa and the density to2875 kg/m3. Figure 16 shows the four mode shapes with
the lowest eigenfrequencies of model 2.

Measured Model 1 Model 2
n f [Hz] f [Hz] f [Hz]
2 47.0 47.1 46.9
3 64.5 68.7 64.5
4 117.5 127 118
1 127 129

Table 2: Comparison of the eigenfrequencies form = 1 of the measurements and different finite strip models.

a. (1, 2) b. (1, 3) c. (1, 4) d. (1, 1)

46.9 Hz 64.5 Hz 118 Hz 129Hz

Figure 16: Eigenmodes of cylinder L1 computed with a finite strip model.

First a steady-state FSI computation is performed. At the inlet a wind velocity of7m/s is chosen. At this wind
speed the vibration amplitude for mode(1, 3) was maximal (figure 15). Figure 17a shows the deformations ofthe
cylinder enlarged with a factor five. The largest displacement is 0.84 mm. The pressure distribution around the
deformed cylinder is shown in figure 17b.

(a) (b)

Figure 17: (a) Deformed structure (enlarged with a factor five) and (b) pressure distribution around the cylinder for
steady-state FSI computation.

The results of the steady FSI computation are used as initialconditions for a transient FSI computation. For both
fluid and structure the time step is chosen as∆t = 0.0002 s. This is small enough to compute accurately the
contributions of eigenmodes up to250Hz (figure 16) and to be able to calculate the vortex shedding in the wake
of the cylinder. 1000 time steps are computed, which resultsin a time window of0.2 s. The iteratively staggered
algorithm without relaxation is employed. Maximum ten interfield iterations are performed in order to obtain a
relative change of the transferred quantities smaller thanǫφ = 0.001.

As ovalling occurs when the negative aerodynamic damping cancels the structural modal damping, the structural
damping is reduced step-by-step in order to find the damping ratio at which ovalling occurs. The damping ratio
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is supposed to be equal for the two lowest eigenmodes, atf1 = 46.9Hz and atf2 = 64.5Hz. The value varies
from 0.0596% over0.0238%, 0.0149%, 0.0134% to 0%. Figure 18 shows the radial displacements atθ = 180◦

andθ = 90◦. For the highest damping ratio0.0596%, the response of the structure is damped out and shows a
stable behaviour. For the four lower damping ratios, the response of the structure becomes unstable during the
computations. The lower the structural damping is, the sooner the computations become unstable. From a certain
time step, the convergence criterium for the forces (11) is not satisfied anymore after ten interfield iterations. For
the three lowest damping ratios, in subsequent time steps the convergence criterium for the displacements (11) and
the convergence criterium for the flow computations are not satisfied anymore and the computations finally crash
due to excessive deformations of the structure.
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(a) (b)

Figure 18: Structural displacements for (a)θ = 180◦ and (b)θ = 90◦ for different structural damping ratios:
0%( ), 0.0134% ( ), 0.0149%( ), 0.0238%( ) and0.0596%( ).

Figure 19 shows the deformations of the structure for respectively the damping ratios0%, 0.0134% and0.0149%
during the time step before the collapse of the structure. The deformed shape consists of a combination of the
eigenmode (1,19) with another eigenmode (1,2) or (1,3). Theeigenmode (1,19) has an eigenfrequency of2907Hz.
At this frequency the modal damping ratio is respectively equal to0%, 0.35% and0.39%. Further research should
clarify the cause of these instabilities and the presence ofeigenmode (1,19) in the response of the structure.

(a) (b) (c)

Figure 19: Deformations of the structure for the damping ratios (a)0%, (b) 0.0134% and (c)0.0149% during the
time step before the collapse of the structure.

6 Conclusion

During a storm in October 2002, ovalling was observed on several empty silos of a group of forty silos in the port
of Antwerp. A coupled numerical analysis of the wind flow around one silo is performed.

The differences between the eigenfrequencies of a validated three-dimensional finite element model of the silo
structure and a coarser model without the local refinements near the boundaries are quite small. The eigenmodes
with the lowest eigenfrequencies, around4Hz, have a circumferential wavenumbern = 3 and4.
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The two-dimensional wind flow around a single cylinder is modelled at a Reynolds number of12.4 · 106. An
unsteady incompressible RANS simulation using the Shear Stress Transport turbulence model is performed. The
vortex shedding frequency is equal to2.13Hz. The three-dimensional wind flow around a single cylinder yields a
slightly higher vortex shedding frequency (2.16Hz).

The three-dimensional finite element model of the silo is coupled to the three-dimensional wind flow around a
single cylinder. The structure and the fluid are sequentially coupled with a conventional serial staggered algorithm
and an iteratively staggered algorithm. In the iterativelystaggered algorithm, the transferred displacements are not
relaxed. Maximum four interfield iterations are needed in order to obtain a relative change of the transferred quan-
tities smaller than 0.001. The accuracy of the conventionalserial staggered algorithm is lower than the accuracy of
the iteratively staggered algorithm. The response of the silo is dominated by the eigenmodes with circumferential
wavenumbern = 3 and4. The structural deformations influence the pressure field near the wall: the pressure fluc-
tuations at the vortex shedding frequency have clearly increased and due to the interaction pressure fluctuations are
present as well at the lowest eigenfrequencies of the structure.

In order to reduce the computational cost of the fluid-structure interaction computations, the model of the structure
is reduced to two dimensions using the finite strip method. This finite strip model of the cylinder is coupled to a
two dimensional flow. The coupling procedure is validated bymeans of experimental results of wind tunnel tests
reported in the literature (Laneville and Mazouzi, 1995). The lowest eigenfrequencies and mode shapes of the
finite strip model correspond well with experimental results. As ovalling occurs when the negative aerodynamic
damping cancels the structural modal damping, the structural damping is reduced step-by-step in order to find the
damping ratio at which ovalling occurs.

For the highest damping ratio0.0596%, the response of the structure is damped out and shows a stable behaviour.
For the four lower damping ratios, the response of the structure becomes unstable during the computations and the
computations finally crash due to excessive deformations ofthe structure. Further research should clarify the cause
of these instabilities.
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A Computational Environment for Membrane-Wind Interaction

T. Gallinger, A. Kupzok, U. Israel, K.-U. Bletzinger and R. Wüchner

Within this paper the development of a computational environment for the specific case of light-weight structure-
wind interaction is addressed. To highlight modularity a partitioned solution approach is chosen in combination
with Dirichlet-Neumann type coupling and adaptive under-relaxation. The specific needs of the single-fields, like
turbulent wind flow in the atmospheric boundary layer and dynamic structural behavior with large displacements,
are addressed and the simulation techniques to cope with these are given. Emphasis is placed on the software re-
alization at the coupled interface, for which a seperate programme was developed. Different application examples
of the environment are given, in which important single aspects are proven and a complex real-world application
is treated.

1 Introduction

Predicting and analysing structural behavior of optimizedand light-weight structures like membranes and very
thin shells are topics of high interest in structural engineering. One of the most decisive influences on this special
type of structures is wind, which necessitates an in-depth analysis of this phenomenon. In general, the influence
of wind is difficult to predict. The standard procedure in civil engineering is to reduce complexity by introducing
appropriate assumptions. However, this approach involvesthe risk of overestimating or neglecting effects which
result from the strong coupling of the two different physical fields. On the one hand, this leads to structures being
oversized and inefficient due to the need for large safety factors, on the other hand this can also lead to damages or
even catastrophic failures. A prominent example for this isthe Tacoma Narrows bridge desaster.

Thus, there is a need to reproduce the coupled behavior between light-weight structures and wind as accurately as
possible or necessary. In this regard, the numerical simulation of aeroelastic effects is a promising complement to
and enhancement of current methods in use. The purpose of this research is the development of a computational
environment for the design and analysis of light-weight structures under wind influence, being able to capture all
relevant phenomenona and helping to improve design and sizing. The physical phenomena of this specific case,
that have to be captured by the environment, can be briefly sketched as:

• Represent wind flow within the atmospheric boundary layer with influence of surrounding buildings and
landscape. This leads to characteristic Reynolds numbers in the order of106 to 107.

• Simulate behavior of light-weight prestressed structures, which are a result of form finding processes. Typ-
ically with complex and non-parametric geometries and, dueto high flexibility, large dispacements under
wind influence.

• The combination of wind and high flexibility leads to aeroelastic effects, that have a significant influence on
the structural behavior and, therefore, cannot be neglected.

Summarizing the physical phenomena leads to the following requirements for the computational environment on
modeling and numerics:

• Ability to represent the important characteristics of physical wind by modeling highly turbulent flows in a
steady and unsteady regime.
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• Form finding of prestressed membrane and cable structures.

• Geometric nonlinear dynamic and static computations of membranes and thin shells.

• Simulation of aeroelasticity by efficient, stable, and reliable algorithms.

• Execution of massively parallel computations to cope with real-world problems.

This paper is organized as follows. In section 2, the physicsof the problems are stated by the underlying set
of governing equations and models. Section 3 describes the selected numerical approach to solve the physics.
Section 4 gives an insight into the realized software implementation. In Section 5 different examples are shown:
First some principle examples to proof important single aspects of the environment separated from each other and
then a realistic example of a real-world structure showing the capabilities of the developed environment. The paper
ends by a conclusion and an outlook on the next planned steps.

2 Governing Equations

The whole simulation domainΩ is split into a fluid domainΩF and a structure domainΩS , with Ω = ΩF ∪ ΩS

and the interface between fluid and structure denoted byΓFS , with ΓFS = ΩF ∩ ΩS .

The fluid flow on a moving domain can be assumed to be incompressible and is described by the momentum
equation

∂u

∂t
+ (u −

∂d

∂t
)∇u = −

1

ρF

∇p + ∇ · (ν∇u) in ΩF

and the continuity equation
∇ · u = 0,

which set up together with boundary and inital conditions

u(x, t) = uΓ(t), p(x, t) = pΓ(t) on ΓF

u(x, 0) = u0(x), p(x, 0) = p0(0)

the well-known Navier Stokes equations (NSE). Herein,u denotes the fluid velocity,∂d
∂t

the observer velocity and
p the pressure.

The set of equations describing the structure problem is given by the momentum equation

ρS

d2d

dt2
−∇ · (F · S) = f in ΩS ,

the constitutive equation
S = C : E,

giving a relation between the second Piola-Kirchhoff stressesS and the Green-Lagrange strainsE, the kinematic
equation

E =
1

2
(FT · F − I),

with F = ∇d as the deformation gradient. The boundary and initial conditions are

d(x, t) = dΓ(t), S(x, t) = SΓ(t) on ΓS

d(x, 0) = d0(x), S(x, 0) = S0(0).

Herein,d denotes the structural displacements andf the sum of external and internal forces. At the interface
between fluid and structureΓFS certain conditions have to fulfilled.These are the continuity of displacements

dΓF S = dΓF S ,

and continuity of surface traction
tΓF S = tΓF S .
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3 Partitioned Solution Approach

In principle, different approaches to solve the above stated fluid-structure interaction problem exist. The most
common ones are monolithic and partitioned strategies. Within a monolithic strategy the whole nonlinear coupled
problem, containing terms from the fluid and the structure field and interfield terms, is solved simultaneously. The
solution can be carried out very efficiently, but full accessto the field solvers is required, which spoils software
modularity and makes the use of black-box solvers impossible. Moreover, the consideration of the two different
physics leads to huge coefficient matrices which might even be ill-conditioned.

Within a partitioned strategy, the single fields are solved independently from each other, exchanging and preserving
interface conditions via their boundary conditions. This gives the possibility of chosing the best suited solver and
methodology from a broad range of existing ones for the specific single field. Within the context of simulating
interaction of complex geometries with turbulent flow, a partitioned method is known to be the most convenient
and flexible approach (Cebral, 1996; Farhat and Lesoinne, 2000; Kalro and Tezduyar, 2000; Stein et al., 2001;
Wüchner, 2006). In the context of this work, a partitioned method is therefore chosen. In the following, the
numerical treatment of the single fields is given, followed by a description of the interface treatment.

3.1 Fluid Field

The fluid flow has to follow the physical principle of the Navier Stokes equations in its incompressible form
on a moving domain. Therefore, the equations are given within an ALE framework. For the discretization of
the underlying equations, the cell centered Finite Volume Method (FVM) on unstructured grids is used and a
segregated solution approach is chosen.

Because FSI simulations show naturally a transient characteristic, the segregated pressure based solution algorithm
PISO (Issa, 1985; Ferziger and Perić, 1999) for solving the transient fluid flow is applied. This means, that the
momentum equation is linearized, the coupled system of equations is solved in a sequence and the pressure equa-
tion enforces the conservation of mass. According to Jasak (1996), the PISO algorithm splits up into the following
steps:

• Momentum predictor: Solve the momentum equation, given by

aP UP = H(U) −
∑

f

S(p)f .

The indexP denotes values at the cell centre,f values at faces, that belong to the current cell.aP is a matrix
coefficient that belongs to the cell velocity, andS is the face area vector. Because the pressure gradient is not
known, use the pressure field from the previous time step or coupled subiteration. This gives an approximate
solution of the new velocity field, but it is not divergence free.

• Pressure solution: Assemble theH(U) operator, given by

H(U) = −
∑

N

aNUN +
U0

∆t
,

using the predicted velocities. The indexN denotes all neighboaring values. Setup the pressure equation

∑

f

S · [(
1

aP

)f (∇p)f ] =
∑

f

S · (
H(U)

aP

)f .

The Solution gives an estimate of the new pressure field.

• Explicit velocity correction: Use the new pressure field to evaluate the conservative face fluxes

F = S · Uf = S · [(
H(U)

aP

)f − (
1

aP

)f (∇p)f ].

Correct the velocities in an explicit manner by solving

UP =
H(U)

aP

−
1

aP

∇p
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• Loop until convergence: Setup newH(U) operator based on corrected velocities. Repeat stepsPressure
solution andExplicit velocity correction until convergence.

It should be noted, that for steady-state simulations the SIMPLE algorithm is applied, which is a simplification
of the above stated PISO algorithm. Examining the time fraction, which is needed within one time step to solve
the evolving equations, leads to the observation that arround 50% to 80% of the total simulation time is spent for
solving the pressure equation due to its elliptic nature. Thus, it is of main interest to solve this equation in a most
efficient way. The procedure applied follows the recently published work of Jasak et al. (2007). It is a combination
of a Krylov space and multigrid method with a strong smootherwithin the multigrid levels. The Krylov method
used is of type Conjugate Gradient (CG), a standard solver for linear systems. Its efficiency depends extremly on
the chosen preconditioner, which is traditionally the Incomplete Cholesky factorisation (ICCG). However, as pro-
posed in Jasak et al. (2007), here an Agglomerative Algebraic Multigrid Solver (AAMG) is used as preconditioner
to lower the condition number. This leads together with the strong smoother of type Gauss-Seidel to a substantial
performance improvement compared to standard ICCG or AMG solvers.

The schemes applied for discretization of temporal derivatives, convective and diffusive terms are all seccond
order in space and time. In the majority of the performed calculations, the following schemes are used: The
temporal derivative is approximated by the implict, second-order accurate three time level scheme, referred to as
the backward scheme, the diffusive terms by Gaussian integration with central differences and the convective terms
by a TVD limited form of central differences.

Because the spatial domain shape changes in time, a mesh movement technique is necessary. This is done by
prescribing the boundary velocity of the fluid domain∂tdΓ and solving a Laplacian equation within the domain of
type∇·(γ∇(∂tdΓ)). The diffusion coefficientγ is defined per finite volume. Typically, it is chosen to be dependent
on the nearest distancel between the current cell center and the moving boundary, by the formulaγ = 1

lm
andm

being equal to2. More details on the implementation are given in Jasak and Tukovic (2007). It is noted, that the
combination of the implemented moving mesh technique and the backward scheme for the temporal discretization
is known to satisfy the space conservation law, otherwise errors in the form of artificial mass sources would occur
(Demird̂cić and Períc, 1988; F̈orster et al., 2006; Tukovic and Jasak, 2008).

A specific topic within the computational modeling of wind flow is the treatment of the turbulent flow behavior.
Wind flow is naturally highly turbulent, with typical Reynolds numbers beyond the order of106. There exist dif-
ferent methodologies to capture turbulent effects, the most common ones are Direct Numerical Simulation (DNS),
Large Eddy Simulation (LES) and methods based on Reynolds Averaging (RANS). DNS and LES are computa-
tionally extremly demanding and, in the case of complex and large civil engineering structures, the computational
power is currently simply not available to solve problems with this approach. Therefore, RANS is the method
of choice, which use is also widespread in industrial flows application. In this work, the Shear Stress Transport
(SST) model (Menter and Esch, 2001; Menter et al., 2003) is used, which is a zonal formulation of a two-equation
eddy-viscosity model based on blending functions. Thek − ǫ model is employed in the free-shear layers of the
flow. In the near wall layer, however, thek− ǫ model is known to overpredict turbulent kinetc energyk, what leads
to incorrect prediction of separation points in the flow. Therefore, in the boundary layers thek − ω model is used,
which is known to give substantially more accurate results.It has recently been shown, that this model gives good
results for wind-induced flows in comparison to wind-tunneldata (Yang et al., 2008).

3.2 Structure Field

The principal structure problem, as stated above, is also known as Cauchy’s first equation of motion. It is of
transient and geometric nonlinear nature, leading to a description that distinguishes between undeformed config-
urationX and deformed configurationx. Due to the limitation on large deformations but small strains, the St.
Venant-Kirchhoff material law is used to set up the constitutive equation.

The geometry of a membrane is given as a two-dimensional surface in space, which is described by the two surface
parametersΘ1 andΘ2. The curvilinear base vectors are defined by

gα = x,α =
∂x

∂Θα
as well as Gα = X,α =

∂X

∂Θα

The deformation of a point at the membrane surface depends onthe difference of its location in space:

d(Θ1,Θ2, t) = x(Θ1,Θ2, t) − X(Θ1,Θ2).
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The spatial discretization of these equations is based on the Finite Element Method (FEM) with a Lagrangian
description, using an isoparametric element concept. Thisleads to the semi-discrete equations of motion

Md̈ + Cḋ + rint(d) = fext,

whereM is the mass matrix,C the damping matrix,rint the vector of internal forces andfext the vector of external
forces. The external forces consist of forces arising within the single-field problem, like self-weight or snow, and
forces from the surrounding fluid field, and thereforefext = fext,S + fext,FSI .

The temporal discretization of the nonlinear problem is based on a time integration algorithm. It should ensure
second-order accuracy and high numerical stability. Therefore, the implicit generalized-α scheme is applied.
Additionally, it offers the possibility of controlled numerical damping of high-frequency noise and minimizing
errors in the lower modes of interest. The structures under consideration are thin-walled light-weight structures
like shells and membranes, which are based on the assumptionthat the negligibly small thicknessh stays constant
during deformation. The latter has an important impact on the formulation of the coupling interface, i.e. data
transfer at the interface and the fluid field solver must be able to handle infinitely thin surfaces.

Membrane structures are typically supported at their edgesby prestressed edge cables, leading also to a prestressed
state in the undeformed configuration. The undeformed configuration of a membrane structure is therefore a state
of equilibrium between prestresses in the edge cables and internal stresses in the membrane. The shape of the
membrane is not known a priori and an additional analysis hasto be performed in advance, being known as
form finding procedure. The need for special form finding procedures results from the singularity of the inverse
problem of finding the corresponding shape to a given stress distribution. This difficulty is overcome by the
Updated Reference Strategy (URS) (Bletzinger et al., 2005;Wüchner and Bletzinger, 2005; Bletzinger et al.), a
regularization technique based on a homotopy mapping.

3.3 Coupling Strategy

There exist several different strategies to handle surfacecoupled partitioned analysis. The problem of the inter-
action of wind and light-weight membranes belongs to the type of physically strongly coupled problems, because
the large deformations influence the surrounding fluid flow. The requirements for the coupling algorithm can
be stated as follows: Most important is to ensure a very stable and highly efficient coupling. Additionally, it
has to be easy to implement, to ensure the possibility of simple and fast replacement of the field solvers. It has
been shown recently (K̈uttler and Wall, 2008), that a fixed-point scheme with adaptive under-relaxation is a good
choice, if the under-relaxation parameter is chosen in an efficient manner and it shows good performance also
compared to other, more sophisticated, methods. The under-relaxation of the transferred quantities is described by
d̃Γ,i+1 = ri · dΓ,i+1 + (1 − ri) · dΓ,i with the under-relxation parameterri in subiterationi. The calculation of
the under-relaxation parameter is based on Aitkens formulain the formulation of Irons & Tuck (Wall, 1999; Mok,
2001). The Aitken factor is given by:

µi = µi−1 + (µi−1 − 1) ·
(∆dΓ,i − ∆dΓ,i+1)

T · ∆dΓ,i+1

(∆dΓ,i − ∆dΓ,i+1)2
.

The relaxation parameter is then given byri = 1 − µi.

The coupling algorithm for one time step within a typical transient FSI calculation is given in a schematic manner
in algorithm 1.

4 Computational Concept

4.1 Requirements and Overview of Realization

The applications to be treated within the software environment range from small two dimensional principle exam-
ples up to complex real-world applications with several millions of degrees of freedom. This leads to the following
requirement specifications for the software devlopment process:

• A highly modular environment, so that for each specific problem the best-suited single field solvers can be
adopted easily.

101



Algorithm 1 Coupling algorithm
for t = 0 to t = ttot do

while (!converged)do
Apply interface forcesσn

Γ,i

SolveMd̈n + rnint(d
n) = fn

ext,i(σ
n
Γ,i)

Evaluate interface displacementsdn
Γ,i

Calculate relaxation parameterri

Relax displacements̃dn
Γ,i = rid

n

Γ,i + (1 − ri)d
n

Γ,i−1

Apply boundary displacement̃dn
Γ,i

Move fluid mesh∇ · (γ∇(∂td̃
n
Γ,i))

Apply PISO, solve foru andp
Evaluate interface forcesσn

Γ,i+1

Proof convergence, e.g.‖σn
Γ,i+1 − σn

Γ,i‖L2 < ǫ
i ← i + 1

end while
n ← n + 1

end for

• Use of different communication concepts, because different codes offer different possibilities to connect at
their interfaces.

• Possibility to perform massively parallel computations onclusters and supercomputers to simulate real-world
applications within reasonable time.

• Handle different interface discretizations with non-matching surface meshes, resulting from different dis-
cretization techniques and demands of the specific single fields.

To fulfill all the above stated requirements, a software realization was chosen based on three different codes (see
figure 1). Two codes representing the single-field sovers forfluid and structure, both being able to work in parallel,
and a third code being located between the field solvers. Thisthird code, called coupling code, operates as a master
process, controlling the whole simulation, and working as an interface between fluid and structure field.

The codes that are used within the scope of this paper, are: (I) for the structure field the in-house code CARAT,
(II) for the coupling the in-house code CoMA, (III) for the fluid a solver based on OpenFOAM (Weller and Fureby
(1998), www.openfoam.org), a freely available set of object-oriented libraries for finite volume discretization. It
should also be noted that the commercial CFD software package CFX-11 is also used at the institute within the
coupling environment (Ẅuchner et al., 2007), what highlights the modularity of the software concept. In what
follows, the emphasis is placed on CoMA, as it is an substantial part of the software concept.

4.2 Code Coupling via CoMA

The name CoMA stands forCoupling for MultiphysicsAnalysis. It is a programme responsible for the simulation
control within a surface-coupled simulation and is locatedas a central process between the single-field solvers. It
offers a great variety of features, making it a powerful toolfor all kind of surface coupled simulations. It is a fully
object-oriented programme written in C++, making it easy toextend or adapt to new needs and allowing extensive
code-reuse. It is able to communicate with single-field codes working in parallel, allowing communication between
the fields based on the Message Pasing Interface (MPI) standard, which is the first choice, if the single field solvers
allow access to the source code, or based on files and directories, if the access to the source code of the single field
solvers is limited, like in commercial software packages. It can handle surface discretizations, that differ on the
two fields, and do not match. At the surface, flux quantities and field quantities can be mapped. In what follows
the different parts of CoMA will be explained in more detail.
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Figure 1: Partitioned approach - Software overview

4.2.1 Programme Work Flow

The work flow of CoMA can be subdivided into two main parts: Firstly, an initialisation part, in which the commu-
nication is set up, the surface meshes are received and the mapping between the surface meshes is performed. The
second part represents the loop over the time steps and sub-steps, in which an exchange, mapping and convergence
check of the quantities is performed. A pseudo-code representation of the work flow for a usual Dirichlet-Neumann
coupling strategy is given in algorithm 2.

Algorithm 2 CoMA workflow
Initialise Communication environment
Receive surface meshes
Initialise mapping operatorL
for t = 0 to t = ttot do

while (!converged)do
Receive structure displacementsdn

Γ,i

Mapdn
Γ,i

L
−→ d

n

Γ,i

Calculate relaxation parameterri

Relax displacements̃dn
Γ,i = rid

n

Γ,i + (1 − ri)d
n

Γ,i−1

Send displacements̃dn
Γ,i

Receive fluid forcesσn
Γ,i+1

Mapσn
Γ,i+1

L
−→ σn

Γ,i+1

Send forcesσn
Γ,i+1

Proo convergence‖σn
Γ,i+1 − σn

Γ,i‖L2 < ǫ
i ← i + 1

end while
n ← n + 1

end for

4.2.2 Communication Concept

The great flexibility of the communication concept is one of the main features within CoMA. It provides the possi-
bility to communicate with other processes on a file-based interface - this allows to couple with commercial tools
- or, what is of particular use within massively parallel computations on supercomputers and clusters, establishes a
communication based on the Message Passing Interface (MPI)standard, which is the de-facto standard for parallel
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executed programmes. A communication based on MPI has several advantages: It allows fast, reliable and efficient
communication between processes, what is of main interest within parallel computations. As far as it is known
to the authors, almost all modern programmes that offer the possibility to be executed in parallel do this based
on MPI communication routines. This means, that for the use within a coupling environment the already existing
implementation of the MPI routines just has to be adapted to allow specific communication with CoMA. But this
can be also be seen as a disadvantage. The existing communication concept in single-field codes comes out of a
long and error-prone development process. Therefore, major changes to the existing routines for single-field com-
munication are not desired, because this would lead to a long-lasting search for errors and bugs. As a conclusion, it
was one of the main goals to develop a communication concept,that requires as few as possible changes to existing
procedures.

The main idea of the communication concept can be described as follows: The communication within parallel
executed programmes is based on communicators, typically MPI COMM WORLD, a global communicator in
which all started processes of the programme are part of. If acoupled computation is performed, all single-field
programmes and CoMA are started together and form one globalMPI group, consisting of several processes of
different kind. Now, the single-field processes of the same kind setup a processgroup and are grouped together
into a subfield with a certain sub-communicator (e.g. MPICOMM FLUID, MPI COMM STRUCTURE). The
existing single-field communication routines now just haveto base their communication not on the formerly used
MPI COMM WORLD communicator, but on the now available sub-field communicator. This allows to re-use all
existing single-field communication routines by only changing the communicator type. For the communication
between the single-field processes and CoMA the MPICOMM WORLD communicator is used. CoMA just
communicates with a subset of the single-field processes, because not all processes possess a coupled boundary. A
graphical representation of the communicator concept is given in figure 2. Also, a limitation was set to just use MPI
commands declared within MPI Standard 1.1, to allow interoperability with programmmes based on this standard.
This type of programming model is known as MPMD - Multiple-Programme Multiple-Data programming. It
should also be noted, that a communication based on the TCP/IP level could easily be implemented in CoMA due
to its modular and flexible programme structure, but has not been done up to now due to a lack of necessity.

Figure 2: Communication and communicator concept

4.2.3 Surface Data Transfer

The handling of data transfer between the different surfacemeshes of fluid and structure is one of the most impor-
tant tasks in doing FSI simulations. After transferring specific data from one to the other surface mesh, it acts as an
interface boundary condition for the respective single field. Achieving high numerical accuracy in this operation
is one of the primary conditions for successfull FSI calculations. In realistic simulations, like the interaction of
wind and membranes, the subproblems have different resolution requirements and use different discretization tech-
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niques, leading to the fact of non-matching surface meshes with different surface element types. Basically, there
exist two different methodologies for a conservative data transfer on non-coincident surfaces: Methods based on
interpolation and Mortar methods (Felippa et al., 2001). Within CoMA, an interpolation based method is chosen.
In the case of wind-structure interaction, or aeroelasticity in general, the fluid surface mesh is generally much
finer than the structure’s one. For this case an interpolation method shows a similar accuracy compared to Mortar
(Farhat et al., 1998; Farhat, 2004), accompanied with less implementation and numerical effort.

The procedure of the mapping algorithm is described exemplarily with the node-based quantities displacements
and forces. This choice doesn’t imply any restriction of thedeveloped software but demonstrates the necessary
mappings for the coupling strategy mentioned above. First of all, a neighbourhood search between the surface
mesh nodes of the fluid mesh and the midpoint of the triangulated structure mesh is performed. This provides the
projection pointsPj of the fluid nodes onto the structural surface elements. The displacement fieldd of a structural
element in the context of Finite Element Methods is given by shape functions and nodal values:

d =
∑

i

Nidi.

To transfer the displacement field onto the fluid surface mesh, it is evaluated at the projection pointsPj of the fluid
nodes within the current structure element, described by their location in natural coordinatesξj andηj , and applied
as a displacement boundary condition to the according fluid node (see left picture in figure 3):

dPj
≈ d(ξj , ηj) =

∑

i

Ni(ξj , ηj)di.

This interpolation method can be used for all field variables, e.g. pressures, temperatures or velocities.

The transfer of forces, which belong to the type of integrated variables, follows a load-conservative approach
(Cebral and L̈ohner, 1997). It is also based on an interpolation principle. The fluid forces are known at the
projection pointsPj of the fluid nodes within the structure element. At structurenodePi the nodal forcefi is
evaluated as a sum of the fluid forcesfj within the element, weighted by shape functions (see right picture in
figure 3):

fi =
∑

j

Ni(ξj , ηj)fj .

Under the prerequisite of
∑

j Nj = 1, it follows that:
∑

i

fi =
∑

i

∑

j

Ni(ξj , ηj)fj =
∑

j

∑

i

Ni(ξj , ηj)fj =
∑

j

fj ,

what serves as a proof of the postulated conservation property of the mapping algorithm. Illustratively speaking,
this means that all forces wich act at an element are transferred to the nodes as forces with the same total magnitude.

Figure 3: Interpolation of field variables (left) and forces(right)

Remarkably, the implementation of the surface data transfer in CoMA is not limited to forces and displacements,
but can be used for any surface information, like temperature distribution, pressure or sensitivities (Israel et al.,
2008). There exists also the possibility of handling multiple interfaces within one simulation with separate mapping
of quantities. This is especially useful for computations with extremely thin membranes, where the mapping of
quantities on the top and bottom surface has to be separated from each other, otherwise leading to errors within
the neighbourhood search. But this feature can also be used to handle simulations with more than one elastic
object, e.g. one using a geometric nonlinear and the other one using a geometric linear approach. An example for
a transfer of quantities at a curved surface is given within the next section.
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5 Examples

In this section different examples are shown. The first two verify important single aspects of the environment,
namely the mapping of field-quantities on doubly-curved surfaces and the ability to perform coupled computations
in the steady-state and transient, but not turbulent regime. The third example shows a real-world application, a
complex light-weight membrane structure and its behavior due to wind influence.

5.1 Field Mapping on non-matching Surface Meshes using CoMA

The correct transfer of surface data at the interfaceΓFS between fluid and structure domain is a major aspect in
doing FSI simulations. The accuracy of the whole simulationis affected by the procedure applied at the interface.
In this test case a realistic example for the data transfer algorithm is constructed. The surface treated is inspired
by the structural example of a 4-point tent, which is a 3-dimensional doubly curved free form surface and cannot
be described analytically. The two surface meshes, composed of triangular elements, are non-matching. One side
SS is a regular mesh, consisting of1600 elements and representing a typical structure mesh for thisexample. The
other sideSF is an unstructured mesh. It consists of4854 elements, is refined at the boundary, and should therefore
represent a typical fluid mesh in this example. A picture of the two meshes is given in figure 4.

Figure 4: Structured and unstructured surface meshes

Now the distribution of a field variable, e.g. displacements, is specified on the structured surface mesh and mapped
onto the unstructured one. The distribution follows an analytical function in global coordinates. Evaluating this
function at the node positionsPS

j of the structured mesh leads to the prescribed nodal valuesfP F
j

. After the data
transfer, the nodal values at the unstructured meshfP S

i
are known and can be compared to the values given by the

analyticalPF
j function, by evaluating the coordinates of the specific node. The analytical function is prescribed on

the projection to the ground view and is given by

F(x, y) = cos(C1y) · [sin(C2x) + C3 · sin(C4x) + C5 · (1 − C6x
2)],

which is a superposition of different functions. The constantsC1..6 are chosen to scale the function to the geometry
of the domain. The error at pointPF

j is then computed by

ej =

∥
∥
∥(FP F

j
− fP F

j
)
∥
∥
∥

max(FP F
j

)
· 100.

The influence of the difference between the continuous function and the interpolation of values is neglected. A
contour plot of the computed error is given in figure 5. It can be seen that the error in the field itself is nearly
zero. Just some single elements, located directly at the surface boundary, show higher errors. But this effect can
be neglected in nearly all simulations. As a result, it can besaid, that the mapping and data transfer algorithms
implemented in CoMA show good accuracy in the case of complexsurfaces and meshes and can therefore be used
in real-world simulations.
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Figure 5: Error distribution on unstructured mesh[%]

5.2 Coupled Computation in laminar Regime

After evaluating an important single aspect of the computational environment, in this example a coupled computa-
tion is carried out. The testcase has to ensure the followingprerequisits: Two-dimensionality to keep computational
time low, test transient and steady-state behavior and ensure a laminar flow regime, because the treatment of tur-
bulence is of great complexity, so it should be kept out to focus on the coupling issues. The testcase developed
within the DFG research group 493 is chosen (Turek and Hron, 2006), because it fulfills all the requirements. As
a positive side effect, it contains also test scenarios for the single field solvers, so that these can be tested separate.

The test case is described as follows: A fixed, rigid cylinderis placed slightly unsymmetric into a wall-bounded
channel. An elastic beam is attached at the back of the cylinder. The geometric representation of the computational
domain is given in figure 6 and a description including all details can be found in Turek and Hron (2006). If a flow
is imposed onto the system, the flow regime behind the cylinder influences the beam and leads to deformations.
Up to a certain Reynolds number, the flow is steady, if the Reynolds number exceeds a certain value, the flow gets
unsteady and Karmann vorticies occur behind the cylinder. It should be noted, that only laminar cases are taken
into account.

Figure 6: Computational domain

Different mesh levels are examined on both fields. The results shown in this contribution are those, which give the
best compromise between accuracy and numerical effort. Theprinciple setup of the software environment is three-
dimensional. So for the simulation of this two-dimensionalcase, one element is used for the discretization in the
transversal direction and all effects of the third direction are avoided by proper choice of the boundary conditions.
The structure, a cantilever beam, is modeled using 4-noded shell elements. The total number of shell elements is30
and the mid-surface of the shell is located in the transversedirection of the domain. The geometric representation
of the interface between fluid and structure domain is evaluated by a projection of the element surface along the
nodal director vector with a factor of±0.5 · tShell, representing the lower and upper surface of the shell. The fluid
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is modeled based on a block-structured grid. The total number of fluid elements is 54000. The values taken as
reference are the results published in Turek and Hron (2006).

5.2.1 Single Field Computation

First, the single field solvers are tested seperatly from each other fortheir steady and unsteady, respectively static
and dynamic behavior. In the structure case, three different tests are performed. As load the gravitational force
in −y direction is applied. The first two cases, CSM1 and CSM2, are static calculations with varying modulus
of elasticity. The third case, CSM3, consists of a transientcomputation, in which the gravitational forc is applied
starting at timet = 0, leading to a harmonic oscillation of the beam as described in Turek and Hron (2006). The
results, given in table 1, show the displacements in y-direction of nodeA. The differences to the reference solution
are below0.2%, so it can be said, that the structure field solver works properly and is therefore evaluated. The fluid
case also consists of three different tests, in which the inlet velocity is differed. The first and seccond case, CFD1
and CFD2, reaches a steady-state, the third case, CFD3, is oftransient nature. The results, given in table 2, show
the drag and lift coefficients, evaluated by integrating over the cylinder and beam surface. It can be seen, that for
steady-state the differences are below1%, and for unsteady below2%. As a consequence, it can be said, that the
fluid solver works properly and is verified.

reference own difference

CSM1 −0.06610 −0.06610 0.00%
CSM2 −0.01697 −0.01697 0.00%
CSM3 ±0.06516 ±0.06546 0.45%

Table 1: CSD benchmark results

Lift Drag
reference own difference reference own difference

CFD1 1.119 1.117 0.18% 14.29 14.31 0.14%
CFD2 10.530 10.440 0.85% 136.70 137.52 0.60%
CFD3 ±437.81 ±445.35 1.72% ±5.61 ±5.50 1.96%

Table 2: CFD benchmark results

5.2.2 Coupled Computation

In the coupled computation an interaction between the surrounding fluid and the elastic beam is simulated. Three
different cases are examined, called FSI1 to FSI3, in which the inlet velocity, the structure density and the elastic
modulus are varied. FSI1 results in a steady, whereas FSI2 and FSI3 in unsteady solutions, showing periodic
oscillations of the beam with differing frequency and amplitude. The transient cases are strongly coupled, therefore
the above described fully-implicit coupling scheme with adaptive under-relaxation is applied. The results are given
in table 3, examining the y-displacement of pointA at the beams tip as being the most significant one. It can be
seen, that the differences are below3.5%, which is in the range of the results of all other groups contributing to
this benchmark computation. Therefore, also the coupled computation is verified.

reference own difference

FSI1 0.0008209 0.0007999 2.55%
FSI2 ±0.08060 ±0.08338 3.45%
FSI3 ±0.03438 ±0.03473 1.02%

Table 3: FSI benchmark results

5.3 Mobile Canopy Structure

After verifying important single aspects of the developed computational environment, in this example a real-world
application is examined. It shows the capabilities of the environment to handle complex geometries and simulate

108



challenging structural behavior in higly turbulent atmospheric boundary layer flow. The example is inspired by
a cooperative work of the architectural department of the Technische Universiẗat München (Gengnagel, 2005)
and the University of Dundee. The structure is a canopy, usedas a tribune roof in e.g. open-air cultural and
sports events. Due to the demand of mobility, lightness is one of the major design parameters. The structure is
constructed as follows: Two curved cantilever arms, build as space frames, are clamped at the ground and span
over a distance of11.5m. A membrane is spanned between the cantilever arms having a width of 6.5m. A cable is
fixed to the membrane at its center axis and the ground. Prestress is applied onto the cable, leading to a deformation
of the membrane and the cantilevers towards the ground. Due to this deformation, prestress is applied onto the
whole system, leading to a major increase in stiffness underthe influence of external loads. A representation of
the structure model is given in figure 7. Due to its extreme lightness wind influence is one of the major aspects
in the design and sizing of this structure. Therefore, a numerical simulation of the wind impact on the system is
performed to gain detailed insight into the structural behavior.

Figure 7: Mobile canopy structure model

5.3.1 Computational Models

The structure model is a combination of prestressed trussesand membranes. The initial geometry of the model is
found by a form finding procedure, assuming an isotropic prestress distribution. All computations are performed
considering fully geometric nonlinear kinematics. The fluid domain is discretized by an unstructured tetrahedral
mesh. The wind flow within the atmospheric boundary layer is simulated by a proper choice of the boundary
conditions. A wind speed ofUref = 15m

s
in a reference height ofzref = 10m is assumed, what corresponds to a

strong wind and intensity6 on the Beaufort scale. The canopy is exposed to the roughnesslength ofz0 = 0.1m.
Following the work of Richards and Hoxey (1993) and Hargreaves (2007), the inlet velocity is given by

U(z) =
u∗

κ
ln(

z + z0

z0
),

whereu∗ is the friction velocity andκ is von Karman’s constant. The turbulent kinetic energy and the dissipation
rate are given by

k =
u2
∗

√
Cµ

and ǫ =
u3
∗

κ(z + z0)
,

with Cµ is a model constant, usually set to0.09. Under these assumptions, a Reynolds number ofRe = 5 · 106

is reached. The turbulent effects are modeled by the RANS methodology, using thek − ω SST turbulence model.
First, CFD-only simulations are performed, until a steady-state is reached. This state is used as starting point for the
coupled computations. A geometric representation of the cantilever arms in the fluid domain is neglected, because
the major influence of the fluid flow on the structure is captured by the flow effects on the membrane surface. At
the fluid-structure interface non-matching surface meshesoccur. Because of the small membrane thickness, the
data transfer at the lower and upper surface of the interfacehas to be done separated from each other. Otherwise,
the neighbourhood search between surface nodes of structure and fluid mesh would mix up the two sides and result
in errors.
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5.3.2 Simulation Results

Three different simulations are carried out, examining major influences of wind onto the structure. The first two
analyse the static deformation of the structure under the two main wind directions directly from the back and
from the front, which is referred to as case 1 and 2. Therefore, a constant velocity profile is applied at the inlet
and a coupled computation towards a steady-state is performed. Numerical efficiency is reached by an explicit
coupling scheme in combination with fluid subcycling and under-relaxation. Two points on the membrane surface
are examined in more detail, the locations of PointsA andB are shown in figure 7. The results of the coupled
computation can be seen in figure 8 for case 1 and figure 9 for case 2, giving a contour plot of the displacements
in z-direction and the displacementsdz of point A and‖d‖ of point B versus the number of coupled iterations. It
is noted, that due to under-relaxation a smooth convergencebehavior is reached and the computations are nearly
converged after only 35 coupled iterations. Wind blowing from the back is uncritical to the structural behavior,
but wind from the front leads to a great reduction of the applied prestress in the back region of the membrane, as
can be seen from the positive z-displacements in this region. The reason is, that the wind pressure acts against the
existing curvature, which is therefore reduced. For a further increase of wind speed, the risk of a snap through
in this region of the membrane is expected. A snap through should be avoided by any means, because the load
carrying behavior would be changed dramatically.

Figure 8: Case 1 - Contour lines of z-displacements[m] and displacements versus coupled iterations

Figure 9: Case 2 - Contour lines of z-displacements[m] and displacements versus coupled iterations

To further examine the structural behavior, a third coupledsimulation is performed, called case 3. This calculation
is of transient and fully implicit nature. Two artificial wind gusts are applied at the inflow, blowing from front,
with a maximum inlet velocity of30m

s
at the reference height. The temporal variation of the inletvelocity profile

is given byu∗(t) = 20m
s

with t ∈ [0; 4s] andu∗(t) = 20m
s

+ 10m
s
· sin2( t

4s
· 2π) with t ∈]4; 10s]. The total

time of the simulation is10.0s. Again, the result of a steady-state fluid-only solution is used as initial solution at
t = 0s. The results can be seen in figure 10. It is noted, that the displacements follow directly the applied wind
inflow. This is due to a very small mass inertia of the system asa result of the high lightness. It is also noted, that
under the high wind level a snap-through of the membrane in the back region occurs, what results in extremly high
displacements due to diminishing geometric stiffnesses.

In summary, the simulations lead to the following results: Wind from back is uncritical for the structure, but wind
from front diminishes the applied prestress and gives the risk of a snap-through in the membrane. This was shown
in a transient calculation with an increased wind speed level. As impact for the design, it is stated that the applied
prestress in this simulations has to be increased to preventsnap-through.
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Figure 10: Case 3 - Contour lines of z-displacements[m] at t = 5.1s and displacements versus time

6 Conclusion and Outlook

The development of a general and modular framework for the simulation of light-weight membrane structures
interacting with wind is described within this contribution. The evolving strongly coupled system is solved by a
partitioned strategy. The realistic modeling of turbulentwind flow leads to large systems, that have to be solved
massively parallel. The resulting specific requirements onthe framework are handled by a software scheme based
on three codes, the two single field solvers and the central master code CoMA. CoMA is a general tool responsible
for simulation control and data transfer on non-matching surface meshes. Emphasis is placed on the efficiency and
flexibility of the communication concept as an important aspect in MPMD systems. This allows to use CoMA in
any surface-coupled analysis with arbitrary coupling quantities.

The next steps will include a further investigation of the correct modeling of wind-induced effects on light and
flexible structures. This comprises a further study of the correct simulation of natural wind (e.g. appropriate
formulation of inflow conditions, influence of wall modeling, domain size) and a continued consolidation of the
coupling procedure with regard to efficiency, reliability and stability. Moreover, the elaboration of selected bench-
mark tests for verification and validation purposes will be done. Finally, the correct interpretation of the gained
results with respect to the design of structures under wind influence is needed and is part of ongoing investigations.
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From the conceptual point of view, modularity and flexibility are inherent to partitioned fluid-structure interaction
simulations or, in a broader sense, multi-physics simulations. In fact, they are the big advantage of partitioned
approaches in comparison to monolithic approaches. However, this implies the need for software tools that ensure
the independence of the involved components and, at the same time, allows for sophisticated coupling strategies
going much beyond a pure data exchange. For this purpose, we developed the coupling tool FSIdce that will be
described in detail in this article including all current functionalities and future potentials.

1 Introduction

Multi-physics simulations have become more and more the focus of computational engineering in the last years.
Increasing computer performance has allowed for the inclusion of more and more physical realism in the com-
putational models. Just think of the inclusion of fluid-structure interactions in the evaluation of skyscraper static,
of dam simulations covering fluid dynamics, structural mechanics, soil behaviour and their interactions, of aero
acoustic simulations in aircraft construction coupled with structure reactions, and many other examples. In the fu-
ture, this trend is supposed to continue taking into account more and more physical fields to enable highly realistic
and accurate simulations. To illustrate this with an example, we could imagine to enhance the simulation of blood
flow in a vein by taking into account not only the wall of the vein but also the surrounding tissue with different
material properties and partly own dynamics (bones, skin, muscles,...).

To establish a simulation environment for such simulations in a fast and efficient way and, in particular, to cope with
the continuous model development and enhancement, partitioned approaches have proven to be highly suitable.
In contrast to monolithic methods that establish and solve one system of equations for the complete scenario,
partitioned approaches use existing and well-tested codes for each of the involved single-physics problems and
couple the codes together using an additional piece of software. Whereas the advantage of monolithic approaches
is a higher robustness, partitioned approaches offer a very high flexibility in terms of simulated physical phenomena
and solvers used.

To realise the coupling of several codes, different approaches and software tools are available. The most prominent
commercial software is MpCCI Ahrem et al. (2001) that leans strongly on the MPI-syntax and offers functions
supporting the transfer of data from one code to another as well as predefined interpolation and projection routines
for the mapping of data between the in general non-matching grids of the solver codes at the coupling interface1.
The Model Coupling Toolkit MCT is a scientific library providing programming interfaces for data exchange,
interpolation, and manipulation of data for non-matching and even partitioned solver grids Larson et al. (2005). It
is widespread in climate simulation. C-SAFE Parker and und T. Harman (2006) is a component-oriented realisation
of a coupling unit. Although it is restricted to Cartesian solver grids, the successful integration of a fluid-structure
interaction model Parker and und T. Harman (2006) shows the general potential of component based approaches.

1For fluid-structure interactions, the coupling interface is the contact surface between fluid and structure, for example.
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Figure 1: Schematic view of the coupling of two codes for the partitioned simulation of fluid-structure interactions
with MpCCI (left) and FSIdce (right).

2 Motivation for the Development of FSIdce

We listed some commercial and scientific coupling units in 1 and saw that there is no generally applicable frame-
work available that goes far beyond supporting data exchange and data manipulation between two or more solvers.
To motivate the development of a our coupling tool for the partitioned simulation of fluid-structure interactions,
we have a look at the realisation of the coupling with the help of the most common of the mentioned tools, MpCCI.
Figure 1 shows the principle of the coupling in a schematic manner. We start with two given solvers: for the sim-
ulation of fluid dynamics on the one hand and the simulation of structural mechanics on the other hand. To make
the codes work together, the first thing we have to do is implement the data exchange between the two solvers at
the so-called wet surface that is the contact interface between fluid and structure. For this purpose, we can resort
to given interpolation and projection methods of MpCCI. However, if we have particular requirements such as
higher order discretisations in one of our solvers, new mapping methods have to be established and implemented.
The second implementation task concerns the coupling control that is the choice of the coupling strategy in time
(explicit/implicit/multigrid/. . .), the convergence control, the time stepping etc. of the whole coupled simulation.
As MpCCI is a tool mainly designed for data exchange, this is done in one or even both of the solvers. If we now
exchange one of the solvers, for example, we have to change the implementation of the data mapping in both the
new and the remaining solver as well as parts of or even the whole coupling control. Thus, we loose the flexibility
to easily exchange solvers and coupling strategies independently, although this flexibility seems to be the main
advantage and an inherent property of the partitioned simulation of multi-physics problems.

In order to improve this situation, we developed FSIdce Brenk et al. (2005, 2006); Brenk (2007) with the intention
to completely hide the components of a partitioned simulation from each other and to provide an easy-to-use tool
for the coupled simulation of fluid-structure interactions in a first step but also of general multi-physics scenarios
in the future. To separate the coupling strategy and control from the solvers, the first idea behind FSIdce was to
completely integrate these aspects into a separate coupling unit instead of the solvers. This leads to a client-server
approach with FSIdce acting as a client and the two solvers acting as servers receiving jobs and queries for data
from FSIdce Brenk et al. (2005). As a consequence, we can provide coupling strategies that then can be used for
arbitrary combinations of solvers. The second idea enforcing the independency of the solvers from each other is
to introduce a central coupling mesh in addition to the two solver grids. This coupling mesh discretises the wet
surface and acts as a common point of contact for the solvers. That is, both solvers map their simulation data to and
get updated data back from it. Thus, a solver, once being prepared for the use with FSIdce, can be coupled with
an arbitrary partner solver without further changes Brenk et al. (2005, 2006, 2007). Figure 1 displays the resulting
setup: Two solvers implementing a data mapping to and from the central mesh and FSIdce providing the whole
coupling control and the central mesh itself.

Flexibility and ease of use are very important ingredients of a tool designed for the coupling of codes for partitioned
multi-physics simulations. However, these two tasks were not the only motivation for establishing FSIdce as
an own numerical unit and not only a data mapping library. FSIdce also provides the possibility to implement
numerical coupling methods at a central position that could not or hardly be implemented in one of the solvers.
We list some examples here, taking into account that this list of course can not be complete.

2.1 The Transient Localised Lagrangian Multiplier Method

A first and very obvious example is the method of Localised Langrangian Multipliers (LLM) as proposed in Park
et al. (2001); Ross (2006). It introduces an interface frame between fluid and structure similar to the central mesh
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Figure 2: Introduction of a central interface frame describing the wet surface in the transient Localized Lagrangian
Multiplier method Ross (2006). The continuity of the interface variable between the interface frame and the solvers
is enforced with the help of two Lagrangian multipliers λf (for the fluid side) and λs (for the structure side).
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Figure 3: Comparison of the staggered explicit coupling (a) and the transient LLM method (b).

in FSIdce (see Figure 2).

This interface frame holds informations on the state of the interface. Depending on the actual method, this state
might be described by the speed or the displacement of the interface, e.g. The resulting system of equations
involves the fluid equations, the structure equations, and three additional systems of equations for the interface
frame state and the two Lagrangian multipliers. These three additional systems constitute side conditions for the
fluid and the structure solver including continuity of velocities or displacements and Newton’s third law. Instead
of the commonly applied solution strategy for the explicit coupling, we can now execute a time step both for the
fluid and the structure simultaneously and, then, use a projection method to establish a so-called interface equation
for the Lagrangian multipliers and the interface state. These interface data are in turn used to update the fluid and
structure state. Figure 3 compares the common ’staggered’ explicit discretisation to this new approach. To solve
the interface equation, an autonomous numerical component such as FSIdce is required. Ross (2006) proved that
this method is unconditionally stable for some for the example of the linear piston problem as long as the time
stepping schemes of both the fluid and the structure solver are unconditionally stable. This can not be achieved
with the staggered explicit coupling.

Table 1 shows that the solvers have to be only slightly changed to be able to update data at their wet surface
according to the Lagrangian multipliers whereas all other work is and has to be done by the coupling component.

2.2 Implicit Coupling with Reduced Order Models

A second example is a coupling method using reduced order models to perform a Newton iteration for the non-
linear Dirichlet-Neumann interface equation Vierendeels (2006a,b)

operation solvers FSIdce
solve single-physics problems x
collect wet surface data (including Lagrangian
multipliers)

x

solve the interface equation x
send Lagrangian multipliers to solvers x
update the wet surface according to the Lan-
grangian multipliers

x

Table 1: Algorithmic steps in a transient LLM method Ross (2006) and their allocation in the solvers or the
coupling component.
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operation solvers FSIdce
solve single-physics problems x
collect wet surface data x
establish reduced order models x
perform Newton iteration on the interface x
send interface data to solvers x
update wet surface boundary conditions x

Table 2: Algorithmic steps of a fluid-structure interaction simulation using an implicit coupling strategy based on
reduced order models Vierendeels (2006a,b) and their allocation in the solvers or the coupling component.

D(n+1) = Rs ◦ structure solve(Rf ◦ fluid solve(D(n+1), F (n)), S(n))︸ ︷︷ ︸
=: B

(
D(n+1)

) , (1)

where D(n+1) is the structure displacement at the wet surface at time t(n+1) = t(n) + dt, Rs denotes an operator
that restricts the structure state to the displacements at the wet surface, structure solve and fluid solve are arbitrary
structure and fluid solvers, Rf computes the forces exerted on the structure by the fluid on the wet surface from
the fluid state. F (n) and S(n) are the fluid and structure state at time t(n). To solve this method with the help of a
Newton method, we have to perform iterations

D
(n+1)
i+1 = D

(n+1)
i +

(
I − J

(
D

(n+1)
i

))−1 (
B

(
D

(n+1)
i

)
−D(n+1)i

)
, (2)

where J
(
D

(n+1)
i

)−1

denotes the Jacobian of B
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. This Jacobian is always costly to compute. In the case

of black-box solvers, it is even impossible to compute it in any other way than with the help of finite differences that
is out of question in terms of efficiency. However, the Jacobian can be approximated by replacing it by the Jacobian
computed from reduced order models for the fluid and the structure solver. For these reduced order models, we
can exactly and efficiently determine the Jacobian and the application of the inverse of
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, respectively Vierendeels (2006a,b). The reduced order models themselves are established during the

run of the simulation using the input-output relation of the solvers as a data basis. Table 2 shows that in this case,
there are a lot of non-trivial actions that have to be taken by a separate coupling component both from a logical
point of view (as they concern the coupling, not the solvers) and from a practical point of view (as the method has
particularly been designed for black box solvers).

2.3 Multigrid

A third example that requires a central control of the partitioned simulation is a multigrid method not only for the
involved solver but for the whole coupled simulation environment. That is, we have to couple fluid and structure
solver not only on the fine grid but also on coarser grids. After performing a few iterations for the fine grid equation

 Fh

Sh

Wh

(n+1)

= FSIh


 Fh

Sh

Wh

(n+1)
 (3)

with the fluid state variables Fh, the structure state variables Sh, the interface state variables Wh, and the discretised
operator of the fluid-structure interaction equation FSIh, we switch to the coarse grid equation

 FH

SH

WH

(n+1)

= FSIH


 FH

SH

WH

(n+1)
+RFSIh


 F̄h

S̄h

W̄h

(n+1)
−FSIHR


 F̄h

S̄h

W̄h

(n+1)
 , (4)
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operation solvers FSIdce
solve/smooth single-physics problems x
collect wet surface data x
define how to establish the coarse grid x
restrict the fine grid solution ◦ x
modify the right hand side on coarse grids ◦ x
change the level of resolution x x
interpolate the coarse grid solution ◦ x
update the fine grid solution ◦ x
send interface data to solvers x
update wet surface boundary conditions x

Table 3: Algorithmic components of a multigrid method for the whole coupled simulation of a fluid-structure
interaction scenario and their allocation in the solvers or the coupling component. Circles indicate that these steps
are allocated in the solvers only in case of a method where the solvers only smooth and not solve on each grid
level.

where F̄
(n+1)
h , S̄

(n+1)
h , and W̄

(n+1)
h denote the state approximation for fluid, structure, and interface after the fine

grid iterations. This coarse grid equation is then solved by a recursive call of the multigrid solver. To finish the
multigrid cycle, the coarse grid approximation is used to update the fine grid approximation according to
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(5)

and some more post smoothing iterations on the fine grid are performed. In this very general formulation, we did
not further specify the equation (3) and the kind of smoothing iterations that are performed on each grid level. Bijl
et al. (2006) showed that the runtime already for a one-dimensional linear piston problem could be reduced by a
factor of 10 with a two-level method.

Depending on what solver we use and in how far we can change the solver code, smoothing iterations can either
include the complete solution of the fluid and the structure equation on the respective level or only some iterations
for both fluid and structure. The first case will be required if we use black-box solvers. In this case, equation
(3) will be an interface equation such as equation (2), only. In the second case, the error after the smoothing
iterations is not only due to errors in the interface equation but also due to not yet converged solvers for fluid
and structure. Such, equation (3) will cover the whole coupled fluid-structure system. Table 3 gives an overview
of the algorithmic parts that have to be done in the solvers and those that are done in the coupling component.
Circles mark actions that have to be taken by the solvers only in the second case, where the solvers also only
smooth instead of solving. It becomes obvious, that even in that case, only standard multigrid functionality (in the
sense of a full approximation scheme for nonlinear equations) is required from the solvers. However, the single
components of this multigrid functionality have to be addressable separately by the coupling component. Besides,
all other functionality and the overall control is integrated in the coupling component, which discharges the user
from the re-implementation of a lot of functional elements for each solver pair and, second, in particular for the
definition of the coarse grid, is required also from a methodological point of view. Only the central unit can decide
how to establish a suitable overall coarse grid from the two solver fine grids and the wet surface.

3 Structure and Functionality of FSIdce

After we have motivated the development of FSIdce by showing the potential of a coupling unit with a numerical
functionality going far beyond data mapping, interpolation and projection mechanism, we will describe the actual
realisation of FSIdce in this section. FSIdce has a modular structure that ensures an easy extendibility (see
Sect. 3.1). The main components of FSIdce are the coupling mesh (Sect. 3.2), the support for data mapping
(Sect. 3.3), and the coupling strategies (Sect. 3.4). Additionally, we shortly present the application programming
interface of FSIdce which is the essential ingredient for a user friendly tool (Sect. 3.5).
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3.1 Modular Structure

A well defined structure is the essential basis for software to last. It simplifies (or even enables) the maintenance
and extension of software; and a software that is not maintained nor extended will be thrown away soon. Thus,
one goal for the development of FSIdce is to maintain a well-thought modular structure of the source code project.
The current structure of FSIdce is illustrated in Figure 4 (a). It consists of two main parts: first, the libraries,
which are meant to be included by a user of FSIdce. They contain the coupling mesh (see Sect. 3.2), support
for data mapping to and from the coupling mesh (see Sect. 3.3), the communication API (see Sect. 3.5), and
implementations of communication mechanisms with MPI and sockets. The second part of FSIdce is the coupling
supervisor. The coupling supervisor acts as the server in the coupled simulation (Sect. 2) and cares for the exact
execution of the chosen coupling schemes. Figure 4 (b) illustrates the client-server concept, and shows the place
of the coupling supervisor in the frame of the coupled simulation.

(a) Modular structure of the software package FSIdce.
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Coupling
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Geometry
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(b) Modular client-server-based realization of FSI at appli-
cation level.

Figure 4: Modular concept of FSId at internal design and external application level.

3.2 Coupling Mesh

A unique feature of FSIdce among existing coupling tools is the use of an additional mesh instance - the coupling
mesh - dedicated for the exchange of data located on the common surface of the coupled solvers. At first sight,
this might appear to be an additional complication of the whole coupling process. However, it enables to decouple
the solvers from each other and to make them easily and independently exchangeable. Furthermore, it allows to
introduce advanced coupling methodologies such as the ones introduced in Section 2.

The coupling mesh is chosen as a triangulation of the surface(s) between the single solvers domains. It can be
described by a vf-graph, i.e. a graph consisting of vertices interconnected by triangle faces. Figure 5 shows two
examples for triangulated surfaces.

The triangle edges are of no importance currently, and are, hence, not considered in the implementation of the
coupling mesh. For a pure node centered data transfer from solver to solver, even the triangles would not be
necessary. However, since the coupling mesh is not only used for such a simple mapping but also for numerical
operations one the triangulation itself (think of coarsening of the triangulation for multigrid methods, e.g.) and to
derive geometric relations between the triangulation and the solver grid nodes such as the position of a point or
voxel relative to the coupling surface, it is necessary to also have a geometric description of the surface and its
orientation and not only the locations of the nodes carrying the data.

The functionality of the coupling mesh is two-fold: First, it holds the topological information of the common
interface of fluid and structure and, thus, administrates also all movements and deformations of this interface.
Solver grids are adapted after each coupling step according to changes in the interface description. In the setup-
phase of a coupled simulation, the coupling mesh can either be derived from a solver grid or, vice versa, act as
an input for the generation of a solver grid. The second functionality of the solver grid is storing, modifying,
receiving, and sending all values that are to be exchanged between the involved solvers. In the case of fluid-
structure interactions and a Dirichlet-Neumann coupling, these are the forces exerted on the structure surface
by the fluid, and the displacements of the structure resulting in prescribed velocities for the fluid field. For the
realisation of other coupling methods or further multi-physics problems, however, the coupling mesh allows for
the storage of arbitrary kinds of vectorial or scalar data sets, annotated to the nodes of the triangular mesh.
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(a) Sphere 3d triangulated representation by coupling mesh. (b) Cantilever 3d triangu-
lated representation by cou-
pling mesh.

Figure 5: Examples for triangulated surface meshes.

3.3 Support for Data Mapping

The data mapping between the solver grids and the coupling mesh will often require some projection and interpo-
lation of data values from the unknowns stored in the non-matching solver grids to the nodes of the coupling mesh.
FSIdce supports some simple projection and interpolation methods. Figure 6 illustrates for example the currently
implemented mapping to and from the coupling mesh in 2d for forces and displacements on the fluid side. Forces
are mapped from the fluid grid to the coupling mesh and displcements vice versa from the coupling mesh to the
fluid grid. This mapping is conservative with respect to the total force exerted on the structure and consistent with
respect to displacements that is mapping a constant displacement on the coupling mesh to a constant displacement
on the respective boundary of the fluid grid2

(a) Conservative mapping from solver nodes (empty circles) to
coupling mesh nodes (filled circles). The geometric position of
the solver nodes is projected orthogonally onto the nearest trian-
gle (dashed lines). By usage of the parametric description of the
projected point, i.e. the description by barycentric coordinates, the
data value of the projected point can be decomposed and interpo-
lated onto the triangle nodes (dotted lines). The sum of the forces
stays constant.

(b) Consistent mapping from coupling mesh nodes (filled circles)
to solver nodes (empty circles). The geometric position of the
solver nodes is projected orthogonally onto the nearest triangle
(dashed lines). By usage of the parametric description of the
projected point, i.e. the description by barycentric coordinates,
data values are fetched according to their weight from the triangle
nodes (dotted lines). The sum of the fetched data values is as-
signed to the corresponding orthogonally projected solver nodes.
The sum of data values is different on coupling and solver grid,
but the mean value stays constant (in the sense of a consistent
mapping).

Figure 6: Conservative mapping from solver grid nodes to coupling mesh nodes (a), and reversed consistent
mapping from coupling grid nodes to solver grid nodes (b).

More specialised mapping methods as required for higher order solver discretisations, for example, have to be
2Since all our examples have been computed with a coupling mesh identical to the surface mesh of the structure solver Adhoc Düster et al.

(2004), data mapping methods on the structure side are still work in progress.
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(a) Domain with circle decomposed into Cartesian
quadtree-cells. The leaves of the quadtree are marked as
empty (white fill) if the circle does not intersect with the
quadtree cell or marked as full (grey fill), if the circle in-
tersects the quadtree cell. Empty cells are not refined any
more, while full cells are refined up to a given level.

(b) Tree representation of the domain decomposition from
(a). Circles represent refined quadtree cells, squares leaves.
The filled squares on the bottom correspond to the leave
cells in (a), which are marked by a dash-dotted line. The
legend on the top left shows the correspondence of tree
nodes to quadtree-cells in (a).

Figure 7: Quadtree example.

implemented by the user itself.

One general functionality that is essential for any kind of data mapping methods, however, can be used in all
cases: In order to find the ’mapping goal’, that is the closest coupling mesh triangle for an arbitrary solver grid
node, a nearest neighbour search has to be performed. The computational complexity of a neighbour search is
O(N · M), where N is the number of fluid nodes and M the number of coupling mesh nodes. Assuming the
number of fluid and structure nodes to be in the same order of magnitude, we would have to solve a problem that
has a computational complexity growing quadratic with the number of nodes. This is not a severe problem for
coupling surfaces with a moderate number of unknowns that is for simple geometric objects contained in a fluid
flow domain with a much higher amount of unknowns to be solved for. However, it can prolongate the simulation
time of a coupled problem unnecessarily, when very fine resolutions for rather large coupling surfaces are needed
such as in the case of domains with flexible boundaries in combination with turbulent flows, for example.

In order to speed up the neighbour search process, we introduce an octree, the 3d variant of a spacetree. Figure 7
illustrates the basic concept of the octree: the spatial domain is recursively decomposed into regular subquadrants,
but only at elements intersected by the coupling mesh. The recursive refinement is stopped by some maximal depth
criteria. The leaves of the octree data structure contain references to the triangles and nodes of the coupling mesh
which are (partly) contained in the subquadtrant represented by the respective leave.

Now, the neighbourhood information is already available in the octree and the number of triangles to be checked
can be reduced to the ones contained in octree leaves neighbouring the considered solver grid node. It is not
sufficient to only look at the octree cell containing this grid node. In addition, also the direct neighbour cells need
to be considered since a point at the boundary of the octree cell might have a closer neighbour in a neighbouring
octree cell, than in the one it is located in. However, these cells can be efficiently identified in a top-down run over
the octree. This concept reduces the computational complexity to O(N log M) and leads to a negligible runtime
requirement for the neighbour search compared to that of the fluid solver, for example Daubner (2005); Brenk
et al. (2008). The octree functionality is provided to the user of FSIdce in a library (see Sect. 3.1). Hence, he can
implement the mapping functionality for the solvers with less efforts.

3.4 Coupling Strategies

FSIdce currently incorporates several standard coupling schemes offering a solution procedure for the partitioned
coupled problem in time. It includes a staggered weak (i.e. explicit) and a strong (i.e. implicit) coupling scheme
with interface iterations. Independent from the coupling scheme chosen, subcycling can be applied for one or both
solvers. In addition, non-coupled pre-computations can be performed by one solver, which will be done by the
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fluid solver in a typical FSI scenario to achieve a physically realistic initial state. Figure 8, 9, 10 and 11 illustrate
and describe these coupling schemes.

Taking advantage of the client-server concept described in Section 2, all the coupling schemes are implemented
in the coupling supervisor, saving the user from having to implement coupling schemes themselves and in the
solvers, which would result in the need to re-implement the coupling strategy after each solver exchange. The
solvers only have to provide a few function calls to the coupling supervisor, which is much easier and incurs much
less implementation efforts. We describe the work to be done by the user in the next section treating the application
user interface (API) if FSIdce.

3.5 Coupling Application Programming Interface (API)

Although the implementation work in the solvers to be coupled with FSIdce is kept to a minimum by the client-
server based approach, there are still modifications to be done in a solver being prepared for coupled simulations
with FSIdce. The essential functionalities to control the coupled simulation are bundled in the coupling API,
which is shown in listing 1. The first three functions initiate and register a solver with the coupling supervisor,
exchange the coupling mesh and relevant data such as the time step length computed, and finalize the contact to the
coupling supervisor. The last three functions are there for the solver to query the state of the coupled simulation.

vo id F S I I n i t ( ) ;
vo id FSI Da ta Exchange ( t i m e S t e p L e n g t h ) ;
vo id F S I F i n a l i z e ( ) ;

i n t F S I I s n e w i n t e r f a c e v a l u e s ( ) ;
i n t F S I I s i m p l i c i t c o n v e r g e d ( ) ;
i n t F S I I s r u n n i n g ( ) ;

Listing 1: FSIdce coupling API, allowing the solver to be controlled by the coupling supervisor. Function param-
eters are mostly omitted.

Listing 2 shows the main parts of a solver code. A time stepping loop contains the determination of the length of
the next time step, the computation of the flow field of the next time step and the storage of these new values. The
second and third step must be separated if a strong coupling scheme is chosen, since the interface iterations require
not to advance in time before the convergence of the iterations.

whi le ( more t ime s t e p s )
S e t t ime s t e p l e n g t h
Compute v a l u e s o f n e x t t ime s t e p
S t o r e v a l u e s o f n e x t t ime s t e p

end whi l e

Listing 2: Main parts of a solver code.

The coupling API can now be integrated into this code as shown in Listing 3. Obvious are the calls to FSI Init()
and FSI Finalize(), which must take place before and after the time stepping loop. The duration of the
solver’s simulation is now controlled via the function FSI Is running(). Since reading data from the coupling
mesh might have an impact on the computation time, the function FSI Is new interface values() can
determine, whether new interface values have been obtained or not. A solver performing pre-computations or
subcycling (see Sect. 3.4) does not receive new interface values in every solver-local computation step. A similar
function could prevent the writing of coupling data to the coupling mesh, but is not yet implemented. Then, the call
to FSI Data exchange() performs the actual communication of the state of the simulation and the coupling
mesh with the coupling supervisor. The computed time step length is sent to the coupling supervisor, which in
turn computes a new maximal time step limit for the next time step communicated back to the solver. Note that
the solver is always allowed to compute a time step shorter than that proposed by the coupling supervisor, since
solver-internal time step length limitations, such as the CFL criterion for a fluid solver, are unknown to the coupling
supervisor, but still need to be respected by the solver. The function FSI Is implicit converged() must
be used, when an implicit coupling scheme is applied. The convergence test is performed within the function
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Figure 8: Basic weak coupling scheme with staggered solution procedure. The dashed lines indicate the time axis
for each solver. The solution procedure starts at time t(n), where n denotes the time step, with solver B sending
its initial interface values a(n) to solver A (this step can be omitted, if solver A is supplied with proper initial
interface values). Solver A computes its next time step t(n + 1) and sends the obtained interface values b(n + 1)
to solver B, which in turn advances to the next time step.

Figure 9: Strong coupling scheme with interface iterations. The dashed lines indicate the time axis for each solver.
The solution procedure starts with solver A (but could equally start with solver B) at time t(n). Solver A computes
a first prediction b(n + 1), for solver B’s interface values of the next time step and sends it to solver B. B uses the
obtained prediction to compute itself a prediction a(n + 1) for solver A’s interface values and returns it to solver
A. This procedure continues (next would be solver A to compute b(n + 1)), with both solvers always using the
most current interface values, until convergence of the interface values is achieved. Then, solver A and solver B
can advance simultaneously to time step t(n + 1).

Figure 10: Subcycling solver B combined with a strong coupling scheme. The dashed lines indicate the time axis
for each solver. The solution procedure follows the description of Figure 9, with a difference for solver B when
advancing to the next time step. Then, solver B computes non-coupled time steps (indicated by circles filled with
lighter color) always using the interface values obtained by A at time t(n) until it reaches time t(n + 1). Only
then a new interface iteration starts. Subcycling can be equally combined with any other of the discussed coupling
schemes.

Figure 11: Pre-computations performed by solver B prior to the coupled simulation. (The dashed lines
indicate the time axis for each solver). Pre-computations can be used to obtain physical meaningful initial values
for the solver starting the computation of the coupled problem.
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FSI Data exchange() by default (but can be specialized by the user) and checks the convergence of the
interface values of both solvers involved in the coupled simulation.

F S I I n i t ( )
whi le ( F S I I s r u n n i n g ( ) )

i f ( F S I I s n e w i n t e r f a c e v a l u e s ( ) )
Read c o u p l i n g d a t a from c o u p l i n g mesh

S e t t ime s t e p l e n g t h
Compute v a l u e s o f n e x t t ime s t e p
Wr i t e c o u p l i n g d a t a t o c o u p l i n g mesh
F S I D a t a e x c h a n g e ( )
i f ( F S I I s i m p l i c i t c o n v e r g e d ( ) )

S t o r e v a l u e s o f n e x t t ime s t e p
end whi l e
F S I F i n a l i z e ( )

Listing 3: Coupling API integrated into a solver code.

Having done the implementation tasks described here enables the coupling supervisor to completely control the
coupled simulation. A user can choose between all the coupling schemes implemented in the coupling supervisor,
without any additional changes in the solver code.

4 Numerical Examples

We computed several FSI scenarios with FSIdce as coupling tool. To realize the partitioned simulations, we used
our fluid solver F3F and the structure solver AdhoC4 Düster et al. (2004), which is developed at the Chair for
Computation in Engineering of the Civil Engineering department at TU München. F3F was initially developed
to simulate the phenomena of blister formation in boiling liquids by Emans (2003), but then extended to perform
partitioned coupled FSI simulations in Brenk (2007) and Gatzhammer (2008). It is a finite volume based solver
for the incompressible Navier-Stokes equations and works with Cartesian grids. Geometies are represented by the
marker-and-cell approach introduced in Harlow and Welch (1965). The Cartesian grids in combination with the
marker-and-cell approach are perfectly suited for fixed grid approaches to FSI problems, and allow arbitrarily large
deformations with even topology changes.

Figure 12 shows visualizations of the flow field with the geometry discretised on the Cartesian grid and by the
surrounding coupling mesh.

(a) (b)

Figure 12: FSI coupling test case of a bending tower in a channel flow. Snapshot (a) is taken at the beginning of the
simulation, while snapshot (b) is taken after the tower has started to bend in flow direction. In (b), the velocities at
the Cartesian mesh nodes are visualized by vectors.

We tested the implicit coupling scheme with a channel flow driving the movement of a spherical obstacle inserted
into the flow. The resulting forces in flow direction are shown in Figure 13. The jumps in the force values (marked
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by arrows) are due to the discretization of the obstacle on the Cartesian grid, which allows for step-wise movements
only. The resolution of the grid chosen was rather low. Hence, there are significant oscillations. However, it is
visible that these jumps lead to oscillations for the explicit scheme especially in the right end of the figure, and the
discrete movements of the obstacle occur at different times, since the jumps are not synchronized for explicit and
implicit methods.

Figure 13: Comparison of the forces acting on a free moving sphere in a channel flow computed by an implicit and
an explixit coupling scheme.

Finally, we set up a three-dimensional scenario for quantitative comparisons with the benchmark scenario as pro-
posed by Hron and Turek (2006). The preparations to compute this scenario are currently still work in progress.
Thus, we only show a screenshot of the setup of the benchmark in Figure 14. The fixed cylinder obstacle is mod-
eled by the fluid solver internally, while the deformable cantilever attached to it is coupled to the structure solver
AdhoC. In the figure, the coupling mesh is displayed as overlay on the cantilever.

Figure 14: Setup of an FSI benchmarking scenario with fixed cylinder and deformable and coupled cantilever
attached to it.

5 Outlook

Currently, we improve the data mapping from the solver grids to the coupling mesh, with the goal to completely
encapsulate the data mapping functionality into FSIdce. The task is a library-like mapping component, where the
user can choose the mapping algorithm and only needs to implement some API calls into his solver codes. This
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approach does not prevent the user from implementing specialized mapping strategies, to pertain the error order of
high order mesh elements, for example. What changes, is the place the user has to implement this functionality,
which is shifted from the solver to the coupling tool. There, a component based strategy is chosen, which allows
other users to reuse implemented mapping schemes and, thus, further enhances the value of FSIdce.

The component based direction is also in the focus of our work on other parts of FSIdce such as the data structure
used to exchange data between the coupled solvers, which must not be limited to a triangulated surface mesh. In
particular, we are working on a generalization of our coupling tool to arbitrary multi-physics problems, which is
a natural step in the sense that the functionality FSIdce provides should not only be solver independent, but also
independent of the characteristics of the physical domains considered.

A topic will to address in the near future is the parallelisation of the data mapping between solver and coupling
mesh. Due to the encapsulation of the data mapping functionality into FSIdce, this task can be completely taken
from the users of FSIdce. Hence, a simulation program does not have to take care whether the access to the
coupling data structure is parallel or not.

Future goals are the implemention of multigrid schemes with coupling on all grid levels and the realisation of
grid based partitioned FSI simulations. These capabilities are necessary to simulate very large FSI problems as
occurring in the simulation of very large floating structures, for example.

6 Summary

In Section 2, we showed the motivation to develop a new coupling tool, which is the lack of a well designed
coupling tool exploiting the inherent flexibility of partitioned coupled simulations. Thanks to the client-server
concept for coupling the solvers and an additional mesh instance representing the coupling surface, the solvers
can be hidden from each other and, as a consequence, can be kept free of any direct dependency on each other.
The localisation of all coupling related functionalities into an additional software unit, the coupling supervisor,
minimises the implementation efforts on the user side, since it allows to reuse all functionality such as coupling
schemes for all solvers coupled with the help of FSIdce. The tasks remaining for the user of FSIdce are the
implementation of the calls to the coupling API prescribed by FSIdce and an implementation of the mapping
to and from the coupling mesh. The latter one can be simplified a lot by using the supplied neighbour search
functionality, which delivers the closest neighbouring points and triangles on the coupling surface efficiently due
to the octree acceleration.

Furthermore, we presented three examples for advanced coupling schemes in Section 2, which are the method
of Localized Langrangian Multipliers, an implicit coupling scheme with reduced order models, and a multigrid
scheme coupling all mesh levels together. We showed that, due to our coupling concept, the efforts undertaken by
a user to employ one of those coupling schemes are kept minimal, provided the coupling schemes are supported
by the external coupling unit. A comparison of different coupling methods is then relatively easy to achieve and
allows to gain further flexibility and adaptability to the specifics of a coupled problem.

In Section 3, we showed the current structure and functionality of our coupling tool. We explained the structure of
the coupling mesh employed to transport interface data between the solvers. Crucial for a user is the support for
data mapping, which is given in the form of neighbour search functionality accelerated by an octree data structure.
We also presented the coupling schemes supported by FSIdce, which are an explicit and an implicit coupling
scheme with interface iterations. In addition, subcycling and pre-computations can be applied, which give further
flexibility to realise FSI simulations.

Finally, in Section 4, we gave some examples of test scenarios computed with our coupling tool. Further validation
is necessary, especially a benchmark scenario allowing to perform quantitative comparisons of results in order to
fully prove the capabilities of our coupling tool.
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Düster, A.; Bröker, H.; Heidkamp, H.; Heißerer, U.; Kollmannsberger, S.; Krause, R.; A.Muthler; Niggl, A.;
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Reference Test Cases for Fluid-Structure Interaction Studies

J. Pereira Gomes, H. Lienhart

The swiveling motion of a flexible structure immersed in a flowing fluid can become self-excited as a result of
different fluid-structure interaction mechanisms. The present study aimed to identify and decouple the different
fluid-structure interaction self-exciting mechanisms and to understand the influence of the physical parameters
on the different exciting processes. The parameters involved the fluid viscosity, the incoming fluid velocity and
the geometric and mechanical properties of the structure. To achieve this goal, the two-dimensional self-excited
periodic swiveling motion of flexible structures was investigated in both laminar and turbulent uniform flows. The
results obtained for a specific structure model are presented. It consisted of a 0, 04 mm thick stainless-steel mem-
brane attached to a cylindrical front body. At the trailing edge of the flexible membrane, a rectangular mass was
considered. The entire structure model was free to rotate around an axle located in the central point of the front
body. During the experimental investigation, the general character of the dynamic response of the structure model
was first investigated as a function of the incoming flow velocity. The tests in laminar flows were performed in a
polyglycol syrup (dynamic viscosity: 1, 64 × 10−4 m2/s) to maintain the Reynolds number smaller than 270. The
tests in turbulent flows were conducted in water for Reynolds numbers up to 44000. In both cases, the maximum
incoming velocity tested was 2 m/s. Subsequently, the relevant fluid-structure self-exciting swiveling modes were
characterized in more detail as far as the flow velocity field and structure deflection modes are concerned. Thus,
detailed measurements are presented at 1, 07 m/s and at 1, 45 m/s in laminar and at 0, 68 m/s in turbulent flows.
The measurements were performed using a particle image velocimetry (PIV) system complemented by a time-phase
detector to obtain accurate time-phase resolved measurements and aimed at the flow velocity and also the structure
deflection. In this way, it was possible to characterize the flow velocity field and also the deflection of the structure
over an entire period of the motion.

1 Introduction

The mechanisms which lead the vibration of a flexible structure immersed in a flowing fluid to become self-excited
are very difficult to predict and, at the same time, very sensitive to the mechanical properties of the structure and
to the properties of the incoming flow. If a structure swivels in a flowing fluid, the added damping can become
negative as a result of different mechanisms by which energy is transferred from the flow to the body. In such cases,
the overall damping of the structure-fluid system decreases and, in some cases, completely disappears, resulting
in a periodic coupled unsteady movement of the flow and structure motion. Depending on whether the fluctuation
of the flow plays a significant role in the excitation process or not, the excitation is called either flow-induced or
movement-induced excitation (MIE). In the case of flow-induced excitation, one can further distinguish between
the extraneously-induced and instability-induced excitation (EIE and IIE).

From the numerical point of view, these self-excitation problems have attracted increasing interest in computational
mechanics due to their practical relevance in many fields of engineering and in many other sciences (Naudascher
and Rockwell (1980), Naudascher and Rockwell (1994); Souli and Hamdouni (2007)). The numerical simulations
require coupling algorithms between computational fluid dynamics (CFD) and computational structural dynam-
ics (CSD) which are not yet considered as validated tools (Bungartz and Schäfer (2006)). In this respect, the
present investigation aimed to reproduce the self-excited coupled cyclic movement of relatively simple but mean-
ingful two-dimensional structures in uniform flows. The primary objectives of these controlled experiments were
to identify, and decouple, the different fluid-structure interaction self-exciting mechanisms and to understand the
influence of the physical parameters on the different exciting processes for a relatively simple structure geometry.
The parameters involved the incoming fluid characteristics and the geometric and mechanical properties of the
structure. The present study also investigated both laminar and turbulent flow regimes, to account for the influence
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of the Reynolds number on the self-exciting process. To control the Reynolds number and the flow velocity inde-
pendently, the viscosity of the test liquid was controlled during the tests. Second, the experimental investigation
addressed the need for experimental data on reference test cases. It provided a reliable data base on specific, well-
defined reference test cases to be used as a diagnostic and validation tool for numerical models for fluid-structure
interaction simulations. The data base created from these reference test cases included the time-phase resolved
characterization of the flow velocity field and the mechanical behavior of the structure, such as its deflection,
principal deflection modes, periodic motion amplitude and frequency. The present paper reports the results of the
experimental investigation performed on one of the investigated structure models in both laminar and turbulent
flows.

2 Experimental set-up

2.1 Test definition

The project aimed to characterize the resulting two-dimensional periodic swiveling motion of relatively simple
flexible structures driven by uniform incoming laminar and turbulent flows. The project requirements for period-
icity and reproducibility of the resulting flow and structure motion imposed stringent restrictions on the selection
of models to be considered. Moreover, the set of models to be tested should make it possible to understand the
influence of different parameters such as shape, mass and momentum of inertia on the fluid-structure interaction
self-excitation mechanisms. Finally, a set of models mainly consisting of a flexible panel attached to a free rotating
front solid cylinder was considered. The present paper shows the results obtained for one of that set of selected
models (figure 1). It consisted of a 0, 04 mm thick stainless-steel sheet attached to a 22 mm diameter aluminum
cylindrical front body. At the trailing edge of the membrane, a 10 mm × 4 mm rectangular stainless-steel mass
was located. All the structure was free to rotate around an axle located in the central point of the front cylinder.
Both the front cylinder and the rear mass were considered rigid. The flexible section of the structure proved to
show linear mechanical behavior within the range of forces acting on it during the tests and the Youngs modulus
was measured as 200 kN/mm2. The overall spanwise direction of the model was chosen to match the dimensions
of the test section to guarantee the two-dimensionality of the test case.

Figure 1: Structure model geometry (all dimensions in mm).

The tests were conducted in a vertical, closed-loop tunnel capable of operating with different viscous liquids with
a kinematic viscosity up to 5 × 10−4 m2/s. The special capability of the tunnel to operate with different viscous
liquids allowed control of the Reynolds number of the tests for the same inlet flow velocity. For the investigation
in the laminar regime, polyethylene glycol (polyglycol) PG-12000 syrup was used as the test fluid. Because the
physical properties of this kind of syrups are sensitive to the liquid temperature, this value had to be controlled
during the tests. The tests were finally conducted for a controlled temperature of 25 ◦C with an uncertainty of 0, 5
◦C. Within this temperature range, the mixture could be considered incompressible and Newtonian; its kinematic
viscosity and density were measured to be constant at 1, 64 × 10−4 m2/s and 1050 kg/m3, respectively. On the
other hand, the tests in turbulent flows were conducted in water at a temperature of 22 ◦C +0◦C

−1◦C (ρw = 998 kg/m3;
νw = 0, 97 × 10−6 m2/s). For both the laminar and turbulent regimes, the test were performed for a flow velocity
range up to 2 m/s.

The test section has an overall length of 338 mm and a cross-sectional area of 180 mm × 240 mm. The structure
was mounted 55 mm downstream of the inlet plane of the test section. Opting for a vertical tunnel, the gravity
force was aligned with the x-axis and so it did not introduce any asymmetry. The experiment domain of the tests is
represented in figure 2. Special attention was given to the model support on the test section. Low-friction bearings
were used for this specific task to guarantee a frictionless rotational degree of freedom of the front cylinder. The
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Figure 2: Experimental domain.

supporting system also considered a non-contacting magnetic position sensor to measure the angular position of
the structure front cylinder. The output of this sensor was used during the test to measure the time-dependent angle
of the structure front body and to determine the beginning of a new model swiveling motion period.

2.2 Measuring apparatus

The specific requirements of the present project imposed several challenges when it came to acquiring the experi-
mental data and to reconstruct them. The first difficulty was that measurements were performed in different liquids
with a wide range of viscosity. The others were related to the nature of the resulting movement observed in periodic
fluid-structure interaction problems. First, the periodicity of the structure motion is sensitive to the flow conditions
and structure mechanical properties; therefore, there are cycle-to-cycle variations of the period time. Second, the
velocity of the structure within a motion period is not predefined (as it is for crank shaft-driven set-ups), which
makes it impossible to reconstruct the time-phase resolved data from position-resolved measurements. To over-
come those problems, a particle image velocimetry (PIV) system connected to an in-house designed time-phase
detector was implemented to obtain accurate time-phase resolved measurements of the resulting coupled structure
and flow motion in a wide range of viscous liquids. The time-phase detector was developed based on a 1 MHz
absolute clock to provide a detection accuracy of 2 μs. During the tests, two signals were detected and recorded:
the internal triggering signal of the PIV cameras to indicate the instant of the measurement and the signal of a
magnetic angular position sensor connected to the structure to indicate the beginning of a new swiveling cycle.
Thus, the measurements were reconstructed introducing the time-phase angle tpa = (t/T ) × 360 ◦ where T is
the period of the structure swiveling motion and t is the delay of the measurements with respect to the beginning
of the cycle. The measurements were resolved in the time-phase space with a resolution of 2, 5 ◦ within an angle
averaging slot of ±0, 5◦. The task of measuring the two-dimensional flow field around the model was performed
using a PIV system that consisted of two 1280 pixel ×1024 pixel synchronized cameras and a double-head pulsed
Nd:YAG laser with a wavelength of 532 nm. Opting for the solution of two parallel cameras, it was possible to
cover an extended 272 mm ×170 mm flow field area while keeping the spatial resolution as low as 133 μm ×133
μm per CCD pixel. The measurement location was set to the center plane of the test section (z = 0 mm; see figure
2). Two laser sources were used to illuminate the flow. This solution was adopted because the flexible structure
was an opaque body which creates an unsteady dark shadow region when illuminated by just one light source. This
behavior not only reduced the measuring area to almost one side of the flexible structure, but also made the mask-
ing of the PIV images in post-processing difficult to perform. Using one laser source to illuminate each side of
the structure, the dark region behind the structure was extinguished and all the flow surrounding the structure was
accessible to PIV measurements. As seeding particles, 10 μ m mean diameter hollow glass spheres were chosen to
be used in water. They provided a good match of density and enough scattering signal over the all the measuring
area. During the laminar tests, in polyglycol syrups, silver-coated hollow glass spheres with the same diameter
were adopted as seeding particles. They produce higher signal levels in high light-absorbing media compared with
non-coated hollow glass spheres. The major drawback of the silver-coated glass spheres is related to their density;
the relative density of this kind of particles is about 1, 4. Nevertheless, this drawback was acceptable because of the
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high viscosity of the fluid and the velocity of the flow during the tests. To determine the position of the structure,
the PIV system was modified to provide it with structure deflection analysis capabilities. The idea behind this
set-up was to use the PIV system to acquire images from the swiveling structure and to use specially developed
software to analyze and reconstruct the time-dependent deflection of the structure. The major advantage of this
approach was that the same measuring system as used for the velocity field measurements could be employed. The
cameras were now located in such a way as to acquire images of the flexible structure illuminated by the laser
sheet from each side of the model. No seeding was used during these tests. Quantitative analysis was performed
after image acquisition in Matlab workspace by a script developed for the specific task. The software analyzed
and compared the PIV images of both sides of the model and reconstructed the time-dependent image of the light
sheet reflected by the structure. For that purpose, it mapped the pixel value in the grayscale of the entire image
and detected the line resulting from the intersection of the laser sheet and the structure and the edges of the rear
mass. With the information on the position of the membrane and on the time-phase detector module, the algorithm
finally computed all the relevant time-phase resolved data of the structure movement, such as time-phase resolved
angle of attack of the front body, structure deformation shape and coordinates of the structure trailing edge. Based
on these data, the modes present in the structure were identified and characterized. More detailed descriptions
of the measurement techniques and their adaptation to the present task are given elsewhere (Gomes and Lienhart
(2006a); Gomes and Lienhart (2006b)).

3 Results

To assist the understanding of the results, they are divided according to the flow regime. Thus, in section 3.1 the
results obtained in the laminar regime are presented and in section 3.2 the results in turbulent flows. For each
regime, the structure model was first tested at different incoming flow velocities up to 2 m/s. These results defined
the general character of the dynamic response of the structure model as a function of the incoming flow velocity
and showed the different swiveling modes exhibited by the structure. In the second stage, detailed measurements
were conducted at selected velocities to characterize each combined flow and structure swiveling mode, and sec-
tion 3.1 includes detailed measurements obtained in laminar flow at 1, 07 m/s and 1, 45 m/s. In turbulent flows,
detailed measurements were performed only for one approaching flow velocity, 0, 68 m/s. These measurements
are presented in section 3.2.

3.1 Results in laminar flows

Figure 3 shows the dynamic response of the structure in laminar flows. The Reynolds number, based on the
diameter of the front cylindrical body, reached the maximum value of 270 at 2 m/s. At very low flow velocities, it
was not possible to identify any kind of motion. On increasing the flow speed, it was observed that the minimum
velocity needed to excite the movement of the structure varied slightly from test to test. Nevertheless, in all cases
it was possible to achieve a periodic cyclic swiveling motion for velocities slightly smaller then 1 m/s. It should
be mentioned that as soon as the structure started to swivel, its motion frequency coincided with the line in figure
3 independently of the velocity value at which the movement started. From the instant that the structure started
to swivel and for all the range of velocities tested, the resulting motion proved to be symmetric and periodic. The
RMS value of the cycle-to-cycle structure motion period was measured to be less than 1%.

The most obvious aspect revealed by figure 3 is the existence of two distinctive structure swiveling motion modes
separated by a pronounced, well-defined hysteretic region. For both swiveling modes, the frequency of the resulting
motion increased linearly with the velocity of the incoming flow. Whereas the frequency increased with the flow
velocity, the amplitude of the structure motion showed a maximum value for each swiveling motion mode. The
first swiveling mode, registered for incoming flow velocities up to approximately 1, 1 m/s, was characterized by the
fact that the deflection of the structure model was strongly governed by the first bending mode of the membrane. In
connection with this, the movement of the rear mass was in concordance with the movement of the front body. The
second swiveling mode, observed for incoming velocities higher than 1, 3 m/s, was characterized by the fact that
the rear mass motion is in opposition to the movement of the structure front body. At the same time, higher bending
modes were present in the deflection of the structure. The conclusion about the deflection modes exhibited by the
structure was supported by visualizations performed during the tests at different flow speeds. Within the transition
region, from 1, 1 m/s to 1, 3 m/s, the structure presented a hysteretic behavior where both swiveling modes could
be observed depending on the previous frequency of the structure. In both cases, a delay of the movement of
the rear mass in relation to the front body was identified. This delay is a consequence of the flexibility of the
membrane and it is a function of the mechanical properties of the structure. After identifying the two different
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Figure 3: Structure swiveling frequency (a) and structure front body swiveling peak-to-peak amplitude (b) versus
incoming flow velocity (solid squares correspond to measurements acquired while increasing and open squares
while decreasing the flow velocity).

self-excited swiveling modes of the flow-structure system, each was characterized in more detail. To this end, two
flow velocities, 1, 07 m/s and 1, 45 m/s, were selected as representative of the swiveling modes. Both values are
located close to the velocity of the maximum structure amplitude excitation (figure 3(a)).

Results at 1,07 m/s

In the following figures, the characterization of the structure movement for an incoming flow velocity of 1, 07 m/s
is shown. At this velocity, the Reynolds number is approximately 140, based on a front body diameter of 22 mm
and a kinematic viscosity of the polyglycol syrup of to 1, 64× 10−4 m2/s.
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Figure 4: Time-phase resolved front body angle within a period of motion at 1, 07 m/s (Re ≈ 140).

Figure 4 shows the evolution of the angle of the structure front body within the swiveling motion averaged period
and figures 5 and 6 present the successive positions of the structure membrane and the coordinates of the trailing
edge during the same period. The time-phase resolution in figure 5 was set to 30 ◦ whereas that used for figure
6 was 5◦. As far as the flow field surrounding of the structure model is concerned, figure 7 compiles the time-
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Figure 5: Membrane deflection within a period
of motion at 1, 07 m/s (Re ≈ 140).
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Figure 6: Trailing edge coordinates within a period of
motion at 1, 07 m/s (Re ≈ 140).

phase resolved combined flow field and structure deflection at eight instants of the reference swiveling period.
The successive results indicate that the movement of the trailing edge is in-phase, but delayed, with respect to the
movement of the front body. This delay could be quantified by comparing the time-phase resolved angle of the
front body with the y-coordinate of the structure trailing edge. Thus, at 1, 07 m/s the delay of the trailing edge with
respect to the front body movement, as time-phase angle, was computed to be approximately 60 ◦.

136



x [mm]

y
[m

m
]

-25 0 25 50 75 100 125 150 175 200 225

-75

-50

-25

0

25

50

75

mag [-]
1.5
1.3
1.1
0.9
0.7
0.5
0.3
0.1

(a) tpa=0◦
x [mm]

y
[m

m
]

-25 0 25 50 75 100 125 150 175 200 225

-75

-50

-25

0

25

50

75

mag [-]
1.5
1.3
1.1
0.9
0.7
0.5
0.3
0.1

(b) tpa=45◦

x [mm]

y
[m

m
]

-25 0 25 50 75 100 125 150 175 200 225

-75

-50

-25

0

25

50

75

mag [-]
1.5
1.3
1.1
0.9
0.7
0.5
0.3
0.1

(c) tpa=90◦
x [mm]

y
[m

m
]

-25 0 25 50 75 100 125 150 175 200 225

-75

-50

-25

0

25

50

75

mag [-]
1.5
1.3
1.1
0.9
0.7
0.5
0.3
0.1

(d) tpa=135◦

x [mm]

y
[m

m
]

-25 0 25 50 75 100 125 150 175 200 225

-75

-50

-25

0

25

50

75

mag [-]
1.5
1.3
1.1
0.9
0.7
0.5
0.3
0.1

(e) tpa=180◦
x [mm]

y
[m

m
]

-25 0 25 50 75 100 125 150 175 200 225

-75

-50

-25

0

25

50

75

mag [-]
1.5
1.3
1.1
0.9
0.7
0.5
0.3
0.1

(f) tpa=225◦

x [mm]

y
[m

m
]

-25 0 25 50 75 100 125 150 175 200 225

-75

-50

-25

0

25

50

75

mag [-]
1.5
1.3
1.1
0.9
0.7
0.5
0.3
0.1

(g) tpa=270◦
x [mm]

y
[m

m
]

-25 0 25 50 75 100 125 150 175 200 225

-75

-50

-25

0

25

50

75

mag [-]
1.5
1.3
1.1
0.9
0.7
0.5
0.3
0.1

(h) tpa=315◦

Figure 7: Time-phase resolved combined flow field/structure deflection measurements at eight different instants of
the swiveling motion period at 1, 07 m/s (Re ≈ 140).
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Results at 1,45 m/s

A similar set of measurements were performed for an incoming flow velocity of 1, 45 m/s, which corresponds to a
Reynolds number close to 190. At 1, 45 m/s, the structure exhibited a more complex and faster swiveling motion.
The resulting motion frequency was measured to be 13, 58 Hz and the maximum front body angular amplitude was
±22◦. In figure 8 the angle of the front body within the averaged period of motion is displayed. The time-phase
delay of the trailing edge excursion in relation to the front body movement increased to about 210 ◦.
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Figure 8: Time-phase resolved front body angle within a period of motion at 1, 45 m/s (Re ≈ 190).

Figures 9 and 10 show the time-phase resolved position of the structure membrane and of the structure model
trailing edge within the averaged swiveling motion. Now the collection of the membrane deformations display
a pronounced node, indicating the existence of higher bending modes in the structure deflection. In figures 9
and 10, time-phase angle resolutions of 30◦ and 5◦ were used. Regarding the unsteady flow field results, figure 11
presents the velocity field around the structure for eight, 45 ◦ equally distant, time-phase angles within the reference
movement cycle.
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Figure 9: Membrane deflection within a period
of motion at 1, 45 m/s (Re ≈ 190).
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Figure 10: Trailing edge coordinates within a period of
motion at 1, 45 m/s (Re ≈ 190).
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Figure 11: Time-phase resolved combined flow field/structure deflection measurements at eight different instants
of the swiveling motion period at 1, 45 m/s (Re ≈ 190).
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3.2 Results in turbulent flows

In the turbulent regime, using water as the working fluid, the structure proved to have the same well-defined multi-
swiveling mode behavior as observed in laminar flows. Figure 12 presents the dynamic response of the structure
versus the incoming water flow velocity up to 2 m/s (Re ≈ 44000). Now the structure could be excited to a peri-
odic swiveling motion at very low flow velocities. Visualizations showed that this first excited mode corresponded
to the rigid body motion mode, i.e. the structure swiveled in the fluid around its free rotating axle without changing
its original and straight shape. Because it corresponded to the rigid body motion, this mode was named the zero
swiveling mode. As an example of this zero mode, figure 13 shows the structure behavior at approximately 0, 19
m/s in water. A swiveling mode transition was registered for a flow velocity close to 0, 4 m/s. The transition
between modes is abrupt and it was not possible to observe either any evolution of the structure motion during the
transition or any hysteretic behavior. In the new swiveling mode, the structure deflection was dominated by the first
bending mode of the membrane. The behavior of the structure in this mode is all respects similar to the first swivel-
ing mode observed in laminar flows. For both swiveling modes shown in figure 12, the amplitude of the structure
movement was limited and exhibited a local maximum value. The structure movement frequency increased ap-
proximately linearly with the velocity of the incoming flow in both modes. The only exception occurred in the first
mode at approximately 0.6 m/s where a change in slope was registered because of a phase-locked occurrence. On
further increasing the incoming flow velocity, an unusual behavior was observed: as soon as the amplitude of the
structure started to decrease, after reaching the local maximum, the motion characteristics degraded very rapidly.
This effect was supported by the RMS value presented in figure 12. The coupled movement became non-periodic
and non-symmetric and led to a rapid destruction of the structure. Therefore, no measurements could be obtained
for flow velocities higher than 0, 9 m/s. This sequence of facts occurred when the structure swiveling frequency
was showing the first signals of transition to a new, second swiveling mode. In the range in which the structure
movement is periodic and reproducible, up to 0, 9 m/s, the RMS value of the cycle-to-cycle motion period remained
lower than 1%.

flow velocity [m/s]

P
ea

k-
to

-p
ea

k
am

pl
itu

de
[d

eg
]

0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

zero swiveling mode

1ST swiveling mode

(a)

flow velocity [m/s]

sw
iv

el
in

g
fr

eq
ue

nc
y

[H
z]

0 0.5 1 1.5 2
0

2

4

6

8

10

12

14

16

18

20

(b)

Figure 12: Structure swiveling frequency (a) and structure front body swiveling peak-to-peak amplitude (b) versus
incoming flow velocity (solid squares correspond to measurements acquired while increasing and open squares
while decreasing the flow velocity).

Despite the trivial rigid body mode, the only self-exciting swiveling mode that could be characterized in detail
using the present structure configuration was the first one. Therefore, further investigations were performed in a
water flow at 0, 68 m/s. The decision regarding that velocity followed the same criteria as used for the laminar
investigations.
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Figure 13: Time-phase resolved front body angle (a) and membrane deflection (b) within a period of motion at
0, 19 m/s.

Results at 0,68 m/s

At 0, 68 m/s, the Reynolds number of the measurements performed in water was about 15000, based on the diam-
eter of the front cylinder and on the water properties. Under such conditions, the structure exhibited a 4, 45 Hz
periodic swiveling motion with the rear mass delayed, in time-phase angle, 95 ◦ in relation to the front body. Once
again, the characterization of the resulting movement is based on the angle of the structure front body, trailing
edge position and structure deflection. Figures 14 to 16 show the time-phase resolved evolution of these quantities
within the averaged period of motion. The same resolutions as used to generate the laminar results were used in
the following figures.
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Figure 14: Time-phase resolved front body angle within a period of motion at 0, 68 m/s (Re ≈ 15000).

Figure 17 shows the flow velocity field results obtained in water at 0, 68 m/s for eight successive time-phase angles
measured within a period of the structure motion. The time-phase angles presented correspond to those adopted in
section 3.1.
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Figure 15: Membrane deflection within a period
of motion at 0, 68 m/s (Re ≈ 15000).
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Figure 16: Trailing edge coordinates within a period of
motion at 0, 68 m/s (Re ≈ 15000).

4 Discussion of the results

The self-excited two-dimensional movement of a flexible structure in a uniform flow up to 2 m/s was investigated.
The tests included laminar measurements performed in a polyglycol syrup with a kinematic viscosity of 1, 64 ×
10−4 m2/s and turbulent measurements conducted in water. The structure model consisted of a thin metal sheet
attached to an aluminum front cylindrical free rotating body. At the trailing edge of the metal sheet, a rear mass
was located. During the tests, this model proved to perform a very reproducible and symmetric two-dimensional
motion within the flow velocity range tested. The maximum RMS value of the cycle-to-cycle fluctuation of the
structure movement period was measured to be less than 1%.

The analysis of the structure model dynamic response proved the existence of different structure swiveling modes.
In the laminar regime, it was possible to observe two swelling modes depending on the approaching flow velocity.
For both modes, the structure movement frequency increased linearly whereas the front body amplitude presented
a local maximum. The maximum excitation occurred for 1, 1 m/s and 1, 6 m/s for the first and second excitation
mode, respectively. The corresponding movement frequencies for these two instants of maximum excitation were
measured to be around 6, 5 Hz and 15 Hz. The first mode was excited for the first time at 0, 8 m/s. For this
flow velocity, the corresponding Strouhal number (St ≈ 0, 175) and the first natural frequency of the structure
(N1 = 5, 9 Hz) showed a strong interconnection between the movement excitation and the classical von Karman
vortex shedding triggered by the structure front cylinder. Despite a small delay, the trailing edge movement could
be considered in phase with the angular movement of the front body. Concerning the deflection of the structure, this
mode was characterized almost exclusively by the existence of the first bending mode. At 1, 07 m/s, the structure
vibrated around its first natural frequency; more precisely, the coupled fluid and structure unsteady motion was
registered to occur at 6, 38 Hz associated with a maximum excursion of the front body and trailing edge of 19 ◦ and
16 mm, respectively.

The transition to the second, more complex mode was observed between 1, 12 m/s and 1, 3 m/s and it showed a
strong hysteretic behavior. A similar behavior has already been reported by Parkinson and Smith (1964) and Novak
(1972) for square cross-section prisms in cross flow. The second swiveling mode was characterized by a vortex
shedding frequency much lower than the second natural frequency of the structure (N 2 = 27, 4 Hz), indicating a
self-exciting mechanism of a different type than the first one. The trailing edge was now almost in phase opposition
in relation to the front body position and the structure deflection was mainly characterized by the second structure
bending mode and higher. The presence of the second bending mode justified the pronounced node observed in the
structure deformation within a movement period. At 1, 45 m/s, the front cylinder reached a maximum deflection
of 26◦ and the trailing edge excursion was limited to 19 mm.
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Figure 17: Time-phase resolved combined flow field/structure deflection measurements at eight different instants
of the swiveling motion period at 0, 68 m/s (Re ≈ 15000).
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In the turbulent regime, one more mode was observed for very small inlet flow velocities. The lowest mode
to be excited in water was the rigid body mode (referred to as the zero swiveling mode). This mode started
to be observed at a very small approaching velocity and it was characterized by small structure deflections and
movement frequencies. The maximum rigid body excitation was registered for 0, 2 m/s at the same time as the
structure swiveled at about 1, 1 Hz. The transition to the first self-excitation mode was registered at about 0, 4
m/s and no hysteresis was observed. In this mode, the maximum excitation of the structure was achieved for
0, 8 m/s corresponding to a movement frequency of 5 Hz. Detailed measurements at 0, 68 m/s registered a 4, 45
Hz self-exciting resulting motion associated with a maximum excursion of the front body and the trailing edge
of 29◦ and 25 mm, respectively. Finally, at 0, 9 m/s, the structure start to give indications of a swiveling mode
transition; however, beyond this value it was not possible to register the dynamic behavior of the structure model.
On increasing the velocity, the resulting movement of the model became unstable and non-reproducible, finally
leading to the failure of the structure.

In a similar way as for the first laminar swiveling mode, a direct connection between the movement excitation and
the classical von Karman vortex shedding behind the structure front cylinder was proved to exist. This is supported
for the first swiveling mode observed in turbulent flows by the relation between the first natural frequency of the
structure (N1) and the turbulent Strouhal number (St ≈ 0, 21). The same direct relation was observed for the rigid
body swiveling mode (or rigid body mode) on comparing the Strouhal number and the rigid body natural frequency
of the structure (N0 = 0, 19 Hz).

Based on the results, one can conclude that the first swiveling mode is similar in nature in both the laminar and
turbulent regimes. The main differences between the two are only connected with the fact that for turbulent flow
the damping of the coupled system was significantly reduced. Thus, for the second case, higher excursions from
the trailing edge and front body and also higher deflection of the flexible part of the structure were observed.
Because of the lower damping imposed by the fluid, the structure was exposed to higher accelerations during
its swiveling movement in the turbulent tests. Another difference appears when comparing the movement of the
structure trailing edge. At higher Reynolds number, the area covered by the ”figure-of-eight” shaped trajectory
was considerably bigger than that obtained in the laminar tests. This is related to the delay registered between the
rear mass and the front body movement. In both cases, the movement of the rear mass could be considered to
be in concordance with the front cylinder rotation, but the delay increased with the Reynolds number: whereas at
Re = 140 the delay was measured to be close to 60◦, at Re = 15000 it reached 95◦.

Comparing both self-excited coupled motions, one may conclude that both are triggered by the vortex shedding
created around the front cylinder. Because the natural frequencies of the structure are constant and the Strouhal
number is not so sensitive to the Reynolds number in the range 140-15000, the resulting movements have the
same response as far as frequency of the movement versus approaching flow velocity is concerned. Considering
all evidences, it can be concluded that both first swiveling modes correspond to instability-induced excited fluid-
structure interaction cases. The same applies to the rigid body mode observed in the turbulent tests. In the laminar
regime, a similar rigid body mode could not to be registered. The excitation process responsible for the second
mode observed in laminar flow is more difficult to examine. However, the first results indicate strongly that this
mode can be attributed to movement-induced excitation.
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Européenne de Mécanique Numérique. Vol. 16 n ◦. 3-4.

Address: Institute of Fluid Mechanics, University of Erlangen-Nuremberg
Cauerstr. 4, 91058 Erlangen, Germany
email: jorge.gomes@lstm.uni-erlangen.de; hermann.lienhart@lstm.uni-erlangen.de

145



146



Fluid-Structure Interaction.
Theory, Numerics and Applications

pp. 147– 154

Herrsching am Ammersee, 29.9.-1.10.2008

Application of Monolithic Fluid-Structure Interaction to Identify
Hydroelastic Instabilities of a Slide Gate Chain in Axial Flow

B. Hübner

During operation of a bottom outlet with a closed slide gate and an opend roller-mounted gate, a high velocity
water flow (up to 80 m/s) occurs in the duct of the slide gate chain. The flow induces large amplidude chain vi-
brations perpendicular to the broadside of chain elements.In order to investigate the excitation mechanism and to
compare different cross-sectional shapes of the lifting device by means of numerical simulation, a simplified model
is developed. The chain is placed in the center of a square channel and modeled as a continuous plate structure
with reduced stiffness to account for joints between the elements. For numerical simulation, a monolithic coupling
of Navier-Stokes fluid dynamics and non-linear structural dynamics applies. The calculation model is based on a
unified space-time finite element method. Stability limits of the simplified chain structure are identified by means
of transient simulations with slowly increasing inflow velocity. In addition to the chain model with rectangular
cross-section, also a cable with circular cross-section, equal axial stiffnes, and low bending stiffness is regarded,
leading to a stability limit at higher inflow velocities. Thus, by using a cable instead of a chain for slide gate oper-
ation, the situation may be improved, but high amplitude flowinduced vibrations cannot be prevented completely.

1 Introduction

In most freshwater reservoirs, a bottom outlet is designed to empty the reservoir for maintenance reasons. At
high watermarks and the danger of dam overflow, it may also be used as an emergency outlet. The present paper
regards a bottom outlet in which a slide gate and a roller-mounted gate are arranged subsequently. During normal
outlet operation, the slide gate is closed, and the roller-mounted gate starts to open. Now, the water is flowing
11 meters in upward direction through the slide gate duct before it is flowing back in an additional duct and
passing the roller-mounted gate. When the roller-mounted gate is half opened, the water flow inside the slide gate
duct reaches a certain but not exactly known velocity which induces high amplitude vibrations of the slide gate
chain perpendicular to the broadside of chain elements. Theunstable system behavior remains when the roller-
mounted gate is fully opened. In this case, a flow velocity of approx. 80m/s has been measured in the duct of
the slide gate chain. Figure 1 shows a view into the duct including the chain. The overall length of the duct is
50 meters, but only the lower 11 meters are filled with water.

Figure 1: View into the duct of the slide gate chain
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Goal of this work is to study the excitation mechanism and to compare stability limits of lifting devices with dif-
ferent cross-sectional shapes to find an improved solution for slide gate operation. For this purpose, a simplified
model of the coupled system suitable for numerical simulations is developed and described in section 3. Previ-
ously, the numerical solution procedure for analyzing strongly coupled fluid-structure interaction is summarized
in section 2. Numerical results for a chain like structure with rectangular cross-section and an alternative cable
structure with circular cross-section and very low bendingstiffness are compared in section 4.

2 Numerical solution procedure

For numerical simulation of the coupled system in time domain, a monolithic coupling of incompressible Navier-
Stokes fluid dynamics and geometrically non-linear structural dynamics applies. The solution procedure is based
on a unified space-time finite element method which is described in detail by Ḧubner et al. (2004). The formulation
of viscous fluid dynamics in moving domains follows the work of Tezduyar et al. (1992a) and Tezduyar et al.
(1992b). The simultaneous solution procedure is applied byHübner and Dinkler (2005) to identify hydroelastic
instabilities of a fluid-conveying cantilevered pipe system which has been defined and experimentally investigated
by Päıdoussis and Semler (1998).

The governing equations for both solid and fluid are formulated in velocity variables and discretized with stabi-
lized and time-discontinuous space-time finite elements leading to a rate formulation of structural dynamics, see
Knippers and Harbord (1994) and Hughes and Hulbert (1988). Acontinuous finite element mesh applies to the
entire spatial domain. Hence, velocity variables at the interface belong to both fluid and structural domain, fulfill-
ing the coupling conditions automatically. The discretized model equations are assembled altogether in a single
set of algebraic equations, considering the two-field problem as a whole. The space-time finite element method
provides a consistent discretization of both space and time. By applying isoparametric space-time elements, which
are adaptable in time direction, the method discretizes model equations in moving domains in a natural way and
satisfies inherently the geometric conservation law, see Lesoinne and Farhat (1996). At discrete time levels, the
interpolation of velocity, stress and pressure variables is discontinuous in time using independent degrees of free-
dom for the values at the end of the previous and at the beginning of the actual time slab. This time-discontinuous
Galerkin formulation results in a fully implicit time integration scheme which is A-stable and of third-order accu-
rate, see Johnson (1993). A Petrov-Galerkin stabilizationof space-time elements prevents numerical oscillations
in case of convection dominated flows and allows the application of equal order interpolations for velocities and
pressure. The mixed-hybrid velocity-stress formulation of structural elements prevents all kinds of locking effects.

The highly nonlinear system of discretized model equationsfor solid and fluid dynamics as well as the movement
of the fluid mesh has to be solved iteratively. Due to the application of a continuous finite element mesh for the
entire domain, a monolithic formulation of solid and fluid ina single system of algebraic equations is obtained. A
Picard iteration scheme linearizes all equations, leadingto a relatively simple fixed point type solution procedure.
Subsequently, the mesh movement procedure based on a pseudo-elastic approach applies. Thus, the entire set of
model equations for solid, fluid, and fluid mesh movement is solved in a single iteration loop. In case of strong
structural nonlinearities, the iteration is accelerated by applying a relaxation scheme for the calculation of structural
displacements. For the relaxation parameter, values between 0.7 and 1.0 are appropriate in most cases. For solving
the large sparse system of linearized equations, a preconditioned BiCGStab solver is used. However, a major
difficulty is the choice of appropriate preconditioning methods. The matrix is not diagonally dominant and may
be ill-conditioned if different scales are present in fluid and structure. Therefore, a direct LU-factorization of the
system matrix is used for preconditioning during a variablenumber of time steps. When system characteristics
change significantly, the system matrix has to be factorizedagain.

3 Modeling of chain and cable structure in axial flow

In order to investigate flow induced vibrations and to find an improved design for the slide gate lifting device, the
existing chain structure is compared with a cable model. A clear advantage of the cable is the non-existence of bolt
connections which therefore cannot be destroyed by large amplitude vibrations, but the bending stiffness is much
smaller and may lead to a lower stability limit or higher amplitudes. However, the contact surface for the flow is
smaller and the flow around the vibrating cable is more complex. Therefore, a simplified model of the coupled
system suitable for efficient numerical analyses is regarded to compare stability characteristics of chain and cable
structure. Both lifting devices are placed in the center of awater filled quadratic channel, see figure 2, and modeled
as elastic solids with adapted stiffness properties to approximately account for the real structural behavior.
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Figure 2: System configuration of the simplified model

3.1 Channel flow

For the flow simulation, an incompressible and viscous fluid including buoyancy effects is assumed and described
by the instationary Navier-Stokes equations. At the lower end of the channel (inlet), a slowly increasing inflow
velocity is imposed byv(t) = 40m/s + t · 0.5m/s2. At the upper end of the channel (outlet) zero pressure
boundary conditions apply, see figure 2. With a density ofρ = 1 t/m3 and a viscosity ofµ = 10−6 t/(m s), the
Reynolds number based on the channel width isRe = 4 ·107 for a flow velocity of40m/s. Thus, the flow field
is clearly turbulent. However, turbulence modeling is not taken into account, since boundary layers are very thin
compared to the cross-sectional dimensions, and the velocity distribution over the cross-section is nearly constant.
Moreover, the determination of friction losses is not considered in this investigation, and the onset of instabilities
which is mainly governed by inertia effects may even be predicted by a potential flow theory, see e.g. Paı̈doussis
(1998) and Päıdoussis (2004). Furthermore, the non-linear time domain simulation of the coupled system over a
large period with a small time step of∆ t = 0.005 s has to be performed with a comparable coarse fluid mesh in
order to get reasonable simulation times.

Therefore, slip boundary conditions apply at channel walls, and only at the fluid-structure interface, no-slip con-
ditions are present allowing for the development of a boundary layer. However, for the applied meshes (see next
section), the boundary layer thickness of the simulation model is mainly defined by the thickness of the first fluid
element layer at the interface which is in the range of the maximum thickness of the real turbulent boundary layer.
Thus, the simplified flow model allows for a proper approximation of the real velocity profile in the slide gate duct.
In order to prove that viscosity and boundary layer effects including the wall shear stress only have little influence
on stability characteristics of the coupled system, the (laminar) viscosity is 10-fold increased, and the result is
compared to the original case.

3.2 Chain with rectangular cross-section

The original chain is modeled as a beam like plate structure with rectangular cross-section and discretized with
3-dimensional solid elements for geometrically non-linear elastodynamics. From the entire chain, only the lower
part which is immersed in water is regarded. At the upper end where the chain is cut off, a sliding support with
fixed rotation applies, and at the lower end where the slide gate is attached, a clamping is placed. To account for
the joints between chain elements, Young’s modulus of the elastic solid, given byE = 108 kN/m2, is reduced
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to approximately half the value of steel. However, keep in mind, that also the real chain has a finite bending
stiffness against deflections perpendicular to the broadside. For density and dead load, the real values of steel
of ρ = 7.8 t/m3 andγ = 78 kN/m3 apply. Beside the damping due to flow effects, only a very small volume
proportional damping coefficient ofb = 0.01 t/(m3 s) acts on the structure. The system configuration with all
dimensions of the simplified chain model is given in figure 2. For numerical analyses, symmetry is considered to
reduce the model size, see finite element mesh of a cross-sectional plane in figure 3.

Figure 3: Cross-sectional mesh for the chain model

3.3 Cable with circular cross-section

Also for the alternative cable structure, symmetry conditions apply, and only half of the model is discretized, see
the finite element mesh of a cross-sectional plane given in figure 4. However, this restricts the solution to in-plane
vibration modes, even though three-dimensional vibrationshapes are quite possible in case of circular cables.
Upper and lower boundary conditions as well as the coupling to the fluid domain are equal to the numerical model
of the chain structure. The cable diameter ofD = 0.09m is chosen to match approximately the cross-sectional
area of the chain model. In order to model real cable behaviorexhibiting high axial stiffness and very low bending
stiffness by means of an elastic solid, different Young’s moduli are used in the center and at the outer region of
the cross-section. For the two elements in the center of the symmetric mesh, a value ofEi = 1.26 ·109 kN/m2

applies. For the outer elements, a much smaller value ofEo = 107 kN/m2 is used. Now, the axial stiffness of
EA = 7.2·105 kN is equal to the chain model, while the bending stiffness ofEJ = 65 kNm2 is clearly smaller.
The values for density, dead load and damping are taken from the chain model.

Figure 4: Cross-sectional mesh for the cable model

4 Comparison and evaluation of results

The simplified numerical model of the coupled system may not describe exactly the real physics of chain and
cable structure in the turbulent flow field of the slide gate duct. However, the simplifications are comparable for
both cases, and therefore, the numerical results allow a qualitative comparison of the sensitivity to flow induced
vibrations and hydroelastic instabilities. In order to determine the limit velocity for the occurrence of hydroelastic
instabilities leading to large amplitude vibrations, a horizontal impulse load is acting every 15 seconds on the
upper end of the structure, while the inflow velocity increases continuously. The first impulse load acts after
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one second of calculation time when a stationary flow field andan equilibrium state of the structure has been
developed. The stability limit is given by the point in time at which the vibration amplitudes due to the impulse
load start to increase. When the first impulse load acts at40.5m/s inflow velocity on the original chain model,
the structure responds initially with a damped vibration behavior. However, after 5.6 seconds of simulation time at
v = 42.8m/s inflow velocity, the dynamic behavior changes and the systemgets unstable. See figure 5, where time
histories of horizontal displacements at center and upper end of the chain model are shown for the first 12 seconds
of simulation time. The vibration frequency which is increasing continuously with the inflow velocity, becomes
f = 1.4Hz at the stability limit. The chain model with 10-fold increased fluid viscosity exhibits nearly identical
stability characteristics. The stability limit is reachedat a flow velocity ofv = 43.2m/s, and the corresponding
frequency is given byf = 1.4Hz, too, see displacement time histories of the entire calculation in figure 6. Thus,
it can be concluded that boundary layer effects have only minor influence on stability characteristics which are
mainly governed by inertia effects.
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Figure 5: Time histories of horizontal displacements near to the satbility limit for the chain model
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Figure 6: Time histories of horizontal displacements for the chain model with 10-fold fluid viscosity

In case of the cable structure, the impulse load induces muchlarger initial deflections in the stable regime, because
bending stiffness and flow resistance are clearly smaller. Nevertheless, the vibration due to the first impulse load
decrease nearly to zero, and the hydroelastic instability occurs much later. Atv = 50.0m/s inflow velocity, the
cable system tends to get unstable, but the amplitudes increase only slightly. The real stability limit exhibiting
strongly increasing amplitudes is first reached at an inflow velocity of v = 60.2m/s, see time histories of dis-
placements in figure 7. Stability limits and corresponding frequencies of all regarded models are compared in
table 1. Snap shots of the deformed cable structure during a single period of the coupled vibration are shown in
figure 8. The type of motion which is quite similar for the chain models can be classified as a kind of travelling
wave flutter, comparable to a flag in wind flow.
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Figure 7: Time histories of horizontal displacements for the cable model

model velocity at stability limit corresponding frequency
rectangular chain 42.8 m/s 1.4 Hz
chain (10-fold visc.) 43.2 m/s 1.4 Hz
circular cable (1st) 50.0 m/s 1.9 Hz
circular cable (2nd) 60.2 m/s 2.8 Hz

Table 1: Comparison of stability limits for chain and cable model

Although the bending stiffness of the cable model is clearlysmaller compared to the chain model, instability occurs
at much higher flow velocities. This behavior is caused by thedifferent cross-sectional shapes leading to different
flow situations. In case of the chain model, the flow is syncronized over the entire contact surface (broadside
of chain elements) leading to approximately two-dimensional flow behavior. In contrast, the contact surface of
the cable is clearly smaller and the circular shape causes a fully 3-dimensional and more complex flow situation.
This results in the favorable stability characteristics ofthe cable model, at least if only in-plane vibrations are
regarded. However, for both lifting devices, large amplitude flow induced vibrations have been detected within the
operating range of up to80m/s flow velocity. Nevertheless, the cable seems to have clear advantages over the
chain structure.

5 Conclusion

In order to find reasons for large amplitude flow induced vibrations of a slide gate chain and to look for an improved
design, numerical simulations of simplified chain and cablemodels have been performed and compared. The
simplified models consist of continuous elasic solids with adapted stiffness properties to approximately account
for the real behavior of chain and cable, respectively. An incompressible and viscous fluid has been assumed
without special attention on turbulence modeling. However, by comparing results for different viscosities, it has
been shown that boundary layer effects have very little influence on stability characteristics. For the transient
simulation of the strongly coupled system, a monolithic approach to fluid-structure interaction based on space-
time finite elements has been applied. Stability limits of43m/s and60m/s flow velocity have been detected
for chain and cable, respectively. Thus, by using a cable instead of a chain structure for slide gate operation, the
situation may be improved, especially because a cable does not feature bolt connections which can be destroyed
by strong vibrations. However, high amplitude flow induced vibrations cannot be prevented completely if the flow
velocity in the slide gate duct reaches values up to80m/s.
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A modular framework for gradient based optimization in partitioned analysis for fluid-structure interaction (FSI) is
presented. To guarantee flexibility for several technical applications of shape optimal design for structures subject
to fluid flow the software environment is designed for the Nested Analysis and Design (NAND) concept and parti-
tioned FSI schemes using three field analyses including structure, fluid mesh and fluid. The developed framework
provides the possibility to include and combine several approaches for optimization methods, shape definition and
sensitivity analysis.
For shape definition, parametric and non parametric methodsare discussed and illustrated by examples realized
within this framework. A special focus is set on the Updated Reference Strategy as an effective and efficient way
to obtain free form shapes of membranes for the design process. Incorporating this nonlinear form finding process
into the optimization frame allows for finding real free formsurfaces by using only a small number of optimization
variables. For applications using these shape definitions numerical and semianalytical sensitivity method are dis-
cussed. In particular, a numerical and a direct sensitivityanalysis method based on structural sensitivity equation
are presented. Examples using different shape definitions and sensitivity analyses are shown for verification of the
optimization framework.

1 Introduction and Motivation

In recent years good advances in FSI simulation have been made and optimization of FSI problems became a
in-demand research topic. Good experience with optimization methods on fluid and structure side influenced the
development of optimization of coupled systems (Thévenin and Janiga, 2008; Mohammadi and Pironneau, 2004;
Jameson, 2004, 1995; Bletzinger et al., 2008; Haftka and Grandhi, 1986; Arora and Wang, 2005). Several ap-
proaches towards the optimization in fluid-structure interaction exist (Sobieszczanski-Sobieski and Haftka, 1997;
Haftka et al., 1992; Bletzinger et al., 2006; Soto and Löhner, 2001; Lund et al., 2003; Maute et al., 2001, 2003).
Evolutionary algorithms are effective in finding global optima and simple to implement, but cause high compu-
tational costs because of slow convergence. Using gradientbased algorithms, the computational effort can be
extremely reduced. Gradients indicate the direction of a better solution and therefore fast convergence is achieved.
The crucial point is to obtain the gradient information needed for the optimization procedure. Various approaches
on numerical and semianalytical sensitivity analysis exist and will be discussed. For problems with low number of
optimization variables numerical approaches are adequate, but the numerical effort increases with increasing num-
ber of optimization variables. Since high shape freedom is guaranteed by higher number of optimization variables
in shape optimization, more complex methods are required here.
From the technical point of view, it is important whether partitioned or monolithic schemes are used. For big
technical problems which require the use of specific and welltested simulation tools the partitioned approach of-
fers the required modularity, but coupling of the single field codes becomes necessary. Basing optimization on a
partitioned scheme, coupling has to be done during the wholeprocess and therefore high demands arise in software
engineering.
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2 Requirements for Optimal Shapes of Lightweight Structures

2.1 Handling Lightweight Structures

The vision behind this work is simulation and shape optimization of large and lightweight structures interacting
with fluid flow, especially in the area of aerospace, mechanical and civil engineering. Wide span membrane roofs
and shell structures as well as inflatable and pressure dominated structures are typical applications in lightweight
construction. These types of problems cause large numbers of degrees of freedom and, therefore, require efficient
simulation tools. To introduce best suited codes for the single fields the partitioned approach guarantees the needed
modularity for big technically relevant problems. Section4 of this paper and reference (Gallinger et al., 2008) de-
scribe this approach. For the communication during runtimeand the data transfer between non matching grids
on the common interface a coupling tool is required. The hugenumber of degrees of freedom and the herewith
connected high computational effort in optimization renders gradient based algorithms indispensable. In section 3
additional information is given.
Towards shape optimization of these complex systems, optimization methods for optimal design of shell and
membrane structures subject to fluid flow have been developedfor a steady state solution with the aim to optimize
several practically relevant criteria like structural deformations and stresses. Correspondingly, displacement and
force formulations are chosen as objectives. The special case of compliance minimization is also considered re-
garding the possibility to design optimal stiffened structures with respect to a specific loading.

2.2 Guaranteeing Shape Diversity

In shape optimization a maximum freedom in shape design for shell and membrane structures and definition of
structural optimization criteria is focused. In general this also means the introduction of a huge number of design
variables and accordingly increasing numerical effort. Several methods to reduce this effort can be applied. This
can be done directly by reducing the number of design variables in an adequate way or by introducing adjoint
methods in sensitivity analysis.
For shells the Computer Aided Geometric Design (CAGD) method allows for a small number of design variables
by linking structural FE meshes to design elements. In this case, the connection between the FE-node locations
and the design variables is established by means of mathematical relations. Nevertheless, the design freedom is
strongly dominated by the choice of these relations. Therefore also CAGD free methods which guarantee the max-
imum design freedom by taking the nodal positions of the finite element mesh as design variables are needed. Then
a huge number of design variables arise. To overcome the resulting intense numerical effort the adjoint formulation
for sensitivity analysis must be introduced.
For structures acting as membranes mechanic based strategies are necessary. Here the Updated Reference Strategy
(i.e. a generally formulated form finding method) is presented as an effective and efficient way to obtain free form
shapes of membranes for the design process. Including the nonlinear form finding process into the optimization
frame allows for finding real free form surfaces by just usinga small number of design variables. This means
that although a non-parametric shape definition is used and efficient reduction of number of design variables is
achieved by applying a mechanics based criterion. Here, theform finding method is used as an effective non para-
metric shape description method to obtain free form shapes with a reduced number of optimization variables.
The provided design descriptions for the structural shape require multiple and flexible methods for sensitivity anal-
ysis. Numerical and semianalytical methods are required for applications using the shape definitions mentioned
above. Numerical methods are needed for free form membranes, since the form finding process is nonlinear and
inverse. Semianalytical direct methods are best suited forstructures defined by CAGD. For the CAD free opti-
mization semianalytical adjoint methods are required.
In section 6 and 7 shape description methods and sensitivityanalysis are discussed.

2.3 Developing a Modular Software Environment

The desired variety and flexibility to all these mentioned possibilities can be guaranteed in a modular framework
for gradient based optimization in partitioned analysis for fluid-structure interaction. To achieve the modularity and
flexibility for various problems of shape optimal design forstructures subject to fluid flow the software environment
is designed for the Nested Analysis and Design (NAND) concept and a partitioned FSI scheme using a three
field analysis including structure, fluid mesh and fluid. Thisinvolves the interaction of an optimizer, a coupled
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analysis and a coupled sensitivity analysis. Coupling and data transfer has to be extended to optimization and
the sensitivity analysis, resulting in special demands on the coupling tool. Finally, the developed framework
provides the possibility to include and combine different approaches for optimization methods, shape definition
and sensitivity analysis.
The code coupling plays a central role to ensure modularity in the use of fluid solvers as well as to handle coupled
sensitivity analysis. Therefore the development of an independent coupling tool was one of the main working
steps.
In section 5, the developed framework including the code coupling is presented.
Additionally, to enhance the powerful structural analysisand optimization tool CARAT it is a desired feature to
plug in and run a FSI analysis with any fluid code. Thus, the possibility to use an arbitrary fluid solver as blackbox
for the sensitivity analysis is exploited as far as possible, regarding reduction of numerical effort.

3 Gradient Based Optimization

In the following, the formulation and the solution strategyof the optimization problem is described. The optimiza-
tion problem can be stated as follows:

f(s) → min

such that gj(s) ≤ 0 j ∈ [1,m]

hj(s) = 0 j ∈ [m + 1,m + N ]

where sl ≤ sl ≤ s̄l s ∈ R
n

wheref ,gj ,hj are the objective function, the inequality and the equalityconstraints, respectively. They are func-
tions of s = (s1, · · · , sn)T which is the vector of the optimization variables. The existence of the constraints
changes totally the way to treat the problem. Consequently,constrained and unconstrained problems form two
big classes of optimization problems. Unconstrained optimization problems using gradient based methods are dis-
cussed in the sequel. On the one hand, these methods are more efficient, have better convergence rates and require
few evaluations of the objective function. On the other hand, derivative information has to be provided and because
of that problems might occur when the objective function hasdiscontinuities or kinks.
In general, gradient-based methods start with an initial guesss0 and in each iteration the solution is updated as
follows :

si+1 = si + αiDi

whereDi = Di(∇f(si);∇
2f(si)) ∈ R

n is the search direction andαi is the step size, which is usually calculated
with a line-search algorithm. Steepest descend algorithm is one of the simplest and most popular algorithms of
this class because of its efficiency and robustness. This algorithm is using the property of the “steepest descent” of
the negative gradient direction (D = −∇f(s)). The algorithm is as follows:

i Initialize i = 0 : s0

ii EvaluateDi = −∇s0
f

iii Updatesi+1 = si + αiDi

iv If i = k stop. maximum number of iterationsk is reached.
otherwise: convergence check

if converged stop
else:i = i + 1 go to ii.

The technical implementation of an optimization problem isdone using the Nested Analysis and Design (NAND)
approach (Arora and Wang, 2005). Typically, in each optimization step the objective has to be evaluated by per-
forming a full analysis with the actual design. Accordingly, the NAND consists of three independent modules,
optimization, analysis and sensitivity analysis, which are called successively during the iterations of the optimiza-
tion algorithm (figure 1). On the optimization level the design variables are updated. With the actual design the
objective is evaluated on the analysis level. Finally, using information from the analysis, the objective function gra-
dient for the next step can be calculated in the sensitivity analysis. The NAND approach provides high modularity
because of exchangeability of the modules.
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Figure 1: Concept of Nested Analysis and Design: Optimization, analysis and sensitivity analysis

4 Partitioned FSI Analysis

A three field analysis including structure, fluid mesh and fluid is performed. The fields are described by nonlinear
equations, which are coupled through state variables. For solving the corresponding discrete equations of structure
S(s, u, v, w) = 0, fluid meshM(s, u, v, w) = 0 and fluidF (s, u, v, w) = 0 a staggered approach is used. The
variables of the coupled discrete equations are: structuredisplacementu, fluid mesh positionw and fluid statev.
The structural problem is solved by a finite element method using an in-house computational tool called CARAT
(Wüchner et al., 2007; Ẅuchner, 2006), and the fluid mesh motion and the fluid problemsare solved by the finite
volume method using an open source library called OpenFoam (Jasak and Tukovic, 2007). The coupled problem
is solved to achieve a steady state solution. The data transfer between non-matching boundary meshes is done by
an in-house coupling tool called CoMA (Israel et al., 2007).
Detailed information on the coupling schemes and the software environment is given in (Gallinger et al., 2008).
For further information the reader can refer to (Ferziger and Períc, 1999; Wall, 1999; Felippa et al., 2001) .

5 A Framework for Gradient Based Optimization and Partition ed fluid-structure Interaction

5.1 Nested Analysis and Design for Partitioned Analyses

The challenging task is to combine properly the partitionedfluid-structure interaction approach and optimization
using the NAND approach. Since the analysis as well as the sensitivity analysis and the optimization module
concern fluid and structure field, all these modules need to communicate between each other according to the de-
veloped NAND method. In particular they need an individual coupling of fluid and structure field corresponding
to the information which has to be exchanged. The design of the framework is depicted in figure 2.
On the optimizer level the update of the design variables andtherefore the shape is done during the optimization
iterationsi. Each design change of the structure has to be passed to the fluid as a base for the next FSI analysis. On
this level information is just passed in one direction and due to the known design increment no iteration is needed.
Nevertheless the data transfer on the non matching meshes has to be taken into account. Since the design change
of the structure corresponds to a position update of the structural finite element nodal coordinates this transfer can
be performed similar to the transfer of structural displacements and therefore the same technique can be used.
The data transfer on the analysis level is done by transferring displacements from the structure to the fluid and
loads from the fluid to the structure. Iterations are necessary here and a convergence check has to be performed.
Each circle contains a full nonlinear or linear structural analysis.
Coupled sensitivity analyses can differ strongly. Data transfer on this level depends on the type of sensitivity
analysis. Numerical methods using external finite differences get gradient information from solving the coupled
system for reference and perturbed states. This means that the sensitivity analysis includes the perturbation of
the design variables and a FSI analysis for the perturbed state. The coupling information then is analogue to the
coupling information of the optimization and the analysis module, namely a design update and an iterative passing
of displacements and forces. In semianalytical approaches, the coupling data differs. By evaluating the objective
function gradient applying the chain rule terms corresponding to fluid and structure sides occur. These terms are
obtained in the respective codes by different methods. In general the data which has to be passed is derivative
information with respect to state variables or design variables depending on the type of semianalytical sensitivity
analysis. In section 7 detailled information about the coupled sensitivity analysis is given.
Finally, the framework is designed to be modular with regardto the possible combinations of different approaches
for optimization methods, shape definition and sensitivityanalysis. On the optimizer level the optimization algo-
rithms itself and shape definitions are defined and the user can choose between the available tools. On the analysis
level several techniques to perform a fluid-structure interaction simulation are implemented and can be chosen. As
sensitivity analysis numerical and semianalytical methods are possible.
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Figure 2: Optimization framework according to the NAND approach for partitioned FSI simulation

5.2 Code Coupling

To realize the coupling within the framework an independentcoupling tool called CoMA (Coupling for Multi-
physics Analysis) was developed. The main task of this tool is to perform communication between the codes and
data mapping between the generally non matching grids on thelevels of optimization, analysis and sensitivity
analysis, respectively. Since control is done by CoMA, any kind of optimization and coupling procedure can be
realized by simply modifying the encapsulated overall algorithmic strategy. To sum up, for any surface coupled
problem CoMA provides the following main features:

• Compatibility to various codes including black box software.
• Possibility to perform parallel computations.
• Data transfer between non matching grids by interpolation and conservative summation.
• Central datastructure for any mesh based quantities.
• Data exchange: file based or by MPI.
• Control of coupled computation and convergence control.
• Coupled sensitivity analysis.

For any further information on application of CoMA in coupled analysis the reader can refer to (Israel et al., 2007;
Gallinger et al., 2008) and for information about load and motion transfer to (Farhat et al., 1998; Farhat, 2004) A
special focus is set here on the ability to handle coupled sensitivity analyses by transferring sensitivity information
described in detail in section 7.4.

6 Shape Definition

6.1 CAGD Based Shape Optimization

State of the art in the field of structural mechanics is the separation of the geometrical model and the calculation
model. The geometrical model is based on CAD or CAGD and the structural model is the discretized version
of the CAD/CAGD model. The design variables for the optimization process are the geometry parameters of the
CAGD-model. Thus, high numerical efficiency is reached because of a low number of optimization variables.
As an example for a CAGD based shape optimization the shell structure depicted in Fig. 3 is chosen. The geometry
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is modeled by the use of Bezier Patches, whereas not more than10 variables are needed as optimization variables,
making use of the structural symmetry. The result shows the optimum shape within the possible domain for
maximum stiffness (Bletzinger et al., 2005; Haftka and Grandhi, 1986).

Figure 3: CAGD-model and optimal shape

6.2 CAGD Free Shape Optimization

A disadvantage of optimization based on CAGD models is that by the choice of the geometric design parameters
also a restriction of the design space and possible solutions is made. These restrictions can be overcome, if the
nodal coordinates of the finite element model are used as optimization parameters (Haftka and Grandhi, 1986;
Pironneau, 1984). Thus all possible solutions which can be described by the discretization chosen for analysis
can be achieved. Furthermore, by omitting the generally complicated selection of geometry based optimization
parameters and the herewith combined definition of a CAGD model the overall modeling and setup are simpler
and faster. However, parameter free optimization leads to avery high number of parameters. Figure 4 shows the
results of a parameter free optimization towards the maximization of stiffness of a thin cantilever shell made out of
metal loaded as shown.The model consists of approximately 500 design variables. The optimal shape (most right)
is reached after 19 iterations.

Figure 4: Shape optimization of a cantilever shell for compliance problem using the CAGD free method

6.3 Shape Optimization using Form Finding of Membranes

Membrane structures are very attractive alternatives to span large distances. They are light, elegant, and efficient.
The material is optimally used since the structures are subjected only to membrane tension stresses. The anisotropy
and distribution of pre-stress together with the choice of edge cable lengths and forces as well as the position of
supports define the overall shape and appearance of the structure. The art of form finding is to play with these
parameters to find the shape of the membrane, which is naturally defined by the equilibrium of the surface and
edge cable forces. The idea is closely related to the determination of minimal surfaces so the resulting shapes
are physically inspired (“soap film analogy”). Mathematically spoken, the task is to determine geometrical shapes
solving an inverse mechanical problem. This results in singular expressions during the numerical solution of
the principle of virtual work. To overcome this problem several form finding methods were developed. Within
this contribution, the updated reference strategy (URS) issuccessfully used. The basic idea of the URS is the
modification of the originally singular virtual work expression (δWσ = 0) by adding a stabilizing partδWS (in
terms ofPK2 stressesS rather than Cauchy stressesσ). These are formulated in that way, that they fade out as the
solution is approached and the original, unmodified solution is received. The complete weak form of the stabilized
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form finding scheme (URS) states as follows:

δWλ = λ δWσ + (1 − λ) δWS

= λ



h

∫

A

detF
(
σpre · F

−T
)

: δF dA





+ (1 − λ)



h

∫

A

(F · Spre) : δF dA



 = 0

(1)

For more details the reader can refer to (Bletzinger et al., 2005, 2006, 2008; Ẅuchner and Bletzinger, 2005;
Wüchner, 2006).

Figure 5: Membrane formfinding by URS: Initial geometry and minimal surface

The concept of optimizing a membrane structure can have manyperspectives. For instance, form finding and
structural optimization can generate optimal shapes inspecting the optimization problem from different views.
On the one hand form finding is restricted on membrane and shell structures and determines the shape from an
inverse formulation of equilibrium due to a given stress distribution acting on the deformed structure. Control
variables that could influence the final shape are the prestress ratio between the membrane and the cables, the
coordinates of the supports, i.e. the Dirichlet boundary conditions. But form finding doesn’t introduce a way to
investigate the relation between the control variables andthe external loading.
On the other hand, structural optimization determines the shape from a combination of different criteria that can
be chosen according on the different needs of the problem. But in order to control the shape of a membrane many
design variables are needed and consequently the solution becomes complex and computationally expensive. Fur-
thermore, a quite intuitive relation has to be chosen between the design variables (linking rule) which depends on
each specific problem.
Combining form finding and optimization we can achieve both:physically inspired shapes and a systematic treat-
ment of the control variables. With this way we decrease the number of design variable and we obtain a control
of the total structure with only a few significant design variables by still omitting an a priori fixed mathematical
relation (like in CAGD) which leads to “real” free form shapes. As a result, we have a physical linking between
the design variables and the total computational time is reduced significantly.
In the following, the “form finding enriched shape optimization in FSI” is described (figure 6). The shape of the
membrane structure is computed by the URS. More precisely, after every update of the design variables form find-
ing is performed to smoothen the shape and update the design.As design variables the control parameters of form
finding are used. These are e.g. the distribution of prestress of the membrane and the edge cables or the position
of the supports.

Figure 6: form finding enriched shape optimization in FSI
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7 Multifield Sensitivity Analysis

7.1 Direct and Adjoint Approaches in Multifield Semianalytical Sensitivity Analysis

Optimization in fluid-structure interaction means minimizing the objective functionψ and in addition fullfilling
the governing equations of structure, fluid mesh and fluid (Bletzinger et al., 2006; Barcelos and Maute, 2008;
Barcelos et al., 2006; Maute et al., 2001, 2003; Soto and Löhner, 2001; Sobieszcanski-Sobieski, 1990; Löhner,
2008; Etienne and Pelletier, 2005).

ψ(s, u, w, v) → min

S(s, u, w, v) = 0

M(s, u, w, v) = 0

F (s, u, w, v) = 0

(2)

S(s, u, w, v), M(s, u, w, v) andF (s, u, w, v) are the the coupled system discrete equations corresponding to struc-
ture, fluid mesh and fluid. These equations depend on the design variabless and the state variables of structure
u, fluid meshw and fluidv, which again are dependent on the design. A gradient based optimization method
requires the computation of the objective function gradient ψ with respect to the design variabless. Therefore a
consistent sensitivity analysis formulation has to be based on the coupled system discrete equations. To obtain the
desired gradient numerical approaches are costly because for each design variable at least two objective function
evaluations have to be performed and therefore are recommended only for a small number of design variables. For
bigger problems a analytical or semianalytical sensitivity analysis becomes indispensable.
Like state equations the objective function generally depends on the design variabless and the state variables
of structure, fluid mesh and fluid. Accordingly, the gradientof the objective functionψ with respect to design
variabless is written as

dψ

ds
=

∂ψ

∂s
+

∂ψ

∂u
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ds
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ds
(3)

In analytical and semianytical methods the terms are determined individually. Here∂ψ
∂u

, ∂ψ
∂w

and ∂ψ
∂v

are known by
the definition of the objective function and are in general easy to obtain. The state variable derivativesdu

ds
, dw

ds
and

dv
ds

are the unknowns and have to be obtained by additional equations.
Using the so called direct sensitivity method the unknowns can be determined directly by using the sensitivity
equations, derived from the governing equations for structure, fluid mesh and fluid, respectively.
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(4)

A nonlinear equation system arises from these equations andcan be solved in a staggered manner for the state
variable derivatives. Then, the objective function gradient is computed as a byproduct of the solution of the
sensitivity equations which is the derivative of the state variables.
Alternatively the adjoint sensitivity method can be used byformulating the optimization problem as a constraint
problem. The Lagrange function which has a stationary pointat the optimum can be developed as follows. Here
the discrete equations for structure, fluid mesh and fluid aretaken as equality constraints andλu, λwandλv are the
corresponding Lagrange multipliers, which can be identified as adjoint variables.

L = ψ + λT
u S + λT

wM + λT
v F → stat (5)

The solution can be determined by variation ofL leading to
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(6)
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and resulting in the following highly nonlinear set of equations for the adjoint variables and the coupled system
equilibrium.




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
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

 (7)

Again, numerical solution techniques using a staggered scheme e.g. according to the nested analysis and design
approach can be applied. Then, in the analysis level the equilibrium is guaranteed and the state variables are
determined and used for linearization of the adjoint system.
It can be identified that for direct methods the amount of solution procedures depends on the number of design
variables whereas the system of equations of the adjoint method has to be solved once and its size depends on the
number of constraints. Therefore direct methods are used for problems with small number of design variables.
On the contrary adjoint methods are used for high number of design variables and small number of equations.
Independent of using direct or adjoint method the crucial point is the determination of the partial derivatives of
the discrete state equations with respect to the state variables, which are necessary for solving for either the state
variable derivative or the adjoint variables. In section 7.3 a solution method based on the structure sensitivity
equation is presented.

7.2 A Numerical Sensitivity Analysis for FSI

In pure numerical sensitivity analysis the objective function gradient is computed using finite differences according
to the common schemes like central, forward or backward finite differencing by calculating the objective function
for reference and perturbed states. Since numerical effortincreases quickly by extending the design space numer-
ical method are used when only small numbers of design variables are needed.
The first approach presented in this work is a numerical method which exploits the possibility of doing finite dif-
ferences by solving the coupled system for a reference and a perturbed state. The objective function gradient is
computed as

dψ

ds
=

ψ(upert, vpert, wpert, s + ε) − ψ(uref , vref , xref , s)

ε
(8)

The Accuracy of the gradient is very good in general and of course depends on the size of the perturbationε, which
is specific for the application and has to be carefully chosenby the user.
Figure 7 illustrates the technical implementation of the numerical method for iteration stepi of the optimization
procedure.x are the coordinates of the mechanical model, i.e. the finite element nodal coordinates, which depend
on the design variabless. With a defined perturbation on the design variable the objective can be calculated on
the resulting mechanical model by performing a FSI analysis. Knowing objective values for the reference and
the perturbed state the gradientdψ

ds
can be approximated. By shape description using mathematical relations like

CAGD the dependencydx
ds

is known. Using mechanics motivated shape descriptions like form finding it generally
has to be determined numerically.

Figure 7: flowchart of numerical sensitivity analysis
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7.3 A Direct Sensitivity Analysis based on Structural Sensitivity Equation

The second approach is a direct sensitivity analysis methoddeveloped for the structural analysis and optimization
tool CARAT. The possibility to develop sensitivities on thestructural side are far as possible and to use a fluid
solver including fluid mesh as black box is exploited. Doing this the partial derivatives of fluid mesh and fluid state
equations remain unknown and therefore the corresponding sensitivity equations are not available to solve for the
derivatives of the state variables. Instead, an analysis tool to compute fluid mesh and fluid state variablesw andv
from the structural displacementu and the design variabless is applied. The equations to be solved reduce to the
structural sensitivity equation (first equation of equation 4), which has the size of a structural solution and for a
linear structure is written in term of the stiffness matrix K,

K
du

ds
=

dK

ds
u −

dv

ds
(9)

The unknowndu
ds

is computed in an iterative procedure illustrated in figure 8for the optimization stepi. The
structural equation is derived semianalytically, using finite difference approximations fordv

ds
and dK

ds
. The term

dv
ds

could be obtained numerically by performing a FSI analysis for a perturbed state, but efficiency would not be
gained in comparison with a numerical method. Therefore an iterative procedure reducing effort by performing a
pure CFD analysis was developed. Actually,dv

ds
is obtained by using the coupled system steady state as a reference

and by passing the displacement field, which is expected froma design perturbationε to the fluid solver to compute
a perturbed state: Using the state variable derivativedu

ds
from the previous sensitivity analysis iteration stepj − 1

the displacement field with respect to a design changeε for the actual iteration stepj can be predicted as:

ui,j,pert
Γ = ui,j,ref

Γ +
du

ds

i,j−1

ε (10)

Since this displacement field results from a perturbed design the corresponding shape has to be passed additionally
to the fluid solver:

xi,j,pert
Γ = xi,j,ref

Γ +
dx

ds
ε (11)

With known displacements a pure CFD analysis gives the fluid state variables for calculatingdv
ds

numerically as

dv

ds
=

v(ui,j,pert
Γ , xi,j,pert

Γ ) − v(ui,j,ref
Γ , xi,j,ref

Γ )

ε
(12)

and consequently the structural sensitivity equation

Ki du

ds

i,j

=
∂Ki

∂x

dx

ds
ui −

dv

ds

i,j

(13)

can be solved for the state variable derivativedu
ds

, which is used in the subsequent iteration step. To obtain good
accuracy very few iterations are needed. With the convergedvalue the gradient is computed according to equation
3.

7.4 Coupled Sensitivity Analysis

Special attention should be payed to the coupling within thesensitivity analysis resulting from the partitioned ap-
proach. It was mentioned before that the type of coupling data to be transferred between the non matching grids
depends on the type of sensitivity analysis and that for the semianalytical approach the coupling data is derivative
information. Using the sensitivity equations for a semianalytical sensitivity analysis the partial derivatives appear-
ing in the equation are extracted from the respective codes and always correspond to the individual discretization
of the domains. Solving according to the direct or the adjoint method requires a format defined by the sensitivity
equations. Therefore sensitivities indicating structural behavior w.r.t. fluid variables and vice versa have to be
transferred and transformed to the required size by the coupling tool CoMA according to equation 14.τ denotes
the transfer operation on the common surface and the indicesS, M andF indicate the discretization of the state
variables corresponding to the respective fields.
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Figure 8: flowchart of direct sensitivity analysis based on structural sensitivity equations.

8 Applications

8.1 Designing a Half Sphere Shell Structure subject to FluidFlow

For verification of the framework, for testing and comparingthe numerical and direct sensitivity analysis a first
academic example was computed. It is a linear half sphere shell structure in a viscous laminar flow (Re = 25).
The structure is computed with CARAT using shell elements, the fluid flow is computed with OpenFoam and the
coupling is performed with CoMA. The system setup is shown infigure 9. A steady state flow is reached deforming
the structure as shown in figure 10 scaled by the factor 5.

Figure 9: Setup of a half sphere shell structure in fluid flow

Figure 10: Deformation of a half sphere shell structure in fluid flow

165



The structure design is described by the CAGD concept using one single design element representing the whole
geometry of the structure. The design element is controlledby one parameter, the total height of the structure.
Thus, the finite element nodes which always lie on the design elements surface are linked to this CAGD parameter.
Modifying the height parameter the finite element nodes movein the same ratio as the highest point in vertical
direction, causing a flattening or a growth of the shell.
The CAGD parameter is chosen as optimization variable. The gradients of the objective function were computed
by numerical and semianalytical direct methods and achievethe same results. Results for two different objective
functions are shown in figure 11: The vertical displacement of the highest point of the structure is chosen as a
structure based objective and the drag force as a flow based objective. Figure 11 (a) shows the initial design.
For the reduction of the vertical displacement the objective reduces with decreasing height of the structure. A
reduction of35% after25 optimization iterations is achieved. The converged state is shown in figure 11 (b) when
the lower box constraint which restricts the optimization variable and therefore the flattening of the structure to a
minimum height are reached.
For the drag reduction the lower box contraint is set to zero height, because the optimum is expected to be found
here. It is obvious that the drag is minimal for a totally flat structure.83% reduction is reached after80 optimization
iterations. The design corresponding to this state is shownin figure 11 (c).

(a) (b) (c)

Figure 11: Minimization of vertical displacement and drag:initial design (a), optimum designs for displacement
(b) and drag (c).

8.2 Designing a Four Point Tent Membrane Structure subject toFluid Flow

In the following, form finding is embedded in the previous framework and the procedure is presented by an ex-
ample, a four point tent membrane structure. The tent is modelled with membrane elements for the surface and
truss elements for the cables. The initial geometry for the optimization loop is obtained with form finding from the
geometry shown in figure 12. Such a procedure is robust and only 10 iterations are needed to obtain a converged
shape (figure 12).
The objectives in this case are the displacement at a node, theL2 and theL∞ norm of the structural displacements.
The respective design variable is the vertical position of the heighest nodes which remains equal during optimiza-
tion for sake of symmetry.

Figure 12: Initial and converged configuration of form finding of four point tent

In the structure side a geometric nonlinear analysis is performed. On the other hand, the fluid flow can be consid-
ered laminar (Re < 1000) and the SIMPLE algorithm is used to solve the Navier-Stokesequations for the steady
state solution. The structural deformation, the flow field and the pressure on the structure’s surface resulting from
the FSI analysis of the initial design of the structure is shown in figure 13.
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Figure 13: Four point tent in fluid flow: Deformation caused byflow, fluid velocity and surface pressure

For the sensitivity analysis the numerical approach is used(section 7.2). The numerical approach is very well
suited in such a framework since the number of design variables is small and form finding is used to determine
the final geometry as described in the sequence. After sensitivity analysis the design variable (position of highest
nodes) is updated and the resulting shape is shown in the figure 14. In order to obtain a physical shape a mechanical
correction is needed. For this reason form finding is appliedresulting in the mechanically correct shape.

Figure 14: Update of design variables of four point tent

The results of an optimization with theL2 norm of the total displacement as objective is shown in figure15. The
objective is reduced with increasing height of the structure. Since the structural behaviour becomes stiffer with
increasing curvature this result is intuitive. It can be seen that the solution converges to a non trivial optimum. This
is because the objective increases for higher side faces of the structure, which are very sensitive to fluid loads.

A second membrane example was carried out using the form finding method for shape optimization. Figure 16
shows the real structure called ”Tanzbrunnen” realized in Cologne by Frei Otto and the optimized structure with
the displacement field for the reduction of theL2 norm of the structural displacements by modifying the position
of the corner nodes.

9 Outlook

The optimization framework can be enhanced by adding more complex methods in sensitivity analysis. Higher
efficiency can be achieved using partial derivatives of fluidmesh and fluid. Therefore special functions have to be
implemented in the fluid code and a new solution method for thesensitivity equations is required. Furthermore,
when CAGD free approaches will be used and systems with many design variables arise the adjoint sensitivity
formulation has to be implemented.
Since coupled sensitivity analysis belongs to both fields, fluid and structure, the coupling tool CoMA will be
enhanced to control the coupled sensitivity analysis.
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Figure 15: Reduction ofL2 norm of structural displacements of four point tent

Figure 16: Real structure (taken from (Otto, 2008)) and the optimized structure in fluid flow (from the left) with
displacement field for the reduction of theL2 norm of the structural displacements of the ”Tanzbrunnen”

10 Conclusions

In this contribution a method for gradient based optimization using partitioned FSI schemes was presented. For
the sake of maximum design freedom in structural shape various methods suited for different amounts of design
variables were discussed. Moreover, the need for differentshape description methods and therefore for several
methods in sensitivity analysis was pointed out. The special advantage of embedding the form finding method into
the optimization procedure was highlighted. Finally, a framework for gradient based optimization in FSI according
to the NAND approach developed for including a variety of algorithmic approaches was presented and it’s abilities
were shown by illustrative examples.
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Bletzinger, K.-U.; Ẅuchner, R.; Daoud, F.; Camprubi, N.: Computational methodsfor form finding and opti-
mization of shells and membranes.Computer Methods in Applied Mechanics and Engineering, 194, (2005),
3438–3452.

DFG-493: Forschergruppe 493: Fluid-Struktur-Wechselwirkung: Modellierung, Simulation, Optimierung:
http://fsw.informatik.tu-muenchen.de/index.php (2008).

Etienne, S.; Pelletier, D.: A general approach to sensitivity analysis of fluid-structure interactions.Journal of Fluids
and Structures, 21, (2005), 169–186.

Farhat, C.:CFD-based nonlinear computational aeroelasticity, Encyclopedia of Computational Mechanics 3 (E.
Stein, R. Borst and T.J.R. Hughes, eds.), chap. 13, pages 459–480. John Wiley & Sons, Ltd. (2004).

Farhat, C.; Lesoinne, M.; LeTallec, P.: Load and motion transfer algorithms for fluid/structure interaction prob-
lems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and
application to aeroelasticity.Computer Methods in Applied Mechanics and Engineering, 157, (1998), 95–114.

Felippa, C. A.; Park, K. C.; Farhat, C.: Partitioned analysis of coupled mechanical systems.Computer Methods in
Applied Mechanics and Engineering, 190, (2001), 3247–3270.
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Advanced Software Engineering for FSI Applications

Dominik J̈urgens

Engineering multi-physical systems is a challenging task,which requires the simulation of interacting dynamical
systems governed by differing model equations. For the development of a simulator for coupled analysis of such
phenomena, reuse of already available solvers for the subsystems is often desirable. Against the common goal
of using solvers for the subsystems as black-boxes — which aims at a common coupling methodology shared by
the FSI community — often both programs need to be in depth understood by the coupling research group and
black-box solvers need to be opened. In this article, the idea of a skeleton based architectural software design is
proposed, which aims at conserving separation of concerns,so that subsystem solvers remain black-boxes. A goal
of the proposed architecture is a deeper separation of coupling algorithms from technical concerns. In contrast to
former approaches in this domain, we do not focus on providing a precast solution; we aim at highly parametrised
and therefore flexible design patterns. The long term objective is to provide a flexible and open template framework
for scientists in this field to accelerate the development ofindividual coupled simulators for scientific applications.

1 Component Based Design in FSI Applications and its Intrinsic Limitations

This section reviews general functional decomposition of software systems and discusses its application in coupled
simulations. After this general discussion we will identify intrinsic properties of present-day coupling solutions
and give rise to our motivation for proposing a paradigm shift in the development of coupling algorithms.

1.1 Short History on Functional Decomposition

To reuse software is a very fundamental idea. The development of reusable algorithms started with the devel-
opment of assembler languages, which are the human readableform of machine programs. Later programming
paradigms became independent of the machines, and compilers were used to transform conceptional statements
into executable machine programs. This approach made it possible to write programs in a coherent way, hiding
the instruction encoding. These higher programming languages provide predefined structures for general purpose
programming tasks; for example loops or parametrised subprograms are provided. These abstractions hide techni-
cal details as register allocation, naming and jumps in the program sequence; they make programming less error
prone and the resulting programs better understandable.

The introduction of support for explicit interfaces into several programming languages extended the possibility of
making subsystems exchangeable (for a discussion of this aspect see Coulange (1998)). A superordinate concept is
programming with language independent components, provided by software component frameworks (see Szyper-
ski (1997)). These black-box paradigms support a functional decomposition of complex systems into independent
subsystems. It is applicable if considered subsystems dealwith a certain functional task, for which a specific
common interface can be defined for a certain class of subsystems.

An interface for making a software subsystem reusable can only be defined, if —metaphorically speaking — its
contact surfacedoes not need to be changed to provide full functionality in different contexts; theinterfaceof
the subsystem to its environment has to be constant. To efficiently compose software from black-boxes, a point
of minimal effort in compositionenergymust be found1. If a program provides functionality which varies in a
functional sense, a constant interface can often not be found and a black-box view on the software can therefore

1Hereenergymeans communication, programming and computational overhead.
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not be provided. Reusing such codes in a classical programming language with its focus put on functional system
composition is most likely inefficient or not maintainable;the code has to be reimplemented. A discussion of
problems in functional decomposition of software systems can be found in Czarnecki and Eisenecker (2000).

An example for FSI code that is context dependent when it is written in a classical programming languages, is code
for time-integration; it is reimplemented in every coupling project and not available as library function. Reusing
such code may be possible in theory, but different data structures and different procedures to gain coupling data
and to control the overall process make it hard to implement it as library function.

1.2 Relationship Between Partitioned Analysis and Functional Decomposition

Partitioned analysis and the so-calledpartitioned approachto coupled simulation considers available simulators
as black-boxes and introduces a coupling procedure betweenthem. In simulation of time-dependent problems
implicit time-integration schemes can be used to achieve a physically strong coupling between the partitions (see
for example Matthies et al. (2006b)).

The term black-box generally describes a system which can only be accessed through an interface that hides
details of the system implementation. In FSI the term black-box is used as a synonym for software which provides
finite approximations of the physical behaviour of the considered partitions; its black-box interface is often not
considered and does not appear explicitly in simulator or coupling code. This abstract view with avirtual interface
often results in entanglement of codes and cannot obscure the fact that many little details are to be considered and a
lot of technical problems are to be solved to transform CFD orCSD code into a real black-box. The cost of making a
solver a black-box depends on the realisation of the respective solver and on the flexibility it provides. For example
Kassiotis and Hautefeuille (2008) present how the FEM codeFEAPwas encapsulated into a software component
calledCoFEAP; the solution allows to use FEAP through a black-box interface and the use of component instances
over a computer network. CoFEAP provides an interface whichis flexible enough to be used in different contexts,
it is not specialised for FSI applications (as it would be needed to use MpCCI, see Fraunhofer (2008b)).

Software component technology allows to create software-black-boxes with context independent interfaces. There-
fore given source-code is connected with an explicitly defined interface. Software components have been success-
fully applied in the development of customised solvers for partitioned analysis (see Matthies et al. (2006a)). In this
way, modern paradigms from computer science are already applied in the development of coupled simulations.
For projects in this context, advances in knowledge on abstract component based software systems can help to
understand and solve intrinsic problems in the domain of FSIsimulation.

1.3 Why Coupling is not a Functional Thing

The goal of software components is to make algorithms reusable and exchangeable at the same time. These goals
are also desirable for coupling code, but coupling procedures would have to become black-boxes. To ask for a
coupling black-box, or to define a general interface for any coupling procedure, appears therefore attractive. In
order to find such general interface, many questions have to be ultimately answered: Can we find a fixed set of
parameters for a coupling black-box, independent of the order of differential coupling on the coupling interface?
Is the black-box interface independent of the provided coupling algorithm?

It turns out, that introducing a coupling interface impliesa reduction of flexibility and applicability of its black-
box implementations: this is not meaningful for a domain of active research. A functional black-box abstraction
for coupling procedures is counterproductive. Here a dilemma of FSI research begins; a black-box for coupling
simulators accelerates the development of customised software for specific simulation tasks — which necessarily
occur in research — but a precast black-box solution is not flexible enough to be efficiently applicable in research,
where the focus is put on development of new algorithms.

Such questions are common to the development of black-box algorithms from any domain; to consider a system
as a black-box is not reasonable if its interface is context dependent or under development (and therefore not
constant).
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1.4 Limits of Current Approaches

The Mesh-based parallel Code Coupling Interface (MpCCI) provided by Fraunhofer (2008a) is an elaborated tool
for coupling simulation codes. The methodology to couple codes with MpCCI can be compared with the one
provided by the message passing interface (MPI). MPI provides a single program multiple data view (SPMD) on
parallel software. The control flow of MPI-programs is distributed over the parallel instances which makes parallel
MPI-programs hard to understand, debug and maintain as, forexample, Eidson et al. (2003) discussed.

MpCCI extends the functionality of MPI through interpolation support; i.e. it provides mesh-based data exchange
with interpolation. MpCCI and equally MPI require explicitsend and receive calls in the communicating codes,
in order to realise interaction between the distributed subprograms. This paradigm enforces therefore a deep
knowledge of the code, which needs to be modified to become a parallel or coupled program, respectively. In
Fraunhofer (2008b) the architecture of MpCCI is described.The interface to simulator code is realised by so-called
adaptors, which integrate a certain solver into the MpCCI framework. Thereby any MpCCI-adaptor provides the
same predefined interface, which makes the simulators exchangeable. These interfaces are not context independent,
but specifically designed to match the requirements of coupled simulation.

In contrast to a black-box interface, the MpCCI interface does not make the solver context independent; it pro-
vides an interface for the specific context of coupling. Our focus with the approach presented in this article is
to develop a hierarchy of context independent simulator interfaces, which can be ubiquitously used for a larger
set of applications. In MpCCI a separation of concerns in this general sense is not supported. Instead simulation
providers have to change their code to provide a MpCCI interface, and they have to change it again for any other
use. Simulator reuse is not only suggestive in FSI, also optimisation, uncertainty quantification and domain de-
composition are fields of application. A generic approach for simulator coupling would help to create a common
basis of knowledge and technology for all of the mentioned fields.

Furthermore, MpCCI is a tool for the specific task of transferring grid-based data between two solvers; it does
neither provide higher functionality like implicit time-integration schemes nor the support for customised interpo-
lation or contact algorithms. MpCCI is a precast solution, not focusing on the support of the development of new
coupling algorithms, which in contrast to this is a major goal of the architecture we aim for.

2 Skeleton Based Design for Reusable Coupling (Sub-)Algorithms

In this section we first abstractly discuss skeleton based software design, then we present possible applications in
FSI and finally we discuss advantages of the proposed ideas.

2.1 The Idea of Algorithmic Skeletons

Classical programming languages provide general purpose abstractions likeloops or procedures. In contrast,
skeletons can be used to model and provide special purpose abstractions. A skeleton is a blueprint of an algorithm
providingslots, where user-defined code can beplugged into specialise the abstract specification so that it matches
specific requirements. The skeleton approach to algorithm design is based on the assumption that similar applica-
tions require similar algorithms or at least similar algorithmic structure. An implication of skeleton based design is
a decomposition of the overall system into functional subsystems. These functional subsystems are not unique to a
specific skeleton, but can be used anywhere, where their function is required. Thereby skeletons assist code-reuse,
they enable customisation, testing of individual subsystems and provide intrinsic support for parallelisation (see
Darlington et al. (1993)).

2.2 Example for an Algorithmic Skeleton

A facility to systematically modify code is not provided in classical programming languages; the modification of
a program cannot be expressed with functional abstractions. Skeletons provide a programming interface to code-
generators. An illustrative example is adivide and conquerskeleton. Divide and conquer is a general pattern in
algorithm design, where a task is decomposed recursively into independent subtasks. The recursive decomposition
of the problem can be made until the subproblem — which is to besolved — is trivial and can be solved directly.
To construct the overall result, the results of the subtaskshave to be merged in a final step.
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Figure 1: The figure shows a possible structure of a skeleton based architecture for coupling simulators. The
skeletons represent abstract algorithms providing slots to plug-in specific behavioural modules. These modules
as well as the skeletons provide explicit interfaces which make them exchangeable. Instead of reimplementing
algorithms in different projects, abstract algorithms maybe provided and reused.

Abstractly seen, divide and conquer requires five parameters (or slots) which are mostly functional:

a → Bool decide whether a task is trivial or not

a → b directly solve a trivial problem

a → (a1, a2, ...) break down a nontrivial task into smaller subtasks

(b1, b2, ...) → b merge previously computed results

a the task to be solved

The last mentioned parameter “a” is the only parameter in a classical sense, the other parameters are functional;
they change the behaviour of the generated program. The application of this skeleton is demonstrated in Darlington
et al. (1993). In this paper the skeleton is used to generate code which can be executed on a parallel machine without
the need for any knowledge of parallel programming.

We can think of a skeleton as a template function with functional parameters. In classical programming languages
functional parameters are technically provided by function-pointers. But function-pointers have certain restrictions
with respect to performance and flexibility. Furthermore a systematic behavioural parametrisation of a program
cannot be efficiently modelled with the help of function pointers. Classical languages do not provide functions
or types withbehavioural parameterswhich can be used to modify their precast implementation. Algorithmic
skeletons provide such mapping in a high-performance and flexible way because code-generation supportsinlining
andcompiler optimisation.

2.3 Algorithmic Skeletons in FSI Applications

In FSI applications a number of specific skeletons have to be provided for different parts of the overall system,
one of them is a skeleton for a data transfer component similar to MpCCI (Fraunhofer (2008a)). Instances of the
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Figure 2: The Figure shows a possible decomposition of a coupled simulation with a fluid and a structure domain.
In a domain decomposition step the domains are partitioned for optimising load balancing. Each partition is
then modelled by a separate simulator component (F1..5 are the fluid subdomains and S1..3 are the structure
subdomains, respectively). The simulator components are independent and can even implement different models.
Instances of the coupling components C1..14 — which are implemented with the help of the presented skeleton
— are created to couple respective fields. These coupling components do not need to be homogeneous, they
may implement different algorithms. The mapping of the components to the processors in the last step can be
done arbitrarily, which is a property of the software component approach. Dynamic allocation of the resources for
optimised load balancing can be realised by usingcomponent migrationto dynamically move a running component
to another processor. This is an interesting feature on machines with non-uniform memory architecture.

skeletons we aim for — where its providedslotsare occupied by specific implementations — may provide the
same functionality as MpCCI. Nonetheless it is only a special case. Figure 1 shows a layout sketch of a skeleton
based architecture for coupled simulation, where modules for functional slots are termed aspolicies. Skeletons in
this architecture are used to provide code generators for recurrent programing tasks in simulator coupling:

• Writing wrapper code for a specific simulator to provide a coupling interface

• Implementing a time-integration scheme

• Implementing an interpolation scheme

• Managing distributed instances and connect solvers with common boundaries

By providing an architecture instead of a precast solution,customisations become implicitly supported; in this way
the coupling algorithm is modelled as white-box and only common structure is fixed.
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2.3.1 General Architecture for Coupled Simulation on Distributed Memory Machines

An important feature of MpCCI is an optimal communication strategy in distributed coupled simulations, where
communication only occurs between processors of coupled domains (see Fraunhofer (2008b)). In a skeleton based
component architecture, this goal can also be achieved and furthermore, general domain decomposition algorithms
or a coupling of different models — i.e. potential flow in the far field, incompressible flow near the boundary layer
— may be formulated in a natural way. Domain decomposition can be considered as a special case of coupled
simulation, where domains are homogeneous — i.e. the meshesand models match.

Therefore, the context independent component interfaces we focus on can be used to implement a general parallel
coupling environment. Assuming that a meaningful partitioning of the domain is given, each subdomain can be
simulated in a separate simulator component. The general idea is demonstrated in figure 2.

2.4 The Vision: Plug-and-Play Algorithms

At this point we want to present further advantages of the proposed skeleton based coupling architecture. If new
algorithms like higher order time-integration schemes canbe provided as skeletons, research groups would be
able to exchange coupling algorithms in their software simply, by using a different skeleton or policy. A broader
scientific exchange would be possible and individual research projects may be able to focus on specific tasks, which
results in a better separation of concerns. It becomes possible for a group to publish achievements in a reusable
way, so that other groups can take the provided solution and plug it into their project code. Reimplementations of
algorithms — necessary in classical programming — can be avoided.

The need for reimplementing code in classical programming has a number of disadvantages for algorithm devel-
opment; time is consumed in reimplementing the code, testing it, and finally in integrating the new algorithm into
the existing project code. Skeletons instead can be verifiedand requirements they put to their context can be stati-
cally asserted by introducing black-box interfaces between respective subsystems. The explicit interfaces allow the
respective black-box subsystem to be tested for assert certain predefined semantics, so that quality enhancements
and better maintainability of the software can be achieved.Finally, scientific results become better reproducible in
that way.

3 Outlook and future work

Skeleton based software is not a new technology (see Cole (1989)); today it is technically implemented by tech-
nologies like C++-templates (seepolicy-based designin Alexandrescu (2001)). The problem with these technolo-
gies is that they are complex and therefore hard to understand and handle.

The goals of the envisioned skeleton based architecture canonly be achieved if the methodology is simple and
does not enforce users to become specialists in this field. Itis the same as with general purpose programming
languages: users do not want (and need) to understand how thecompiler builds assembler code to implement a
for-loop. For that reason, the mightiness of complex technologies like C++-templates has to be reduced to a level
of abstraction which is specific enough to model FSI-algorithms. For achieving this goal, a programming language
providing exactly the mentioned special purpose abstractions is to be developed.

For providing a user-interface to the code generation process, a domain specific language (DSL) (see Sloane et al.
(2003)) is to be defined. The technical realisation of the skeletons can be done with the help of C++-templates,
which provide abstractions for programming general purpose code-generators. The envisioned DSL will help to
hide the complexity of the template-based implementation from the user of the algorithmic skeletons.

3.1 The Anticipated Paradigm-Shift

The paradigm-shift we anticipate is an introduction of a newconcern into coupled simulation. The concerns which
are already established in the scientific community are mathematics, physics and engineering. Computer science,
as another important contributor, is by now involved by providing general purpose programming constructs like
standard programming languages or by providing precast black-box solutions like MpCCI. The goal of providing
specialised abstractions by developing new languages is not yet followed.
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With our future work, we want to open this door to provide special purpose abstractions and a specialised program-
ming language, to provide a higher degree of flexibility in supporting algorithm development. We think building a
common basis of algorithmic knowledge is very important in an area of active research. A positive effect of skele-
tons compared to programming technologies as C++-templates is their formal definition; skeleton contributions of
research groups can be described in the common language of mathematics, without having to describe things in
natural or pseudo languages.

Acknowledgement Thanks to Rainer Niekamp for his time; let our discussions beas fruitful as in the past.
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ABSTRACT

We consider some of the open problems in fluid-structure interaction:

- The lack of ‘optimistic’ proofs about the order of temporalconvergence of the coupled system if staggered
or loose coupling techniques are used;

- The lack of a systematic and unified treatment of information transfer between structural models that are of
lower order than the surface of the fluid domain;

- The shortcomings in techniques for the treatment of large body/surface motion within flow solvers; options
presently advocated are either embedded/immersed techniques that are poorly suited for RANS applications,
or ALE/body fitted techniques that are poorly suited for applications with change of topology and/or crack
formation; and

- The achievable accuracy for coupled nonlinear problems, and the implications this has for numerical meth-
ods.

1 Introduction

Over the last three decades, the trend in each of the individual disciplines that are required in order to predict
the behaviour of processes or products - fluid dynamics, structural mechanics, combustion, heat transfer, control,
acoustics, electromagnetics, etc. - has followed the typical bottom-up direction. Starting from sufficiently simple
geometries and equations to have an impact and be identified as ‘computational’, more and more realism was added
at the geometrical and physics level. While the engineering process (Figure 1) follows the line: project, objectives,
optimization goals, discipline, problem definition, gridding, solution of the PDE and evaluation, the developments
(in particular of software) in the Computational Sciences tend to run in the opposite direction: once a solver is
developed, grid generation becomes the next bottleneck. With automatic grid generation, the fast preparation of
run-time data (i.e. the link CAD - problem definition - grid generation) requires attention. Once the workflow
in an individual discipline has been sufficiently automated, the link to other disciplines becomes attractive. And
as multi-disciplinary runs become routine, we may envisioncomplete multidisciplinary optimization and project
management. With the advancement of numerical techniques and the advent first of affordable 3-D graphics work-
stations and scalable compute servers, and more recently ofpersonal computers with sufficiently large memory
and 3-D graphics cards, public domain and commercial software for each of the ‘computational core disciplines’
has matured rapidly and received wide acceptance in the design and analysis process. Most of these packages (9)
are now at the threshold mesh generator: pre-processor. This has prompted the development of the next logical
step: multi-disciplinary links of codes, a trend that is clearly documented by the growing number of publications
and software releases in this area.
The desire to solve multidisciplinary problems can not onlybe explained by the maturity of discipline codes. In-
deed, the biggest payoffs expected from multidisciplinaryanalysis are increasedinsight into complex physical
phenomena and industrial processes, leading to a more comprehensiveoptimization of products and processes.
The space of possible approximations for coupled fluid, structure and thermal analysis is shown in Figure 2. Note
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that for each discipline, different levels of physical approximations and realism are possible. The CPU cost, as
well as model preparation times, can vary by orders of magnitude as one moves away from the origin. Application
areas associated with particular locations in this fluid- structure- thermal- analysis space have been compiled in
Figure 3. These only represent the better known applicationclasses of what is a fast-growing range of possibilities.
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More than a decade has passed since the first large-scale fluid-structure interaction calculations using nonlinear
structural and fluid models were attempted (17; 6; 19). While many practical problems have been solved success-
fully (i.e. meaningful insight has been obtained from thesecoupled simulations), a number of problems already
encountered early on persist. The present paper draws attention to some of these. It is the authors’ hope that
mathematicians and engineers will focus their attention onthese so that a firmer theoretical foundation of these
methods can be achieved, the robustness of algorithms is improved, and the range of applicability is expanded.

2 Theory

Consider the simplest case of a coupled fluid-structure-thermal problem. Assume that the grids are matching
exactly at the interfaces, and that the discretizations aresuch that the degrees of freedom (positions, velocities,
temperatures) are the same as well. Integrating implicitlythe complete system in time yields the following matrix
system:





Kss Ksf Kst

Kfs Kff Kft

Kts Ktf Ktt



 ·





∆us

∆uf

∆ut



 =





rs

rf

rs



 , (1)

where the sub-indicess, f, t stand for structure, fluid and thermal fields,u are the unknowns,r the right-hand
sides (sum of internal and external forces/ fluxes), the diagonal sub-matrices are the ones usually obtained for each
sub-discipline, and the off-diagonal sub-matrices represent the coupling between disciplines.
As long as the grids are not moving and the continuity across fields is guaranteed, a formal analysis similar to that
of single-discipline codes can be made. This means that formal orders of convergence for spatial and temporal
scales can be obtained.
However, if the fluid mesh moves (ALE frame), or the grids at field interfaces are non-matching, it suddenly
becomes much more difficult to obtain formal orders of convergence. Even in the case of just a flowfield with
prescribed mesh motion, work by Farhat et al. (12; 13) yieldsonly the following rather pessimistic estimate: Given
a p-th order time-accurate scheme on a fixed mesh, and if the discrete geometric conservation law is satisfied to
p-th order, the overall scheme on a moving mesh is at least of 1st order. Imagine the average code developer that
has spent months developing p-th order accurate schemes, only to find that when the mesh is moved the best that
can be hoped for is ‘at least 1st order’. Intuitively, this estimate seems overly pessimistic, and it is surprising that
we do not even have some simple empirical benchmarks tests toascertain if this is indeed so.
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3 Treatment of Lower Dimensional Abstractions

Lower dimensional abstractions are very common in computational structural dynamics (CSD). Examples include
trusses, beams, plates and shells. In many cases the use of these abstractions from 3-D bodies implies a reduction
in CPU and memory requirements of several orders of magnitude without omission of relevant physics, and it is
only natural that these are widely used. For example, the CSDdiscretization of the F16 shown in Figure 4 contains
all the relevant eigenmode data for an aeroelastic analysis.

CSD Discretization (Beams, Shells) Surface of CFD Discretization

Figure 4: Aeroelastic Simulation of F16: CSD Model and Surface of CFD Mesh

Problems can arise, however, when load and position information has to be transferred to and from these lower
dimensional abstractions to the surface of a 3-D computational fluid dynamics (CFD) mesh. Figures 5,6 illustrate
possible cases.

CFD Surface

CSD Abstraction: ShellCSD Abstraction: Beam

Figure 5: Lower Dimensional Abstractions in CSD

If the beam is associated with a complete airfoil section (a common situation in the aerospace industry) the section
is moved/rotated rigidly. Care has to be taken how to define the surface section associated with a beam element
(this is particularly the case for curved sections). Moreover, when several beams come together, the situation
becomes rather complicated, and one typically ends up with messy, problem specific coding. As far as the authors
are aware, thus far a general formulation to link beams to 3-DCFD surfaces has not been found.

Beam

Wing Surface

Multi−Valued
Correlation (Corner)

Correlation Beam/CSD Surface

Figure 6: Load and Position Transfer for Beams

If the beams are free standing (e.g. columns), a general (if not elegant) way of handling them is as follows: for
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each beam element, construct a set of ‘loaded triangles’ that reflect the cross-section shape of the beam (circular,
square, I-section, L-section, etc.). As the beams can come together at arbitrary angles, these sections are closed.
Forces are then obtained for the triangles, and resulting nodal forces and moments can be computed for the beams.
Needless to say, this approach only works for embedded grids(1; 20), as there is no guarantee that the triangular
elements will not intersect with very small angles or leave small gaps, making body-fitted grids nearly impossible.
Alternatively, one could construct a small tetrahedral mesh for each beam and use an immersed of ficticious domain
method (2; 28; 3; 4; 14; 22) to obtain the loads.

Beam Model

CFD

LoadsBeam Loads

Triangulation of
Each Element/Section

Figure 7: Load Transfer Via Local Triangulation of Beams

Overlap/Gap Region

Figure 8: Possible Problems at Joints/Corners

For shells, the situation is usually not as bad as for beams. However, as Figure 9 shows, there may be areas of
the CFD surface mesh that are not covered by CSD shells. How toproceed in such cases is again left to a certain
degree of trial and error. Usually, all points that may be associated with a shell are moved in accordance with the
shell displacements and rotations. However, ‘end sections’, such as leading and trailing edges, can only be moved
rigidly based on the closest shell edge associated with them. As with beams, this does not present problems if
the edges are straight (e.g. the leading edge of a wing). However, for corners, a CFD surface mesh point may be
associated with several edges, requiring ‘problem specific’ coding. As with beams, a general way of treating such
cases has proven elusive thus far.

CSD Abstraction: Shell

Figure 9: Load and Position Transfer for Shells
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4 CFD Specific Problems

The main impediment to routine FSI calculations with large mesh movement and RANS grids has been the han-
dling of moving bodies in the mesh. Two complimentary possibilities that have been widely pursued are the use of
body-fitted grids and embedded/immersed techniques. None of these is universally applicable.

Thebody fitted approach is characterized by:

- The need for a fairly clean surface to define the computational domain and/or the wetted surfaces;

- Accurate and straightforward application of boundary conditions;

- Near-optimal grids for Reynolds-averaged Navier-Stokesapplications (i.e. highly stretched grids in bound-
ary layers and wakes);

- Moving grids, which implies the use of an arbitrary Lagrangian Eulerian reference frame for the partial
differential equations solved;

- The need for sophisticated mesh movement strategies in order to avoid tangling and frequent remeshing;

- The need for a meshing tool as part of the solver in order to remesh automatically regions of deformed/bad
elements;

- After remeshing, the solution will have to be interpolatedfrom the old to the new mesh; for compressible
flows, this may not present major problems; however, for incompressible flows the interpolated fields will
not be divergence free, prompting spurious ‘spikes’ in the pressure and the need of divergence cleanup tools.

Theembedded/immersedapproach is characterized by:

- The ability to handle ‘dirty’ surfaces, such as those that may arise due to contact/penetration;

- The possibility of a reduction of local order of PDE approximation (i.e. solution degradation) near embed-
ded/immersed boundaries due to imposition of boundary conditions;

- The difficulty of introducing stretched elements to resolve boundary layers;

- The necessity of adaptivity for most cases, making mpi-based parallelization difficult;

- If the CSD surface moves, points that ‘emerge’ on the other side of a structure will have to be extrapolated
from neighbours; as before, experience indicates that thisdoes not present problems for compressible flows;
however, for incompressible flows the extrapolated velocity will not be divergence free, prompting spurious
‘spikes’ in the pressure and the need of local divergence cleanup tools;

- For problems with moving boundaries the information required to build the proper boundary conditions for
elements close to the surface or inside the bodies can take a considerable amount of time; and

- For fluid-structure interaction problems, obtaining the information required to transfer forces back to the
structural surface can also be time-consuming.

Most of the elements required to achieve fast and reliable codes for each of these approaches have been worked
on during the last two decades. For mesh movement, nonlinearspring (5; 11; 10; 25), Laplacian-based (18)
or Elasticity-based (24; 23) smoothing techniques have been proposed. Projective prediction (21) and linelet
preconditioning (26) is used extensively to reduce CPU requirements. For local/global remeshing, see (16), (27).
In order to relate embedded/immersed CSD data to the CFD mesh, optimal spatial data structures have been devised
(20; 21). The treatment of embedded/immersed boundaries toachieve higher order accurary in the CFD solvers
has also received considerable attention (2; 28; 3; 4; 20; 14; 22).
Nevertheless, given the high CPU and memory requirements ofLES and DNS calculations for realistic Reynolds-
numbers (Re > 106), RANS simulations will remain relevant for at least another two decades. Therefore, the need
to be able to cover dirty geometries with RANS-suitable grids remains an active area of research.
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5 Achievable Accuracy and Accuracy Requirements

Let us consider, as an example, a typical fluid-structure interaction calculation with nonlinear CFD and CSD ef-
fects: blasts on buildings (7; 8).
A simulation of this kind will start with a description of thebuilding that is suitable for a CSD calculation. Here
we already encounter a major source of possible errors. Veryfew buildings are built completely ‘CAD to mortar’,
implying that many material and geometrical parameters need to be estimated or guessed. Moreover, for obvious
practical reasons, this already implies a considerable amount of abstraction: columns may become beams, floors
and windows are represented by shells, some walls will require reinforced concrete modeling, and machinery may
be modeled as solid blocks. Furthermore, the material models will have to be chosen. A fluid dynamicist, used to
‘clean’ materials like air or C4, can only marvel at the multitude of models and parameters encountered in materi-
als such as concrete, wood, or composites. A typical CSD codesuitable for impact will have a dozen models for
concrete. Each of these models will have anywhere from 5 to 15parameters. Which ones to choose for a particular
building depends very much on the experience and the familiarity with runs like these of the analyst. In most
cases, more than one set of parameters is run so as to gauge their sensitivity. The important point is that after all
this abstraction and modeling, the error that can be hoped for will exceed 1%, no matter how accurate the numerics
are.

Given that large plastic deformation will occur during the run, it is advisable to define the wetted surfaces (which
form the boundaries of the fluid domain) from the CSD model. Inthis way, the two grids can be ‘glued’ together.
For Euler and LES/DNS simulations, no further modeling is needed. However, for RANS simulations, the struc-
tural dynamics expert has to marvel at the multitude of turbulence models available in typical CFD codes. Which
one to choose again depends very much on the experience and the familiarity with runs like these of the analyst.
If we add to this the variability of high explosive materials, the error that can be hoped for will greatly exceed 1%,
no matter how accurate the numerics are.

Once the run starts, as the grids will not be matching exactly, interpolation and projection will introduce further
errors. This will again limit the achievable accuracy. Finally, if cracks form or breakup occurs, topology changes
and the associated interpolation errors during remeshing or solution extrapolation will limit accuracy.

It is therefore highly likely that such complex coupled engineering problems will never be solved to better than 1%
accuracy. This is not a calamity, as many of these calculations nevertheless yield meaningful insight that can be
used for decision-making, design and optimization. On the other hand, attempting runs with very high order FEM,
FVM of FDM schemes seems contrary to wisdom in this context.

6 Conclusions and Outlook

Fluid-structure interaction techniques have flourished over the last decade. While many commercial packages at
present advertise such capabilities, it is fair to say that these options are seldomly used for production runs. The
present paper has considered some open problems in what has become a large field of research. In particular:

- The lack of ‘optimistic’ proofs about the order of temporalconvergence of the coupled system if staggered
or loose coupling techniques are used;

- The lack of a systematic and unified treatment of information transfer between structural models that are of
lower order than the surface of the fluid domain;

- The shortcomings in techniques for the treatment of large body/surface motion within flow solvers; options
presently advocated are either embedded/immersed techniques that are poorly suited for RANS applications,
or ALE/body fitted techniques that are poorly suited for applications with change of topology and/or crack
formation; and

- The achievable accuracy for coupled nonlinear problems, and the implications this has for numerical meth-
ods.
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It is the authors’ hope that mathematicians and engineers will focus their attention on these so that a firmer the-
oretical foundation of these methods can be achieved, the robustness of algorithms is improved, and the range of
applicability is expanded.
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ALE and Fluid Structure Interaction. Application to Industrial Problems

E. Longatte , Z. Ozdemir, M. Souli

Multi-physics numerical computation requires a good choice of code coupling schemes when several single-physics
codes are involved. Several methods have been used in fluid structure interaction problems involving either par-
titioned or monolithic procedure. The present work is devoted to simulation of fluid structure interaction for
flow-induced vibration problems using a partitioned procedure, which combines the advantages of both weak and
strong coupled schemes. Specific attention is paid to energyconservation at the fluid structure interface, especially
for moving structure and when strong non linear behaviour may occur in both fluid and structure systems. In the
present paper, three coupling algorithms are used and compared on a simple one dimensional problem. Numerical
results are discussed in terms of energy conservation properties.

1 Introduction

Study of dynamical structures submitted to cross flows like heat exchanger, tube bundles or panel flutter, requires
fluid and structure solvers to be solved at the same time. Thiscan be performed by several ways. A first method
consists in solving fluid and structure equations in a singlesystem using monolithic algorithm. This is a strong
coupling process ensuring energy conservation of the full-coupled fluid structure system. However this approach is
often hard to set up for industrial applications as it requires significant developments in fluid and structure solvers,
this difficulty can be overcome by using a partitioned procedure ensuring an external coupling of separated codes.
This method is easier to set up and it allows independent model developments in both fluid and structure solvers.
The procedure is iterative and each iteration is made of three steps: first computation of fluid forces acting on the
structure by solving a CFD problem; second estimation of structure displacement and velocity induced by fluid
forces, solving a structure dynamic problem; finally actualization of the fluid domain according to the structure
wall motion. This approach has a great flexibility due to its modularity. The partitioned procedure may rely on
several kinds of time coupling schemes, explicit or implicit. In Explicit coupling, fluid and structure computations
are staggered in time. All explicit coupling algorithms inherently introduce energy because it is impossible to
predict correctly the structural displacement inducing correct forces when solving the fluid problem.

The partitioned procedure may rely on several schemes, synchronous or asynchronous explicit algorithms or im-
plicit time coupling schemes. With explicit schemes, fluid and structure computations are staggered in time and,
as a result, artificial energy may be produced at the fluid structure interface. In order to reduce interface energy
imbalance using explicit methods, explicit asynchronous schemes have been introduced to solve problems in aeroe-
lasticity by Piperno et al. (1995) , Farhat et al. (1995). Implicit staggered method have also been introduced by
several authors; Hermann and Steindorf (1999) , Tallec and Mouro (2001) , Mani (2003); to ensure better energy
conservation.

This paper is devoted to the presentation of several explicit and implicit code coupling schemes. Their different
properties are presented and results are compared to analytical solution for a simple one dimensional problem.
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2 Computational process

2.1 Code coupling procedure

The fluid structure code coupling procedure is based on time incremental method and each time step is made
of three steps: first computation of fluid forces acting on thestructure, second resolution of structure dynamics
equation, then fluid mesh update by using a fluid mesh displacement process like an Arbitrary Lagrangian Eulerian
(ALE) formulation Hughes et al. (1981) , Souli and Zolesio (2001).

In their previous research work, Farhat and Lesoinne (1997)have shown that the loss in time accuracy and nu-
merical stability of the partitioned procedure can be due tothe lack of energy conservation at the fluid structure
interface, this energy is numerically, and hence artificially created at the interface by staggering explicit methods.
Explicit coupling methods cannot conserve energy at the interface, however, the coupling force passed from the
fluid to the structure can be properly adjusted in order to control the imbalance energy and reduce it as much as
possible. For this purpose an evaluation of the energy performed at the fluid structure interface using fluid structure
coupling schemes is considered below.

On one hand energy variation induced by fluid computation at each time step is expressed by the following equa-
tion:

∆En+1
f = −Fn+1

f (Xn+1
m − Xn

m) (1)

whereFn+1
f designates fluid forces acting on the structure at timetn+1, Xn

m andXn+1
m are fluid domain boundary

displacement (or boundary mesh displacement) at timestn andtn+1.

On the other hand, the structure displacement can be modeledby using a classical structural dynamic equation of
the form:

MsAs + CsVs + KsXs = Fs (2)

whereFs designates forces acting on the structure, depending on thenumerical scheme we are using, the force
Fscan be similar or different from the fluid forceFf in Equation (1), an appropriate choice of the forceFs may
reduce energy dissipation at the fluid structure interface.In Equation (2),As, Vs andXs are structure acceleration,
velocity and displacement. To illustrate energy variationmeasured by structure computation, let us take an example
where Equation (2) is solved using a Newmark algorithm for time integration, with the Newmark parameters
α = β = 1/2 .
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Terms are estimated at first order as follows:
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Structure energy is the sum of kinetic energy and potential energy. Hence energy variation provided by structure
computation between timestnandtn+1 can be written as:
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2.2 Interface Conditions

The energy variation induced by the second term of the Equation (5) is due to the structure dampingCsand does
not account for artificial interface energy. To reduce energy imbalance at the interface, the following relation must
be satisfied :

∆En+1
s =

(
Xn+1

s − Xn
s

) Fn
s + Fn+1

s

2
= −Fn

f

(
Xn+1

m − Xn
m

)
= ∆En+1

f (6)

Values ofXn
s andFn

f are the structural displacements and fluid forces at the fluidstructure interface estimated by
the structure and fluid solvers. Code coupling schemes are based on this relation and displacementXn

m and force
Fn

s must be built to minimize energy variation. In the followingsection, three explicit and implicit code coupling
schemes are presented.

3 Staggered Solvers

3.1 Explicit Synchronous Algorithm (ESA)

With explicit scheme, structural displacementsXn+1
s at timetn+1 are induced from fluid force computationFn

f

at timetn+1 based on the fluid mesh positionXm at timetn+1. The synchronous scheme gives a prediction of
fluid structure interface position at timetn+1 by using previous positions at timestn and tn+1. The following
integration scheme is applied:

Xn+1
m = Xn

s + α0∆tV n
s + α1∆t

(
V n

s − V n−1
s

)
(7)

where,Xn
s designates structure displacement at timetn, Xn

m is the mesh displacement at timetn, V n andV n−1are
the structure velocity at timestn, and tn−1 andα0 andα1are specific code coupling scheme coefficients to be
chosen.

Fluid forcesFn+1
s acting on the structure are calculated and structure displacementXn+1

s is deduced from the
mechanical equation, whereα0 andα1are chosen to get high order accuracy in the code coupling scheme. For
α0=1 andα1=0.5 a second order code coupling scheme in time is obtained.

This algorithm was introduced by Farhat et al. (1995) and Farhat and Lesoinne (1997), where good results have
been obtained in aeroelasticity problems like flow past panel flutter. However it does not satisfy the geometric
conservation law at the interface (CGL, Thomas and Lombard (1979)).

3.2 Explicit Asynchronous Algorithm (EAA)

With an asynchronous code coupling scheme fluid and structure problems are not solved at the same time step.
Fluid computation is expressed at timetn+1/2 and structure computation at timetn+1 .

The following prediction of first order is used for fluid mesh displacement:

Xn+1/2
m = Xn

s +
∆t

2
V n

s (8)

Then fluid forces are computed at timetn+1. This procedure ensures geometry mesh conservation and it ensures
also displacement and velocity continuity at the fluid structure interface according to the Geometric Conservation
Law (CGL, Thomas et Lombard, 1979). For example, by using theprevious Newmark structure solver algorithm
and the trapezoidal rule,the energy conservation propertyis deduced from the following relation:
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whereV n
m is the mesh velocity at timetn.
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3.3 Implicit Algorithm (IA)

An implicit code coupling scheme is also possible by using aniterative method. This method has been used by
several authors for different applications, Hermann and Steindorf (1999), Abouri et al. (2003) and Longatte et al.
(2003b). This algorithm uses convergent explicit predictions of the coupled fluid structure system. Subcycling is
involved to get convergence for each sub-system and a criteria based on the fluid force or structure velocity is used
at each time step to stop the numerical process. For the computation of the fluid and structure variables at step
tn+1, the following steps are used :

1. fluid force computation(Fn+1
f )k

2. prediction of structure displacement(Xn+1
s )k

3. deformation of the current geometry(Ωn+1
f )k

4. determination of the new geometry(Ωn+1
f )k+1 and forces(Fn+1

f )k+1

5. calculation of the error estimator:E =

˛

˛

˛(F
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−(F
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k
˛

˛

˛

˛

˛
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0
˛

˛

˛

If the error estimator is smaller than a critical value then the next time step is incremented. The process restarts
from the initial statetn and the last velocity estimation(V n+1

s )k is used for the next subcycling of the algorithm.
To illustrate the property of the previously mentioned explicit and implicit code coupling schemes (ESA, EAA,
IA), a one-dimensional test case is investigated below. This case is described in detail by Longatte et al. (2003a)
and Longatte et al. (2009).

4 One dimensional FSI Application

In this part a one-dimensional test case is considered. It involves two structures with nodal mass linked by a spring
with a stiffness and no damping, Figure 1.

Figure 1: Simple 1D FSI problem

The system satisfies the following mass spring equations :

M1
d2X1

s

dt2
+ KsX

1
s = KsX

2
s (10)

M2
d2X2

s

dt2
+ KsX

2
s = KsX

1
s (11)

whereM1, M2, X1 and X2 are the structure masses and displacements, respectively.

If the following initial conditions on initial structure displacement and velocitiesV1 andV2 are imposed:

X1(0) = A (12)

V2(0) = V1(0) = 0 (13)

and with the additional condition:M2 = M1

2 an analytical solution is given by

X1
s (t) = A cos(ωt) (14)

X2
s (t) = −2X1

s (t) (15)

whereω =
√

3Ks/M1 designates the system circular frequency andA the amplitude displacement.
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4.1 Interface Conditions

In order to study interface energy variation, fluid and structure energyEf andEscan be estimated under the assump-
tion that the first equation of the system describes the structure displacement and the second equation describes the
fluid forces at the coupling interface. Thus, fluid forces acting on structure is given byFn

f = Ks.X
n
1 . If the explicit

synchronous or asynchronous code coupling scheme is chosen, the conditions to minimize numerical energy are
deduced from Equation (6).

These extrapolations are not necessary with an implicit code coupling scheme because fluid force is predicted by
a series of subcycling in the fluid computation.

4.2 Scheme properties

In what follows, one compares energy conservation properties of ESA, EAA and IA schemes by using one-
dimensional test-case. Fluid and structure energy variation are reduced by using scheme ESA or scheme IA.
For different time step sizes, energy error is plotted for the three different algorithms in Figures 2 and 3 using
∆t = 10−3 and∆t = 10−5.

Figure 2: Comparison of the energy variation for3 numerical schemes(∆t=10−3)

For the implicit staggered algorithm, energy conservationis satisfied, no artificial energy has been produced by
the algorithm. However for the two explicit methods, artificial energy has been induced in the system. The
explicit staggered schemes can not satisfy in the same time velocity and displacement continuity and it leads
to energy imbalance. From this simple one dimensional example, it is obvious that the explicit asynchronous
algorithm (EAA) gives better energy conservation than the explicit synchronous algorithm (ESA), and numerical
error decrease with time step.

One can conclude that numerical damping created by implicitor explicit asynchronous code coupling schemes
is lower than damping generated by explicit synchronous scheme. Besides a comparison with a fully implicit
monolithic procedure by using a fluid structure finite element code is achieved in Table 4.2. The two masses and
the spring are modeled as two discrete elements and a linearelement. As shown for the partitioned implicit code
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Figure 3: Comparison of the energy variation for3 numerical schemes(∆t=10−5)

Coupling scheme Error on displacement Error on energy
Explicit synchronous 7.08910−5 8.67 10−5

Explicit asynchronous 5.40410−5 6.97 10−6

Implicit 1, 85110−5 9.0210−12

Analytical solution 0 0

Table 1: Comparison of analytical and numerical solutions

coupling scheme, the monolithic procedure provides good results in terms of energy conservation. A fully implicit
monolithic process involves a strong coupling solver.

5 Conclusion

Coupling codes method are often the choice for solving complex fluid structure interaction problems. This ap-
proach presents a great flexibility and modularity, a validated CFD and structural dynamics codes can be coupled
using an efficient coupling interface, this method takes advantage of the parallel processing within each analysis
code. Unlike coupled fluid structure algorithms which present a large size of the coupled fluid-structure interaction,
the decoupled linear systems solved at each non linear Newton iteration present are reasonably well conditioned.

In this paper, numerical schemes for code coupling and an evaluation method for energy conservation for time inte-
gration algorithm in partitioned procedures are presentedand discussed in terms of energy conservation properties.
This method was validated on a simple mass spring system problem.

References

Abouri, D.; Parry, A.; Hamdouni, A.: Fluid-rigid body dynamic interaction in complex industrial flow.Chapter
Advances in fluid Mechanics: Fluid Structure interaction II, Wit Press, 0, (2003), 295–305.

Farhat, C.; Lesoinne, M.: Improved staggered algorithms for serial and parallel solution of three- dimensional non-

194



linear transient aeroelastic problems.Center for Aerospace Structures - 97-11, University of Colorado, Boulder,
Colorado, AIAA Journal, 0, (1997), –.

Farhat, C.; Lesoinne, M.; Maman, N.: Mixed explicit implicit time integration of coupled aeroelastic probems:
three field formulation, geometric conservation and distribution solution.International Journal for Numerical
Methods in Fluids., 21, (1995), 807–835.

Hermann, G.; Steindorf, J.: Efficient partitioned procedures for computation of fluid-structure interaction on par-
allel computers.Developments in Computational Mechanics with High Performance Computing, B.H.V, Civil-
Comp Press, Edinburgh, 0, (1999), 127–136.

Hughes, T.; Liu, W.; Zimmerman, T.: Lagrangian eulerian finite element formulation for viscous flows.Com-
put.Methods Appl.Mech.Engrg, 29, (1981), 329–349.

Longatte, E.; Bendjeddou, Z.; Souli, M.: Application of arbitrary lagrange euler formulations to flow-induced
vibration problems.Journal of Pressure Vessel Technology, 125, (2003a), 411–417.

Longatte, E.; Bendjeddou, Z.; Souli, M.: Methods for numerical study of tube bundle vibrations in cross-flows.
Journal of Fluids and Structures, 18, (2003b), 513–528.

Longatte, E.; Verreman, V.; Souli, M.: Time marching for simulation of fluid-structure interaction problems.
Journal of Fluids and Structures, 25, (2009), 95–111.

Mani, S.: Truncation error and energy conservation for fluid-structure interactions.Comput. Methods Appl. Mech.
Engrg, 192, (2003), 4769–4804.

Piperno, S.; Farhat, C.; Larrouturou, B.: Partitioned procedures for the transient solution of coupled aeroelastic
problems. part i: Model problem, theory and two-dimensional application.Comput.Methods Appl.Mech.Engrg,
124, (1995), 79–112.

Souli, M.; Zolesio, J.: Arbitrary eulerian lagrangian methods in fluid mechanics.Comput.Methods
Appl.Mech.Engrg, 191, (2001), 451–466.

Tallec, P. L.; Mouro, J.: Fluid structure interaction with large structural displacement.Comput. Methods Appl.
Mech. Engrg, 190, (2001), 3039–3067.

Thomas, P.; Lombard, C.: Geometric conservation law and itsapplication to flow computations on moving grids.
AIAA Journal, 17, (1979), 1030–1037.

Address:E. Longatte (corresponding author),
Electricit de France- R&D Division
Fluid Mechanics and Heat Transfer Department
email:elisabeth.longatte@edf.fr
Z. Ozdemir, M. Souli,
Universit des Sciences et Technologies de Lille I Laboratoire Mecanique de Lille, France email:
zuhal.ozdemir@ed.univ-lille1.fr , mhamed.souli@univ-lille1.fr

195



196



Fluid-Structure Interaction.
Theory, Numerics and Applications

pp. 197– 204

Herrsching am Ammersee, 29.9.-1.10.2008

Transonic Flutter Prediction for a Generic Fighter Configuration

S. Marques, K. Badcock, H. Khodaparast, J. Mottershead

The computation of transonic aeroelastic stability, can require significant computational resources. The approach
used in the current paper, is to view the problem of computingflutter onset as a stability problem for a steady
state of the coupled fluid-structural system. The stabilityboundary is determined by solving non-linear eigenvalue
problem. An eigenvalue solver based on the Schur ComplementMethod, is used to compute flutter at transonic
conditions of realistic configurations. The development ofa generic fighter configuration, based on published data
is described. Aerodynamic surface pressures were matched to publicly available data and the structural model
was updated according to measured natural frequencies. Results validate the efficiency and robustness of the
Schur method against a model wing and a typical generic fighter configuration.

1 Introduction

Advanced fighter aircraft can suffer from aeroelastic instabilities in the transonic regime. Typical aerodynamic
analysis tools for flutter calculations rely on panel methods, Yurkovich (2003), coupled with a Computational
Structural Dynamics (CSD) model. Such methods are based on linear aerodynamics and are insensitive to the
physics that dominate transonic flows. Computational FluidDynamics (CFD) can improve on linear methods.
However, when computing flows with shock-waves, CFD based flutter analysis requires time-accurate simulations,
which are impractical for parametric studies.

The coupled system stability can be studied by analysing theresponse in time to an initial disturbance, Woodgate
et al. (2005). This approach requires unsteady calculations. With today’s computational resources, this is still a
formidable task and unfeasible when a large parameter spaceneeds to be analysed. To overcome these difficulties,
several alternative methods have been investigated such asdata driven models, Lucia et al. (2004), or the Harmonic
Balance method, Thomas et al. (2006). A particularly attractive technique is to study the stability of the coupled
system steady state directly. Assuming a Hopf Bifurcation,stability is lost when the system Jacobian matrix has a
pair of eigenvalues which cross the imaginary axis. The ideais to compute when this happens at a computational
cost much less than time domain analysis.

The paper presented here, is a result of a continuous effort,Badcock et al. (2004), Badcock et al. (2005), Woodgate
and Badcock (2007), in applying eigenvalue stability analysis to flutter problems. The latest development divides
the coupled system into a framework consistent with the Schur Complement Method, Badcock and Woodgate
(2008) and applies model updating techniques to improve thestructural model, Friswell and Mottershead (1995).
The formulation is described and applied to mode tracking and flutter analysis of two distinct configurations: a
model wing and a realistic generic fighter configuration.

2 Aeroelastic Stability Formulation

2.1 Coupled Formulation

The coupled CFD-CSD semi-discrete system, can be written as:

dw

dt
= R (w, µ) (1)
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where:
w = [wf ,ws]

T (2)

is a vector containing the fluid and structural unknowns, respectively. The residualR:

R = [Rf ,Rs]
T (3)

is a vector containing the fluid residual,Rf , and the structural residual,Rs. The residual also depends on the
parameterµ, which is independent ofw; µ usually takes the form of dynamic pressure or altitude.

The Euler equations describing the flow field are discretised on curvilinear multi-block body conforming grids,
using a cell-centred finite volume method, which converts the partial differential equations into a set of ordinary
differential equations. The convective terms are discretised using Osher’s upwind method, Osher and Chakravarthy
(1983). Monotone Upwind Scheme for Conservation Laws (MUSCL) variable extrapolation (see van Leer (1974))
is used to provide second-order accuracy with the Van Albada’s limiter to prevent spurious oscillations around
shock waves. Further details on the flow solver are given by Badcock et al. (2000). The structural residual is
built up from the modal form of the structural equations, consisting of a linear restoring force and a general force
formed by projecting the fluid surface forces onto the mode shapes. The structural model is built out of simplified
components such as beams and plates.

2.2 Schur Complement Eigenvalue Solver

As described above, the stability of the equilibria point ofequation 1 is determined by eigenvalues of the Jacobian
matrix, A = ∂R

∂w . Stability is considered to be lost through a Hopf Bifurcation where a complex conjugate pair
of eigenvalues ofA crosses the imaginary axis. The calculation of the JacobianA is most conveniently done by
partitioning the matrix as:

A =







∂Rf

∂wf

∂Rf

∂ws

∂Rs

∂wf

∂Rs

∂ws







=

[

Aff Afs

Asf Ass

]

(4)

Aff corresponds to the Jacobian of the fluid system and has been derived analytically. In the current work, and as
is conventional in aircraft aeroelasticity, the structureis modelled by a small number of modes, and so the number
of fluid unknowns is far higher than the structural unknowns.This means that the Jacobian matrix has a large, but
sparse, blockAff surrounded by thin strips forAfs andAsf . The termAfs arises from the dependence of the
CFD residual on the mesh motion and speeds, which in turn depend on the structural solution. These terms are
currently evaluated using finite differences. The termAsf is due to the dependence of the generalised forces on the
surface pressures. Finally,Ass is the Jacobian of the structural equations with respect to the structural unknowns.
The details of the Jacobian calculation can be found in Badcock et al. (2004).

To compute the onset of instability, the aeroelastic eigenvalue problem needs to be solved. This corresponds to the
normal modes under load from the aerodynamic forces. The eigenvalue problem is formulated as:

[

Aff Afs

Asf Ass

]

p = λp (5)

wherep is the complex eigenvector andλ is the corresponding eigenvalue. The eigenvector is also partitioned
according to the fluid and structural components:

p = [pf ,ps]
T (6)

It can be shown, Bekas and Saad (2005), that for a matrix partitioned asA, if λ is an eigenvalue ofA but not an
eigenvalue ofAff , then it must also be an eigenvalue ofS(λ):

S (λ)ps = λps (7)

whereS(λ) is given by:
S (λ) = Ass − Asf (Aff − λI)

−1
Afs (8)
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a-) b-)

Figure 1: Structural and CFD grid

This small non-linear eigenvalue problem can be solved by a Newton-type approach. However, formingS still
requires solving(Aff − λI)

−1
Afs, which is still too expensive for every combination ofλ andµ. To overcome

this, the following expansion of(Aff − λI)
−1 is considered:

(Aff − λI)
−1 ≈ A−1

ff + λA−1
ff A−1

ff + λ2A−1
ff A−1

ff A−1
ff . . . (9)

This allows pre-computation of the coefficient matrices in the expansion.

In order to converge, the series expansion requiresλ to be small. Ifλ0 is the eigenvalue ofAss, thenλ is considered
a small change fromλ0. This allows reformulation ofS(λ), by usingλ0 as a shift to the full eigenvalue problem
and therefore replacingAff by Aff − λ0I andAss by Ass − λ0I. TheS matrix is reformulated as:

S (λ) = (Ass − λ0I) − Asf (Aff − λ0I − λI)
−1

Afs (10)

and eq.9 is now given by:

(Aff − λ0I − λI)
−1 ≈ (Aff − λ0I)

−1
+ λ (Aff − λ0I)

−2
+ λ2 (Aff − λ0I)

−3
. . . (11)

The non-linear problem is solved forλ and the eigenvalue for the original system is given byλ0 + λ. Further
details on the implementation of this method is given by Badcock and Woodgate (2008).

3 Results

3.1 Goland Wing

The first test case presented here is the Goland wing. This case has been the subject of several computational
studies. The Goland wing uses a 4% thick parabolic aerofoil;it is a rectangular wing with dimensions20 × 6ft. A
detailed description of the structural model used in this work is given by Beran et al. (2004) and is shown in figure
1-a). The Goland wing is very flexible and flutter can occur even at low Mach numbers.

The multi-block CFD grid for the wing follows a O-O topology and a slice normal to the surface is shown in
figure 1-b). A fine grid was generated with about 236 thousand points, from which a coarser level was extracted
by removing every other point and resulted in a mesh with 35 thousand points. The first four mode shapes were
obtained with MSC Nastran and mapped onto the CFD grid. Details of the mapping process are given by Rampu-
rawala (2006). Initial tests were performed at a freestreamMach number of 0.5 and0◦ angle of attack. Altitude
was used as a bifurcation parameter. The initial matrices were computed at an altitude of 30000ft and the altitude
range went down to 10000ft below sea level. The coarse grid calculations were performed on a single desktop
computer. Five full evaluations ofS(λ) at equally spaced altitudes were also done, to assess the accuracy of the
series expansion. The total runtime using the series expansion was 12 minutes, while the five full evaluations took
about 25 minutes.
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a-) b-)

Figure 2: Variation of real and imaginary eigenvalues with altitude

a) Surface grid b-) Half-span structural model

Figure 3: CFD grid and structural model

Figure 2 is obtained by calculating the eigenvalue of the normal mode at the highest altitude. At the highest
altitude, the influence of the fluid is small and the eigenvalues depend mostly on the normal modes. As the
bifurcation parameter is reduced, the influence of the fluid on the eigenvalues increases and the remainder of the
graph is filled. At about 6000ft, the first bending and torsional modes begin to interact leading to flutter. The
graphs also show the excellent level of agreement, between the Full Evaluation of eq. 8 or approximating it by
using the series expansion defined in eq. 9.

3.2 Generic Fighter Configuration

The generic fighter configuration, shown in figure 3 is based onthe F-16 fighter. The objective of this model is to
represent a realistic aircraft, both in terms of aerodynamics and structural dynamics. The aeroelastic behaviour of
the F-16 has been the focus of several investigations, Denegri (2000), Geuzaine et al. (2003). Furthermore, there
is substantial information in the public domain for this aircraft; this allowed the development of a test case model
that is representative of a typical fighter configuration.

The overall dimensions of the model have been scaled based onthe F-16. A block structured grid was generated
which has 890 thousand points and 240 blocks for the full configuration. The full span grid was obtained by
reflecting a half span grid. The surface grid is shown in figure3-a) and shows that the points are concentrated
on the wing which contributes most to the aeroelastic response. The wing section consists of a NACA64A204
profile, with a wing root twist of−1◦ leading to a wing tip twist of−2.4◦. The wing twist was evaluated by
comparing surface pressures against results given by Denegri and Dubben (2005); figure 4 shows the comparison
of the surface pressures at two locations along the span. An illustration of the surface flow field, corresponding
to the case quoted above is also given in figure 5. The structural model consists of three main elements, the
wing, leading and trailing edge flap, as shown in figure 3-b). The three components are modelled with shell
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a-)59% Span b-)85% Span

Figure 4: Surface pressure comparison:M = 0.85, α = 2.12◦

Figure 5: Surface pressure flow field:M = 0.85, α = 2.12◦

elements. The leading and trailing edge devices are connected to the main wing by spring elements. Material and
model properties, such as density, Young’s modulus and the several thicknesses are calculated based on model
updating against mode frequencies. The following parameters were used: density, Young’s modulus, directional
spring stiffnesses(kx, ky, kz, kθ, kξ, kζ), 13 thicknesses along the span. Denegri (2000) identified two modes that
contributed to flutter. An optimisation problem was set up, using the two frequencies identified experimentally as
an objective function. The structural model was given the 21parameters and the objective function is given by eq.
12. The optimisation process, selects the parameters that minimise the overall sum described by eq. 12.

f = min

[
n∑

i=1

Wi

(
ωe

i

ωa
i

)2
]

(12)

whereWi represents the model parameters, given in table 1,ωe
i andωa

i represent the experimental and model
frequencies respectively for modes 2 and 3. Table 2 shows theinitial and final results for the frequencies for the
modes identified by Denegri (2000) as contributing to flutter. The structural model mode shapes and the mapping
onto the CFD grid for the two relevant modes are shown in figure6. The flutter calculations for this case were
performed at M=0.85 and0◦ angle of attack. All calculations were performed on 32 processors. The steady state
was calculated in about 10min. Precomputing the matrices for the series approximations for 10 modes took about
12h. An altitude sweep was performed between 3000m down to 6000m below sea-level. This set of results is
illustrated in figure 7. No flutter is observed for this configuration.
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a) Displacement - Structural Model - Mode 2 b-) Displacement- Structural Model - Mode 3

a) Displacement - CFD Model - Mode 2 b-) Displacement - CFD Model - Mode 3

Figure 6: Mode Shapes
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Figure 7: Variation of real and imaginary eigenvalue components against altitude
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Model Para-
menter - Wi

Initial Value Final Value Model Para-
menter - Wi

Initial Value Final Value

Density 4000kg/m3 4010.4kg/m3 Young’s
Modulus

1.0 × 1011N/m2 6.437 × 1010N/m2

kx 1 × 107N/m 1 × 107N/m ky 1 × 107N/m 1 × 107N/m
kz 1 × 107N/m 9.48 × 106N/m kθ 1 × 107N/m 9.93 × 106N/m
kξ 1 × 107N/m 9.84 × 106N/m kζ 1 × 107N/m 1 × 107N/m
t1 0.200m 0.144m t2 0.088m 0.060m
t3 0.088m 0.058m t4 0.088m 0.043m
t5 0.088m 0.159m t6 0.088m 0.095m
t7 0.088m 0.136m t8 0.088m 0.091m
t9 0.088m 0.099m t10 0.088m 0.088m
t11 0.088m 0.076m t12 0.088m 0.060m
t13 0.088m 0.053m

Table 1: Model Parameters Definition

Mode Initial FE Model (Hz) Denegri data (Hz) Final FE Model Mode Shape
1 7.329 – 3.920 symmetric
2 11.983 9.191 9.191 anti-symmetric
3 17.165 9.964 9.964 anti-symmetric
4 21.396 – 22.452 anti-symmetric
5 31.019 – 22.608 symmetric
6 34.380 – 24.020 anti-symmetric
7 41.109 – 26.772 symmetric
8 41.217 – 31.292 anti-symmetric
9 44.905 – 40.040 symmetric
10 45.504 – 41.695 anti-symmetric

Table 2: Structural Model Updating: Frequency matching

4 Conclusion

A methodology to construct and analyse realistic aeroelastic models has been presented. Model updating tech-
niques allow the development of structural models that provide equivalent outputs to real structures. The Schur
Complement method permits fast and robust computation of critical eigenvalues and conditions that lead to the
onset of flutter. The methodology shown here also provides detailed information about modal interaction that
cause instabilities. The computations on two distinct testcases, Goland wing and a generic fighter configuration,
validated the methods presented in this paper.
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Solving FSI problems with high resolution and using a component
framework in parallel

J. Rang, J. Scḧoön, H. G. Matthies

In this note fluid-structure interaction problems are treated with a partitioned approach. For the fluid part of the
problem the finite volume code OpenFOAM and for the structurepart the finite element code ParaFep is used.
The communication between the different codes is realised with the help of the component template library (CTL).
Therefore the different solvers are transformed into so-called software components which are controlled from a
third code. The final non-linear system is solved with an iterative method, i.e. a staggered scheme or a block-
Gauss-Seidel method. The implementation is explained and some numerical results show the advantages of the
numerical method.

1 Introduction

The interaction of fluid and structure appears in several research areas (Dinkler and Rang, 2008), e.g. the numerical
simulation of offshore wind turbines, see (Srisupattarawanit et al., 2004) and (Meyer and Matthies, 2004), or of
biomechanical processes.

In the case of fluid-structure interaction problems a fluid and a structure problem are solved which are coupled with
the boundary conditions defined on the so-called interface,i.e. a connecting part of the boundary. The computation
of the numerical solution needs the simultaneous solution of the strong coupled equations of both problems. Often
problems of fluid-structure interaction have a strong dependency between fluid and structure (Morand and Ohayon,
1995) and (Le Tallec and Mouro, 2001).

For building a monolithic solver (Rugonyi and Bathe, 2000),it is difficult to find a free available software system
which knows at the same time finite elements, finite volumes and different time discretisation schemes for first and
second order systems. This is one reason to use a modular approach and partitioned methods (Rugonyi and Bathe,
2000; Felippa and Park, 1980; Mok and Wall, 2001; Piperno et al., 1995; Matthies and Steindorf, 2002; Matthies
et al., 2006; Steindorf, 2002), i.e. the fluid and the structure problem are solved numerically by two different
codes. In our approach we use OpenFOAM for solving the fluid and ParaFep (Niekamp, 2001) for solving the
structure part. In this note we concentrate on the communication of the different solvers and on the solution
strategies of the non-linear system. The communication between the solvers can be realised with the help of the
Component Template Library (CTL) (Niekamp, 2005), i.e. thesolvers are transformed into software components
and are controlled from outside with a central unit. Since OpenFOAM and ParaFep can be executed in parallel it
is possible that the FSI simulation runs in parallel, too. Moreover it is in our approach possible that only one of the
codes is executed in parallel.

One disadvantage of the partioned approach is the solution of the final non-linear system. Since we are using
two different codes a part of this non-linear system is knownby OpenFOAM and the other is known by ParaFep.
Therefore we are using iterative methods as the staggered scheme or the block-Gauss-Seidel-scheme to solve this
non-linear system.

The paper is structured as follows. First we give a short introducting into the two subproblems. In chapter 3 the
coupling is discused and the Component Template Library (CTL) is introduced. Finally we present some numerical
examples which show that our implementations give good results.
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2 The subproblems

The fluid problem is described by the incompressible Navier-Stokes equations and the elastic structure is modelled
with equations from elasto-dynamics.

The description of the fluid in domains with moving boundaries can be directly included into the equations, i.e. the
Arbitrary-Lagrange-Eulerian (ALE)-Formulation can be chosen (Nath, 1973). The fluid field is described with a
local or an Eulerian approach and the motion of the boundary with a Lagrangian approach. The combination of both
approaches can be done with a modification of the convective velocities in a local representation. The discretisation
in space can be done with finite volumes and in the time with theCrank-Nicolson scheme. A program code
which knows both discretisation schemes is OpenFOAM which is an open source code. It is programmed in the
programming language C++. The main application is computational fluid dynamics (CFD), i.e. the incompressible
Navier-Stokes equations. OpenFOAM can be executed in parallel with the help of MPI and it supports mesh motion
and topology changes. Moreover a pre- and postprocessor is included (FoamX and ParaFOAM).

The equations of the structure should be formulated in the case of fluid-structure interaction problems in such a way
that large deformations of the structure are possible (Wriggers, 2008). Therefore we use equations of geometric
non-linear elasto-dynamics which are represented in a Lagrangian formulation. The equations are discretised in
space with finite elements and in time with the Newmark scheme(Matthies et al., 2006). The code ParaFep is used
to solve this part of the problem. ParaFep is an in-house codewhich was developed at the institute of Structural and
Numerical Mechanics in Hannover. The main application areaare structural mechanics problems, i.e. problems
from elasto-dynamics. ParaFep supports adaptivity and canbe executed in parallel.

3 The coupling and the Component Template Library

Since we are using two different codes for the fluid and the structure problem it is computational too expensive to
solve the final non-linear system in one program. Therefore the partitioned approach is used, i.e. each subproblem
is solved by its own code. It is of course clear that either a very small time step size or some iterative method for
solving the non-linear system should be used to get a good numerical approximation.

There are several reasons why partioned methods should be used. One advantage of this technique is the re-
usability of existing software which can be used without larger changes or improvements. Moreover the best codes
for each subproblem can be used and included into the FSI-simulation.

The numerical solution depends strongly on the coupling of both codes (Morand and Ohayon, 1995) and (Le Tallec
and Mouro, 2001). One possibility are staggered schemes which are often called loosely coupled. In this approach
the non-linear system is only solved one time in each time step. Since the coupling conditions are not satisfied,
only relative small time step sizes can be used. Otherwise numerical instabilities will arise (Steindorf, 2002).

The block-Gauss-Seidel method iterates the solution of thenon-linear system. This approach is implicit, and
therefore the coupling is strong. But the block-Gauss-Seidel method may also fail for some strongly coupled
problems (Matthies et al., 2006). For this class of problemsit is possible to use a block-Newton method, (Steindorf,
2002) where the final system is solved with Newton’s method. But this method needs cross-derivatives which are
not explicitely known in a partitioned scheme. A simplification is the inexact block-Newton method (Steindorf,
2002). In this case the cross derivatives are approximated,(Steindorf, 2002). In this note we use the staggered and
the block-Gauss-Seidel scheme for solving the non-linear system.

One question is the implementation of the whole concept. Thesimplest idea is that one of the solvers is the master
unit. In this case the coupling algorithm can be implementedin one of the codes but this approach has several
disadvantages. Libraries used by the codes may be incompatible and the implementation is difficult since at least
one code has to be modified.

Another approach are software components (Szyperski, 1997). A software component is a piece of software which
offers (via an interface) a predefined service and which is able to communicate with other components. Clemens
Szyperski and David Messerschmitt define several criteria for software components: Software components should
be multiple-usable which means that they can be executed in parallel. The implementation of them should be
realised in a non-context-specific way, i.e. they are exchangeable. Software components can be composed with
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other components and they are encapsulated, i.e. they are non investigable through its interfaces. Moreover
software components are units which are independent of deployment and versioning.
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Figure 1: Communication between OpenFOAM, ParaFep, and theCTL

In our implementation the master unit is a third code which controls the fluid and the structure code from outside.
Both codes are transformed into software components and thecommunication between the master unit and these
software components is done by using the Component TemplateLibrary (CTL) (Niekamp, 2005). The CTL as a
generative component framework introduces a high-performance component model and allows the development of
high-performance applications with negligible overhead.It furthermore helps to integrate different programming
languages and paradigms as well as an extensible amount of communication protocols including MPI. Furthermore
CTL components can themselves be intrinsically parallel (i.e. using IMPI on a cluster).

Figure 1 shows a realization for the fluid-structure interaction. A component calledSolverinitialises first all vari-
ables and gives the velocityvf to the fluid solver OpenFOAM. We have build a software component of OpenFOAM
such that it can simulate with this information one time step. The numerical results are written into files which can
be read by the solver. It is important for the simulation thatthe pressurepf can be transformed with the help of
the translator to interface nodes of the structure and into forcesfs. These forces are given to the structure solver
ParaFep which simulates a time step and which returns displacementsus.

Figure 2 shows how OpenFOAM (Version 1.2) is called in a coupling process. The C++ frontendOfoam interfaces
to OpenFOAM. The interfacing can be done via file editing and system calls. Of course the usage ofOfoam
requires an OpenFOAM model, called acasein the OpenFOAM world. Additionally this model has to fit to
the requirements of the used OpenFOAM solver. In the initialisation phase of anOfoam instance the model
is geometrically discretised by calling OpenFOAM’s mesherblockMesh. During the proper FSI runOfoam
gets the mesh motion at the FSI boundary as velocities. The velocities are computed bydu

dt
, wheredu is the

displacement change during the time stepdt. Ofoam writes these velocities to the mesh motion filemotionU
of the model’s start-time directory. Subsequently the solver icoFoamAutoMotionMod is called via a system
call to solve the fluid problem. This solver is only an extension oficoFoamAutoMotion. It writes the pressure
at the boundary to an additional file namedpBoundary. This approach is more economic than extracting these
pressures from pressure filep. Ofoam reads these pressures and returns them to the calling instance.

4 Numerical examples

We test our implementation with several test examples. The first one is a flexible beam which is connected with
a quadratic rigid-body. At certain fluid velocities vortices break off and the elastic beam begins to move. Further
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Figure 2: Usage of OpenFOAM (Version 1.2)

examples are an elastic glass fibre in a soap film and an elasticcolumn in a flow.

4.1 Elastic cantilever beam

Our first example is an elastic cantilever beam from (Wall andRamm, 1998). In this example the fluid induces
oscillations of a flexible beam. The elastic structure is connected with a quadratic rigid-body from which at certain
fluid velocities and Reynolds numbers vortices break off (see Figure 3). The elastic structure moves due to this
vortices.

Figure 3: Elastic cantilever beam: Domain

As parameters for the simulation we choose for the structurethe elasticity moduleE = 2, 5 · 105 N/m2, the
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Poisson numberνs = 0.35 and the densityρs = 100 kg/m3. For the fluid the densityρf = 1.18 kg/m3, the

Figure 4: Elastic cantilever beam: Coarse mesh

viscosityνf = 1.82 · 105Ns/m2 and the inflow velocityvx = 0.513 m/s,vy = 0 m/s are chosen. The width of
the elastic structure isd = 0.6 mm. All the dimensions and the boundary conditions are presented in Figure 3. A
coarse discretisation of the fluid domain can be found in Figure 4.

For our numerical computations we refine the coarse mesh (seeFigure 4) three times. We have 48448 degrees of
freedom for the velocity and for the pressure. In Figure 5 we present the numerical results after 14.8 and 15 s. It can
observed that the elastic beam shows large displacements and that the amplitude of the movement is approximately
0.9 cm. This result fits to other calculations presented in (Steindorf, 2002; Walhorn et al., 2001; Wall, 1999).

4.2 Glass fibre in a soap film

For this problem we have a thin glass fibre (thickness approx.0.1 mm) which is fixed with a stainless-steel rod
in a flowing soap film (1.5 % dawn dish detergent, densityρf = 1000k/m3). The length of the glass fibre varies
between 1 and 5 cm, the elasticity module is given byE = 2 · 10−6Nm. The geometry of the problem is shown in
Figure 6.

There are many good arguments to consider this problem whichis due to (Alben et al., 2002) and (Alben and
Shelley, 2004). The geometry is relatively simple and two-dimensional. Moreover the fluid motion is laminar
and there exists a unique stationary geometry at the final position of the glass fibre for every combination of fluid
velocity and stiffness of the beam.

This test case offers two possibilities to compare the numerical results with the experimental data ((Alben et al.,
2002) and (Alben and Shelley, 2004)). The first one is a comparison of the final deviation of the glass fibre which
depends on the parameter of the fluid- and the structure problem, i.e. the densities of fluid and structure, the
elasticity module, etc. Is is possible to reduce the number of free parameters such that only one remains. But this
is only possible if the viscosity, the length and the thickness of the fibre are not changing too much. In this case a
non-dimensional parameterη (see (Alben et al., 2002) and (Alben and Shelley, 2004)) can be defined

η = U

√

ρffL3

2E
,

whereU is the velocity of the fluid andL is the length of the glass fibre. Since no experimental geometries with
the final position of the glass fibre are printed in the references (Alben et al., 2002) and (Alben and Shelley, 2004),
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Figure 5: Numerical results for the flexible beam after 14.8 and after 15.0s

5

0.
1

Figure 6: Glass fibre in a soap film (Measurements are in mm)

a direct comparison is not possible. Therefore a comparisonwith a mathematical model is possible (see Figure. 7).
There are quiet large differences between the experimentalgeometries forη = 16 and our computation. These
differences appear since no re-meshing is done and the deformations of the mesh are quiet large.

The theory and the measurements offer a second possibility for the comparison of experiments and numerical
simulations since the ratio of effeminateness of the fibre and the drag can be considered. The drag coefficient

Cd := 2 · drag/(ρffLU2)

is nearly independent fromη (for smallη), but decreases then withη−2/3, if the glass fibre is moving under the
influence of the fluid (see Figure 8).
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Figure 7: Comparison of displacements of the glass fibre for different η. Black: Experiment from (Alben and
Shelley, 2004), Coloured: FSI-Simulation
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Figure 8: Drag of the glass fibre in the soap film, FSI-results in comparison with measured data (Alben et al., 2002)
and (Alben and Shelley, 2004).

The differences between our FSI-simulations and the measure data are due to the fact that a shorter glass fibre
is used in our calculation. A longer glass fibre blocks a greater part of the profile of the channel, such that the
pressure difference between upper and bottom side of the fibre increases. SinceCd ≈ 2 our FSI simulation seems
to be correct. This is a similar result to the measurements ofa plate in a tow-dimensional free flow (see (Hoerner,
1958)).

Column in a flow

A rectangular freestanding column with an inflow of 1 m/s fromthe left is our first 3D test case. The upper part
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Figure 9: Deviation of the column. ”abs(U)” is the velocity of the deviation in m/s.

of the column is bent due to the influence of the flow pressure and it reaches the neutral position quickly (see
Figure. 9. The final deviation has the correct magnitude for the structure and the fluid which we consider. For this
test case no comparable data from experiments or other numerical approximations are known. Nevertheless the
numerical results show that our implementation give good results.

5 Summary

In this note we have presented a strategy for solving fluid-structure interaction problems with a partioned method.
The fluid and the structure code are realized as so-called software components and the communication between
solver and software components is done with the help of the Component Template Library (CTL). Finally we
present 2 and 3 dimensional examples which show that our algorithm gives quiet accurate results.
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Numerical simulation of fluid-structure interaction with applicati on to
aneurysm hemodynamics

M. Razzaq, S. Turek, J. Hron, J. F. Acker, F. Weichert, M. Wagner, I. Q. Grunwald, C. Roth, and B. F. Romeike

As an example for fluid-structure interaction in biomedicalproblems, the influence of endovascular stent implan-
tation onto cerebral aneurysm hemodynamics is numericallyinvestigated. The aim is to study the interaction of
the elastic walls of the aneurysm with the geometrical shapeof the implanted stent structure for prototypical 2D
configurations. This study can be seen as a basic step towardsthe understanding of the resulting complex flow
phenomena so that in future aneurysm rupture shall be suppressed by an optimal setting for the implanted stent
geometry. From the mathematical side, numerical techniques for solving the problem of fluid-structure interaction
with an elastic material in a laminar incompressible viscous flow are described. An Arbitrary Lagrangian-Eulerian
(ALE) formulation is employed in a fully coupled monolithicway, considering the problem as one continuum. The
mathematical description and the numerical schemes are designed in such a way that more complicated consti-
tutive relations (and more realistic for biomechanics applications) for the fluid as well as the structural part can
be easily incorporated. We utilize the well-known Q2P1 finite element pair for discretization in space to gain high
accuracy and perform as time-stepping the 2nd order Crank-Nicholson, resp., Fractional-Step-θ -scheme for both
solid and fluid parts. The resulting nonlinear discretized algebraic system is solved by a Newton method which ap-
proximates the Jacobian matrices by the divided differences approach, and the resulting linear systems are solved
by iterative solvers, preferably of Krylov-multigrid type. Preliminary results for the stent-assisted occlusion of
cerebral aneurysm are presented. Since these results are currently restricted to 2D configurations, the aim is not
to predict quantitatively the complex interaction mechanisms between stents and elastic walls of the aneurysm,
but to analyse qualitatively the behaviour of the elasticity of the walls vs. the geometrical details of the stent for
prototypical flow situations.

1 Introduction

In this contribution, we consider the general problem of viscous flow interacting with an elastic body which is being
deformed by the fluid action. Such a problem is of great importance in many real life applications, and typical
examples of this type of problem are the areas of biomedical fluids which include the influence of hemodynamic
factors in blood vessels, cerebral aneurysm hemodynamics,joint lubrication and deformable cartilage and blood
flow interaction with elastic veins (Appanaboyina et al., 2008), (Valencia et al., 2008), (Fernandez et al., 2008),
(Tezduyar et al., 2007), (Tezduyar et al., 2008). The theoretical investigation of fluid-structure interaction problems
is complicated by the need of a mixed description for both parts: While for the solid part the natural view is the
material (Lagrangian) description, for the fluid it is usually the spatial (Eulerian) description. In the case of their
combination some kind of mixed description (usually referred to as the Arbitrary Lagrangian-Eulerian description
or ALE) has to be used which brings additional nonlinearity into the resulting equations (see (Hron and Turek,
2006b)).

The numerical solution of the resulting equations of the fluid-structure interaction problem poses great challenges
since it includes the features of structural mechanics, fluid dynamics and their coupling. The most straightforward
solution strategy, mostly used in the available software packages (see for instance (Hron et al., 2002)), is to de-
couple the problem into the fluid part and solid part, for eachof those parts using some well established method
of solution; then the interaction process is introduced as external boundary conditions in each of the subproblems.
This has the advantage that there are many well tested numerical methods for both separate problems of fluid flow
and elastic deformation, while on the other hand the treatment of the interface and the interaction is problematic
due to high stiffness and sensitivity. In contrast, the monolithic approach discussed here treats the problem as a
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single continuum with the coupling automatically taken care of as internal interface.

Beside a short description of the underlying numerical aspects regarding discretization and solution procedure for
this monolithic approach (see (Razzaq et al., 2008), (Hron and Turek, 2006a)), we concentrate on prototypical nu-
merical studies for 2D aneurysm configurations. The corresponding parametrization was based on abstractions of
biomedical data (i.e., cutplanes of 3D specimens from New Zealand white rabbits as well as computer tomographic
and magnetic resonance imaging data of human neurocrania).In our studies, we allow the walls of the aneurysm to
be elastic and hence deforming with the flow field in the vessel. Moreover, we examine several configurations for
stent geometries which clearly influence the flow behavior inside of the aneurysm such that a very different elastic
displacement of the walls is observed too. We demonstrate that either the elastic modeling of the aneurysm walls
as well as the proper description of the geometrical detailsof the shape of the aneurysm and particularly of the
stents is of great importance if the complex interaction between structure and fluid shall be quantitatively analyzed
in future, especially in view of more realistic blood flow models and anisotropic constitutive laws of the elastic
walls.

2 Fluid-structure interaction problem formulation

The general fluid-structure interaction problem consists of the description of the fluid and solid fields, appropriate
interface conditions at the interface and conditions for the remaining boundaries, respectively. In this paper, we
consider the flow of an incompressible Newtonian fluid interacting with an elastic solid. We denote the domain
occupied by the fluid byΩb

t and the solid byΩs
t at the timet ∈ [0,T]. Let Γ0

t = Ω̄b
t ∩ Ω̄s

t be the part of the boundary
where the elastic solid interacts with the fluid. In the following, the description for both fields fields and the
interface conditions are introduced. Furthermore, discretization aspects and solution procedures are presented in
the next section.

2.1 Constitutive relations for the fluid

The fluid is considered to beNewtonian, incompressibleand its state is described by thevelocityand pressure
fieldsvb, pb respectively. The constant density of the fluid isρb and the kinematic viscosity is denoted byνb. The
balance equations are:

ρb Dvb

Dt
= divσb, divvb = 0 in Ωb

t (1)

In order to solve the balance equations we need to specify theconstitutive relations for the stress tensors. For the
fluid we use the incompressible Newtonian relation

σb = −pbI + µ(∇vb +(∇vb)T), (2)

whereµ represents the dynamic viscosity of the fluid andpb is the Lagrange multiplier corresponding to the in-
compressibility constraint in (1). The material time derivative depends on the choice of the reference system. There
are basically 3 alternative reference systems: the Eulerian, the Lagrangian, and the Arbitrary Lagrangian-Eulerian
formulation. The most commonly used description for the fluid-structure interaction is the ALE description. For
the ALE formulation presented in this paper, correspondingdiscretization techniques are discussed in section 3.
Let us remark that also nonnewtonian flow models can be used for modeling blood flow, for instance of Power Law
type or even including viscoelastic effects (see (Damanik et al., 2008)) which is planned for future extensions.

2.2 Constitutive relations for the structure

The structure is assumed to beelastic andcompressible. Its configuration is described by the displacementus,
with velocity fieldvs = ∂us

∂ t . The balance equations are:

ρs∂vs

∂ t
+ρs(∇vs)vs = divσs+ρsg, in Ωs

t . (3)

Written in the more common Lagrangian description, i.e. withrespect to some fixed reference (initial) stateΩs, we
have

ρs∂ 2us

∂ t2 = div(JσsF−T)+ρsg, in Ωs. (4)
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The constitutive relations for the stress tensors for the compressible structure are presented, however, also incom-
pressible structures can be handled in the same way (see (Hron and Turek, 2006b)). The density of the structure in
the undeformed configuration isρs. The material elasticity is characterized by a set of two parameters, the Poisson
ratioνs and the Young modulusE. Alternatively, the characterization is described by the Lamécoefficientsλ s and
the shear modulusµs. These parameters satisfy the following relations

νs =
λ s

2(λ s+ µs)
E =

µs(3λ s+2µ2)

(λ s+ µs)
(5)

µs =
E

2(1+νs)
λ s =

νsE
(1+νs)(1−2νs)

, (6)

whereνs = 1/2 for a incompressible andνs < 1/2 for a compressible structure. In the large deformation case
it is common to describe the constitutive equation using a stress-strain relation based on the Green Lagrangian
strain tensorE and the 2.Piola-Kirchhoff stress tensorS(E) as a function ofE. The 2.Piola-Kirchhoff stress can be
obtained from the Cauchy stressσs as

Ss = JF−1σsF−T , (7)

and the Green-Lagrange tensorE as

E =
1
2
(FTF− I). (8)

In this paper, the material is specified by giving the Cauchy stress tensorσs by the following constitutive law for
the St.Venant-Kirchhoff material for simplicity

σs =
1
J

F(λ s(trE)I +2µsE)FT Ss = λ s(trE)I +2µsE. (9)

J denotes the determinant of the deformation gradient tensorF, defined asF = I + ∇us. Similar as in the case of
more complex blood flow models, also more realistic constitutive relations for the anisotropic behavior of the walls
of aneurysms can be included which however is beyond the scope of this contribution.

2.3 Interaction conditions

The boundary conditions on the fluid-solid interface are assumed to be

σbn = σsn, vb = vs, on Γ0
t , (10)

wheren is a unit normal vector to the interfaceΓ0
t . This implies the no-slip condition for the flow and that the

forces on the interface are in balance.

3 Discretization and solution techniques

In this study, we restrict at the moment to two dimensions which allows systematic tests of the proposed methods
for biomedical applications in a very efficient way such thatthe qualitatitive behaviour can be carefully analyzed.
The corresponding fully implicit, monolithic treatment ofthe fluid-structure interaction problem suggests that an
A-stable second order time stepping scheme and that the samefinite elements for both the solid part and the fluid
region should be utilized. Moreover, to circumvent the fluidincompressibility constraints, we have to choose a
stable finite element pair. For that reason, the conforming biquadratic, discontinuous linearQ2P1 pair, see Figure
1 for the location of the degrees of freedom, is chosen which will be explained in the next section.

3.1 Space discretization

Let us define the usual finite dimensional spacesU for displacement,V for velocity,P for pressure approximation
as follows

U = {u ∈ L∞(I , [W1,2(Ω)]2),u = 0 on ∂Ω},

V = {v ∈ L2(I , [W1,2(Ωt)]
2)∩L∞(I , [L2(Ωt)]

2),v = 0 on ∂Ω},

P = {p∈ L2(I ,L2(Ω))},
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Figure 1: Location of the degrees of freedom for theQ2P1 element.

then the variational formulation of the fluid-structure interaction problem is to find(u,v, p) ∈U ×V ×P such that
the equations are satisfied for all(ζ ,ξ ,γ) ∈U ×V ×P including appropriate initial conditions. The spacesU,V,P
on an interval[tn, tn+1] would be approximated in the case of theQ2,P1 pair as

Uh = {uh ∈ [C(Ωh)]
2,uh|T ∈ [Q2(T)]2 ∀T ∈ Th,uh = 0 on ∂Ω},

Vh = {vh ∈ [C(Ωh)]
2,vh|T ∈ [Q2(T)]2 ∀T ∈ Th,vh = 0 on ∂Ω},

Ph = {ph ∈ L2(Ωh), ph|T ∈ P1(T) ∀T ∈ Th}.

Let us denote byun
h the approximation ofu(tn), vn

h the approximation ofv(tn) andpn
h the approximation ofp(tn).

Consider for eachT ∈ Th the bilinear transformationψT : T̂ → T to the unit squareT. Then,Q2(T) is defined as

Q2(T) =
{

q◦ψ−1
T : q∈ span< 1,x,y,xy,x2,y2,x2y,y2x,x2y2 >

}
(11)

with nine local degrees of freedom located at the vertices, midpoints of the edges and in the center of the quadri-
lateral. The spaceP1(T) consists of linear functions defined by

P1(T) =
{

q◦ψ−1
T : q∈ span< 1,x,y >

}
(12)

with the function value and both partial derivatives located in the center of the quadrilateral, as its three local
degrees of freedom, which leads to a discontinuous pressure. The inf-sup condition is satisfied (see (Boffi and
Gastaldi, 2002)); however, the combination of the bilineartransformationψ with a linear function on the reference
squareP1(T̂) would imply that the basis on the reference square did not contain the full basis. So, the method can
at most be first order accurate on general meshes (see (Arnoldet al., 2002), (Boffi and Gastaldi, 2002))

‖p− ph‖ = O(h). (13)

The standard remedy is to consider a local coordinate system(ξ ,η) obtained by joining the midpoints of the
opposing faces ofT (see (Arnold et al., 2002), (Rannacher and Turek, 1992), (Turek, 1999)). Then, we set on each
elementT

P1(T) := span< 1,ξ ,η > . (14)

For this case, the inf-sup condition is also satisfied and thesecond order approximation is recovered for the pressure
as well as for the velocity gradient (see (Boffi and Gastaldi,2002), (Gresho, 1990))

‖p− ph‖ = O(h2) and ‖∇(u−uh)‖0 = O(h2). (15)

For a smooth solution, the approximation error for the velocity in the L2-norm is of orderO(h3) which can easily
be demonstrated for prescribed polynomials or for smooth data on appropriate domains.

3.2 Time discretization

In view of a more compact presentation, the applied time discretization approach is described only for the fluid part
(see (Razzaq, 2009) for more details). In the following, we restrict to the (standard) incompressible Navier-Stokes
equations

vt −ν∆v+v ·∇v+∇p = f, divv = 0, in Ω× (0,T] , (16)
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for given forcef and viscosityν , with prescribed boundary values on the boundary∂Ω and an initial condition at
t = 0. Then, the usualθ -scheme for time discretization reads:

Basicθ -scheme:Givenvn andK = tn+1− tn, then solve forv = vn+1 andp = pn+1

v−vn

K
+θ [−ν∆v+v ·∇v]+∇p = gn+1, divv = 0, in Ω (17)

with right hand sidegn+1 := θ fn+1 +(1−θ)fn− (1−θ)[−ν∆vn +vn ·∇vn].

The parameterθ has to be chosen depending on the time-stepping scheme, e.g., θ = 1 for the Backward Euler
(BE), or θ = 1/2 for the Crank-Nicholson-scheme (CN) which we prefer. The pressure term∇p = ∇pn+1 may
be replaced byθ∇pn+1 +(1−θ)∇pn, but with appropriate postprocessing, both strategies lead to solutions of the
same accuracy. In all cases, we end up with the task of solving, at each time step, a nonlinear saddle point problem
of given type which has then to be discretized in space as described above.

These two methods, CN and BE, belong to the group ofOne-Step-θ -schemes. The CN scheme can occasionally
suffer from numerical instabilities because of its only weak damping property (not strongly A-stable), while the
BE-scheme is of first order accuracy only (however: it is a good candidate for steady-state simulations). Another
method which has proven to have the potential to excel in thiscompetition is the Fractional-Step-θ -scheme (FS).
It uses three different values forθ and for the time stepK at each time level. In (Razzaq et al., 2008), (Turek
et al., 2006) we additionally described a modified Fractional-Step-θ -scheme which particularly for fluid-structure
interaction problems seems to be advantageous. A detailed description will appear in the thesis (Razzaq, 2009).

3.3 Solution algorithms

The system of nonlinear algebraic equations arising from the governing equations described above reads




Suu Suv 0
Svu Svv kB
cuBT

s cvBT
f 0









u
v
p



 =





fu
fv
fp



 (18)

which is a typical saddle point problem, whereSdescribes the diffusive and convective terms from the governing
equations. The above system of nonlinear algebraic equations (18) is solved using Newton method as basic itera-
tion. The basic idea of the Newton iteration is to find a root ofa function,R(X) = 0 , using the available known
function value and its first derivative, whereX = (uh,vh, ph) ∈Uh×Vh×Ph. One step of the Newton iteration can
be written as

Xn+1 = Xn−

[
∂R
∂X

(Xn)

]−1

R(Xn). (19)

1. LetXn be some starting guess.

2. Set the residuum vectorRn = R(Xn) and the tangent matrixA = ∂R
∂X (Xn).

3. Solve for the correctionδX
AδX = Rn.

4. Find optimal step lengthω.

5. Update the solutionXn+1 = Xn−ωδX.

Figure 2: One step of the Newton method with line search.

This basic iteration can exhibit quadratic convergence provided that the initial guess is sufficiently close to the
solution. To ensure the convergence globally, some improvements of this basic iteration are used. The damped
Newton method with line search improves the chance of convergence by adaptively changing the length of the
correction vector. The solution update step in the Newton method (19) is replaced by

Xn+1 = Xn−ωδX, (20)
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where the parameterω is determined such that a certain error measure decreases (see (Turek, 1999), (Hron and
Turek, 2006a) for more details). The Jacobian matrix∂R(Xn)

∂X can be computed by finite differences from the
residual vectorR(X)

[
∂R
∂X

]

i j
(Xn) ≈

[R]i(Xn +α jej)− [R]i(Xn−α jej)

2α j
, (21)

whereej are the unit basis vectors inRn and the coefficientsα j are adaptively taken according to the change in the
solution in the previous time step. Since we know the sparsity pattern of the Jacobian matrix in advance, which
is given by the used finite element method, this computation can be done in an efficient way so that the linear
solver remains the dominant part in terms of the CPU time (see(Turek, 1999), (Turek and Schmachtel, 2002) for
more details). A good candidate, at least in 2D, seems to be a direct solver for sparse systems like UMFPACK
(see (Davis and Duff, 1999)); while this choice provides very robust linear solvers, its memory and CPU time
requirements are too high for larger systems (i.e. more than20.000 unknowns). Large linear problems can be
solved by Krylov-space methods (BiCGStab, GMRes, see (Barrett et al., PA 1994)) with suitable preconditioners.
One possibility is the ILU preconditioner with special treatment of the saddle point character of our system, where
we allow certain fill-in for the zero diagonal blocks, see (Bramley and Wang, 1997).

As an alternative, we also utilize a standard geometric multigrid approach based on a hierarchy of grids obtained
by successive regular refinement of a given coarse mesh. The complete multigrid iteration is performed in the
standard defect-correction setup with the V or F-type cycle. While a direct sparse solver (Davis and Duff, 1999)
is used for the coarse grid solution, on finer levels a fixed number (2 or 4) of iterations by local MPSC schemes
(Vanka-like smoother) (Turek, 1999), (Vanka, 1985), (Hronand Turek, 2006a) is performed. Such iterations can
be written as





ul+1

vl+1

pl+1



 =





ul

vl

pl



−ω ∑
elementΩi





Suu|Ωi
Suv|Ωi

0
Svu|Ωi

Svv|Ωi
kB|Ωi

cuBT
s|Ωi

cvBT
f |Ωi

0





−1



deflu
deflv
de flp



 .

The inverse of the local systems (39× 39) can be done by hardware optimized direct solvers. The full nodal
interpolation is used as the prolongation operatorP with its transposed operator used as the restrictionR = PT (see
(Hron et al., 2002), (Turek, 1999) for more details).

4 Problem description

In the following, we consider the numerical simulation of special problems encountered in the area of cardiovas-
cular hemodynamics, namely flow interaction with thick-walled deformable material, which can become a useful
tool for deeper understanding of the onset of diseases of thehuman circulatory system, as for example blood cell
and intimal damages in stenosis, aneurysm rupture, evaluation of the new surgery techniques of heart, arteries and
veins (see (Appanaboyina et al., 2008), (Löhner et al., 2008) (Valencia et al., 2008) and therein citedliterature).
In this contribution, prototypical studies are performed for brain aneurysm. The word ‘aneurysm’ comes from the
latin wordaneurysmawhich means dilatation. Aneurysm is a local dilatation in the wall of a blood vessel, usually
an artery, due to a defect, disease or injury. Typically, as the aneurysm enlarges, the arterial wall becomes thinner
and eventually leaks or ruptures, causing subarachnoid hemorrhage (SAH) (bleeding into brain fluid) or formation
of a blood clot within the brain. In the case of a vessel rupture, there is a hemorrhage, and when an artery ruptures,
then the hemorrhage is more rapid and more intense. In arteries the wall thickness can be up to 30% of the diameter
and its local thickening can lead to the creation of an aneurysm so that the aim of numerical simulations is to relate
the aneurysm state (unrupture or rupture) with wall pressure, wall deformation and effective wall stress. Such a
relationship would provide information for the diagnosis and treatment of unrupture and rupture of an aneurysm
by elucidating the risk of bleeding or rebleeding, respectively.

In order to use the proposed numerical methods for aneurysm hemodynamics, simplified two-dimensional exam-
ples, which however include the interaction of the flow with the deformable material, are considered. Flow through
a deformable vein with elastic walls of a brain aneurysm is simulated to analyse qualitatively the described meth-
ods; here, the flow is driven by prescribing the flow velocity at the inflow part of the boundary while the elastic
part of the boundary is either fixed or stress-free. Both endsof the walls are fixed at the inflow and outflow, and
the flow is driven by a periodical change of the inflow at the left end.
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4.1 Geometry of the problem

For convenience, the geometry of the fluid domain under consideration is currently based on 2D models (see Fig.
3) which allows us to concentrate on the detailed qualitative evaluation of our approach based on the described
monolithic ALE formulation. The underlying construction of the (2D) shape of the aneurysm can be explained as
follows:

• The bent blood vessel is approximated by quarter circles around the origin.

• The innermost circle has the radius 6mm, the next has 8mm, and the last one has 8.25mm.

• This results in one rigid inner wall and an elastic wall between 8mm and 8.25mmof thickness 0.25mm.

Figure 3: Left: Schematic drawing of the measurement section. Middle: Mesh without stents (776 elements).
Right: Mesh with stents (1431 elements) which are part of thesimulations.

The aneurysm shape is approximated by two arcs and lines intersecting the arcs tangentially. The midpoints of
the arcs are the same (-6.75; 6), they have the radius 1.125mmand 1.25mm. They are intersected tangentially by
lines at angular value 1.3 radians. This results in a wall thickness of 0.125mmfor the elastic aneurysm walls (see
Fig. 3). The examined stents are of circular shape, placed onthe neck of the aneurysm, and we use three, resp., five
stents (simplified ‘circles’ in 2D as cutplanes from 3D configurations) of different size and position. The stents
also consist of a grid, immersed in the blood flow, which is located at the inlet of the aneurysm so that in future
elastic deformations of the stents can be included, too, since in real life, the stent is a medical device which consists
of a wire metal wire tube. Stents are typically used to keep arteries open and are located on the vessel wall while
this stent is immersed in the blood flow (Fig. 3). The purpose of this device is to reduce the flux into and within
the aneurysm in order to occlude it by a clot or rupture. The aneurysm is then intersected with the blood vessel and
all missing angular values and intersection points can be determined.

4.2 Boundary and initial conditions

The (steady) velocity profile, to flow from the right to the left part of the channel, is defined as parabolic inflow,
namely

vb(0,y) = Ū(y−6)(y−8). (22)

Correspondingly, the pulsatile inflow profile for the nonsteady tests for which peak systole and diastole occur for
∆t = 0.25s and∆t = 0.75s respectively, is prescribed as

vb(t,0,y) = vb(0,y)(1+0.75sin(2πt)). (23)

The natural outflow condition at the lower left part effectively prescribes some reference value for the pressure
variable p, here p = 0. While this value could be arbitrarily set in the incompressible case, in the case of a
compressible structure this might have influence onto the stress and consequently the deformation of the solid.
Theno-slip condition is prescribed for the fluid on the other boundary parts, i.e. top and bottom wall, stents and
fluid-structure interface.
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5 Numerical results

The newtonian fluid used in the tests has a densityρb = 1.035×10−6kg/mm3 and a kinematic viscosityνb =
3.38mm2/swhich is similar to the properties of blood. If we prescribe the inflow speed̄U =−50mm/s, this results
in a Reynolds numberRe≈ 120 based on the prescribed peak systole inflow velocity and the width of the veins
which is 2mmsuch that the resulting flow is within the laminar region. Parameter values for the elastic vein in
the described model are as follows: The density of the upper elastic wall isρs = 1.12×10−6kg/mm3, solid shear
modulus isµs = 42.85kg/mms2, Poisson ratio isν p = 0.4, Young modulus isE = 120kN/mm2. As described
before, the constitutive relations used for the materials are the incompressible Newtonian model (2) for the fluid
and a hyperelastic neo-Hookean material for the solid. Thischoice includes most of the typical difficulties the
numerical method has to deal with, namely the incompressibility and significant deformations.

From a medical point of view, the use of stents provides an efficient treatment for managing the difficult entity of
intracranial aneurysms. Here, the thickness of the aneurysm wall is attenuated and the aneurysm hemodynamics
changes significantly. Since the purpose of this device is tocontrol the flux within the aneurysm in order to occlude
it by a clot or rupture, the resulting flow behavior into and within the aneurysm is the main objective, particularly
in view of the different stent geometries. Therefore, we decided for the 2D studies to locate the (2D parts of the)
stents only in direct connection to the aneurysm.

Comparing our studies with the CFD literature (see (Fernandez et al., 2008), (Appanaboyina et al., 2008), (Valencia
et al., 2008), (Torri et al., 2007a), (Torri et al., 2007b) ),several research groups focus on CFD simulations with
realistic 3D geometries, but typically assuming rigid walls. In contrast, we concentrate on the complex interaction
between elastic deformations and flow perturbations induced by the stents. At the moment, we are only able
to perform these simulations in 2D, however, with these studies we should be able to analyse qualitatively the
influence of geometrical details onto the elastic material behavior, particularly in view of more complex blood
models and constitutive equations for the structure. Therefore, the aims of our studies can be described as follows:

1. What is the influence of the elasticity of the walls onto the flow behavior inside of the aneurysm, particularly
w.r.t. the resulting shape of the aneurysm?

2. What is the influence of the geometrical details of the (2D) stents, that means shape, size, position, onto the
flow behavior into and inside of the aneurysm?

3. Do both aspects, small-scale geometrical details as wellas elastic fluid-structure interaction, have to be
considered simultaneously or is one of them negligible in first order approximation?

4. Are modern numerical methods and corresponding CFD simulations tools able to simulate qualitatively the
multiphysics behavior of such biomedical configurations?

In the following, we show some corresponding results for thedescribed prototypical aneurysm geometry, first for
the steady state inflow profile, followed by nonsteady tests for the pulsatile inflow, both with rigid and elastic walls,
respectively.

5.1 Steady configurations

Due to the given inflow profile, which is not time-dependent, and due to the low Re numbers, the flow behaviour
leads to a steady state which only depends on the elasticity and the shape of the stents. Moreover, for the following
simulations, we only treat the aneurysm wall as elastic structure. Then, the aneurysm undergoes some slight
deformations which can hardly be seen in the following figures. However they result in a different volume of the
flow domain (see Fig. 6) and lead to a significantly different local flow behaviour since the spacing between stents
and elastic walls may change (see the subsequent color pictures).
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Figure 4: Deformed mesh for steady configuration without stents, with elastic wall (left). Mesh for rigid wall
(right).

Figure 5: Deformed mesh for steady configuration with stents: 3 stents (left) and 5 stents (right).
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Figure 6: Resulting volume of the fluid domain for different configurations.

In the following pictures, we visualize the different flow behaviour by coloring due the velocity magnitude and by
showing corresponding vector plots inside of the aneurysm.Particularly the influence of the number of stents onto
the complete fluid flow through the channel including the aneurysm can be clearly seen.
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Figure 7: Rigid wall without stents.

Figure 8: Elastic aneurysm wall without stents.

Figure 9: Elastic aneurysm wall with 3 stents.

Figure 10: Elastic aneurysm wall with 5 stents.
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Summarizing these results for steady inflow, the simulations show that the stent implantation across the neck of the
aneurysm prevents blood penetration into the aneurysm fundus. Moreover, the elastic geometrical deformation of
the wall is slightly reduced by implanting the stents while the local flow behaviour inside of the aneurysm is more
significantly influenced by the elastic properties of the outer wall, particularly due to different width between stents
and walls of the aneurysm. In the next section, we will consider the more realistic behaviour of flow configurations
with time-dependent pulsatile inflow which will be analyzedfor the case of elastic behaviour of the aneurysm
walls.

5.2 Pulsatile configurations

For the following pulsatile test case, we have taken again the aneurysm part as elastic while the other parts of the
walls belonging to the channel are rigid. First of all, we show again (see Fig. 11) the resulting volume of the flow
domain for 5, 3 and no stents. In all cases, the oscillating behaviour due to the pulsative inflow is visible which
also leads to different volume sizes. Looking carefully at the resulting flow behaviour, we see global differences
w.r.t. the channel flow near the aneurysm, namely due to the different flow rate into the aneurysm, and significant
local differences inside of the aneurysm.
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Figure 11: Volume of the domain with rigid and elastic behaviour of the aneurysm wall.

Figure 12: Snapshot for the magnitude of velocity for configurations with no, 3 and 5 stents.
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Figure 13: Left column: no stent. Middle column: 3 stents. Right column: 5 stents. Figures demonstrate the global
behaviour of the velocity magnitude during one cycle.
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Figure 14: Left column: no stent. Middle column: 3 stents. Right column: 5 stents. Figures demonstrate the local
behaviour of the fluid flow inside of the aneurysm during one cycle.
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6 Summary and future developments

We presented a monolithic ALE formulation of fluid-structure interaction problems suitable for applications with
finite deformations of the structure and laminar viscous flows, particularly arising in biomechanics. The corre-
sponding discrete nonlinear systems result from the finite element discretization by using the high orderQ2P1

FEM pair which are solved monolithically via discrete Newton iteration and special Krylov-multigrid approaches.
While we restricted in the presented studies to the simplifiedcase of newtonian fluids and small deformations,
the used numerical components allow the system to be coupledwith additional models of chemical and electric
activation of the active response of the biological material as well as power law models used to describe the shear
thinning property of blood. Further extension to viscoelastic models and coupling with mixture based models for
soft tissues together with chemical and electric processeswould allow to perform more realistic simulations for
real applications.

In this contribution, we applied the presented numerical techniques to fluid-structure interaction problems which
examine prototypically the influence of endovascular stentimplantation onto aneurysm hemodynamics. The aim
was, first of all, to study the influence of the elasticity of the walls onto the flow behaviour inside of the aneurysm.
Moreover, different geometrical configurations of implanted stent structures have been analysed in 2D. These 2D
results are far from providing quantitative results for such a complex multiphysics configuration, but they allow
a qualitative analysis w.r.t. both considered components,namely the elastic behaviour of the structural parts and
the multiscale flow behaviour due to the geometrical detailsof the stents. We believe that such basic studies may
help towards the development of future ‘Virtual Flow Laboratories’ which individually assist to develop personal
medical tools in an individual style.
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Multiscale Sequentially-Coupled Arterial Fluid–Structure Inter action
(SCAFSI) Technique

Tayfun E. Tezduyar, Kenji Takizawa and Jason Christopher

We present the multiscale versions and extensions of the Sequentially-Coupled Arterial Fluid–Structure Interac-
tion (SCAFSI) technique. The SCAFSI technique was introduced as an approximate FSI approach in arterial fluid
mechanics. It is based on the assumption that the arterial deformation during a cardiac cycle is driven mostly by
the blood pressure. First we compute a “reference” arterialdeformation as a function of time, driven only by the
blood pressure profile of the cardiac cycle. Then we compute asequence of updates involving mesh motion, fluid
dynamics calculations, and recomputing the arterial deformation. Although the SCAFSI technique was developed
and tested in conjunction with the stabilized space–time FSI (SSTFSI) technique, it can also be used in conjunction
with other moving-mesh FSI modeling approaches. The SSTFSItechnique is based on the Deforming-Spatial-
Domain/Stabilized Space–Time (DSD/SST) formulation and is supplemented with a number of special techniques
developed for arterial FSI. These include a recipe for pre-FSI computations that improve the convergence of the
FSI computations, using an estimated zero-pressure arterial geometry, layers of refined fluid mechanics mesh near
the arterial walls, and a special mapping technique for specifying the velocity profile at an inflow boundary with
non-circular shape. The SCAFSI technique provides a computationally more economical alternative to the fully
coupled FSI approach in arterial fluid mechanics. It also brings additional flexibility, such as being able to carry
out the computations in a spatially or temporally multiscale fashion. In the test computations we report here for
the spatially multiscale versions and extensions of the SCAFSI technique, we focus on a patient-specific middle
cerebral artery segment with aneurysm, where the arterial geometry is based on computed tomography images.
The arterial structure is modeled with the continuum element made of hyperelastic (Fung) material.

1 Introduction

We are seeing more research emphasis on computation of arterial fluid–structure interaction (FSI) problems (see,
for example, Torii et al. (2004); Gerbeau et al. (2005); Torii et al. (2006a,b); Bazilevs et al. (2006); Torii et al.
(2007a); Tezduyar et al. (2007b); Torii et al. (2007b); Tezduyar et al. (2008); Bazilevs et al. (2008); Torii et al.
(2008); Tezduyar et al. (July 2008); Torii et al. (July 2008)). While an increased emphasis on biomechanics re-
search is part of the reason, it is also because there has beenmuch emphasis on FSI modeling in general (see, for
example, Tezduyar et al. (1993, 1994); Mittal and Tezduyar (1994, 1995); Johnson and Tezduyar (1999); Kalro
and Tezduyar (2000); Stein et al. (2000); Tezduyar and Osawa(2001); Ohayon (2001); Tezduyar et al. (2004); Torii
et al. (2004); van Brummelen and de Borst (2005); Michler et al. (2005); Gerbeau et al. (2005); Tezduyar et al.
(2006a,b); Torii et al. (2006a); Tezduyar et al. (2006c); Torii et al. (2006b); Dettmer and Peric (2006); Bazilevs
et al. (2006); Khurram and Masud (2006); Kuttler et al. (2006); Lohner et al. (2006); Bletzinger et al. (2006); Torii
et al. (2007a); Masud et al. (2007); Sawada and Hisada (2007); Wall et al. (2007); Tezduyar and Sathe (2007); Tez-
duyar et al. (2007b); Torii et al. (2007b); Tezduyar et al. (2008); Bazilevs et al. (2008); Kuttler and Wall (2008);
Dettmer and Peric (2008)). The Deforming-Spatial-Domain/Stabilized Space–Time (DSD/SST) formulation Tez-
duyar (1992); Tezduyar et al. (1992a,c); Tezduyar (2003) was introduced in 1991 as a general-purpose interface-
tracking (i.e. moving-mesh) technique for simulation of flow problems with moving boundaries or interfaces, in-
cluding FSI. The stabilization components used are the Streamline-Upwind/Petrov-Galerkin (SUPG) Hughes and
Brooks (1979); Brooks and Hughes (1982) and Pressure-Stabilizing/Petrov-Galerkin (PSPG) Tezduyar (1992);
Tezduyar et al. (1992d) methods. An earlier version of the pressure stabilization, for Stokes flows, was intro-
duced in Hughes et al. (1986). The DSD/SST formulation, together with the mesh update methods Tezduyar et al.
(1992b); Johnson and Tezduyar (1994); Tezduyar (2001) developed in conjunction with the DSD/SST formulation
and block-iterative coupling Tezduyar (2004) (see Tezduyar et al. (2006a,b); Tezduyar and Sathe (2007) for the
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terminology), has been the core technology used in the arterial FSI computations reported by Torii et al. Torii et al.
(2004, 2006a,b, 2007a,b, 2008, July 2008) for patient-specific image-based geometries. The cases studied in these
articles by Torii et al. were almost all for middle cerebral artery segments with aneurysm, and the geometries were
constructed from computed tomography images.

The stabilized space–time FSI (SSTFSI) technique was introduced recently in Tezduyar and Sathe (2007). It is
based on the new-generation DSD/SST formulations, which were also introduced in Tezduyar and Sathe (2007).
The SSTFSI technique was extended in Tezduyar et al. (2007b,2008, July 2008) to arterial FSI, with emphasis
on arteries with aneurysm. The arterial geometries were approximations to patient-specific image-based geome-
tries, mainly to those reported by Torii et al. A number of special techniques for arterial FSI were developed in
conjunction with the SSTFSI technique. These include usingan estimated zero-pressure arterial geometry Tez-
duyar et al. (2007a, 2008), a special mapping technique for specifying the velocity profile at an inflow boundary
with non-circular shape, using layers of refined fluid mechanics mesh near the arterial walls Tezduyar et al. (July
2008), a recipe for pre-FSI computations that improve the convergence of the FSI computations Tezduyar et al.
(2007b, 2008), and the Sequentially-Coupled Arterial FSI (SCAFSI) technique Tezduyar et al. (2007c, 2008, July
2008) The need for an estimated zero-pressure arterial geometry is based on recognizing that the patient-specific
image-based geometries correspond to time-averaged bloodpressure values. With the special mapping technique
for inflow boundaries with non-circular shapes, we can specify the velocity profiles in a way that is somewhat
consistent with a preferred profile, such as a parabolic profile or Womersley solution Womersley (1955). With
the explicitly-contolled mesh refinement near the arterialwalls, we can increase the accuracy in computing the
wall shear stress. The recipe for pre-FSI computations is based on the assumption that the arterial deformation
during a cardiac cycle is driven mostly by the blood pressure. The SCAFSI technique, which is an approximate
FSI approach in arterial fluid mechanics, is also based on that assumption.

The SCAFSI technique was introduced in Tezduyar et al. (2007c, 2008), where the technique was in early stages
of its development, the description was rather cursory, andthe test computations were limited. A more extensive
description of the SCAFSI technique was provided in Tezduyar et al. (July 2008), together with a wider set of test
computations. The test computations were for the abdominalaortic and cerebral aneurysms, and the arterial ge-
ometries used in the computations were close approximations to patient-specific image-based data. The multiscale
versions and extensions of the SCAFSI technique were introduced in Tezduyar et al. (July 2008), and the test com-
putations were presented for the temporally multiscale version, using different time step sizes for the structural and
fluid mechanics parts. In the spatially multiscale versionsand extensions proposed in Tezduyar et al. (July 2008),
fluid mechanics meshes with different refinement levels are used at different stages of the FSI computation. We
use a relatively coarser mesh at the early stages and reservethe highly-refined mesh for the stage where we plan
to do the high-accuracy fluid mechanics computations, such as the wall shear stress computation. In this paper we
present the test computations we have recently carried out with the spatially multiscale versions and extensions.
We use actual patient-specific image-based data. Specifically, we focus on the bifurcating middle cerebral artery
segment of a 67 year-old female with aneurysm, which was reported in Torii et al. (2007b, 2008, July 2008). The
structural modeling for the arteries is based on the continuum element made of hyperelastic (Fung) material. In
this paper we also evaluate the performances of different types of structural mechanics meshes.

For the governing equations, the SSTFSI technique, the concept of estimated zero-pressure arterial geometry, and
the recipe for pre-FSI computation, we refer the reader to Tezduyar and Sathe (2007); Tezduyar et al. (2007b,
2008). The SCAFSI algorithm is described in Section 2, and its multiscale versions and extensions in Section 3.
The special mapping technique is described in Section 4. General conditions for the test computations are given
in Section 5, and the test results are presented in Section 6.In Section 7, we extend the multiscale sequentially-
coupled FSI technique from arterial fluid mechanics to otherclasses of applications. The concluding remarks are
given in Section 8.

2 SCAFSI Algorithm

The SCAFSI stage of the computations is preceded by a set of pre-FSI computation steps., which can be found
in Tezduyar et al. (2007b, 2008). In the SCAFSI technique, first we compute a “reference” (i.e. “base”) arterial
deformation as a function of time, driven only by the blood pressure, which is given as a function of time by
specifying the pressure profile in a cardiac cycle. Then we compute a sequence of updates involving mesh motion,
fluid dynamics calculations, and recomputing the arterial deformation. The SCAFSI steps are described below.
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Step 1

Compute the “reference” arterial displacement:

(YR)n n = 1, 2, · · ·nts

Driven only by the blood pressure:pR(t)

Predictor options in moving from time leveln to n + 1:

((YR)n+1)
0

= (YR)n (1)

((YR)n+1)
0

= 2(YR)n − (YR)n−1 (2)

((YR)n+1)
0

= 3(YR)n − 3(YR)n−1 + (YR)n−2 (3)

((YR)n+1)
0

= (YR)n +
(YR)n − (YR)n−1

pR(tn) − pR(tn−1)
(pR(tn+1) − pR(tn)) (4)

Nodal values ofpR(tn): (PR)n

Nodal values of the interface stress:(HR)n

Step 2

Compute the “reference” mesh motion:

(VR)n n = 1, 2, · · ·nts

Predictor options:

((VR)n+1)
0

= 0 (5)

((VR)n+1)
0

= (VR)n (6)

((VR)n+1)
0

= 2(VR)n − (VR)n−1 (7)

((VR)n+1)
0

= 3(VR)n − 3(VR)n−1 + (VR)n−2 (8)

((VR)n+1)
0

= (VR)n +
(VR)n − (VR)n−1

pR(tn) − pR(tn−1)
(pR(tn+1) − pR(tn)) (9)

Step 3

For zero-stress conditions at the outflow boundaries, compute the time-dependent flow field and the corresponding
interface stress: (H1)n n = 1, 2, · · ·nts

Predictor options:

((P1)n+1)
0

= (P1)n (10)

((P1)n+1)
0

= 2(P1)n − (P1)n−1 (11)

((P1)n+1)
0

= 3(P1)n − 3(P1)n−1 + (P1)n−2 (12)

((P1)n+1)
0

= (P1)n +
(P1)n − (P1)n−1

U(tn) − U(tn−1)
(U(tn+1) − U(tn)) (13)
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HereU(t) is the cross-sectional average of the inflow velocity. To enhance the stability of the computation in
Step 4, smoothen(H1)n by time averaging:

(H1)n ← ω0(H1)n + ω±1 ((H1)n+1 + (H1)n−1) + ω±2 ((H1)n+2 + (H1)n−2)

+ ω±3 ((H1)n+3 + (H1)n−3) + ω±4 ((H1)n+4 + (H1)n−4) (14)

Options for time-averaging weights:

(ω0, ω±1, ω±2, ω±3, ω±4) =
1

9
(3, 2, 1, 0, 0) (15)

(ω0, ω±1, ω±2, ω±3, ω±4) =
1

16
(4, 3, 2, 1, 0) (16)

(ω0, ω±1, ω±2, ω±3, ω±4) =
1

25
(5, 4, 3, 2, 1) (17)

Now the total interface stress:(HR)n + (H1)n

Step 4

Compute the updated arterial displacement:

Yn n = 1, 2, · · ·nts

Predictor options:

(Yn+1)
0

= 2Yn − Yn−1 (18)

(Yn+1)
0

= (YR)n+1 + ((Y1)n+1)
0 (19)

Displacement increment: (Y1)n = Yn − (YR)n

Predictor options for the displacement increment:

((Y1)n+1)
0

= (Y1)n (20)

((Y1)n+1)
0

= 2(Y1)n − (Y1)n−1 (21)

((Y1)n+1)
0

= 3(Y1)n − 3(Y1)n−1 + (Y1)n−2 (22)

Step 5

Compute the updated mesh motion:

Vn n = 1, 2, · · ·nts

Predictor options:

(Vn+1)
0

= 0 (23)

(Vn+1)
0

= (VR)n+1 + ((V1)n+1)
0 (24)
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Mesh-motion increment: (V1)n = Vn − (VR)n

Predictor options for the mesh-motion increment:

((V1)n+1)
0

= 0 (25)

((V1)n+1)
0

= (V1)n (26)

((V1)n+1)
0

= 2(V1)n − (V1)n−1 (27)

((V1)n+1)
0

= 3(V1)n − 3(V1)n−1 + (V1)n−2 (28)

Step 6

For zero-stress conditions at the outflow boundaries, compute the time-dependent flow field and the corresponding
interface stress: (H2)n n = 1, 2, · · ·nts

Predictor options:

((P2)n+1)
0

= (P2)n (29)

((P2)n+1)
0

= 2(P2)n − (P2)n−1 (30)

((P2)n+1)
0

= 3(P2)n − 3(P2)n−1 + (P2)n−2 (31)

((P2)n+1)
0

= (P2)n +
(P2)n − (P2)n−1

U(tn) − U(tn−1)
(U(tn+1) − U(tn)) (32)

((P2)n+1)
0

= (P1)n+1 (33)

Now the total interface stress:(HR)n + (H2)n

The SCAFSI algorithm described above is based on the assumption that in computations with more than one
outflow boundary, we specify the same traction condition forall. Versions of the SCAFSI technique that do not
rely on that assumption were proposed in Tezduyar et al. (July 2008). These versions are applicable even if the
outflow traction conditions are not specified explicitly butare modeled as a function of the flow rate at each outflow
boundary. We refer the interested reader to Tezduyar et al. (July 2008).

Remark 1 Clearly, the SCAFSI technique result in savings in computertime compared to the (fully) coupled arte-
rial FSI (CAFSI) technique. These savings come from variousaspects of SCAFSI, which can be found in Tezduyar
et al. (July 2008).

Remark 2 The predictors given by Eqs. (30) and (31) were written in Tezduyar et al. (July 2008) with a subscript
typo in each equation. Although the typos were obvious, we wanted to point that out here.

Remark 3 Due to a combination of publisher’s typesetting errors and misinterpretation of what has been used in
the computations, the predictor options identified in Tezduyar et al. (July 2008) as those used in the test computa-
tions were not the ones that were actually used. The predictor options used, in reference to the equation numbers
of this paper, were those given by Eqs. (2), (5), (10), (18), (23) and (33). We wanted to correct that here.

3 Multiscale Versions and Extensions of the SCAFSI Technique

Temporally multiscale. A temporally multiscale version of the SCAFSI technique wasproposed in Tezduyar
et al. (July 2008), where different time step sizes are used for the structural and fluid mechanics parts. This version
was tested in Tezduyar et al. (July 2008) on FSI modeling of a middle cerebral artery segment with aneurysm.
The arterial geometry was a close approximation to the patient-specific image-based geometry used in Torii et al.
(2007a). The geometry used in Torii et al. (2007a) was extracted from the computed tomography model of an artery
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segment from a 57 year-old male. The arterial wall was modeled with the continuum element made of hyperelastic
(Fung) material. The mesh for the artery had four-node tetrahedral elements, with two elements across the arterial
wall. The time step size for the structural mechanics part was twice that of the fluid mechanics part. The multiscale
SCAFSI computation resulted in good mass balance, and the flow field obtained looked essentially the same as the
flow field from the CAFSI computation. Time histories of the arterial volume and (spatially-averaged) interface
stress obtained with the multiscale SCAFSI technique were also very close to those obtained with the CAFSI
technique.

Spatially multiscale. Spatially multiscale versions and extensions of SCAFSI techniques were also proposed
in Tezduyar et al. (July 2008), where the fluid mechanics meshes with different refinement levels are used at
different stages of the SCAFSI computation. In the version called SCAFSI M1SC, a more refined fluid mechanics
mesh is used at SCAFSI Steps 5 and 6 than the mesh used at Steps 2and 3. With this approach, we can increase the
accuracy of the fluid mechanics solution at the final stage, just before we calculate the fluid mechanics quantities
that we are interested in, such as the wall shear stress. By using a relatively coarser fluid mechanics mesh at
Steps 2 and 3, we avoid incurring high computational cost at stages where a highly-refined fluid mechanics mesh
is not needed for accurately computing the arterial shape asa function of time. In the extension called SCAFSI
M1C, we first compute the arterial shape with the CAFSI technique and a relatively coarser fluid mechanics mesh,
followed by mesh motion and fluid mechanics computations with a more refined mesh. Again, by using a relatively
coarser mesh at the stage where a highly-refined fluid mechanics mesh is not needed, we reserve our computational
effort for the final stage, where we do need a highly-refined fluid mechanics mesh to calculate the fluid mechanics
quantities such as the wall shear stress. We present the testcomputations we have recently carried with the SCAFSI
M1SC and SCAFSI M1C techniques in Section 6.

4 Special Techniques

Time-integration point for the incompressibility constraint. For integration of the incompressibility-constraint
term over each space–time slab, we propose to use only one integration point in time, shifted to the upper time level
of the slab. All other terms in the space–time finite element formulation would be integrated by using Gaussian
quadrature points in time, with the number of points set to whatever we intended to have for the overall formulation.
With this technique, for any time leveln, as we move to leveln + 1, the incompressibility constraint equation
focuses on the velocity field(uh)−n+1.

Special mapping.Some inflow profiles require the inlet to be circular, however, the inlets in many of the geome-
tries we encounter are not circular. Furthermore, as the artery deforms, the inlet shape changes. Thus, even if the
inlet is initially circular, it will not remain so once deformed. To address this requirement, we have developed
a special mapping technique to map the inflow boundaries fromnon-circular shapes to circular shapes. Here the
actual inflow profileU(z, t), wherez is the coordinate vector in the inflow plane, is obtained by mapping from
a preferred inflow profileUP(r, t), wherer is the circular coordinate. The variabler is defined at0 ≤ r ≤ rB,
whererB is the boundary radius. The method involves the following two steps:

1. Mapz to r:

r(z) =
||z − zC||

||z − zB|| + ||z − zC||
rB, (34)

where subscripts “C” and “B” indicate the centroid and the closest boundary point Using this mapping, we
first calculate a “trial” velocity:

UT(z, t) = UP(r, t), (35)

where the superscript “T” stands for “trial”.

2. Adjust the velocity:

U(z, t) =
Q(t)

∫

ΓINFL
UT(z, t)dΓ

UT(z, t), (36)

whereQ is the flow rate andΓINFL is the discretized inflow area; i.e. the integration area in the finite element
space.
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This technique is applicable to any preferred inflow profile,including the Womersley profile Womersley (1955),
as described in the next section.

5 General Conditions for the Test Computations

All computations were carried out in a parallel computing environment. All computations were completed with-
out any remeshing. The fully-discretized, coupled fluid andstructural mechanics and mesh-moving equations are
solved with the quasi-direct coupling technique (see Section 5.2 in Tezduyar and Sathe (2007)). In solving the lin-
ear equation systems involved at every nonlinear iteration, the GMRES search technique Saad and Schultz (1986)
is used with a diagonal preconditioner. The S→F→S→FSI sequence is used in the computations (see Section 6.2
in Tezduyar et al. (2008)). This is slightly different from the S→F→FSI sequence described in Tezduyar et al.
(2008) in that it includes an extra structural mechanics step which incorporates the traction obtained from the fluid
computation. This helps to match the structure mesh to the fluid solution and provides a better starting point for
the FSI computations. In the spatially multiscale SCAFSI computations, Step 1–6 predictor options used are those
given by Eqs. (2), (5), (10), (18), (23) and (29). We note thatthe pressure predictor option used at Step 6 is dif-
ferent than the one used in the SCAFSI computations reportedin Tezduyar et al. (July 2008). This is because in
the spatially multiscale SCAFSI computations the fluid mechanics mesh at (Step 5 and) Step 6 is different than
the fluid mechanics mesh used at the earlier stages, and therefore the pressure values obtained at the earlier stages
cannot be directly used as pressure predictors at Step 6. Thetime-averaging weights are those given by Eq. (17).
The time-averaging, however, is not used in the SCAFSI M1C computation. The predictor options we are us-
ing are relatively simple ones among those proposed. We do not expect that using more sophisticated predictors
would change the results that much, since the SCAFSI resultsare already quite close to the CAFSI results. Among
the options proposed for the time-averaging weights, we areusing the one with the largest spread. We have not
experimented with the options with narrower spread.

Fluid and structure properties. As it was done for the computations reported in Torii et al. (2004, 2006a,b,
2007a,b), the blood is assumed to behave like a Newtonian fluid (see Section 2.1 in Tezduyar et al. (2008)). The
density and kinematic viscosity are set to 1,000 kg/m3 and 4.0×10−6 m2/s. The material density of the arterial
wall is known to be close to that of the blood and therefore setto 1,000 kg/m3. The arterial wall is modeled with the
continuum element made of hyperelastic (Fung) material. The Fung material constantsD1 andD2 (from Huang
et al. (2001)) are 2.6447×103 N/m2 and 8.365, and the penalty Poisson’s ratio is 0.45. Arteriesare surrounded by
tissues, and we expect those tissues to have a damping effecton the structural dynamics of the arteries. Therefore
we add a mass-proportional damping, which also helps in removing the high-frequency modes of the structural
deformation. The damping coefficientη is chosen in such a way that the structural mechanics computations remain
stable at the time-step size used. The value ofη used in the test computations reported in this paper will be given
in the section where we describe those test computations.

Boundary conditions. At the inflow boundary we specify the velocity profile as a function of time. We use a
velocity waveform which represents the cross-sectional maximum velocity as a function of time, whereAk ∈ C

are the Fourier coefficients of the waveform. Assuming that the maximum velocity occurs atr = 0 and that the
artery is rigid and the cross-sectional shape is a perfect circle, we can apply the Womersley Womersley (1955)
solution as follows:

UP(r, t) = A0

(

1 −

(
r

rB

)2
)

+
N∑

k=1

Ak

J0(Υ
√

kı
3
2 ) − J0(Υ

√
k

(
r

rB

)

ı
3
2 )

J0(Υ
√

kı
3
2 ) − 1

exp

(

ı2πk
t

T

)

. (37)

Here N is the number of Fourier coefficients (we useN = 20), T is the period of the cardiac cycle,J0 is
the Bessel functions of the first kind of order 0,ı is the imaginary number, andΥ is the Womersley parameter:
Υ = rB

√

(2π)/(νT ), andν is the kinematic viscosity. We use the special mapping technique described in
Section 4 for non-circular shapes. At the two outflow boundaries, we specify the same traction boundary condition.
The traction condition is based on a pressure profile, which,as a function of time, is determined based on the flow
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rate using the Windkessel model Otto (1899). From Eq. (37), we obtain the flow rate:

Q(t) =

∫ rB

0

2πrUP(r, t)dr

= πr2
B

A0

2
+ πr2

B

N∑

n=1

Ak

J0(Υ
√

kı
3
2 ) − 2

(

Υ
√

kı
3
2

)−1

J1(Υ
√

kı
3
2 )

J0(Υ
√

kı
3
2 ) − 1

exp

(

ı2πk
t

T

)

, (38)

=

N∑

k=0

Bk exp

(

ı2πk
t

T

)

, (39)

whereJ1 is the Bessel function of the first kind of order 1, and for notational convenience we introduce another
set of coefficients,Bk ∈ C. The pressure, based on the Windkessel model, can be writtenas

p(t) = exp

(

−
t

RC

)∫ t

0

1

C
Q(τ) exp

( τ

RC

)

dτ + p0, (40)

whereC andR are the compliance and resistance of the distal arterial networks, andp0 is a constant of integration.
Substituting Eq. (39) into Eq. (40), we obtain:

p(t) =

N∑

k=0

Bk

ı2πk C
T

+ 1
R

[

exp

(

ı2πk
t

T

)

− exp

(

−
t

RC

)]

+ p0. (41)

After a sufficient number of periods, theexp
(
− t

RC

)
term in Eq. (41) goes to0:

p(t) =
T

C

N∑

k=0

Bk

ı2πk + T
RC

exp

(

ı2πk
t

T

)

+ p0. (42)

Here T
RC

is only a profile factor, because it is a parameter which only acts on each Fourier coefficient. We setT
RC

to 18.2 and the other parameters,T
C

andp0, are set in such a way that the range for the pressure profile isfrom
80 to 120 mm Hg for normal blood pressure. Figure 1 shows the volumetric flow rate and the outflow pressure
profile. On the arterial walls, we specify no-slip boundary conditions for the flow. In the structural mechanics part,
as boundary condition at the ends of the arteries, we set the normal component of the displacement to zero, and for
one of those nodes we also set to zero the tangential displacement component that needs to be specified to preclude
rigid-body motion.
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Figure 1: Volumetric flow rate and outflow pressure profile, with the maximum value marked.

Preconditioning technique. In computations with hyperelastic materials, we do not compute the diagonal of the
tangent stiffness matrix. Therefore, as proposed in Tezduyar et al. (July 2008), we use a diagonal preconditioner
based on the assembly of only the element-level lumped mass matricesme

LUMP, but after being multiplied by a factor
that, to some extent, takes into account the material stiffness. The expression for that multiplication factor can be
found in Tezduyar et al. (July 2008). We use the “Selective Scaling” technique (see Remark 14 in Tezduyar and
Sathe (2007)) to dynamically shift the emphasis between thefluid and structure parts.
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6 Test Computations

The geometry of the arterial lumen is from Torii et al. (2007b, 2008, July 2008), which was extracted from the
computed tomography model of a bifurcating segment of the middle cerebral artery of a 67 year-old female with
aneurysm. The diameter of the arterial lumen is 2.39 mm at theinflow, and 1.53 and 1.73 mm at the two outflow
ends. The Womersley parameterΥ and the period of the cardiac cycleT , described in Section 5, are 1.5 and
1.0 s, respectively. We use the “estimated zero-pressure arterial geometry”, as described in Tezduyar et al. (2007a,
2008). In estimating that geometry, the time-averaged value of the blood pressure, obtained by averaging over a
cardiac cycle, is 92.2 mm Hg. As the zero-pressure shape, we use a scaled down version of the geometry used
in Torii et al. (2007b, 2008, July 2008). We try different wall-thickness ratios with the zero-pressure shape until we
obtain, approximately, a10% wall-thickness ratio (relative to the diameter of the arterial lumen) at the inflow. At
each iteration, the trial wall-thickness ratio is globallyuniform, but the base length scales for the four “patches” are
defined individually, with a smooth transition between the patches. The length scales for the inflow and two outflow
patches are the lumen diameters at those ends. The length scale for the aneurysm patch is 0.67×(lumen diameter
at the inflow). Figure 2 shows, for the zero-pressure configuration, the wall thickness normalized by the wall
thickness at the inflow. The structural mechanics mesh for the artery consists of 8,067 nodes and 5,316 eight-node

Figure 2: Zero-pressure surface configuration colored withnormalized wall thickness.

hexahedral elements, with 2,689 nodes and 2,658 four-node quadrilateral elements on the fluid–structure interface.
Figure 3 shows the structural mechanics mesh. We have two layers of elements across the arterial wall, which
we believe to be sufficient based on our earlier numerical tests involving the inflation of a thick-walled cylinder
slice. Those tests were carried out with 3D elements, under plane-strain conditions, and with material properties
and length and force scales similar to those we are using herefor the arterial wall. The results were accurate even
with a single element across the arterial wall. In addition,we report here some recent tests we carried out with the
actual arterial geometry we are focusing on in this paper.

To evaluate the performance of the structural mechanics mesh with two layers of elements across the arterial
wall, we tested three additional structural mechanics meshes under a prescribed traction over a cardiac cycle. The
prescribed traction comes from the “fine” mesh FSI computation described in the later parts of this section. The
structural mechanics mesh properties are shown in Table 1. The only difference among the hexahedral meshes is
the number of element layers across the arterial wall. The tetrahedral mesh is based on a triangular surface mesh
which is the same as the fluid interface mesh in the FSI computations. All meshes have the same number of nodes at
the inlet and each outlet boundary. The results for all hexahedral meshes are geometrically almost identical during
the cardiac cycle, while the tetrahedral mesh results in a slightly different geometry. When we rotate and translate
the deformed tetrahedral mesh, the geometries are very similar (see Figure 4). The least-squares projection of the
traction from the triangular surface mesh to the quadrilateral surface mesh is the likely reason behind the small
differences observed in the structure mesh deformations. The differences are insignificant when solving for the
flow field within the artery. Since the results are geometrically almost identical, we provide lumen volume as a
quantitative measurement of the differences. Each mesh volume, as a percentage of the volume of the hexahedral
mesh with four layers, is shown in Table 1. These volume ratios remain almost constant throughout a cardiac cycle.
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Figure 3: Structural mechanics mesh.

Hexahedral Tetrahedral
Number of layers 1 2 4 2
Number of nodes 5,378 8,067 13,445 9,171
Number of elements 2,658 5,316 10,632 36,312

Lumen volume 97.6% 99.4% 100% 97.1%

Table 1: Volume ratios for different structural mechanics meshes.

We use two different fluid mechanics meshes. A “coarse” mesh with 15,850 nodes and 88,573 four-node tetrahedral
elements, and a “fine” mesh with 22,775 nodes and 128,813 four-node tetrahedral elements. The fine mesh has four
layers of elements with higher refinement near the arterial wall. The thickness of the first layer is approximately
0.02 mm. The coarse mesh has one layer of elements with uniform thickness, and the thickness is approximately
0.2 mm. The coarse and fine meshes have the same number of nodesand elements at the fluid–structure interface:
3,057 nodes and 6,052 three-node triangular elements. Figure 5 shows the mesh at the fluid–structure interface and
the inflow plane for the coarse and fine meshes.

The computations are carried out with the SSTFSI-TIP1 technique (see Remarks 4 and 7 in Tezduyar et al. (2008))
and the SUPG test function option WTSA (see Remark 1 in Tezduyar et al. (2008)). The stabilization parameters
used are those given by Eqs. (12)–(18) in Tezduyar et al. (2008). The damping coefficientη is set to 1.5×104 s−1.
The time-step size is 3.333×10−3 s. In the CAFSI computations, the number of nonlinear iterations per time step
is 6, and the number of GMRES iterations per nonlinear iteration is 300 for the fluid and structural mechanics parts,
and 30 for the mesh moving part. For all six nonlinear iterations the fluid scale is set to 1.0 and the structure scale
to 50. In the SCAFSI M1SC computation, we use at Step 2 and Step3 the coarse mesh, which reduces the cost of
the computations, and at Step 5 and Step 6 the fine mesh, which increases the accuracy of the flow field computed.
The number of nonlinear iterations per time step is 5 for the fluid mechanics part and 4 for the structural mechanics
and mesh moving parts. The number of GMRES iterations per nonlinear iteration is 150, 50 and 30 for the fluid
mechanics, structural mechanics and mesh moving parts, respectively. In the SCAFSI M1C computation, Steps
1–4 are replaced with a CAFSI computation with the coarse mesh. The arterial shape obtained from the CAFSI
computation is used at Step 5 and Step 6 with the fine mesh. In other words, Step 4 arterial shape comes from the
reduced-cost CAFSI computation with the coarse mesh, and the fine mesh used at Step 5 and Step 6 increases the
accuracy of the flow field computed. The number of nonlinear iterations per time step is 5 for the fluid mechanics
part and 4 for the structural mechanics and mesh moving parts. The number of GMRES iterations per nonlinear
iteration is 150, 50 and 30 for the fluid mechanics, structural mechanics and mesh moving parts, respectively.
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Figure 4: Structural mechanics computations with prescribed traction at the maximum outflow pressure. Blue
represents the hexahedral mesh with four layers and red indicates the tetrahedral mesh with two layers. The left
picture shows the original deformed geometries. The right picture shows the geometries after the tetrahedral mesh
is rotated by0.75◦ clockwise around an axis parallel to the inflow direction andtranslated to align the inlets.

Remark 4 In our current implementation, the nonlinear iterations for the structural mechanics and mesh moving
parts are not separable. Therefore the mesh motion can only be computed while computing the arterial defor-
mation. Because of that, Step 4 arterial geometry does not actually come directly from the CAFSI computation
with the coarse mesh, but it is recomputed with the interfacestresses obtained from that CAFSI computation. The
differences are very minor.

Remark 5 The fluid mechanics computation at Step 6 requires an initialflow field. For SCAFSI versions that
are not spatially multiscale, this initial flow field comes directly from Step 3. For the spatially multiscale versions
and extensions, we propose to use an initial flow field obtained from Step 3 by projection. In our current imple-
mentation, however, we do not have that projection capability. Instead, we carry out a very brief fluid mechanics
computation to produce a divergence-free flow field. The inflow velocity for this brief computation is the velocity
at the beginning of Step 6. The initial condition consists ofan essentially-zero velocity field.

We achieve good mass balance in all computations. We verify that by comparing the rate of change for the artery
volume and the difference between the volumetric inflow and outflow rates. Figure 6 shows the mass balance for
the CAFSI computations with the coarse and fine meshes. Figure 7 shows the mass balance for the SCAFSI M1SC
and SCAFSI M1C computations. Figure 8 shows, in terms of the arterial volume, the comparisons between the
CAFSI computations with the coarse and fine meshes and the SCAFSI M1SC and SCAFSI M1C computations.
Figures 9 and 10 illustrate the flow field for the CAFSI computations with the coarse and fine meshes. The flow
fields for the SCAFSI M1SC and SCAFSI M1C computations are essentially indistinguishable from the flow field
for the CAFSI computation with the fine mesh. They are not shown here. Figures 11 and 12 illustrate the wall shear
stress for the CAFSI computations with the coarse and fine meshes. Figures 13 and 14 illustrate the wall shear
stress for the SCAFSI M1SC and SCAFSI M1C computations. Figure 15 shows the time-averaged wall shear
stress for the CAFSI computations with the coarse and fine meshes. Figure 16 shows the time-averaged wall shear
stress for the SCAFSI M1SC and SCAFSI M1C computations. Table 2 shows the maximum, mean and minimum
values of the wall shear stress for the CAFSI computations with the coarse and fine meshes. Table 3 shows the

Peak Systole Time Average
Mesh Maximum Mean Maximum Mean Minimum
Coarse 127 47 39 15 0.50
Fine 227 55 58 17 0.27

Table 2: A bifurcating middle cerebral artery segment with aneurysm. Wall shear stress
[
dyn/cm2

]
for the CAFSI

computations with the coarse and fine meshes. Spatial maximum and mean at the peak systole, and the spatial
maximum, mean and minimum of the time-averaged values.

maximum, mean and minimum values of the wall shear stress forthe CAFSI computation with the fine mesh and
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the SCAFSI M1SC and SCAFSI M1C computations.

Peak Systole Time Average
Computation Maximum Mean Maximum Mean Minimum
CAFSI Fine Mesh 227 55 58 17 0.27
SCAFSI M1SC 227 55 60 17 0.29
SCAFSI M1C 225 55 60 17 0.30

Table 3: A bifurcating middle cerebral artery segment with aneurysm. Wall shear stress
[
dyn/cm2

]
for the CAFSI

computation with the fine mesh and the SCAFSI M1SC and SCAFSI M1C computations. Spatial maximum and
mean at the peak systole, and the spatial maximum, mean and minimum of the time-averaged values.

7 Multiscale Sequentially Coupled FSI (SCFSI) Techniques

In this section we propose to extend the multiscale sequentially-coupled FSI technique from arterial fluid mechan-
ics to other classes of applications. The underlying concepts will still essentially be the same as those described
in Section 3. The name, however, will be Multiscale Sequentially-Coupled FSI (SCFSI) Technique, which no
longer implies a functionality limited to arterial fluid mechanics. Specifically, we are proposing the SCFSI M1C
technique as a way of reducing the FSI computational effort where we do not need it and increasing the accu-
racy of the fluid mechanics computations where we need accurate, detailed flow computation. We propose to first
compute the structural deformation with the (fully) coupled FSI (CFSI) technique and a relatively coarser fluid
mechanics mesh, followed by mesh motion and fluid mechanics computations with a more refined mesh. We also
propose a time-integration version of this, where we first compute the structural deformation with the CFSI tech-
nique and a time-step size as small as it is need in that computation, followed by mesh motion and fluid mechanics
computations with a smaller time-step size that might be needed for more accurate, detailed flow computation.

To illustrate how the spatially multiscale SCFSI M1C technique works, we carry out FSI computations for 2D
flow past a flexible beam. The problem set up is shown in Figure 17. The length and thickness of the beam are
2.0 m and 10.0 cm. Its density, modulus of elasticity and Poisson’s ratio are 1.1358×104 kg/m3, 1.2×107 N/m2

and 0.3. At the midpoint cross-section of the beam all displacements are set to zero. The fluid density and
kinematic viscosity are 1,000 kg/m3 and 1.0×10−2 m2/s. The flow boundary conditions in the 2D plane are
shown in Figure 17. The inflow velocity is 1.0 m/s. Because we do the computations with 3D FSI solvers, at
the lateral computational boundaries perpendicular to thethird direction we use slip conditions. The structure is
modeled with the geometrically nonlinear continuum element made of linearly elastic material (see Section 2.2.1
in Tezduyar et al. (2007b)).

The structural mechanics mesh consists of 410 nodes and 160 eight-node hexahedral elements, with 40 elements
along the beam, 4 elements across the thickness, and one element in the third direction. We use two different fluid
mechanics meshes. A “coarse” mesh with 8,476 nodes and 24,882 four-node tetrahedral elements, and a “fine”
mesh with 25,536 nodes and 75,936 four-node tetrahedral elements. The fine mesh has 8 layers of elements with
higher refinement near the beam, starting with the first-layer thickness of 3 cm, and increasing with a factor of
1.1 from one layer to the next. The coarse mesh has 4 layers of elements with higher refinement near the beam,
and all four layers have the same thickness of 10 cm. At the fluid–structure interface, the fine mesh nodes match
the structure nodes fully along the beam, and with intervalsof two structure elements at the top and bottom of
the beam. The coarse mesh nodes match the structure nodes only along the beam, with intervals of two structure
elements.

The computations are carried out using SSTFSI-TIP1 technique (see Remarks 4 and 7 in Tezduyar et al. (2008)),
with the SUPG test function option WTSA (see Remark 1 in Tezduyar et al. (2008)). The stabilization parameters
used are those given in Tezduyar et al. (2008) by Eqs. (14)–(18) and (19)–(20), with theτSUGN2 term dropped from
Eq. (19). The time-step size is 5.0×10−2 s. In the CFSI computation with the coarse mesh, the number ofnonlinear
iterations per time step is 4, and the number of GMRES iterations per nonlinear iteration is 120 for the fluid and
structural mechanics parts, and 60 for the mesh moving part.For the first nonlinear iteration the structure scale is set
to 1.0×10−8, and back to 1.0 for the remaining iterations. In the CFSI computation with the fine mesh, the number
of nonlinear iterations per time step is 4, and the number of GMRES iterations per nonlinear iteration is 240 for the
fluid and structural mechanics parts, and 60 for the mesh moving part. For the first nonlinear iteration the structure
scale is set to 1.0×10−8, and back to 1.0 for the remaining iterations. In the SCFSI M1C computation, the number
of nonlinear iterations per time step is 3 for the fluid mechanics part and 1 for the mesh moving part. The number
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of GMRES iterations per nonlinear iteration is 80 for the fluid mechanics part and 60 for the mesh moving part. In
the CFSI computation with the fine mesh and SCFSI M1C computation, the starting (velocity and pressure) values
for the fluid mechanics part come by a least-squares projection from the values obtained in the CFSI computation
with the coarse mesh, followed by a one time-step computation with a very small time-step size (5.0×10−6 s) just
to recover the divergence-free condition, followed by “pressure clipping” (see Tezduyar and Sathe (2007) for a
brief description of “pressure clipping”). Figure 18 shows, in terms of the (upper-) tip displacement of the beam,
the comparison between the CFSI computations with the coarse and fine meshes. Figure 19 shows the vorticity
field for the CFSI computation with the coarse mesh. Figure 20shows the vorticity field for the CFSI computation
with the fine mesh and SCFSI M1C computation.

8 Concluding Remarks

We presented the multiscale versions and extensions of the Sequentially-Coupled Arterial Fluid–Structure Interac-
tion (SCAFSI) technique, with emphasis on the spatially multiscale versions and extensions. The original version
of the SCAFSI technique was introduced as an approximate FSIapproach in arterial fluid mechanics and is based
on the assumption that the arterial deformation during a cardiac cycle is driven mostly by the blood pressure. In
that original version, first we compute a “reference” arterial deformation as a function of time, driven only by
the blood pressure profile of the cardiac cycle. Then we compute a sequence of updates involving mesh motion,
fluid dynamics calculations, and recomputing the arterial deformation. Although they can also be used in con-
junction with other moving-mesh FSI modeling approaches, the SCAFSI technique and its multiscale versions and
extensions were developed and tested in conjunction with the stabilized space–time FSI (SSTFSI) technique. The
SSTFSI technique is based on the Deforming-Spatial-Domain/Stabilized Space–Time (DSD/SST) formulation and
is supplemented with a number of special techniques developed for arterial FSI. These special techniques include
using an estimated zero-pressure arterial geometry, a special mapping technique for specifying the velocity pro-
file at an inflow boundary with non-circular shape, using layers of refined fluid mechanics mesh near the arterial
walls, and a recipe for pre-FSI computations that improve the convergence of the FSI computations. The SCAFSI
technique provides a computationally more economical alternative to the fully coupled FSI approach in arterial
fluid mechanics. It also brings additional flexibility, suchas being able to carry out the computations in a spa-
tially or temporally multiscale fashion. In the temporallymultiscale version, we can use different time step sizes
for the structural and fluid mechanics parts. In the spatially multiscale versions and extensions, fluid mechanics
meshes with different refinement levels are used at different stages of the FSI computation. A relatively coarser
mesh is used at the early stages, and a more refined mesh is usedat the stage where we do the high-accuracy fluid
mechanics computations, such as the wall shear stress computation. We presented the test computations we have
recently carried out with the spatially multiscale versions and extensions of the SCAFSI technique. We used actual
patient-specific image-based data, where the arterial geometry is based on computed tomography images. Specif-
ically, we focused on the bifurcating middle cerebral artery segment of a 67 year-old female with aneurysm. We
modeled the arterial wall with the continuum element made ofhyperelastic (Fung) material. Our test computations
show that the spatially multiscale SCAFSI technique is a very effective way of reducing the FSI computational
effort where it is not needed and increasing the accuracy of the fluid mechanics computations where it is needed.
We also extended the multiscale sequentially-coupled FSI technique from arterial fluid mechanics to other classes
of applications, calling it Multiscale Sequentially-Coupled FSI (SCFSI) Technique, so that the name no longer
implies a functionality limited to arterial fluid mechanics. In the context of FSI computations for 2D flow past a
flexible beam, we demonstrated how the spatially multiscaleSCFSI technique works.
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Figure 5: A bifurcating middle cerebral artery segment withaneurysm. Fluid mechanics mesh at the fluid–structure
interface and the inflow plane for the coarse and fine meshes.
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Figure 6: A bifurcating middle cerebral artery segment withaneurysm. Verification of mass balance for the
CAFSI computation with the coarse (left) and fine (right) meshes. Volumetric inflow rate, difference between the
volumetric inflow and outflow rates, and rate of change for theartery volume.
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Figure 7: A bifurcating middle cerebral artery segment withaneurysm. Verification of mass balance for the
SCAFSI M1SC (left) and SCAFSI M1C (right) computations. Volumetric inflow rate, difference between the
volumetric inflow and outflow rates, and rate of change for theartery volume.
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Figure 8: A bifurcating middle cerebral artery segment withaneurysm. Arterial volume. Left: comparison between
the CAFSI computations with the coarse and fine meshes. Right: Comparison between the CAFSI computation
with the fine mesh and the SCAFSI M1SC and SCAFSI M1C computations.
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Figure 9: A bifurcating middle cerebral artery segment withaneurysm. Flow field for the CAFSI computation
with the coarse mesh when the volumetric flow rate is maximum (left) and when the outflow pressure is maximum
(right). Velocity vectors colored by magnitude.

Figure 10: A bifurcating middle cerebral artery segment with aneurysm. Flow field for the CAFSI computation
with the fine mesh when the volumetric flow rate is maximum (left) and when the outflow pressure is maximum
(right). Velocity vectors colored by magnitude.

Figure 11: A bifurcating middle cerebral artery segment with aneurysm. Wall shear stress for the CAFSI com-
putation with the coarse mesh when the volumetric flow rate ismaximum (left) and when the outflow pressure is
maximum (right).
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Figure 12: A bifurcating middle cerebral artery segment with aneurysm. Wall shear stress for the CAFSI com-
putation with the fine mesh when the volumetric flow rate is maximum (left) and when the outflow pressure is
maximum (right).

Figure 13: A bifurcating middle cerebral artery segment with aneurysm. Wall shear stress for the SCAFSI M1SC
computation when the volumetric flow rate is maximum (left) and when the outflow pressure is maximum (right).

Figure 14: A bifurcating middle cerebral artery segment with aneurysm. Wall shear stress for the SCAFSI M1C
computation when the volumetric flow rate is maximum (left) and when the outflow pressure is maximum (right).

250



Figure 15: A bifurcating middle cerebral artery segment with aneurysm. Time-averaged wall shear stress for the
CAFSI computations with the coarse (left) and fine (right) meshes.

Figure 16: A bifurcating middle cerebral artery segment with aneurysm. Time-averaged wall shear stress for the
SCAFSI M1SC (left) and SCAFSI M1C (right) computations.
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Figure 17: 2D flow past a flexible beam. Problem set up. The dimensions indicated are in meters. The length and
thickness of the beam are 2.0 m and 10.0 cm. At the midpoint cross-section of the beam all displacements are set
to zero. The flow boundary conditions in the 2D plane are indicated next to each boundary. The inflow velocity is
1.0 m/s.
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Figure 18: 2D flow past a flexible beam. (Upper-) Tip displacement. Comparison between the CFSI computations
with the coarse and fine meshes.

Figure 19: 2D flow past a flexible beam. Vorticity field for the CFSI computation with the coarse mesh, at the
instant corresponding to t = 5 s in Figure 18.

Figure 20: 2D flow past a flexible beam. Vorticity field for the CFSI computation with the fine mesh (left) and
SCFSI M1C computation (right), at the instant corresponding to t = 5 s in Figure 18.

252



Fluid-Structure Interaction.
Theory, Numerics and Applications

pp. 253– 264

Herrsching am Ammersee, 29.9.-1.10.2008

Fluid-Structure-Acoustic Interaction of a Thin, Flexible Plate in the Wake
of a Wall-Mounted Square Cylinder

T. Uffinger, F. Scḧafer, S. Becker, J. Grabinger, M. Kaltenbacher

A coupled simulation approach for fluid-structure-acoustic interactions is presented, which considers both the
flow-induced sound and the sound due to structural vibrations. The proposed computation scheme is based on a
partitioned approach that uses different simulation codesfor the flow simulation and the structural and acoustic
computations. The flow simulation is done by an in-house finite-volume code solving the incompressible Navier-
Stokes equations in space and time. For the structural mechanics computations, an in-house finite-element multi-
physics code is applied, which is also able to solve the acoustic wave equation describing the wave propagation
to the far field. An implicit coupling scheme with sub-iterations in each time step is employed for fluid-structure
interaction. The computation of the aeroacoustic sound is based on Lighthill’s theory. The structural-acoustic
coupling is realized by applying appropriate boundary conditions to the acoustic wave equation.

The above-described methodology is applied to a simplified model of a car underbody. The acoustic field due to the
interaction of a thin, flexible plate representing coverings of the car underbody and a turbulent flow is investigated.
The flexible plate is part of an otherwise rigid wall that is overflown by air. To model obstacles typically found at
real car underbodies, a square cylinder is placed upstream of the flexible plate. The Reynolds number of the flow
based on the free stream veloctiy and the obstacle height is26 000.

Nomenclature

δV Swept volume
ε Convergence criterion
η Local coordinate
ϕ Acoustic velocity potential
ρ Fluid density
ρ0 Ambient density
ρs Density of mechanical structure
τij Shear stress tensor
τw Wall shear stress
ξ Local coordinate
∆w Grid displacement
ΓΦ Diffusion coefficient

Φ Transport variable
c Speed of sound
e Finite element
i Grid node/center
l FSI iteration counter
n Iteration counter
n Normal vector
p Pressure
p0 Ambient pressure
p′ Acoustic pressure fluctuations
t Tangential vector
ui Velocity

ug,i Grid velocity
w Structural displacement
y+ Dimensionless wall scale
D Edge length of square cylinder
E Modulus of elasticity
Kr Grid noder
L Load vector
N Interpolation function
QΦ Source/sink
Si Surfacei of a CV

Tij Lighthill tensor
U∞ Free-stream velocity
V Volume
CFD Computational fluid dynamics
CV Control volume
FSI Fluid-structure interaction
LES Large-eddy simulation
RANS Reynolds averaged Navier-Stokes
Re Reynolds number
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1 Introduction

In many technical applications, the interaction of a fluid flow with a flexible structure leads to structural vibrations
and thereby to the generation of vibrational sound. Additionally, aeroacoustic sound is generated by turbulent
fluctuations within the fluid. In such flows, sound is a result of the complex interaction between fluid mechanics,
structural mechanics and acoustics. As the generated soundis often considered as noise, its reduction is of major
interest. For this purpose, a deeper understanding of the physical phenomena taking place in flow configurations
with fluid-structure-acoustic interactions is needed.

Vibrating structures, and in particular vibrating plates,are of special interest for applications in aviation and auto-
motive engineering, hence the topic has received much attention in the literature. One of the early investigations
in this direction was the work of Davies (1971), where the excitation of a thin flexible panel by wall-pressure
fluctuations of a turbulent boundary layer was studied usingmodal analysis. The boundary layer excitation of
flexible plates and the resulting emission of noise have alsobeen investigated by, e.g., Graham (1996), Howe and
Shah (1996), Frampton and Clark (1997), and Mazzoni and Kristiansen (1999). In most of the studies, the influ-
ence of the fluid on the flexible plate is modeled based on spectra of the turbulent wall-pressure fluctuations in the
boundary layer. The flow above the plate is not resolved in detail. A more explicit treatment of the flow over the
plate was performed by Zolotarev (1997) and Tang et al. (2005), where the fluid flow was modeled using potential
theory. Tang et al. (2005) estimated the sound resulting from the interaction between a single model vortex and a
flexible wall in order to investigate the basic mechanisms ofthe fluid-structure-acoustic interaction. With respect
to the treatment of the fluid flow, studies considering a highly resolved flow based on the Navier-Stokes equations
are rare. There has also been very little work towards a fullycoupled treatment of fluid flow, structural mechanics
and acoustics at a realistic level of detail [see, e.g., Visbal and Gordnier (2004) and Vergne et al. (2007)]. How-
ever, such a methodology would be very helpful for improvingthe understanding of the mechanisms leading to the
emission of sound and for taking measures towards a reduction in flow-induced and vibrational noise.

In this paper, a numerical simulation approach for the coupled treatment of fluid-structure-acoustic interactions
is presented. The method considers acoustic pressure fluctuations which are low compared with the overall fluid
pressure, so that the acoustic feedback on the fluid and on thestructure can be neglected. This assumption is
valid for many technical applications. By this simplification, a reduction in complexity can be achieved, resulting
in three subproblems which can be treated and computed separately: fluid-structure interaction, fluid-acoustic
coupling and structure-acoustic coupling. The proposed software architecture is based on a partitioned approach,
i.e., different codes are used for the computation of fluid dynamics, structural mechanics and acoustics. For the
flow simulation, an in-house finite-volume code is applied that solves the incompressible Navier-Stokes equations
in space and time. For structural mechanics, an in-house finite-element code is used. The coupling between fluid
and structure is realized by a code coupling interface. The computation of flow-induced sound relies on Lighthill’s
analogy and a finite-element discretization of the acousticwave equation describing the wave propagation to the far
field. Vibrational sound is computed from the structural movement by applying appropriate boundary conditions
to the wave equation. Details of the simulation approach aregiven in Section 2.

Our computational methodology is applied to a simplified model of a car underbody. Basically, the flow over a
flat plate is considered, where most of the plate is rigid, butpart of it is made of a thin, flexible blank representing
coverings, which are often installed to improve the aerodynamic properties of cars. Additionally, a square cylinder
is placed upstream of the flexible structure to model obstacles typically found with real car underbodies.

2 Numerical Method

The applied numerical computation scheme is based on a partitioned simulation approach. Two different codes are
used for the computation of fluid-structure-acoustic interactions. For the fluid simulation, the finite-volume CFD
solver FASTEST-3D [see Durst and Schäfer (1996)] is applied, which has been developed at the Institute of Fluid
Mechanics, University of Erlangen-Nuremberg. The structural mechanics problem is solved with the multiphysics
finite-element code CFS++ [see Kaltenbacher et al. (2007)],developed at the Department of Sensor Technology,
University of Erlangen-Nuremberg. The wave equation of theacoustic problem is also solved with CFS++. For
the coupling between FASTEST-3D and CFS++, realizing the fluid-structure interaction, the commercial code
coupling interface MpCCI [see Ahrem et al. (2003)] is used. Aschematic of the software architecture is shown in
Figure 1.

The CFD code FASTEST-3D is capable of computing incompressible flow fields with heat and mass transfer of
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Figure 1: Coupled computation scheme for the simulation of fluid-structure-acoustic interactions

Newtonian fluids. It is based on the finite-volume method. Thediscretization of the Navier-Stokes equations is of
second-order accuracy in space and time. Both Reynolds averaged Navier-Stokes (RANS) and large-eddy simula-
tions (LES) can be carried out with the software. For problems with fluid-structure-acoustic interactions, usually
the unsteady and three-dimensional flow field is needed. Thus, LES is the turbulence model mainly used for this
kind of simulations. In FASTEST-3D, a Smagorinsky subgrid scale model is implemented for LES. The code
works on block-structured grids, which allows the treatment of complex geometries. The implementation of multi-
grid schemes and the parallelization and vectorization of all important code sections ensure efficient computations
on high-performance computing platforms.

CFS++ is a simulation environment for multiphysics simulations. Currently, discretized forms of differential
equations of structural mechanics, acoustics and electromagnetics are implemented. The discretization is done
using the finite-element method. In the present work, CFS++ is used to solve the structural mechanics problem
and the acoustic wave equation, which describes the sound propagation to the far field.

Provided that the acoustic pressure fluctuations are low compared with the fluid pressure, no feedback of acoustics
on the fluid or on the structure has to be considered. Under this assumption, the fluid-structure interaction splits into
three subproblems, which can be treated and computed separately: fluid-structure interaction, fluid-acoustic cou-
pling and structure-acoustic coupling. Details of the coupling algorithms between the different physical domains
are given in the following sections.

2.1 Fluid-structure interaction

The fluid-structure interaction is realized by an implicit coupling between FASTEST-3D and CFS++. As a coupling
interface, MpCCI is used, which provides the interpolationof data between the fluid and the structural grid. A
schematic of the implicit coupling for fluid-structure interaction is shown in Figure 2. At the beginning of the
fluid-structure iteration loop, the flow solution is determined by FASTEST-3D. The resulting fluid loads (pressure
forces and shear stress forces) on the structure are calculated and transmitted to CFS++ via MpCCI. Taking the
fluid loads into account, the structural mechanics problem is solved. The displacement of the structure is then sent
to FASTEST-3D. Based on the structural displacement and theresulting deformation of the fluid domain, the fluid
grid is adapted. In most cases, no dynamic equilibrium between the flow and the structural mechanics solution is
achieved by cycling the fluid-structure iteration loop onlyonce. Therefore, the procedure is repeated within the
same time step until equilibrium is reached. The convergence criterion is based on the change of the mechanical
displacementw between two subsequent iterations:
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Figure 2: Schematic of the implicit algorithm for the fluid-structure interaction

|| wl+1 − wl ||2
|| wl+1 ||2

≤ ε (1)

wherel denotes the iteration counter of the fluid-structure iteration loop, || ||2 the L2-norm andε the desired
accuracy. At the beginning of each time step, an optional prediction of the structural deformation can be carried
out. The prediction extrapolates the position of the boundary using its positions at previous time steps. In many
cases, this procedure can significantly reduce the number ofCFD iterations needed until convergence is reached.

Since the fluid and structural grids are typically non-matching, an interpolation is necessary for the above-men-
tioned transfers of data between the flow and the structural mechanics solver. Depending on the type of data to
be exchanged, different interpolation techniques are used. For the interpolation of the structural displacement,
bilinear interpolation is empolyed. On the fluid-structureinterface, for each grid nodei of the fluid grid the
according surface of the finite elemente of the structural mechanics grid, in whichi is located, is determined.
Then the positionξi andηi of the nodei referring to the local coordinate system of the finite element (ξ, η) is
calculated. The displacementwe(ξi, ηi) of the nodei is computed with the equation

we(ξi, ηi) =

4∑

r=1

Ne
Kr

(ξi, ηi)wKr
(2)

wherewKr
are the displacements of the nodesK1, K2, K3 andK4 of the surface of the finite elemente and

Ne
Kr

(ξ, η) are the bilinear interpolation functions, defined as follows:

Ne
K1

(ξ, η) = (1 − ξ)(1 − η)

Ne
K2

(ξ, η) = ξ(1 − η) (3)

Ne
K3

(ξ, η) = ξη

Ne
K4

(ξ, η) = (1 − ξ)η

An illustration of bilinear interpolation of the displacement from the structural mechanics to the fluid grid is given
in Figure 3.

For the transfer of integral fluid loads, conservative interpolation is applied to ensure that the sum of the loads
over the whole fluid-structure interface is the same on the fluid and the structural mechanics grid. As for bilinear
interpolation, the coordinatesξi andηi of a fluid grid nodei in the local coordinate system of the surface of the
finite elemente of the structural mechanics grid are computed. The load contribution L

e,i
Kr

to the nodesKr of e
due to the fluid loadLi at the grid nodei is calculated using the following equation:

L
e,i
Kr

= Ne
Kr

(ξi, ηi)Li for r = 1, 2, 3, 4 (4)

The interpolation functionsNe
Kr

(ξ, η) are the same as in equation (3). Note that
4∑

n=1
Ne

Kr
= 1, so that the
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Figure 3: Bilinear interpolation of a variable from the structural mechanics to the fluid mechanics grid

interpolation is really conservative. The load vectorLi is defined as

Li = p · n · Si + τw · t · Si (5)

wherep is the pressure,n the wall-normal vector at grid nodei, Si the area of the grid cell,τw the wall shear stress
andt the tangential vector ati parallel to the local flow direction. Conservative interpolation of the fluid loads
from the fluid to the structural mechanics grid is illustrated in Figure 4.

Due to the structural displacement and the resulting deformation of the flow boundaries, the fluid grid in the interior
of the flow domain has to be adapted accordingly. For this purpose, robust and fast algebraic methods are used. If
the deformation of the boundary is known on two opposite faces of a grid block, linear interpolation is employed
to determine the grid deformation in between. Linear interpolation of the node displacement∆w along a grid line
is visualized in Figure 5, following the equation

∆w(ξ) = ξ∆w(0) + (1 − ξ)∆w(1) (6)

Linear interpolation cannot be used if two adjacent or more than two block faces of the grid have moved due to
fluid-structure interaction. In this case, transfinite interpolation is applied. Transfinite interpolation is based ona
superposition of two shear transformations and one tensor product transformation. The grid displacement∆w at
the position(ξ, η) can therefore be computed with the following equation:

∆w(ξ, η) = A(ξ, η) + B(ξ, η) − T (ξ, η) (7)

with

A(ξ, η) = ξ∆w(0, η) + (1 − ξ)∆w(1, η),

B(ξ, η) = η∆w(ξ, 0) + (1 − η)∆w(ξ, 1),

}

shear transformations (8)

T (ξ, η) = B(A(ξ, η)) = ηA(ξ, 0) + (1 − η)A(ξ, 1) tensor product transformation

As a consequence of grid movement, the control volumes of thefluid grid change with time, which has to be taken
into account in the finite-volume formulation of the Navier-Stokes equations. The integral form of the general
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h

Figure 4: Conservative interpolation of a variable from thefluid mechanics to the structural mechanics grid
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Figure 5: Linear interpolation of the node displacement along a grid line

conservation law for a variableΦ is given by
∫

V

∂(ρΦ)

∂t
dV +

∫

S

ρujΦdSj −

∫

S

ΓΦ
∂Φ

∂xj

dSj =

∫

V

QΦdV (9)

For moving grids, the volumeV and the surfaceS of a control volume are functions of time,V = V (t) andS =
S(t). By means of the three-dimensional Leibniz equation, the first term containing the time derivative can be
transformed as follows: ∫

V (t)

∂(ρΦ)

∂t
dV =

d
dt

∫

V (t)

ρΦdV −

∫

S(t)

(ρug,jΦ)dSj (10)

In this relationship,ug,j refers to the velocity of the grid movement. Inserting equation (10) in equation (9), one
obtains:

d
dt

∫

V

ρΦdV

︸ ︷︷ ︸

rate of change in
a moving CV

+

∫

S

ρujΦdSj

︸ ︷︷ ︸

convective fluxes over
a CV surface

−

∫

S

ρug,jΦdSj

︸ ︷︷ ︸

convective grid
fluxes

−

∫

S

ΓΦ
∂Φ

∂xj

dSj

︸ ︷︷ ︸

diffusive fluxes over a
CV surface

=

∫

V

QΦdV

︸ ︷︷ ︸

sources/sinks
in CV

(11)

Summing the convective terms leads to the arbitrary Lagrangian-Eulerian formulation (ALE) of the conservation
law:

d
dt

∫

V

ρΦdV +

∫

S

ρ (uj − ug,j) ΦdSj −

∫

S

ΓΦ
∂Φ

∂xj

dSj =

∫

V

QΦdV (12)

The convective flux over the control volume surface depends only on the differences between flow velocityuj

and grid velocityug,j . Special cases areug,j = 0 andug,j = uj , which lead to an Eulerian or a Lagrangian
formulation, respectively.

The discretization of the grid fluxes is based on the space conservation law, which is obtained by insertingΦ = 1,
ρ = constant andQΦ = 0 into equation (12):

d
dt

∫

V (t)

dV −

∫

S(t)

ug,jdSj = 0 (13)

This relationship must be fulfilled for each control volume.Its discretized form using an implicit three-point
scheme of second order is

∫

S(t)

ug,jdSj =
∑

k

(
3δV n+1

k − δV n
k

2∆t

)

, k = w, s, b, t, n, e (14)

In this equation, the so-called swept volumesV n
k andV n+1

k are used. They represent the volume that is spanned
by the movement of surfacek of a control volume between the time stepsn− 1 andn or n andn+1, respectively.
An illustration of swept volumes can be found in Figure 6. Equation (14) can be used to deduce a discretized form
of the convective grid fluxes. Based on an implicit three-point scheme, this leads to the following discretization:

∫

S(t)

(ρug,jΦ)dSj =
∑

k

(

ρΦn+1
k

3δV n+1
k − δV n

k

2∆t

)

(15)
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Figure 6: Illustration of swept volumes (CV = control volumes)

2.2 Fluid-acoustic coupling

The computation of flow-induced sound is based on Lighthill’s analogy [see Lighthill (1952, 1954)]. Lighthill
derived the following inhomogeneous wave equation, which describes the acoustic wave propagation to the far
field, from the momentum equation of fluid mechanics:

1

c2

∂2p′

∂t2
−

∂2p′

∂x2
j

=
∂2Tij

∂xi∂xj

(16)

The acoustic pressure fluctuations are denoted byp′. The so-called Lighthill tensorTij is defined as follows:

Tij = ρuiuj +
[
(p − p0) − c2(ρ − ρ0)

]
δij + τij (17)

In equation (17)ρ denotes the fluid density,p the fluid pressure,ρ0 andp0 the ambient density and pressure,c the
speed of sound andτij the viscous stress tensor. According to Lighthill’s analogy, Tij formulates the flow-induced
sources of the inhomogeneous wave equation as acoustic quadrupole sources. In many applications, sound due to
viscous effects and to entropy changes can be neglected, so that the second and the third terms on the right-hand side
of equation (17) can be skipped. Only the turbulent source term ρuiuj is considered in the present work. Based on
this approximation, the acoustic source term is calculatedfrom the veloctiy field. Finally, the propagation of sound
to the far field is computed by solving the inhomogeneous waveequation (16) using a finite-element formulation.

2.3 Structure-acoustic coupling

The vibrational sound is computed by imposing the structural movement as a boundary condition to the acoustic
wave equation. The wall-normal component of the acoustic particle velocityu′

i must be equal to the wall-normal
component of the structural velocityui struct:

niu
′
i = niui struct (18)

Using the formulation of the acoustic velocity potentialϕ for the acoustic wave equation that has to be solved,
the left-hand side of equation (18) can be rewritten in a moreconvenient way(u′

i = −∂ϕ/∂xi). Furthermore, the
structural velocityui struct can be expressed as a time derivative of the structural displacementwi. This leads to a
von Neumann boundary condition for the acoustic velocity potentialϕ:

−ni

∂ϕ

∂xi

= ni

∂wi

∂t
(19)

Based on this boundary condition, the propagation of vibrational noise to the far field is computed by solving the
wave equation forϕ using the finite-element method. The acoustic pressurep′ is then obtained byp′ = ρ · ∂ϕ/∂t.

Further information about the coupling algorithms can be found in the work of Scḧafer et al. (2006, 2008). A benefit
of the computation scheme presented for fluid-structure-acoustic interactions is the optimization of each code for
its special field of application, which is due to the partitioned simulation approach. Additionally, FASTEST-3D
and CFS++ can be adapted if necessary, because they are both in-house codes. Therefore, flexiblility is increased
compared with commercial solutions. Moreover, an advantage over experimental methods is the possibility of
computing separately the sound caused by the fluid flow on the one hand and by the structural movement on the
other.
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3 Application of the computational methodology

The presented computational methodology is applied to a simplified model of a car underbody. The setup consists
of a thin, flexible plate that is part of an otherwise rigid wall. To model obstacles often found with real car
underbodies, a square cylinder is mounted on the wall upstream of the flexible plate and perpendicular to the free
stream (see Figure 7).

The flexible plate is made of stainless steel and has a thickness of 40µm. The density isρs = 7850 kg/m
3, the

modulus of elasticityE = 2 × 1011 kg/m/s
2, and the Poisson number is 0.3. The edge length of the square

cylinder isD = 0.02 m and the free-stream velocityU∞ was set to 20 m/s. Considering a flow of air at ambient
conditions, this corresponds to a Reynolds numberRe = 26 000 based onU∞ andD. The dimensions of the flow
domain referring toD are shown in Figure 8(a). In dimensional notation they are0.82 × 0.2 × 0.22 m3 (length×
width× height). The flexible structure is clamped at both its upstream and downstream edges. The area including
the clamping of the flexible structure is just called ’plate’in the following. The plate is pre-stressed in the main
flow direction at a value of7 × 106 N/m

2. The domain of aeroacoustic and vibrational sound is visualized in
Figure 8(b). The computational domain of the acoustic calculations is much larger than the flow domain because
we are interested in the radiation of noise to the far field.

In the flow simulation, for all walls no-slip boundary conditions are chosen. At the upper boundary, symmetry
is assumed, whereas in the spanwise direction a periodic boundary condition is applied. To model the inflow, a
measured velocity profile of the time-averaged main flow component is used. The other two velocity components
at the inflow are set to zero. At the outlet, a convective outflow condition is imposed. The spatial discretization of
the flow domain is realized by a block-structured grid. Although the geometry is fairly simple, a very high number
of control volumes is necessary to resolve the boundary layers. The fluid grid consists of about six million control
volumes, so that all boundaries can be resolved properly, which means that the dimensionless wall scaley+ does
not exceed a value of 0.4 based on the time-averaged velocityfield. The flow simulation is carried out as LES
using a Smagorinsky subgrid scale model. The spatial discretization utilizes a central differencing scheme and the
temporal discretization is based on an implicit three-point scheme. Both are of second order of accuracy. The time
step is chosen2.5 × 10−5 s. Due to the large number of control volumes, use of high-performance computers is
necessary. The computations run on four computing nodes, each equipped with two dualcore processors (IntelR©

XeonR© 5160) and8 GB of main memory. First, the unsteady development of the flowfield is computed until a
fully developed turbulent state is reached, before finally fluid-structure interaction is activated.

For the structural mechanics model, periodic boundary conditions are applied in the spanwise direction. The spatial
discretization of the computational domain is done by hexahedral elements. The number of nodes is about13 000.
In the finite-element computation of structural mechanics,bilinear basis functions with an incompatible mode
approach to account for shear locking effects are used. Moreover, an implicit second-order time discretization
scheme of the Newmark type is applied [see Kaltenbacher (2007)]. The time step size of the structural mechanics
simulation is the same as that for the flow simulation.

For the free borders of the acoustic domain, absorbing boundary conditions are chosen, while the rigid walls are
acoustically reflective. At the flexible wall, we apply the inhomogeneous von Neumann boundary condition of
equation (19). As for the structural mechanics grid, the spatial discretization for the acoustic domain is made up
of hexahedral elements. The number of nodes is approximately 450 000.

obstacle

air flow

wall wallflexible plate

Figure 7: Setup of the test case
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Figure 8: Computational domains

4 Results

The computed flow field averaged in time and in the spanwise direction is depicted in Figure 9. Figure 9(a) shows
the average velocity in the main flow direction and Figure 9(b) the distribution of the turbulent kinetic energy.
Behind the square cylinder obstacle, a recirculation region with a length of about11 D can be seen. Additionally,
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(a) Average velocity in the main flow direction
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(b) Distribution of the turbulent kinetic energy

Figure 9: Flow field averaged in time and in the spanwise direction

in front of the cylinder and also directly behind it, smallersecondary vortices appear. In front of the obstacle
no significant turbulence is found. The laminar to turbulenttransition is taking place in the shear layer above the
cylinder. Instabilities in this region lead to the formation of unsteady vortex structures and therefore to an increased
amount of turbulent kinetic energy.

The vortex formation behind the square cylinder is visualized in Figure 10. Figure 10(a) shows a snapshot of
pressure isosurfaces and Figure 10(b) timelines based on particle tracing techniques, both at an arbitrary instant
of time. It can be seen very well how instabilities in the shear layer between the main flow and the recirculation
region evolve to vortices, which become larger while they are convectively transported downstream. The darker
part of the wall in Figure 10(a) represents the flexible plate. Especially in the downstream part of the plate the
vortices come close to the plate, which makes an interactionbetween the flow and the structure likely.

The bending of the plate at an arbitrary instant of time is shown in Figure 11. The structural displacement is
clearly dominated by the first eigenmode of the plate. Additionally, a higher eigenmode with a lower amplitude
of displacement can be seen. Both modes are uniform in the spanwise direction. The temporal evolution of the
displacement of the point in the middle of the plate is shown in Figure 12(a). The first eigenmode of the plate
clearly dominates the amplitude of the oscillation. The amplitudes of the higher frequency is considerably smaller.
The amplitudes of both the first and of the higher eigenmode are increasing over time. Possibly, the geometric
linear model used in the structural mechanics computationsis not suited for the present problem. For future
investigations, the use of a non-linear model should be considered. The frequency spectra of the displacement and
the velocity of the point in the middle of the plate are plotted in Figure 12(b). The frequencies corresponding to the
two mentioned eigenmodes can be seen as peaks around140 and1380 Hz. The other peaks found in the spectra
correspond to further eigenmodes, which are all homogeneous in the spanwise direction. No inhomogeneous
eigenmodes are excited in the present case, although such inhomogeneous modes are observed in a modal analysis
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(a) Pressure isosurfaces (b) Timelines

Figure 10: Vortex formation behind the square cylinder obstacle (snapshots at an arbitrary instant of time)
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Figure 11: Snapshot of the plate displacement (visualization of displacement magnified by a factor of 20)

of the plate.

The coupled computation scheme described above allows for the separate determination of flow-induced and vi-
brational sound. The spectral density of the sound pressurelevel for the two sound components is depicted in
Figure 13. The evaluation considers three angular positions on the boundary of the acoustic computation domain
[see Figure 8(b)]. The aeroacoustic sound predominantly shows broadband noise. Nevertheless, the broad peak
around140 Hz in Figure 13(a) indicates an influence of the structural movement on the flow-induced sound. As
the structural movement acts directly as a source for the computation of vibrational sound, the same peaks as in
Figure 12(b) can be found in the spectrum of the vibrational sound [Figure 13(b)].

5 Conclusion

A coupled simulation approach for fluid-structure-acoustic interactions was presented, which assumes acoustic
pressures that are low compared with the fluid pressure. Thissimplification is valid for many of the technically
relevant problems of fluid-structure-acoustic interaction. In this case the problem splits into three subproblems,
which can be treated and computed separately: fluid-structure interaction, fluid-acoustic coupling and structure-
acoustic coupling. A partitioned simulation approach witha finite-volume CFD code for the flow computation and
a multiphysics finite-element code for structural mechanics and acoustics was used. Both are inhouse codes, which
increases flexibility and adaptability. An implicit coupling between fluid mechanics and structural mechanics
was applied for the simulation of fluid-structure interactions. Computations of flow-induced sound were based
on Lighthill’s analogy. The acoustic sources for the inhomogeneous wave equation were determined from the
velocity field of the fluid simulation. The evaluated structural displacement was used as a boundary condition for
the computation of the vibrational sound. The flow-induced and the vibrational sound were computed separately,
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(b) Vibrational sound

Figure 13: Spectral density of the sound pressure level at three angular positions on the boundary of the acoustic
domains (xy plane,0◦ corresponds to the main flow direction)

which is a great advantage over experimental methods.

The simulation approach presented was applied to a simplified model of a car underbody. The acoustic field due
to the interaction between a thin, flexible plate in the wake of a wall-mounted square cylinder and a turbulent flow
was investigated. Detailed analysis of the obtained data gave reasonable results, which shows the capability of the
simulation approach to treat fluid-structure-acoustic interactions. To validate the numerical results, comparisons
with experimental data have to be made in the future.
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Projection-based reduced-order model of strongly-coupled fluid-structure
interaction by monolithic space-time modes

A. Zilian, A. Vehre, D. Dinkler

The focus of this work is the development of reduced models for engineering applications in complex bidirectional
fluid-structure interaction. In the simultaneous solution procedure, velocity variables are used for both fluid and
solid, and the whole set of model equations is discretized by a stabilized time-discontinuous space-time finite ele-
ment method. Flexible structures are modeled using a three-dimensional continuum approach in a total Lagrangian
setting considering large displacements and rotations. In the flow domain the incompressible Navier-Stokes equa-
tions describe the Newtonian fluid. A continuous finite element mesh is applied to the entire spatial domain, and the
discretized model equations are assembled in a single set of algebraic equations, considering the two-field problem
as a whole. The continuous fluid-structure mesh with identical orders of approximation for both solid and fluid in
space and time automatically yields conservation of mass, momentum and energy at the fluid-structure interface.
A mesh-moving scheme is used to adapt the nodal coordinates of the fluid space-time finite element mesh to the
structural deformation. The computational approach for strongly coupled fluid-structure interaction is used to
create suitable reduced models of generic nonlinear problems. Reduction is performed with monolithic projection-
based space-time modes, ensuring strong coupling of fluid and structure in the reduced model. The contribution
discusses results using proper orthogonal decomposition (POD) for determination of monolithic space-time modes
in the reduction of fluid-structure systems.

Address: A. Zilian (corresponding author), Institute for Structural Analysis, Technische Universität Braunschweig,
Beethovenstr. 51, Braunschweig (GERMANY).
email: a.zilian@tu-bs.de

1 Introduction

Numerical simulations of fluid-structure interaction phenomena are still computationally expensive. In this con-
tribution, a methodology for a strongly coupled model with space-time-discretization is described, so that simula-
tions of fluid-structure interaction problems can be carried out using a reduced coupled model. The reduction of
the original model, which is discretized by the space-time finite element method for both continua, is achieved by
projection with space-time modes, i.e. the reduction modes contain a discretization both in space and time, see
Vehre (2006). Numerical examples show that complex fluid-structure interaction problems can be simulated rather
accurately using the reduced model with only few generalized coordinates.

2 Governing equations and space-time weak formulation

The following sections give the mathematical description of the boundary-coupled fluid-structure problem, in-
volving an elastic structure at large deformations and a viscous incompressible fluid in terms of the strong form
equations. The weak form is derived in context of the space-time finite element method and a monolithic solution
approach. The final weak formulation is constructed in terms of velocities for the involved continua, simplifying
the realization of coupling conditions considerably.
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2.1 Strong form of fluid and structure

Structure. The conservation of momentum of a solid body at small strains is described on the material configu-
ration

ρ0v̇ −∇0 · (FS)− f0 = 0 on Q0 (1)

with density ρ0 and volume force f0. The domain Q0 = Ω0 × I refers to the space-time continuum under consid-
eration with the spatial reference domain Ω0 and time interval I = [ta, te]. A linear elastic material behavior is
assumed and given in its rate form

C−1 : Ṡ− Ė = 0, (2)

where S, Ė and C are 2nd Piola-Kirchhoff stress, Green-Lagrange strain rate and fourth order elasticity tensor,
respectively. The rate of strain at a material point is a function of deformation and velocity state

Ė(v,u) =
1
2

(∇0v + (∇0v)T + (∇0u)T∇0v + (∇0v)T∇0u
)
. (3)

Dirichlet and Neumann boundary conditions are defined on the outer space-time boundary P0 = Γ0 × I of the
solid body

v − v̄ = 0 on P v
0 and t0 − t̄0 = 0 on P t

0 , (4)

where v̄ and t̄0 are imposed boundary velocities and tractions, respectively. Moreover, the dynamic problem at
hand requires the definition of initial values for the velocity state

v(x, t = 0)− vta
(x) = 0 on Q0 (5)

in the spatial domain.

Fluid. The incompressible Navier-Stokes equations are used to describe viscous flow at moderate speeds. Mo-
mentum balance is defined on the current configuration

ρ(v,t + v · ∇v)−∇ ·T− f = 0 on Q (6)

and accompanied by the continuity equation or incompressibility contraint on the velocity field

∇ · v = 0 on Q. (7)

Assuming a Newtonian fluid, the constitutive relation

T = 2µD(v)− pI (8)

between Cauchy stress state T and the rate of strain

D(v) =
1
2

(∇0v + (∇0v)T
)

(9)

introduces hydrostatic pressure p and viscosity µ of the fluid. Again, Dirichlet and Neumann boundary conditions
are defined on the space-time boundary P = Γ× I of the fluid body

v − v̄ = 0 on P v and t− t̄ = 0 on P t, (10)

where v̄ and t̄ are imposed boundary velocities and tractions, respectively. Compatible (divergence-free) initial
values for the velocity state

v(x, t = 0)− vta
(x) = 0 on Q0 (11)

are required in the whole spatial domain.

Coupling conditions. Flow domain and structural domain are coupled along the common space-time boundary
R representing the fluid-structure interface. At the interface no-slip conditions are applied, requesting continuity
of fluid and structural velocities

vf − vs = 0 on R (12)

ensuring herewith geometrical conservation. Further, in order to fulfill momentum balance at the interface, fluid
and solid interfacial tractions have to be of the same magnitude and opposite direction

tf +
dΓ0

dΓ
ts = 0 on R. (13)

The referential solid traction ts is projected to the current frame.
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2.2 Weak form

The weighted residual method is applied to the strong form equations of solid, fluid and coupling conditions
presented in the previous section. The resulting weak form of the whole coupled system and the space-time
domain is then discretized using the space-time finite element method, see Argyris and Scharpf (1969), and a time-
discontinuous Galerkin method for integration in time. The basic idea of a space-time discretization is to include
the temporal axis in the finite element discretization. For numerical efficiency the space-time domain Q is divided
into a sequence of N time slabs Qn = Ωn × [tn, tn+1], as shown in Figure 1, which are solved successively.8 A. ZILIAN AND A. LEGAY

x1

t
x2

Q

ta

tb

x1

t
x2

Qn

tn
tn+1

Figure 5. Discretization of the continuous space-time domain using space-time finite elements.

the space-time finite element method [32] and a time-discontinuous Galerkin method for integration in
time. The basic idea of a space-time discretization is to include the temporal axis in the finite element
discretization. For numerical efficiency the space-time domain Q is divided into a sequence of N time
slabs Qn = Ωn× [tn, tn+1], as shown in Figure 5, which are solved successively.

At time instant tn the energy of the discretized system at the end of the previous time slab t−n has to be
equal to the energy at the beginning of the next time step t+n . For time-discontinuous approximations of
field unknowns this leads to additional jump terms in the weak form. Moreover, spatial discretizations
from t−n and t+n do not need to be conforming. For first order ordinary differential equations the resulting
time integration scheme is A-stable and third-order accurate for linear temporal interpolation.

3.1. Weak form of fluid

The weighted residual formulation of the strong forms (1-6) for the incompressible viscous fluid in a
space-time slab Qn

t using the Galerkin method reads as
∫

Qn
t

δv · ρ(v,t +v · ∇v)dQt +
∫

Qn
t

D(δv) : 2µDdQt −
∫

Qn
t

∇ · (δv) pdQt −
∫

Qn
t

δv · ρbdQt (25a)

+
∫

Qn
t

δ p∇ · vdQt (25b)

+
∫

Ωn
t

δv(t+n ) · ρ(v(t+n )−v(t−n ))dΩt (25c)

+∑
e

∫

e
Qn

t

(ρδv,t +ρv · ∇(δv)−∇ · T(δv,δ p) · τ 1
ρ

(ρv,t +ρv · ∇v−∇ · T−ρb)dQt (25d)

−
∫

Pn,h
t

δv · t̄dPt = 0 ∀δv,δ p. (25e)

Line (25a) represents the weak form of conservation of momentum (1), fulfilling the constitutive
relation (3) for the Newtonian fluid and the kinematics (4) exactly. The incompressibility constraint
(2) is weighted with the pressure in line (25b). Line (25c) ensures the consistent transfer of kinetic
energy from the previous time slab end at t−n to the current time slab at t+n . The weighted residual
form is stabilized by a Galerkin/least squares term [33] of the momentum balance in line (25d).
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Figure 1: Discretization of the continuous space-time domain using space-time finite elements.

At time instant tn the energy of the discretized system at the end of the previous time slab t−n must be equal to the
energy at the beginning of the next time step t+n . For time-discontinuous approximations of field unknowns this
leads to additional jump terms in the weak form. Moreover, spatial discretizations from t−n and t+n do not need to
be conforming. For first order ordinary differential equations the resulting time integration scheme is A-stable and
third-order accurate for linear temporal interpolation.

Solid. The stabilized space-time finite element formulation of the structural part (1)-(5) within the time slab Q0,n

including boundaries P0,n reads∫
Q0,n

δv · ρ0 v̇ dQ0 +
∫

Q0,n

Ė(δv,u) : S dQ0 −
∫

Q0,n

δv · f0 dQ0 (14a)

+
∑

e

∫
Qe

0,n

δS :
(
C−1 : Ṡ− Ė(v,u)

)
dQ0 (14b)

+
∫

Ω0

δv(t+n ) · ρ0

(
v(t+n )− v(t−n )

)
dΩ0 (14c)

+
∑

e

∫
Ωe

0

δS(t+n ) : C−1 :
(
S(t+n )− S(t−n )

)
dΩ0 (14d)

+
∑

e

∫
Qe

0,n

τS
M δv̇ · (ρ0 v̇ − div0(FS)− f0

)
dQ0 (14e)

−
∫

P t
0,n

δv · t̄0 dP0 = 0 ∀ δv, δS . (14f)

In equation (14) line (a) represents the weak form of the momentum conservation and line (b) fulfills the constitu-
tive law on element level, leading to the mixed-hybrid formulation of (Knippers and Harbord, 1994), where only
the velocities are global degrees of freedom. The jump terms for velocities (c) and stresses (d) satisfy the initial
conditions of the time slab in integral form. The stabilization term, which is needed for wave propagation prob-
lems, is shown in line (e). For the parameter τ S

M the definition of (Hughes and Hulbert, 1988) is used. Interpolation
functions for velocities are chosen to be bilinear in space and discontinuous linear in time, while the stress inter-
polation is discontinuous and incompletely linear in space and discontinuous linear in time, see (Hübner, 2003).
Time integration of the velocities leads to the displacement field u, which is used for computation of the rate of
the Green-Lagrange strain tensor and for specifying the current position of the fluid-structure interface.
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Fluid. The weighted residual formulation of the strong forms of the incompressible viscous fluid (6)-(11) in a
space-time slab Qn

t using the Galerkin method reads as∫
Qn

t

δv · ρ(v,t + v · ∇v) dQt +
∫

Qn
t

D(δv) : 2µDdQt −
∫

Qn
t

∇ · (δv) p dQt −
∫

Qn
t

δv · ρbdQt (15a)

+
∫

Qn
t

δp∇ · v dQt (15b)

+
∫
Ωn

t

δv(t+n ) · ρ(v(t+n )− v(t−n )) dΩt (15c)

+
∑

e

∫
e

Qn
t

(ρδv,t + ρv · ∇(δv)−∇ ·T(δv, δp) · τ 1
ρ

(ρv,t + ρv · ∇v −∇ ·T− ρb) dQt (15d)

−
∫

P n,h
t

δv · t̄ dPt = 0 ∀δv, δp. (15e)

Line (15a) represents the weak form of conservation of momentum, fulfilling the constitutive relation for the
Newtonian fluid and the kinematics exactly. The incompressibility constraint is weighted with the variation of the
pressure in line (15b). Line (15c) ensures the consistent transfer of kinetic energy from the previous time slab end
at t−n to the current time slab at t+n . The weighted residual form is stabilized by a Galerkin/least squares term,
see Masud and Hughes (1997), of the momentum balance in line (15d). The Galerkin/least squares stabilization
suppresses numerical oscillations in solutions to hyperbolic differential equations by the introduction of additional
numerical diffusion, allowing herewith the application of equal order approximations of velocities and pressure for
the incompressible flow field. The stabilization parameter τ is determined for each element e using the definition
given by Tezduyar et al. (1992). Neumann boundary conditions can be imposed in a weak sense by (15e), while
(10) is treated a priori as an essential boundary condition.

Fluid-structure coupling. The space-time finite element formulation of the coupling conditions (12)-(13) uses
boundary traction variables on the interface in order to fulfill momentum conservation and geometrical continuity
between structure and fluid in integral form, see Hübner et al. (2004). In particular, the velocity values of the
Dirichlet boundary conditions of the fluid are substituted by structural velocities and the fluid boundary tractions
act as surface loads onto the structure∫

P c

δtF · (vF− vS
)

dP −
∫

P c

δvF · tF dP −
∫

P c
0

δvS ·
(
− dΓt

dΓ0
tF

)
dP0 . (16)

The tractions are projected onto the reference configuration and change their sign, since the unit outward normal
vectors of fluid and structure are of opposite directions.

As an alternative, one may use direct coupling of fluid and structural velocity degree of freedom in case of fitting
mesh discretizations along the common fluid-structure interface. This enables the feature of an unconstrained
formulation in terms of the coupling conditions and improves efficiency in the numerical solution.

Monolithic system of equations. The monolithic discrete form of fluid, structure, and coupling conditions of
one space-time slab results in a single equation system, shown in Figure 2 (depicted without pressure) and therefore
allows the analysis of the strongly coupled system.

The resulting highly nonlinear system – describing both fluid and structure – is solved by a Picard iteration scheme
in terms of secants.

A(xn
i−1)x

n
i = b(xn−1) (17)

Nonlinearities in the coefficient matrix A are due to nonlinear kinematics of the structure, the convection and
stabilization terms of the fluid and the motion of the fluid space-time mesh. In the considered applications, the
iteration scheme reaches the coupled monolithic solution to a time slab within 3 to 4 steps. Within each nonlinear
iteration step i the monolithic linear system of equations is solved by an ILU(k)-preconditioned GMRES solver
with restart 50.
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Figure 2: Structure of algebraic system: use of Lagrange multipliers (left) and native velocity coupling (right).

For an in-depth description of the design and implementation of the space-time finite element method for fluid-
structure interaction, the interested reader is referred to the following publications: Walhorn (2002); Hübner
(2003); Hübner et al. (2004); Walhorn et al. (2005); Kölke (2005); Hübner and Dinkler (2005); Zilian and Legay
(2008), where the eligibility of the monolithic space-time finite element method for strongly coupled fluid-structure
interaction problems is demonstrated and validated on a number of applications in aero- and hydro-elasticity.

3 Modal reduction of strongly-coupled fluid-structure interaction

Due to requirements of resolving boundary layers, detachment and vortex shedding sufficiently correct, the dis-
cretization of fluid-structure interaction problems results in large-scale algebraic systems. As a side effect of refined
meshes around flow-immersed structures, one increases the band of higher frequencies in the solution spectrum
of the coupled problem. Concerning efficient and stable solution procedures this behavior is not desirable and in
terms of the physical phenomena also not necessary for a number of fluid-structure problems.

The key of modal reduction methods is to filter out less important information in the solution space to a given
problem. For fluid-structure interaction this relates to identification of major interaction effects for a nonlinear
problem at hand and to build an efficient reduced problem-dependent model of predefined accuracy to the unre-
duced physics. Projection-based system reduction is focused on lowering the need to computational resources
(memory and computation time) by making the transition from a large number of (nodal) natural degrees of free-
dom to a small number of generalized degrees of freedom. Together with domain-wide specified basis functions
(modes) the generalized coordinates should be able to approximate the system behavior. This approach is espe-
cially advantageous if a system has to be investigated numerically for a number of different modes of excitation
resulting in qualitative similar responses.

3.1 Projection-based modal reduction

The monolithic nonlinear discrete system in Eq. (17) describes the coupled behavior of the full fluid-structure
system in terms of the natural degrees of freedom xT = [v̂T

s v̂T
f p̂T ] (velocities and pressure). In a projection-

based reduction approach the approximation space Vh of the natural solution of discrete dimension M is projected
to the lower-dimensional space of the generalized basis Ph

x = Py, (18)

where y is the vector of N generalized degrees of freedom and P = [p1 p2 . . . pN ] contains the associated
reductions vectors (projection modes) column-wise. The minimum requirement to the set of reduction vectors is
linear independency. If the behavior of the fluid-structure model is mainly governed by large coarse-scale coherent
structures in fluid and solid, one usually choses N ¿ M . While within the fluid energy is dissipated on the
small scales, large-scale effects contain the majority of kinetic energy, allowing good representation of dynamic
fluid-structure phenomena.

The residual of the discrete natural weak form to the monolithic fluid-structure formulation is transformed in terms
of a Bubnov-Galerkin projection

PT A(Py) Py = PT b(Py) (19)

leading to the much smaller set of only N discrete equations

Ã(y)y = b̃(y). (20)
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The choice of the reduced basis is of great influence on the properties of the reduced system. If the modes are
orthogonal with respect to the unreduced coupled coefficient matrix A, the reduced system will be de-coupled
(diagonal) and each equation could be integrated in time independently as long as the system behavior is linear.
In case of nonlinear equations as for the fluid-structure problem at hand, the reduced system is fully coupled. The
changing characteristics of the system before and after modal reduction are summarized in Figure 3.

dimension M −→ dimension N

coupled equations −→ coupled or uncoupled equations

dof with different physical meanings −→ generalized coordinates in energy form

ansatz functions locally supported −→ global modes

arbitrary nonlinearities −→ direct or approximated nonlinearities

Figure 3: Comparison of characteristics of the discrete equations of the original (left) and reduced model (right).

3.2 Monolithic space-time modal reduction of coupled problems

With traditional modal reduction one discretizes the weak form of the model equations in space first and then
performs the reduction step. The resulting system in terms of the vector of generalized coordinates is then evolved
in time, see Clough and Penzien (1975). Using the proposed space-time finite element discretization of the fluid-
structure problem, the reduced basis is defined in space-time and together with the generalized coordinates already
covers time-dependent effects. This space-time view of modal reduction to fluid-structure interaction may incor-
porate changes of the fluid domain due to structural response in terms of mesh-motion techniques more easily.

The non-reduced monolithic space-time system of equations can be written for time slab n as

A(xn,gn)xn = b(xn−1,gn), (21)

where g denotes dependency on the current geometry of the space-time mesh. Considering a block Gauss-Seidel
iteration scheme to resolve mesh deformation and quadratic nonlinearities introduced by the convection term in
the weak form of the Navier-Stokes equations, one obtains

A0xn + A1xn = b0 + B0xn−1. (22)

Introducing equal reduced test and trial spaces Ph with the Bubnov-Galerkin approach in Eq. (18) together with a
vector of generalized unknowns y, the reduced discrete weak form transforms to

δyT
(
PT A0P yn + PT A1P yn −PT b0 −PT B0P yn−1

)
= 0. (23)

Each entry yi in the vector of generalized coordinates y describes the participation factor of the associated global
space-time mode pi and therefore all influences to the combined solid and fluid state (velocities and pressure)
simultaneously. Monolithic reduction modes inherently ensure strong coupling of fluid pressure and velocity as
well as structural velocity. The matrices A0 = A0(xn−1), A1 = A1(xn) and B0 = B0(xn−1) follow directly
by projection of the weak form and are stored for computation. Reduction and global assembly are performed
matrix-free on the element level. Thus, the total reduced fluid-structure equation system is N × N and can be
solved nearly in real-time without large storage requirements.

3.3 Generation of the reduced space-time basis: Proper Orthogonal Decomposition (POD)

The choice of the reduced basis impairs the quality of the reduced solution to the fluid-structure interaction problem
considerably. Therefore, the projection matrix P has to be filled with appropriate basis vectors, where a good
method of determination strongly depends on the character of the underlying set of partial differential equations,
involved nonlinearities, the reduction approach itself, and the type of excitation. Within the presented framework
the focus is on the determination of basis vectors taking advantage of the monolithic space-time formulation of the
problem and enabling herewith a uniform approach to modal reduction of fluid-structure interaction.
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The method of Proper Orthogonal Decomposition (POD), which has been successfully applied to fluid and solid
body dynamics, enables efficient extraction of coherent structures from experimental and simulation data. The
method of snapshots in the POD, see Sirovich (1987), allows the generation of a reduced basis for nonlinear
problems by the use of existing representative computational results. Therefore, the snapshot approach is well
suited for quasi-steady and slightly transient response of a coupled system.

The non-orthogonal data snapshots of a representative time interval tSnPh are collected in a matrix of dimension
M ×K

R = [r1 r2 r3 . . . rK ], (24)

where ri is a space-time solution vector of the monolithic fluid-structure system in Eq. (21) and K ¿ M . The
temporal distance between the snapshots has to be large enough to ensure a set of uncorrelated snapshots. For
orthogonalization, the eigenproblem

(
1
K

RT R− λiI)qi = 0 i = 1, . . . ,K. (25)

is solved and the resulting K eigenvectors are used to generate the set of basis vectors for model reduction

pi = Rqi. (26)

A common mode selection criterium is the relative magnitude of the associated eigenvalues, determining the energy
contained in that mode during the snapshot phase. In the examples presented in the next section, only a fraction
of the K snapshot-generated projection vectors is used for efficiency. In contrast to other POD-based reduction
methods, the mean flow is not to be subtracted from the snapshot input data, such that the sum of the eigenvalues is
not zero but equal to the total energy contained in the mean flow. The POD therefore delivers the mean flow basis
vector as the mode of largest energy.

4 Examples

4.1 Cavity flow with compliant bottom

An incompressible fluid in a quadratic cavity is set in motion by a harmonic excitation at the top as specified in
Fig. 4. No-slip boundary conditions apply at the side walls and along the interface to the compliant structure
at the bottom. The fluid develops a harmonic cavity flow with changing sign of the velocity components. With
Ω = 10 rad/s the excitation period, and therefore the period of the flow motion, is T = π/5 s. The fluid has
density ρf = 1 kg/m3 and dynamic viscosity µ = 1 kg/m/s leading to a Reynolds number of Re = 1. The elastic
structure is of Youngs modulus E = 1.5 · 10−4 N/m2, Poisson ratio ν = 0.35 and density ρs = 10−3 kg/m3.
Point A (2/3, 0) is used to compare full and reduced solutions to the coupled fluid-structure system in terms of
the motion of the membrane structure. The fluid domain is coarsely discretized by 12× 12 elements. A matching
fluid-structure interface mesh is obtained by using 12×2 solid elements for the membrane-like structure. The time
step size ∆t = 0.01 s is chosen according to the period T of the excitation.

für den Ablösevorgang ein Raum–Zeit–Modenpaar zur Verfügung stellen
muss, um den in der Zeit veränderlichen Strömungsvorgang beschreiben zu
können. In den Moden 2 und 3 steckt mehr als 20–mal so viel Energie wie in
den Moden 4 und 5. Für den — auch optisch wahrnehmbaren — Strömungs-
vorgang sind letztere somit wesentlich weniger entscheidend, und 3 Moden
reichen aus, um im reduzierten Modell eine gute Approximation der Phäno-
menologie der Wirbelablösung zu erzielen.

6.3 Hohlraumströmung mit Bodenmembran

Für das folgende Beispiel einer Fluid–Struktur–Interaktion von vergleichs-
weise geringer Komplexität wird mit einer Reynolds-Zahl von Re = 1 eine
geringe Nichtlinearität gewählt, um die Untersuchung des Reduktionsver-
fahrens von nichtlinearen Effekten unbeeinflusst zu lassen. Im Vordergrund
steht die Frage, wie die Kopplung im reduzierten Modell realisiert werden
kann.

6.3.1 Aufgabenstellung

Die an der Unterseite eines Hohlraums angebrachte Bodenmembran wird
durch die an der Oberseite des Hohlraums induzierte Strömung zum Schwin-
gen angeregt, s. Abbildung 6.18. Das Fluid weist die gleichen physikalischen

1.0m

v̄x(t) = sinΩt, v̄y = 0

1.0m

x
y A

v̄x, v̄y = 0

0.083m

Abb. 6.18: Hohlraumströmung mit angeregter Bodenmembran bei vorgegebener
Randströmung

Eigenschaften wie in Abschnitt 5.3.3 auf, die Periode der Anregung, die sich
voll auf die Fließbewegung und die Membranschwingung überträgt, ist mit
T = π/5 s ebenfalls gleich gewählt. Der Elastizitätsmodul der Struktur ist

101

In Abbildung 6.20 sind links die Geschwindigkeitsvektoren der 1. und 3.
Raum–Zeit–Mode zu sehen. Rechts ist die Druckverteilung der 1. Mode ab-
gebildet. Die Verschiebungen der Membran sind überhöht abgebildet. Im

Abb. 6.20: Geschwindigkeitsvektoren der 1. und 3. Raum–Zeit–Mode (links),
Druckverlauf der 1. Raum–Zeit–Mode (rechts): jeweils oben t+n –Mode,
unten t−n+1–Mode

Fluidgebiet direkt oberhalb der Membran ist die wechselseitige Beeinflus-
sung der beiden Kontinua in Form von durch Membranbewegung hervor-
gerufenen Druckdifferenzen stärker ausgeprägt als bei Hohlraumströmungen
ohne Membranbewegung.
Die Reduktion erfolgt mit dem Basisverfahren aus Gleichung (4.11), aller-
dings mit der in Abbildung 3.4 dargestellten gekoppelten Systemmatrix und
monolithischen Reduktionsvektoren gemäß Gleichung (4.10). Abbildung 6.19
zeigt rechts den rücktransformierten Verschiebungsverlauf in Punkt A nach
Reduktion mit 1 und 2 Moden. Schon mit nur einer Mode folgt ein har-
monischer Verlauf, allerdings mit signifikantem, unsymmetrisch ausgebilde-
tem Amplitudenverlust. Mit 2 Moden stellt sich ein der nicht–reduzierten
Schwingung deckungsgleicher Verlauf ein.
Der in Abbildung 6.21 abgebildete Verlauf der 2. generalisierten Koordinate
bei Reduktion mit 2 Moden und im nicht–reduzierten Modell zeigen gute
Übereinstimmung. Schon die 3. und 4. generalisierte Koordinate werden je-
doch selbst bei Reduktion mit 8 Moden nur unzureichend wiedergegeben.
Die Eigenwertverteilung der Proper Orthogonal Decomposition zeigt, dass
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Figure 4: Driven cavity with compliant bottom: system definition, resultant reduced velocity and pressure fields.

In a time interval of tSnPh = 1.6 s 10 snapshots are taken at each 16th time step and the POD is performed.
The snapshot phase (SnPh) is identical to 2.5 times the period of excitation. The choice of a non-integer multiple
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excludes unwanted special situations affecting the modal reduction in space-time. The mean flow, averaged over
one period, is zero due to the symmetry of the system. All generalized coordinates of the reduced coupled system
are free, since boundary conditions are incorporated by the set of reduced basis vectors. Inspection of the eigen-
value spectrum of the POD underlines, that a pair of modes is dominating but not the mean flow mode. Figure 4
shows at the right the velocity fields of the first and third space-time mode column-wise and the pressure field of
the first mode is depicted in the third column. The upper row gives the t+n -state at the beginning of the space-time
slab, while the bottom row shows the state at t−n+1. The membrane displacements are magnified for illustration.
In the fluid domain and close to the membrane structure the interaction effect of fluid and structure is reflected by
increased pressure differences compared to the situation with a fixed bottom.

zu 1.5 · 104 N/m2, die Querkontraktionszahl zu ν = 0.35 und die Dichte zu
ρ = 1.0 · 10−3 kg/m3 vorgegeben. Die Gleichungen werden im Fluidgebiet
mit 12 auf 12 Elementen und im Strukturgebiet mit 12 auf 2 Elementen dis-
kretisiert, dazwischen befindet sich eine Schicht von 12 Interface–Elementen,
die den Energieaustausch zwischen beiden Kontinua sichert. Das resultieren-
de Gesamtgleichungssystem umfasst 1 462 Gleichungen. Die gewählte Zeit-
schrittweite beträgt ∆t = 0.01 s.
Der sich im Dreiviertelspunkt A der Membran einstellende harmonische Ver-
schiebungsverlauf in vertikaler Richtung vor der Reduktion ist links im Dia-
gramm von Abbildung 6.19 zu sehen. Da das Fluid inkompressibel modelliert
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Abb. 6.19: Verschiebung in Punkt A vor (links) und nach (rechts) Reduktion mit
1 und 2 Moden

ist, muss die Fläche, die sich zwischen oberem Rand der Höhle und Membran
befindet, stets gleich bleiben. Dementsprechend stellen sich nur Membranfor-
men ähnlich der ersten Oberschwingung — wie in Abbildung 6.18 skizziert
— ein, so dass die Volumenkonstanz zu jeder Zeit gewahrt bleibt.

6.3.2 Reduktion

Die Reduktionsmoden liefert eine Proper Orthogonal Decomposition, bei der
10–mal nach jeweils 16 Zeitschritten der Lösungsvektor abgegriffen wird, so
dass ca. das 2.5–fache der Systemperiode in das Reduktionsverfahren ein-
fließt. Gemittelt über eine volle Periode ist der Meanflow aufgrund der Sym-
metrie überall null. Alle generalisierten Koordinaten können sich frei ein-
stellen. Die Betrachtung der Eigenwertverteilung der POD bestätigt, dass
tatsächlich nicht der Meanflow wie beim Zylinderbeispiel, sondern ein Mo-
denpaar mit Eigenwerten ähnlicher Größenordnung die Verteilung anführt.
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Figure 5: Driven cavity with compliant bottom: motion of point A, comparison of full and reduced computation.

Modal reduction is performed according to Eq. (23). Figure 5 shows a comparison of the results obtained for
membrane vertical displacement at point A using one and two space-time modes. Using only one mode leads to
an almost phase-correct but a non-symmetric diffusive reduced solution. If two space-time modes are used for
the modal reduction, the reduced solution of just 2 degrees of freedom meets the non-reduced solution to the full
system consisting of 5,766 unknowns.

The example shows that the strong coupling of both continua is well represented in the reduced model. While the
structural displacements remain small and most of the energy is related to the fluid, the overall structural behavior
is very good approximated. Without monolithic modes for the modal reduction this result is hardly to achieve.

4.2 Vortex-induced vibration of a plate

The following example discusses the application of the proposed reduction method to the fluid-structure benchmark
situation proposed by Wall (1999). This coupled problem involves strong interactions of an incompressible fluid
and a plate-like structure, where depending on initial tip displacements different and not always quasi-steady
solutions are obtained. The reduction method must be able to project the complex system behavior onto the
reduced model.

set E ν

(a) 2.5 · 107 N/m2 0.35
(b) 2.5 · 106 N/m2 0.35

Table 1: Parameter sets for the elastic plate structure.

A thin and slender structure is located in the wake of quadratic bluff body in such a way, that it is excited due to
continuous vortex shedding. Figure 6 shows the geometrical system setup and its discretization by finite elements.
The spatial mesh consists of 8,338 fluid elements and 136 structural elements which leads to a total of 52,766
equations of the full monolithic space-time discretization. Based on this discretization, a numerical reference
solution is available in Walhorn (2002) and allows the determination of the quality of the reduced solution. The
inflow velocity is of v̄x = 31.5 cm/s. With the dynamic viscosity µ = 1.82 · 10−4 g/cm/s and a fluid density
ρf = 1.18 · 10−3 g/cm3 the Reynolds number of the flow problem is Re = 204. Two different parameter settings,
see Table 1, are investigated for the elastic structure at plane stress and of constant density ρs = 0.1 g/cm3.
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The time step size ∆t = 0.005 s is chosen according to the Strouhal number associated with the vortex shedding
phenomenon.

6.4.1 Aufgabenstellung

Eine im Nachlauf eines umströmten, quadratischen Querschnitts angebrachte
Struktur ist sehr schlank, so dass sie durch die periodisch ablösenden Wirbel
zum Schwingen angeregt wird, s. Abbildung 6.22.
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Abb. 6.22: Kragträger im Nachlauf eines umströmten Quadratquerschnitts

Die Anströmgeschwindigkeit beträgt v̄x = 31.5 cm/s. Mit einer dynamischen
Zähigkeit von µ = 1.82·10−4g/cm/s und einer Dichte von ρ = 0.00118 g/cm3

folgt eine kinematische Zähigkeit von ν = 0.154 cm2/s. Die Reynolds–
Zahl ist mit Re = 204 wesentlich größer als im vorangehenden Beispiel.
Für die Struktur werden zwei verschiedene Parametersätze betrachtet, wo-

Abb. 6.23: Finite–Element–Netz: Fluid mit Kragträger

bei die Dichte mit ρ = 0.1 g/cm3 in beiden Fällen gleich ist. Der Elasti-
zitätsmodul beträgt für Parametersatz a Ea = 2.5 · 107 N/m2 und für Satz
b Eb = 2.5 · 106 N/m2. Die Gleichungen sind auf der Fluidseite mit 2 039
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Figure 6: Vortex-induced vibration of plate: system definition and mesh of full discretization.

Parameter set (a). Due to the stiff structure in parameter set (a) small structural displacements and small mesh
deformations indicate limited influence of nonlinear behavior in the system. Figure 7 shows the tip displacement
in the time interval and the dominance of 2 frequencies in the oscillation. The interval of the snapshot phase is
chosen tSnPh = 1.0 s and every 10 time steps a total of 20 snapshots is taken for generation of the reduced basis,
such that one period of the low-frequency range is covered. In Figure 8 the first three t+n -modes are shown in terms
of the velocity state (left) and pressure state (right). The mean flow is not subtracted from the snapshots.
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Abb. 6.24: Vertikalverschiebung der Kragträgerspitze bei nicht–reduzierter Berech-
nung und Parametersatz a

weils 10 Zeitschritten werden insgesamt nSn = 20 Snapshots abgegriffen,
so dass annähernd eine Periode des niederfrequenten Anteils abgedeckt ist.
Abbildung 6.25 zeigt die Eigenwertverteilung der POD. In Abbildung 6.26
sind die ersten drei t+n –Moden mit Geschwindigkeitsverlauf links und Druck-
verlauf rechts dargestellt. Vor Durchführen der POD wird der Meanflow
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Abb. 6.25: Eigenwertverteilung der POD bei nSn= 20

nicht von den Snapshots subtrahiert, mit Subtraktion und Linearkombina-
tion ergeben sich jedoch auch hier — bis auf numerische Ungenauigkeiten
— die gleichen Moden. Im Vergleich zum Zylinder mit Wirbelablösung in
Abschnitt 6.2 ist der Paarcharakter des Modensets weniger stark ausgeprägt.
Die Raum–Zeit–Moden mit den Ordnungsnummern 2 bis 7 weisen alle große
und zur Mittelachse symmetrische Wirbelpaare auf, und es fällt schwerer, um
90◦ phasenverschobene, aber genau gleiche kohärente Strukturen zu unter-
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Wie im vorangehenden Beispiel kommt das Basisverfahren (4.11) mit mo-
nolithischen Moden und reduzierter gekoppelter Systemmatrix zur Anwen-
dung. Abbildung 6.27 vergleicht die Geschwindigkeit an der Kragträgerspitze
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Abb. 6.27: Vertikalgeschwindigkeit der Kragträgerspitze nicht–reduziert und bei
Reduktion mit 10 Moden bei Parametersatz a

nicht–reduziert und bei Reduktion mit 10 Moden. Die Amplitude ist bei bei-
den Berechnungen ungefähr gleich groß. Während im nicht–reduzierten Mo-
dell jedoch mehrere Frequenzen zu erkennen sind, ist im reduzierten Modell
nur eine Frequenz vorhanden. Der erste Peak des reduzierten Modell hat
ungefähr den Wert der nicht–reduzierten Berechnung, nach weiteren drei
Perioden ist die Amplitude der reduzierten Berechnung jedoch um 0.1 nach
oben verschoben und wird auf diesem Niveau bei der gesamten folgenden Be-
rechnung beibehalten. Der Phasenfehler ist gering und von gleicher Größen-
ordnung wie beim Zylinderbeispiel. Bei Betrachtung des rücktransformierten
Geschwindigkeitsfeldes im zeitlichen Verlauf kann man keinen Unterschied
des reduzierten zum nicht–reduzierten Modell erkennen. Das Reduktionsver-
fahren kann die Phänomenologie der Wirbelablösung und der Schwingung
des Kragträgers quantitativ gut beschreiben.
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Abb. 6.28: Verschiebung der Kragträgerspitze nicht–reduziert und bei Reduktion
mit 4 und 10 Moden bei Parametersatz a

Die Verschiebung der Kragträgerspitze ist in Abbildung 6.28 über der Zeit
aufgetragen. Sie zeigt, dass der Fehler in den Geschwindigkeiten akkumuliert.
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3.0 4.0 5.0

-1.0

0.0

1.0

mit 10 Moden
nicht-reduziert

G
es

ch
w

in
d
ig

ke
it

[c
m

/
s]

Zeit [s]

Abb. 6.27: Vertikalgeschwindigkeit der Kragträgerspitze nicht–reduziert und bei
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ungefähr den Wert der nicht–reduzierten Berechnung, nach weiteren drei
Perioden ist die Amplitude der reduzierten Berechnung jedoch um 0.1 nach
oben verschoben und wird auf diesem Niveau bei der gesamten folgenden Be-
rechnung beibehalten. Der Phasenfehler ist gering und von gleicher Größen-
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Figure 7: Vortex-induced vibration of plate (a): tip displacement and choice of snapshot phase / small deformations.

As in the previous example the method of reduction given by Eq. (23) is used with monolithic modes and reduced
coupled system matrix. In the right of Fig. 7 the tip velocity of the not reduced and the reduced solution using
10 modes is compared. The amplitude for both computations is nearly equivalent and the reduced solution is
governed by only a few lower frequencies. The reduction method is able to capture the phenomena of vortex
shedding and plate vibration. The displacement solution underlines accumulation of errors in the reduced solution
to the structural velocity state. The deviation can be lowered by increasing the number of space-time modes in the
basis used for reduction.

Parameter set (b). The transient tip displacement is much more complex in this setting than for parameter set
(a), see left in Figure 9. An analysis of the frequency spectrum shows that more than two frequencies dominate
the structural response due to interaction with the fluid. Therefore, the POD snapshot phase is chosen larger with
tSnPh = 2 s and a total of 20 snapshots is taken every 20th time step. Figure 9 (middle) compares the tip velocity
of the plate for the not reduced system to the reduced solution using the first 13 space-time modes. The reduction
method is able to capture the system behavior until t = 3.3 s quite well, but afterwards deviates from the reference
solution. The same holds for the horizontal velocity in point A given in Figure 9 (right). For the system governed
by various dominant frequencies the complex behavior is not well projected to the reduced model by the chosen
POD snapshot method and parameters due to higher-order nonlinearities introduced by large mesh deformations,
and these issues are in the focus of ongoing research.
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Figure 8: Vortex-induced vibration of plate (a): first 3 modes (velocity, pressure) of reduced model.

5 Conclusions

In this work a modal reduction method using space-time modes for strongly coupled fluid-structure interaction
problems is investigated. Taking a verified and validated monolithic space-time finite element model as a basis,
projection-based reduction is performed on all terms of the weak form of governing equations up to second order
using monolithic space-time modes of a time slab. Evolution of the reduced solution in time is not necessary, since
transient effects are already incorporated by the chosen space-time reduction basis. The snapshot method of the
Proper Orthogonal Decomposition is used for generation of the reduction basis. For convection-dominated fluid
dynamics pairwise conjugated space-time modes are generated, representing phase-shifted coherent structures that
positively affect the projection of the convective terms in the weak form. The single mean flow mode is part of
the POD-generated basis. Application of the reduction method to fluid-structure interaction problems involving
vortex-shedding at small structural displacements shows good agreement with the full solution even if only a small
number of modes are used for reduction.
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ren. Für das Systemverhalten weniger entscheidende Strömungsvorgänge, die
nicht in das reduzierte Modell übertragen werden, können zu Fehlern führen,
die in einzelnen ausgezeichneten Freiheitsgraden akkumulieren.
Der Verlauf der generalisierten Koordinaten weist ähnliche Defekte wie der
rücktransformierte Geschwindigkeitsverlauf der Kragträgerspitze auf. Die 2.
und die 4. generalisierte Koordinate, dargestellt in Abbildung 6.29, können
beide die dominierende Frequenz der Wirbelablösung abbilden. Vor allem
bei der 2. Koordinate ist deutlich, dass die Amplitude und die Phase eine
gute Übereinstimmung mit dem nicht–reduzierten Modell zeigen. Der über-
lagerte niederfrequente Anteil kann jedoch nicht wiedergegeben werden. Bei
der 4. Koordinate wird zusätzlich ein überlagerter höherfrequenter Anteil
nicht abgebildet.

Parametersatz b: Große Verschiebungen

Bei Berechnung mit Parametersatz b ist der Verschiebungsverlauf, s. Abbil-
dung 6.30, aufgrund starker Wechselwirkungen zwischen beiden Kontinua
wesentlich komplexer. Eine Frequenzanalyse bestätigt, dass nicht nur zwei
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Abb. 6.30: Vertikalverschiebung der Kragträgerspitze bei Parametersatz b

Frequenzen wie bei Parametersatz a, sondern mehrere Frequenzen für die
Phänomenologie eine wichtige Rolle spielen. Ebenfalls eingezeichnet in Ab-
bildung 6.30 ist die Snapshot–Phase, bei der insgesamt 20 Snapshots nach je-
dem 20. Zeitschritt abgegriffen werden, so dass ein Zeitbereich von ∆tSn = 2 s
abgedeckt ist. Die Snapshot–Phase wird hier länger gewählt, um mehr Infor-
mation des unregelmäßigen Schwingungsverlaufes für die POD zu gewinnen.
Die Raum–Zeit–Moden weisen optisch nur geringe Unterschiede zu denen
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bei Parametersatz a auf, auch die Eigenwertverteilung ist ähnlich. Darge-
stellt sind Berechnungen bei einer Reduktion mit den ersten 13 Raum–Zeit–
Moden.
In Abbildung 6.31 links ist der Geschwindigkeitsverlauf der Kragträgerspit-
ze für das nicht–reduzierte Modell sowie bei Reduktion mit 13 Moden zu
sehen. Das Reduktionsverfahren kann die nicht–reduzierte Berechnung bis
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Abb. 6.31: Vertikalgeschw. der Kragträgerspitze (links) und Horizontalgeschw. in
Punkt A (rechts) jeweils nicht–reduziert und reduziert mit 13 Moden

t = 3.3 s zufriedenstellend abbilden. Danach nimmt die Vertikalgeschwin-
digkeit des Kragträgers im nicht–reduzierten Modell vorübergehend ab, um
bei t = 3.6 s wieder anzusteigen. Im reduzierten Modell kann die Zwischen-
schwingung nicht abgebildet werden, in ähnlicher Form findet dieser Bewe-
gungsablauf ab t = 3.6 s statt. Selbst innerhalb der Snapshot–Phase kann die
Bewegung der Kragträgerspitze insgesamt nicht zufriedenstellend abgebildet
werden. Die zwei beteiligten Schwingungen mit unterschiedlichen Frequenzen
können im reduzierten Modell insofern nicht sauber beschrieben werden, als
die Amplituden beider Schwingungen nicht ausreichend getrennt und somit
nicht in richtiger Abfolge wiedergegeben werden.
Auch die Fluidbewegung ist aufgrund der größeren Verschiebungen des Krag-
trägers und der Interaktion beider Kontinua wesentlich komplexer. Abbil-
dung 6.31 rechts zeigt die Horizontalkomponente des Geschwindigkeitsver-
laufs in Punkt A. Was bei Parametersatz a noch ein quasi–stationärer Verlauf
mit zwei dominierenden Frequenzen ist, ist hier ein von mehreren Frequenzen
geprägter, nicht mehr offensichtlich quasi–stationärer Bewegungsablauf ho-
her Komplexität. Der Verlauf wird im reduzierten Modell ebenfalls nur unzu-
reichend approximiert, Oberschwingungen können nicht beschrieben werden.
Der Verlauf der Grundschwingung kann nachvollzogen werden, die Höhe der
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Figure 9: Vortex-induced vibration of plate (b): tip displacement and choice of snapshot phase / large deformations.

Hübner, B.; Dinkler, D.: A simultaneous solution procedure for strong interactions of generalized Newtonian fluids
and viscoelastic solids at large strains. International Journal for Numerical Methods in Engineering, 64, (2005),
920–939.
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