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Preface

Fluid-structure interactions (FSI), that means the irtiioa of some deformable structure with a surrounding or
internal fluid flow, belong nowadays to the most important ahdllenging multi-physics problems which are
aimed to treat by numerical simulations. Since such muiisics problems, ranging from small-scale micro
pumps over blood flow in arteries to objects in a wind tunneiaipuge buildings, involve more than one physical
effect, the challenges with respect to mathematical mimdglhumerical discretization and solution techniques and
realization as software tools on modern computer architestare still huge, even today, particularly if accurate,
flexible and highly efficient simulation tools shall be reali.

Most of todays software packages for computational fluidadyics (CFD) and computational structural mechan-
ics (CSM) are already on a quite high level and allow, at lemsbme extent, the simulation of certain classes of
FSI applications. However, although a lot of research has li@vested in this challenging field, many of the key
guestions in FSI regarding accuracy, robustness, fleilziid efficiency of the developed simulation techniques
have not been answered yet in a satisfying way: These keyigogsddress, for instance, the appropriate cou-
pling between structural and fluid parts, i.e. monolithicpartitioned coupling schemes, and the advantages and
drawbacks of various discretization schemes used on theaftalon the structure side. Moreover, the reliability
of the simulation results and underlying error estimatorglexible data structures and geometry models for large
geometrical or even topological changes, are still in th&areof research activities. And, finally, the design of
robust and efficient solvers for the resulting huge nonlisgatems and the realization of the numerical approaches
as flexible software tools allowing techniques from highf@enance computing still have to be treated with very
high priority.

This book contains the proceedings of a 3-day workshop od-fitruicture interactions held in Herrsching am
Ammersee, Germany, in September 2008 which was organizéleb@ollaborative Research Center SFB TRR
30 Process-integrated development of functional gradeccsitres on the basis of thermo-mechanically coupled
phenomenand the Research Unit 493uid-Structure Interaction: Modelling, Simulation, Gyization both
established by the Deutsche Forschungsgemeinschaft (¥Gigned as a forum for presenting recent results as
well as for exchanging ideas with leading internationaleztg this workshop consisted of 29 lectures on all kind
of mathematical and computational aspects of fluid-strednteractions. The topics in this volume cover a broad
spectrum of up-to-date FSl issues, ranging from more méthbalspects to applications and experimental settings
for validation and evaluation.

We would like to thank the “Gesellschaft zubielerung des technischen und ka&afmischen Bhrungsnach-
wuchses in Nordhessen Informatik (GFF-I)” for financial gog, and Mrs. llona Blaschek for her enormous
engagement and administrative work. Finally, we are guafef the Deutsche Forschungsgemeinschaft (DFG).
Without this financial support, neither many of the resufisspnted in this book nor the book itself would have
been possible.

Stefan Hartmann
Andreas Meister
Michael Schifer
Stefan Turek

Clausthal, Kassel, Darmstadt, Dortmund March 2009
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Shape Optimization with Higher-Order Surfacesin Consideration of
Fluid-Structure I nteraction

G. Becker, U. Falk, M. Scifer

This paper proposes the first step towards an efficient aricegnintegrated shape optimization of fluid-structure

interaction problems. The presented approach utilizes RERurfaces to approximate and alter grid based opti-
mization surfaces. Due to the usage of the already availgblegfid generation routines it is possible to handle

even large grid deformations. Furthermore, this approatlbves the user to address the optimization surfaces
easily via boundary condition. The design variables can dtevery intuitively. The presented implementation
works with any derivative free optimization tool.

1 Introduction

Fluid-structure interactions (FSI) arise in many discipb and applications, e.g. elastic artery modeling, &irfoi
flutter or wind loads on structures (Mittal and Tezduyar, 3;9%alro and Tezduyar, 2000; Tezduyar and Osawa,
2001). Therefore, the significance of efficient numericathrods to solve these problems has increased steadily.
Thus, the demand for shape optimization has arisen, e.graélgeand lift force optimization of airfoils. Throughout
the last years, researchers have improved the numerichbaetoncerning fluid-structure interactions. Efficient
codes are available now. Furthermore, in the field of stratmechanics shape optimization is already commer-
cially receivable and fluid mechanics researchers make goagtess. However, simulations combining fluid-
structure interactions and shape optimizations have rei deeply investigated yet (Mohammadi and Pironneau,
2001).

Therefore, it is aspired to establish shape optimizatiomtisinvfluid-structure interaction applications. Since the
optimal shape is calculated, numerical shape optimizatioooupled problems may reduce the costs of time
consuming experiments (Harth and &fir, 2004).

Shape optimizatio Efficient time Fluid-structure-
with higher-order dependent interaction shape

surfaces optimization optimization

Figure 1: Classification of this paper’s content within tloatext of FSI optimization

This paper proposes a new deformation approach for optigiighapes. It allows a straightforward application
towards coupled problems, i.e. the coupled code’s roufioiegrid deformation and generation are utilized for
the shape movement within the optimization process as Wéle new method is implemented within the fluid
region and works aside the fluid-structure coupling sudadgecause of the time dependence in fluid-structure
interactions, an efficient time dependent optimizatiorrapph needs to be considered. This paper handles the first
step towards an efficient FSI optimization (see Fig. 1).



1.1 Shape optimization approaches

Samareh (1999) gives a general review of shape parameitenizachniques for multidisciplinary optimization
based on the work of Haftka and Grandhi (1986). In additiothtoobvious discrete approach using the surface
grid points as design variables, there are three generpéshaimization techniques. The main intention of these
methods is the reduction of design variables to accelenategptimization.

Thebasis vector approachses a small number of trial designs. These are weighteddigrdeariables and added
to the original design to achieve an optimal shape (Pickeitt €1973). The trial designs are generated by a variety
of methods, e.g. free form deformation (Sederberg and PE886; Barr, 1984). Drawback of this method is that
the shape is restricted only to the possible combinationiseofrial shapes.

CAD-based methoddilize geometric shape design parameters defined in a CAfehas design variables, e.g.
the height of an object. First the shape is altered in an eate€AD application. If necessary a new grid is
generated in a meshing tool. A new objective function vatuevialuated using this grid within a FEM- or FVM-
solver (Olhoff et al., 1991; Grindeanu et al., 2002). Theadismntage of this approach is the time costly serial
usage of different exteral programs.

The polynomial and spline approacttilizes polynomial functions to represent the shape beipimized. B-
spline functions allow an easy and local control of the ofgeshape by manipulating the control points, which
serve as design variables. Furthermore, B-spline surieaesepresent any shape and allows the approximation
of given sets of grid points (Piegl, 1991; Tiller, 1983).dtdossible to completely integrate them into the availabe
FSI grid deformation routines. Hence, no external prograrane necessary. Thus, nonuniform rational B-spline
(NURBS) surfaces are chosen in this paper (Bazilevs et@06,22008).

1.2 Development environment

The applied code solves fluid-structure interactions vigngplicit partitioned approach (Sélfer et al., 2006). It

is based on FASTEST, a parallel multigrid flow solver, utilgz an entirely conservative finite-volume method to
solve the incompressible Navier-Stokes equation on a taggsred, block structured and cell centered grid (Durst
and Schfer, 1996). Furthermore, FEAP is used as a finite-elemesdgdbatructural solver (Taylor, 2003). The
coupling interface is realized via MpCCl, which sends feroéthe flow region to the structural solver and returns
resulting deformations (MpCCI, 2006). For these, an efficldock-based grid deformation tool is implemented
for the fluid region, allowing large grid movements by alggbrand elliptic mesh generation techniques geh

et al., 2006).

2 Mathematical background

In this section the mathematical background of nonunifcational B-spline surfaces (NURBS surfaces) and the
approximation of a set of points with such surfaces is briefijewed.

According to Piegl (1991), NURBS curves are vector-valuetgwise rational polynomial functions (Piegl and
Tiller, 1987; Rogers and Adams, 1976; Tiller, 1983). NURBS ased within this work to calculate an approxi-
mation of given surface grid points. Those represent thpesbéthe objects we like to optimize with respect to
minimize a defined objective function. NURBS surfaces arevaguful technique to change the grid point position
and therefore the shape of the objects by adjusting theagdimts. In contrast to the amount of grid points the
amount of control points is small. Starting from splines dedinition of NURBS surfaces is shown step by step.
In addition the key benefits regarding the application of NB$Rsurfaces in shape optimization are stated.

A linear regression problem has to be solved in order to fit &B88 surface to the provided surface grid points and
gives us a first set of control points. Therefore, differeetimods of solving such overdetermined linear equation
systems are given.



2.1 NURBSsurfaces

211 Splines

According to Piegl and Tiller (1996), a splide: [0, 1] — R™ is a piecewise defined polynomial function of order
p € N. Therefore, parameter values (knots)

Sb = (@h' . '7‘15771)7 Where()Z)i € [Oa 1]7 (XS {17 . am}v (1)

need to be defined. They represent the endpoints of the peeeefined polynomial functions. Lgt> 2 and
Ci:=C € C?=2[0,1]. Then forj = {0,1,...,p — 2} we demand for thgth derivative

[6i,Pit1

CO(@iy1) = CO (Biga), Vi€ {1,... 0 —2}. @
Regarding the approximation of data points, splines offerfollowing advantages compared to a single polyno-

mial:

e Due to the low degree of the piecewise defined spline-functplines are easy to process and numerically
stable even with a high number of interpolation points (Paegl Tiller, 1996).

e Splines are well-suited to shape any design. With contrivitpdhe shape can be locally manipulated (Piegl,
1991).

212 B-spline-surfaces

In contrast to general splines, B-splines are construcsatua particular class of polynomial functions. These
functions are called B-spline basis functions (Tiller, 3R8

The finite polynomial B-spline surfac® : [0,1] x [0,1] — R3 is a product of two piecewise defined polynomial

functions of ordetp, g respectively. Therefore, we define two knot vectgrs= (&1,&2, ..., u+p) @andy =
(V1,V2, ..., Vintq) DY
0 if i<p
&=q52 if p<i<a for i=1,...,a+p (3)
1 if i>n

andv analogously.

According to Zeid (2005) the above definition generates &oumiknot vector, which leads touniform B-spline
surface. Furthermore, the end knots are repeatgdsp. ¢q) times. As a consequence the surface’s corner points
coincide with the corresponding control points. This akosv direct manipulation. A nonuniform knot vector
would lead to amonuniformB-spline surface (see Section 3.1.3).

l T T T T T T T T T

0.8 R

0.6+ : : : i

0.4 R

0.2 i

C 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2: B-spline basis functioa‘s’fg{? 6} using the nonuniform knot vectgr= (0,0,0,0.2,0.6,0.8,1,1,1).



The B-Spline basis function&/?, N'¢ : [0,1] — R, with N} := |” (W} using v analogously) are
[£i:6i41]
computed piecewisely and recursively with the Cox-deBeaurrence (seg De Boor (2001) and Fig. 2). Note,

that we follow the convention of Farin et al. (2008).0 := 0.

MI(U):{ 1 if & <u<éim

0 otherwise
NP () = S NP ) 4 SHPELZ Y wod) ((v) analogously. @
Sitp — i Eirpr1 — Civ1 J

Therefore, following Piegl and Tiller (1996),

S(u,v) = Z ZMP(U)-/\[JQ(U)PZ'J7 u,v € [0, 1]7 (5)

i=1 j=1

whereP; ; € R? denotes théi, j)th entry of P € R" x R™ x R3.

2.1.3 Nonuniform rational B-spline surfaces (NURBS surfaces)

A NURBS surface is a B-spline surface with a nonuniform krextter (Tiller, 1983) and is defined as follows:

> > wi i Pi N (WNF (v)

i=1j=1

S(u,v) = == Cwwelo] (6)
> 2 wr s NF (u)NE (v)
r=1s=1

with weightsw = (w; ;);,; and the nonuniform knot vectogsv. The computation of the nonuniform knot vectors
can be found in Section 3.1.3.

Let
i w; NP ()N (v
Rf”jq(u, ’U) — - mJ i ( ) J ( ) (7)
Z Z wnsNg}(u)MSq(U)
r=1s=1
be a bivariate basis function (Piegl, 1991), thus
S(u,v) = ZZPMR?’;]‘?(U,U). (8)
i=1 j=1
Piegl (1991) stated the following important properties iwhhiate basis functions:
e Locality:
Ry (u,v) = 01if w ¢ [§,§i1p] @ndv & [v),vj4] )
e Partition of unity:
> RE(u,v) =1 Vu,v € 0,1] (10)
i.J
¢ Differentiability:
RYA(&,vy) € CP Rl it & =g pfori e {1, k}; vy =vsfors e {1,...,1}, (12)

wherek, [ denote the amount of recurrences of the same knot value.

10



As a result we obtain the following properties for NURBS suds (Piegl, 1991):

e The surface is only affected inzaknot span (oky knot span respectively) if a control point is moved or a
weight is changed.

o Ifall w; ; = 1, Eq. (6) simplifies to Eqg. (5). In particular, B-spline swés are a special case of nonuniform
rational B-spline (NURBS) surfaces.

2.2 Approximation of surface gridswith NURBS

Throughout this paper surface fitting is defined as the coctstn of a NURBS surface which fits a set of geometric
data, such as the grid points representing the shape of aot@hjring a numerical flow simulation.

The input of the fitting process consists of the geometrid gdint dataX € R"™ x R™ x R3, the knot vectors
£ andv, the weightsw, the number of control points in- andv-direction” andr as well as the ordersandqg

of the B-spline basis functionX is specified by the probleng, v, 7, m, p, ¢ andw have to be preselected. The
resulting output is a set of control poifisc R™ x R™ x R3. According to Piegl and Tiller (1996) very little has
been published on setting the weights in the fitting prodbssefore we set

w=1 (12)
in this paper.

Given a set of data pointX and weightsw = 1, a nonuniform B-spline surface approximating the giver gri
points has to be constructed. Fir¥, has to be parameterized to receive the discrete paints; (see Section
3.1.2). Thus, the following system of linear equations sdede solved:

) = 33 N2 (w) N (w)Ps . (13)

i=1 j=1
2.3 Linear regression problem

To finish the data fitting process presented in the previoctiose Eqg. (13) needs to be solved. However, there are
notably less control points compared to surface grid p@ntshence significantly less unknowns compared to the
provided equations. Thus, an overdetermined linear sybtesrio be solved which is also known as a regression
problem. For the examination of possible strategies (seliff and Reid (1976)) to solve such problems and to
simplify matters this chapter considers the following aletermined linear system of equations:

Ax=b, withA € R™ x R", x € R", b € R™, m > n. (14)

According to Peters and Wilkinson (1970) and using the dfiedlEq. (14), a linear regression problem can be
defined as follows:

|Ax" = bl|; = min [|Ax ~ bz, (15)
In general|Ax* — b|l2 = r, » > 0. The resulting value is called the residuum of*.

From a geometrical point of view the optimal solution of thenimization problem is orthogonal to the image
space InfA) = {Ax | x € R"}, i.e.

[Ax* — b2 = m%@n |[Ax — bl & Ax* —b L Im(A) (16)
x€eR™

The following methods are suitable to solve such overdetexdnlinear system, i.e. the minimization problem
defined in Eq. (15):

e Normal equations

11



e Singular value decomposition

e QR-decomposition
According to Dahmen and Reusken (2008) the major drawbatkeofiormal equations approach is the squared
condition number. This leads to a high sensitivity in re$gedruncation errors during the utilizedholesky
decomposition and can result in an unstable solution psocé¢hereas the singular value decomposition needs
considerably more time to solve a linear regression prolitkean the normal equations or the QR-decomposition.

Furthermore, the QR-decomposition offers a stable algoritThus, we choose the QR-decomposition to solve
our overdetermined linear system of equations.

2.3.1 QR-decomposition

The QR-decomposition is based on the following propertyrdiagonal matrices:
QA2 = [|A[l2, since||Q[l2 =1 a7
Thus, the linear regression problem as defined in Eq. (15pbeapwritten as:

mliRn |[Ax — bll; = |QAx* — Qb|l>, with Q e R™*™ A e R"™*" x € R", beR™ (18)
xER™
whereQ has to be chosen such that
R . -
QA =R := <0> with R € R™ x R" (29)
and

Qb = b1)  with b, € R", by e R™ ™ (20)
b
2

whereR is an upper triangular matrix. Whil@ having the characteristics of Eq. (19) and (20) the appraiém
solution of the overdetermined linear equation system eaachieved by

x* =R 7'b;. (21)
Q is the product of: orthogonal matrice€),. In order to generate the upper triangular maRixn matricesQ;

have to be chosen such that the multiplication by the marbesults in zeros below the main diagonal in itte
column of matrixA.

Q1A Q2Q1A Q3Q2Q1A
= === b bl

8 8 8 8 8
8 8 8 8 8
8 8 8 8 8
SO O OR
8 8 8 8 8
8 8 8 8 8
SO O OR
OO O8 &
8 8 8 8 8
SO oo Oy
OO O8 &
o8 K8 8

Figure 3: Creation of an upper triangular matrix with ortbogl matrice€Q;

To generate the orthogonal matrid®s we apply the Householder reflection which is the most effeatnethod
according to Brwolff (2007).

The Householder reflection usegra— 1) dimensional hyperplane through the origin and refl€yist this plane.
The corresponding hyperplane @, is defined by the normal vect® (Householder vector).

' =(i,....h)"  E€R", pTF#0 (22)
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Using the Householder-vectgf the orthogonal matriceQ; can be defined as:

Q = [(I) 1.(1] with unity matrixI € R™! x R F € R™ L x R (23)
where
i (\T
S EPLACE (24)
(b)7p’

In order to be able to reduce the matrxto the upper triangular matriR by multiplying it with the orthogonal
matricesQ; the components of the Householder-vedjdrave to be selected as

b’ =o' + sign(aj)|le’ | 2¢", (25)

wherea’ is theith column of the matrixA. ande’ is the unit vector of théth direction. The linear regression
problem can be solved by QR-decomposition using the foligveilgorithm (Dahmen and Reusken, 2008):

¢ QR-decomposition via Householder-reflection (complexity?)
e Calculation ofQb (complexity2mn)
e SolvingRx = by (complexityin?)
According to Dahmen and Reusken (2008) a unique solutiomct an overdetermined linear equation system
with the previous algorithm is possible X has a full rank, i.e.
rank A) = n. (26)

Schoenberg and Whitney (1953) stated that condition (26)vigys fulfilled if at least one of, parameterized
gridpointsuy, exists between every pair of subsequent knots, i.e.

& <up <&y, 1=1,....0+p, k=1,...,n, (v, v, m, 1, q analogously 27)

For that reason Eq. (37) is chosen to generate the knot gectndy.

3 Implementation

In this section the workflow dFASTEST ShapeOpsing a derivative free optimizer is presented. The optimiz
treated as a black box, i.e. it is exchangeable by any demviiee optimization tool. For computing the example
in section 4 the free available toBIFO by Conn et al. (1997) was implemented into tReSTEST ShapeOpt
environment.

| Evaluation Phasg
No

Converged? *

Figure 4: General workflow dFASTEST ShapeQuitilizing a derivative free optimizer as black box

Preparation Derivative Free
Phase Optimizer

FASTEST ShapeOjs split into three main parts (see Figure 4). The prepangtiase, where the optimization
surface is approximated with a NURBS surface. Basis for fgraimation is the blockstructured grid of the
FASTEST Flow solverFurthermore, the initial set of design variables is defin@dderivative free optimizer
typically interpolates the objective function by a polyriahof fixed degree and computes the optimum based on
it. Hence, this kind of optimizers need evaluations to echahe approximation of the objective function with
further values. A new set of design variables is passed tewakiation phase in order to receive a new point of
the objective function. Within this evaluation phase, a senface shape based on the new set of design variables
is calculated, the grid is updated and new flow propertiesal@ilated to compute the new value of the objective
function.

13



3.1 Preperation Phase

The preparation phase is necessary to approximate a giviatsurid with a NURBS surface. Afterwards the
surface’s control points can be used as design variablessgstion 3.2). In order to use this part’RSSTEST
ShapeOpta blockstructured grid of the flow domain needs to be createlthe optimization surfaces are marked
with a special optimization boundary condition. This boarydcondition will be reassigned as “wall” after the
surface grid points are stored. The preparation phase cantaivided into the parts described in the following.

3.1.1 Griddata

First, we need to find all initial surface grid points lying an optimization surface and store them into a tensor
Xg€R™ x R™ xR dec{1,...,x}, (28)

wherex denotes the number of optimization surfacesandm, are the number of grid points in the two spatial
edge directions of each surface. Now the boundary conditiptimization surface” can be reassigned as “wall”.

Henceforth we omit the surface numheto simplify matters and present all equations for a singléntpation
surface.

3.1.2 Parameterization

The next step is to parameteriXee R™ x R™ x R? with uy, v, € [0, 1]. We use the following parameterization
method based on Ma and Kruth (1998). Let

k—1

> (I Xig1, — Xagl)©
Gy =0, dgy=-"—% . ke{2,...,n} le{l,...,m} (29)
X (X0 = Xaal)*
and
-1 .
% (X541 = X5l
g1 =0, @w—;il . ke{l,...,n}, 1€{2,...,m}. (30)
21 (X1 = X s
J=
Now we can derivar = (uq, ..., u,)andv = (vy,...,v,,) with
—0 —1§) L oke{2..n) (31)
u;y =V, Uk_mj:IUk’j7 PEI
and
0 L f: le {2 ) (32)
v = v = — Vil ey My,
1 9 l n pa R

The parametee € [0, 1], introduced by Jung and Kim (2000) offers the possibiltyrtfiuence the type of para-
meterization. Foe = 0, a uniform parameterization, fer= 1, a chordlength parameterization and éo 0.5, a
centripedal parameterization is performed. Howewean be chosen withift), 1], dependent on the setting.

3.1.3 Knot vector

In order to calculate the knot vectors, several boundargitioms have to be considered. To obtain a unique set of
control points, it is necessary to fulfill condition (26). e, at least one grid point needs to be located between

14



every pair of subsequent knots (Eq. (27) and see also Sezi®h). Furthermore, the grid density should be
considered and the corner points of the NURBS surface stomifttide with the corresponding control points.

Therefore, the following algorithm was developed: Let uasider the discrete parameterg, k € {1,...,n}
andv;, [ € {1,...,m} as a data basis to compute the knot vec{gs using
£: (01"'507£p+15"'7£ﬁ517"'51)
N—— N——
p p
v=(0,...,0,0411,...,Vm, 1,..., 1) (33)
N—— N——
q q

with lengthp + 7 andq + m, respectively. Recall that, 7 denote the numbers of control points ang € N the
orders of the B-spline basis functions in each boundaryctioe. Additional conditions are > n — p + 1 and
m > m — q + 1, to assure having a grid point between two subsequent knots.

For the purpose of simplification the following algorithnpisesented for the knot vectgr(v analogously).

As we can see in Eqg. (33), we need to calul@te- p) entries for this vector. Therefore, we split all entries of

vectoru = (ug, ..., ug, ..., uy,) iNto (72 — p) intervalls. To compute the interval length we introducersagerG
and the remaindeR:
n
G=|—— 34
Lﬁ -p+ 1J (34)
R=nmod#n —p-+1) (35)

We set the interval length of then — p intervals to
L=2G+R. (36)

Now the knot vector entries can be computed by

1 hG+L
fp-‘rh-‘rl:m-z Uk, h€{07177n7p71} (37)
1=hG+1
3.1.4 Basisfunctions
With known knot vectorg andv, as well as all discrete grid pointg,, £k =1,...,nandv;, [ =1,...,m we are
able to calculate the B-spline basis functions by Eq. (4)stote them into the following matrices:
NP € R™ x R", in u-direction and (38)
N? € R™ x R™, in v-direction. (39)

3.1.5 Solvingthelinear regression problem
Finally, using nonuniform B-spline surfaces (Eq. (13)) apifl pointsX,, € R™ x R™ we have to solve the
overdetermined linear equation system

X, = (N?)T P, N, (40)

wherey € {1,2,3} denotes the directions iR®. For solving Eq. (40) we use the above presented QR-
decomposition algorithm (Section 2.3.1) and obtain thisihget of control point®., € R x R™.

3.2 Initialize design variables

To finish the preparation phase a relation between the seirdfat pointsP(9), WherePEf]j) € R3 denotes the
(i, 7)th entry at thejth evaluation call, and the following set of design variatias to be established.

a9 e RM|  subjecttol, < al¥ < U,, 7€ {1,...,M}, anda = (), (41)
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whereM € N denotes the number of design variables. The initial set sijtlevariables is always defined as
a’ =0. (42)
The control points of thgth evaluation call are derived as follows:

a(i)

P = | bl | + P (43)
(9)
.3

For each paifi, j) we distinguish four cases for the usage of the control ppints

e Case I: Fixed control points

al?) = b\ = 9 = 0. (44)
e Case II: One design variable per control point utilizing @dfion vectos™ = (s7)ic{1,2,3}
al?) = sTal9),
bl(-:qj) = sga(ﬂ),
cz(-:qj) = sga(f’),
[s7]]2 = 1. (45)

e Case llI: Three design variables per control point in eactiapdirection
ol = a9,

b9 = ol

9 = a(TgiT (46)

0

e Case IV: The control point depends on another control poitt'sign variable with a scaling facttr =
(t7 )ieq1,2,3}- This is an important feature to reduce the number of desagiables, e.g. in symmetric cases.

ol = 7af), (i,5) # (k.1),
b = 509, (i, §) # (k. 1),
9 = 1369, (i, ) # (k. 1). (47)

The above definitions allow the user to connect the desigiablas intuitively with the control points. In this

approach, the design variable’s valg’ e [L., U] represents the displacement along either a direction vecto
(case II) or a single direction in space (case IlI).

3.3 Evaluation Phase

The functions we intend to optimize frequently appear to itleee unknown or not differentiable. Hence, we
can only use the class of derivative free optimizers. Thewgpolate the objective function with a lower degree
polynomial using known values of (a(9)). Thus, the derivative is known and the optimizer can usedsiiah
optimization methods to identify the optimum. In order torqaute such an interpolation, it is necessary to calculate
the unknown relation between the design variabté8 and the objective functioff during an evaluation phase.
Hence, the objective function

F(f(el?)): 0 - R, (48)
where® denotes an arbitrary set of parameters, is defined implisitla function
f(a9): RM — @, (49)

which is computed by thEASTEST Flow Solver
The evaluation phase is divided into three sections. Fastew grid is generated using a new set of design

variables. Afterwards the flow problem is solved and finalheas value of the objective function is calculated and
returned to the optimizer.
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3.3.1 Grid generation

In the evaluation phase a new set of control pot® € R™ x R™ x R? is calculated with Eq. (43) using a new
set of design variables(?) and the already calculated B-spline basis functions (seid®e3.1.4) as input. Now,
a new set of surface grid poink(@) € R™ x R™ x R? can be calculated using the NURBS equation (40), where

Xf‘;)k denotes théi, 7, k)th entry of the tensaK (9,

Note that this method generates the new surface Xfid only. To move the remaining grid according to the
displaced optimization surface, grid generation techesgalready used for FSI grid displacements are applied.
Within the FSI approach introduced in Section 1.2, the F&l generation routine receives computed displace-
ments of the coupling surface from the structural soMeAP (Schafer et al., 2006). To utilize this routine for the
purpose of shape optimization we need to compute the displants betweeX (9) and the original optimization
surfacex?’, i.e.

Niji = X2 = X0 0], Yigik. (50)
The grid generation routine uses = (A; ; ). ;1 t0 generate new grids within the optimization surface’ghei
boring blocks. This is performed either via linear or tramigéi interpolation or via elliptic grid generation (Thomp-
son and Soni, 1999).

3.3.2 Flow solver

In contrast to many other shape optimization approachssirtiplementation generates the grid internally. In
particular, the grid’s topology remains unchanged. Heatidlow related values of the control volume’s centers
which have been calculated in a former evaluation call candeg as initial values for the next solver run. This
allows fast convergence and supersedes new mapping atirestd hus, a new evaluation run in a figurative sense
is the same as a new FSI coupling step. Nevertheless, thifiglionality of the flow solver can be applied (see
Section 1.2 as well as Durst and &ftr (1996)).

3.3.3 Objective function
After obtaining all problem related variables at the cohtmdume centers, the objective function can be calculated.
For instance

min F(f(a?, x)), (51)

a(9)

where f denotes a function dependent on the set of design variatfleandx, a further set of variables. The
resulting value of the objective function is passed backéodptimizer.

4 Example: 2D Flow over a hill

A simple test example was set up to validate the implemeamtaising DFO as optimization tool (Conn et al.,
1997). Itis based on the optimizer test of Burkhardt andmBete(1995) being slightly modified.

The basic setup is a 2D-channel with a small hill (see Fighite 8erange the ideal laminar Hagen-Poiseuille flow.
The Hagen-Poiseuille flow of this channel can be describatyacally by

oy ay(3h —y)
i(y) = T (15h)? (52)

wheren denotes the maximum velocity irdirection and3h denotes the height of the channel.
We optimize the hill's shape with one design variablé) to receive an ideal Hagen-Poiseuille flow downstream

the hill. For this case we know the optimum shape in advanbe:hill’'s height has to be zero. The ideal Hagen-
Poiseuille flow and the actual flow &t, y;) are shown in Figure 6(a).
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Figure 5: The flow problem’s discretized domain
Thus, we define the objective function
N
min]:(u(a(g)?w7y)’a(yi>7x07y) :Z‘u(a(g)ax07yi) _{L(yl) ) Wlthy: (y17y2a"'7yN) (53)

al9) ;
=1
whereu(a'9), z0, y;) denotes the current velocity irrdirection dependent on the shape of the flow domain (con-
trolled by ), at the position(xg,y;), i = 1,..., N (see Figure 5).

Due to the 3D-based implementation FASTEST it is necessary to add a third direction in space to the flow
domain. Note that we need to add several layers of contraimves in the new third direction to be able to use
a geometric multigrid approach for solving. Hence, we ned®trBS surface instead of a NURBS spline to
approximate the hill. In Figure 6(b) this surface is shownhwéas approximated wittii (7 = 3 andm = 2)
control points and ordegs= 3 andq = 2.

- UefXpY) ——0bj. fkt. F@)
* - -
0.28 Sy U (oY) - 1 *-Des. vara
N e P23
| % P\
' * SRR
; SN
>0.15 1 P1,3
0.1 XQ‘
*
*
0.05 *X*X v R UR N
Es —_ " s
il ‘ ‘ ‘ k' 0.2 5 10 15 20
0 01 02 03 04 z Evaluation calls
(a) Analytic Hagen-Poiseille flowu,..y (b) Hill approximated with a NURBS su(e) Resulting values of the design variable
and the actual flow: ¢ atzg face « and the objective functiofF

Figure 6: Flow profiles, optimization surface approximatéand results
TheFASTEST flow solversing a geometric multigrid on three grid levels is set tva@n incompressible, steady
state and isotherm flow with Re- 1 and40960 control volumes at the finest grid level. The grid deformatio
within the block above the hill is performed with a lineardrgolation, while the remaining grid stays unchanged.

Furthermore, the relation between control points and deggiables is set to

PYY) =P{) =P{’ =Py} =0 (Casel) (54)
o)

PY) = b9 | + PV, withal?) = ¢} = 0 andb{?) = o(@) € [-0.12,0] (Case Il (55)
(9)
€12

+Py Y (Case Vi) (56)
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The initial position of control poinPg?% is (0.2h,0.1h,0). After 20 evaluation runs, the optimizer returns a design

variable with valuex(?*) = 0.09997, which computes a control point positi (?3) = (0.2h,2.9h x 1075,0)
applying Eq. (55). The objective function’s value is expecto be zero. After 20 evaluation calls it/s =
27.1 x 10~* (see Fig. 6(c)). The result lies within the flow solver’s ahd bptimizer’s numerical accurracies.

5 Conclusions

The presented shape optimization approach utilizes NURBfaces to approximate and alter grid based shapes.
This reduces the number of design variables and allows amaecand reliable shape optimization. Furthermore,
NURBS surfaces can represent any surface shape withorittiesis.

In contrast to other shape optimization tools, this apgnaadully integrated within the partitioned FSI environ-
ment. In particular, the FSI grid deformation routine isoa#pplied to the shape optimization. It allows large
deformations due to a blockwise generation of the grid. Thidone either with a linear or transfinite interpola-
tion or an elliptic grid generation. Furthermore, all flowated values can be reused as starting values for a new
evaluation run. This allows fast grid deformation, flow sotyand evaluating the objective function without using
external software like CAD or meshing tools.

The complete functionality of thEASTEST flow solveran be used to solve laminar, turbulent (RANS, LES) and
thermal flow problems. The implementation EASTEST ShapeOgptlows the user to address the optimization

surfaces easily via boundary condition. Furthermore, tsigh variables can be set intuitively. The presented
implementation works with any derivative free optimizatiool.

The next step is to add a sensitivity analysis and an efficiem® dependent optimization strategy to this new
approach to receive an efficient and accurate FSI shapeiaption.
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On Coupling Schemesfor Heat Transfer in FSI Applications

P. Birken, K. J. Quint, S. Hartmann, A. Meister

In this article, the coupling of the temperature-dependeompressible Navier-Stokes equations solved by a com-
pressible finite volume scheme together with the finite efeswution of the heat equation is considered. The
application is focused on the cooling process of a heatedlrbat treated in the field of metal forming technology.
This is done both by loose and strong numerical coupling oustlbased on the Backward-Euler scheme, where,
particularly, Gauss-Seidel and fixed-point solvers aresidared.

Keywords: Fluid-Structure Interaction, Thermal Coupljiartitioned Approach

1 Introduction

Many industrial applications of metal forming involve a siltaneous or subsequent heat treatment. The purpose
of this treatment is to improve the mechanical propertiehsas ductility, hardness, yield strength, or impact
resistance. For this purpose the steel is heated up to ancentaperature (austenitic temperature) and then cooled
with a critical rate. The thermal evolution (cooling ratefides the final material properties and, accordingly, its
prediction is of particular interest. This complicatedgess has to be handled by numerical simulations implying
thermo-mechanical coupling effects in the gas (fluid-meata part), which is used for cooling the metal spe-
cimen, the heat transport within the solid (solid mechdmeat) and thermo-mechanical coupling effects in the
solid itself. The mechanical effects are out of the scopéefiivestigations here. We will treat the heat transfer
from the solid region into the fluid region through a fluidestiure interaction problem.

In our application a metal bar is heated and then cooled aufface by cold compressed air. This results in an
unsteady thermal coupling problem, where the hot steekhbatcold air, which is of low to medium speed. The
effect of radiation is neglected for the purpose of gettinpae clear picture of the numerical methods with a
special focus on the coupling procedure.

Thus, we will look at a model problem, which serves as a stepgiione for further work: the compressible Navier-
Stokes-equations as a model for air, coupled along a nonagbwoundary with the heat equation as a model for the
temperature distribution in the steel. While a lot of work basn done on the thermal coupling of incompressible
fluids with structure, we are looking at thermal coupling ofanpressible fluid and a structure. Research on
numerical simulation of this problem was so far mainly dni®y problems where hot gas heats the structure, for
example supersonic reentry of vehicles from space or tgeafigas-turbine blades (Hinderks and Radespiel, 2006;
Mehta, 2005). The results are mainly qualitative, desegliiumerical methods and the comparison of numerical
results to experimental data, with the conclusion that &sellts are not always in agreement with experiments
(Hinderks and Radespiel, 2006).

For the fluid-structure interaction, we consider a pamitio approach (Farhat, 2004), where different codes are
used for the subproblems and the coupling is done by a masigragm which calls by interface functions the
other codes. This allows to use existing software for thepmatilems, by contrast to a monolithic approach,
where a new code is tailored for the coupled equations. Traisl@m is solved numerically using a finite volume
method (FVM) for the fluid and a finite element method (FEM) tloe heat equation as the methods for space-
discretization. Another distinction is made between loosegpling and strong coupling approaches. In the first
approach, only one step of each solver is performed in eahgiep, while the latter approach adds a convergence
criterion and an inner loop. We will consider both loose anoirey coupling and compare the results on the thermal
coupling problem.
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The method of lines then implies the time-discretizatiohere it is common to apply low order time integration
in both methods, FVM and FEM, respectively and in the cogpsialver.

2 Governing equations and discretization

In the following a thermal coupling problem is consideretigne a fluid domaif2; ¢ R? and a structure domain

O, C R? are given. Within the?,-domain use is made of the temperature-dependent NawkeSequations

for compressible flow consisting of the continuity equatithe balance of momentum and the energy relation to
describe the thermally coupled fluid flow. In tie-domain the transient heat equation is assumed. The domains
meet at an interfacE consisting of a curve iiR?, where we require that temperature and heat flux are contfuo
No further coupling conditions of the interface are taketo eccount. For the fluid use is made of the DLR TAU-
Code, see (Gerhold et al., 1997), and for the structuraltparin-house FEM-program TASAFEM for high-order
time-integration is applied, see both (Hartmann, 2006) &rdexample, (Hartmann, 2002).

To comply with the condition that temperature and heat flexcantinuous at the interfadg a so-called Dirichlet-
Neumann-coupling is used. Namely, the boundary condifianthe two solvers are chosen such that we prescribe
Neumann data for one solver and Dirichlet data for the otheltowing the analysis of Giles (1997), temperature
is prescribed for the equation with smaller heat condugtiviamely the fluid and heat flux for the structure.
Convergence of this approach has been proved for a systewupferl Laplace equations, but not for the case
considered here.

2.1 Structure Discretization

The finite element code TASAFEM is a high-order time-intéigraprogram originally based on stiffly accurate,
diagonally implicit Runge-Kutta methods, see (Ellsieped BElartmann, 2001), here extended to the unsteady heat
conduction case. The heat conduction problem is, althougteady, in a first approximation linear. We start from
the balance of energy

p(x)cpO(x,t) = — div q(x, t), @)

wherex defines the spatial coordinates arttie time. The dot symbolizes the time derivative and
q(x,t) = —Agrad ©(x,t)

denotes the heat flux vector depending by Fourier’s law orcdledficient of heat conductiok (which is assumed

to define an isotropic heat conductivity). Furtherm@éz, t) is the absolute temperatuyéx) the density andp
denotes the specific heat at constant deformation. On thedaoy we have Neumann conditions, where the heat
flux q(x,t) -n(x) = q(x,t) is given ond A? with the outer normal vectan(x). Furthermore, initial conditions
O(z,0) = Oy(x) are required.

In view of the classical finite element setting, multiplyig. (1) with a virtual temperature fielt (x), the weak
formulation reads

pcp©30 dV = — / Agrad © grad 6© dV — / q0© dA. 2)
Qo Qo JOAa
Next, one inserts an ansatz
0" (a,t) =N"(z)O(1) ®)
60" (x) =N (x) 50 (4)

into Eqg. (2). The temperature gradient reads in matrix rooiat

erad O — { 00" } _ { N }@(w _B@o) (5)
0., O" N3

with the temperature gradient- nodal temperature mdiix). If we insert ansatz (3) and (4) into the weak
formulation (2), we obtain a system of ordinary differehéiguations

9(t,0,0) = MO(t) + K(©)®(t) - q(t,u) = 0. (6)
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The heat flux on the coupling boundary is defined by

gt u) = - /d N(tw)da, @)

whereu was introduced to denote the dependence on the fluid datgksred in the next section.
M= / pepNNT AV K = / AOMBTB dV (8)
QQ QQ

are the matrices concerned. In the case of a constant domeainlumetric distributed heat sources and temperature-
independent material parameters, a Backward-Euler step.¢8) reads

M+ At, K] @™ = MO" + q(t,,1,u") 9)
implying the solution of a symmetric, sparse linear systéracuations to obtain the nodal temperatures at time

bt

2.2 Fluid discretization

Concerning the fluid part, the flow is assumed to be governeldétwo dimensional temperature-dependent com-
pressible Navier-Stokes equations. The common non-dimealsntegral form of the corresponding conservation

laws reads , ,
' 1
— [ udV + / “(u) njdA = — / Y(u) n;dA, 10
: 2:: SRHOL Reocj; MO (10)

wheren = {ni,ny}’ represents the outwards unit normal vector at the boundaheacontrol volumer. Fur-
thermore,

u = {p7 pU1, PU2, pE}T
is the vector of the conserved variables &fjd f,j = 1,2 are the convective and viscous fluxes which are given
by

pU; 0
o) — ) PUIV; F 01p Ui\ 1
Filw) = pu2v; + d2;p and f5(w) = ) T2j ’
pHv; P 1’U7'U+Pr Oq,e

respectively. The quantitydenotes the internal energy, which is givereby £ —1/2 (v% + v%) andH is defined
by H = E + p/p. The pressure is determined by the equation of gtate(y — 1)p (E — 1/2 (v + v3)), where
~ denotes the ratio of specific heats. The temperature is fiyeh = (v — 1)MaZ_e, where Ma, denotes the
Mach number at infinity. The elements of the shear stresstems

Tij = (00, vi + Op,v5) + 5ii A (05,01 + Opya)

with the viscosity assumed to follow the Sutherland jaw ©'5(1 + S)/(© + S), whereS = 110K /0, and
0O, denote the temperature at infinity measured in degree ofiikeloreover, the relation between the thermal
conductivity and the viscosity is defined by the Stokes’ Higpsis to be\ = —2/3u and Re, and P, denote the
Reynolds and Prandtl number at infinity, respectively.

In order to solve (10) numerically, we consider a conforntingngulation?;, of the spatial domain is the sense
of Delaunay, see (Friedrich, 1993). Based on this primaiy, gve define a discrete control volunag as the
volume of the barycentric subdivision f, enclosing the node; = {z;;, 7,2} and bounded by the straight line
segmentsﬂfj connecting the midpoint of the edge with the inner paipt(see Fig. 1). For a detailed description,
we refer to Meister and Sonar (1998). Utilizing our notiorcohtrol volumes and introducing the cell average on
o; by u;(t) := fai u(x, t)dV/|o;| into the Navier-Stokes equations (10), we obtain the form

( ~ filu >) nidA,
jeN(L)k: 1745 =1

whereN (i) denote the index set of all control volumesneighboring box ;. To overcome the difficulty that the
line integrals are usually not definechifis discontinuous, we introduce the concept of numerical filunctions.
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Figure 1: General form of a control volume

Concerning the convective part, we make use of the well-knABWSMDV scheme, see (Wada and Liou, 1994).
Furthermore, the viscous fluxes are discretized by ceniffgrehces. Therefore, for each physical quantity
appearing within the viscous flux, the unique linear distitn with respect to the triangle is calculated by
means of the cell averages of the three adjacent contranesu; satisfyingo; N7 # . In this procedure the cell
averages are considered to be located at the vertices afahgle. Due to this reconstruction the value as well as
the gradient of each quantity can easily be evaluated at itipaimt of the inner line segmerl{g- C 7. Thus, the
semi-discrete form of the governing equations reads

2
1 . N A
o S DM (i e i ) (T a )
3

JEN(i) k=1

u;(t) =

where h¢ is the AUDMDV flux andh” corresponds to the discretization of the viscous fluxes.eNloat the
notations,; emphasizes that we increase the order of accuracy for thective part by utilizing a well-known
TVD-like reconstruction technique and, accordingly,denotes the one-sided limit with respect to the bt
the midpoint of the line segmet'@. If we write this as an equation for the complete domain, wiaiob

a(t) = o~ h(u, ©). (11)

The underlined vectors represent the respective vectoteowhole fluid grid and we have included the depen-
dence on the structural temperature on the coupling irderfarough the vector of the structure temperates
The matrixo is a diagonal matrix with the volumes of the correspondirits @ the diagonal.

Similar to TASAFEM the restrictive time-step constraintof explicit discretization technique for the time deriva-
tive is overcome using an Backward-Euler approach. Thesjigcrete form of the governing equations reads

u" = u" + At,oth(u T, O™, (12)

whereu"t! ~ u(t,,1) andt, . ; = t, + At,. Itis easily seen that each time step within the fluid soleguires

the solution of a sparse non-linear system of equations;iwikiperformed by a dual time-stepping approach, see
(Jameson, 2004). The precise choice of the solver for thislinear system is not important here, so instead, a
Newton-Krylov method could be used.

2.3 Coupled equations

If we combine the semidiscrete equations (6) for the dorfiaiand (11) for the domaif,, we obtain a coupled
system of ODEs

w(t) = o 'h(u, ®), (13)
MO(t) = —KO(t) — q(t,u),
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where we prescribe the additional algebraic constraintémaperature and heat flux are continuous at the coupling
interfacel’. The application of the Backward-Euler method to the cadiplestem is straightforward. The question
is now, how the coupled system can be solved accurately fingkefly.

3 Fluid-Structure-Coupling

As described above, we pursue a partitioned approach. Theital difficulty of different programming languages
(FORTRAN for TASAFEM and C++ for TAU) in the partitioned amarch is dealt by means of the C++-library
called Component Template Library (CTL), see (Matthied.eP806).

It is assumed that at timg, the fluid datau”, the structure dat®” and a global step-sizAt,, are given. As
described above, the fluid and the structural equationsatretteated implicitly with associated solvers for the
time-stepping procedure. In the coupling context, it iSuis® regard the two solvers as mappings that, for given
fixed dataw™ att,,, respectively®”, take an approximation of the boundary datg,at; from the other solver and
provide a new approximation to their datatgt ;, which provides new boundary data for the other solver. The
fluid solver provides a solution to (12) and can be written as

u"t = F(P(©)),
whereas the structure solver provides a solution to (9) ance represented by
©"*! = S(gr(u)).

P is a projection of the temperature onto the boundaryefand q- provides the boundary heat flux in the
fluid. Using this notation, it is possible to define couplingtirods. The most simple coupling procedures are
loose coupling methods, where no convergence criteriosesl in the coupling iteration. In particular, there is
Gauss-Seidel coupling

u"t = F(P(O")), (14)
O™+ = S(qp(u")), (15)
and Jacobi-coupling, which can be done in parallel:
u'tt = F(P(O"), (16)
©"*! = S(qr(u")). 17)
These can be iterated leading to fixed point coupling, herthibGauss-Seidel case:
upl) = F(P(O;"), (18)
Oyl = S(ar(upfl), k=01,.... (19)
As a fixed point equation this is given by
P(©) = P(S(qr(F(P(©))))), (20)

which can be used as a convergence criterion for the fixed fieration. Various methods have been proposed to
increase the convergence speed of the fixed point iteragiafebreasing the interface error between subsequent
steps, for example Relaxation (Le Tallec and Mouro, 200QUttlEr and Wall, 2008), Interface-GMRES (Michler
et al., 2006) or ROM-coupling (Vierendeels et al., 2007):. the purpose of looking at the qualitative behavior of
loose and strong coupling, it is sufficient to analyze thearmple methods described here.

4 Numerical Results
4.1 Test case

To analyze the properties of the coupling method, the temihgke is chosen as simple as possible. The reason is
that this comparably simple coupling problem is alreadyolbelythe current solution theory, respectively conver-
gence theory of numerical methods. Therefore, we choosst adee where the exact solutions for the uncoupled
problems are known in order to make sure that no additiodal sffects are present, which cannot be controlled.
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Accordingly, the cooling of a flat plate resembling a simplakwpiece is considered (described in Fig. 2 as solid).
This example has also been studied by other authors (Yéorirend Thornton, 1994) and (Huebner et al., 2001,
p. 465) in conjunction with the cooling of structural pamshiypersonic vehicles. There localized heating was of
special interest. In our case the work piece is initially &mperature 0B(x,0) = 900 K and is cooled by a

constant air stream. The latter is modeled in a first appration as a laminar flow along the plate, see Fig. 2. For
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Figure 2: Test case for the coupling method

the work piece the following constant material properties @asumed: mass densjty= 7836 kg/m?, specific
heat capacityp = 443 J/(kgK) and thermal conductivity = 48.9 W/(mK). The inlet is at the left, where the
air enters the domain with an initial velocity of Ma= 0.8 in horizontal direction and a temperature29t3 K.
Then, there are two succeeding regularization regiorig efim to obtain an unperturbed boundary layer. In the
first region,0 < 2 < 50, symmetry boundary conditions, = 0, ¢ = 0, are applied. In the second region,
50 < x < 100, a constant wall temperature 800 K is specified. Within this region the velocity boundary
layer fully develops. The third part is the solid (work pigoé length200 mm, which exchanges heat with the
fluid, but is assumed insulated otherwiges 0. Therefore, the corresponding Neumann boundary conditoa
applied throughout. Finally, the flow domain is closed by@osel regularization region a0 mm with symmetry
boundary conditions and the outlet.

The grid, see Fig. 3, in the structural part is chosen cantemnd equidistant, whereas the thinnest cells in the fluid

(a) Entire mesh (b) Mesh zoom

Figure 3: Full grid (left) and zoom into coupling region (i)

region have an aspect ratio of 1:200 and then become coargatiiection. The points of the primary fluid grid
and the nodes of the structure grid match on the interfacehadvoids additional difficulties from interpolation.
Thus, we haveéd660 cells in the fluid region and, x n, = 120 x 9 = 1080 elements with121 x 10 = 1210
nodes in the region of the structure.

To specify reasonable initial conditions within the fluid teagly state solution of the flow with constant wall
temperature is computed. To cope with convergence probhexfisst compute a solution with a medium boundary
temperature. In a second step the temperature at the bgqusdacreased up to the val@ = 900 K. Due to
the constant boundary temperature we are able to comparegtks with the theoretical solution of Blasius for
the velocity boundary layer and of van Driest for the tempeeboundary layer (Van Driest, 1952) and thereby
verify the quality of our grid and our fluid solver. In the stture, a constant temperatured0 K att = 0 s is
chosen throughout.

4.2 Numerical tests

In Fig. 4 one can see the temporal evolution of the tempegatithe middle of the coupling interface. As expected,
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Figure 4: Temperature evolution at the middle point of therilace

the temperature decreases monotonously with a large gtaatithe beginning of the process, which decreases in
the following. Att = 1 s, the temperature has dropped down frop0 K to approximatelyg95 K. This solution

is obtained using fixed point coupling add,, = 0.0025 s. Since no exact solution is available, it will be used as
reference solution.

As for strong coupling methods, the fixed point method isaiied until the vector 2-norm of the interface residual
(20) has dropped below= 0.1, i.e.|P (©}f]) — P (©;*")||, < e. As mentioned beford is a projection of
the temperature onto the boundary @nis the iteration number of the fixed point iteration. Excemtthe first
time-step, two iterations are sufficient to fulfill this eniton. In this case, foAt = 0.1 s andAt = 0.05 s, three
iterations are needed.

Next, the Gauss-Seidel coupling is compared with the ier&auss-Seidel (fixed point) coupling for time step
sizesAt of 0.1 s, 0.05 s and0.025 s. To this end, we consider the resulting error at 1 s, using the 2-norm of
the difference of temperatures at the interface to theeafar solution. In Fig. 5(a) one can see the error over the
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5 &
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) )
e e
le-05 1le-05
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time step sizé\t ins total number of coupling iterations
(a) Relative error over time-steps (b) Relative error over coupling iterations

Figure 5: Relative error behavior

time step size and in Fig. 5(b), compared to the number ofloayjterations. As can be seen, in the investigated
application fixed point coupling does not improve the accyiiat the solution ife = 0.1 is employed as dropping
tolerance. The relative error of the numerical method istzally unaltered but the computational cost is at least
doubled, depending on the specified toleranoéthe fixed point coupling. On the other hand the time step siz
At has, as expected, a significant influence on the accuracy.
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5 Conclusions

The coupling of the temperature-dependent compressibl&N&tokes equations using a finite volume code and
the heat equation using finite elements, both based on a Badkiauler time-integration step, are considered. In
the investigated test example the fluid cools the structdfe compare loose to strong coupling methods for this
problem occurring in the field of hot metal forming procesaed it can be seen that for a simple example of a
plain metal specimen and a dropping tolerance €f0.1, loose coupling methods are completely sufficient.
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FSI of the Turbulent Flow around a Swiveling Flat Plate Using
Large—Eddy Simulation

M. Breuer, M. Minsch

The topic is of fluid—structure interaction plays a dominesié in many fields of engineering. Therefore, a strong
need for appropriate numerical simulation tools existshwat variety of numerical and physical aspects. The
special task of the present investigation is to take careutifiaid—structure interaction of turbulent flows using
modern simulation techniques such as large—eddy simulattor that purpose, a new coupling scheme was re-
cently developed which guarantees a strong coupling betwee fluid and the structure but still relies on an
explicit predictor—corrector scheme for time marching.u$the specific features of numerical methods typically
applied for large—eddy simulations are conserved and edrto the coupled problem. The methodology is briefly
described in the paper. Furthermore, two test cases, a lamand a turbulent flow around elastically supported
cylindrical structures, were taken into account to valigléhe numerical scheme. Finally, the coupling algorithm
is applied to a challenging test case, i.e., the turbulent fwound a swiveling flat at Re 68,000.

1 Introduction

Fluid—structure interaction (FSI) is of major importanoe imany fields of engineering such as mechanical engi-
neering (e.g. rotor blades and airfoils), process engingéde.g. flexible tubes and stirrers), medicine technique
(e.g. artificial heart valves and substitute vocal folds)¢igil engineering (e.g. stadium roofage and suspension
bridges). To solve these multi—physical problems, nunaégmmulations have become an important tool. In order
to develop and investigate such numerical methods for thastoand efficient simulation of coupled problems
related to the interaction of a fluid with a structure, the D$jigcial research group FOR 433uid—Structure
Interaction — Modeling, Simulation and Optimizatiomas initiated. It is concerned with a variety of different as
pects of FSI algorithms including different solvers for thed mechanical and the structural parts and especially
with the coupling schemes.

To solve coupled FSI problems a partitioned approach carsée, u.e., two highly specialized codes for the fluid
mechanical part and the structural part are coupled via plicmuinterface. This has the advantage that adequate
codes and with this the most accurate simulation approatheapplied on each problem of interest. In contrast
to the counterpart, i.e., a monolithic approach based oricuemumerical method and a common code for both
disciplines, the partitioned approach allows an easy exgaf single codes for each field separately. Thus it is
much more flexible than the monolithic approach.

In terms of flow computation the simulation approach useahgfly depends on the expected flow properties. For
the computation of turbulent flows one can make use amongstiehree categories of numerical simulation
methodologies. The most accurate one for turbulence catipos by solving the Navier—Stokes equations with-
out averaging or approximations for all motions in the flovidfis the direct numerical simulation (DNS), see e.g.,
Ferziger and Peti(2002) and Breuer (2002). For this methodology a high nurobgrid points and time steps
are required which makes the simulations expensive andatsghem to moderate Reynolds numbers. Averaging
the Navier—Stokes equations leads to the second group bbuigtthe so-called Reynolds-averaged Navier Stokes
(RANS) equations which have to be closed by a statisticalulence model. The flow is described in a statistical
sense which leads to a time—averaged flow field. In previoudiest, laminar as well as turbulent FSI applica-
tions using the Reynolds—Averaged Navier—Stokes appraach investigated (Gkk et al., 2001, 2003). For that
purpose, a partitioned fully implicit scheme was appliedohtcoupled a three—dimensional finite—volume based
multi—block flow solver for incompressible fluids with a fiedtelement code for the structural problem. This cou-
pling scheme works efficiently for large time step sizesagfly used for implicit time—stepping schemes within
RANS predictions. However, flow problems involving largeale flow structures such as vortex shedding or in-
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stantaneous separation and reattachment are often radtlyghredicted by RANS and more advanced techniques
such as large—eddy simulation (LES) are required (Bre@93,12000, 2002). The LES technique is based on spa-
tial filtering of the Navier—Stokes equations. Here, thgédascales are computed directly while the small scales are
modeled leading to an unsteady field of physical values, véi@ables predictions of flows past bluff and inclined
bodies and makes LES to the tool of choice regarding to FSirioutent flows when large—scale flow structures
are expected.

2 Numerical Methodology

2.1 Governing Equations

For the intended purpose, a finite—volume scheme is useddcetize the filtered Navier—Stokes equations for an
incompressible fluid based on a curvilinear, blockstriedurody—fitted grid with colocated variable arrangement.
The present study relies on the inhouse code FASTEST-3Ds{[and Schfer, 1996; Durst et al., 1996) which
was extended for the LES—FSI problem as will be describeowbelFor the discretization standard schemes are
applied. A second-order accurate central scheme is obtéyndinear interpolation of the flow variables to the
cell faces and a midpoint rule approximation of the integr&ompared to computations on fixed grids, for FSI
the grid movement caused by the structural displacemehedidundaries of the computational domain has to be
taken into account. That is achieved in a consistent mannapplying the well-known Arbitrary—Lagrangian—
Eulerian (ALE) formulation. Thus the mass and momentum eoradion equations in integral form are formulated
for a control volume (CV) with time-dependent voluiiiét) and surface5(t). The governing equations in ALE
formulation read:

Mass Conservation:

d
— pdV +/ pluj — ug;)-n; dS =0 @
dt Jv ) S(t)
Momentum Conservation:
d
— pu; dV +/ pui(u; — ug ;) -n;dS = / Tij -y dS — / p-n; dS 2
dt Jy () S() S(t) S(t)

Here, p denotes the density, the pressurey; the velocity vector with three Cartesian components, andhe
molecular momentum transport tensor. Furthermerestands for the unit normal vector directed outwards. Fi-
nally, u, ; describes the grid velocity with which the CV surface is mmgyi Since an incompressible fluid with
temperature—independent fluid properties is considereg] tiee conservation equation for the energy can be omit-
ted. To close the governing equations in case of LES, a cklsSmagorinsky subgrid—scale model (Smagorinsky,
1963) with Van—Driest damping near solid walls or a dynamaxiel by Germano et al. (1991) and Lilly (1992) is
applied.

2.2 Space Conservation Law

The decisive differences between these conservationieqaatnd their counterpart on a fixed grid are the volume
integrals which now describe the local changes within a mgwr deformable CV and the additional mass and
momentum fluxes resulting from the movement of the CV surtaeen byu, ;. In order to end up with a closed
system of equations again, this new unknown has to be detednilf the grid movement between two or more
successive time steps is knowr, ; can in principle be calculated by a simple finite—differeapg@roximation.
However, this procedure is not recommended since it oftadsdo serious problems because the conservation
principle is not necessarily satisfied and thus mass or mameis lost. As a remedy the so-callsgace con-
servation law (SCLYDemirdzic and Peig, 1988, 1990) should be taken into account in order to detertine
unknown grid velocityu, ;. It represents an extra conservation equation guaragtéleat no space is lost when
the CV changes its shape or position. It reads:

d
—_ / dV — / ug,j . TLj dS =0 (3)
dt Jv S(t)
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In discretized form th&sCLis expressed by the swept volumes of the correspondingamkf The nice feature
of the SCLis that in combination with the mass conservation equatigrofi a moving grid, the original mass
conservation equation for a fixed grid is obtained. Thus ttesgure—correction scheme for the solution of the
incompressible Navier—Stokes equations does not have ¢hdeged. Furthermore, tf&CLis applied to con-
sistently determine the newly appearing grid fluxes in thenmostum equations (2). Consequently, in the final
numerical scheme no extra conservation equation has to\xdso

2.3 FSI Coupling Scheme

In LES small time steps are required to resolve the turbdlentfield in time. Accordingly, the usage of explicit
time—marching schemes is preferred, i.e., a predictorector scheme of second—order accuracy. In the predictor
step an explicit three substeps low—storage Runge—Kultiiense advances the momentum equations in time. In
the following corrector step the mass conservation has falfiked by solving a Poisson equation for the pressure
correction based on an incomplete LU decomposition solereas the predictor step is solely carried out once
per time step, the pressure—correction algorithm is repleantil a predefined convergence criteriois reached.

It guarantees that the mass conservation equation at thefehe corrector step is numerically satisfied, e.g.,
A < e = O(1078). For that purpose, typically 5 to 10 pressure—correctierattons are required.

For solving FSI problems, this scheme has to be adapted aadesponding coupling scheme has to be incor-
porated. The coupling scheme developed (Breuer aiidsih, 2008a,b) is shown in Figure 1(a). The new time

step starts with an estimation of the structural displaceneand the structural velociti . Here, a second—order
extrapolation for the displacemehitis used [Eq. (4)] taking the displacement values of the tfogaer time steps
denoted by the superscrigts', *=2, and*—?3 into account:

Xt _ 3Xt71 o 3Xt72 + Xt73 ) (4)

In order to be consistent, a first—order extrapolation idiagmn the structural velocitX :

Xt=oX!"1_ xt=2, (5)

Thus the interface between the fluid and the structure, wigphesents a boundary of the CFD domain, is de-
formed. According to these estimated values at the bountiaeyentire computational grid has to be adapted.
Presently, this grid adjustment is performed based on afirate interpolation in each FSl—subiteration defined
below. It has the advantage to be fast and efficient, but caoh tie a deterioration of the grid quality regarding
orthogonality and smoothness for larger deformations@gthucture. In this case other techniques such as elliptic
grid smoothing based on composite mapping as suggesteddbyefipe (1995) and used by Yigit et al. (2007) are
more appropriate and will be used in the near future to miairtitee grid quality within the coupled simulation.

After the grid adaption the predictor—corrector schemepigliad and a preliminary flow solution is obtained.
Based on this solution the corresponding forces and/or mtsyan the structure are computed. These forces and
moments are in general transferred to a computationaltateidynamics code (CSD), or in the case of a rigid
structure with only one or a few degrees of freedom, to an tamuaf motion describing the behavior of the
structure. The resulting displacemeXy,.,, of the structure is underrelaxed by an underrelaxatiorofact If an

FSI convergence criterion is already fulfilled, i.e., th@dsnic equilibrium between fluid and structure is achieved,
the computation would go on with the next time step. In thisfiguration the method described represent®oae
coupling schem&hich is generally only stable for low ratios of the fluid diygo the structural density, i.e., a
low so-called added mass effect typical for aeroelastic flogblems. Thus alternatives are required if the added
mass effect plays a dominant role as it is the case in the dearapown in Sections 3 and 4.

Such an alternative is the scheme sketched in Figure 1(ahelFSI convergence criterion is not fulfilled after
the first sweep, a new grid adaption is done based on the @habexd displacement. Subsequently, the corrector
step of the predictor—corrector scheme is performed agaihmass conservation is accomplished. Afterwards
the pressure and shear forces on the structure are recatgmudetransferred to the structural solver leading to
an update of the displacemeft,.,,. This so-called FSl—subiteration loop is performed uritéd tonvergence
criterion is fulfilled, typically only 3 to 5 times. Presepntthe residual of the governing equation of motion has
to reach a predefined minimum guaranteeing that the dynaguiditerium between the fluid and the structure is
achieved. In summary, a FSI coupling scheme is designed;hwii the one hand is appropriate for an explicit
time—stepping scheme and on the other hand avoids insesbkinown from loose coupling schemes.

For comparison a coupling scheme for fully implicit time rclaing is presented in Figure 1(b). Beside the fact that
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Figure 1: Coupling scheme for (a) an explicit time—marcténgeme (presently applied), and for (b) an implicit
time—marching scheme shown for comparison (séeksét al. (2001, 2003)).
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the flow is solved with a fully implicit scheme and thereforeianer CFD loop is necessary, both schemes differ
with respect to the momentum equations within the FSI—stdtion loop. For the implicit scheme the momentum
equations are solved repeatedly in each subiteration svieepntrast they are only solved once per time step for
the explicit case which strongly reduces the computatieffatt. Furthermore, the number of FSI-subiterations
required to reach the convergence criterion is typicallipast one order of magnitude smaller within the explicit
scheme compared to the implicit variant. In conclusiontabgities due to the added mass effect known from
loose coupling schemes are avoided by the newly developgaling scheme. However, the explicit character of
the time—stepping scheme is still maintained perceptiddipcing the computational effort.

3 Validation of the Coupling Scheme

3.1 Laminar Flow Around an Elastically Supported Circular C ylinder

The new coupling scheme was tested on laminar and turbutems tiround cylindrical structures. According to
the paper of Zhou et al. (1999) the laminar flow around a cacaylinder at Re = 200 (based on the cylinder
diameterD = 6 - 10~3m and the reference velocity,, = 0.514 m/s) for different values of the reduced damping
parametetSg defined below has been computed. A sketch of the configuratabnding the elastically supported
cylinder is given in Figure 2.

Figure 2: Spring-mass-damper model of the circular cylinédst case at Re = 200.

The flow prediction was performed on a grid with 262,144 cgntolumes. Since the flow is assumed to be two—
dimensional, only 8 CVs are used in the spanwise directiorsgmmetry boundary conditions are applied. At the
inflow a constant undisturbed inflow velocitiy,, was set. A convective outflow boundary condition and a np-sli
boundary condition were prescribed at the outflow and thiadgt surface, respectively. The time step size in this
case was\t = 1.5 - 10~° seconds according to a CFL numbeiOd.

For the fixed cylinder case the well-known vortex sheddingnoimenon in the wake of the cylinder occurs. The
shedding frequency is measuredfto= 16.7 Hz with a corresponding Strouhal number oSt - D/U,, ~
0.2. Starting from this initial solution for the fixed struceé at an arbitrarily chosen time step, the cylinder is
released. The movement of the center of the cylinder andy direction is described by equations of motion,
i.e., a spring-mass-damper model [Eq. (6)], withdenoting the cylinder mass, the damping coefficitanhd the
spring constant which are assumed to be identical for both directions.

mi(t) + di(t) + cx(t) = Fy(t) ©)
mi(t) +dy(t) +cy(t) = Fy(t)

Mass, damping and spring parameters are defined accordimgteduced damping paramesar= 8 72 St2 d* M*
with mass ratid\/* and normalized damping parametir Here, the mass ratio is defined®& = m*/pD? with
normalized cylinder mass.* = m/I., cylinder diameterD, fluid densityp and cylinder lengtti.. The normal-
ized damping parametef* is equal tod* = d/l.. Spring constant and cylinder massn are given fromf,, =
Ve/m1/(2m) = 1.3f, with f,, denoting the natural cylinder frequency. These ordinafferintial equations are
solved numerically by a classical Runge—Kutta scheme. Tveffeld of the normalized velocity magnitude for
Sg = 1.0 is shown exemplarily in Figure 3(a). Beside the vortexdsling phenomenon downstream of the cylin-
der a deflection of the recirculation area can be seen. Thaftection indicates the movement of the cylinder,
here in positive y—direction. Figure 3(b) shows the nore@li displacementax/D and Ay/D of the cylinder
as a function of time. Due to the drag force the cylinder ipldised in x—direction during the transition phase
and starts to oscillate arountix/D = 0.34. In y—direction the cylinder moves arouag/D = 0. In Figure 4 the
results forSg = 0.01 andSg = 1.0 are exemplarily shown. As observed by Zhou et al. (1998)trace in the

35



0.02 0.4 ~0.5
- I Sg=1.0 E
o ISeessw @ | X/D
i I yo 104

N W T = e e 1 e s DS IN T DA T BRI BT TR SRR I

0.02 0 0.01 0.02 0.03 % 0.2 0.4 0.6 0.8 1708

X time [sec]
@ (b)

Figure 3: (a) Flow field of the normalized velocity magnitdde.Sg = 1.0 and Re = 200; (b) Normalized displace-
ments of the cylinder center as a function of time.
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Figure 4: Normalized displacements of the cylinder certed) Sg = 0.01 and for (b)S¢g = 1.0 in comparison
with the original data set presented by Zhou et al. (1999)(c)

x—y plot describes an asymmetric 8 where the intersection pairg found to be off-centered. F8y = 0.01
the trace slightly changes from cycle to cycle, whereasSipe= 1.0 nearly but not completely the same trace is
observed. The oscillations found wiffy = 0.01 range from{X/D),in = 0.325 to(X/D) 4. = 0.55 and from
(Y/D)pmin =-0.64 t0(Y/D) 4. = 0.61. The results of Zhou et al. (1999) are limited(B§/ D)., = 0.309 and
(X/D)maz = 0.47 in X-direction and byY /D) in =-0.62 and Y/ D)4, = 0.56 in Y-direction. With increasing
reduced damping parametgy the normalized displacements decrease (Note the diffsoatings of the axes in
Figures 4 (a) to (c)). Fofg = 1.0 values of X/D),,in = 0.319,(X/D).nax = 0.342,(Y/D).ir, = -0.29 and
(Y/D)nin = 0.28 are computed. Zhou et al. (1999) foldd/ D), = 0.283,(X/D)maz = 0.386,(Y/D)min =
-0.27 and(Y/ D)., = 0.27, respectively. Thus, overall the results computethbynew coupling scheme show
satisfactory correspondence with the results of Zhou €1.8P9). Here, the agreement of the Y/D values, which
fits very well especially folSg = 1.0, is better than for the X/D values. The deviations maydreerally attributed

to the different solution techniques, i.e., the presentdiniolume method versus the discrete—vortex method by
Zhou et al. (1999), and/or to the unsteadiness of the flowigad slightly different solutions due to bifurcation
effects. Here, the maximal number of FSI subiteration waSINF1.

3.2 Sub-—critical Flow Around an Elastically Supported Squae Cylinder

In a next step, the coupling scheme was tested for the turbildsy around an elastically supported square cylinder
at Re =13,000 as depicted in Figure 5. The Reynolds number is based on theledgthb = 0.02 m of the
cylinder and the free—stream veloclity, = 10 m/s. For the computation of the flow field a LES predictiatithe
Smagorinsky model and a Smagorinsky constatof 0.1 was performed. The grid consisted of 2,228,224 CVs,
where 130 CVs are used to discretize the spanwise directinchvihas an extension of 4 times the edge lerdgth
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At the inflow a velocity block profile was set witli.,. The outflow is described by a convective outflow condition
with U, = U,,. In spanwise direction periodic boundary conditions wete Slip—wall boundary conditions were
used on the upper and lower face of the domain. The cylingelf is defined by a no-slip boundary condition. The
movement of the structure was described by the same eqsationotion inz andy directions as for the previous
test case.

Figure 5: Spring-mass-damper model of the square cylireficase at Re £3, 000.

The aim of this computation is the comparison of both cogptichemes presented in Figure 1(a) and (b). It should
be mentioned that according to their numerical charattesiboth schemes use different time step sizes. In the
implicit case, the time step size is set4o = 10~* seconds leading to a CFL number2sf, whereas the explicit
scheme applied\t = 3 - 10~% seconds according to a CFL numberoa$9, which is much more appropriate for
LES than the implicit counterpart.

In the sub—critical case considered, the oncoming flow isHam The flow separates at the leading and partially
at the trailing edges forming free shear layers. Transitioturbulence takes place within the free shear layers.
Alternately, vortices are shed from the cylinder. This gmishedding observed past the cylinder makes the cylinder
oscillate inx andy directions. Beside this there is a drag—induced movemeheafylinder inx direction. Figure 6
shows a snapshot of the normalized velocity magnitydé’,.)> + (U,)? + (U.)?/U and the streamlines. The
vortex shedding phenomenon is visible in the wake of thectire. The normalized displacemekxk/b andAy/b

0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42
X

Figure 6: Normalized velocity magnitude and streamlinabeflow around an oscillating cylinder at Ré $; 000.

are shown in Figure 7. For both time—marching schemesbogh, corresponding coupling schemes, a transitional
behavior in theAx/b component is visible which represents the initial es@um after the release of the square
cylinder. Thus, starting fromAx/b = 0 andAy/b = 0 the cylinder is displaced in direction with an maximal
displacement after about 0.1 seconds real time until thelatiement reduces and the transitional time interval
ends at about 0.5 seconds. Owing to the vortex shedding thyelky/b component oscillates aroudxly/b = 0.

Comparing the result for the two time—stepping schemesfagtanatch of the displacement values is not visible.
The z-displacement seems to be slightly overdetermined by tpéoixtime—marching scheme compared to the
implicit method. Furthermore, theecomponent only corresponds in the displacement magrstbdenot in their
time histories. However, in general a perfect fit cannot heeeted here. The differences are attributed to different
starting time steps of the fluid—structure interaction waitthe LES and especially to the non—deterministic nature
of turbulence.

For further investigations a Fast—Fourier—Transfornma{ieFT) was performed for the displacement data sets
of Figure 7. For this purpose, the transitional period weglewted and displacements for time instants greater
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Figure 7: Normalized displacements of the square cylinaigiie explicit and the implicit time—marching schemes.

than 0.8 seconds were used for the evaluation. The resutédfFT according to both directions are plotted in
Figure 8. In the frequency spectra of thedisplacements no characteristic peak is visible for tha peedicted by
both time—marching schemes. In the spectra ofjthatisplacement a peak is visible fr= 69 Hz for the implicit
time—marching scheme which equals the well-known sheddémgiency of the von Krman vortices as observed
by Kniesburges (2007). This peak can also be found in theptetdicted by the explicit time—marching scheme
but with a slightly shifted frequency ¢f = 71 Hz.

In summary, the result for the square cylinder case obtdigatifferent time—marching schemes and accordingly
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Figure 8: Fast—Fourier—Transformation of the cylindepldisements in (a) x—direction and (b) in y—direction.

with different coupling strategies show good correspordemd confirm the functionality of the developed explicit
but strong coupling algorithm within a LES prediction. Theximal number of FSl—subiterations was very low,
i.e., NFSI = 3, for the explicit time-stepping algorithm.
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4 FSI Prediction of the Swiveling Plate

4.1 Numerical Setup

Besides the above mentioned test cases, this new FSI schamevaluated based on simulations of the flow
around a swiveling flat plate at Re 68,000 for which experimental investigations were carried out §TM
Erlangen (Gomes et al., 2009). In Figure 9 the computatidoaiain is plotted. A flat plate of 177 mm 64 mm

x 2 mm with chord length ¢ = 64 mm is placed in a channel with megtidar cross—section. The plate possesses
one rotational degree of freedom around the axis in z—dineddcated 20 mm from the leading edge.
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Figure 9: Setting of the computational domain for the chafioe around a flat plate at Re 68,000.

For the flow computation a LES using the Smagorinsky madgl#£ 0.1) with Van Driest damping near solid walls
is performed. At the inflow a block velocity profile withi,, = 1.07 m/s is set. A convective outflow condition
with the convective velocity/. = U, is applied at the outlet of the domain. For a first computatibthe FSI
problem, only a section of one chord length of the full spa@néxtension of the plate used in the experimental
setup is taken into account. This leads to the usage of petadindary conditions in spanwise direction and thus
the influence of the sidewalls is neglected. For the upperd@mer walls of the channel as well as the swiveling
plate itself, the no-slip condition is applied. This preiary simulation was performed on a grid with 434,176
control volumes by resolving the spanwise direction withy@hcontrol volumes. For the non—deflected plate a
wall-normal resolution given by™ = 3 for the wall-nearest grid point is applied to resolve tbesfat the trailing
edge of the plate. The time step size in this case s&vas 10~° seconds. The response of the plate on the outer
momentM., (t) imposed by pressure and shear forces is described by a-sprisg—model leading to an ordinary
differential equation for the plate angle which is solved by a classical Runge—Kutta scheme.

I(t) + C sin(p(t)) = M(t) @)
Here, I describes the moment of inertia of the plate and the axleCamslequal to the resulting moment due to

gravity and buoyancy forces. The latter results from dgrdifference between the fluid and the structure.

4.2 Results

In Figure 10 the development of the momét (¢) and the resulting angle(¢) is shown. For initialization of
the flow field, the plate is kept fixed, i.e»,= 0°, for about 0.36 seconds real time. Then the plate is released
the swiveling motion starts. After a transitional time opapximately 2 seconds amplitudes in a rangegf,, =
-45° 10 v = 49 are observed. Amplitudes like this make great demands ogrileadaption but can barely
be tackled with a transfinite interpolation in this case. iginto the amplitudes also the frequency of the motion
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obtained is not absolutely constant but takes values oftébtd Hz. The mean number of FSI-subiterathof'S 7
is equal to five for this case.
The instantaneous flow fields of the normalized velocity nitage with the corresponding time-phase resolved
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Figure 10: (a) Computed angular moment acting on the plaéefarsction of time. (b) Resulting angular displace-
ment of the plate.

plate angles for time-phase angles 6f 66°, 122> and 179 are shown in Figure 11. The time-phase angle is
defined as tpa = t/T360° with T denoting the swiveling period and t describing thegeakreal time within the
period. Thus the figure depicts half of a period of a full cycle
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Figure 11: Computed instantaneous velocity field and plafeection at four different instants of the swiveling
motion period at Re = 68,000.
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Starting from a plate angle ofGhe plate starts to deviate from its initial position. Wititieasing plate angle
also the velocity at the leading edge on the suction sideeopléite increases and a vortex generates which can be
seen in Figure 11(b). The vortex travels downstream (Figuye)) and with it a zone of low pressure. Passing
the center of rotation this vortex, i.e., the correspondavg pressure region, together with the higher pressure on
the pressure side of the plate reduces the rotational sk plate and finally changes the direction of rotation.
Then a similar cycle starts at the opposite side of the plate.

When comparing the computed results with the experimentadigisured data, differences become apparent. The
maximal values of the amplitudes at€27° and also the frequency with f = 2.49 Hz is clearly lower thaa th
computed one. Possible reasons for the deviations obsemnigitt be the too coarse (spanwise) resolution or
the restriction to a section of the rigid plate. Neverthgleghen comparing the velocity fields of a full cycle the
computational and the experimental results show goodtatiaé correspondence concerning the spots of high and
low velocity magnitudes (Gomes et al., 2009). A more detiadlemparison has to be carried out when a coupled
simulation without the restrictions mentioned above hanlmerformed.

5 Conclusions and Outlook

FSI in turbulent flows requires advanced techniques suchEssfor a reliable flow prediction. To resolve the
turbulent structures in time, small time—step sizes ard t@mel ES which makes explicit time—marching schemes
such as predictor—corrector schemes favorable. To camffe@\character of this explicit time—marching scheme on
the one hand and to obtain a stable FSI algorithm on the o#ret,ta coupling scheme was proposed in which the
corrector step and the structural computation are directhnected in a FSl—subiteration loop. Due to this feature,
the dynamic equilibrium between the fluid and the structsigchieved within the explicit time—marching scheme.
Compared to the implicit variant, the explicit scheme setartse more efficient and less CPU—-time consuming,
but a detailed verification of this impression still has todoae.

Results of this coupling scheme have been presented foraiveafound cylindrical structures for laminar (Re =
200) and sub—critical (Re = 13,000) flows. For the laminaedhs result showed good compliance to the values
presented by Zhou et al. (1999). The sub—critical test caseused to compare the results obtained by a classical
fully implicit scheme (see Gick et al. (2001, 2003)) with the proposed explicit coupbrgeme. Satisfying results
were obtained with respect to the displacement magnitudé$raquencies of the structure oscillation.

A challenging test case was performed for the flow around aelyomounted plate at Re = 68,000. Here, the
results presently deviate from the experimental ones. Asnaexjuence previously introduced simplifications of
the computational case with respect to the experimentahaneto be reconsidered, i.e., the computational domain
has to be extended in spanwise direction and the effect efvsills has to be taken into account. That also includes
that the spanwise resolution has to be increased.

In a next step, a study is thought to be done for more complermgéries like nominally two—dimensional flexible
structures. For this purpose, the coupling with a CSD—catetb be realized. In addition, a more powerful
grid adaption has to be introduced such as an elliptic gridathing algorithm proposed by Spekreijse (1995) for
example. This has not only to be done for tackling more comglsplacements of a flexible structure. More
important is to maintain the grid quality within the FSI atijlom since the demands for LES are high (see Breuer
and Minsch (2008b)).
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An Overset-Grid Strategy for Aeroacoustics and Aeroelasticity of Movirg
Bodies

F. Daude, P. Lafon, F. Crouzet and C. Bailly

A high-order finite-difference algorithm is proposed in #ien of LES for Computational Aeroacoustic€AA)
and Aeroelasticity applications. The subgrid scale diaBgm is performed by the explicit high-order numerical
filter used for numerical stability purpose. In order to teelkcomplex geometries and moving grids, while pre-
serving grid quality, an overset-grid approach is used. Hayder interpolations make it possible to ensure the
communication between overlapping domains. The wholeighgo is validated on canonical flow problems to
illustrate its capability to preserve accuracy for moviranéigurations.

1 Introduction

In a wide range of technical fields such as aircrafts, auta@engineering, trains, turbomachinery, power plants,
non-linear interactions between the turbulent flow and touatic fields produce undesirable high pressure levels,
see Colonius and Lele (2004). They are sources of noisetjpmllwhich is a major environmental issue. The
radiated noise can also induce vibrations and damagesisTasticularly the case in confined flows. In addition,
turbulent flows or acoustic waves can couple with movingcstmes involving fluid/structure interaction (FSI).
The energy industry has to deal with many FSI phenomenangrigim Vortex-Induced Noise or Vortex-Induced
Vibrations (VIV) to aeroelasticity. The related applicats are respectively cable aeolian tones, tube bundle-vibra
tions, see Longatte et al. (2003), or blade flutter, see @tq@2D06).

In many such coupled configurations, the calculation of Wbthunsteady flow and the radiated sound must be
performed in the same computation. This is referred as DMeise Computation@INC) in the literature, see
Bailly et al. (2008). UsindONC is an efficient way to identify the fluid mechanism contribgtito the sound
production and therefore, a useful tool to reduce noisetimai. The feasibility oDNC is now demonstrated in
the literature via Direct Numerical SimulatioBS), see Colonius et al. (1997), Freund (2001), Gloerfelt et al
(2003), and Large-Eddy SimulatiohES), see Bodony and Lele (2005), Bogey and Bailly (2006, 20Bif)mert

et al. (2007, 2008).

Application of compressibl&ES to computational aeroacoustic€AA) problems makes it possible to tackle
applications with industrial or practical relevance. Thggk disparity in the characteristic scales of the acoustic
and the flow fluctuations, and the need to accurately resdfye Wwavenumber fluctuations require the use of
numerical methods with minimal dissipation and dispergioors, see Colonius and Lele (2004). In this context,
the Dispersion-Relation-Preserving (DRP), see Tam andbW&®93), or optimized high-order finite-difference
schemes in conjunction with selective filter, see Bogey aaillyB(2004), are an attractive choice foES to
reduce both amplitude and phase numerical errors.

For moving grids, the mainly used method is the classical MdEhod associated with deforming and/or remesh-
ing procedures. In order to allow body displacements whigs@rving grid quality, the overset-grid (Chimera)
method is best suited. It is based on different body-fitteerlapping grids associated with interpolation pro-
cedures for the communication between the different corapogrids. This method also makes it possible to
tackle complex geometries on fixed or moving grids. In thistegt, a new numerical code call€bde Safari
(Simulation of Aeroacoustic Flows And Resonance and lotém) has been developed to handle industrial con-
figurations. To maintain the high accuracy of the algoritkime, communication between non-coincident grids are
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made by high-order interpolation, see Delfs (2001), ShemerScott (2005), Desquesnes et al. (2006).

2 Governing equations
2.1 Fluid dynamics

The three-dimensional Navier-Stokes equations are exgdeis Cartesian coordinates for a viscous compress-
ible Newtonian fluid. After the application of a general thtependent curvilinear transformati¢n, y, z,¢) —
(&,m, ¢, 7), see Viviand (1974) and Vinokur (1974), these equationsvaiteen in the following strong conservative
form:

0.0 + 0 (E~ B) +0,(F — F*) + 0. (G - ") =0. )

with U = U/J whereU = (p, pu, pv, pw, pe) is the vector of conservative variablesis the densityy, v andw
are the Cartesian velocity components of the vettpr is the total specific energy:

1

pe = 7751 +§p(u2+v2+w2),
wherep is the pressurey the specific heat ratio andl the Jacobian of the coordinate transformationy, z) —
(&,m,¢). E, F and@ are the inviscid flux-vectors which can be expressed as:

PO POy PO
1| PruBe+ L 1| PuOn+ 0. 1| ruO¢+ G
E=£tU+7 pvOe +p&y |, F=mU+j pvOy, +pny |, G:CtU+j pvO¢ + ply
pwO¢ + pg; pwOy, + pn; pwO¢ + pC.
(pe +p) O¢ (pe +p) O, (pe +p) O¢

The contravariant velocity componertis, ©,, and©, are defined as:
O¢ = u&y +véy +w;, On =uny +vny +wn, and O¢ = u, + vy + w(,.
The quantitieg;, 7, and(; are the time metricst,, &, -, 11z, 7y, 02, (2, ¢y @Nd ¢, designate the spatial metrics.

The subscripts denote the partial derivatives, F¥ andG" are the viscous flux-vectors. Their expression are the
same as in the case of time-invariant generalized cooelnaee Marsden et al. (2005) and Suh et al. (2006).

2.2 Geometrical conservation

With the strong-conservation form in Equation (1), thedwaling relations must be satisfied numerically to ensure
free-stream preservation when a finite-difference diszaton is used, see Visbal and Gaitonde (2002):

1 1 1
(J £ J n J ¢
1 1 1
o).+ (m),+ (59), = ¢
(‘] § J n J ¢
1 1 1
), (), (5)
<J 3 J n J ¢
1 1 1 1
() + ()= G), + (59)
T n ¢
The last relation only concerns time-dependent meshessacalled the geometric conservation law (GCL), see

Thomas and Lombard (1979). In order to satisfy the numeregtic error cancellation and to ensure the free-
stream preservation, the spatial metrics are expressée iconservative form proposed by Thomas and Lombard
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(1979):

T = o) - ),
Te = o) (e, ®)
A )

Time metrics are used for moving/deforming grid computatior heir expression are given in the next section.

2.3 Application to moving grids

To tackle moving/deforming grid configurations, the resm#dGCL is a key issue to enforce metric cancellation
and free-stream preservation. In this aim, non-conser/atirrector terms are used to ensure the GCL identity, as
proposed by Visbal and Gaitonde (2002). In practice, the tilerivative in Equation (1) is split into two parts and
the second term is evaluated using the GCL condition. Andllfirthe following equation is obtained:

8TU+J{85(EE”)+&7(FF”)Jrag(GG”) {(&)+8(J)+8(§)”—0 @)

R

In addition, the time metrics are evaluated using the gridoiy X, = (x.,y,,2,)7 via the following relations:

§ - (Genheed)
njt = —(xT%I +y7n7y +zr%) ®)
§ - G ruead

These relations are similar to the classical ALE (Arbitraggrangian Eulerian) expression in a finite-volume
framework.

3 Numerical method
3.1 Discretization

First derivatives at interior grid points are determineihgshe optimized 11-point centered finite-difference
scheme proposed by Bogey and Bailly (2004):

OcE; )~ Aig Z Sm (Ei+m,j,k - Eifm,j,k)- (6)
m=1

This non-dissipative scheme is optimized in the wavenunspace to reduce the dispersion error following the
idea of Tam and Webb (1993). The linear analysis shows tisstheme is able to resolve accurately perturbations
with only four points per wavelength such as shown in Figuf@ 1The same scheme has been applied successfully
for the direct computation of jet noise usih§S, see Bogey and Bailly (2006, 2007).

The time integration is performed with the classical expfmur-stage Runge-Kutta scheme (RK4) yielding:
Ul =0p - ATBORID wie 1,4} @

with U® = U™ and R, ; ;. the discretization of the residu®. The Courant-Friedrich-Lewy number in the
&-direction is defined by:
At (| + ©¢| + ¢l Vel

Af ®)

CFL¢ =
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and the numerical stability requires to satisfy the follogvrelation:
CFL = max(CFL¢, CFL,,CFL;) <1
In the same way, the mesh displacement is linked to a newligtaleiquirement. In order to introduce this new

stability constraint, a 1-D model is considered. In the pdaispace, the time and spatial variables are independent
which is equivalent to a non-linear advection equation éxabmputational domain using the chain-derivative rules:

do =0 <= 0;x+&0x=0
dt
For this equation, the stability constraint is based on #tie €y = |§tA§ According to Equations (5) and (8),
it follows that: e
AellVell < crLe )

whered; = V,.V¢/||V¢]| is the displacement in thedirection. Thus, the mesh displacement is limited and the
maximal allowed value is driven by tHeFL value linked by the fluid dynamics.

In order to ensure the synchronization between the flow blsaand the grid coordinates, the RK4 scheme is also
used for the grid motion:

X=X+ ApOX)Y vie {1, 4) (10)

with X = (2,9, 2), X© = X" and X"+ = x4,

After the application of the Runge-Kutta scheme, the eipliptimized 11-point spatial low-pass filter proposed
by Bogey and Bailly (2004) is used to remove spurious higlefiency spatial oscillations:

W00~ WL o[ (W) () ()] @
where
Fe (Wi(j,)k) = doW, 3 + Z dm (Wz(-ﬂn W wk)

with 0 < o4 < 1 for the filtering strength ; antV = (p, pu, pv, pw, p)7.

This filter is optimized in the wavenumber space: the lineslysis shows that this filter only damps the pertur-
bations not accurately resolved by the spatial scheme ddtitiqu(6) as shown in Figure 1 (b).

(@) (b) (©)
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2 S 18
E 25r . 5§ o8} £
=1 k=1 © 1.6 a
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g 15 N ] g 12} 8
o L . g 04 e 1 |
3 \ S o02f € o8}l .
(7] | \ kel IS .
& 0.5 h 5 06 L |
0 1 1 1 1 1 1Y 0 + + 1 1 1 : 1 1 1 1 1
0 05 1 15 2 25 3 0 05 1 15 2 25 3 0 05 1 15 2 25 3
wavenumber wavenumber pulsation

Figure 1: (a) Comparison between the exact — and the eféectiwvavenumber of the spatial discretization; (b)
Damping function of the selective filter as a function of thevenumbek Ax; (c) Dissipative characteristic of the
RK4 scheme as a function of the pulsatioAz.

46



3.2 LES strategy

The LES strategy used in the present work is the same as the one ezdpbyyBogey and Bailly (2006, 2007)
and by Rizzetta et al. (2003). The compressliS formalism of Vreman et al. (1995), is retained to express the
filtered equations in conservative form. The selectiverfilsed to improve the numerical stability of the centered
non-dissipative spatial discretization is also employesparate the large scales from the small ones. In addition,
this linear filter takes into account the dissipative efeaft the subgrid scales by draining energy at the cut-off
frequency. Indeed, the selective filter leaves flow featiagger than the cut-off wavelengths unaffected, while
properly removing the energy being transferred to smallareAtengths. In addition, the interactions between the
resolved and the unresolved scales are neglected. Thudditmaal explicit subgrid scale model is used.

3.3 Linear Analysis

The von Neumann method is used to analyze the damping andrsiiep properties of the algorithm presented
previously. This analysis is only applied on linear equagiavith periodic boundary conditions. For non-linear
equations, the results obtained with the linear analygisat sufficient. However, linear stability is a necessary
condition for non-linear problems, see Hirsch (1988).

The von Neumann method is applied to the global algorithrat{ap temporal discretizations and low-pass filter)
for the following linear advection equation:
Oyu + aldu =0 (12)

The algorithm can be decomposed into three steps as:

5

a . . . .
Ri(u) = ~ mZ:l S (Wi — Ui—m) (spatial discretization)
ut =} — AU R (ul =) Vi e {1,...,4} (time discretization)
5
“?H = U§4) —0oy [d0u§4) + Z dm (UEfm + ugf)m) } (low-pass filter)

m=1
with u,EO) =ul.

The von Neumann method is based on the Fourier transform.owader a single harmonic® = @"e/**A® with

4™ the amplitudek Az the phase angle corresponding to the wavenurhlzed 2 = —1. In order to evaluate the
algorithm amplification factor defined gs= 4" *! /4", the Fourier transform is applied to the three stages of the
computation:

5
R(u) = - ak* Az with &*Az =2 s, sin(mkAz)  (spatial discret.)
Az —~
4 a 4
. (4) _ _ O ok 1 sn ; — (9) i i
A <1 + Z’n( AtIAxk Azx) ) a™  with ~, = H Bl (time discret.)
=1 qg=4—1+1
) R 5
@t = (1 - o D)a™® with D =do+2 ) dpcos(mkAz) (low-pass filter)
m=1

Finally, the amplification factor of the global algorithmnche written as:

4
g=(1—-04D) (1 + Zw(—lak*AJ;)l> (13)

=1

with the CFL numbers = G—At.
Az
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The amplification factog which can be rewritten ag = |g|e’? is now compared with the exact factor:
gex = e~ 17kAT_ The algorithm damping property is given by the ndghand the dispersive one by the relative
phase erroryp + okAz. The results withCFL = 1 ando; = 0.2 are displayed in Figure 2. With respect to the

@ (b)
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g 0.95 g 25 | A
= 0.9 @ 2+ .
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e 08 2 RK4s
S 075 © 05F 7
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Figure 2. Damping and dispersion errors as a function of taeewumbek Az: (a) Norm of the amplification
factor|g| ; (b) relative phase errat + ckAx.

damping character of the spatial scheme and the lineargiiésmented in Figure 1, by takifgf-L = 1, the explicit
time integration damages the upper bound of the range ofrestlilved wavenumbertAxz < 7/2. To known
guantitatively the accuracy domain of the global algorittan accuracy limit is estimated from the following
arbitrary criterion:

1-H|<5x107* (14)

with the ratioH = g/gex. The accuracy domain of the global algorithm is thus reduodd< kAz < 0.65, that
is to say in term of number of points per wavelength/ Az ~ 9.66.

3.4 Boundary conditions

3.4.1 Wall boundaries

In order to preserve low-dissipation and low-dispersioopgrties near wall boundaries, 11-point non-centered
finite-difference schemes in conjunction with explicit fdint non-centered low-pass filter proposed by Berland
et al. (2007) are used. These two procedures are optimizttkimwavenumber space to recover the bandwidth
properties of the centered ones in Equations (6) and (1keMer, the non-centered schemes suffer from numer-
ical instability. Therefore, in the case of strong flow geads near wall boundaries, explicit centered filtering of
lower order can optionally be used to ensure this numertaailgy.

3.4.2 Non-reflecting boundary conditions

Inlet and outlet boundary conditions are based on the Thonipsharacteristic boundary conditions, see Thomp-
son (1990). The conditions are supposed to locally be omeaional and inviscid. Then, the convective terms in
the boundary-normal direction are split into several wavigs different characteristic velocities. Finally, the-un
known incoming waves are expressed as a function of knowgoing waves. The 3-D far-field radiation boundary
conditions generalized by Bogey and Bailly (2002) are agptin the boundaries only reached by acoustic pertur-
bations.

4 Extension to complex geometries

The high-order finite-difference algorithm satisfying servation laws on generalized coordinates are limited to
cylindrical geometries. In order to go beyond this limiteeset-grid technigues are used with high-order interpola-
tion procedure to preserve the high-order spatial accusseyDelfs (2001), Sherer and Scott (2005), Desquesnes
et al. (2006). This is addressed in the following.
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4.1 Overset-grid strategy and high-order interpolation

In order to handle complex configurations as those includingjiple bodies, the high-order algorithm presented in
the previous sections is extended to general oversetapmdgies. In practicg;ode Safariis interfaced with the
freely availableDverturelibrary developed by the Lawrence Livermore National Labory, see Henshaw (1998).
The mesh including different component grids are giverOwerture In addition, the interpolation data such as
overlapping zones, interpolation stencils and offsetgarerated wittOverture

In the overset-grid approach, points of the different aygping regions are non coincident. Therefore, the com-
munication between overlapping component grids is perdarmvith high-order interpolation. Following Sherer
and Scott (2005), high-order explicit non-optimized Lagian polynomials are used to perform the interpola-
tion stage. The interpolation process is performed in thraprgational domair{¢, n, ¢, 7) as in Figure 3. The
evaluation of the variable at the pointP is performed via the interpolation gfat P as:

Me—1M,—1

op = Z Z L§L2¢Ig+i,-7cg+j~ (15)

i=0 j=0

where M, and M,, are the interpolation stencil length in t§eandn-direction respectively( is the first donor
point of the interpolation stencil (in green in Figure 3) atslcoordinates ar¢lg, Jg) in the computational

domain.Lf andL? are the Lagrangian coefficients in the two directions defased

n
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Figure 3: Example of a 2-D interpolation stencil: 2-D comneation between a circular and a Cartesian compo-
nent grids.
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whered, andd,, called the offsets are the coordinateshthe receiver point, with respect€in the computational
domain. For simplicity and isotropic reason, in the follogj we have choset/; = M,, = M which is also the
Lagrangian polynomial order in the computational domain.

In addition, CodeSafariis parallelized by domain decomposition on each compongdtfgr application to
massively-parallel platforms. The communication betweach domain is performed via the MPI library.

For moving grid applications, as the relative position af thverlapping grids changes continuously during the
flow simulation, the interpolation data used for the commations between the component grids must be updated

at each stage of the RK4 scheme. In practice, this updatipgriermed via the overlapping grid genera@gen
of the libraryOverture see Henshaw (1998).

4.2 Linear analysis

The interpolation errors are assessed via a linear anadtysissure that the interpolation procedure preserves the
high accuracy of the present algorithm.
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M

Figure 4: Example of a 1-D interpolation stencil.

In 1-D, the Lagrangian interpolation procedure in Equatits) can be rewritten as follows:

M—-1 M—-1

o(zp) = Y Lidlag +ide) with L= []

=0 m=0,m%#i

o—m

(16)

T—m

with xp = z¢ + dAz. The interpolation error is now quantified using a one-disi@mal Fourier error analysis
following Sherer and Scott (2005). Thus, we consider a sihgimonic:¢(z) = ¢/** as previously in Section 3

with the wavenumbek andI? = —1. The interpolation error factor can be defined as:
I0kAx
&
Hip = 375
L‘elikAm
K3
=0

For a centered Lagrangian interpolation, we have (M — 1)/2. The local error is displayed in Figure 5. The
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Figure 5: Local error of the interpolation process as a foncdf the wavenumbetAx with M = 2,4, 6 and8:
(a) dissipation error or norm Gt;y,, and (b) dispersion error or phaseldip.

Lagrangian interpolation procedure witi = 2 or M = 4 implies numerical errors in the wavenumber range
not damped by the present algorithm according to the resul&ection 3. This can lead to the generation of
spurious waves. In contrast, Lagrangian interpolatioh Wit = 6 or M = 8 seems to be suitable with the present
numerical algorithm. To compare quantitatively the diferpolynomial interpolation, the limit accuracy limit in
Equation (14) is still usedi1 — Hip| < 5 x 10~%. The accuracy domains are given in the table 1. The range of

M | kAzx | A\o/Ax
2 0.04 | 169.81
4 0.34 18.48
6 0.65 9.59
8 0.90 6.94

Table 1: Accuracy limit of the Lagrangian polynomial intefations withM = 2,4, 6 ands.

wavenumber well resolved by the present algorithm is thagrporated in the one of the Lagrangian polynomial
interpolation withM = 6 andM = 8.
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5 Canonical tests on moving grids

The present high-order algorithm has shown to be suitalbleES& of compressible flows with acoustic coupling
on fixed grids in both subsonic and supersonic regimes, seadenet al. (2007, 2008). The validation proce-
dure of the application of our high-order algorithm on dymameshes is performed in two stages. The first one
concerns single-block computations in order to validatedhlculation of the time metrics and the grid coordi-
nate updating. Then, multi-block computations is used wptmthe updating of the interpolation data with the
numerical algorithm.

5.1 Inviscid vortex advection

The first validation test case is the vortex advection on adyoally deforming 2-D mesh. The computational
domain is taken ak-2, 2] x [—1, 1]. Initially, an uniform mesh is retained withz, = Ayy = 1/100. The grid
speed is analytically specified by the following equations:

(xr)i; = 2mwAzAzgcos(2nwt)sin (nﬂr

¥i,j(0) — ymin) .
Ymax — Ymin

17)

(yr)i,j

2w A, Ay cos(2mwt) sin <ny7rgc”(0)—xm.n) ay

Tmax — Lmin

with

i3(0)% + yi,j(0)2>

(xmax - ﬂfmin)Q

Qp = exp (—4log(2)

T; '(0)2 + y; '(0)2>
a, = exp| —4log(2)=22 -
Y P < g( ) (ymax - ymin)2

The grid coordinates are then provided via the RK4 schemte thié& assumption that the grid speed is constant
during a time step( X, )~ = X7 Vi € {1,..,4} in Equation (10).
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Figure 6: Comparison of the swirl velocity field: (a) in thatst case ; (b) in the deforming case.

In fact, only the domaifizmin, Zmax X [Umin, Ymax IS dynamically deformed. The different parameters atg:=
Ay =2,n5 =ny =6, Tmin = Ymin = —0.5, Zmax = Ymax = 0.5 andw = 2.

Two computations are performed: one on a static grid, th@ininiform grid, and the other with the grid velocity
expressed in Equation (17). These two computations arenpeef] with the same time step leadingdBL = 0.5,
designed with the initial non deformed grid, in order to utide the effect of the mesh dynamic deformation on
the high-order discretizations performance. The vorteritally placed on(z.,y.) = (0,0) and results given in
this section are visualized when the vortex returns at itamlrposition. Comparison is given in Figures 6 and 7.
The velocity fields in the static and deforming cases arelaimihich makes it possible to preserve the high-order
schemes propagation properties on dynamically deformieghms. The profile of the swirl velocity gn= 0 in
Figure 7 shows the excellent agreement between the two datigns. In addition, the dynamic deformation of
the mesh implies a kind of numerical dissipation in the gppaigh-order discretization characterized by a damping
in the profile amplitude, as reported by Visbal and Gaitora®p).
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Figure 7: (a) Snapshot the grid deformation; (b) effect ef tesh dynamic deformation on the swirl velocity: .
static case ; - - deforming case.

5.2 Cylinder advection in an inviscid uniform flow

The advection of a cylinder in a uniform flow at rest is now ddased. The computational domain taken as

[—2,2] x [-2,2] is divided in two grids. A cylindrical body-fitted grid movesth respect to a fixed Cartesian
cylinder is located at. = 0.85.

uniform grid with Az = Ay = 1/50. The overlapping meshes are plotted in Figure 8. Initiahg, center of the

Figure 8: General view of the computational domain for thiincer advection.

At every time step, a constant displacement of the cylimdrdomain in thez-direction is imposed:d, =
—0.08Az. Then, the mesh velocity is computed using the relatii) — 2() = d,/4 for every stage of
the RK4 scheme. The computation is performed W@ffL = 0.5. Thus, the cylinder is shifted at the Mach num-

ber M. ~ 0.3. The radiation boundary conditions are applied to all thenaaries of the fixed Cartesian domain.
Then, at the wall, a no-slip condition is used following theptacement of the cylinder.

The velocity field of the inviscid flow over an moving cylindsrplotted in Figure 9 for three different positions.

First, a transient acoustic wave is generated by the inttiefion of the cylinder. Then, the wave leaves the
computational domain and a symmetric stationary solutiigh mespect to the cylinder is reached.

6 Conclusion and future works

A numerical method has been described for performing cossikeLES in CAA and aeroelasticity applications.
The scheme is based on a 11-point explicit optimized finiffer@énce algorithm in conjunction with a 11-point

optimized spatial low-pass filter. In order to address caxgeometrical configurations, overlapping grids are
used and the communications between domains are perforiaéih-order Lagrangian interpolation. The high-

52



(@) (b) (©)

05 - A :: 06~ ‘m . 05— ‘
4 0- | ‘ > 0

s o X : { >

o8- S 2 05— 05

Figure 9: Time evolution of the streamwise velocity aroumel ¢ylinder.

order overset-grid technique has proved to maintain theriiign accuracy for moving grid applications.

To address fluid/structure interaction, the coupling atgor between flow and structure has been implemented
and a detailed validation procedure is in progress. Theewxiguration to be addressed is a moving cylinder in a
2-D low-Reynolds number flow. Forced oscillations will begiated. Then the Vortex-Induced Vibration and the
resulting radiated acoustic field will be computed for sal/arean flows. Finally the cylinder behaviour at lock-in
will be investigated.

The choice of the time integration method is also to be camsidl In the explicit method used in this work, the
time step is imposed by stability constraints. However,tilme step needed to respect the physical time scales
of the turbulent flow may be larger. This is the case for tuehtiwall-bounded flows, for example. The use of
implicit time integration method would make it possible twamvent the numerical stability by using a time step
only driven by the flow physics, see Rizzetta et al. (2003)yd2eet al. (2006).
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An interface quasi-Newton algorithm for partitioned simulation of
fluid-structure interaction

J. Degroote, R. Haelterman, S. Annerel, A. Swillens, P. Segers, J. Vierendeels

To solve a fluid-structure interaction problem efficiently in a partitioned way with a “black-box” flow solver and
structure solver, an interface quasi-Newton technique with an approximation for the inverse of the Jacobian from
a least-squares model (IQN-ILS) has been developed. In this work, the implementation of the IQN-ILS algorithm
without explicit creation of the approximation for the inverse of the Jacobian is explained and it is demonstrated
that the IQN-ILS technique can be implemented easily in simulation environments which currently use relaxation
methods. Simulations of a flexible beam behind a cylinder and the propagation of a pressure wave in a carotid
artery indicate that the IQN-ILS algorithm outperforms Aitken relaxation and that it has similar performance as
the interface block quasi-Newton algorithm with approximate Jacobians from least-squares reduced-order models.

1 Introduction

The simulation of fluid-structure interaction (FSI) and other coupled problems has gained importance over the last
decade. Nowadays, FSI simulations are used to avoid flutter of airplane wings (Farhat et al., 2006) and of blades
in turbomachinery (Willcox et al., 1999). The design and analysis of artificial heart valves (dos Santos et al., 2006;
Dumont et al., 2007), the prediction of the rupture of aneurysms or of the outcome of surgery (Taylor et al., 1999;
Wilson et al., 2005) also rely on FSI simulations.

An FSI problem can be solved in either a monolithic or a partitioned way. The monolithic approach is to solve the
flow equations and structural equations simultaneously such that their mutual influence can be taken into account
during the solution process. In a partitioned FSI simulation, the flow equations and the structural equations are
solved with separate codes which means that the flow does not change while the solution of the structural equations
is calculated and vice versa. The partitioned approach thus requires a coupling algorithm to take the interaction
between fluid and solid into account. However, the partitioned approach preserves software modularity and differ-
ent, possibly more efficient solution techniques can be used for the flow equations and structural equations. This
paper focuses on partitioned fluid-structure interaction simulations with “black-box” solvers.

In partitioned FSI simulations, coupling iterations between the flow solver and the structural solver have to be per-
formed. In every coupling iteration, information on the fluid-structure interface is exchanged between the solvers.
In case of a Dirichlet-Neumann decomposition of the FSI problem, the stress distribution on the fluid-structure
interface is passed from the flow solver to the structural solver and the position of the interface is transferred the
other way around. If the interaction between the fluid and the structure is weak, e.g. in aeroelastic simulations,
so-called staggered or loosely-coupled methods (Farhat et al., 2006; Lesoinne and Farhat, 1998; Piperno et al.,
1995) which require only one coupling iteration per time step can be used but these algorithms do not enforce the
equilibrium conditions on the fluid-structure interface and are unstable in cases with strong interaction.

Gauss-Seidel coupling iterations are also unstable in simulations with an incompressible fluid that has a high added-
mass effect (Causin et al., 2005; Forster et al., 2007). This instability has been explained by Causin et al. (2005)
who rewrite the flow equations as an added-mass operator in the structural equations and by Degroote et al. (2008)
who substitute a linearized model for the structure in the flow equations. Coupling algorithms that can be used
in these simulations with strong interaction are e.g. Gauss-Seidel iterations with Aitken relaxation (Kiittler and
Wall, 2008) and the method with two reduced-order models from Vierendeels et al. (2007) which further will be
denoted as interface block quasi-Newton of the Gauss-Seidel type with approximate Jacobians from least-squares
reduced-order models (IBQN-LS) .

55



In Degroote et al. (2008), it is demonstrated that IBQN-LS outperforms Aitken relaxation for incompressible
flow in a flexible tube. The difference in performance becomes larger when information from previous time
steps is reused to improve the approximate Jacobians in the IBQN-LS method. However, the Aitken relaxation
is significantly easier to implement as it only consists of a scalar relaxation factor which is modified in every
coupling iteration. The IBQN-LS method requires action every time the flow problem or structural problem is
solved whereas the Aitken relaxation only intervenes after the solution of both problems. Moreover, two linear
systems with as dimension respectively the number of degrees-of-freedom in the interface’s position and stress
distribution have to be solved in every coupling iteration of the IBQN-LS method. These linear systems can be
solved quickly and efficiently with a matrix-free iterative solver such that even large simulations with the IBQN-LS
method are faster than with Aitken relaxation but the matrix-free implementation of IBQN-LS is more complex.

To combine a straightforward implementation with fast convergence, an interface quasi-Newton technique with
an approximation for the inverse of the Jacobian from a least-squares model (IQN-ILS) has been developed. This
technique uses quasi-Newton iterations to solve the fluid-structure problem reformulated as a set of equations with
the discretized position of the fluid-structure interface as unknowns. The approximation for the inverse Jacobian is
obtained from a least-squares reduced-order model with the technique from Vierendeels et al. (2007). Because the
inverse of the Jacobian is approximated, no linear systems with as dimension the number of degrees-of-freedom
in the interface’s position have to be solved which is important for simulations with a high number of degrees-of-
freedom in the interface’s position. Moreover, the IQN-ILS method only intervenes in the coupling iterations after
the solution of both the flow and structural problem like relaxation techniques and hence it can be implemented
easily in an existing FSI framework that currently uses relaxation to accelerate the convergence of the coupling
iterations.

The remainder of this work is organized as follows. Section 2 gives an abstract definition of the flow solver
and structural solver and Section 3 explains the implementation of the IQN-ILS coupling technique with reuse of
information from previous time steps. Section 4 demonstrates two examples for which the performance of IQN-
ILS and IBQN-LS is similar and higher than the performance of Aitken relaxation with respect to both number of
coupling iterations and duration of the simulation, followed by the conclusion in Section 5.

2 Definition of the flow solver and structural solver

This section gives a brief definition of the functions F and S that represent respectively the flow solver and
structural solver. Because the solvers are black-box codes, the Jacobians of these functions are not available.

The expression
y=F(x) (1)

concisely represents several operations. First, the discretized position £ € R of the fluid-structure interface is
passed to the flow code and the grid of the fluid domain adjacent to the interface is adapted accordingly. Subse-
quently, the flow equations are solved for the fluid state in the entire domain which results in a distribution of the
stress on the interface y € R™.

The actions of the structural solver are represented by
z=3S(y), 2

indicating that the stress on the interface is passed to the structural code which then solves the entire structural
problem and returns the new position of the fluid-structure interface.

With these definitions, the FSI problem is given by
R(x)=SoF(x)—x =0 3)

with R the residual operator of the coupled problem and with the symbol o denoting that F () is calculated first
and that the result is the argument of S.

In the remainder of this paper, all values and functions are at the new time level n + 1, unless indicated otherwise
with a left superscript. A right superscript indicates the coupling iteration while a subscript denotes the element in
a vector. Capital letters denote matrices, bold lower case letters indicate vectors and lower case letters represent
scalars. Approximations are indicated with a hat. As the output of the solvers F and S is only an intermediate
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value that is not passed on to the next coupling iteration, this value is indicated with a tilde. Once the final value
that will be used in the next iteration has been calculated, the tilde is dropped. Depending on the context, the
equality sign can denote either assignment or equality.

3 Interface quasi-Newton with an approximation for the inverse of the Jacobian from a least-squares model
(IQN-ILS)

The FSI problem reformulated as a set of nonlinear equations in the interface’s position
R(z)=0 “4)

can be solved with several techniques. If the Jacobian matrix dR /da would be available, equation (4) could be
solved with Newton iterations

dR
solve % Az = —rF (5a)
wk

" = 2F + AP, (5b)

However, the exact Jacobian of R is unknown as the Jacobians of F and S are unavailable. Moreover, a linear sys-
tem (5a) with as dimension the number of degrees-of-freedom in the position of the fluid-structure interface has to
be solved in every Newton iteration. Although the number of degrees-of-freedom in the interface’s position is gen-
erally smaller than the number of degrees-of-freedom in the entire fluid and structure domain, the Jacobian matrix
dR/de is usually dense such that the solution of the linear system (5a) corresponds to a significant computational
cost in large simulations.

If the Jacobian dR /d« is approximated and quasi-Newtons iterations are performed, black-box solvers can be used
but this approach does not avoid that the linear system (5a) has to be solved. It is more advantageous to approximate
the inverse of the Jacobian instead by applying the least-squares technique introduced by Vierendeels et al. (2007)
on a particular set of vectors as will be explained later. The quasi-Newton iterations with the approximation for the
inverse of the Jacobian can be written as

ot =gy (B
dx

) ©

axk

and these iterations solve R(x) = 0 for the interface’s position, hence the name interface quasi-Newton with
an approximation for the inverse of the Jacobian from a least-squares model (IQN-ILS). The initial guess for the
quasi-Newton iterations is obtained from an extrapolation of the interface’s position
0 o n n—1 1 n—2
x” =S ("x) = 20" x) + S ("), (7
2 2
based on the previous time steps. Lower order extrapolations are used in the first two time steps. The residual in
Eq. (6) is calculated as
rF = R(xF) = So F(aF) — a* = & — &F (8

and the quasi-Newton iterations in the time step have converged when || ||, < .

It can be seen from equation (6) that the approximation for the inverse of the Jacobian does not have to be created
explicitly, a procedure to calculate the product of this matrix with the vector —r* is sufficient. The vector —r*
is the difference between the desired residual, i.e. 0, and the current residual 7* and it is further denoted as
Ar = 0 — r* = —rF_ In this work, the matrix-vector product is calculated from information obtained during the
previous quasi-Newton iterations. Equation (8) shows that the flow equations and structural equations are solved
in quasi-Newton iteration k, resulting in "' = So F (x*) and the corresponding residual 7*. The vectors & and

r from all previous coupling iterations are also available, giving a set of known residual vectors
vk k=l el 0 (9a)
and the corresponding set of vectors

ghtogk L 22, zl. (9b)
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The differences between all vectors from previous iterations (superscript ¢) and the most recent vector (superscript
k) are calculated

Art =rt —pF (10a)
Az = gt gh (10b)
fori =0,...,k—1. Each Ar corresponds to a AZ'"! and these vectors are stored as the columns of the matrices
ntlyk — [Ark_l Ark=2 . Ar! ATO] (11a)

and
Tk = Az AzFT L Az? Azl (11b)

The matrices "1 V* and "t1W* can be combined with those from s previous time steps (if at least s time steps
have already been performed), giving

Vk:[n+1vk MY sty nestly] (12a)

and
Wk = [n+1Wk Ny nestRyy n—s+1W} . (12b)

The columns of the matrices "tV and "+ are calculated by subtracting the vector of the last iteration of

time step n — ¢ + 1 from all previous vectors in that time step, in the same way as in equation (10). By including
the information for s previous time steps, the convergence of the coupling iterations is accelerated remarkably.
However, if information from too many time steps is reused, the convergence can slow down again as information
from time step n — s + 1 might no longer be relevant in time step n + 1. The optimal value of s is problem
dependent but the convergence of the coupling iterations does not change significantly near the optimum such that
the performance of the method is robust with respect to the parameter s.

The number of columns in V* and W is indicated with v and is generally much smaller than the number of rows
u. Nevertheless, in simulations with a low number of degrees-of-freedom on the interface, it is possible that the
number of columns has to be limited to u by discarding the rightmost columns.

The vector Ar = 0 — r* is approximated as a linear combination of the known Ar?

Ar ~ VFcF (13)
with ¢¥ € R the coefficients of the decomposition. Because v < w, equation (13) is an overdetermined set
of equations for the elements of c* and hence the least-squares solution to this linear system is calculated. For
that reason, the so-called economy size QR-decomposition of V¥ is calculated using Householder transformations
(Golub and Van Loan, 1996)

VF = QFRF (14)

with Q% € R“*" an orthogonal matrix and R¥ € R”* an upper triangular matrix. The coefficient vector c” is
then determined by solving the triangular system

Rk = Q" Ar (15)

using back substitution. If a Ar? vector is (almost) a linear combination of other Ar7 vectors, one of the diagonal
elements of R* will (almost) be zero. Consequently, the equation corresponding to that row of R¥ cannot be solved
during the back substitution and the corresponding element of c* is set to zero.

The AZ that corresponds to Ar is subsequently calculated as a linear combination of the previous AZ', similar to
equation (13), giving
Az = WFceF. (16)

From equation (8), it follows that
Ar = Az — Ax (17)

and substitution of equation (16) in equation (17) results in

Az = Wk — Ar. (18)
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Because the coefficients c* are a function of Ar, equation (18) shows how Az can be approximated for a given
Ar. Hence, equation (18) can be seen as a procedure to calculate the product of the approximation for the inverse
of the Jacobian and a vector Ar = —r*

Aw:(dR

dx

The relation between Ar and Az is thus found by means of the Az values. If a direct relation between Ar and
A is constructed instead, the quasi-Newton iterations will not converge as the new input for S o F would be a
linear combination of the previous inputs.

-1
) Ar = WFeF + P, (19)
@,

The complete IQN-ILS technique is shown in Algorithm 1. For steady calculations, one time step (1,4, = 1) has
to be performed with the same algorithm. Because the matrices V* and W* have to contain at least one column,
an relaxation with factor w (line 9) is performed in the second coupling iteration of the first time step if information
from the previous time steps is reused (s > 0) and in the second coupling iteration of every time step without reuse
(s=0).

Algorithm 1 Interface quasi-Newton with an approximation for the inverse of the Jacobian from a least-squares
model (IQN-ILS)
:n=0
2: while n < n,,4, do
3 20 =2("x) - 2("'x) + 1(" %) (if n > 2, lower order otherwise)
k=0
&' = So F(x0)

4
5

6 r=g!'—2°
7

8

9

while ||7¥|| > e do
if Kk = 0and (s = 0 orn = 0) then
bt = xk 4 wrk

10: else

11: construct V* and W* as shown in equation (10) to (12)
12: calculate QR-decomposition V* = Q* R*

13: solve RFcF = —QkTrk with back substitution

14: xhtl = Whek 4k

15: end if

16: k=k+1

17: " = So F(xh)

18: rk = gkt _ ok

19:  end while
20: n=n+1
21: end while

Figure 1 depicts a simplified representation of the IBQN-LS, IQN-ILS and (Aitken) relaxation algorithm. The
IBQN-LS algorithm creates a least-squares approximation for d 7 /da and dS/dy and uses them to solve

y—F(x)=0 (20a)
z—-S(y)=0 (20b)

with block quasi-Newton iterations of the Gauss-Seidel type. Relaxation methods solve x = So F(x) with relaxed
fixed-point iterations, possibly with adaptation of the relaxation factor w” in every coupling iteration.

Both Algorithm 1 and Figure 1 demonstrate that IQN-ILS can be implemented easily in an existing FSI framework
with relaxation. A conditional statement has to be wrapped around the existing relaxation on line 9 such that the
relaxation is only performed if not enough information is available to approximate the product of the inverse of
the Jacobian and —r¥, otherwise the procedure of the IQN-ILS algorithm on line 11 to 14 has to be executed.
The IQN-ILS algorithm consists of vector operations, two matrix-vector products, a QR-decomposition and the
solution of a triangular system which are all available in standard linear algebra packages. Moreover, as v is
generally much smaller than u, the procedure described above is significantly faster and less memory consuming
than explicit creation of the approximation for the inverse of the Jacobian as

ar
dx

—1
) _WrR QM g @1
T
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with [ € R“*" the identity matrix. The results will demonstrate that only a small fraction of the total simulation
time is spent on line 11 to 14.

T,y T,y T,y
# = Pl g+ = Fah) Y+ = Fah)
" | |
Update 4% and calculate y*+! = Syt = Syt
! | |
L = Sy k++ k= Gkl _ gk k= gkl _ ok B
| l k++ l
Update % and calculate 2*+1 zFtl = gk 4 Wk
l l
? ?
| |
n+1m7 n+1y n+1w7 n+1y
(a) IBQN-LS (b) IQN-ILS (c) Relaxation

Figure 1: Simplified representation of the (a) IBQN-LS, (b) IQN-ILS and (c) (Aitken) relaxation algorithm for
partitioned FSI with black-box solvers.

4 Results

In this section, the IBQN-LS, IQN-ILS and Aitken relaxation are compared with respect to both the number of
coupling iterations per time step and the total duration of the simulation. Two examples are given, namely the
oscillation of a 2D flexible beam and the propagation of a pressure pulse in a 3D carotid artery. In both examples,
the flow field is calculated by a finite volume flow solver with second order discretization of the pressure, second
order upwind discretization of the momentum and first order time accuracy on moving meshes. The mesh of
the fluid domain is adapted to the position of the fluid-structure interface with a spring analogy and the mesh is
adapted if cells are too distorted. The structural solver is a finite element code with implicit time integration which
takes geometric nonlinearity due to large deformations into account. The coupling algorithm, the flow solver and
structural solver are all executed on a dedicated machine with two quad-core processors.

4.1 2D Flexible beam

The first example is the oscillation of a flexible beam, specifically the unsteady FSI2 test as described in detail in
the benchmark paper by Turek and Hron (2006). The geometry consists of a horizontal channel of 0.41 m high
which contains a rigid cylinder with center positioned 0.2 m above the bottom of the channel. A laminar, viscous
flow with density 10 kg/m> and kinematic viscosity 1073 m?/s enters the channel from the left hand side with
a parabolic velocity profile and a mean inlet velocity of 1.0m/s. A constant pressure is imposed at the outlet of
the channel and a no-slip condition is applied to the top and bottom of the channel. A linearly elastic beam with
density 10* kg/m®, Young’s modulus 1.40 - 10° N/m? and Poisson’s ratio 0.4 is attached to the right hand side of
the cylinder.

The fluid domain is initially discretized with 24806 triangular and quadrilateral cells, a number that varies slightly
due to mesh adaptation, and the solid domain consists of 1200 quadrilateral continuum elements. After validating
the flow solver and the structural solver with the tests listed by Turek and Hron (2006), the FSI2 test has been
executed. The pressure contours in the vicinity of the structure are shown in Figure 2.

The point at the right end of the beam (as indicated in Figure 2) is called A. The displacement u of this point in the
z and y direction and the drag and lift on the entire structure are given in Table 1 and Figure 3 in the same format
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Figure 2: Pressure contours in the 2D unsteady FSI2 test with the flexible beam after (a) 12s; (b) 16s.

as in the benchmark paper. The residual ||r;||2 is reduced five orders of magnitude with respect to its initial value
and the same results have been found with IQN-ILS, IBQN-LS and Aitken relaxation. The deviations between the
simulations and the benchmark are reasonable, given that the flow solver is only first order accurate in time.

U [1073 m] u, [1077 m] drag [N] lift [N]
Simulation | -14.07£12.37[3.7] 1.18+£76.5[1.9] 217.52+84.65[3.7] -0.74+267.6[1.9]
Benchmark | -14.584+12.44[3.8] 1.23+£80.6[2.0] 208.83+73.75[3.8]] 0.88+234.2[2.0]

Table 1: Results of the 2D unsteady FSI2 test with the flexible beam. Displacement of point A in the x and y
direction, and drag and lift on the entire structure. All data are given in the format mean+amplitude[frequency].

The number of coupling iterations per time step (averaged over the last period of the oscillation) and the relative
duration of the simulations is given in Table 2. The notations IQN-ILS(s) and IBQN-LS(s) denote that information
from the s previous time steps has been reused. When information from the last 3 time steps is reused, the average
number of coupling iterations per time step reduces with approximately 30 % for both IQN-ILS and IBQN-LS
compared to the simulations without reuse. The performance of IQN-ILS(3) and IBQN-LS(3) is comparable and
both techniques complete the FSI2 test nearly twice as fast as Aitken relaxation.

In the FSI2 test with IQN-ILS(3), only 0.04 % of the total simulation time was spent on line 11 to 14 in Algorithm 1.
The computational cost of the IQN-ILS algorithm is hence negligible compared to the computational cost of the
flow problem and the structural problem. This can also be seen from Table 2 which shows that the difference
between IQN-ILS and Aitken relaxation is almost the same with respect to average number of coupling iterations
and duration of the simulation.

Iterations | Duration
IQN-ILS 94 1.84
IQN-ILS(3) 6.1 1.07
IBQN-LS 7.2 1.54
IBQN-LS(3) 4.8 1.00
Aitken relaxation 9.9 1.81

Table 2: Number of coupling iterations per time step (averaged over the last period of the oscillation) and relative
duration of the simulations for the 2D unsteady FSI2 test with the flexible beam. The notations IQN-ILS(s) and
IBQN-LS(s) denote that information from the s previous time steps has been reused.

4.2 3D Carotid bifurcation

The second example is the propagation of a pressure wave in the geometry of a carotid artery. Fernandez and
Moubachir (2005), among others, described the propagation of a pressure wave in a straight cylindrical tube and the
same material properties and boundary conditions have been used in this work with a more complicated geometry.
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Figure 3: Results of the 2D unsteady FSI2 test with the flexible beam. Displacement of point A in (a) the x
direction and (b) the y direction, (c) drag and (d) lift on the entire structure.

The model for the carotid artery is based on a geometry from a healthy volunteer in which an eccentric plaque was
added. Starting from CT-scans, the geometry was three-dimensionally reconstructed. The fluid domain is initially
discretized with 148054 tetrahedral cells and the structural model consists of one layer with 19062 triangular shell
elements. The distance between the inlet at the common carotid artery and the two outlets (interna and externa)
is 0.095m. This simulation does not aim at reproducing the reality but nevertheless it is a tough test for the
algorithms.

The solid is linear elastic with Young’s modulus 3-105 N/m? and Poisson’s ratio 0.3 and it has a density of
1200kg/m®. The structure is clamped at both ends. The viscosity of the fluid is 0.003 Pa-s and its density is
1000kg/m>. At the inlet, a pressure of 1333.2 Pa is applied during 0.003 s and 0 Pa is applied afterwards. At the
outlets a pressure of 0 Pa is imposed and the fluid-structure interface is a no-slip boundary. The wave propagation
is followed during 0.01 s with time steps of 0.0001s. The pressure contours on the fluid-structure interface are
shown in Figure 4.

The average number of coupling iterations per time step and the relative duration of the simulations with IQN-ILS,
IBQN-LS and Aitken relaxation are given in Table 3. The residual is reduced with 3 orders of magnitude with
respect to its initial value in the time step. The simulation with Aitken relaxation has been stopped after 10 time
steps because the convergence criterion has not been reached in any of the first 10 time steps within 50 coupling
iterations. In this simulation with a much higher number of degrees-of-freedom, the IQN-ILS algorithm is 10 %
faster than the IBQN-LS algorithm although the average number of coupling iterations is only 5 % lower because
no linear systems have to be solved in the IQN-ILS method. The linear systems in the IBQN-LS method are solved
with a matrix-free iterative solver which reduces the L2-norm of the residual of the linear systems by a factor
10710,
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Figure 4: Pressure contours on the fluid-structure interface for the simulation of the wave propagation in the carotid
bifurcation.

Iterations | Duration
IQN-ILS(2) 11.9 1.00
IBQN-LS(2) 12.5 1.11
Aitken relaxation — —

Table 3: Number of coupling iterations per time step (averaged over the entire simulation) and relative duration of
the simulations for the 3D propagation of the pressure wave in the carotid artery. The notations IQN-ILS(s) and
IBQN-LS(s) denote that information from the s previous time steps has been reused. The simulation with Aitken
relaxation has been stopped after 10 time steps because the convergence criterion had not been reached in any of
those time steps within 50 coupling iterations.

5 Conclusion

The interface quasi-Newton technique with an approximation for the inverse of the Jacobian from a least-squares
model (IQN-ILS) has a similar performance as the interface block quasi-Newton technique (IBQN-LS), but it
is significantly easier to implement. Moreover, it avoids that linear systems with as dimension the number of
degrees-of-freedom in the position of the fluid-structure interface have to be solved which is an advantage for large
simulations. In the examples presented here, IQN-ILS outperforms Aitken relaxation and it has been demonstrated
how the IQN-ILS algorithm can be implemented in existing FSI codes that currently rely on relaxation.
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Efficient Fluid-Structure Interaction Simulation of Viscoplastic and
Fracturing Thin-Shells Subjected to Underwater Shock Loading

Ralf Deiterding, Fehmi Cirak, and Sean P. Mauch

The fluid-structure interaction simulation of shock-loddhkin-walled structures requires numerical methods that
can cope with large deformations as well as local topologyes. We present a robust level-set-based approach
that integrates a Lagrangian thin-shell finite element sohlwith fracture and fragmentation capabilities into an
Eulerian Cartesian fluid solver with embedded boundary aedhradaptation capability. As main computational
applications, we consider the plastic deformation and ungtof thin plates subjected to explosion and piston-
induced pressure waves in water.

1 Introduction

The construction of efficient and scalable algorithms famngating shock-driven fluid-structure interaction (FSI)
problems is an area of active research. The discretizabottsin fluid and solid are usually time-explicit and
therefore computationally comparably inexpensive. Ondtieer hand, major geometric complexities, such as
large structural deformations, fracture, and even fragatem might have to be considered. An approach to this
problem is to employ an immersed or embedded boundary métttbd fluid solver (Mittal and laccarino, 2005),
in which moving solid structures slide through a fixed (Eiale) fluid background mesh.

We have developed a generic software framework for shoeleri=SI simulation, nametlirtual Test Facility
(Deiterding et al., 2006b), that imposes embedded movirlghwandary conditions on a Cartesian fluid solver
with a ghost fluid approach, as proposed by Fedkiw (2002) amehA et al. (2003). A scalar level set function
storing the distance to the nearest element of the solidisdulation is utilized to represent the embedded geom-
etry on the fluid grid and block-based dynamic mesh adaptéiemployed to mitigate boundary approximation
inaccuracies. The Virtual Test Facility (VTF) specificaifygets coupled problems in the high-speed regime, such
as the transient deformation of metallic structures duepdosive detonations or the fracture and fragmentation
of brittle or ductile materials under shock wave impact Aifiazis et al. (2000) and Mauch et al. (2003). Compu-
tational fluid and solid mechanics solvers are time-aceuaat consider all arising supersonic wave phenomena
(e.g., shear and dilatation waves in the viscoplastic selidck waves in the compressible fluid) correctly. For
coupling, atemporal splitting technigue, in which solvexshange data only at the interface between disjoint com-
putational domains after consecutive time steps, is adofter compressible fluids, stable solutions are obtained
reliably with such aveakly couplednethod, when the evolving interface geometry and velacdi® imposed as
boundary conditions on the fluid solver and the hydrodynaméssure is used as force boundary condition acting
on the solid exterior, cf. thner et al. (2003), Cirak and Radovitzky (2005), and Sp&f0).

While the VTF approach has been successfully applied to eatifin and validation examples driven by shock
and detonation waves in gases, cf. Deiterding et al. (2086d)Deiterding et al. (2006c), we focus in here
primarily on thin-walled solid structures subjected toosty pressure waves in water. In Section 2, we sketch
the adaptive Cartesian finite volume fluid solver with leset-based embedded boundary capability and briefly
describe the employed multiphase Riemann solver. SectiomiBes the solid mechanics solver that has been
developed to enable FSI simulations of thin-walled (pdgditacturing) shell structures. In Section 4, we outline
the highly efficient auxiliary algorithm based on geometti@racteristic reconstruction and scan conversion that
we have developed to transform evolving triangulated serfaeshes efficiently into signed or unsigned distance
functions. The fluid-structure coupling algorithm, higjtiting its incorporation into the adaptive fluid mesh re-
finement framework is detailed in Section 5. The simple \&ifon test of an elastic beam under shock loading is
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discussed in Section 6.1. Sections 6.2 and 6.3 presentf8lagion results for two setups involving viscoplastic
deformation and fracture of thin circular isotropic metkdtps subjected to shock loadings from or comparable
to underwater explosions. Good agreement with experirheesalts and the level of detail provided make the
computations excellent test cases for explicit FSI soféwar

2 Eulerian fluid mechanics solver

In this section, we are concerned with the construction oEalerian fluid solver suitable for efficient fluid-
structure coupling. Although the presentation is tailoi@the two-component solver employed throughout this
paper, the concepts are equally applicable to other comis@miaws with or without source terms, cf. Deiterding
et al. (2006c).

2.1 Governing equations

The simulation of trans- or supersonic wave phenomena idsfltéquires the consideration of the compressibility
while viscosity can typically be neglected. The basic aysté governing equations are the Euler equations:

Op+V-(pu)=0, O(pu)+V-(puu)+Vp=0, O (pE)+V - ((pE+pu)=0. 1)

Herein,p is the densityu the velocity vector and’ the specific total energy. In order to close (1), an equatfon o
statep = p(p, e) is required for modeling the dependency of the hydrostatsgurep on densityp and specific
internal energy. := F — %uTu. For a single polytropic gas, the equation of state (EOSjgea

p=(y—1)pe )

with + denoting the constant adiabatic exponent. For Eq. (2), peed of sound in the fluid is found to be
c= (’yp/p)l/z. For very high pressures, as they appear for instance inrwatier explosions, a simple extension
of Eq. (2) to thestiffenedgas EOS of the form

p=(7—1)pe — 1P 3)

is sufficient to model pressure waves in liquids with speesbofhdec = (v (p + poo)/p)l/2. Equation (3) becomes
the EOS of a multi-component mixture if we assume a modelbas¢he volume fractions’, with 3" | o’ =1,
that defines the mixture quantities as

m m m m Ozi i m Oéi )
p= alp, pu=Y alpu, pe=3 alpie, o= ot NS db
i=1 i=1 i=1 T i T T i=1

v -1

)

and in which each component satisfies a stiffened gas EO®dbtimp’ = (1* — 1) pie’ — ~'p_. At this point,
several possibilities would exist to derive different setgoverning transport equations for a two-fluid model,
however, we choose to follow the approach of Shyue (1998)stinaplements system (1) with the two advection

equations
o (1 Ly 9 (W= . WPoo \ _
8t<7—1)+u V(v—l)_o’ 5t(7—1>+uv<7—1>_0' @

Abgrall (1996) proved that a multi-component continuumesok needs to satisfy Eq. (4.1) in the discrete sense to
prevent unphysical oscillations at material boundaridtdugh different scheme alterations are possible tofgatis
this requirement, cf. Abgrall and Karni (2001), the utitipa of (4) in the governing equations and therefore direct
discretization together with (1) is the simplest remedynproblem, cf. Shyue (1998) and Shyue (2006).

2.2 Finite volume scheme

The appropriate discretization technique for hyperbalabpems with discontinuities (shocks, material boundarie
etc.) is the finite volume approach. For simplicity, we restourselves in the following to the two-dimensional
case and assume an equidistant discretization with meghswvid:;, Az, and a constant time stept. Since the
equations (4) are not in conservation form, we use the Waspdgjation Method by LeVeque (2002) to discretize
the system (1), (4). An explicit two-dimensional wave progéon scheme has the formal structure

Q?ng _ 0l ﬂ At

= A (A*Aﬁ%,k +A+Aj_%,k> o (B*AM% +B+Aj,k_%) .
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While thefluctuationsA*A, B+A can be supplemented with (limited) second-order and alesisative con-
tributions resulting in a truly multi-dimensional highsaution Godunov-type method (LeVeque, 2002), the key
component is an approximate Riemann solver that providésearized decomposition of the Riemann prob-
lem (RP) normal to each cell boundary. In here, we use the Hlagproach by Toro et al. (1994) that is tailored
specifically for the Euler equations and approximates théieRex -direction) with three discontinuous jumps by

q,, »1<sit,
q*v Slt§x1<8*t7
qHLLC (xlv t) = i *

q,r.a StSZElSSrt,

q., 1> Sr t,
which is also depicted in Fig. 1. For the wave speeds we use the
estimations; = min{u; ;—c¢;, u1 r—¢, }, 8, = max{uq ;+c;, ur -+, }
suggested by Davis (1988) antlis given in the HLLC approach by

Figure 1: Approximation of the RP
by the HLLC scheme.

R e spur (s —u1y) — prus p(Sr — i)
pi(s; — 1) — pr(syp —uiy)

Conservation arguments and consideration of the strucfutee RP for Euler equations lead to the specification
of the unknown solution values as

(PE)k

Pk

T
Dk )] 1 YPoo,k Sp — U1k
"y

B = Pk
Pr(sK — w1 k) =

*_

q, = [mnS*,nuz,n [
for k = {l,r}, cf. Toro (1999). Knowledge of the intermediate state tHewas the direct evaluation of theaves
asW; = q; —q; W2 =q; — q;, Ws = q, — q: and by setting\; = s;, A2 = s*, A3 = s, the fluctuations in
thex;-direction are defined ad~A = >, (A W,, ATA =37, oA W, forv = {1,2,3}.

Note that the robustness and positivity preservation oHheC approach is essential for obtaining reliable simu-
lation results when multiple fluids with disparate matepiaperties are involved as it the case in the computations
presented in the Sections 6.2 and 6.3.

2.3 Numerical treatment of thin-walled structures

Geometrically complex moving boundaries are incorporatéalthe finite volume scheme by using some of the
cells as ghost cells for enforcing immersed moving wall larg conditions, cf. Arienti et al. (2003) and Fedkiw
et al. (1999). The boundary geometry is mapped onto the Stantenesh by employing a scalar level set function
¢ that stores the distance to the boundary surface and all@wsfticient evaluation of the boundary outer normal
in every mesh point as = —V¢/|V¢|. Since, throughout this paper, we employ only thin-shetl beam solid
mechanics solvers that discretize the structure with alegpeally possibly open lower dimensional manifold
surface mesh, we usmsignedlistance as level set information and employ those fluid eallexterior ghost cells
for which the cellmidpointsatisfiesp < h/2.2 The latter condition is a straightforward, unambiguousitioh

to achieve the mandatory thickening of the surface mesh éyetament
thicknessh. The contour linep = h/2 effectively represents the embedded
boundary for the fluid solver (depicted as dotted line arosimell elements | s
in Fig. 2). The hydrodynamic load on each thin element is theuated as | RN
the difference between the approximated pressure valugs=at/2 in the LS B

positive and negative direction of each element’s normalpf” := p™—p~.

For the governing equations (1), the boundary conditionrgid wall mov-
ing with velocityv is u - n = v - n. Enforcing the latter with ghost cells, in
which the discrete values are located at the cell centeggjras the mirror-
ing of the valueg, u, p, 1/(y — 1), andyp.. /(v — 1) across the embedded
boundary. The normal velocity in the ghost cells is set2@- n — u - n)n, Figure 2: Ghost cells (shaded gray)
while the mirrored tangential velocity remains unmodifiddirrored val- around shell elements (dark seg-
ues are constructed by calculating spatially interpolades in the point ments) and construction of mirrored
X = X 4+ 2¢n from neighboring interior cells. We employ a dimension-avis/alues.

IHLLC:Harten-Lax-van Leer Riemann solver with restored @ohsurface
2For topologically closed boundary surfaces it is also fmesio use signed distance instead, cf. (Deiterding, 2008) (€irak and
Radovitzky, 2005).
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linear interpolation for this operation, but it has to be @agized that directly near the boundary the number of
interpolants needs to be decreased to ensure the montfmfithe numerical solution. This property is essential
in simulating hyperbolic problems with discontinuitiesglire 2 also highlights the necessary reduction of the in-
terpolation stencil for some exemplary cases. The intetjmoi locations are indicated by the origins of the arrows
normal to the contour line that defines the embedded bound€tgr the application of the numerical scheme,
cells that have been used to impose internal boundary ¢onsliare set to the entire state vector of the nearest cell
in the fluid interior. This operation ensures proper valuesase such a cell becomes a regular interior cell in the
next step due to boundary movement. The consideratierirothe ghost cells also guarantees that the embedded
boundary propagates at most one cell in every time step.

Note that the described technique does not require a mdibficaf the numerical stencil itself and is therefore
generically applicable, but causes a slight diffusion eftloundary location throughout the method and results in
an overall non-conservative scheme. The boundary undegetaircase approximation that potentially can give
rise to considerable errors in the computed solution. Hewesy refining the embedded boundary, typically up
to the highest available resolution, with the dynamic mesdptation method described in next subsection, we
alleviate these problems effectively. A refinement criefased o = 0 has been implemented for this purpose.

2.4 Structured adaptive mesh refinement

In order to supply a fine local temporal and spatial resofugifficiently, we use the block-structured adaptive mesh
refinement (SAMR) method by Berger and Colella (1988). Cttaréstic for the SAMR method is that a specific
finite volume method is technically not implemented in a-tased fashion, but rather in a routine operating on
equidistant subgrids. The subgrids become computatiodaltoupled during one update cycle through the use
of ghost or halo cells. Starting from the base mesh on leviidiime step size and all spatial mesh widths on
levell > 0 arer;-times finer than on levél— 1 and a time-explicit finite volume scheme will (in principl@main
stable on all levels of the recursively nested refinementhidy. Ghost cell values at coarse-fine interfaces are
constructed by interpolating coarse level data, which rategla recursive order of update (cf. Sec. 5.1). SAMR in
the VTF is provided generically by the AMROC (Adaptive MeséfiRement in Object-oriented C++) framework
(Deiterding, 2002) that can be used on all parallel systévatsgrovide the MPI library.

3 Lagrangian thin-shell solver

The Kirchhoff-Love thin-shell model applied here for thr@ienensional thin-shell simulation has been discretized
with smooth subdivision finite elements, as previously dbsd by Cirak and Ortiz (2001) and Cirak et al. (2000).
Notably, the underlying kinematic assumptions allow foitéirstrains, displacements and rotations. The subdivi-
sion shell elements have also been extended to the rangplafajons that involve fracture and fragmentation, cf.
Cirak et al. (2005). Thereby, fracture initiation and prgaton is considered as a progressive failure phenomenon
in which the separation of the crack flanks is modeled withtzeswve law. In the present implementation, cohe-
sive interface elements are inserted at all inter-elemégeé® and constrain the opening of the crack flanks to the
deformation of the shell mid-surface and its normal.

3.1 Governing equations in weak form

To kinematically describe a possibly fractured thin-shslisketched in Fig. 3(a), we first consider the shell in its
undeformed configuratiolr. The position vectop of a material point on the undeformed shelbf a material
point on the undeformed shell body is assumed to be

P =X+63n (5)

with the uniform thicknes& and —h/2 < 63 < h/2. The position vector of the shell mid-surface is denoted
by X and its out-of-surface unit normal by In other words, the shell mid-surface represents a twaedsional
manifold inIR*. The deformation mapping maps the shell body into the deformed configuratibn

p= X—|—93An (6)

wherex andn are the deformed mid-surface and its normal. The thickrntesch parametek is the ratio of the
deformed shell thicknegsto the reference thickness In the presence of a crack, the deformation is discontiauou

across the crack and has a jump, i.e.
[e] = ¢ — ¢~ = [X] + 65[n], @)
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(b)

Figure 3: (a) Fractured shell body: opposite crack flanksamtesponding normals. (b) A cohesive edge and its
two adjacent elements.

where the superscripts and— refer to the opposing crack flanks. Further, the first terneidiess the discontinuity

of the deformation of the shell mid-surface, and the secemd the discontinuity in the shell out-of-surface normal.
The discontinuities in the deformations can also be in&tgar as the opening displacement of the crack. Further,
note that the Kirchhoff-Love constraint is satisfied, ke.n = 0, on both sides of the crack.

A standard semi-inverse approach is followed for obtairtimg shell equilibrium equations in weak form. To
this end, the assumed reduced kinematic equations for tiebgity (Equations (5) and (7)) are introduced into
the conventional virtual work expression for the three-gisional body. As previously mentioned, we consider
fracture as a gradual separation phenomenon, resistedh@gige tractions. Consequently, the internal virtual
work expression contains the virtual work of the cohesiterfiace §Il¢ i) in addition to the virtual work of the
bulk material §ILg jnt)

0 g int + 0l jnt — 6llexy = O (8

with the external virtual workIIey: and

h/2 o /2 B
5H57im=/7/7 P: 0F nde3dQy, 5Hc7int:[ /7 T[] ud?dlc,
QJ—h/2 ToJ—h/2

whereP is the first Piola-Kirchhoff stress tensdr,the related traction vector at the cohesive surface,Fatite
deformation gradient. The virtual work expression for tlikbmaterial is integrated over the undeformed shell
mid-surface and for the cohesive interface over the crack gath The scalar facton accounts for the curvature
of the shell in the volume computation, cf. Cirak and Ortia@2).

3.2 Subdivision thin-shell elements

Next, we briefly outline the discretization of the governagyation (8) firstly for the non-fractured case. A detailed
presentation of the used subdivision finite element diezatidn technique can be found in (Cirak et al., 2000) and
(Cirak and Ortiz, 2001). In this approach, the referem@fd deformedx) shell surfaces are approximated using
smooth subdivision surfaces belonging to the Sobolev sf&agith square-integrable curvatures. The subdivision
interpolation within one element is accomplished with shhmctions, which have support on the element as well
as on the one-ring of neighboring elements. The overlapipicaj subdivision interpolants, each defined over one
patch, together lead to a global interpolant with squategirable curvatures. Importantly, smoothness is achieved
without introducing nodal rotations as degrees of freeddhe absence of nodal rotations is particularly appealing
in the presence of finite rotations.

In the presence of fracture, the smoothness and/or cotytiofithe interpolation has to be relaxed and the subdi-
vision interpolant needs to be modified, cf. Cirak et al. @00 he topological changes necessary to the non-local
subdivision functions and the underlying control mesh ideorto describe the dynamic propagation of a single
crack are complicated. Therefore, we chose to pre-fratheelement patches, such that each patch possesses
its own nodes and acts independently for the purpose ofpiokation, see Fig. 3(b). Prior to crack nucleation,
the coupling of the elements is enforced by applying stiisét cohesive interfaces at all edges. Once fracture
nucleates along an element edge, the element patches ositheshof the cracked edge interact through cohesive
tractions. The cohesive tractions are self-balancedriatdorces derived from a cohesive fracture model.
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3.3 Constitutive models for the shell

An irreversible cohesive constitutive model as propose®iyz and Pandolfi (1999) is used for modeling the
cracks. Thereby, the opening displacemesjtplays the role of a deformation measure while the tractios the
conjugate stress measure. Further, a scalar effectiveérapdisplacement is defined by

5 =V ﬁ2|5t|2 + |5n|27

whered; andd,, are the tangential and normal displacement componerftg]okith respect to the crack surface.
The parametep assigns different weights to the tangential and normal imgedisplacements. The cohesive
tractionsT are given by

t
T= 5(ﬁzét +0,) -

The scalar effective tractionis computed from a cohesive law as
shown in Fig. 4. In addition to the paramet@rthe model param-
eters are the maximal tensile stressand the critical opening dis-
placemen®.. The following relationship between the cohesive lawo -
and the critical fracture energy raté. exists:

GC:/ tdo
0

which can be used for determinidg. For further details see Ortiz [
and Pandolfi (1999). 0 dc d
Figure 4: Irreversible linear cohesive law.
The inelastic behavior of the bulk material, i.e. the relatbetween Note that the initial stiff elastic response
P andF, is described with a conventiondt viscoplasticity model enforces the displacement continuity prior
with isotropic power-law hardening as described by Cuiéind Ortiz tg crack initiation atr.. The dashed line
(1992). The power-law hardening for the flow strgdtas the form  represents the loading-unloading rule.

P 1/n
s =ay (1+5) .
€0

whereo, is the initial yield stresss? andel] are the total and the reference plastic strains, respéctared1/n is
the hardening exponent. The rate-dependent behavior ésibled in terms of the effective von Mises stress
with a power viscosity law and constant rate sensitivity

P 1/m
€0

whereé€} is the reference plastic strain rate anfn the strain rate sensitivity exponent.

The thin-shell typical plane stress condition is enforcéitha local Newton-Raphson iteration at each quadrature
point, cf. deBorst (1991). Thereby, the thickness stretatameter\ (Eq. 6) is the unknown variable in the
iteration.

4 Efficient level set evaluation

In Section 2, we have sketched the concept of employing ardistfunction to represent a complex embedded
boundary on a Cartesian mesh. While distance functions a&ily gmescribed for single elementary geometric

objects, their evaluation can be cumbersome for complepeshdn coupled Eulerian-Lagrangian simulations, this
complex shape is defined by the deforming shell surface mesh.

One can efficiently compute the distance on a grid by solvirggdikonal equation with the method of charac-
teristics and utilizing polyhedron scan conversion, cf.ugta(2003). For a given grid point, the relevant closest
point on the triangular mesh lies on one of the primitiveséfa edges and vertices) that comprise the surface. The
characteristics emanating from each of these primitivas foolyhedral shapes. Sucltharacteristic polyhedron
contains all of the points which are possibly closest todtsesponding face, edge or vertex. The closest points to
a triangle face must lie within a triangular prism defined Iy face and its normal; the closest points to an edge
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] o Figure 6: Slicing of a polyhedron to form two-
Figure 5. The characteristic polyhedra for faces angimensional polygons (right) and scan conversion of an
edges of an icosahedron. exemplary case (left).

lie in a cylindrical wedge defined by the line segment and threnals to the two incident faces (see Fig. 5 for
face (a) and edge (b) polyhedra for a particular examplepldgously, polygonal pyramids emanating from the
vertices are also possible (not shown). We then determingriti points that lie inside a characteristic polyhedron
with polyhedron scan conversion. The polyhedron is firgeslialong each sheet of the grid lattice to produce
polygons, cf. Fig. 6. Simple geometric formulas are finabgd to calculate the distance once a polyhedron has
been assigned uniquely to each grid point.

By utilizing the outlined techniques, and evaluating th&talice exactly only within a small distance around the
surface, a highly efficient algorithm can be formulated test linear computational complexity both in the number
of Cartesian mesh points and the surface triangles, cf. M&@03) and Deiterding et al. (2006c).

5 Fluid-structure coupling

The explicit fluid and solid solvers are weakly coupled bycassively applying appropriate boundary conditions
in a time-operator splitting technique. In the case of ioglows, the compatibility conditions are the continuity
of the velocity component normal to the embedded boundariy solid (S) and fluid (F), i.eu” = uf, and the
continuity of the normal component of the solid’s Cauchgti@n vectorp® = (on)n with o = 1/det(F)FP, and
the hydrodynamic pressugé’, i.e p® = p¥. We use the following update algorithm to implement thesgting
conditions numerically:

updatep(t)

v/ T = ud(t)
updatefluid( At)
p¥ = pl(t + At)
updatesolid(At)
t:=t+ At

After evaluating the distance functignfor the currently available shell surface mesh, the embeaadl bound-

ary velocities for the fluid solver are set to the solid veiesi in the nearest shell element midplane. The same
velocity v is enforced in the fluid on uppet ) and lower () side of each element. After setting embedded rigid
wall boundary conditions and the fluid update, a new hydradyio pressure loag!” := p* — p~ on each shell
element (compare Fig. 2) is derived by evaluatifigwith the linear interpolation / extrapolation operatiorealdy
sketched in Section 2.3. With these new boundary conditithvescycle is completed by advancing the solid by
At, which in practice is typically done by taking multiple, siieatime steps in the solid solver to effectively
accommodate the more restrictive stability condition i $olid.

5.1 Application of SAMR in the fluid solver

While the implementation of a loosely coupled FSI methodrisightforward with conventional solvers with con-
secutive time update, the utilization of the recursive SAMBthod with hierarchical time step refinement in the
fluid is non-apparent. In the VTF, we treat the fluid-soliceifihce as a discontinuity that is a-priori refined at least
up to a coupling level.. The resolution at levé]. has to be sufficiently fine to ensure an accurate wave trassmis
between fluid and structure, but might not be the highest téwefinement. To incorporate the fluid-structure data
exchange into the recursive SAMR algorithm it has to be extstirat the updated mesh positions and nodal veloci-
ties are receivetdeforea regridding of the coupling levél is initiated and that the hydrodynamic pressure loadings
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on the interface are evaluatedter the highest available re-

finement level has reached the same discrete time as the up-, o Fl °
dated level.. We visualize the data exchange between solid
and SAMR fluid solver in Fig. 7 for an exemplary SAMR _, _, = F2 F5 =
hierarchy with two additional levels with; » = 2. Figure ‘

7 pictures the recursion in the SAMR method by numbering F3 | F4 T, F6 | F7
- T I I 1
/‘I / |
S1

the fluid update steps (F) according to the order determine
'S2 'S3 S4 S5 S6 S7 S8 |

2 |

by the SAMR method. The order of the solid update steps (S)
on the other hand is strictly linear. The red diagonal arrows
correspond to the sending of the interface presspfesom
fluid to solid at the end of each time step on lelielThe blue
upward arrows visualize the sending of the interface medh an )
its nodal velocitiesi® after each solid update. The modificat!9uré 7: Data exchange between the recursive
tion of refinement meshes is indicated in Fig. 7 by the ngV'd solver and the Imgar thin-shell solver during
arrows; the initiating base level, that remains fixed thioug one SAMR root level time step.

the regridding operation, is indicated by the gray circles.

»

Time

5.2 Software implementation

The fluid-structure coupling software VTF is a collection®f+ classes for implementing high-speed FSI prob-
lems on distributed memory machines. At present, only thedacoupling of time-explicit solvers is supported.
The design follows a classical framework approach in whinghibstantiation of the main objects is usually done
in a short generic main program and customization is actlidgw®ugh subclass derivation.

In our current implementation, computational fluid anddaolynamics solvers are parallelized separately for dis-
tributed memory machines using independent rigorous dok@tomposition methods. In order to facilitate an
efficient communication of the distributed fluid-shell bdany information we have implemented a non-blocking
high-level communication library that determines the 1s8egy point-to-point communication patterns by inter-
secting Cartesian bounding boxes enclosing the local dmnd@etails on this communication library and also a
detailed algorithmic description of the coupled SAMR metican be found in (Deiterding et al., 2006c).

6 Computational results

In the following sub-sections, we consider three diffei@rifigurations to demonstrate the versatility of our fluid-
structure coupling approach. While Section 6.1 discussesification test of linearly elastic motion due to the
impact of a shock wave in air, the computations in Sectio@sa@d 6.3 simulate viscoplastic deformation and
fracture driven by strong pressure waves in water. In bosiesdhe induced solid motion causes tension in the
liquid that results in cavitation when the pressure fallolethe water vapor pressure. Since cavitation inception
limits the maximal tension, and thereby the minimal presgbe liquid can support, we employ an additional
pressure cutoff model (see also Xie et al. (2006)) in thesapeations. It is implemented by applying the non-
conservative energy correction
= P W0 | luTu, for p < pe 9)
ply—1) 2

after every fluid time step and its purpose is to limit all hydiynamic pressures to the cutoff value

E:

6.1 \Verification

As a first test for the coupled method, we consider the vetifinaconfiguration of a thin-walled steel panel
impacted by a planar shock wave in ajri(= 1.4, p2 = 0) proposed by Giordano et al. (2005). The panel has
the thicknes$ = 1 mm and extend§0 mm from a mounting with forward-facing step geometry into whitis
firmly clamped. Figure 8 de- 400 mm |

picts the computational domain 16458 ke/m’ 12 ke’
and initial conditions.  Inflow = sm o p:(j io
L. ) u,—l 12.61 m/s, MZ—O u=u,u, 65 mm
boundary c_ondlt!o_ns are appliedomm 156 18 kpy p=100 kPa
on the left side, rigid wall bound- s 250 mm
ary conditions anywhere else. 130 mm | 265 mm

Figure 8: Geometry of the computational setup for the shuhel testcase.
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(b)
Figure 9: Snapshots at= 0.43 ms (a) andt = 1.56 ms (b) visualize the evolution of the fluid mesh adaptation
(different levels indicated by gray scales) according eftow field and the deflection of the thin-shell panel.

First, we model the panel as a one-dimensional elastic beanersed into a two-dimensional fluid domain and
solve the Euler-Bernoulli beam equation

pZv g _ (10)

P o2 ozt P

for ps = 7600kg/m?, E = 220 GPa, andI = h3/12 to calculate the deflectiom(z,t) of the beam middle axis
with updated hydrodynamic loading” after every time step of the fluid solver. Equation (10) israppnated
with a straightforward time-implicit finite difference apgach and the resulting linear system is solved by QR
decomposition. An equidistant mesh1dfl points is used to discretize the beam middle axis. The fluistnuses
a base grid 0820 x 64 cells and allows up to two additional levels of dynamic iepic refinement (based af
and scaled gradients pfandp) with refinement factors; , = 2. Calculatingl8, 660 coupled time steps &t = 2
tot. = 5.0ms required~ 12.3h CPU on a3.4 GHz processor.

Second, the panel is modeled as a two-dimensional plapeddtimm width (325 triangular elements) and em-
bedded into a three-dimensional fluid base mess26fx 64 x 2 cells. The structural motion is computed with
the previously described three-dimensional thin-sheidinlement solver. Linear elastic material behavior with
the parameters given above and the Poisson ratia0.3 is assumed. Figure 9 shows the dynamic bending of the
plate strip and the evolving fluid mesh adaptation with twditoinal levels (depicted by gray scales) as the initial
shock is partially reflected (a) and increased vortex sheddi
occurs at the panel tip (b). The three-dimensional comjmntat 10
reached,. = 5.0 ms after18, 000 coupled time steps, where 5
solid solver sub-steps were used, and required?2 h CPU.

"Beam
Beam-FSI —— 1
SFC-FSlpm |

t [mm]

Een

A comparison of the predicted panel tip displacement versu
time for both FSI simulations is given in Fig. 10. Slight dive
gences at later times are expectable considering the agparg
differences in beam and shell theory. However, both FSI cong
figurations show excellent agreement at earlier times aad ar
in proximity to a-priori predictions based on Eq. (10) alone
(Beam) for the constant instantaneous loadifig= 100 kPa

that has been found to be a rough approximation for the pres-
sure loading for approximatety< 2.5 ms, cf. Giordano et al. Figure 10: Tip motion for both FSI computations
(2005). and reference computation with constant loading.

place

05 10 15 20 25 30 35 40 45 50
Time [ms]

6.2 Underwater explosion

As a first test for shock waves in water, we simulate a fluidestire experiment by Ashani and Ghamsari (2008).
A small charge ficy = 20g andmcy = 30g) of the explosive C41(34x TNT) is detonated in a water-filled
basin at the standoff distancds= 25cm or d = 30cm above a circular air-backed aluminum plate (exposed
radius85 mm) of thicknessh = 3 mm. We model the basin with a fluid domain ®f x 1.6 m x 2m, where the
origin is placed at the domain center. Outflow is assumed dbatain boundaries. In analogy to the experiment,
air-backed conditions are represented by inserting a dglidder of radiusl50 mm from zo = —0.8mtoxy =0

into the domain. The cylinder is sealed by the test plate ditisal 50 mm, discretized with 8148 triangles, which
is treated as rigid for > 85 mm. The material parameters for viscoplastic material bedrasi aluminum, that
were used in these simulations, are detailed in Table 1.d$ssimed that the aluminum is strain-rate insensitive
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(b) (©)
Figure 11: (a) Isolines g on domains of refinement lev-
els (indicated by color) at = 0.31ms. (b), (c) The
plane shows a color plot gf and isolines ok, the plate
displays the normal vertex velocity at= 0.14ms and
0.31 ms.

and strain-softening effects have not been consideredcylitmaler is filled with air ¢4 = 1.4, pZ. = 0) at density

pA = 1.29kg/m3, the basin with water(V' = 7.415, p/¥ = 296.2 MPa) atp"V = 1027 kg/m?, which are both
initially at rest and assumed to be at atmospheric pregsure 100 kPA (the static pressure increase due the
water depth can safely be neglected). The modification by(®aqwith p. = —1 MPa is employed in the fluid
solver to consider cavitation inception. The shock fromekglosion is modeled as a spherical energy deposition
(mey - 6.06 MJ/kg) uniformly distributed over a sphere of radiisam of air at temperaturé500°C located at
(0,d,0).

The fluid domain is discretized with an SAMR base mesh®fx 40 x 50 cells. Four additional levels with
refinement factors, » 3 = 2,74 = 4 are employed. The highest level refinement is static andictst to the
explosion center. Fluid mesh adaptation on all other leigettynamic and based ahand the scaled gradient of
p. However, refinement at levels 2 and 3 is restricted to theddiate vicinity of the structure and the shock as it
impinges onto it. Figure 11(a) depicts a snapshot of the fhegh in a plane through the center of the domain for
the casency = 20 g, d = 25 cm. The FSI simulation usds = 3 with 2 solid solver sub-steps, and 1296 coupled
time steps were computed to reach the final time- 1 ms.

0

= mggggg:gzgggﬂ — Table 1: Material properties for aluminum.
T 5r ] Mass density ps = 2719kg/m?
g ol Young's modulus E =69GPa
3, Poisson'’s ratio v=0.33
£ a5l ] Yield stress oy = 217.6 MPa
5 Reference plastic strain ¢ = 0.025
g 20 ] Hardening exponent 1/n=0.6
_g% . Rate sensitivity exponent 1/m = 0
0 0z 04 06 08 10 Figure 12: Left: center displacement versus time.
Time [ms]

The impact of the spherical shock onto the plate and itsglarflection are visualized in graphics (b) and (c) of
Fig. 11, respectively. The induced motion of the exposed gfathe test specimen is clearly visible. Figure 12
displays the plate center motion versus time for both casesidered. Note that during the first 0.2 ms after

the shock impact the deformation occurs with constant vigieince the water near the plates cavitates and does
not transmit significant forces onto the plate. The maxinoahputed deflection for the case= 20g, d = 25cm

is 25.88 mm, for the casencys = 30g, d = 30cm it is 27.31 mm. Those values compare reasonably well to the
experimental measurements2¥.83 mm and30.09 mm by Ashani and Ghamsari (2008), where the differences
are primarily due to our rather simplistic modeling of théial shock wave created by the explosion. Both
computations were run on 12 nodes of a parallel cluster waiil-3.4 GHz-Xeon dual processors (10 nodes fluid,

2 nodes solid dynamics solver) and required30 h CPU each{ 5.4 h wall time).

6.3 Plate deformation from water hammer

The final configuration considered is an experimental seéweldped by Deshpande et al. (2006) that reproduces
loading conditions of large-scale underwater explosiarthé laboratory. By firing a steel projectile onto a piston
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Figure 13: Loading conditions fgr,,.x = 34 MPa. (&) Comparison of the traveling wave approximation Eq) (12
(dotted) with computed pressure traces (solid}at= 1.1 m (left) andx; = 0.2m (right). (b) Computed piston
acceleration for the entire simulation time.

inserted into the end of a water shock tube, a strong presgwe is created that propagates through the water
column and impinges onto a circular copper plate sealingother end. The shock tube has a lengthl fm

and a radius 082 mm, which is modeled with an additional signed distance leeéfgnction. The tube is filled
with water 6" = 7.415, p¥ = 296.2MPa, p. = 0) of densityp® = 1000kg/m? at atmospheric pressure
po = 101.3kPa. The copper plate has a thicknes9)df5 mm and a radius of = 56 mm, but is unconstrained
only for r < 32mm. Again, the plate is air-backe@{ = 1.0kg/m?3, v* = 1.4, p2 = 0) at pressurey. The
center of the plate is initially located at the coordinatiggiorand the shock tube middle axis is aligned with the
x1-axis.

Verification of loading conditions

The motion of the piston creates a quasi one-dimensionsspre spike with exponential decay rate that propagates
through the water column. We incorporate the piston movernma the computational setup by employing a
second signed distance level set function that correspntie piston boundary in contact with the fluid. The
level set is initially positioned at; = 1.3 m and assumed to move with constant veloéjtyDuring a simulation,

we integrate the law of motion for the piston

mb = —(p — po) (11)

with the forward Euler method and update level set positimh\eelocityd in direction of the tube middle axis (to
be used as wall normal velocity, for this level set, cf. Sec. 2.3) in every time step. As thequiss constrained
in all other directions, it suffices to consider the hydraaiynic pressure averaged across the piston bounceng
to use the averaged piston mass per unit aiedn all subsequent computations the valie= 74.1 kg/m? was
used.

By assuming the wave to propagate with the constant speezliofisn waterc™ = 1482 m/s, a traveling wave
solution of the form

oxp [ L2/ b 1
play,t) = Pmax €XP ) (pocw) = w (12)
, otherwise

can be derived for the pressure evolution at a fixed spatiation that is found to be in reasonable agreement with
experimental measurements close to the piston boundashfid@de et al., 2006). The maximum of the traveling
wave is set tuax = p*cbg, Which permits the computation of the initial piston vetgdig for given py,ax.

Plot (a) of Fig. 13 compares Eq. (12) evaluated at the logatip = 1.1 m andz; = 0.2 m with pressure traces
derived from a one-dimensional unigrid finite volume sintiola with 2700 cells on the domaif m, 1.35 m] for
Pmax = 34 MPa. The agreement at early times is very good, verifying thesmness of our computational setup.
At later times, the simulation necessarily differs from thmaltered (non-dispersive) traveling wave, because our
computational model considers the density rise in the cesgion wave and the resulting change of the speed of
sound. Plot (b) of Fig. 13 displays the computed piston &catibn, where the time is shifted by0.82 ms setting

the start of the FSI simulations to= 0.
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30 ‘ ‘ ‘ coom’ Table 2: Material and cohesive model parameters
o5 | x=0.2m oo | for annealed copper.
_ Mass density ps = 8920kg/m3
g 2 Young’s modulus E =130GPa
o 45 Poisson’s ratio v=0.31
2 Yield stress o, = 38.5MPa
a 10 Reference plastic strain eh = 0.0091
5| ] Hardening exponent 1/n = 0.627
| . Reference plastic strain rate € = 1000
0 o o2 o1 o8 o8 1o Rate sensitivity exponent 1/m =1.0
Time [ms] Maximal tensile stress 0. = 525 MPa,
Figure 14: Fluid pressure traces along tube middle axis atCritical opening displacement 4. =~ 0.3 mm
21 = 0andz; = 0.2m for pmax = 34 MPa. Tangential weight parameter (82 = 0.8

Fluid-structure interaction simulations

While the thin copper plate exhibits just viscoplastic defation forp,,.x = 34 MPa, fracture occurs for larger
values ofp,,.. All computations were therefore run with activated cobhesnterface element capability of the
thin-shell solver. The parameters for thig plasticity and the cohesive interface model used for amteabpper
are given in Table 2. The mesh for the plate considers the timguholes for purely optical reasons and consists
of 8896 triangles. In order to ensure the correct boundanglitions throughout the whole simulation, the three-
dimensional fluid domain covers wif-0.146 m, 1.35m] x [—0.04m,0.04 m] x [—0.04m,0.04 m] the entire
shock tube.

To concentrate the computational resources for the fluilérrégion of interest, the computation uses an SAMR
base mesh 0874 x 20 x 20 cells and two additional levels with refinement factors = 2. The fluid mesh

is always fully refined along the plate boundary and at thatfod the incoming pressure wave. The shock tube
boundary is statically refined at level 2 fof < 0.206 m and at level 1 forz; < 0.43m. The coupling level

for the fluid-structure data exchange is sette= 2. The simulations were run on 12 nodes of a parallel cluster
consisting of Intel3.4 GHz-Xeon dual processors CPUs, where 6 nodes were employdaef@luid and the solid
solver, respectively. Using 2 solid solver sub-steps tlsega.. = 34 MPa took 4120 coupled time steps to reach
t. = 1.0 ms, which required~ 48 h wallclock time (~ 1150 h CPU).

Results from the non-rupture case are displayed in the Eysnd 15. Figure 14 shows pressure traces along
the tube middle axis at the locatioms = 0.2m andz; = 0. The impact of the pressure wave onto the plate at
t ~ 0.03ms and the water cavitation immediately after can be clearigried. An expansion wave due to the
resulting structural motion travels upstream through taeewcolumn inducing a small piston acceleration around
t = 0.9 ms, cf. Fig. 13(b).
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Figure 15: (a) Plate center displacement versus time andgfitgction history of the plate midplane during the
coupled simulation.

Similarly to the previous section, the plate deformatioggparated into two phases. As can be seen in Fig. 15(a)
cavitation leads to a constant displacement velocity dutire first~ 0.15ms. The deflection of the plate is
characterized by the appearance of a stationary plastgehan the boundary and a second instationary plastic
hinge traveling towards the plate center, cf Fig. 15(b). r®hafter the fluid expansion wave leaves the plate
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boundary, a hydrodynamic pressure~of 4 MPa builds up again directly at the plate until it declines figall
fromt ~ 0.76 ms on, cf. Fig. 14. During this phase, the plate deformationaoslimear and the plate deflection
is convex. The displacement reaches its maximurh &t 0.76 ms and remains almost unaltered until the end
of the simulation at., = 1.0ms. A visual comparison of the finally deformed solid mesh in B# simula-
tion with a photograph of a target plate by Deshpande et afjivisn in Fig. 16. The agreement is apparently
very good. The obtained maximum deflection 6f6 mm

is also in good agreement with the analytic estimate of
16.1 mm by Qui et al. (2004) (Equation 21ain (Qui et al.,
2004)). Note that Qui et al.'s estimate is for an ideally g
plastic material. In contrast, the presented computatio
include a strain-hardening effect, which has a reducing e
fect on the maximum displacements. Further, Qui et al.
base their analysis on the traveling wave (12) that over-
predicts the pressure maximum exposed to the plate, Rijure 16: Comparison of simulated specimen with
Fig. 13(a). the experiment fop,,.x = 34 MPa.

We present two exemplary results for plate rupture. Whgn. is moderately increased, the plate first bulges
severely but then undergoes localized cracking at the pkxtger. This failure mode is shown in Fig. 17(a) for
pmax = 64 MPa that displays the situation at= 0.85 ms simulation time when the fracture pattern is clearly
established and the water splashes into the air behind #éte. gNote also the similarity in longitudinal cracking
behavior in simulation and experiment. When the loading éseiased further, rupture occurs primarily at the
supports. We display only one case for the high loaging. = 173 MPa that clearly exhibits tearing at the
support from the initial impulse, cf. Fig. 17(b). Finally,is worth mentioning that the reliable simulation of
cracking phenomena with two coupled explicit solvers méorilg requires a careful computational analysis of
the stability condition in each sub-solver after every tistep, which in our case also considers the temporal
recursion in the SAMR approach. See Deiterding et al. (2DfaBaletails.

(b)

Figure 17: Plate fracture fa¥,,., = 64MPa att = 0.85ms (&) andp.x = 173MPa att = 0.177 ms (b),
when the fracture patterns are fully established. The anidplane showing the volume fractied” in the fluid
visualizes the water splash.

7 Conclusions

We have presented all computational components of a letdbased fluid-structure coupling approach for the
time-accurate simulation of thin flexible shells respogditynamically to strong pressure waves in water. The
approach has been demonstrated to handle arbitrarily iegolkiin-shells surrounded by fluid without problems.

Three different fluid-structure interaction configurasasf increasing complexity have been given to verify and
validate the approach. The obtained results are found tm lg@ad to excellent agreement with experimental
observations, depending on the level of effort spent toadyce the hydrodynamic loading conditions and to care-
fully adjust material model parameters that cannot be dedlumambiguously from tabulated data, namely for
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viscoplasticity and fracture. The level of detail given shiballow the easy reproducibility of our results thereby
proving good verification tests for explicit FSI softwarehéeTintegrated implementation of all presented compo-
nents, including further documented explicit FSI testsaisereely available from http://www.cacr.caltech.exhd.
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Wind Induced Ovalling Oscillations of Thin-Walled Cylindrical
Structures

D. Dooms, G. De Roeck, G. Degrande

Circular cylindrical shells, like silos, are perceptible tvind induced ovalling oscillations, an aeroelastic phe-
nomenon, where the cross section deforms as a shell wittendilg deformation of the longitudinal axis of

symmetry. During a storm in October 2002, ovalling was obsdron several empty silos of a group of forty silos
in the port of Antwerp. A coupled numerical analysis of thediflow around one silo aims to predict the ovalling

onset flow velocity.

A three-dimensional finite element model of the silo is setiply coupled to the three-dimensional wind flow
around a single cylinder with a conventional serial staggkalgorithm and an iteratively staggered algorithm. In
the iteratively staggered algorithm, the transferred thsements are not relaxed. The accuracy of the conventional
serial staggered algorithm is lower than the accuracy ofiteeatively staggered algorithm. The response of the
silo is dominated by the eigenmodes with circumferentialemambern = 3 and4.

In order to reduce the computational cost of the fluid-stuueinteraction computations, the model of the structure
is reduced to two dimensions using the finite strip metho firfite strip model of the cylinder is coupled to a two
dimensional model of the flow. The coupling procedure isiaddid by means of experimental results of wind tunnel
tests reported in the literature (Laneville and Mazouzi93pP As ovalling occurs when the negative aerodynamic
damping cancels the structural modal damping, the stradtdamping is reduced step-by-step in order to find the
damping ratio at which ovalling occurs.

1 Introduction

Circular cylindrical shells are widely used in civil engareng structures as silos, chimneys and water towers. The
use of high tensile strength aluminium has resulted in @esttuctures that are more perceptible to wind induced
ovalling oscillations, an aeroelastic phenomenon, whieecross section deforms as a shell without bending
deformation of the longitudinal axis of symmetry. Resoreanccurs when the negative aerodynamic damping
cancels the structural modal damping. During a storm in kEt@002, ovalling was observed on several empty
silos of a group consisting of forty silos in the port of Antwéfigure 1). The forty silos are placed in five rows of
eight silos with gaps of 30 cm between two neighbouring siBmilar cases indicate that storm damage is mainly
located on silos on the corners of the group.

A fluid-structure interaction analysis aims to predict thalting onset flow velocity and to investigate in a later
stage the influence of the distance between the silos. THegaooation of this group strongly modifies the pressure
distribution around the silos (Dooms et al., 2006a).

The structural mode shapes and eigenfrequencies of a siiiglare computed with a three-dimensional fi-
nite element model. The transient three-dimensional inressible turbulent flow around a single cylinder at
Re = 12.4 x 10% is computed using the Shear Stress Transport turbulencelnigénter, 1994). The three-
dimensional finite element model of the silo is sequentiatiypled to the three-dimensional wind flow around
a single cylinder with two different algorithms. In orderrieduce the computational cost of the fluid-structure
interaction computations, the model of the structure isiced to two dimensions using the finite strip method.
This finite strip model of the cylinder is coupled to a two dmsmnal flow. The coupling procedure is validated
by means of experimental results of wind tunnel tests regdrt the literature (Laneville and Mazouzi, 1995).
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Figure 1: Photograph of the silo group.

2 Silo structure

The silos are circular cylindrical shell structures withiardeter ofD = 5.5 m and a height o5 m. One cylinder
consists of 10 aluminium sheets with a heigh2&fm and a thickness that decreases with the height fr@fmm

at the bottom td mm at the top. The length-to-radius ratig R = 9.1 and the radius-to-thickness ratio ranges
from R/t = 262 at the bottom td? /¢t = 458 at the top. At the top and the bottom, a cone is welded to thHedsi

at an angle ot 5° and60° with the horizontal plane, respectively. The bottom of thncler is supported by an
octagonal beam and is bolted to the beam at 4 points arourdrthenference. The silos are made of aluminium
with a Young’s modulus? = 67600 x 10% N/m?, a Poisson’s ratio = 0.35 and a density = 2700 kg/m®.

A finite element model of the silo has been validated by meamsanlal parameters derived from in situ mea-
surements of radial accelerations under ambient loadir@ii3 et al., 2006c¢). For the eight central aluminium
sheets (with a height &.5 m each), sixty 8-node quadrilateral shell elements are usmthd the circumferential
direction and sixteen elements are used along the vertigadtibn. In the zones near the lower and upper edges
of the silo and on both cones, smaller finite elements are asdd take into account the local bending waves
(Billington, 1965). The total number of shell elements isi@dto 18988. The eigenfrequencies and mode shapes
of a circular cylindrical shell structure are very sensitio the boundary conditions imposed on the axial displace-
mentsu,, while the influence of the boundary condition for the raiatp, is almost negligible (Forsberg, 1964).
At the bottom of the cylinder all degrees of freedom are aanséd in 4 points around the circumference. Figure
2 shows a top and a three-dimensional view of the five modeeshajih the lowest eigenfrequencies. Each mode
shape is referred to by a cougle:, n), wherem denotes the half wave number in the axial directiory 2 is the
number of axial waves) and is the number of circumferential waves. Two similar modepgsawith possibly
slightly different eigenfrequencies are associated wigngcouple(m, n). The in situ measurements indicate that
the eigenmodes witlil, 3) or (1,4) have the highest contribution to the response of the sildemuwind loading
(Dooms et al., 2003).

In order to limit the computational cost for the fluid-struiet interaction computations, a coarser finite element
model without the local refinements near the boundariesas.usn this model, the cylindrical part of the silo
is meshed with sixty shell elements in the circumferentie@ation and twenty in the axial direction. The total
number of shell elements in this model is equal to 1756. Taktempares the eigenfrequencies of the coarser
model with eigenfrequencies of the experimentally vakdanodel. For the lowest eigenfrequencies arouHd,

the differences between eigenfrequencies computed vetinitb models are smaller thaf.

In order to advance the finite element solution of the stmecto time, the Newmark method with = 0.25
andy = 0.5 is used. The time stept is equal t00.005s, which is small enough to compute accurately the
contributions of eigenmodes up 10 Hz. For the structure Rayleigh damping is added. The dampirigx@ is
constructed as a linear combination of the mass and theegfmatrix:

C=aM + K 1)

The modal damping ratiog, at two different frequencies; determine the multipliersr and 3 for respectively
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n=3 n=4 n=>5 n==6 n=2
3.93 Hz 3.93Hz 5.25 Hz 7.37Hz 7.75 Hz

Figure 2: Top and three-dimensional view of the five mode shay the silo with the lowest eigenfrequencies.

(m,n) | Coarser mesh Validated mesh
(1,2) | 790 880|775 848
(1,3) | 400 4.00|393 3.93
(1,4) | 393 405|393 4.04
(1,5) | 537 537|525 525
(16) | 737 737|737 7.37
7) | 972 972|972 972
(24) | 871 897|871 894
(25) | 593 593|556 556
(2,5) | 8.08 8.08 801 801
(2,6) | 929 9.49 929 9.39

Table 1: Eigenfrequencies (in Hz) computed with the coaaselrthe validated three-dimensional finite element
model.

the mass and the stiffness matrix by means of the followirstesy of equations:
2wy = a + Puwy, (2)

A modal damping ratig; = 0.25% at f; = 3.93 Hz andé; = 0.50% at f» = 20 Hz corresponds tec = 0.078s™!
andj3 = 0.75 - 10~*s. The modal damping ratios are estimated from the measuoedirdamping ratios for all
eigenmodes between93 Hz and20 Hz (Dooms et al., 2003).

3 Turbulent air flow around a single silo

First, the wind flow around a silo is simplified to a two-dimemal unsteady flow around a cylinder. In all
computations air with a densigy= 1.25kg/m? and a dynamic viscosity = 1.76 x 10~ Pas is used. The mean
wind velocity at a height of = 30 m for terrain category Il (BIN, 1995) is equal tg, = 31.84 m/s. At the inlet,

a turbulence intensity = +/2k/3/v,, = 1.00% is imposed.

As the Reynolds numbéte = Du,, /v = 12.4 x 10 is larger thamRe = 3.5 — 6 x 105, the regime of the flow
around the cylinder is post-critical (Zdravkovich, 199The wake and the shear layers are fully turbulent and the
boundary layers become fully turbulent prior to separatibnthe boundary layers, the transition from laminar
to turbulent flow takes place between the stagnation andeibaration point. In the post-critical regime, regular
vortex shedding reappears, while it was absent at lower &ldgmumbers.
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The pressure coefficient is a dimensionless expressiohégoressure at the cylinder’s surface:

C(p = 2 (3)

wherep; andv; are the free stream pressure and velocity, respectivelyodéde 1 (BIN, 1995) describes the
pressure coefficient as a function of the angleRer= 107. At the stagnation point, the pressure coefficient is
equal tol. The minimum value of the pressure coefficiérg’ti“ equals—1.5 atan angle of5°. The boundary layer
separates dt05°. After separation, the base pressure coeffidébﬁs constant and equal t60.8. Zdravkovich
(1997) gives an overview of available experimental dataer&hs a lack of detailed experimental data at post-
critical Reynolds numbers, while available data show abersible scatter, which may be explained by the high
sensitivity of the flow to perturbations due to surface rawegs and free-stream turbulence.

A two-dimensional URANS simulation is performed with theXCfinite volume code (Ansys, 2005a). The High
Resolution spatial discretization is used, which is anmatiically determined blend of a first and a second order
accurate scheme. The coupled algorithm solves the momeartdmontinuity equation as a single system.

The boundaries of the computational domain should be seffilyi far from the region close to the silo where the
accuracy of solution is important. Behr et al. (1995, 199gest a distance of at leasb for the inlet and the
lateral boundaries and a distancedf5 D for the outlet, withD the diameter of the silo. Here, a distancé &f is
adopted for the inlet and the lateral boundaries &Wd for the outlet. Results on a larger problem domain, where
the inlet and the lateral boundaries are locaterd and the outlet at0D, are comparable.

Far away from the silo wall, an unstructured mesh, congjstitriangles, is used. Close to the silo wall and
in the wake of the silo, the mesh is structured and consistmaflrilaterals. The nodes next to the silo wall are
placed in the logarithmic law region, where a logarithmietien exists between the dimensionless wall distance
yT = v;y/v and the dimensionless velocity” = v /v, wherev, = \/7,/p is the friction velocity,y the wall
distance and,, the wall shear stress:

1
vi=—-lny" +B (4)
K

The von Karman constantis equal to 0.41 andB is equal to 5.2. In the outer layey{ > 50), direct effects of
the viscosity on the main flow are negligible. Nevertheléiss,region of validity of the logarithmic law can be
extended tqy™ > 30. The mesh consists of 53530 elements and 90798 nodes. Atitittie the dimensionless
wall distancey™ of the nodes next to the silo wall varies from 0 at the stagnagioints to 220 (figure 3). In
practice, so-called wall functions apply the logarithn@wlas boundary conditions on the nodes next to the silo
wall.
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Figure 3: Dimensionless distangé& of the nodes next to the silo wall as a function of the arfigfier a single silo.

The Shear Stress Transport (SST) (Menter, 1994) turbulerael combines through a blending function the
robust and accurate formulation of thev model in the near wall region with the free stream indepeodei

the k-« model in the outer part of the boundary layer. It is used as dtiited to predict the onset and amount
of separation under adverse pressure gradients and podéi@ turbulence models in CFX the best overall
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correspondence with a set of experimental results fromitbture (Zdravkovich, 1997) for the flow around a
cylinder (Dooms et al., 2006b).

As in the post-critical regime regular vortex shedding issent, an unsteady RANS computation (laccarino et al.,
2003) is performed. The transient solution is integratethieythree-point backward difference scheme with a time
stepAt = 0.005s, which corresponds to approximately 100 time steps peexatedding period. Within every
time step, 5 iterations are performed to obtain a convergkdisn. The computed time window corresponds to
ten vortex shedding periods. 937 time steps are computeidhwisults in a time window of.68 s. The vortex
shedding frequency,s = 2.13 Hz is described by the dimensionless Strouhal number:

_ fsD
= o

St =0.37 (5)

For flows withRe ~ 107, experimental values for the Strouhal number (Zdravkavid97) range from 0.27

to 0.32. Eurocode 1 suggests a constant valué findependent of the Reynolds number. If the streamlines
would separate a little bit earlier from the cylinder watletStrouhal number would be reduced. Placing the lateral
boundaries further away might decrease the Strouhal nuasbeell.

Figure 4 shows the time history and the frequency conteititeoptessure in a point at the silo’s surface. The vortex
shedding frequency and some higher harmonics are cleailyl&in the frequency content.
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Figure 4: (a) Time history and (b) frequency content of thespure in a point at the silo’s surface for a single silo.

Figure 5 shows the time average and the standard deviatitimegbressure. The stagnation pressure at the
windward side and the suction in the wake are clearly visiblee largest time variations of the pressure occur in
the wake.

-

Figure 5: (a) Time average and (b) standard deviation of teesurep for a single silo.

Figure 6 compares the time-averaged pressure coeffiCignf the transient computation with experimental data
from the literature. The range of the available experimeddta for the pressure coefficients at Reynolds numbers
from 0.73 x 107 to 3.65 x 107 is plotted in light grey at the background. The time averafjthe transient

computation predicts a too low minimum pressure coeffic@ﬁin, while the base pressure coefficié?gb is
quite high. The maxima and minima of the pressure coeffidening the transient computation are depicted as
well.
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Figure 6: Comparison of the time average (solid line), mimim(dash-dotted line) and maximum (dotted line) of
the pressure coefficient with experimental data for a sisilte

The drag coefficienCy = jﬁ”?pcos ada is, according to Eurocode 1, equal @or2 for a smooth surface
(k/b = 1075). Drag coefficients derived from the experimental pressosficients vary front).45 to 0.73. The
computations predict 0.35, which is an underestimation.

Next, in order to couple the flow to the three-dimensionallstnedel of the structure, the three-dimensional
wind flow around a single cylinder is modelled with symmetoubdary conditions on top and bottom surfaces.
The velocity profile at the inlet is uniform along the heigfite three-dimensional mesh is obtained by copying
the mesh used for the two-dimensional flow around a singte 1l times in the axial direction. The number
of elements in the axial direction is sufficient to compute tlow around a silo which deforms according to an
eigenmode withn = 1. This number is however too low to generate any variatioméwortex shedding pattern
along the axial direction. The total number of elements isaétp 642360.

In order to obtain an initial solution for the fluid-structuromputation, first 1080 time steps are computed just for
the fluid field, which results in a time window 6f4 s. Figure 7 shows the time history and the frequency content
of the pressure betweeén= 3.55s andt = 5.4 s at the cylinder’s surface at mid-height fér= 112°, 6 = 174°
andf = 180°. The vortex shedding frequency 216 Hz and a higher harmonic &t31 Hz are clearly visible

in the frequency content. This vortex shedding frequenglightly higher than the frequency obtained with a
two-dimensional computatior2 (13 Hz).
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Figure 7: (a) Time history and (b) frequency content of thespure at the cylinder’s surface at mid-height for
0 = 112° (—), 0 = 174° (—) andf = 180°(-). The angle® = 0° coincides with the stagnation point.

4 Fluid-structure interaction

In this section the wind induced ovalling oscillations oé tkilos located in the port of Antwerp, are studied for
one silo using fluid-structure interaction. The shell maafethe structure is coupled with the three-dimensional
incompressible turbulent wind flow around a cylinder (fig8Je
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Figure 8: Model for the coupled simulation of the three-disienal wind flow around a cylinder and the response
of the silo structure.

Between the structure and a cylindrical surface with a diamequal to twice the silo diameter, the fluid flow is
computed on a deforming mesh. The Navier-Stokes equatimrisdompressible flow are written in an Arbitrary
Lagrangian Eulerian formulation (Hughes et al., 1981):

Vx-v=0 (6)
ov N
— _|_(C.vx)v—|—vxp :2I/Vx'€+b (7)
ot |,
wherex andx denote the referential domain and the spatial domain réspBc The convective velocity is
defined as the difference between the material particlecitgle and the grid point velocitw. On the outer
boundaries of the fluid domain, the grid point velocitghould remain zero, while on the fluid-structure interface
the grid point velocityw should be equal to the velocity of the structure.

The grid point displacements of the fluid mesh are obtained by diffusing the displacemeftthe structure
through this domain:
V- (kVu) =0 (8)

As to preserve the quality of the mesh in refined regions, iffiesiity of a finite volume is equal to the inverse of
its volume.

For the load transfer between the non-matching grids, tmitm is first integrated over the surface of the fluid
independently of the structure. The resulting nodal foscrdnsferred to the structure using a point to element
mapping: each node of the fluid mesh is mapped onto one eleshéimt mesh of the structure. The transferred
force is distributed over the nodes of this element accgrtiinthe value of the shape functions of the structure.
As the sum of the shape functions is equal to one the totatfisrconserved. For the displacement transfer, the
consistent interpolation method is used. The consistéatgnlation method is based on the same point to element
mapping: each node of the fluid mesh is mapped onto one eleshérg mesh of the structure. The value of the
displacement at the projection of the fluid node onto thectiral element is interpolated using the shape functions
of the structure mesh.

As initial conditions the undeformed structure and the gramt solution of the fluid flow without interaction at
t = 5.4s are used. 500 time steps are computed, which results in antingw of 2.5 s.
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First the conventional serial staggered algorithm (athatiA) is applied, in which every field is computed once
at each time level”. In a second computation an iteratively staggered algorigigorithm B) ensures the equi-
librium between the two fields at each time level A relaxation parameter™*(*) can be introduced for the
interface displacements:

up T = o OGEEEY (1 O ©

_ u;}+1(i) + w'n+1(73)(ﬁ?+1(i+1) _ ult“rl(i)) (10)
The interface displacememé”“(”l) that will be transferred in the next iteration to the fluice arlinear combi-

nation of the newly computed interface displacemé“rﬁél(”l) in the structure and the interface displacements

u?H(i) transferred to the fluid at the beginning of the iterationthis case the interface displacements are not
relaxed.

The convergence of the interfield iterations is reached if:

Tn+1(i+1 n+1(7
[t — gt

=10 < €gp (1)
lr I,

where ¢, are the interface displacements or forces. Maximum fowarfigld iterations are needed to obtain a
relative change of the transferred quantities smaller ¢éjas 0.001 (equation (11)).

Figure 9a compares the time history of the radial displacesni three points at mid-height of the silo com-
puted with algorithm A and B. Within this short time windowtha@omputations are stable. For a more rigourous
evaluation of the stability more time steps should be coeqhuClearly, the results computed with algorithm A
show differences that increase in time with the results gb@ihm B because the accuracy of the conventional
serial staggered algorithm is lower than the accuracy oftératively staggered algorithm. The accuracy of the
conventional serial staggered algorithm could be imprdwethe use of a prediction for the structural displace-
ments and a corrected fluid force, but this option is not atél in the coupling between Ansys and CFX. As the
staggered coupling algorithm is stable for this exampleitihe step could be as well reduced in order to improve
the accuracy. This might be cheaper than the use of interfeztations.
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Figure 9: (a) Time history of the radial displacements at-hméht foré = 66° (), § = 120° (—) andd = 180°
(=) computed with algorithm A (dashed lines) and algorithm 8li¢slines) and (b) frequency content of these
radial displacements computed with algorithm B. The aAgle0° coincides with the stagnation point.

Figure 9b shows the frequency content of the radial dispi@ees in the same points computed with algorithm B.
The response of the silo is dominated by eigenmodes (1,3)la#daroundt Hz. The peak arounl Hz indicates
the effects of vortex shedding on the silo structure. Thellempeaks above Hz are related to the eigenmodes
with higher frequencies.

Figure 10 shows the deformations (enlarged with a factorf3he structure between a height of.25m and
13.75m at three different times. At all times a antinode faces tlee fstream direction. At = 5.905s and

t = 6.805s the response is dominated by eigenmodes (1,4) with resplct negative and a positive radial
displacement &t = 0°. At ¢t = 7.250 s eigenmode (1,3) is dominant. The maximal radial displacrisé).105 m
att = 6.415s and occurs at a height @t m andf = 0°.
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@) (b) ©

Figure 10: Deformations (enlarged with a factor 5) of theidire betweeri1.25m and 13.75m high at (a)
t =5.905s, (b)t = 6.805s and (c)t = 7.250s. The wind flows from the left.

Figure 11 shows the time history and frequency content optiessure betweeh= 5.4s andt = 7.9s at the
cylinder’s surface at mid-height fér = 112°, § = 174° andf = 180°. The comparison with figure 7 indicates
that the structural deformations influence the pressura fiear the wall. While the pressure time histories of the
flow simulation around a rigid silo mainly showed contriloum$ at2.16 and4.31 Hz, in the coupled computation
contributions are present as well at higher frequenciesinfportant contribution is present aroundiz which
corresponds to the eigenfrequencies of eigenmodes (1g3)1a4). Due to the interaction the magnitude of the
pressure fluctuations arouBdiz has clearly increased, which indicates an amplificatiomefortex shedding.
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Figure 11: (a) Time history and (b) frequency content of thespure at the cylinder’s surface at mid-height for
0 =112° (—), 0 = 174° (—) andd = 180°(-) using algorithm B. The angl¢ = 0° coincides with the stagnation
point.

The pressure field on the vertical plane through the cylilsdes parallel with the inlet flow direction at= 7.9s

is shown in figure 12. The pressure field behind the cylindetdarly three-dimensional. Figure 13 shows the
pressure at the cylinder’s surface along the height at five fievels for three circumferential angles. At the
beginning of the simulation (dt= 5.4 s), the pressure is constant along the height in the stagnatimt @ = 0°)
and forg = 180°. At § = 112° the pressure varies slightly with the height. During thepted simulation the
largest variations along the height occufat 112°, but also at = 0° andd = 180° considerable variations take
place.

At every time level the radial displacements along the airf@rence at mid-height are decomposed into a Fourier
series of modes with circumferential wavenumbersFor each mode principle component analysis (Pearson,
1901) of the time series yields the position of the first ardsécond principle component with respect to the silo.
For all circumferential wavenumbersthe first principle component is positioned roughly with atigode facing

the flow and the second with a node facing the flow. Figure 14vshhe time history and frequency content of
the first and the second principle component correspondiriy¢umferential wavenumbers = 2, 3 or 4. The
response of the silo mainly consists of modes with circuerféal wavenumben = 3 and 4. Their contribution
varies strongly with time.
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Figure 12: Pressure field on the vertical plane through ttiedsr axis parallel with the inlet flow direction at
t="79s.

25 25 25

20 20 20
Es E 15 E 15
= = =
R= E= 2
% 10 2 10 % 10

5 5 5

0 0 0

400 600 800 1000 -800 -600 -400 -200 -600 -400 -200 0

(a) Pressure [Pa/Hz] (b) Pressure [Pa/Hz] (C) Pressure [Pa/Hz]

Figure 13: Pressure at the cylinder’'s surface along thehhéig (a) 6 = 0°, (b) & = 112° and (c)f = 180° at
t=>54s(),t=>5475s () andt = 5.925s () t = 6.35s (—) t = 6.605 s (—).

0.03— T T T T 0.03

0.025
= £ o002
= E
5 =
5 2 0.015f
£ g
o kS
8 & oo1f

2 o
0.005
-0.06 —* - . . L ob -
55 6 6.5 7 7.5 10

(a) Time [s] (b) Frequency [Hz]

Figure 14: (a) Time history and (b) frequency content of tingt fisolid line) and second principal component
(dashed line) of the displacements at mid-height with eir@rential wavenumber = 2 (), n = 3 (—) and
n=4().

In order to evaluate the occurrence of ovalling oscillagidhe response of the structure should be computed during
a much longer time interval (e.g0s), as the structure is suddenly loaded and the modal damatiag rare very

low. However, the computation times using a single proaeasovery high. The major part is spent on the fluid
partition.

5 The finite strip method

A reduction of the dimensions of the problem decreases thgpatational cost substantially. The finite strip
method enables to build an approximate model of the stredtutwo dimensions. This finite strip model of the
silo is coupled to a two dimensional flow.
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Using a finite strip formulation (Cheung, 1976), the displaents of the three-dimensional structure are decom-
posed into a series of orthogonal functions that satisfyiaripthe Dirichlet boundary conditions in the axial
z-direction and a two-dimensional displacement field in (the)-plane. The use of orthogonal functions results
in a decoupled system of equations for every term in the seflibe sine functions reflect that the radial and cir-
cumferential displacements are assumed to be zero at bdshaéithe cylinder, while the cosine function allows
for free axial displacements at both ends:

up(r, 6, 2,t) oo | sin(™I2) 0 0 Upn (1,0, 1)
ug(r,0,z,t) | = Z 0 sin(™7F%) 0 Ugm (1,0, 1) (12)
u,(r, 0, 2,t) m=0 0 0 cos(™=) Uz (7,0, 1)

The coupling procedure is validated by means of experinheggalts of wind tunnel tests reported in the literature.
Laneville and Mazouzi (1995) studied the ovalling phenoameor five different cylindrical shells in a wind tunnel.
The cylinders were clamped at their base to a turntable omeight of 10 cm and did not have an end plate at
the top. The flexible part of the shell was located outsidebitnendary layer of the wind tunnel. At the top of
the cylinder, an adjustable false ceiling was fixed withinsiahce of 0.02 times the diameter of the cylinder in
order to reduce the three-dimensional effects in the flove dflinders were made of aluminium with a Young’'s
modulusE = 68960 MPa, a densityp = 2643 kg/m® and a Poisson’s ratie = 0.3. Cylinder L1, with a height

of 91 cm, a radius of6 cm and a shell thickness #0127 cm, started vibrating in mode (1,3) at a wind speed of
5m/s (figure 15).
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Figure 15: Mode occurrence and vibration amplitude as atiomof the flow velocity (Laneville and Mazouzi,
1995).

The finite strip formulation of equation (12) is justified fstructures which are simply supported at both ends.

Here, the cylinder is clamped at its base and open at the fppowever, a quarter (co)sine is assumed for the

variation of the displacements in the axial direction, tlgeemodes can be approximated by doubling the height
of the cylinder in the finite strip model: finite strip model &$a height o2 x (0.91 —0.10) = 1.62m. The series

in equation (12) can be limited to the temm = 1. The resulting 2-node elements have four degrees of freedom
per node: the displacements in the radial, circumfereatidlaxial directions and the rotation around thaxis.

As CFX (Ansys, 2005a) inherently is a three-dimensionatifkolver, the fluid mesh is one element thick in the
third dimension and symmetry is applied to both planes. Asrable coupling with this fluid model, a finite
strip model with one element in the third dimension is ol#diby combining a dummy four node Kirchhoff plate
element with two user defined matrix elements (Ansys, 2006k finite strip elements are implemented through
the user-defined elements. The stiffness matrix of the usfaretl elements is independent of the deformation, so
that geometrical non-linear effects are not included irs¢hierms. The dummy plate elements transfer the fluid
loads to the two user defined matrix elements. Theyl&2m high and have a Young’s modulus and a density
which is a factorl0—¢ smaller than the values of aluminium.

The lowest eigenfrequency computed with model 1 correspavall to the measured value (table 2). In order to
achieve a better correspondence for the other eigenfretsein a second model, the height is changedid m,
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the Young’s modulus t65000 MPa and the density ta875 kg/m3. Figure 16 shows the four mode shapes with
the lowest eigenfrequencies of model 2.

Measured| Model 1 | Model 2

n| flHz] | fHz] | [[HZ]
2 47.0 471 46.9
3 64.5 68.7 64.5
4 117.5 127 118
1 127 129

Table 2: Comparison of the eigenfrequenciesifor= 1 of the measurements and different finite strip models.

a.(1,2) b. (1,3)
46.9 Hz 64.5 Hz

Figure 16: Eigenmodes of cylinder L1 computed with a finitgpshodel.

First a steady-state FSI computation is performed. At thet Bawind velocity of7 m/s is chosen. At this wind
speed the vibration amplitude for mo¢le 3) was maximal (figure 15). Figure 17a shows the deformatiortiseof
cylinder enlarged with a factor five. The largest displacet&0.84 mm. The pressure distribution around the
deformed cylinder is shown in figure 17b.

(@ (b)

Figure 17: (a) Deformed structure (enlarged with a fact@)fand (b) pressure distribution around the cylinder for
steady-state FSI computation.

The results of the steady FSI computation are used as iodgraitions for a transient FSI computation. For both
fluid and structure the time step is chosenfeis= 0.0002s. This is small enough to compute accurately the
contributions of eigenmodes up 260 Hz (figure 16) and to be able to calculate the vortex sheddingeniake

of the cylinder. 1000 time steps are computed, which reguléstime window 0f0.2s. The iteratively staggered
algorithm without relaxation is employed. Maximum ten ifidd iterations are performed in order to obtain a
relative change of the transferred quantities smaller éas 0.001.

As ovalling occurs when the negative aerodynamic dampingela the structural modal damping, the structural
damping is reduced step-by-step in order to find the dampatig at which ovalling occurs. The damping ratio
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is supposed to be equal for the two lowest eigenmodes, at 46.9 Hz and atf, = 64.5 Hz. The value varies
from 0.0596% over0.0238%, 0.0149%, 0.0134% to 0%. Figure 18 shows the radial displacement§ at 180°

and# = 90°. For the highest damping ratib0596%, the response of the structure is damped out and shows a
stable behaviour. For the four lower damping ratios, thearase of the structure becomes unstable during the
computations. The lower the structural damping is, the eptite computations become unstable. From a certain
time step, the convergence criterium for the forces (11pissatisfied anymore after ten interfield iterations. For
the three lowest damping ratios, in subsequent time stepsotvergence criterium for the displacements (11) and
the convergence criterium for the flow computations are atsfed anymore and the computations finally crash
due to excessive deformations of the structure.
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Figure 18: Structural displacements for ¢a)= 180° and (b)d = 90° for different structural damping ratios:
0%(=), 0.0134% (—), 0.0149%(—), 0.0238%(—) and0.0596%(—).

Figure 19 shows the deformations of the structure for resmdy the damping ratio8%, 0.0134% and0.0149%
during the time step before the collapse of the structuree déformed shape consists of a combination of the
eigenmode (1,19) with another eigenmode (1,2) or (1,3).€igeenmode (1,19) has an eigenfrequenc39f7 Hz.

At this frequency the modal damping ratio is respectivelyado 0%, 0.35% and0.39%. Further research should
clarify the cause of these instabilities and the preseneggeihmode (1,19) in the response of the structure.

(b) (©)

Figure 19: Deformations of the structure for the dampingsata) 0%, (b) 0.0134% and (c)0.0149% during the
time step before the collapse of the structure.

6 Conclusion

During a storm in October 2002, ovalling was observed onrs¢empty silos of a group of forty silos in the port
of Antwerp. A coupled numerical analysis of the wind flow ardwne silo is performed.

The differences between the eigenfrequencies of a vatidhtee-dimensional finite element model of the silo

structure and a coarser model without the local refinemesds thhe boundaries are quite small. The eigenmodes
with the lowest eigenfrequencies, arouhHz, have a circumferential wavenumber= 3 and4.
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The two-dimensional wind flow around a single cylinder is it at a Reynolds number @£.4 - 105. An
unsteady incompressible RANS simulation using the Sheas$&iTransport turbulence model is performed. The
vortex shedding frequency is equal2zd 3 Hz. The three-dimensional wind flow around a single cylindetds a
slightly higher vortex shedding frequend.16 Hz).

The three-dimensional finite element model of the silo ispbed to the three-dimensional wind flow around a
single cylinder. The structure and the fluid are sequenttalpled with a conventional serial staggered algorithm
and an iteratively staggered algorithm. In the iterativeggered algorithm, the transferred displacements dre no
relaxed. Maximum four interfield iterations are needed iteotto obtain a relative change of the transferred quan-
tities smaller than 0.001. The accuracy of the conventiseaal staggered algorithm is lower than the accuracy of
the iteratively staggered algorithm. The response of floeésdominated by the eigenmodes with circumferential
wavenumbern = 3 and4. The structural deformations influence the pressure fiedd the wall: the pressure fluc-
tuations at the vortex shedding frequency have clearlyesmed and due to the interaction pressure fluctuations are
present as well at the lowest eigenfrequencies of the simreict

In order to reduce the computational cost of the fluid-stmecinteraction computations, the model of the structure
is reduced to two dimensions using the finite strip methods Tihite strip model of the cylinder is coupled to a
two dimensional flow. The coupling procedure is validatedrisans of experimental results of wind tunnel tests
reported in the literature (Laneville and Mazouzi, 1995heTowest eigenfrequencies and mode shapes of the
finite strip model correspond well with experimental resulds ovalling occurs when the negative aerodynamic
damping cancels the structural modal damping, the stralcti@mping is reduced step-by-step in order to find the
damping ratio at which ovalling occurs.

For the highest damping ratin0596%, the response of the structure is damped out and shows a birhviour.

For the four lower damping ratios, the response of the siradiecomes unstable during the computations and the
computations finally crash due to excessive deformatiotiseo$tructure. Further research should clarify the cause
of these instabilities.
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A Computational Environment for Membrane-Wind Interaction

T. Gallinger, A. Kupzok, U. Israel, K.-U. Bletzinger and R.iMhner

Within this paper the development of a computational envivent for the specific case of light-weight structure-
wind interaction is addressed. To highlight modularity atjiioned solution approach is chosen in combination
with Dirichlet-Neumann type coupling and adaptive undaeaxation. The specific needs of the single-fields, like
turbulent wind flow in the atmospheric boundary layer andadyit structural behavior with large displacements,
are addressed and the simulation techniques to cope wiietage given. Emphasis is placed on the software re-
alization at the coupled interface, for which a seperategoaonme was developed. Different application examples
of the environment are given, in which important single aspare proven and a complex real-world application
is treated.

1 Introduction

Predicting and analysing structural behavior of optimizaed light-weight structures like membranes and very
thin shells are topics of high interest in structural engiivgg. One of the most decisive influences on this special
type of structures is wind, which necessitates an in-dep#yais of this phenomenon. In general, the influence
of wind is difficult to predict. The standard procedure inilodngineering is to reduce complexity by introducing
appropriate assumptions. However, this approach invdhesisk of overestimating or neglecting effects which
result from the strong coupling of the two different physitelds. On the one hand, this leads to structures being
oversized and inefficient due to the need for large safetpfacon the other hand this can also lead to damages or
even catastrophic failures. A prominent example for thitésTacoma Narrows bridge desaster.

Thus, there is a need to reproduce the coupled behavior betigint-weight structures and wind as accurately as
possible or necessary. In this regard, the numerical stionlaf aeroelastic effects is a promising complement to
and enhancement of current methods in use. The purposesakgegarch is the development of a computational
environment for the design and analysis of light-weightictinres under wind influence, being able to capture all
relevant phenomenona and helping to improve design amgsidihe physical phenomena of this specific case,
that have to be captured by the environment, can be brieftglséd as:

e Represent wind flow within the atmospheric boundary layehwifluence of surrounding buildings and
landscape. This leads to characteristic Reynolds numbeheiorder ofl 06 to 107.

e Simulate behavior of light-weight prestressed structurdsch are a result of form finding processes. Typ-
ically with complex and non-parametric geometries and, tdueigh flexibility, large dispacements under
wind influence.

e The combination of wind and high flexibility leads to aeratiaeffects, that have a significant influence on
the structural behavior and, therefore, cannot be neglecte

Summarizing the physical phenomena leads to the followdogirements for the computational environment on
modeling and numerics:

¢ Ability to represent the important characteristics of gbgswind by modeling highly turbulent flows in a
steady and unsteady regime.
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Form finding of prestressed membrane and cable structures.

Geometric nonlinear dynamic and static computations of brames and thin shells.

Simulation of aeroelasticity by efficient, stable, andakle algorithms.

Execution of massively parallel computations to cope wél+world problems.

This paper is organized as follows. In section 2, the physfche problems are stated by the underlying set

of governing equations and models. Section 3 describeselleetsd numerical approach to solve the physics.

Section 4 gives an insight into the realized software imgetation. In Section 5 different examples are shown:

First some principle examples to proof important singleeaspof the environment separated from each other and
then a realistic example of a real-world structure showiregdapabilities of the developed environment. The paper
ends by a conclusion and an outlook on the next planned steps.

2 Governing Equations

The whole simulation domaif? is split into a fluid domair2?” and a structure domai®, with Q@ = QF U Q°
and the interface between fluid and structure denoteld’®y; with 'S = QF N Q.

The fluid flow on a moving domain can be assumed to be inconmipltesand is described by the momentum
equation

ou od 1 _ P
a+(ufa)Vuffp—FVp+V~(VVu) in Q

and the continuity equation
V-u=0,

which set up together with boundary and inital conditions
u(z,t) = ur(t), p(x,t)=pr(t) on IF

11(1‘,0) = uO(‘T)v p(.r, 0) = pO(O)

the well-known Navier Stokes equations (NSE). Hereilenotes the fluid veIocity%? the observer velocity and
p the pressure.

The set of equations describing the structure problem gy the momentum equation

d*d

22 _V(F-S)=f in Q°
PS 3 V-(F-S) in ,

the constitutive equation
S=C:E,

giving a relation between the second Piola-Kirchhoff stes§ and the Green-Lagrange stralisthe kinematic
equation

E = %(FT-F—I),
with F = Vd as the deformation gradient. The boundary and initial cioms are
d(z,t) =dp(t), S(z,t)=Sr(t) on I¥

d(z,0) = do(z), S(z,0) = So(0).

Herein, d denotes the structural displacements &rttie sum of external and internal forces. At the interface
between fluid and structui@”® certain conditions have to fulfilled. These are the continaf displacements

drrs = drrs,

and continuity of surface traction
%FFS - tFFS .
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3 Partitioned Solution Approach

In principle, different approaches to solve the above dtfltéd-structure interaction problem exist. The most
common ones are monolithic and partitioned strategieshisé monolithic strategy the whole nonlinear coupled
problem, containing terms from the fluid and the structuid fiad interfield terms, is solved simultaneously. The
solution can be carried out very efficiently, but full accésshe field solvers is required, which spoils software
modularity and makes the use of black-box solvers impossililoreover, the consideration of the two different
physics leads to huge coefficient matrices which might eeeitidgonditioned.

Within a partitioned strategy, the single fields are solvettpendently from each other, exchanging and preserving
interface conditions via their boundary conditions. Thiseg the possibility of chosing the best suited solver and
methodology from a broad range of existing ones for the $ipesingle field. Within the context of simulating
interaction of complex geometries with turbulent flow, ati@ned method is known to be the most convenient
and flexible approach (Cebral, 1996; Farhat and Lesoinng);2Qalro and Tezduyar, 2000; Stein et al., 2001,
Wiichner, 2006). In the context of this work, a partitioned moeltis therefore chosen. In the following, the
numerical treatment of the single fields is given, followgdaldescription of the interface treatment.

3.1 Fluid Field

The fluid flow has to follow the physical principle of the Navi8tokes equations in its incompressible form
on a moving domain. Therefore, the equations are given mvitini ALE framework. For the discretization of
the underlying equations, the cell centered Finite Volumethdd (FVM) on unstructured grids is used and a
segregated solution approach is chosen.

Because FSI simulations show naturally a transient cheniatit, the segregated pressure based solution algorithm
PISO (Issa, 1985; Ferziger and Rerl999) for solving the transient fluid flow is applied. Thigans, that the
momentum equation is linearized, the coupled system oftemsais solved in a sequence and the pressure equa-
tion enforces the conservation of mass. According to Jak28€), the PISO algorithm splits up into the following
steps:

e Momentum predictor: Solve the momentum equation, given by

apUp = H(U) _ZS(P)J‘-
f

The indexP denotes values at the cell centfeyalues at faces, that belong to the current eghlis a matrix
coefficient that belongs to the cell velocity, afids the face area vector. Because the pressure gradient is not
known, use the pressure field from the previous time stepwpled subiteration. This gives an approximate
solution of the new velocity field, but it is not divergencedr

e Pressure solution: Assemble thed (U) operator, given by
UO
H(U) = — ZN:aNUN + X7
using the predicted velocities. The ind&xdenotes all neighboaring values. Setup the pressure equati

S5 () =38 (EY))
7 ap 7 r

a

The Solution gives an estimate of the new pressure field.

e Explicit velocity correction: Use the new pressure field to evaluate the conservative faaesf|

H(U) 1
F=5-Ur=5[(=")s = (—)s(Vp)s].
P ap
Correct the velocities in an explicit manner by solving
H{U 1
e HO) 1
ap ap
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e Loop until convergence: Setup newH (U) operator based on corrected velocities. Repeat fegsure
solution andExplicit velocity correction until convergence.

It should be noted, that for steady-state simulations thPEIE algorithm is applied, which is a simplification
of the above stated PISO algorithm. Examining the time ivactwhich is needed within one time step to solve
the evolving equations, leads to the observation that ad&0% to 80% of the total simulation time is spent for
solving the pressure equation due to its elliptic natureusT it is of main interest to solve this equation in a most
efficient way. The procedure applied follows the recentlglfained work of Jasak et al. (2007). Itis a combination
of a Krylov space and multigrid method with a strong smoothighin the multigrid levels. The Krylov method
used is of type Conjugate Gradient (CG), a standard solvdinkear systems. Its efficiency depends extremly on
the chosen preconditioner, which is traditionally the imptete Cholesky factorisation (ICCG). However, as pro-
posed in Jasak et al. (2007), here an Agglomerative Algebaitigrid Solver (AAMG) is used as preconditioner
to lower the condition number. This leads together with tineng smoother of type Gauss-Seidel to a substantial
performance improvement compared to standard ICCG or AMGED

The schemes applied for discretization of temporal devigat convective and diffusive terms are all seccond

order in space and time. In the majority of the performedwdat®ons, the following schemes are used: The

temporal derivative is approximated by the implict, seconder accurate three time level scheme, referred to as
the backward scheme, the diffusive terms by Gaussian etiegrwith central differences and the convective terms

by a TVD limited form of central differences.

Because the spatial domain shape changes in time, a meshm@iovéechnique is necessary. This is done by
prescribing the boundary velocity of the fluid domajalr- and solving a Laplacian equation within the domain of
typeV-(yV(d:dr)). The diffusion coefficient is defined per finite volume. Typically, itis chosen to be dwefent

on the nearest distanédetween the current cell center and the moving boundarhéyarmulay = li andm
being equal t®. More details on the implementation are given in Jasak amk@viia (2007). It is noted, that the
combination of the implemented moving mesh technique aathéitckward scheme for the temporal discretization
is known to satisfy the space conservation law, otherwisg®in the form of artificial mass sources would occur
(Demirctic and Peig, 1988; Prster et al., 2006; Tukovic and Jasak, 2008).

A specific topic within the computational modeling of windwlds the treatment of the turbulent flow behavior.
Wind flow is naturally highly turbulent, with typical Reyras numbers beyond the orderf®. There exist dif-
ferent methodologies to capture turbulent effects, thetiwm®mmon ones are Direct Numerical Simulation (DNS),
Large Eddy Simulation (LES) and methods based on Reynoldsa@§ing (RANS). DNS and LES are computa-
tionally extremly demanding and, in the case of complex angd civil engineering structures, the computational
power is currently simply not available to solve problemshwihis approach. Therefore, RANS is the method
of choice, which use is also widespread in industrial flowgligption. In this work, the Shear Stress Transport
(SST) model (Menter and Esch, 2001; Menter et al., 2003)ad ushich is a zonal formulation of a two-equation
eddy-viscosity model based on blending functions. The e model is employed in the free-shear layers of the
flow. In the near wall layer, however, tihe- ¢ model is known to overpredict turbulent kinetc enekgyvhat leads

to incorrect prediction of separation points in the flow. figfere, in the boundary layers tthe— w model is used,
which is known to give substantially more accurate resititsas recently been shown, that this model gives good
results for wind-induced flows in comparison to wind-tundetla (Yang et al., 2008).

3.2 StructureField

The principal structure problem, as stated above, is al@wkras Cauchy’s first equation of motion. It is of
transient and geometric nonlinear nature, leading to argitien that distinguishes between undeformed config-
uration X and deformed configuratiorn. Due to the limitation on large deformations but small stsaithe St.
Venant-Kirchhoff material law is used to set up the constituequation.

The geometry of a membrane is given as a two-dimensionaaiif space, which is described by the two surface
parameter®! and©2. The curvilinear base vectors are defined by

ox 0X
= 500 aswellas G,=X,= 70

The deformation of a point at the membrane surface depentiedifference of its location in space:

d(e!,0%t) =x(e',e?t) - X(e!,o?.

8a = X a
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The spatial discretization of these equations is based erfifite Element Method (FEM) with a Lagrangian
description, using an isoparametric element concept. [Ehids to the semi-discrete equations of motion

Md + Cd + Tint (d) = lext,

whereM is the mass matriXC the damping matrixs;,,¢ the vector of internal forces anf,, the vector of external
forces. The external forces consist of forces arising withe single-field problem, like self-weight or snow, and
forces from the surrounding fluid field, and therefirg = fo.t 5 + feut, Fsr-

The temporal discretization of the nonlinear problem iseblagn a time integration algorithm. It should ensure
second-order accuracy and high numerical stability. Theee the implicit generalized- scheme is applied.
Additionally, it offers the possibility of controlled numieal damping of high-frequency noise and minimizing
errors in the lower modes of interest. The structures undesideration are thin-walled light-weight structures
like shells and membranes, which are based on the assuntiptitihe negligibly small thicknegsstays constant
during deformation. The latter has an important impact anfdrmulation of the coupling interface, i.e. data
transfer at the interface and the fluid field solver must be tbhandle infinitely thin surfaces.

Membrane structures are typically supported at their edggsestressed edge cables, leading also to a prestressed
state in the undeformed configuration. The undeformed corgtgpn of a membrane structure is therefore a state
of equilibrium between prestresses in the edge cables darhal stresses in the membrane. The shape of the
membrane is not known a priori and an additional analysistbase performed in advance, being known as
form finding procedure. The need for special form finding phares results from the singularity of the inverse
problem of finding the corresponding shape to a given stregghdition. This difficulty is overcome by the
Updated Reference Strategy (URS) (Bletzinger et al., 200Gchner and Bletzinger, 2005; Bletzinger et al.), a
regularization technique based on a homotopy mapping.

3.3 Coupling Strategy

There exist several different strategies to handle surfacgled partitioned analysis. The problem of the inter-
action of wind and light-weight membranes belongs to the typphysically strongly coupled problems, because
the large deformations influence the surrounding fluid flovhe Tequirements for the coupling algorithm can
be stated as follows: Most important is to ensure a very stahl highly efficient coupling. Additionally, it
has to be easy to implement, to ensure the possibility of Isirapd fast replacement of the field solvers. It has
been shown recently {tler and Wall, 2008), that a fixed-point scheme with adeptinder-relaxation is a good
choice, if the under-relaxation parameter is chosen in &adiexit manner and it shows good performance also
compared to other, more sophisticated, methods. The urtieation of the transferred quantities is described by
&p,iﬂ =r;-dr41 + (1 —r;) - dr; with the under-relxation parameterin subiterationi. The calculation of
the under-relaxation parameter is based on Aitkens forimulae formulation of Irons & Tuck (Wall, 1999; Mok,
2001). The Aitken factor is given by:

. (Adr; — Adr;+1)7 - Adr i1
(Adr,; — Adr,i+1)?

i = pri—1 + (-1 — 1)

The relaxation parameter is then givenily= 1 — p;.

The coupling algorithm for one time step within a typicahisaent FSI calculation is given in a schematic manner
in algorithm 1.

4 Computational Concept

4.1 Requirementsand Overview of Realization

The applications to be treated within the software envirentnange from small two dimensional principle exam-
ples up to complex real-world applications with severalionis of degrees of freedom. This leads to the following
requirement specifications for the software devlopmentgss:

¢ A highly modular environment, so that for each specific peabthe best-suited single field solvers can be
adopted easily.
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Algorithm 1 Coupling algorithm
fort =0tot =ty do
while (!convergeddo
Apply interface forcest: ;
SolveMd” + riy (d") = ., i(of.,)

int

Evaluate interface displacemeits,

Calculate relaxation parameter
. 1 —n —n
Relax displacementdy: ; = ridp ; + (1 —r;)dp ;_4

Apply boundary displacemedﬁ_j
Move fluid meshV - (vV (9d}: ;))
Apply PISO, solve for: andp
Evaluate interface forces' ; |
Proof convergence, e.§ot ;. — ot ;|12 < ¢
+—1+1
end while
n—n-+1
end for

e Use of different communication concepts, because diffezedes offer different possibilities to connect at
their interfaces.

e Possibility to perform massively parallel computationshusters and supercomputers to simulate real-world
applications within reasonable time.

e Handle different interface discretizations with non-nhéig surface meshes, resulting from different dis-
cretization techniques and demands of the specific sindtisfie

To fulfill all the above stated requirements, a softwareizatibn was chosen based on three different codes (see
figure 1). Two codes representing the single-field soverdar and structure, both being able to work in parallel,
and a third code being located between the field solvers.tfingscode, called coupling code, operates as a master
process, controlling the whole simulation, and working méerface between fluid and structure field.

The codes that are used within the scope of this paper, gréor (the structure field the in-house code CARAT,
(I for the coupling the in-house code CoMA, (llI) for the iitla solver based on OpenFOAM (Weller and Fureby
(1998), www.openfoam.org), a freely available set of obfeiented libraries for finite volume discretization. It
should also be noted that the commercial CFD software pack&g<-11 is also used at the institute within the
coupling environment (\lchner et al., 2007), what highlights the modularity of tbéware concept. In what
follows, the emphasis is placed on COMA, as it is an substhpéirt of the software concept.

4.2 Code Coupling viaCoMA

The name CoMA stands f@oupling for M ultiphysicsAnalysis. It is a programme responsible for the simulation
control within a surface-coupled simulation and is locaed central process between the single-field solvers. It
offers a great variety of features, making it a powerful imolall kind of surface coupled simulations. It is a fully
object-oriented programme written in C++, making it easgttend or adapt to new needs and allowing extensive
code-reuse. Itis able to communicate with single-field saderking in parallel, allowing communication between
the fields based on the Message Pasing Interface (MPI) sthrvdaich is the first choice, if the single field solvers
allow access to the source code, or based on files and dietifithe access to the source code of the single field
solvers is limited, like in commercial software packagedscain handle surface discretizations, that differ on the
two fields, and do not match. At the surface, flux quantities #ld quantities can be mapped. In what follows
the different parts of CoMA will be explained in more detail.
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CSD-Design and Coupling tool:
Simulation: - CoMA

* CARAT

AN CFD-Simulation:
<:> * OpenFOAM

» Ansys CFX-11
ma@ing

Figure 1: Partitioned approach - Software overview
4.2.1 Programme Work Flow

The work flow of COMA can be subdivided into two main parts:sly, an initialisation part, in which the commu-
nication is set up, the surface meshes are received and thgimyebetween the surface meshes is performed. The
second part represents the loop over the time steps andequd)-& which an exchange, mapping and convergence
check of the quantities is performed. A pseudo-code reptasen of the work flow for a usual Dirichlet-Neumann
coupling strategy is given in algorithm 2.

Algorithm 2 CoMA workflow

Initialise Communication environment

Receive surface meshes

Initialise mapping operatog

fort =0tot = t;,; do

while (!convergeddo

Receive structure displacements;
Map d?,i 2, E?,i
Calculate relaxation parameter
Relax displacement®® ; = ridy.; + (1 — r;)dy ;_,
Send displacement’ ,
Receive fluid forcesT: ;|

Mapat ;4 2 Or it1
Send forcest' ;
Proo convergencop ;. — o ;|12 <€
i—i1+1
end while
n<—n+1
end for

4.2.2 Communication Concept

The great flexibility of the communication concept is onehaf main features within CoMA. It provides the possi-
bility to communicate with other processes on a file-basestfimce - this allows to couple with commercial tools

- or, what is of particular use within massively parallel qartations on supercomputers and clusters, establishes a
communication based on the Message Passing Interface @@iPjard, which is the de-facto standard for parallel
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executed programmes. A communication based on MPI hasdewiantages: It allows fast, reliable and efficient
communication between processes, what is of main interigélsirwparallel computations. As far as it is known
to the authors, almost all modern programmes that offer tssipility to be executed in parallel do this based
on MPI communication routines. This means, that for the usieinva coupling environment the already existing
implementation of the MPI routines just has to be adaptedldavapecific communication with CoMA. But this
can be also be seen as a disadvantage. The existing commmicancept in single-field codes comes out of a
long and error-prone development process. Therefore,rmafinges to the existing routines for single-field com-
munication are not desired, because this would lead to alkstmng search for errors and bugs. As a conclusion, it
was one of the main goals to develop a communication conttegitrequires as few as possible changes to existing
procedures.

The main idea of the communication concept can be describddllaws: The communication within parallel
executed programmes is based on communicators, typicaliyGOMM_WORLD, a global communicator in
which all started processes of the programme are part of cdfupled computation is performed, all single-field
programmes and CoMA are started together and form one gMBa&lgroup, consisting of several processes of
different kind. Now, the single-field processes of the saine ketup a processgroup and are grouped together
into a subfield with a certain sub-communicator (e.g. MIMM_FLUID, MPI_COMM _STRUCTURE). The
existing single-field communication routines now just havéase their communication not on the formerly used
MPI_COMM_WORLD communicator, but on the now available sub-field comizator. This allows to re-use all
existing single-field communication routines by only chiaggthe communicator type. For the communication
between the single-field processes and CoMA the XPIMM_WORLD communicator is used. CoMA just
communicates with a subset of the single-field processeauise not all processes possess a coupled boundary. A
graphical representation of the communicator conceptegn figure 2. Also, a limitation was set to just use MPI
commands declared within MPI Standard 1.1, to allow interapility with programmmes based on this standard.
This type of programming model is known as MPMD - MultiplesBramme Multiple-Data programming. It
should also be noted, that a communication based on the PGR#I could easily be implemented in CoMA due
to its modular and flexible programme structure, but has aetldone up to now due to a lack of necessity.

// N MPI_COMM_WORLD / \\
by

“\, %

A

\\ MPI_COMM_STRUCTURE MPI_COMM_FLUID
, W /

Structure Processes CoMA Fluid Processes

®

Figure 2: Communication and communicator concept

4.2.3 Surface Data Transfer

The handling of data transfer between the different sunfagshes of fluid and structure is one of the most impor-
tant tasks in doing FSI simulations. After transferringcfie data from one to the other surface mesh, it acts as an
interface boundary condition for the respective singlalfiéchieving high numerical accuracy in this operation
is one of the primary conditions for successfull FSI caltales. In realistic simulations, like the interaction of
wind and membranes, the subproblems have different résolgquirements and use different discretization tech-
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nigues, leading to the fact of non-matching surface mestlithsdifferent surface element types. Basically, there
exist two different methodologies for a conservative degagfer on non-coincident surfaces: Methods based on
interpolation and Mortar methods (Felippa et al., 2001)thili CoMA, an interpolation based method is chosen.
In the case of wind-structure interaction, or aeroelastici general, the fluid surface mesh is generally much
finer than the structure’s one. For this case an interpalatiethod shows a similar accuracy compared to Mortar
(Farhat et al., 1998; Farhat, 2004), accompanied with lepteimentation and numerical effort.

The procedure of the mapping algorithm is described exenhplaith the node-based quantities displacements
and forces. This choice doesn’t imply any restriction of tleeeloped software but demonstrates the necessary
mappings for the coupling strategy mentioned above. Firstlpa neighbourhood search between the surface
mesh nodes of the fluid mesh and the midpoint of the triangdlstructure mesh is performed. This provides the
projection pointsP; of the fluid nodes onto the structural surface elements. Ematement field of a structural
element in the context of Finite Element Methods is givenlimpe functions and nodal values:

d= Z N;d;.

To transfer the displacement field onto the fluid surface meghevaluated at the projection poinfs of the fluid
nodes within the current structure element, described diy libcation in natural coordinates andr;, and applied
as a displacement boundary condition to the according flodtkr{see left picture in figure 3):

dp, ~d(&,m) = D> Nil(&,my)ds.
This interpolation method can be used for all field variabdeg. pressures, temperatures or velocities.

The transfer of forces, which belong to the type of integtatariables, follows a load-conservative approach
(Cebral and bhner, 1997). It is also based on an interpolation principlée fluid forces are known at the
projection pointsP; of the fluid nodes within the structure element. At structuoele P; the nodal forcef; is
evaluated as a sum of the fluid forcgswithin the element, weighted by shape functions (see rigttuge in
figure 3):

fi= ZNi(fja7lj)fj~
J
Under the prerequisite (ﬁ:j N; =1, it follows that:
SHE=D Y Ni&Gmi i =Y Nt =Y fs
i i i J

what serves as a proof of the postulated conservation gyopkethe mapping algorithm. Illustratively speaking,
this means that all forces wich act at an element are traesféw the nodes as forces with the same total magnitude.

Figure 3: Interpolation of field variables (left) and fordeight)

Remarkably, the implementation of the surface data tramsf€oMA is not limited to forces and displacements,

but can be used for any surface information, like tempeeatiistribution, pressure or sensitivities (Israel et al.,
2008). There exists also the possibility of handling migtipterfaces within one simulation with separate mapping
of quantities. This is especially useful for computatiorithvextremely thin membranes, where the mapping of
guantities on the top and bottom surface has to be separatedefach other, otherwise leading to errors within
the neighbourhood search. But this feature can also be woskdnidle simulations with more than one elastic
object, e.g. one using a geometric nonlinear and the otreeusimg a geometric linear approach. An example for
a transfer of quantities at a curved surface is given withértext section.
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5 Examples

In this section different examples are shown. The first twafwémportant single aspects of the environment,

namely the mapping of field-quantities on doubly-curvedeastes and the ability to perform coupled computations
in the steady-state and transient, but not turbulent regifiee third example shows a real-world application, a
complex light-weight membrane structure and its behavi@r t wind influence.

5.1 Field Mapping on non-matching Surface M eshesusing CoMA

The correct transfer of surface data at the interfa€é between fluid and structure domain is a major aspect in
doing FSI simulations. The accuracy of the whole simulaisoaffected by the procedure applied at the interface.
In this test case a realistic example for the data transgarithm is constructed. The surface treated is inspired
by the structural example of a 4-point tent, which is a 3-digienal doubly curved free form surface and cannot
be described analytically. The two surface meshes, condpafsiangular elements, are non-matching. One side
S5 is a regular mesh, consisting b§00 elements and representing a typical structure mesh foetaisple. The
other sideS* is an unstructured mesh. It consistsi854 elements, is refined at the boundary, and should therefore
represent a typical fluid mesh in this example. A picture eftthio meshes is given in figure 4.

Figure 4: Structured and unstructured surface meshes

Now the distribution of a field variable, e.g. displacemeistspecified on the structured surface mesh and mapped
onto the unstructured one. The distribution follows an i@l function in global coordinates. Evaluating this
function at the node posmorBS of the structured mesh leads to the prescribed nodal veﬁjuesAfter the data

transfer, the nodal values at the unstructured nfgsha\re known and can be compared to the values given by the

analyt|caIP]F function, by evaluating the coordlnates of the specific nddhe analytical function is prescribed on
the projection to the ground view and is given by

F(z,y) = cos(Cry) - [sin(Cox) + Cs - sin(Cyzx) + Cs - (1 — Csz?)],

which is a superposition of different functions. The contd&’; ¢ are chosen to scale the function to the geometry
of the domain. The error at poilﬁgF is then computed by

H(FPF ~fpr) ] .

= max(FPp)

The influence of the difference between the continuous fonand the interpolation of values is neglected. A
contour plot of the computed error is given in figure 5. It candeen that the error in the field itself is nearly
zero. Just some single elements, located directly at tHfacgiboundary, show higher errors. But this effect can
be neglected in nearly all simulations. As a result, it cars&id, that the mapping and data transfer algorithms
implemented in CoMA show good accuracy in the case of comglefaces and meshes and can therefore be used
in real-world simulations.
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Figure 5: Error distribution on unstructured me$tj

5.2 Coupled Computation in laminar Regime

After evaluating an important single aspect of the comjmral environment, in this example a coupled computa-
tionis carried out. The testcase has to ensure the follopriegequisits: Two-dimensionality to keep computational
time low, test transient and steady-state behavior andrerslaminar flow regime, because the treatment of tur-
bulence is of great complexity, so it should be kept out taifoon the coupling issues. The testcase developed
within the DFG research group 493 is chosen (Turek and HOB6R, because it fulfills all the requirements. As

a positive side effect, it contains also test scenariodf@single field solvers, so that these can be tested separate.

The test case is described as follows: A fixed, rigid cylindgplaced slightly unsymmetric into a wall-bounded
channel. An elastic beam is attached at the back of the @lirfiche geometric representation of the computational
domain is given in figure 6 and a description including alkdlstcan be found in Turek and Hron (2006). If a flow
is imposed onto the system, the flow regime behind the cylimfliences the beam and leads to deformations.
Up to a certain Reynolds number, the flow is steady, if the Rielmnumber exceeds a certain value, the flow gets
unsteady and Karmann vorticies occur behind the cylindeshduld be noted, that only laminar cases are taken
into account.
y

A

| rigid | |elastic beam |

o) l / pressure

N
O:"_ “|outlet
N e .

| parabolic inlet velocity |

Figure 6: Computational domain

Different mesh levels are examined on both fields. The reshibwn in this contribution are those, which give the
best compromise between accuracy and numerical effortpiiiheiple setup of the software environment is three-
dimensional. So for the simulation of this two-dimensiooa$e, one element is used for the discretization in the
transversal direction and all effects of the third direstéme avoided by proper choice of the boundary conditions.
The structure, a cantilever beam, is modeled using 4-ndugtedements. The total number of shell elemenddis
and the mid-surface of the shell is located in the transvdireetion of the domain. The geometric representation
of the interface between fluid and structure domain is evatuby a projection of the element surface along the
nodal director vector with a factor af0.5 - ts,¢1, representing the lower and upper surface of the shell. T fl
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is modeled based on a block-structured grid. The total nurob#uid elements is 54000. The values taken as
reference are the results published in Turek and Hron (2006)

5.2.1 Single Field Computation

First, the single field solvers are tested seperatly fronh @flcer fortheir steady and unsteady, respectively static
and dynamic behavior. In the structure case, three diftasmts are performed. As load the gravitational force
in —y direction is applied. The first two cases, CSM1 and CSM2, &aticscalculations with varying modulus
of elasticity. The third case, CSM3, consists of a transtemtputation, in which the gravitational forc is applied
starting at time = 0, leading to a harmonic oscillation of the beam as describ&idirek and Hron (2006). The
results, given in table 1, show the displacements in y-tioa®f nodeA. The differences to the reference solution
are below0.2%, so it can be said, that the structure field solver works piged is therefore evaluated. The fluid
case also consists of three different tests, in which thet irdlocity is differed. The first and seccond case, CFD1
and CFD2, reaches a steady-state, the third case, CFD3transfent nature. The results, given in table 2, show
the drag and lift coefficients, evaluated by integratingrdtie cylinder and beam surface. It can be seen, that for
steady-state the differences are beldi#, and for unsteady belo®%. As a consequence, it can be said, that the
fluid solver works properly and is verified.

] | reference] own | difference|
CSM1 | —0.06610 | —0.06610 0.00%
CSM2 | —0.01697 | —0.01697 0.00%
CSM3 | £0.06516 | +0.06546 0.45%

Table 1: CSD benchmark results

Lift Drag
reference] own | difference|| reference] own | difference
CFD1 1.119 1.117 0.18% 14.29 14.31 0.14%
CFD2 10.530 10.440 0.85% 136.70 137.52 0.60%
CFD3 | +437.81 | +445.35 1.72% +5.61 +5.50 1.96%

Table 2: CFD benchmark results

5.2.2 Coupled Computation

In the coupled computation an interaction between the aadimg fluid and the elastic beam is simulated. Three
different cases are examined, called FSI1 to FSI3, in whiehrlet velocity, the structure density and the elastic
modulus are varied. FSI1 results in a steady, whereas FRIZ8I8 in unsteady solutions, showing periodic
oscillations of the beam with differing frequency and aryale. The transient cases are strongly coupled, therefore
the above described fully-implicit coupling scheme witlaptive under-relaxation is applied. The results are given
in table 3, examining the y-displacement of pofat the beams tip as being the most significant one. It can be
seen, that the differences are bel®w%, which is in the range of the results of all other groups dbanting to

this benchmark computation. Therefore, also the coupletpatation is verified.

] | reference] own [ difference]
FSI1 | 0.0008209 | 0.0007999 2.55%
FSI2 | £0.08060 | +0.08338 3.45%
FSI3 | £0.03438 | 4+0.03473 1.02%

Table 3: FSI benchmark results

5.3 Mobile Canopy Structure

After verifying important single aspects of the developethputational environment, in this example a real-world
application is examined. It shows the capabilities of thdrenment to handle complex geometries and simulate
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challenging structural behavior in higly turbulent atmiospc boundary layer flow. The example is inspired by
a cooperative work of the architectural department of thehmiesche Universétt Miinchen (Gengnagel, 2005)
and the University of Dundee. The structure is a canopy, ased tribune roof in e.g. open-air cultural and
sports events. Due to the demand of mobility, lightness & afithe major design parameters. The structure is
constructed as follows: Two curved cantilever arms, buidpace frames, are clamped at the ground and span
over a distance of1.5m. A membrane is spanned between the cantilever arms havindtlao¥ 6.5m. A cable is
fixed to the membrane at its center axis and the ground. Bssstrapplied onto the cable, leading to a deformation
of the membrane and the cantilevers towards the ground. ®thés deformation, prestress is applied onto the
whole system, leading to a major increase in stiffness utidemfluence of external loads. A representation of
the structure model is given in figure 7. Due to its extremhbthigss wind influence is one of the major aspects
in the design and sizing of this structure. Therefore, a migaksimulation of the wind impact on the system is
performed to gain detailed insight into the structural védra

Figure 7: Mobile canopy structure model

5.3.1 Computational Models

The structure model is a combination of prestressed trussdsmembranes. The initial geometry of the model is
found by a form finding procedure, assuming an isotropictpges distribution. All computations are performed
considering fully geometric nonlinear kinematics. Thedldomain is discretized by an unstructured tetrahedral
mesh. The wind flow within the atmospheric boundary layerinsutated by a proper choice of the boundary
conditions. A wind speed df,..; = 157 in a reference height of..; = 10m is assumed, what corresponds to a
strong wind and intensitg on the Beaufort scale. The canopy is exposed to the rougleregth ofzo = 0.1m.
Following the work of Richards and Hoxey (1993) and Hargesa2007), the inlet velocity is given by

z24+ 29
20

Uy
U(z) = —I ,
(2) = (=)
whereu, is the friction velocity and: is von Karman'’s constant. The turbulent kinetic energy &eddissipation
rate are given by

2 US

= and €= —F—,
VG k(z + 20)

with C,, is a model constant, usually set@®9. Under these assumptions, a Reynolds numbéteof= 5 - 10°
is reached. The turbulent effects are modeled by the RAN&adetogy, using thé& — w SST turbulence model.
First, CFD-only simulations are performed, until a steathte is reached. This state is used as starting point for the
coupled computations. A geometric representation of théleger arms in the fluid domain is neglected, because
the major influence of the fluid flow on the structure is capdurg the flow effects on the membrane surface. At
the fluid-structure interface non-matching surface mesioear. Because of the small membrane thickness, the
data transfer at the lower and upper surface of the intefaseio be done separated from each other. Otherwise,
the neighbourhood search between surface nodes of sewrtdrfluid mesh would mix up the two sides and result
in errors.
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5.3.2 Simulation Results

Three different simulations are carried out, examininganajfluences of wind onto the structure. The first two
analyse the static deformation of the structure under tleerhain wind directions directly from the back and
from the front, which is referred to as case 1 and 2. Therefonstant velocity profile is applied at the inlet
and a coupled computation towards a steady-state is pextbriNumerical efficiency is reached by an explicit
coupling scheme in combination with fluid subcycling andemitlaxation. Two points on the membrane surface
are examined in more detail, the locations of Po#standB are shown in figure 7. The results of the coupled
computation can be seen in figure 8 for case 1 and figure 9 ferZagiving a contour plot of the displacements
in z-direction and the displacements of point A and||d|| of point B versus the number of coupled iterations. It
is noted, that due to under-relaxation a smooth convergeebavior is reached and the computations are nearly
converged after only 35 coupled iterations. Wind blowingnirthe back is uncritical to the structural behavior,
but wind from the front leads to a great reduction of the aggpfirestress in the back region of the membrane, as
can be seen from the positive z-displacements in this rediba reason is, that the wind pressure acts against the
existing curvature, which is therefore reduced. For a frrihcrease of wind speed, the risk of a snap through
in this region of the membrane is expected. A snap throughldHze avoided by any means, because the load
carrying behavior would be changed dramatically.
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Figure 8: Case 1 - Contour lines of z-displaceméntsand displacements versus coupled iterations
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Figure 9: Case 2 - Contour lines of z-displaceméntsand displacements versus coupled iterations

To further examine the structural behavior, a third cougietulation is performed, called case 3. This calculation
is of transient and fully implicit nature. Two artificial wdhgusts are applied at the inflow, blowing from front,
with a maximum inlet velocity 080 at the reference height. The temporal variation of the widdcity profile

is given byu, (t) = 202 with ¢ € [0;4s] andu, (t) = 202 + 102 - sin®(f - 2m) with ¢ €]4;10s]. The total
time of the simulation i40.0s. Again, the result of a steady-state fluid-only solutionsedias initial solution at

t = 0s. The results can be seen in figure 10. It is noted, that thdadisments follow directly the applied wind
inflow. This is due to a very small mass inertia of the systera gesult of the high lightness. It is also noted, that
under the high wind level a snap-through of the membranedi#itk region occurs, what results in extremly high
displacements due to diminishing geometric stiffnesses.

In summary, the simulations lead to the following resultsnd\from back is uncritical for the structure, but wind
from front diminishes the applied prestress and gives #ieaf a snap-through in the membrane. This was shown
in a transient calculation with an increased wind speed.l@&&impact for the design, it is stated that the applied
prestress in this simulations has to be increased to premaptthrough.
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6 Conclusion and Outlook

The development of a general and modular framework for theulsition of light-weight membrane structures
interacting with wind is described within this contributioThe evolving strongly coupled system is solved by a
partitioned strategy. The realistic modeling of turbulesirtd flow leads to large systems, that have to be solved
massively parallel. The resulting specific requirementtherframework are handled by a software scheme based
on three codes, the two single field solvers and the centrsteneaode CoMA. CoMA is a general tool responsible
for simulation control and data transfer on non-matchinfese meshes. Emphasis is placed on the efficiency and
flexibility of the communication concept as an importanteagpn MPMD systems. This allows to use CoMA in
any surface-coupled analysis with arbitrary coupling dqitias.

The next steps will include a further investigation of thereot modeling of wind-induced effects on light and
flexible structures. This comprises a further study of theremt simulation of natural wind (e.g. appropriate
formulation of inflow conditions, influence of wall modelindomain size) and a continued consolidation of the
coupling procedure with regard to efficiency, reliabilitydestability. Moreover, the elaboration of selected bench-
mark tests for verification and validation purposes will limel Finally, the correct interpretation of the gained
results with respect to the design of structures under wifidence is needed and is part of ongoing investigations.
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FSI*ce — A Modular Simulation Environment for Fluid-Structure
Interactions

B. Gatzhammer, M. Mehl

From the conceptual point of view, modularity and flexibility are inherent to partitioned fluid-structure interaction
simulations or, in a broader sense, multi-physics simulations. In fact, they are the big advantage of partitioned
approaches in comparison to monolithic approaches. However, this implies the need for software tools that ensure
the independence of the involved components and, at the same time, allows for sophisticated coupling strategies
going much beyond a pure data exchange. For this purpose, we developed the coupling tool FSI¥ce that will be
described in detail in this article including all current functionalities and future potentials.

1 Introduction

Multi-physics simulations have become more and more the focus of computational engineering in the last years.
Increasing computer performance has allowed for the inclusion of more and more physical realism in the com-
putational models. Just think of the inclusion of fluid-structure interactions in the evaluation of skyscraper static,
of dam simulations covering fluid dynamics, structural mechanics, soil behaviour and their interactions, of aero
acoustic simulations in aircraft construction coupled with structure reactions, and many other examples. In the fu-
ture, this trend is supposed to continue taking into account more and more physical fields to enable highly realistic
and accurate simulations. To illustrate this with an example, we could imagine to enhance the simulation of blood
flow in a vein by taking into account not only the wall of the vein but also the surrounding tissue with different
material properties and partly own dynamics (bones, skin, muscles,...).

To establish a simulation environment for such simulations in a fast and efficient way and, in particular, to cope with
the continuous model development and enhancement, partitioned approaches have proven to be highly suitable.
In contrast to monolithic methods that establish and solve one system of equations for the complete scenario,
partitioned approaches use existing and well-tested codes for each of the involved single-physics problems and
couple the codes together using an additional piece of software. Whereas the advantage of monolithic approaches
is a higher robustness, partitioned approaches offer a very high flexibility in terms of simulated physical phenomena
and solvers used.

To realise the coupling of several codes, different approaches and software tools are available. The most prominent
commercial software is MpCCI Ahrem et al. (2001) that leans strongly on the MP I-syntax and offers functions
supporting the transfer of data from one code to another as well as predefined interpolation and projection routines
for the mapping of data between the in general non-matching grids of the solver codes at the coupling interface'.
The Model Coupling Toolkit MCT is a scientific library providing programming interfaces for data exchange,
interpolation, and manipulation of data for non-matching and even partitioned solver grids Larson et al. (2005). It
is widespread in climate simulation. C—SAFE Parker and und T. Harman (2006) is a component-oriented realisation
of a coupling unit. Although it is restricted to Cartesian solver grids, the successful integration of a fluid-structure
interaction model Parker and und T. Harman (2006) shows the general potential of component based approaches.

IFor fluid-structure interactions, the coupling interface is the contact surface between fluid and structure, for example.
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Figure 1: Schematic view of the coupling of two codes for the partitioned simulation of fluid-structure interactions
with MpCCT (left) and FSI#ce (right).

2 Motivation for the Development of FSIskce

We listed some commercial and scientific coupling units in 1 and saw that there is no generally applicable frame-
work available that goes far beyond supporting data exchange and data manipulation between two or more solvers.
To motivate the development of a our coupling tool for the partitioned simulation of fluid-structure interactions,
we have a look at the realisation of the coupling with the help of the most common of the mentioned tools, MpCC1I.
Figure 1 shows the principle of the coupling in a schematic manner. We start with two given solvers: for the sim-
ulation of fluid dynamics on the one hand and the simulation of structural mechanics on the other hand. To make
the codes work together, the first thing we have to do is implement the data exchange between the two solvers at
the so-called wet surface that is the contact interface between fluid and structure. For this purpose, we can resort
to given interpolation and projection methods of MpCCI. However, if we have particular requirements such as
higher order discretisations in one of our solvers, new mapping methods have to be established and implemented.
The second implementation task concerns the coupling control that is the choice of the coupling strategy in time
(explicit/implicit/multigrid/. . .), the convergence control, the time stepping etc. of the whole coupled simulation.
As MpCCT is a tool mainly designed for data exchange, this is done in one or even both of the solvers. If we now
exchange one of the solvers, for example, we have to change the implementation of the data mapping in both the
new and the remaining solver as well as parts of or even the whole coupling control. Thus, we loose the flexibility
to easily exchange solvers and coupling strategies independently, although this flexibility seems to be the main
advantage and an inherent property of the partitioned simulation of multi-physics problems.

In order to improve this situation, we developed FSIT#ce Brenk et al. (2005, 2006); Brenk (2007) with the intention
to completely hide the components of a partitioned simulation from each other and to provide an easy-to-use tool
for the coupled simulation of fluid-structure interactions in a first step but also of general multi-physics scenarios
in the future. To separate the coupling strategy and control from the solvers, the first idea behind FSI#ce was to
completely integrate these aspects into a separate coupling unit instead of the solvers. This leads to a client-server
approach with FSI#ce acting as a client and the two solvers acting as servers receiving jobs and queries for data
from FSI#ce Brenk et al. (2005). As a consequence, we can provide coupling strategies that then can be used for
arbitrary combinations of solvers. The second idea enforcing the independency of the solvers from each other is
to introduce a central coupling mesh in addition to the two solver grids. This coupling mesh discretises the wet
surface and acts as a common point of contact for the solvers. That is, both solvers map their simulation data to and
get updated data back from it. Thus, a solver, once being prepared for the use with FSI#ce, can be coupled with
an arbitrary partner solver without further changes Brenk et al. (2005, 2006, 2007). Figure 1 displays the resulting
setup: Two solvers implementing a data mapping to and from the central mesh and FSI#ce providing the whole
coupling control and the central mesh itself.

Flexibility and ease of use are very important ingredients of a tool designed for the coupling of codes for partitioned
multi-physics simulations. However, these two tasks were not the only motivation for establishing FSI#ce as
an own numerical unit and not only a data mapping library. FSI#ce also provides the possibility to implement
numerical coupling methods at a central position that could not or hardly be implemented in one of the solvers.
We list some examples here, taking into account that this list of course can not be complete.

2.1 The Transient Localised Lagrangian Multiplier Method

A first and very obvious example is the method of Localised Langrangian Multipliers (LLM) as proposed in Park
et al. (2001); Ross (2006). It introduces an interface frame between fluid and structure similar to the central mesh
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Figure 2: Introduction of a central interface frame describing the wet surface in the transient Localized Lagrangian
Multiplier method Ross (2006). The continuity of the interface variable between the interface frame and the solvers
is enforced with the help of two Lagrangian multipliers Ay (for the fluid side) and A (for the structure side).
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Figure 3: Comparison of the staggered explicit coupling (a) and the transient LLM method (b).

in FSI#ce (see Figure 2).

This interface frame holds informations on the state of the interface. Depending on the actual method, this state
might be described by the speed or the displacement of the interface, e.g. The resulting system of equations
involves the fluid equations, the structure equations, and three additional systems of equations for the interface
frame state and the two Lagrangian multipliers. These three additional systems constitute side conditions for the
fluid and the structure solver including continuity of velocities or displacements and Newton’s third law. Instead
of the commonly applied solution strategy for the explicit coupling, we can now execute a time step both for the
fluid and the structure simultaneously and, then, use a projection method to establish a so-called interface equation
for the Lagrangian multipliers and the interface state. These interface data are in turn used to update the fluid and
structure state. Figure 3 compares the common ’staggered’ explicit discretisation to this new approach. To solve
the interface equation, an autonomous numerical component such as FSI#ce is required. Ross (2006) proved that
this method is unconditionally stable for some for the example of the linear piston problem as long as the time
stepping schemes of both the fluid and the structure solver are unconditionally stable. This can not be achieved
with the staggered explicit coupling.

Table 1 shows that the solvers have to be only slightly changed to be able to update data at their wet surface
according to the Lagrangian multipliers whereas all other work is and has to be done by the coupling component.

2.2 Implicit Coupling with Reduced Order Models

A second example is a coupling method using reduced order models to perform a Newton iteration for the non-
linear Dirichlet-Neumann interface equation Vierendeels (2006a,b)

| operation [ solvers | FSIsce |
solve single-physics problems X
collect wet surface data (including Lagrangian X
multipliers)
solve the interface equation X
send Lagrangian multipliers to solvers X
update the wet surface according to the Lan- || x
grangian multipliers

Table 1: Algorithmic steps in a transient LLM method Ross (2006) and their allocation in the solvers or the
coupling component.
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operation H solvers \ FSI#ce ‘

solve single-physics problems X
collect wet surface data

establish reduced order models

perform Newton iteration on the interface
send interface data to solvers

update wet surface boundary conditions X

PR

Table 2: Algorithmic steps of a fluid-structure interaction simulation using an implicit coupling strategy based on
reduced order models Vierendeels (2006a,b) and their allocation in the solvers or the coupling component.

DY = R_ o structure_solve(R o fluid_solve( D"V p()) gy, (1)
=: B (D"*Y)

where D("*1) ig the structure displacement at the wet surface at time tn+1) — ¢(n) 4 dt, Rs denotes an operator
that restricts the structure state to the displacements at the wet surface, structure_solve and fluid_solve are arbitrary
structure and fluid solvers, R; computes the forces exerted on the structure by the fluid on the wet surface from
the fluid state. F(™ and S are the fluid and structure state at time ¢("). To solve this method with the help of a
Newton method, we have to perform iterations

DY = DD (17 (D)) - (B (DY) = D)), @)

-1
where J (D§”+1)) denotes the Jacobian of B (D§”+1)) . This Jacobian is always costly to compute. In the case
of black-box solvers, it is even impossible to compute it in any other way than with the help of finite differences that
is out of question in terms of efficiency. However, the Jacobian can be approximated by replacing it by the Jacobian

computed from reduced order models for the fluid and the structure solver. For these reduced order models, we
can exactly and efficiently determine the Jacobian and the application of the inverse of (I —J (D§”+1>)) on

B (DZ("H)) , respectively Vierendeels (2006a,b). The reduced order models themselves are established during the

run of the simulation using the input-output relation of the solvers as a data basis. Table 2 shows that in this case,
there are a lot of non-trivial actions that have to be taken by a separate coupling component both from a logical
point of view (as they concern the coupling, not the solvers) and from a practical point of view (as the method has
particularly been designed for black box solvers).

2.3 Multigrid

A third example that requires a central control of the partitioned simulation is a multigrid method not only for the
involved solver but for the whole coupled simulation environment. That is, we have to couple fluid and structure
solver not only on the fine grid but also on coarser grids. After performing a few iterations for the fine grid equation

Fh (n+1) Fh (n+1)
Sh = FSI,, Sh 3)
W, Wh

with the fluid state variables F},, the structure state variables .S}, the interface state variables W, and the discretised
operator of the fluid-structure interaction equation FSI;,, we switch to the coarse grid equation

Fir (n+1) Fy (n+1) E‘h (n+1) E‘h (n+1)
SH = FSIy Sy + RFSI, §h —FSIgR ?h , (4)
WH WH Wh Wh
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operation H solvers \ FSI#ce ‘

solve/smooth single-physics problems X
collect wet surface data

define how to establish the coarse grid
restrict the fine grid solution

modify the right hand side on coarse grids
change the level of resolution

interpolate the coarse grid solution

update the fine grid solution

send interface data to solvers

update wet surface boundary conditions X

oO|lOo|[»®W|[O|O
PR R R e

Table 3: Algorithmic components of a multigrid method for the whole coupled simulation of a fluid-structure
interaction scenario and their allocation in the solvers or the coupling component. Circles indicate that these steps
are allocated in the solvers only in case of a method where the solvers only smooth and not solve on each grid
level.

where F,Enﬂ), S ,(l”H), and W,E”H) denote the state approximation for fluid, structure, and interface after the fine

grid iterations. This coarse grid equation is then solved by a recursive call of the multigrid solver. To finish the
multigrid cycle, the coarse grid approximation is used to update the fine grid approximation according to

Fh (n+1) -Zj‘h (n+1) FH (n+1) Fh (n+1)
Sh = €h + I SH — IR Sh ®))
Wi, Wh, Wy Wh,

and some more post smoothing iterations on the fine grid are performed. In this very general formulation, we did
not further specify the equation (3) and the kind of smoothing iterations that are performed on each grid level. Bijl
et al. (2006) showed that the runtime already for a one-dimensional linear piston problem could be reduced by a
factor of 10 with a two-level method.

Depending on what solver we use and in how far we can change the solver code, smoothing iterations can either
include the complete solution of the fluid and the structure equation on the respective level or only some iterations
for both fluid and structure. The first case will be required if we use black-box solvers. In this case, equation
(3) will be an interface equation such as equation (2), only. In the second case, the error after the smoothing
iterations is not only due to errors in the interface equation but also due to not yet converged solvers for fluid
and structure. Such, equation (3) will cover the whole coupled fluid-structure system. Table 3 gives an overview
of the algorithmic parts that have to be done in the solvers and those that are done in the coupling component.
Circles mark actions that have to be taken by the solvers only in the second case, where the solvers also only
smooth instead of solving. It becomes obvious, that even in that case, only standard multigrid functionality (in the
sense of a full approximation scheme for nonlinear equations) is required from the solvers. However, the single
components of this multigrid functionality have to be addressable separately by the coupling component. Besides,
all other functionality and the overall control is integrated in the coupling component, which discharges the user
from the re-implementation of a lot of functional elements for each solver pair and, second, in particular for the
definition of the coarse grid, is required also from a methodological point of view. Only the central unit can decide
how to establish a suitable overall coarse grid from the two solver fine grids and the wet surface.

3 Structure and Functionality of FSI#ce

After we have motivated the development of FSI#ce by showing the potential of a coupling unit with a numerical
functionality going far beyond data mapping, interpolation and projection mechanism, we will describe the actual
realisation of FSI#ce in this section. FSI#ce has a modular structure that ensures an easy extendibility (see
Sect. 3.1). The main components of FSIzce are the coupling mesh (Sect. 3.2), the support for data mapping
(Sect. 3.3), and the coupling strategies (Sect. 3.4). Additionally, we shortly present the application programming
interface of FSI#ce which is the essential ingredient for a user friendly tool (Sect. 3.5).
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3.1 Modular Structure

A well defined structure is the essential basis for software to last. It simplifies (or even enables) the maintenance
and extension of software; and a software that is not maintained nor extended will be thrown away soon. Thus,
one goal for the development of FSI#ce is to maintain a well-thought modular structure of the source code project.
The current structure of FSI#ce is illustrated in Figure 4 (a). It consists of two main parts: first, the libraries,
which are meant to be included by a user of FSI#ce. They contain the coupling mesh (see Sect. 3.2), support
for data mapping to and from the coupling mesh (see Sect. 3.3), the communication API (see Sect. 3.5), and
implementations of communication mechanisms with MPI and sockets. The second part of FSI#ce is the coupling
supervisor. The coupling supervisor acts as the server in the coupled simulation (Sect. 2) and cares for the exact
execution of the chosen coupling schemes. Figure 4 (b) illustrates the client-server concept, and shows the place
of the coupling supervisor in the frame of the coupled simulation.

FSI*ce
Libraries Supervisor
Coupl i ng
FSIcom| FSltools | CouplingUnit | Gui | Schene
| | | Coupl i ng
Geonetry
FSImesh TestDummies I Batch | = of @ Structure
| | Application Appl i cation
(a) Modular structure of the software package FSI#ce. (b) Modular client-server-based realization of FSI at appli-

cation level.

Figure 4: Modular concept of FSI# at internal design and external application level.

3.2 Coupling Mesh

A unique feature of FSI#ce among existing coupling tools is the use of an additional mesh instance - the coupling
mesh - dedicated for the exchange of data located on the common surface of the coupled solvers. At first sight,
this might appear to be an additional complication of the whole coupling process. However, it enables to decouple
the solvers from each other and to make them easily and independently exchangeable. Furthermore, it allows to
introduce advanced coupling methodologies such as the ones introduced in Section 2.

The coupling mesh is chosen as a triangulation of the surface(s) between the single solvers domains. It can be
described by a vf-graph, i.e. a graph consisting of vertices interconnected by triangle faces. Figure 5 shows two
examples for triangulated surfaces.

The triangle edges are of no importance currently, and are, hence, not considered in the implementation of the
coupling mesh. For a pure node centered data transfer from solver to solver, even the triangles would not be
necessary. However, since the coupling mesh is not only used for such a simple mapping but also for numerical
operations one the triangulation itself (think of coarsening of the triangulation for multigrid methods, e.g.) and to
derive geometric relations between the triangulation and the solver grid nodes such as the position of a point or
voxel relative to the coupling surface, it is necessary to also have a geometric description of the surface and its
orientation and not only the locations of the nodes carrying the data.

The functionality of the coupling mesh is two-fold: First, it holds the topological information of the common
interface of fluid and structure and, thus, administrates also all movements and deformations of this interface.
Solver grids are adapted after each coupling step according to changes in the interface description. In the setup-
phase of a coupled simulation, the coupling mesh can either be derived from a solver grid or, vice versa, act as
an input for the generation of a solver grid. The second functionality of the solver grid is storing, modifying,
receiving, and sending all values that are to be exchanged between the involved solvers. In the case of fluid-
structure interactions and a Dirichlet-Neumann coupling, these are the forces exerted on the structure surface
by the fluid, and the displacements of the structure resulting in prescribed velocities for the fluid field. For the
realisation of other coupling methods or further multi-physics problems, however, the coupling mesh allows for
the storage of arbitrary kinds of vectorial or scalar data sets, annotated to the nodes of the triangular mesh.
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Figure 5: Examples for triangulated surface meshes.

3.3 Support for Data Mapping

The data mapping between the solver grids and the coupling mesh will often require some projection and interpo-
lation of data values from the unknowns stored in the non-matching solver grids to the nodes of the coupling mesh.
FSI#ce supports some simple projection and interpolation methods. Figure 6 illustrates for example the currently
implemented mapping to and from the coupling mesh in 2d for forces and displacements on the fluid side. Forces
are mapped from the fluid grid to the coupling mesh and displcements vice versa from the coupling mesh to the
fluid grid. This mapping is conservative with respect to the total force exerted on the structure and consistent with
respect to displacements that is mapping a constant displacement on the coupling mesh to a constant displacement

on the respective boundary of the fluid grid®

(b) Consistent mapping from coupling mesh nodes (filled circles)
to solver nodes (empty circles). The geometric position of the
solver nodes is projected orthogonally onto the nearest triangle
(dashed lines). By usage of the parametric description of the
projected point, i.e. the description by barycentric coordinates,
data values are fetched according to their weight from the triangle
nodes (dotted lines). The sum of the fetched data values is as-
stays constant. signed to the corresponding orthogonally projected solver nodes.

The sum of data values is different on coupling and solver grid,
but the mean value stays constant (in the sense of a consistent

mapping).

(a) Conservative mapping from solver nodes (empty circles) to
coupling mesh nodes (filled circles). The geometric position of
the solver nodes is projected orthogonally onto the nearest trian-
gle (dashed lines). By usage of the parametric description of the
projected point, i.e. the description by barycentric coordinates, the
data value of the projected point can be decomposed and interpo-
lated onto the triangle nodes (dotted lines). The sum of the forces

Figure 6: Conservative mapping from solver grid nodes to coupling mesh nodes (a), and reversed consistent

mapping from coupling grid nodes to solver grid nodes (b).

More specialised mapping methods as required for higher order solver discretisations, for example, have to be

2Since all our examples have been computed with a coupling mesh identical to the surface mesh of the structure solver Adhoc Diister et al.
(2004), data mapping methods on the structure side are still work in progress.
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(a) Domain with circle decomposed into Cartesian (b) Tree representation of the domain decomposition from
quadtree-cells. The leaves of the quadtree are marked as (a). Circles represent refined quadtree cells, squares leaves.
empty (white fill) if the circle does not intersect with the ~ The filled squares on the bottom correspond to the leave
quadtree cell or marked as full (grey fill), if the circle in-  cells in (a), which are marked by a dash-dotted line. The
tersects the quadtree cell. Empty cells are not refined any legend on the top left shows the correspondence of tree
more, while full cells are refined up to a given level. nodes to quadtree-cells in (a).

Figure 7: Quadtree example.

implemented by the user itself.

One general functionality that is essential for any kind of data mapping methods, however, can be used in all
cases: In order to find the *'mapping goal’, that is the closest coupling mesh triangle for an arbitrary solver grid
node, a nearest neighbour search has to be performed. The computational complexity of a neighbour search is
O(N - M), where N is the number of fluid nodes and M the number of coupling mesh nodes. Assuming the
number of fluid and structure nodes to be in the same order of magnitude, we would have to solve a problem that
has a computational complexity growing quadratic with the number of nodes. This is not a severe problem for
coupling surfaces with a moderate number of unknowns that is for simple geometric objects contained in a fluid
flow domain with a much higher amount of unknowns to be solved for. However, it can prolongate the simulation
time of a coupled problem unnecessarily, when very fine resolutions for rather large coupling surfaces are needed
such as in the case of domains with flexible boundaries in combination with turbulent flows, for example.

In order to speed up the neighbour search process, we introduce an octree, the 3d variant of a spacetree. Figure 7
illustrates the basic concept of the octree: the spatial domain is recursively decomposed into regular subquadrants,
but only at elements intersected by the coupling mesh. The recursive refinement is stopped by some maximal depth
criteria. The leaves of the octree data structure contain references to the triangles and nodes of the coupling mesh
which are (partly) contained in the subquadtrant represented by the respective leave.

Now, the neighbourhood information is already available in the octree and the number of triangles to be checked
can be reduced to the ones contained in octree leaves neighbouring the considered solver grid node. It is not
sufficient to only look at the octree cell containing this grid node. In addition, also the direct neighbour cells need
to be considered since a point at the boundary of the octree cell might have a closer neighbour in a neighbouring
octree cell, than in the one it is located in. However, these cells can be efficiently identified in a top-down run over
the octree. This concept reduces the computational complexity to O (N log M) and leads to a negligible runtime
requirement for the neighbour search compared to that of the fluid solver, for example Daubner (2005); Brenk
et al. (2008). The octree functionality is provided to the user of FSIzce in a library (see Sect. 3.1). Hence, he can
implement the mapping functionality for the solvers with less efforts.

3.4 Coupling Strategies

FSI#ce currently incorporates several standard coupling schemes offering a solution procedure for the partitioned
coupled problem in time. It includes a staggered weak (i.e. explicit) and a strong (i.e. implicit) coupling scheme
with interface iterations. Independent from the coupling scheme chosen, subcycling can be applied for one or both
solvers. In addition, non-coupled pre-computations can be performed by one solver, which will be done by the
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fluid solver in a typical FSI scenario to achieve a physically realistic initial state. Figure 8, 9, 10 and 11 illustrate
and describe these coupling schemes.

Taking advantage of the client-server concept described in Section 2, all the coupling schemes are implemented
in the coupling supervisor, saving the user from having to implement coupling schemes themselves and in the
solvers, which would result in the need to re-implement the coupling strategy after each solver exchange. The
solvers only have to provide a few function calls to the coupling supervisor, which is much easier and incurs much
less implementation efforts. We describe the work to be done by the user in the next section treating the application
user interface (API) if FSI¥*ce.

3.5 Coupling Application Programming Interface (API)

Although the implementation work in the solvers to be coupled with FSI#ce is kept to a minimum by the client-
server based approach, there are still modifications to be done in a solver being prepared for coupled simulations
with FSI#ce. The essential functionalities to control the coupled simulation are bundled in the coupling API,
which is shown in listing 1. The first three functions initiate and register a solver with the coupling supervisor,
exchange the coupling mesh and relevant data such as the time step length computed, and finalize the contact to the
coupling supervisor. The last three functions are there for the solver to query the state of the coupled simulation.

void FSI_Init ();
void FSI_Data_Exchange ( timeStepLength );
void FSI_Finalize ();

int FSI_Is_new_interface_values ();
int FSI_Is_implicit_.converged ();
int FSI_Is_running ();

Listing 1: FSI#ce coupling API, allowing the solver to be controlled by the coupling supervisor. Function param-
eters are mostly omitted.

Listing 2 shows the main parts of a solver code. A time stepping loop contains the determination of the length of
the next time step, the computation of the flow field of the next time step and the storage of these new values. The
second and third step must be separated if a strong coupling scheme is chosen, since the interface iterations require
not to advance in time before the convergence of the iterations.

while (more time steps)
Set time step length
Compute values of next time step
Store values of next time step
end while

Listing 2: Main parts of a solver code.

The coupling API can now be integrated into this code as shown in Listing 3. Obvious are the callsto FSI_Init ()
and FSI_Finalize (), which must take place before and after the time stepping loop. The duration of the
solver’s simulation is now controlled via the function FSI_Is_running (). Since reading data from the coupling
mesh might have an impact on the computation time, the function FSI_Is_new_interface_values () can
determine, whether new interface values have been obtained or not. A solver performing pre-computations or
subcycling (see Sect. 3.4) does not receive new interface values in every solver-local computation step. A similar
function could prevent the writing of coupling data to the coupling mesh, but is not yet implemented. Then, the call
to FSI_Data_exchange () performs the actual communication of the state of the simulation and the coupling
mesh with the coupling supervisor. The computed time step length is sent to the coupling supervisor, which in
turn computes a new maximal time step limit for the next time step communicated back to the solver. Note that
the solver is always allowed to compute a time step shorter than that proposed by the coupling supervisor, since
solver-internal time step length limitations, such as the CFL criterion for a fluid solver, are unknown to the coupling
supervisor, but still need to be respected by the solver. The function FSI_Is_implicit_converged () must
be used, when an implicit coupling scheme is applied. The convergence test is performed within the function
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Figure 8: Basic weak coupling scheme with staggered solution procedure. The dashed lines indicate the time axis
for each solver. The solution procedure starts at time ¢(n), where n denotes the time step, with solver B sending
its initial interface values a(n) to solver A (this step can be omitted, if solver A is supplied with proper initial
interface values). Solver A computes its next time step ¢(n + 1) and sends the obtained interface values b(n + 1)
to solver B, which in turn advances to the next time step.
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Figure 9: Strong coupling scheme with interface iterations. The dashed lines indicate the time axis for each solver.
The solution procedure starts with solver A (but could equally start with solver B) at time ¢(n). Solver A computes
a first prediction b(n + 1), for solver B’s interface values of the next time step and sends it to solver B. B uses the
obtained prediction to compute itself a prediction a(n + 1) for solver A’s interface values and returns it to solver
A. This procedure continues (next would be solver A to compute b(n + 1)), with both solvers always using the
most current interface values, until convergence of the interface values is achieved. Then, solver A and solver B
can advance simultaneously to time step ¢(n + 1).
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Figure 10: Subcycling solver B combined with a strong coupling scheme. The dashed lines indicate the time axis
for each solver. The solution procedure follows the description of Figure 9, with a difference for solver B when
advancing to the next time step. Then, solver B computes non-coupled time steps (indicated by circles filled with
lighter color) always using the interface values obtained by A at time ¢(n) until it reaches time ¢(n + 1). Only
then a new interface iteration starts. Subcycling can be equally combined with any other of the discussed coupling
schemes.
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Figure 11: Pre-computations performed by solver B prior to the coupled simulation. (The dashed lines
indicate the time axis for each solver). Pre-computations can be used to obtain physical meaningful initial values
for the solver starting the computation of the coupled problem.
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FSI_Data_exchange () by default (but can be specialized by the user) and checks the convergence of the
interface values of both solvers involved in the coupled simulation.

FSI_Init ()
while (FSI_Is_running())
if (FSI_Is_new_interface_values())
Read coupling data from coupling mesh
Set time step length
Compute values of next time step
Write coupling data to coupling mesh
FSI_Data_exchange ()
if (FSI_Is_implicit_converged())
Store values of next time step
end while
FSI_Finalize ()

Listing 3: Coupling API integrated into a solver code.

Having done the implementation tasks described here enables the coupling supervisor to completely control the
coupled simulation. A user can choose between all the coupling schemes implemented in the coupling supervisor,
without any additional changes in the solver code.

4 Numerical Examples

We computed several FSI scenarios with FSI#ce as coupling tool. To realize the partitioned simulations, we used
our fluid solver F3F and the structure solver AdhoC* Diister et al. (2004), which is developed at the Chair for
Computation in Engineering of the Civil Engineering department at TU Miinchen. F3F was initially developed
to simulate the phenomena of blister formation in boiling liquids by Emans (2003), but then extended to perform
partitioned coupled FSI simulations in Brenk (2007) and Gatzhammer (2008). It is a finite volume based solver
for the incompressible Navier-Stokes equations and works with Cartesian grids. Geometies are represented by the
marker-and-cell approach introduced in Harlow and Welch (1965). The Cartesian grids in combination with the
marker-and-cell approach are perfectly suited for fixed grid approaches to FSI problems, and allow arbitrarily large
deformations with even topology changes.

Figure 12 shows visualizations of the flow field with the geometry discretised on the Cartesian grid and by the
surrounding coupling mesh.

(a) (b)

Figure 12: FSI coupling test case of a bending tower in a channel flow. Snapshot (a) is taken at the beginning of the
simulation, while snapshot (b) is taken after the tower has started to bend in flow direction. In (b), the velocities at
the Cartesian mesh nodes are visualized by vectors.

We tested the implicit coupling scheme with a channel flow driving the movement of a spherical obstacle inserted
into the flow. The resulting forces in flow direction are shown in Figure 13. The jumps in the force values (marked
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by arrows) are due to the discretization of the obstacle on the Cartesian grid, which allows for step-wise movements
only. The resolution of the grid chosen was rather low. Hence, there are significant oscillations. However, it is
visible that these jumps lead to oscillations for the explicit scheme especially in the right end of the figure, and the

discrete movements of the obstacle occur at different times, since the jumps are not synchronized for explicit and
implicit methods.

100 T T
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Force/N
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Time/s

Figure 13: Comparison of the forces acting on a free moving sphere in a channel flow computed by an implicit and
an explixit coupling scheme.

Finally, we set up a three-dimensional scenario for quantitative comparisons with the benchmark scenario as pro-
posed by Hron and Turek (2006). The preparations to compute this scenario are currently still work in progress.
Thus, we only show a screenshot of the setup of the benchmark in Figure 14. The fixed cylinder obstacle is mod-
eled by the fluid solver internally, while the deformable cantilever attached to it is coupled to the structure solver
AdhoC. In the figure, the coupling mesh is displayed as overlay on the cantilever.

Figure 14: Setup of an FSI benchmarking scenario with fixed cylinder and deformable and coupled cantilever
attached to it.

5 Outlook

Currently, we improve the data mapping from the solver grids to the coupling mesh, with the goal to completely
encapsulate the data mapping functionality into FSI#ce. The task is a library-like mapping component, where the
user can choose the mapping algorithm and only needs to implement some API calls into his solver codes. This
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approach does not prevent the user from implementing specialized mapping strategies, to pertain the error order of
high order mesh elements, for example. What changes, is the place the user has to implement this functionality,
which is shifted from the solver to the coupling tool. There, a component based strategy is chosen, which allows
other users to reuse implemented mapping schemes and, thus, further enhances the value of FSIskce.

The component based direction is also in the focus of our work on other parts of FSI##ce such as the data structure
used to exchange data between the coupled solvers, which must not be limited to a triangulated surface mesh. In
particular, we are working on a generalization of our coupling tool to arbitrary multi-physics problems, which is
a natural step in the sense that the functionality FSI#ce provides should not only be solver independent, but also
independent of the characteristics of the physical domains considered.

A topic will to address in the near future is the parallelisation of the data mapping between solver and coupling
mesh. Due to the encapsulation of the data mapping functionality into FSI#ce, this task can be completely taken
from the users of FSI#kce. Hence, a simulation program does not have to take care whether the access to the
coupling data structure is parallel or not.

Future goals are the implemention of multigrid schemes with coupling on all grid levels and the realisation of
grid based partitioned FSI simulations. These capabilities are necessary to simulate very large FSI problems as
occurring in the simulation of very large floating structures, for example.

6 Summary

In Section 2, we showed the motivation to develop a new coupling tool, which is the lack of a well designed
coupling tool exploiting the inherent flexibility of partitioned coupled simulations. Thanks to the client-server
concept for coupling the solvers and an additional mesh instance representing the coupling surface, the solvers
can be hidden from each other and, as a consequence, can be kept free of any direct dependency on each other.
The localisation of all coupling related functionalities into an additional software unit, the coupling supervisor,
minimises the implementation efforts on the user side, since it allows to reuse all functionality such as coupling
schemes for all solvers coupled with the help of FSI#ce. The tasks remaining for the user of FSI#ce are the
implementation of the calls to the coupling API prescribed by FSIskce and an implementation of the mapping
to and from the coupling mesh. The latter one can be simplified a lot by using the supplied neighbour search
functionality, which delivers the closest neighbouring points and triangles on the coupling surface efficiently due
to the octree acceleration.

Furthermore, we presented three examples for advanced coupling schemes in Section 2, which are the method
of Localized Langrangian Multipliers, an implicit coupling scheme with reduced order models, and a multigrid
scheme coupling all mesh levels together. We showed that, due to our coupling concept, the efforts undertaken by
a user to employ one of those coupling schemes are kept minimal, provided the coupling schemes are supported
by the external coupling unit. A comparison of different coupling methods is then relatively easy to achieve and
allows to gain further flexibility and adaptability to the specifics of a coupled problem.

In Section 3, we showed the current structure and functionality of our coupling tool. We explained the structure of
the coupling mesh employed to transport interface data between the solvers. Crucial for a user is the support for
data mapping, which is given in the form of neighbour search functionality accelerated by an octree data structure.
We also presented the coupling schemes supported by FSI#ce, which are an explicit and an implicit coupling
scheme with interface iterations. In addition, subcycling and pre-computations can be applied, which give further
flexibility to realise FSI simulations.

Finally, in Section 4, we gave some examples of test scenarios computed with our coupling tool. Further validation

is necessary, especially a benchmark scenario allowing to perform quantitative comparisons of results in order to
fully prove the capabilities of our coupling tool.
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Reference Test Casesfor Fluid-Structure Interaction Studies

J. Pereira Gomes, H. Lienhart

The swiveling motion of a flexible structure immersed in a flowing fluid can become self-excited as a result of
different fluid-structure interaction mechanisms. The present study aimed to identify and decouple the different
fluid-structure interaction self-exciting mechanisms and to understand the influence of the physical parameters
on the different exciting processes. The parameters involved the fluid viscosity, the incoming fluid velocity and
the geometric and mechanical properties of the structure. To achieve this goal, the two-dimensional self-excited
periodic swiveling motion of flexible structures was investigated in both laminar and turbulent uniform flows. The
results obtained for a specific structure model are presented. It consisted of a 0, 04 mm thick stainless-steel mem-
brane attached to a cylindrical front body. At the trailing edge of the flexible membrane, a rectangular mass was
considered. The entire structure model was free to rotate around an axle located in the central point of the front
body. During the experimental investigation, the general character of the dynamic response of the structure model
was first investigated as a function of the incoming flow velocity. The testsin laminar flows were performed in a
polyglycol syrup (dynamic viscosity: 1,64 x 10~* m?/s) to maintain the Reynolds number smaller than 270. The
tests in turbulent flows were conducted in water for Reynolds numbers up to 44000. In both cases, the maximum
incoming velocity tested was 2 nvs. Subsequently, the relevant fluid-structure self-exciting swiveling modes were
characterized in more detail as far as the flow velocity field and structure deflection modes are concerned. Thus,
detailed measurements are presented at 1,07 m/sand at 1,45 m/sin laminar and at 0, 68 m/s in turbulent flows.
The measurements were performed using a particleimage velocimetry (PIV) system complemented by a time-phase
detector to obtain accurate time-phase resol ved measurements and aimed at the flow vel ocity and al so the structure
deflection. In thisway, it was possible to characterize the flow vel ocity field and al so the deflection of the structure
over an entire period of the motion.

1 Introduction

The mechanisms which lead the vibration of a flexible structure immersed in a flowing fluid to become self-excited
are very difficult to predict and, at the same time, very sensitive to the mechanical properties of the structure and
to the properties of the incoming flow. If a structure swivels in a flowing fluid, the added damping can become
negative as a result of different mechanisms by which energy is transferred from the flow to the body. In such cases,
the overall damping of the structure-fluid system decreases and, in some cases, completely disappears, resulting
in a periodic coupled unsteady movement of the flow and structure motion. Depending on whether the fluctuation
of the flow plays a significant role in the excitation process or not, the excitation is called either flow-induced or
movement-induced excitation (MIE). In the case of flow-induced excitation, one can further distinguish between
the extraneously-induced and instability-induced excitation (EIE and IIE).

From the numerical point of view, these self-excitation problems have attracted increasing interest in computational
mechanics due to their practical relevance in many fields of engineering and in many other sciences (Naudascher
and Rockwell (1980), Naudascher and Rockwell (1994); Souli and Hamdouni (2007)). The numerical simulations
require coupling algorithms between computational fluid dynamics (CFD) and computational structural dynam-
ics (CSD) which are not yet considered as validated tools (Bungartz and Schéfer (2006)). In this respect, the
present investigation aimed to reproduce the self-excited coupled cyclic movement of relatively simple but mean-
ingful two-dimensional structures in uniform flows. The primary objectives of these controlled experiments were
to identify, and decouple, the different fluid-structure interaction self-exciting mechanisms and to understand the
influence of the physical parameters on the different exciting processes for a relatively simple structure geometry.
The parameters involved the incoming fluid characteristics and the geometric and mechanical properties of the
structure. The present study also investigated both laminar and turbulent flow regimes, to account for the influence

131



of the Reynolds number on the self-exciting process. To control the Reynolds number and the flow velocity inde-
pendently, the viscosity of the test liquid was controlled during the tests. Second, the experimental investigation
addressed the need for experimental data on reference test cases. It provided a reliable data base on specific, well-
defined reference test cases to be used as a diagnostic and validation tool for numerical models for fluid-structure
interaction simulations. The data base created from these reference test cases included the time-phase resolved
characterization of the flow velocity field and the mechanical behavior of the structure, such as its deflection,
principal deflection modes, periodic motion amplitude and frequency. The present paper reports the results of the
experimental investigation performed on one of the investigated structure models in both laminar and turbulent
flows.

2 Experimental set-up

2.1 Test definition

The project aimed to characterize the resulting two-dimensional periodic swiveling motion of relatively simple
flexible structures driven by uniform incoming laminar and turbulent flows. The project requirements for period-
icity and reproducibility of the resulting flow and structure motion imposed stringent restrictions on the selection
of models to be considered. Moreover, the set of models to be tested should make it possible to understand the
influence of different parameters such as shape, mass and momentum of inertia on the fluid-structure interaction
self-excitation mechanisms. Finally, a set of models mainly consisting of a flexible panel attached to a free rotating
front solid cylinder was considered. The present paper shows the results obtained for one of that set of selected
models (figure 1). It consisted of a 0,04 mm thick stainless-steel sheet attached to a 22 mm diameter aluminum
cylindrical front body. At the trailing edge of the membrane, a 10 mm x 4 mm rectangular stainless-steel mass
was located. All the structure was free to rotate around an axle located in the central point of the front cylinder.
Both the front cylinder and the rear mass were considered rigid. The flexible section of the structure proved to
show linear mechanical behavior within the range of forces acting on it during the tests and the Youngs modulus
was measured as 200 kKN/mm?2. The overall spanwise direction of the model was chosen to match the dimensions
of the test section to guarantee the two-dimensionality of the test case.
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Figure 1: Structure model geometry (all dimensions in mm).

The tests were conducted in a vertical, closed-loop tunnel capable of operating with different viscous liquids with
a kinematic viscosity up to 5 x 10~* m?/s. The special capability of the tunnel to operate with different viscous
liquids allowed control of the Reynolds number of the tests for the same inlet flow velocity. For the investigation
in the laminar regime, polyethylene glycol (polyglycol) PG-12000 syrup was used as the test fluid. Because the
physical properties of this kind of syrups are sensitive to the liquid temperature, this value had to be controlled
during the tests. The tests were finally conducted for a controlled temperature of 25 °C with an uncertainty of 0, 5
°C. Within this temperature range, the mixture could be considered incompressible and Newtonian; its kinematic
viscosity and density were measured to be constant at 1,64 x 10 ~* m?/s and 1050 kg/m?, respectively. On the

other hand, the tests in turbulent flows were conducted in water at a temperature of 22 °C f?ig (pw = 998 kg/m?;

vw = 0,97 x 1076 m?/s). For both the laminar and turbulent regimes, the test were performed for a flow velocity
range up to 2 m/s.

The test section has an overall length of 338 mm and a cross-sectional area of 180 mm x 240 mm. The structure
was mounted 55 mm downstream of the inlet plane of the test section. Opting for a vertical tunnel, the gravity
force was aligned with the x-axis and so it did not introduce any asymmetry. The experiment domain of the tests is
represented in figure 2. Special attention was given to the model support on the test section. Low-friction bearings
were used for this specific task to guarantee a frictionless rotational degree of freedom of the front cylinder. The

132



Figure 2: Experimental domain.

supporting system also considered a non-contacting magnetic position sensor to measure the angular position of
the structure front cylinder. The output of this sensor was used during the test to measure the time-dependent angle
of the structure front body and to determine the beginning of a new model swiveling motion period.

2.2 Measuring apparatus

The specific requirements of the present project imposed several challenges when it came to acquiring the experi-
mental data and to reconstruct them. The first difficulty was that measurements were performed in different liquids
with a wide range of viscosity. The others were related to the nature of the resulting movement observed in periodic
fluid-structure interaction problems. First, the periodicity of the structure motion is sensitive to the flow conditions
and structure mechanical properties; therefore, there are cycle-to-cycle variations of the period time. Second, the
velocity of the structure within a motion period is not predefined (as it is for crank shaft-driven set-ups), which
makes it impossible to reconstruct the time-phase resolved data from position-resolved measurements. To over-
come those problems, a particle image velocimetry (PIV) system connected to an in-house designed time-phase
detector was implemented to obtain accurate time-phase resolved measurements of the resulting coupled structure
and flow motion in a wide range of viscous liquids. The time-phase detector was developed based on a 1 MHz
absolute clock to provide a detection accuracy of 2 us. During the tests, two signals were detected and recorded:
the internal triggering signal of the PIV cameras to indicate the instant of the measurement and the signal of a
magnetic angular position sensor connected to the structure to indicate the beginning of a new swiveling cycle.
Thus, the measurements were reconstructed introducing the time-phase angle tpa = (¢/T") x 360° where T' is
the period of the structure swiveling motion and ¢ is the delay of the measurements with respect to the beginning
of the cycle. The measurements were resolved in the time-phase space with a resolution of 2, 5 ° within an angle
averaging slot of +0, 5°. The task of measuring the two-dimensional flow field around the model was performed
using a PIV system that consisted of two 1280 pixel x 1024 pixel synchronized cameras and a double-head pulsed
Nd:YAG laser with a wavelength of 532 nm. Opting for the solution of two parallel cameras, it was possible to
cover an extended 272 mm x 170 mm flow field area while keeping the spatial resolution as low as 133 ym x133
wm per CCD pixel. The measurement location was set to the center plane of the test section (z = 0 mm; see figure
2). Two laser sources were used to illuminate the flow. This solution was adopted because the flexible structure
was an opaque body which creates an unsteady dark shadow region when illuminated by just one light source. This
behavior not only reduced the measuring area to almost one side of the flexible structure, but also made the mask-
ing of the PIV images in post-processing difficult to perform. Using one laser source to illuminate each side of
the structure, the dark region behind the structure was extinguished and all the flow surrounding the structure was
accessible to PIV measurements. As seeding particles, 10 . m mean diameter hollow glass spheres were chosen to
be used in water. They provided a good match of density and enough scattering signal over the all the measuring
area. During the laminar tests, in polyglycol syrups, silver-coated hollow glass spheres with the same diameter
were adopted as seeding particles. They produce higher signal levels in high light-absorbing media compared with
non-coated hollow glass spheres. The major drawback of the silver-coated glass spheres is related to their density;
the relative density of this kind of particles is about 1, 4. Nevertheless, this drawback was acceptable because of the
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high viscosity of the fluid and the velocity of the flow during the tests. To determine the position of the structure,
the PIV system was modified to provide it with structure deflection analysis capabilities. The idea behind this
set-up was to use the PIV system to acquire images from the swiveling structure and to use specially developed
software to analyze and reconstruct the time-dependent deflection of the structure. The major advantage of this
approach was that the same measuring system as used for the velocity field measurements could be employed. The
cameras were now located in such a way as to acquire images of the flexible structure illuminated by the laser
sheet from each side of the model. No seeding was used during these tests. Quantitative analysis was performed
after image acquisition in Matlab workspace by a script developed for the specific task. The software analyzed
and compared the PIV images of both sides of the model and reconstructed the time-dependent image of the light
sheet reflected by the structure. For that purpose, it mapped the pixel value in the grayscale of the entire image
and detected the line resulting from the intersection of the laser sheet and the structure and the edges of the rear
mass. With the information on the position of the membrane and on the time-phase detector module, the algorithm
finally computed all the relevant time-phase resolved data of the structure movement, such as time-phase resolved
angle of attack of the front body, structure deformation shape and coordinates of the structure trailing edge. Based
on these data, the modes present in the structure were identified and characterized. More detailed descriptions
of the measurement techniques and their adaptation to the present task are given elsewhere (Gomes and Lienhart
(2006a); Gomes and Lienhart (2006b)).

3 Results

To assist the understanding of the results, they are divided according to the flow regime. Thus, in section 3.1 the
results obtained in the laminar regime are presented and in section 3.2 the results in turbulent flows. For each
regime, the structure model was first tested at different incoming flow velocities up to 2 m/s. These results defined
the general character of the dynamic response of the structure model as a function of the incoming flow velocity
and showed the different swiveling modes exhibited by the structure. In the second stage, detailed measurements
were conducted at selected velocities to characterize each combined flow and structure swiveling mode, and sec-
tion 3.1 includes detailed measurements obtained in laminar flow at 1,07 m/s and 1,45 m/s. In turbulent flows,
detailed measurements were performed only for one approaching flow velocity, 0,68 m/s. These measurements
are presented in section 3.2.

3.1 Resaultsin laminar flows

Figure 3 shows the dynamic response of the structure in laminar flows. The Reynolds number, based on the
diameter of the front cylindrical body, reached the maximum value of 270 at 2 m/s. At very low flow velocities, it
was not possible to identify any kind of motion. On increasing the flow speed, it was observed that the minimum
velocity needed to excite the movement of the structure varied slightly from test to test. Nevertheless, in all cases
it was possible to achieve a periodic cyclic swiveling motion for velocities slightly smaller then 1 m/s. It should
be mentioned that as soon as the structure started to swivel, its motion frequency coincided with the line in figure
3 independently of the velocity value at which the movement started. From the instant that the structure started
to swivel and for all the range of velocities tested, the resulting motion proved to be symmetric and periodic. The
RMS value of the cycle-to-cycle structure motion period was measured to be less than 1%.

The most obvious aspect revealed by figure 3 is the existence of two distinctive structure swiveling motion modes
separated by a pronounced, well-defined hysteretic region. For both swiveling modes, the frequency of the resulting
motion increased linearly with the velocity of the incoming flow. Whereas the frequency increased with the flow
velocity, the amplitude of the structure motion showed a maximum value for each swiveling motion mode. The
first swiveling mode, registered for incoming flow velocities up to approximately 1, 1 m/s, was characterized by the
fact that the deflection of the structure model was strongly governed by the first bending mode of the membrane. In
connection with this, the movement of the rear mass was in concordance with the movement of the front body. The
second swiveling mode, observed for incoming velocities higher than 1,3 m/s, was characterized by the fact that
the rear mass motion is in opposition to the movement of the structure front body. At the same time, higher bending
modes were present in the deflection of the structure. The conclusion about the deflection modes exhibited by the
structure was supported by visualizations performed during the tests at different flow speeds. Within the transition
region, from 1,1 m/s to 1,3 m/s, the structure presented a hysteretic behavior where both swiveling modes could
be observed depending on the previous frequency of the structure. In both cases, a delay of the movement of
the rear mass in relation to the front body was identified. This delay is a consequence of the flexibility of the
membrane and it is a function of the mechanical properties of the structure. After identifying the two different
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Figure 3: Structure swiveling frequency (a) and structure front body swiveling peak-to-peak amplitude (b) versus
incoming flow velocity (solid squares correspond to measurements acquired while increasing and open squares
while decreasing the flow velocity).

self-excited swiveling modes of the flow-structure system, each was characterized in more detail. To this end, two
flow velocities, 1,07 m/s and 1,45 m/s, were selected as representative of the swiveling modes. Both values are
located close to the velocity of the maximum structure amplitude excitation (figure 3(a)).

Resultsat 1,07 m/s

In the following figures, the characterization of the structure movement for an incoming flow velocity of 1,07 m/s
is shown. At this velocity, the Reynolds number is approximately 140, based on a front body diameter of 22 mm
and a kinematic viscosity of the polyglycol syrup of to 1, 64 x 10 ~* m?/s.
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Figure 4: Time-phase resolved front body angle within a period of motion at 1,07 m/s (Re ~ 140).

Figure 4 shows the evolution of the angle of the structure front body within the swiveling motion averaged period
and figures 5 and 6 present the successive positions of the structure membrane and the coordinates of the trailing
edge during the same period. The time-phase resolution in figure 5 was set to 30 ° whereas that used for figure
6 was 5°. As far as the flow field surrounding of the structure model is concerned, figure 7 compiles the time-
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of motion at 1,07 m/s (Re ~ 140). motion at 1,07 m/s (Re =~ 140).

phase resolved combined flow field and structure deflection at eight instants of the reference swiveling period.
The successive results indicate that the movement of the trailing edge is in-phase, but delayed, with respect to the
movement of the front body. This delay could be quantified by comparing the time-phase resolved angle of the
front body with the y-coordinate of the structure trailing edge. Thus, at 1, 07 m/s the delay of the trailing edge with
respect to the front body movement, as time-phase angle, was computed to be approximately 60 °.
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Resultsat 1,45 m/s

A similar set of measurements were performed for an incoming flow velocity of 1,45 m/s, which corresponds to a
Reynolds number close to 190. At 1,45 m/s, the structure exhibited a more complex and faster swiveling motion.
The resulting motion frequency was measured to be 13, 58 Hz and the maximum front body angular amplitude was
+22°. In figure 8 the angle of the front body within the averaged period of motion is displayed. The time-phase
delay of the trailing edge excursion in relation to the front body movement increased to about 210 °.
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Figure 8: Time-phase resolved front body angle within a period of motion at 1,45 m/s (Re ~ 190).

Figures 9 and 10 show the time-phase resolved position of the structure membrane and of the structure model
trailing edge within the averaged swiveling motion. Now the collection of the membrane deformations display
a pronounced node, indicating the existence of higher bending modes in the structure deflection. In figures 9
and 10, time-phase angle resolutions of 30° and 5° were used. Regarding the unsteady flow field results, figure 11
presents the velocity field around the structure for eight, 45 © equally distant, time-phase angles within the reference
movement cycle.
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3.2 Resaultsin turbulent flows

In the turbulent regime, using water as the working fluid, the structure proved to have the same well-defined multi-
swiveling mode behavior as observed in laminar flows. Figure 12 presents the dynamic response of the structure
versus the incoming water flow velocity up to 2 m/s (Re =~ 44000). Now the structure could be excited to a peri-
odic swiveling motion at very low flow velocities. Visualizations showed that this first excited mode corresponded
to the rigid body motion mode, i.e. the structure swiveled in the fluid around its free rotating axle without changing
its original and straight shape. Because it corresponded to the rigid body motion, this mode was named the zero
swiveling mode. As an example of this zero mode, figure 13 shows the structure behavior at approximately 0,19
m/s in water. A swiveling mode transition was registered for a flow velocity close to 0,4 m/s. The transition
between modes is abrupt and it was not possible to observe either any evolution of the structure motion during the
transition or any hysteretic behavior. In the new swiveling mode, the structure deflection was dominated by the first
bending mode of the membrane. The behavior of the structure in this mode is all respects similar to the first swivel-
ing mode observed in laminar flows. For both swiveling modes shown in figure 12, the amplitude of the structure
movement was limited and exhibited a local maximum value. The structure movement frequency increased ap-
proximately linearly with the velocity of the incoming flow in both modes. The only exception occurred in the first
mode at approximately 0.6 m/s where a change in slope was registered because of a phase-locked occurrence. On
further increasing the incoming flow velocity, an unusual behavior was observed: as soon as the amplitude of the
structure started to decrease, after reaching the local maximum, the motion characteristics degraded very rapidly.
This effect was supported by the RMS value presented in figure 12. The coupled movement became non-periodic
and non-symmetric and led to a rapid destruction of the structure. Therefore, no measurements could be obtained
for flow velocities higher than 0,9 m/s. This sequence of facts occurred when the structure swiveling frequency
was showing the first signals of transition to a new, second swiveling mode. In the range in which the structure
movement is periodic and reproducible, up to 0, 9 m/s, the RMS value of the cycle-to-cycle motion period remained
lower than 1%.
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Figure 12: Structure swiveling frequency (a) and structure front body swiveling peak-to-peak amplitude (b) versus
incoming flow velocity (solid squares correspond to measurements acquired while increasing and open squares
while decreasing the flow velocity).

Despite the trivial rigid body mode, the only self-exciting swiveling mode that could be characterized in detail
using the present structure configuration was the first one. Therefore, further investigations were performed in a
water flow at 0,68 m/s. The decision regarding that velocity followed the same criteria as used for the laminar
investigations.
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Figure 13: Time-phase resolved front body angle (a) and membrane deflection (b) within a period of motion at
0,19 mf/s.

Results at 0,68 m/s

At 0, 68 m/s, the Reynolds number of the measurements performed in water was about 15000, based on the diam-
eter of the front cylinder and on the water properties. Under such conditions, the structure exhibited a 4,45 Hz
periodic swiveling motion with the rear mass delayed, in time-phase angle, 95 © in relation to the front body. Once
again, the characterization of the resulting movement is based on the angle of the structure front body, trailing
edge position and structure deflection. Figures 14 to 16 show the time-phase resolved evolution of these quantities
within the averaged period of motion. The same resolutions as used to generate the laminar results were used in
the following figures.
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Figure 14: Time-phase resolved front body angle within a period of motion at 0, 68 m/s (Re ~ 15000).

Figure 17 shows the flow velocity field results obtained in water at 0, 68 m/s for eight successive time-phase angles
measured within a period of the structure motion. The time-phase angles presented correspond to those adopted in
section 3.1.
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4 Discussion of theresults

The self-excited two-dimensional movement of a flexible structure in a uniform flow up to 2 m/s was investigated.
The tests included laminar measurements performed in a polyglycol syrup with a kinematic viscosity of 1,64 x
10~* m?/s and turbulent measurements conducted in water. The structure model consisted of a thin metal sheet
attached to an aluminum front cylindrical free rotating body. At the trailing edge of the metal sheet, a rear mass
was located. During the tests, this model proved to perform a very reproducible and symmetric two-dimensional
motion within the flow velocity range tested. The maximum RMS value of the cycle-to-cycle fluctuation of the
structure movement period was measured to be less than 1%.

The analysis of the structure model dynamic response proved the existence of different structure swiveling modes.
In the laminar regime, it was possible to observe two swelling modes depending on the approaching flow velacity.
For both modes, the structure movement frequency increased linearly whereas the front body amplitude presented
a local maximum. The maximum excitation occurred for 1,1 m/s and 1, 6 m/s for the first and second excitation
mode, respectively. The corresponding movement frequencies for these two instants of maximum excitation were
measured to be around 6,5 Hz and 15 Hz. The first mode was excited for the first time at 0,8 m/s. For this
flow velocity, the corresponding Strouhal number (St =~ 0,175) and the first natural frequency of the structure
(V1 = 5,9 Hz) showed a strong interconnection between the movement excitation and the classical von Karman
vortex shedding triggered by the structure front cylinder. Despite a small delay, the trailing edge movement could
be considered in phase with the angular movement of the front body. Concerning the deflection of the structure, this
mode was characterized almost exclusively by the existence of the first bending mode. At 1,07 m/s, the structure
vibrated around its first natural frequency; more precisely, the coupled fluid and structure unsteady motion was
registered to occur at 6, 38 Hz associated with a maximum excursion of the front body and trailing edge of 19 © and
16 mm, respectively.

The transition to the second, more complex mode was observed between 1,12 m/s and 1,3 m/s and it showed a
strong hysteretic behavior. A similar behavior has already been reported by Parkinson and Smith (1964) and Novak
(1972) for square cross-section prisms in cross flow. The second swiveling mode was characterized by a vortex
shedding frequency much lower than the second natural frequency of the structure (N o = 27,4 Hz), indicating a
self-exciting mechanism of a different type than the first one. The trailing edge was now almost in phase opposition
in relation to the front body position and the structure deflection was mainly characterized by the second structure
bending mode and higher. The presence of the second bending mode justified the pronounced node observed in the
structure deformation within a movement period. At 1,45 m/s, the front cylinder reached a maximum deflection
of 26° and the trailing edge excursion was limited to 19 mm.
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In the turbulent regime, one more mode was observed for very small inlet flow velocities. The lowest mode
to be excited in water was the rigid body mode (referred to as the zero swiveling mode). This mode started
to be observed at a very small approaching velocity and it was characterized by small structure deflections and
movement frequencies. The maximum rigid body excitation was registered for 0,2 m/s at the same time as the
structure swiveled at about 1,1 Hz. The transition to the first self-excitation mode was registered at about 0, 4
m/s and no hysteresis was observed. In this mode, the maximum excitation of the structure was achieved for
0,8 m/s corresponding to a movement frequency of 5 Hz. Detailed measurements at 0, 68 m/s registered a 4, 45
Hz self-exciting resulting motion associated with a maximum excursion of the front body and the trailing edge
of 29° and 25 mm, respectively. Finally, at 0,9 m/s, the structure start to give indications of a swiveling mode
transition; however, beyond this value it was not possible to register the dynamic behavior of the structure model.
On increasing the velocity, the resulting movement of the model became unstable and non-reproducible, finally
leading to the failure of the structure.

In a similar way as for the first laminar swiveling mode, a direct connection between the movement excitation and
the classical von Karman vortex shedding behind the structure front cylinder was proved to exist. This is supported
for the first swiveling mode observed in turbulent flows by the relation between the first natural frequency of the
structure (V1) and the turbulent Strouhal number (St =~ 0, 21). The same direct relation was observed for the rigid
body swiveling mode (or rigid body mode) on comparing the Strouhal number and the rigid body natural frequency
of the structure (Vo = 0,19 Hz).

Based on the results, one can conclude that the first swiveling mode is similar in nature in both the laminar and
turbulent regimes. The main differences between the two are only connected with the fact that for turbulent flow
the damping of the coupled system was significantly reduced. Thus, for the second case, higher excursions from
the trailing edge and front body and also higher deflection of the flexible part of the structure were observed.
Because of the lower damping imposed by the fluid, the structure was exposed to higher accelerations during
its swiveling movement in the turbulent tests. Another difference appears when comparing the movement of the
structure trailing edge. At higher Reynolds number, the area covered by the "figure-of-eight” shaped trajectory
was considerably bigger than that obtained in the laminar tests. This is related to the delay registered between the
rear mass and the front body movement. In both cases, the movement of the rear mass could be considered to
be in concordance with the front cylinder rotation, but the delay increased with the Reynolds number: whereas at
Re = 140 the delay was measured to be close to 60°, at Re = 15000 it reached 95°.

Comparing both self-excited coupled motions, one may conclude that both are triggered by the vortex shedding
created around the front cylinder. Because the natural frequencies of the structure are constant and the Strouhal
number is not so sensitive to the Reynolds number in the range 140-15000, the resulting movements have the
same response as far as frequency of the movement versus approaching flow velocity is concerned. Considering
all evidences, it can be concluded that both first swiveling modes correspond to instability-induced excited fluid-
structure interaction cases. The same applies to the rigid body mode observed in the turbulent tests. In the laminar
regime, a similar rigid body mode could not to be registered. The excitation process responsible for the second
mode observed in laminar flow is more difficult to examine. However, the first results indicate strongly that this
mode can be attributed to movement-induced excitation.

5 Acknowledgments

The present research project is part of the DFG Forschergruppe 493 - Fluid-Struktur-Wechselwirkung: Model-
lierung, Simulation, Optimierung. The authors gratefully acknowledge the financial support for their research
work through the German Science Foundation (DFG) - Germany - and Fundacdo para a Ciéncia e a Tecnologia
(FCT) - Portugal. In addition the authors acknowledge the scientific support given by the Erlangen Graduate
School in Advanced Optical Technologies (SAOT) - Germany - to the present investigation.

144



References

Bungartz, H. J. and Schéfer, M. (2006): Fluid-Structure Interaction. Modelling, Simulation, Optimization. Lecture
Notes in Computational Science and Engineering. Springer-Verlag.

Gomes, J. P. and Lienhart, H. (2006a): Time-resolved PIV/DMI measurements on two-dimensional fluid-structure
interaction problems. 13th Int. Symposium on Applications of Laser Techniques to Fluid Mechanics Proceed-
ings, Lisbon, Portugal.

Gomes, J. P. and Lienhart, H. (2006b): Experimental Study on a Fluid-Structure Interaction Reference Test Case:
Fluid-Structure Interaction. Modelling, Simulation, Optimization. Lecture Notes in Computational Science and
Engineering. Springer-Verlag. pp. 356-370.

Naudascher, E. and Rockwell, D. (1980): Practical Experiences with Flow-Induced Vibrations. Springer.
Naudascher, E. and Rockwell, D. (1994): Flow-Induced Vibrations - An engineering guide. Balkema.

Novak, M. (1972): Galloping Oscilations of Prismatic Structures. Journal of the Engineering Mechanics Division.
\ol. 98 pp. 27-46.

Parkinson, G.V. and Smith, J.D. (1964): The Square Prism as an Aeroelastic Non-linear Oscillator. Quarterly,
Journal of Mechanics and Applied Mathematics. Vol. 17 pp. 225-239.

Souli, M. and Hamdouni, A. (2007): Fluid Structure Interaction Industrial and Academic Applications. Revue
Européenne de Mécanique Numérique. Vol. 16 n°. 3-4.

Address: Institute of Fluid Mechanics, University of Erlangen-Nuremberg
Cauerstr. 4, 91058 Erlangen, Germany
email: jorge.gomes@lstm.uni-erlangen.de; hermann.lienhart@lstm.uni-erlangen.de

145



146



Fluid-Structure Interaction.
Theory, Numerics and Applications
pp. 147— 154
Herrsching am Ammersee, 29.9.-1.10.2008

Application of Monolithic Fluid-Structure Interaction to Identify
Hydroelastic Instabilities of a Slide Gate Chain in Axial Flow

B. Hubner

During operation of a bottom outlet with a closed slide gatel@n opend roller-mounted gate, a high velocity
water flow (up to 80 m/s) occurs in the duct of the slide gatérch@he flow induces large amplidude chain vi-
brations perpendicular to the broadside of chain elemeimt®rder to investigate the excitation mechanism and to
compare different cross-sectional shapes of the liftingaeby means of numerical simulation, a simplified model
is developed. The chain is placed in the center of a squarar@ieand modeled as a continuous plate structure
with reduced stiffness to account for joints between thmertds. For numerical simulation, a monolithic coupling
of Navier-Stokes fluid dynamics and non-linear structusalamics applies. The calculation model is based on a
unified space-time finite element method. Stability limfitthe simplified chain structure are identified by means
of transient simulations with slowly increasing inflow \@tg. In addition to the chain model with rectangular
cross-section, also a cable with circular cross-sectiaqya axial stiffnes, and low bending stiffness is regarded,
leading to a stability limit at higher inflow velocities. Téby using a cable instead of a chain for slide gate oper-
ation, the situation may be improved, but high amplitude floduced vibrations cannot be prevented completely.

1 Introduction

In most freshwater reservoirs, a bottom outlet is desigoeenpty the reservoir for maintenance reasons. At
high watermarks and the danger of dam overflow, it may alsoskd as an emergency outlet. The present paper
regards a bottom outlet in which a slide gate and a rollermtexligate are arranged subsequently. During normal
outlet operation, the slide gate is closed, and the rollesmed gate starts to open. Now, the water is flowing
11 meters in upward direction through the slide gate duobrieeit is flowing back in an additional duct and
passing the roller-mounted gate. When the roller-mountéeligdnalf opened, the water flow inside the slide gate
duct reaches a certain but not exactly known velocity whidduces high amplitude vibrations of the slide gate
chain perpendicular to the broadside of chain elements. ufist&able system behavior remains when the roller-
mounted gate is fully opened. In this case, a flow velocitypgrax. 80 m/s has been measured in the duct of
the slide gate chain. Figure 1 shows a view into the duct @finlythe chain. The overall length of the duct is
50 meters, but only the lower 11 meters are filled with water.

Figure 1: View into the duct of the slide gate chain
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Goal of this work is to study the excitation mechanism andamjgare stability limits of lifting devices with dif-
ferent cross-sectional shapes to find an improved solutioslide gate operation. For this purpose, a simplified
model of the coupled system suitable for numerical simaitetis developed and described in section 3. Previ-
ously, the numerical solution procedure for analyzingrsgip coupled fluid-structure interaction is summarized
in section 2. Numerical results for a chain like structuréhwectangular cross-section and an alternative cable
structure with circular cross-section and very low benditiffjness are compared in section 4.

2 Numerical solution procedure

For numerical simulation of the coupled system in time damaimonolithic coupling of incompressible Navier-
Stokes fluid dynamics and geometrically non-linear stnatdynamics applies. The solution procedure is based
on a unified space-time finite element method which is desdiiib detail by Hibner et al. (2004). The formulation

of viscous fluid dynamics in moving domains follows the worfkTezduyar et al. (1992a) and Tezduyar et al.
(1992b). The simultaneous solution procedure is applietiilyner and Dinkler (2005) to identify hydroelastic
instabilities of a fluid-conveying cantilevered pipe systehich has been defined and experimentally investigated
by Pddoussis and Semler (1998).

The governing equations for both solid and fluid are formadah velocity variables and discretized with stabi-
lized and time-discontinuous space-time finite elemeradifey to a rate formulation of structural dynamics, see
Knippers and Harbord (1994) and Hughes and Hulbert (19883omtinuous finite element mesh applies to the
entire spatial domain. Hence, velocity variables at therfate belong to both fluid and structural domain, fulfill-
ing the coupling conditions automatically. The discradirzeodel equations are assembled altogether in a single
set of algebraic equations, considering the two-field mwbas a whole. The space-time finite element method
provides a consistent discretization of both space and Byeapplying isoparametric space-time elements, which
are adaptable in time direction, the method discretizesaheguations in moving domains in a natural way and
satisfies inherently the geometric conservation law, se®ihee and Farhat (1996). At discrete time levels, the
interpolation of velocity, stress and pressure varialdatiscontinuous in time using independent degrees of free-
dom for the values at the end of the previous and at the begjrofithe actual time slab. This time-discontinuous
Galerkin formulation results in a fully implicit time integtion scheme which is A-stable and of third-order accu-
rate, see Johnson (1993). A Petrov-Galerkin stabilizadfospace-time elements prevents numerical oscillations
in case of convection dominated flows and allows the apjidicaif equal order interpolations for velocities and
pressure. The mixed-hybrid velocity-stress formulatibstauctural elements prevents all kinds of locking effects

The highly nonlinear system of discretized model equatfonsolid and fluid dynamics as well as the movement
of the fluid mesh has to be solved iteratively. Due to the apfibn of a continuous finite element mesh for the
entire domain, a monolithic formulation of solid and fluidarsingle system of algebraic equations is obtained. A
Picard iteration scheme linearizes all equations, leattirgrelatively simple fixed point type solution procedure.
Subsequently, the mesh movement procedure based on a psastio approach applies. Thus, the entire set of
model equations for solid, fluid, and fluid mesh movement igexbin a single iteration loop. In case of strong
structural nonlinearities, the iteration is acceleratgdfiplying a relaxation scheme for the calculation of strcadt
displacements. For the relaxation parameter, values ket@& and 1.0 are appropriate in most cases. For solving
the large sparse system of linearized equations, a preameti BICGStab solver is used. However, a major
difficulty is the choice of appropriate preconditioning meds. The matrix is not diagonally dominant and may
be ill-conditioned if different scales are present in fluidlastructure. Therefore, a direct LU-factorization of the
system matrix is used for preconditioning during a variablenber of time steps. When system characteristics
change significantly, the system matrix has to be factoraggdn.

3 Modeling of chain and cable structure in axial flow

In order to investigate flow induced vibrations and to findrapiioved design for the slide gate lifting device, the
existing chain structure is compared with a cable model.e&rchdvantage of the cable is the non-existence of bolt
connections which therefore cannot be destroyed by larg@itaahe vibrations, but the bending stiffness is much
smaller and may lead to a lower stability limit or higher aimyales. However, the contact surface for the flow is
smaller and the flow around the vibrating cable is more cormplherefore, a simplified model of the coupled
system suitable for efficient numerical analyses is reghtdeompare stability characteristics of chain and cable
structure. Both lifting devices are placed in the centerwéer filled quadratic channel, see figure 2, and modeled
as elastic solids with adapted stiffness properties toaimately account for the real structural behavior.
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Figure 2: System configuration of the simplified model

3.1 Channel flow

For the flow simulation, an incompressible and viscous flndiding buoyancy effects is assumed and described
by the instationary Navier-Stokes equations. At the lowat ef the channel (inlet), a slowly increasing inflow
velocity is imposed by(t) = 40m/s + t-0.5m/s?. At the upper end of the channel (outlet) zero pressure
boundary conditions apply, see figure 2. With a density ef 1t/m? and a viscosity of: = 107%t/(ms), the
Reynolds number based on the channel widtRdis= 4-107 for a flow velocity of40 m/s. Thus, the flow field

is clearly turbulent. However, turbulence modeling is radetn into account, since boundary layers are very thin
compared to the cross-sectional dimensions, and the weltistribution over the cross-section is nearly constant.
Moreover, the determination of friction losses is not cdesgd in this investigation, and the onset of instabilities
which is mainly governed by inertia effects may even be mtedi by a potential flow theory, see e.g.idRaissis
(1998) and Paloussis (2004). Furthermore, the non-linear time domiaiuisition of the coupled system over a
large period with a small time step &f¢ = 0.005s has to be performed with a comparable coarse fluid mesh in
order to get reasonable simulation times.

Therefore, slip boundary conditions apply at channel waltsl only at the fluid-structure interface, no-slip con-
ditions are present allowing for the development of a bountgyer. However, for the applied meshes (see next
section), the boundary layer thickness of the simulatiodeh mainly defined by the thickness of the first fluid
element layer at the interface which is in the range of theimar thickness of the real turbulent boundary layer.
Thus, the simplified flow model allows for a proper approxiim@bf the real velocity profile in the slide gate duct.
In order to prove that viscosity and boundary layer effetdiding the wall shear stress only have little influence
on stability characteristics of the coupled system, thmifiar) viscosity is 10-fold increased, and the result is
compared to the original case.

3.2 Chain with rectangular cross-section

The original chain is modeled as a beam like plate structutie r@ctangular cross-section and discretized with
3-dimensional solid elements for geometrically non-linelastodynamics. From the entire chain, only the lower
part which is immersed in water is regarded. At the upper ehdrevthe chain is cut off, a sliding support with
fixed rotation applies, and at the lower end where the slide igaattached, a clamping is placed. To account for
the joints between chain elements, Young's modulus of thstiel solid, given byE = 10% kN/m?, is reduced

149



to approximately half the value of steel. However, keep imdnithat also the real chain has a finite bending
stiffness against deflections perpendicular to the broadskor density and dead load, the real values of steel
of p = 7.8t/m3 andy = 78 kN/m? apply. Beside the damping due to flow effects, only a very kumdlime
proportional damping coefficient & = 0.01t/(m3s) acts on the structure. The system configuration with all
dimensions of the simplified chain model is given in figure @r Rumerical analyses, symmetry is considered to
reduce the model size, see finite element mesh of a crosersaqtlane in figure 3.

Figure 3: Cross-sectional mesh for the chain model
3.3 Cable with circular cross-section

Also for the alternative cable structure, symmetry condgi apply, and only half of the model is discretized, see
the finite element mesh of a cross-sectional plane given umdig. However, this restricts the solution to in-plane
vibration modes, even though three-dimensional vibratbapes are quite possible in case of circular cables.
Upper and lower boundary conditions as well as the couptirthe fluid domain are equal to the numerical model
of the chain structure. The cable diameter/df= 0.09 m is chosen to match approximately the cross-sectional
area of the chain model. In order to model real cable behaxioibiting high axial stiffness and very low bending
stiffness by means of an elastic solid, different Young'sdulbare used in the center and at the outer region of
the cross-section. For the two elements in the center ofyther®tric mesh, a value of; = 1.26-10° kN /m?
applies. For the outer elements, a much smaller valug,0f= 107 kN/m? is used. Now, the axial stiffness of
EA = 7.2-10° kN is equal to the chain model, while the bending stiffnes&df= 65kNm? is clearly smaller.
The values for density, dead load and damping are taken fierattain model.

Figure 4: Cross-sectional mesh for the cable model

4 Comparison and evaluation of results

The simplified numerical model of the coupled system may msicdbe exactly the real physics of chain and
cable structure in the turbulent flow field of the slide gatetdidowever, the simplifications are comparable for
both cases, and therefore, the numerical results allow btafiiee comparison of the sensitivity to flow induced
vibrations and hydroelastic instabilities. In order toedtatine the limit velocity for the occurrence of hydroelasti
instabilities leading to large amplitude vibrations, aibontal impulse load is acting every 15 seconds on the
upper end of the structure, while the inflow velocity incesagontinuously. The first impulse load acts after
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one second of calculation time when a stationary flow field andequilibrium state of the structure has been
developed. The stability limit is given by the point in timevehich the vibration amplitudes due to the impulse
load start to increase. When the first impulse load act$) &tm /s inflow velocity on the original chain model,
the structure responds initially with a damped vibratiohdegor. However, after 5.6 seconds of simulation time at
v = 42.8 m/s inflow velocity, the dynamic behavior changes and the sygfetsiunstable. See figure 5, where time
histories of horizontal displacements at center and uppetioéthe chain model are shown for the first 12 seconds
of simulation time. The vibration frequency which is incsg®y continuously with the inflow velocity, becomes
f = 1.4Hz at the stability limit. The chain model with 10-fold increasfluid viscosity exhibits nearly identical
stability characteristics. The stability limit is reachaa flow velocity ofv = 43.2m/s, and the corresponding
frequency is given by = 1.4 Hz, too, see displacement time histories of the entire caiouan figure 6. Thus,

it can be concluded that boundary layer effects have onlyomimfluence on stability characteristics which are
mainly governed by inertia effects.
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Figure 5: Time histories of horizontal displacements nedh¢ satbility limit for the chain model
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Figure 6: Time histories of horizontal displacements fa ¢hain model with 10-fold fluid viscosity

In case of the cable structure, the impulse load induces tiangér initial deflections in the stable regime, because
bending stiffness and flow resistance are clearly smallexelheless, the vibration due to the first impulse load
decrease nearly to zero, and the hydroelastic instabitityie much later. At = 50.0 m/s inflow velocity, the
cable system tends to get unstable, but the amplitudesaserenly slightly. The real stability limit exhibiting
strongly increasing amplitudes is first reached at an infleloaity of v = 60.2m/s, see time histories of dis-
placements in figure 7. Stability limits and correspondirgpfiencies of all regarded models are compared in
table 1. Snap shots of the deformed cable structure durimggéesperiod of the coupled vibration are shown in
figure 8. The type of motion which is quite similar for the ahanodels can be classified as a kind of travelling
wave flutter, comparable to a flag in wind flow.
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model velocity at stability limit  corresponding frequency
rectangular chain 42.8 m/s 1.4 Hz
chain (10-fold visc.) 43.2 m/s 1.4 Hz
circular cable (1st) 50.0 m/s 1.9 Hz
circular cable (2nd) 60.2 m/s 2.8 Hz

Table 1: Comparison of stability limits for chain and cabledsal

Although the bending stiffness of the cable model is cleamaller compared to the chain model, instability occurs
at much higher flow velocities. This behavior is caused bydifferent cross-sectional shapes leading to different
flow situations. In case of the chain model, the flow is syniaesh over the entire contact surface (broadside
of chain elements) leading to approximately two-dimenaidlow behavior. In contrast, the contact surface of
the cable is clearly smaller and the circular shape causeltye3tdimensional and more complex flow situation.
This results in the favorable stability characteristicghe cable model, at least if only in-plane vibrations are
regarded. However, for both lifting devices, large amplédlow induced vibrations have been detected within the
operating range of up t80 m/s flow velocity. Nevertheless, the cable seems to have cleanaages over the
chain structure.

5 Conclusion

In order to find reasons for large amplitude flow induced \tibres of a slide gate chain and to look for an improved
design, numerical simulations of simplified chain and cabtalels have been performed and compared. The
simplified models consist of continuous elasic solids witlagted stiffness properties to approximately account
for the real behavior of chain and cable, respectively. Asompressible and viscous fluid has been assumed
without special attention on turbulence modeling. Howglsgrcomparing results for different viscosities, it has
been shown that boundary layer effects have very little @mfbe on stability characteristics. For the transient
simulation of the strongly coupled system, a monolithicrapph to fluid-structure interaction based on space-
time finite elements has been applied. Stability limits48in/s and 60 m/s flow velocity have been detected
for chain and cable, respectively. Thus, by using a cabkeausof a chain structure for slide gate operation, the
situation may be improved, especially because a cable dudgature bolt connections which can be destroyed
by strong vibrations. However, high amplitude flow inducdatations cannot be prevented completely if the flow
velocity in the slide gate duct reaches values ugito/s.
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Interaction

U. Israel, E. Stavropoulou, M. Barcelos, T. Gallinger, K.Rletzinger, R. WWichner

A modular framework for gradient based optimization in tarhed analysis for fluid-structure interaction (FSI) is
presented. To guarantee flexibility for several technigailecations of shape optimal design for structures subject
to fluid flow the software environment is designed for the étesnalysis and Design (NAND) concept and parti-
tioned FSI schemes using three field analyses includingtstre, fluid mesh and fluid. The developed framework
provides the possibility to include and combine severakaaghes for optimization methods, shape definition and
sensitivity analysis.

For shape definition, parametric and non parametric methadsdiscussed and illustrated by examples realized
within this framework. A special focus is set on the UpdatefeRRnce Strategy as an effective and efficient way
to obtain free form shapes of membranes for the design potsorporating this nonlinear form finding process
into the optimization frame allows for finding real free fosarfaces by using only a small number of optimization
variables. For applications using these shape definitiam®@rical and semianalytical sensitivity method are dis-
cussed. In particular, a numerical and a direct sensitiahalysis method based on structural sensitivity equation
are presented. Examples using different shape definitindsansitivity analyses are shown for verification of the
optimization framework.

1 Introduction and Motivation

In recent years good advances in FSI simulation have beew iuad optimization of FSI problems became a
in-demand research topic. Good experience with optindratiethods on fluid and structure side influenced the
development of optimization of coupled systems&Wénin and Janiga, 2008; Mohammadi and Pironneau, 2004;
Jameson, 2004, 1995; Bletzinger et al., 2008; Haftka anddbia 1986; Arora and Wang, 2005). Several ap-
proaches towards the optimization in fluid-structure imtéion exist (Sobieszczanski-Sobieski and Haftka, 1997;
Haftka et al., 1992; Bletzinger et al., 2006; Soto aridhher, 2001; Lund et al., 2003; Maute et al., 2001, 2003).
Evolutionary algorithms are effective in finding global iop& and simple to implement, but cause high compu-
tational costs because of slow convergence. Using grabiesed algorithms, the computational effort can be
extremely reduced. Gradients indicate the direction ofteebeolution and therefore fast convergence is achieved.
The crucial point is to obtain the gradient information negfbr the optimization procedure. Various approaches
on numerical and semianalytical sensitivity analysistexisl will be discussed. For problems with low number of
optimization variables numerical approaches are adegatt¢he numerical effort increases with increasing num-
ber of optimization variables. Since high shape freedonuéganteed by higher number of optimization variables
in shape optimization, more complex methods are requireel he

From the technical point of view, it is important whether tiiioned or monolithic schemes are used. For big
technical problems which require the use of specific and t@stkd simulation tools the partitioned approach of-
fers the required modularity, but coupling of the singlediebdes becomes necessary. Basing optimization on a
partitioned scheme, coupling has to be done during the wiroleess and therefore high demands arise in software
engineering.
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2 Requirements for Optimal Shapes of Lightweight Structures

2.1 Handling Lightweight Structures

The vision behind this work is simulation and shape optitmzaof large and lightweight structures interacting
with fluid flow, especially in the area of aerospace, mectarind civil engineering. Wide span membrane roofs
and shell structures as well as inflatable and pressure doecirstructures are typical applications in lightweight
construction. These types of problems cause large numbdegycees of freedom and, therefore, require efficient
simulation tools. To introduce best suited codes for thglsifields the partitioned approach guarantees the needed
modularity for big technically relevant problems. Sectibaf this paper and reference (Gallinger et al., 2008) de-
scribe this approach. For the communication during runtimeé the data transfer between non matching grids
on the common interface a coupling tool is required. The hugeber of degrees of freedom and the herewith
connected high computational effort in optimization rensdgradient based algorithms indispensable. In section 3
additional information is given.

Towards shape optimization of these complex systems, @atimn methods for optimal design of shell and
membrane structures subject to fluid flow have been develfopedsteady state solution with the aim to optimize
several practically relevant criteria like structural @ehations and stresses. Correspondingly, displacement an
force formulations are chosen as objectives. The specs& chcompliance minimization is also considered re-
garding the possibility to design optimal stiffened stues with respect to a specific loading.

2.2 Guaranteeing Shape Diversity

In shape optimization a maximum freedom in shape designHelt and membrane structures and definition of
structural optimization criteria is focused. In generas tiiso means the introduction of a huge number of design
variables and accordingly increasing numerical efforive®a methods to reduce this effort can be applied. This
can be done directly by reducing the number of design vagalil an adequate way or by introducing adjoint
methods in sensitivity analysis.

For shells the Computer Aided Geometric Design (CAGD) methitows for a small number of design variables
by linking structural FE meshes to design elements. In tagecthe connection between the FE-node locations
and the design variables is established by means of matloatnatations. Nevertheless, the design freedom is
strongly dominated by the choice of these relations. Tloeeedlso CAGD free methods which guarantee the max-
imum design freedom by taking the nodal positions of thedialement mesh as design variables are needed. Then
a huge number of design variables arise. To overcome thiingsimtense numerical effort the adjoint formulation
for sensitivity analysis must be introduced.

For structures acting as membranes mechanic based stsafeginecessary. Here the Updated Reference Strategy
(i.e. a generally formulated form finding method) is presdrds an effective and efficient way to obtain free form
shapes of membranes for the design process. Including thigear form finding process into the optimization
frame allows for finding real free form surfaces by just usingmall number of design variables. This means
that although a non-parametric shape definition is used #iwieat reduction of number of design variables is
achieved by applying a mechanics based criterion. Herdothefinding method is used as an effective non para-
metric shape description method to obtain free form shajtbsaveduced number of optimization variables.

The provided design descriptions for the structural shageire multiple and flexible methods for sensitivity anal-
ysis. Numerical and semianalytical methods are requiredplications using the shape definitions mentioned
above. Numerical methods are needed for free form membhraime the form finding process is nonlinear and
inverse. Semianalytical direct methods are best suitedtfactures defined by CAGD. For the CAD free opti-
mization semianalytical adjoint methods are required.

In section 6 and 7 shape description methods and senstinélysis are discussed.

2.3 Developing a Modular Software Environment

The desired variety and flexibility to all these mentionedgbilities can be guaranteed in a modular framework
for gradient based optimization in partitioned analysiflidd-structure interaction. To achieve the modularitdan
flexibility for various problems of shape optimal design$tnuctures subject to fluid flow the software environment
is designed for the Nested Analysis and Design (NAND) cohegyl a partitioned FSI scheme using a three
field analysis including structure, fluid mesh and fluid. Tinigolves the interaction of an optimizer, a coupled
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analysis and a coupled sensitivity analysis. Coupling aatd ttansfer has to be extended to optimization and
the sensitivity analysis, resulting in special demandshendoupling tool. Finally, the developed framework
provides the possibility to include and combine differepp@aches for optimization methods, shape definition
and sensitivity analysis.

The code coupling plays a central role to ensure modularitiié use of fluid solvers as well as to handle coupled
sensitivity analysis. Therefore the development of an pedelent coupling tool was one of the main working
steps.

In section 5, the developed framework including the codeplting is presented.

Additionally, to enhance the powerful structural analysisl optimization tool CARAT it is a desired feature to
plug in and run a FSI analysis with any fluid code. Thus, thesibilgty to use an arbitrary fluid solver as blackbox
for the sensitivity analysis is exploited as far as possiagarding reduction of numerical effort.

3 Gradient Based Optimization

In the following, the formulation and the solution strategythe optimization problem is described. The optimiza-
tion problem can be stated as follows:

f(s) — min

where 5, <5 <5 scR"

wheref,g;,h; are the objective function, the inequality and the equalitgstraints, respectively. They are func-
tions of s = (s1,---,s,)" which is the vector of the optimization variables. The extiste of the constraints
changes totally the way to treat the problem. Consequettlystrained and unconstrained problems form two
big classes of optimization problems. Unconstrained agtition problems using gradient based methods are dis-
cussed in the sequel. On the one hand, these methods areffiaieate have better convergence rates and require
few evaluations of the objective function. On the other haladivative information has to be provided and because
of that problems might occur when the objective function diasontinuities or kinks.
In general, gradient-based methods start with an initiglsgs, and in each iteration the solution is updated as
follows :

Siy1 = 8; + o Dy
whereD? = D{(V f(s;); V2 f(s;)) € R" is the search direction and is the step size, which is usually calculated
with a line-search algorithm. Steepest descend algorithone of the simplest and most popular algorithms of
this class because of its efficiency and robustness. Thisitlig is using the property of the “steepest descent” of
the negative gradient directio®(= —V f(s)). The algorithm is as follows:

i Initialize i = 0 : sg
i EvaluateD’ = -V, f
iii UpdatesiH =s; +o;D;

iv If i« = k stop. maximum number of iteratioiss reached.
otherwise: convergence check
if converged stop
elsei =i+ 1 gotoii.

The technical implementation of an optimization problerdase using the Nested Analysis and Design (NAND)
approach (Arora and Wang, 2005). Typically, in each optatian step the objective has to be evaluated by per-
forming a full analysis with the actual design. Accordinglye NAND consists of three independent modules,
optimization, analysis and sensitivity analysis, which ealled successively during the iterations of the optimiza
tion algorithm (figure 1). On the optimization level the dgsivariables are updated. With the actual design the
objective is evaluated on the analysis level. Finally, gsifiormation from the analysis, the objective function-gra
dient for the next step can be calculated in the sensitivigfysis. The NAND approach provides high modularity
because of exchangeability of the modules.
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Figure 1: Concept of Nested Analysis and Design: Optimiratanalysis and sensitivity analysis

4 Partitioned FSI Analysis

A three field analysis including structure, fluid mesh andifigiperformed. The fields are described by nonlinear
equations, which are coupled through state variables. dfaing the corresponding discrete equations of structure
S(s,u,v,w) = 0, fluid meshM (s, u,v,w) = 0 and fluid F(s,u,v,w) = 0 a staggered approach is used. The
variables of the coupled discrete equations are: strudigspacement:, fluid mesh positionv and fluid state.

The structural problem is solved by a finite element methaadguan in-house computational tool called CARAT
(Wuchner et al., 2007; \dthner, 2006), and the fluid mesh motion and the fluid problemasolved by the finite
volume method using an open source library called OpenFdasak and Tukovic, 2007). The coupled problem
is solved to achieve a steady state solution. The data éabsfween non-matching boundary meshes is done by
an in-house coupling tool called CoMA (Israel et al., 2007).

Detailed information on the coupling schemes and the sofwavironment is given in (Gallinger et al., 2008).
For further information the reader can refer to (Ferziget Bart, 1999; Wall, 1999; Felippa et al., 2001) .

5 A Framework for Gradient Based Optimization and Partition ed fluid-structure Interaction

5.1 Nested Analysis and Design for Partitioned Analyses

The challenging task is to combine properly the partitiofieil-structure interaction approach and optimization
using the NAND approach. Since the analysis as well as theitséty analysis and the optimization module
concern fluid and structure field, all these modules neednmmmanicate between each other according to the de-
veloped NAND method. In particular they need an individualiigling of fluid and structure field corresponding
to the information which has to be exchanged. The designeofrimework is depicted in figure 2.

On the optimizer level the update of the design variablestheckfore the shape is done during the optimization
iterationsi. Each design change of the structure has to be passed toithasla base for the next FSI analysis. On
this level information is just passed in one direction and tiuthe known design increment no iteration is needed.
Nevertheless the data transfer on the non matching meskée ba taken into account. Since the design change
of the structure corresponds to a position update of thetsiral finite element nodal coordinates this transfer can
be performed similar to the transfer of structural disptaests and therefore the same technique can be used.
The data transfer on the analysis level is done by tranefgdisplacements from the structure to the fluid and
loads from the fluid to the structure. Iterations are neggdsare and a convergence check has to be performed.
Each circle contains a full nonlinear or linear structursdlgsis.

Coupled sensitivity analyses can differ strongly. Datagfar on this level depends on the type of sensitivity
analysis. Numerical methods using external finite diffeemnget gradient information from solving the coupled
system for reference and perturbed states. This meanshihaehsitivity analysis includes the perturbation of
the design variables and a FSI analysis for the perturbéel. sthe coupling information then is analogue to the
coupling information of the optimization and the analysisdule, namely a design update and an iterative passing
of displacements and forces. In semianalytical approathes<oupling data differs. By evaluating the objective
function gradient applying the chain rule terms corresjrugdb fluid and structure sides occur. These terms are
obtained in the respective codes by different methods. hegeé the data which has to be passed is derivative
information with respect to state variables or design \deis depending on the type of semianalytical sensitivity
analysis. In section 7 detailled information about the ded gensitivity analysis is given.

Finally, the framework is designed to be modular with regarthe possible combinations of different approaches
for optimization methods, shape definition and sensitigitglysis. On the optimizer level the optimization algo-
rithms itself and shape definitions are defined and the usecli@ose between the available tools. On the analysis
level several techniques to perform a fluid-structure axgon simulation are implemented and can be chosen. As
sensitivity analysis numerical and semianalytical meshae possible.
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Figure 2: Optimization framework according to the NAND apgoeh for partitioned FSI simulation

5.2 Code Coupling

To realize the coupling within the framework an independamtpling tool called CoMA (Coupling for Multi-
physics Analysis) was developed. The main task of this b iperform communication between the codes and
data mapping between the generally non matching grids otetieds of optimization, analysis and sensitivity
analysis, respectively. Since control is done by CoMA, aimg lof optimization and coupling procedure can be
realized by simply modifying the encapsulated overall athmic strategy. To sum up, for any surface coupled
problem CoMA provides the following main features:

Compatibility to various codes including black box softear

Possibility to perform parallel computations.

Data transfer between non matching grids by interpolati@h@nservative summation.
Central datastructure for any mesh based quantities.

Data exchange: file based or by MPI.

Control of coupled computation and convergence control.

e Coupled sensitivity analysis.

For any further information on application of CoMA in couglanalysis the reader can refer to (Israel et al., 2007,
Gallinger et al., 2008) and for information about load andiorotransfer to (Farhat et al., 1998; Farhat, 2004) A
special focus is set here on the ability to handle couplediteity analyses by transferring sensitivity informatio
described in detail in section 7.4.

6 Shape Definition

6.1 CAGD Based Shape Optimization

State of the art in the field of structural mechanics is thesspn of the geometrical model and the calculation
model. The geometrical model is based on CAD or CAGD and thetsiral model is the discretized version
of the CAD/CAGD model. The design variables for the optirtima process are the geometry parameters of the
CAGD-model. Thus, high numerical efficiency is reached heeaf a low humber of optimization variables.

As an example for a CAGD based shape optimization the sheditstre depicted in Fig. 3 is chosen. The geometry
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is modeled by the use of Bezier Patches, whereas not mord.¢haariables are needed as optimization variables,
making use of the structural symmetry. The result shows fitenom shape within the possible domain for
maximum stiffness (Bletzinger et al., 2005; Haftka and @ran1986).

Figure 3: CAGD-model and optimal shape

6.2 CAGD Free Shape Optimization

A disadvantage of optimization based on CAGD models is thahb choice of the geometric design parameters
also a restriction of the design space and possible sokit®omade. These restrictions can be overcome, if the
nodal coordinates of the finite element model are used amigatiion parameters (Haftka and Grandhi, 1986;

Pironneau, 1984). Thus all possible solutions which candseribed by the discretization chosen for analysis
can be achieved. Furthermore, by omitting the generallypticated selection of geometry based optimization

parameters and the herewith combined definition of a CAGDehthte overall modeling and setup are simpler

and faster. However, parameter free optimization leadsvierahigh number of parameters. Figure 4 shows the
results of a parameter free optimization towards the mapatron of stiffness of a thin cantilever shell made out of

metal loaded as shown.The model consists of approxima@lydgsign variables. The optimal shape (most right)
is reached after 19 iterations.

Figure 4: Shape optimization of a cantilever shell for caame problem using the CAGD free method

6.3 Shape Optimization using Form Finding of Membranes

Membrane structures are very attractive alternatives @o fgrge distances. They are light, elegant, and efficient.
The material is optimally used since the structures areestdyl only to membrane tension stresses. The anisotropy
and distribution of pre-stress together with the choicedufeecable lengths and forces as well as the position of
supports define the overall shape and appearance of théus&rud@he art of form finding is to play with these
parameters to find the shape of the membrane, which is nigtdefined by the equilibrium of the surface and
edge cable forces. The idea is closely related to the detation of minimal surfaces so the resulting shapes
are physically inspired (“soap film analogy”). Mathemalligzapoken, the task is to determine geometrical shapes
solving an inverse mechanical problem. This results indargexpressions during the numerical solution of
the principle of virtual work. To overcome this problem saldorm finding methods were developed. Within
this contribution, the updated reference strategy (URSuxessfully used. The basic idea of the URS is the
modification of the originally singular virtual work expgsn (W, = 0) by adding a stabilizing padWs (in
terms of PK 2 stresse$ rather than Cauchy stresses These are formulated in that way, that they fade out as the
solution is approached and the original, unmodified sofigaeceived. The complete weak form of the stabilized
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form finding scheme (URS) states as follows:

Wy =AoWy4 + (1 — /\)5Ws

= h/detF (Opre - F7T) 1 6F dA
A @)

F(1=N) h/(F-Sp,.e):cSFdA —0
A

For more details the reader can refer to (Bletzinger et 8052 2006, 2008; \Wchner and Bletzinger, 2005;

Wichner, 2006).
f%

Figure 5: Membrane formfinding by URS: Initial geometry anithimal surface

The concept of optimizing a membrane structure can have rpargpectives. For instance, form finding and
structural optimization can generate optimal shapes giBpethe optimization problem from different views.

On the one hand form finding is restricted on membrane and stnettures and determines the shape from an
inverse formulation of equilibrium due to a given stresdribstion acting on the deformed structure. Control
variables that could influence the final shape are the pesstagio between the membrane and the cables, the
coordinates of the supports, i.e. the Dirichlet boundanyd@tions. But form finding doesn't introduce a way to
investigate the relation between the control variablesthacexternal loading.

On the other hand, structural optimization determines tia@e from a combination of different criteria that can
be chosen according on the different needs of the probleminBurder to control the shape of a membrane many
design variables are needed and consequently the sol@ammies complex and computationally expensive. Fur-
thermore, a quite intuitive relation has to be chosen beatvilee design variables (linking rule) which depends on
each specific problem.

Combining form finding and optimization we can achieve bgifysically inspired shapes and a systematic treat-
ment of the control variables. With this way we decrease timabrer of design variable and we obtain a control
of the total structure with only a few significant design aaies by still omitting an a priori fixed mathematical
relation (like in CAGD) which leads to “real” free form shapeAs a result, we have a physical linking between
the design variables and the total computational time igaed significantly.

In the following, the “form finding enriched shape optimipatin FSI” is described (figure 6). The shape of the
membrane structure is computed by the URS. More precididy,every update of the design variables form find-
ing is performed to smoothen the shape and update the désigiesign variables the control parameters of form
finding are used. These are e.g. the distribution of presttbthe membrane and the edge cables or the position
of the supports.

Optimization Formfinding FSI analysis Sensitivity analysis

A

A4
v

Figure 6: form finding enriched shape optimization in FSI
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7 Multifield Sensitivity Analysis

7.1 Direct and Adjoint Approaches in Multifield Semianalytical Sensitivity Analysis

Optimization in fluid-structure interaction means miniin@ the objective function) and in addition fullfilling
the governing equations of structure, fluid mesh and fluigtBhger et al., 2006; Barcelos and Maute, 2008;
Barcelos et al., 2006; Maute et al., 2001, 2003; Soto adither, 2001; Sobieszcanski-Sobieski, 1990hther,
2008; Etienne and Pelletier, 2005).

U(s,u, w,v) — min

S(s,u,w,v) =0 @
M(s,u,w,v) =0
F(s,u,w,v) =0

S(s,u, w,v), M(s,u,w,v)andF(s,u,w,v) are the the coupled system discrete equations correspptadstruc-
ture, fluid mesh and fluid. These equations depend on therdeaiipbless and the state variables of structure
u, fluid meshw and fluidv, which again are dependent on the design. A gradient bas@dingtion method
requires the computation of the objective function gradiemvith respect to the design variables Therefore a
consistent sensitivity analysis formulation has to be dasethe coupled system discrete equations. To obtain the
desired gradient numerical approaches are costly becausadh design variable at least two objective function
evaluations have to be performed and therefore are recodedamly for a small number of design variables. For
bigger problems a analytical or semianalytical sensytigitalysis becomes indispensable.

Like state equations the objective function generally delgeon the design variablesand the state variables

of structure, fluid mesh and fluid. Accordingly, the gradiefithe objective function) with respect to design

variabless is written as W oy avd 0 d 0 d
p U w v
ds 85+8uds+67wg+8vds (3)
In analytical and semianytical methods the terms are détedrindividually. Here5*> aw' gw andy 8“’ are known by
the definition of the objective function and are in generalyda obtain. The state variable derlvatlvgs ‘“S” and
% are the unknowns and have to be obtained by additional emsati

Using the so called direct sensitivity method the unknowans lbe determined directly by using the sensitivity
equations, derived from the governing equations for stimectfluid mesh and fluid, respectively.

ds  Os ouds  Owds  Ovds

%7%+8Mdu+8de+aMdv
ds  Os ou ds ow ds ov ds
dFF  OF OFdu OFdw OFdv —0

ds 05 Ouds owds  dvds

A nonlinear equation system arises from these equationsamde solved in a staggered manner for the state
variable derivatives. Then, the objective function gratlis computed as a byproduct of the solution of the
sensitivity equations which is the derivative of the stadables.

Alternatively the adjoint sensitivity method can be useddaynulating the optimization problem as a constraint
problem. The Lagrange function which has a stationary patitihe optimum can be developed as follows. Here
the discrete equations for structure, fluid mesh and fluidaen as equality constraints aig, A,and\, are the
corresponding Lagrange multipliers, which can be identifie adjoint variables.

=0 (4)

L=9+ NS4+ M+ 2TF — stat (5)

The solution can be determined by variation/oeading to

on = g Ol gy O s O s L AT S+ 6XTM 4 6ATF
Js ou ow ov
au} Tas TaM T8F 8@/} Tas TaM TaF
— (X A AT 55+ (22 1 A AT%s

81/) Tas TaM TaF
A A A

ow T M ow T M ow TN o

+OAES 4+ 6AIM + 00T F =0
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and resulting in the following highly nonlinear set of eqaas for the adjoint variables and the coupled system
equilibrium.

A as a5 as 1T oy
N | = | S B S | B @)
\ T %

v ou ow ov ov

Again, numerical solution techniques using a staggeredrsehe.g. according to the nested analysis and design
approach can be applied. Then, in the analysis level thdilequin is guaranteed and the state variables are
determined and used for linearization of the adjoint system

It can be identified that for direct methods the amount of tsauprocedures depends on the number of design
variables whereas the system of equations of the adjoirfiaddias to be solved once and its size depends on the
number of constraints. Therefore direct methods are useprédblems with small number of design variables.
On the contrary adjoint methods are used for high number sigdevariables and small number of equations.
Independent of using direct or adjoint method the cruciahipis the determination of the partial derivatives of
the discrete state equations with respect to the stateblasiavhich are necessary for solving for either the state
variable derivative or the adjoint variables. In sectio @.solution method based on the structure sensitivity
equation is presented.

7.2 A Numerical Sensitivity Analysis for FSI

In pure numerical sensitivity analysis the objective fimgradient is computed using finite differences according
to the common schemes like central, forward or backwarcefififferencing by calculating the objective function
for reference and perturbed states. Since numerical éfftneéases quickly by extending the design space numer-
ical method are used when only small numbers of design Vagatre needed.

The first approach presented in this work is a numerical mietitch exploits the possibility of doing finite dif-
ferences by solving the coupled system for a reference amttarped state. The objective function gradient is
computed as

@ _ ll/)(upertv Uperts Wpert, S + 5) — w(urefa UrefsLref, 5) (8)

ds €
The Accuracy of the gradient is very good in general and ofsmdepends on the size of the perturbatiomhich
is specific for the application and has to be carefully chdsetine user.
Figure 7 illustrates the technical implementation of thenetical method for iteration stejpof the optimization
procedurex are the coordinates of the mechanical model, i.e. the fifdtment nodal coordinates, which depend
on the design variables With a defined perturbation on the design variable the dbgcan be calculated on
the resulting mechanical model by performing a FSI analyKisowing objective values for the reference and
the perturbed state the gradiéﬁi can be approximated. By shape description using matheshagi@tions like
CAGD the dependenc% is known. Using mechanics motivated shape descriptioestikm finding it generally
has to be determined numerically.

xli",pert — xlt;,ref' + @8
ds

Solving the coupled system

4

Solving structure Solving fluid mesh and fluid

converged? >¢

a¥ _ PO P
ds €

Figure 7: flowchart of numerical sensitivity analysis
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7.3 A Direct Sensitivity Analysis based on Structural Sensivity Equation

The second approach is a direct sensitivity analysis medleodloped for the structural analysis and optimization
tool CARAT. The possibility to develop sensitivities on teuctural side are far as possible and to use a fluid
solver including fluid mesh as black box is exploited. Doinig the partial derivatives of fluid mesh and fluid state
equations remain unknown and therefore the corresponeingjts/ity equations are not available to solve for the
derivatives of the state variables. Instead, an analysisdacompute fluid mesh and fluid state variableandv
from the structural displacementand the design variablasis applied. The equations to be solved reduce to the
structural sensitivity equation (first equation of equati), which has the size of a structural solution and for a
linear structure is written in term of the stiffness matrix K
du dK dv

K ds  ds “ ds ©)
The unknown‘fl—z is computed in an iterative procedure illustrated in figur®Bthe optimization step. The
structural equation is derived semianalytically, usingtdimifference approximations fdig and %. The term
j—g could be obtained numerically by performing a FSI analysisaf perturbed state, but efficiency would not be
gained in comparison with a numerical method. Therefordemative procedure reducing effort by performing a
pure CFD analysis was developed. Actuagyis obtained by using the coupled system steady state asrameée
and by passing the displacement field, which is expected érdesign perturbationto the fluid solver to compute
a perturbed state: Using the state variable derlv%%/érom the previous sensitivity analysis iteration sgep 1
the displacement field with respect to a design chanige the actual iteration stepcan be predicted as:

duz J—1
ds

Since this displacement field results from a perturbed detbig corresponding shape has to be passed additionally
to the fluid solver:

€ (10)

wigeert — et

L IPeTt _ gidres | Zj .
S

With known displacements a pure CFD analysis gives the fhaitk variables for calculatingg numerically as

11)

dv  o(uRIPeT IRty (g ref ol ref
w_ 12)
ds €
and consequently the structural sensitivity equation
du® Kidr . do®
gide” 0Kt dr ;i dv (13)

ds  or ds ds

can be solved for the state variable denvat%?e which is used in the subsequent iteration step. To obtaia go
accuracy very few iterations are needed. With the convevghe the gradient is computed according to equation
3.

7.4 Coupled Sensitivity Analysis

Special attention should be payed to the coupling withinseirgsitivity analysis resulting from the partitioned ap-
proach. It was mentioned before that the type of coupling tlabe transferred between the non matching grids
depends on the type of sensitivity analysis and that for ¢nei@nalytical approach the coupling data is derivative
information. Using the sensitivity equations for a semigtieal sensitivity analysis the partial derivatives appe
ing in the equation are extracted from the respective codésvays correspond to the individual discretization
of the domains. Solving according to the direct or the adjoiathod requires a format defined by the sensitivity
equations. Therefore sensitivities indicating strudtbeghavior w.r.t. fluid variables and vice versa have to be
transferred and transformed to the required size by thelioguiwol CoMA according to equation 14. denotes
the transfer operation on the common surface and the indicé$ and F' indicate the discretization of the state
variables corresponding to the respective fields.

oS oS oS aS ( oS ) ( a8 )

ou ow dugp ou T ow T Jvg

oM oM oM | _ -1 Sm R P 14
ou ow ov - T ou ow ov ( )
oF  oF  BF -1 oF ) 0 oF
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xlz'—,j,pert — x[lﬂ,j,ref +@8
ds
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—
o i du™
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solving

Coupled sensitivity analysis iterations j

converged?
av _av(d
ds ds\ ds

Figure 8: flowchart of direct sensitivity analysis based wacural sensitivity equations.

8 Applications

8.1 Designing a Half Sphere Shell Structure subject to Fluidrlow

For verification of the framework, for testing and comparthg numerical and direct sensitivity analysis a first
academic example was computed. It is a linear half sphetesthecture in a viscous laminar flowRe = 25).
The structure is computed with CARAT using shell elemertis,fluid flow is computed with OpenFoam and the
coupling is performed with CoMA. The system setup is showfigiare 9. A steady state flow is reached deforming
the structure as shown in figure 10 scaled by the factor 5.

1.0 5.0 5.0

Figure 9: Setup of a half sphere shell structure in fluid flow

1.0

Figure 10: Deformation of a half sphere shell structure imdfflow
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The structure design is described by the CAGD concept usiegsingle design element representing the whole
geometry of the structure. The design element is contrddiedne parameter, the total height of the structure.
Thus, the finite element nodes which always lie on the dedamnents surface are linked to this CAGD parameter.
Modifying the height parameter the finite element nodes mowbhe same ratio as the highest point in vertical
direction, causing a flattening or a growth of the shell.

The CAGD parameter is chosen as optimization variable. Thadignts of the objective function were computed
by numerical and semianalytical direct methods and achlevesame results. Results for two different objective
functions are shown in figure 11: The vertical displacemédrthe highest point of the structure is chosen as a
structure based objective and the drag force as a flow bagectiob. Figure 11 (a) shows the initial design.

For the reduction of the vertical displacement the objecteduces with decreasing height of the structure. A
reduction of35% after25 optimization iterations is achieved. The converged stathown in figure 11 (b) when
the lower box constraint which restricts the optimizati@amiable and therefore the flattening of the structure to a
minimum height are reached.

For the drag reduction the lower box contraint is set to zeight, because the optimum is expected to be found
here. Itis obvious that the drag is minimal for a totally flatisture.83% reduction is reached aft86 optimization
iterations. The design corresponding to this state is shioigure 11 (c).

/‘——-—.—-———/—__-——_______.__——
‘—_

(a) (b) ()

Figure 11: Minimization of vertical displacement and dragtial design (a), optimum designs for displacement
(b) and drag (c).

8.2 Designing a Four Point Tent Membrane Structure subject td-luid Flow

In the following, form finding is embedded in the previousnfimvork and the procedure is presented by an ex-
ample, a four point tent membrane structure. The tent is Hemtlevith membrane elements for the surface and
truss elements for the cables. The initial geometry for fhtéuization loop is obtained with form finding from the
geometry shown in figure 12. Such a procedure is robust arydléniterations are needed to obtain a converged
shape (figure 12).

The objectives in this case are the displacement at a nagléZthnd theC> norm of the structural displacements.

The respective design variable is the vertical positiorheftieighest nodes which remains equal during optimiza-
tion for sake of symmetry.

Figure 12: Initial and converged configuration of form fingliof four point tent

In the structure side a geometric nonlinear analysis isoperéd. On the other hand, the fluid flow can be consid-
ered laminar Re < 1000) and the SIMPLE algorithm is used to solve the Navier-Staasations for the steady
state solution. The structural deformation, the flow field #re pressure on the structure’s surface resulting from
the FSI analysis of the initial design of the structure isvahn figure 13.
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Figure 13: Four point tent in fluid flow: Deformation causedfloy, fluid velocity and surface pressure

For the sensitivity analysis the numerical approach is §sedtion 7.2). The numerical approach is very well
suited in such a framework since the number of design vaasaisl small and form finding is used to determine
the final geometry as described in the sequence. After satyséinalysis the design variable (position of highest
nodes) is updated and the resulting shape is shown in thefigurn order to obtain a physical shape a mechanical
correction is needed. For this reason form finding is applsdlting in the mechanically correct shape.

Figure 14: Update of design variables of four point tent

The results of an optimization with th&® norm of the total displacement as objective is shown in figireThe
objective is reduced with increasing height of the struetugince the structural behaviour becomes stiffer with
increasing curvature this result is intuitive. It can berséat the solution converges to a non trivial optimum. This
is because the objective increases for higher side facég afttucture, which are very sensitive to fluid loads.

A second membrane example was carried out using the forrm@imdiethod for shape optimization. Figure 16
shows the real structure called "Tanzbrunnen” realizeddto@ne by Frei Otto and the optimized structure with
the displacement field for the reduction of tdé norm of the structural displacements by modifying the posit
of the corner nodes.

9 Outlook

The optimization framework can be enhanced by adding momgptex methods in sensitivity analysis. Higher
efficiency can be achieved using partial derivatives of flaekh and fluid. Therefore special functions have to be
implemented in the fluid code and a new solution method forstesitivity equations is required. Furthermore,
when CAGD free approaches will be used and systems with masigul variables arise the adjoint sensitivity
formulation has to be implemented.

Since coupled sensitivity analysis belongs to both fieldsd fand structure, the coupling tool CoMA will be
enhanced to control the coupled sensitivity analysis.
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Iteration step

Figure 15: Reduction of? norm of structural displacements of four point tent

-— AT

Figure 16: Real structure (taken from (Otto, 2008)) and thintized structure in fluid flow (from the left) with
displacement field for the reduction of i norm of the structural displacements of the "Tanzbrunnen”

10 Conclusions

In this contribution a method for gradient based optim@atising partitioned FSI schemes was presented. For
the sake of maximum design freedom in structural shape wameethods suited for different amounts of design
variables were discussed. Moreover, the need for diffeseape description methods and therefore for several
methods in sensitivity analysis was pointed out. The spadigantage of embedding the form finding method into
the optimization procedure was highlighted. Finally, arfeavork for gradient based optimization in FSI according
to the NAND approach developed for including a variety ofaithmic approaches was presented and it’s abilities
were shown by illustrative examples.
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Advanced Software Engineering for FSI Applications

Dominik Jirgens

Engineering multi-physical systems is a challenging tagkch requires the simulation of interacting dynamical
systems governed by differing model equations. For thelal@wvent of a simulator for coupled analysis of such
phenomena, reuse of already available solvers for the stibs)s is often desirable. Against the common goal
of using solvers for the subsystems as black-boxes — whith a&tia common coupling methodology shared by
the FSI community — often both programs need to be in depthrsiwbd by the coupling research group and
black-box solvers need to be opened. In this article, the wfea skeleton based architectural software design is
proposed, which aims at conserving separation of concemghat subsystem solvers remain black-boxes. A goal
of the proposed architecture is a deeper separation of dngpalgorithms from technical concerns. In contrast to
former approaches in this domain, we do not focus on progidiprecast solution; we aim at highly parametrised
and therefore flexible design patterns. The long term objeds to provide a flexible and open template framework
for scientists in this field to accelerate the developmemdi¥idual coupled simulators for scientific applications

1 Component Based Design in FSI Applicationsand itsIntrinsic Limitations

This section reviews general functional decompositiorofifigare systems and discusses its application in coupled
simulations. After this general discussion we will idewtifitrinsic properties of present-day coupling solutions
and give rise to our motivation for proposing a paradigmtshithe development of coupling algorithms.

1.1 Short History on Functional Decomposition

To reuse software is a very fundamental idea. The developofereusable algorithms started with the devel-
opment of assembler languages, which are the human reddalef machine programs. Later programming
paradigms became independent of the machines, and coswpige used to transform conceptional statements
into executable machine programs. This approach made silgedo write programs in a coherent way, hiding
the instruction encoding. These higher programming laggsgrovide predefined structures for general purpose
programming tasks; for example loops or parametrised sglpams are provided. These abstractions hide techni-
cal details as register allocation, naming and jumps in tognmam sequence; they make programming less error
prone and the resulting programs better understandable.

The introduction of support for explicit interfaces intoveeal programming languages extended the possibility of
making subsystems exchangeable (for a discussion of féshsee Coulange (1998)). A superordinate concept is
programming with language independent compongisvided by software component frameworks (see Szyper-
ski (1997)). These black-box paradigms support a functideeomposition of complex systems into independent
subsystems. It is applicable if considered subsystemswidfala certain functional task, for which a specific
common interface can be defined for a certain class of sudbwgst

An interface for making a software subsystem reusable cantendefined, if —metaphorically speaking — its
contact surfacedoes not need to be changed to provide full functionalityiffecent contexts; thénterfaceof

the subsystem to its environment has to be constant. Toezffigicompose software from black-boxes, a point
of minimal effort in compositiorenergymust be foundl If a program provides functionality which varies in a
functional sense, a constant interface can often not bedfand a black-box view on the software can therefore

IHereenergymeans communication, programming and computational overhead.
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not be provided. Reusing such codes in a classical progragianguage with its focus put on functional system
composition is most likely inefficient or not maintainabtbe code has to be reimplemented. A discussion of
problems in functional decomposition of software systearstwe found in Czarnecki and Eisenecker (2000).

An example for FSI code that is context dependent when itigesrin a classical programming languages, is code
for time-integration; it is reimplemented in every coupliproject and not available as library function. Reusing
such code may be possible in theory, but different data tsiress and different procedures to gain coupling data
and to control the overall process make it hard to implenteas library function.

1.2 Reationship Between Partitioned Analysis and Functional Decomposition

Partitioned analysis and the so-calleaktitioned approacho coupled simulation considers available simulators
as black-boxes and introduces a coupling procedure bettiean. In simulation of time-dependent problems
implicit time-integration schemes can be used to achieveyaipally strong coupling between the partitions (see
for example Matthies et al. (2006b)).

The term black-box generally describes a system which céy lmn accessed through an interface that hides
details of the system implementation. In FSI the term bllagk4is used as a synonym for software which provides
finite approximations of the physical behaviour of the cdased partitions; its black-box interface is often not
considered and does not appear explicitly in simulator aptiog code. This abstract view withvirtual interface
often results in entanglement of codes and cannot obsceifaththat many little details are to be considered and a
lot of technical problems are to be solved to transform CFD®D code into a real black-box. The cost of making a
solver a black-box depends on the realisation of the refspestilver and on the flexibility it provides. For example
Kassiotis and Hautefeuille (2008) present how the FEM delAP was encapsulated into a software component
calledCoFEAR the solution allows to use FEAP through a black-box inteefand the use of component instances
over a computer network. CoOFEAP provides an interface wisiflexible enough to be used in different contexts,
it is not specialised for FSI applications (as it would bedezbto use MpCCl, see Fraunhofer (2008b)).

Software component technology allows to create softwéaekbboxes with context independent interfaces. There-
fore given source-code is connected with an explicitly aefimterface. Software components have been success-
fully applied in the development of customised solvers fatiioned analysis (see Matthies et al. (2006a)). In this
way, modern paradigms from computer science are alreadjedpgp the development of coupled simulations.
For projects in this context, advances in knowledge on absttomponent based software systems can help to
understand and solve intrinsic problems in the domain ofdi8ulation.

1.3 Why Couplingisnot a Functional Thing

The goal of software components is to make algorithms réesainl exchangeable at the same time. These goals
are also desirable for coupling code, but coupling proceslwould have to become black-boxes. To ask for a
coupling black-box, or to define a general interface for amypting procedure, appears therefore attractive. In
order to find such general interface, many questions have tdtlmately answered: Can we find a fixed set of
parameters for a coupling black-box, independent of theroofl differential coupling on the coupling interface?
Is the black-box interface independent of the provided togglgorithm?

It turns out, that introducing a coupling interface implaeseduction of flexibility and applicability of its black-
box implementations: this is not meaningful for a domain dfve research. A functional black-box abstraction
for coupling procedures is counterproductive. Here a dikenof FSI research begins; a black-box for coupling
simulators accelerates the development of customiseda@tfor specific simulation tasks — which necessarily
occur in research — but a precast black-box solution is neibile enough to be efficiently applicable in research,
where the focus is put on development of new algorithms.

Such questions are common to the development of black-lyoriims from any domain; to consider a system

as a black-box is not reasonable if its interface is contepeddent or under development (and therefore not
constant).
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1.4 Limitsof Current Approaches

The Mesh-based parallel Code Coupling Interface (MpCGQGiidled by Fraunhofer (2008a) is an elaborated tool
for coupling simulation codes. The methodology to coupldesowith MpCCl can be compared with the one

provided by the message passing interface (MPI). MPI pesva single program multiple data view (SPMD) on

parallel software. The control flow of MPI-programs is distited over the parallel instances which makes parallel
MPI-programs hard to understand, debug and maintain asxfomple, Eidson et al. (2003) discussed.

MpCCI extends the functionality of MPI through interpotatisupport; i.e. it provides mesh-based data exchange
with interpolation. MpCCI and equally MPI require explisiéend and receive calls in the communicating codes,
in order to realise interaction between the distributedpsofprams. This paradigm enforces therefore a deep
knowledge of the code, which needs to be modified to becomeallgdeor coupled program, respectively. In
Fraunhofer (2008b) the architecture of MpCCl is descriligk interface to simulator code is realised by so-called
adaptors, which integrate a certain solver into the MpC@ainework. Thereby any MpCCl-adaptor provides the
same predefined interface, which makes the simulators egeladle. These interfaces are not context independent,
but specifically designed to match the requirements of @mlipimulation.

In contrast to a black-box interface, the MpCCI interfaceslaot make the solver context independent; it pro-
vides an interface for the specific context of coupling. Qaguls with the approach presented in this article is
to develop a hierarchy of context independent simulat@rfates, which can be ubiquitously used for a larger
set of applications. In MpCCIl a separation of concerns ia ¢fgineral sense is not supported. Instead simulation
providers have to change their code to provide a MpCCl iaterf and they have to change it again for any other
use. Simulator reuse is not only suggestive in FSI, alsaragdtion, uncertainty quantification and domain de-
composition are fields of application. A generic approactsfmulator coupling would help to create a common
basis of knowledge and technology for all of the mentionedsgie

Furthermore, MpCCl is a tool for the specific task of transifgy grid-based data between two solvers; it does
neither provide higher functionality like implicit timexiegration schemes nor the support for customised interpo-
lation or contact algorithms. MpCCl is a precast solutiant, iocusing on the support of the development of new
coupling algorithms, which in contrast to this is a majorlgafahe architecture we aim for.

2 Skeleton Based Design for Reusable Coupling (Sub-)Algorithms

In this section we first abstractly discuss skeleton bas#&daie design, then we present possible applications in
FSI and finally we discuss advantages of the proposed ideas.

2.1 Theldeaof Algorithmic Skeletons

Classical programming languages provide general purpbsgaations likeloops or procedures In contrast,
skeletons can be used to model and provide special purpssaetinns. A skeleton is a blueprint of an algorithm
providingslots where user-defined code canfgegged into specialise the abstract specification so that it matches
specific requirements. The skeleton approach to algoritbsigd is based on the assumption that similar applica-
tions require similar algorithms or at least similar algfomic structure. An implication of skeleton based design is
a decomposition of the overall system into functional sgbmys. These functional subsystems are not unique to a
specific skeleton, but can be used anywhere, where theitidums required. Thereby skeletons assist code-reuse,
they enable customisation, testing of individual subsystand provide intrinsic support for parallelisation (see
Darlington et al. (1993)).

2.2 Examplefor an Algorithmic Skeleton

A facility to systematically modify code is not provided ifassical programming languages; the modification of
a program cannot be expressed with functional abstracti®keletons provide a programming interface to code-
generators. An illustrative example igavide and conqueskeleton. Divide and conquer is a general pattern in
algorithm design, where a task is decomposed recursiviyndependent subtasks. The recursive decomposition
of the problem can be made until the subproblem — which is tedbed — is trivial and can be solved directly.
To construct the overall result, the results of the subtaske to be merged in a final step.
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Figure 1: The figure shows a possible structure of a skeleased architecture for coupling simulators. The
skeletons represent abstract algorithms providing stofdug-in specific behavioural modules. These modules
as well as the skeletons provide explicit interfaces whiadkenthem exchangeable. Instead of reimplementing
algorithms in different projects, abstract algorithms rbayprovided and reused.

Abstractly seen, divide and conquer requires five paramébersiots) which are mostly functional:

a — Bool decide whether a task is trivial or not

a — b directly solve a trivial problem

a — (a1, as,...) break down a nontrivial task into smaller subtasks
(b1, b2, ...) — b merge previously computed results

a the task to be solved

The last mentioned parameter™is the only parameter in a classical sense, the other pdessnare functional;
they change the behaviour of the generated program. Thizafph of this skeleton is demonstrated in Darlington
etal. (1993). In this paper the skeleton is used to geneoalewhich can be executed on a parallel machine without
the need for any knowledge of parallel programming.

We can think of a skeleton as a template function with fumztigpparameters. In classical programming languages
functional parameters are technically provided by functiminters. But function-pointers have certain restoitcs
with respect to performance and flexibility. Furthermoreystamatic behavioural parametrisation of a program
cannot be efficiently modelled with the help of function geins. Classical languages do not provide functions
or types withbehavioural parametera/hich can be used to modify their precast implementationgoAthmic
skeletons provide such mapping in a high-performance arithfideway because code-generation suppiofising
andcompiler optimisation

2.3 Algorithmic Skeletonsin FSI Applications

In FSI applications a number of specific skeletons have torbeiged for different parts of the overall system,
one of them is a skeleton for a data transfer component simillpCCI (Fraunhofer (2008a)). Instances of the
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Figure 2: The Figure shows a possible decomposition of aledugimulation with a fluid and a structure domain.
In a domain decomposition step the domains are partitioneatimising load balancing. Each patrtition is
then modelled by a separate simulator component (F1..5hardlitid subdomains and S1..3 are the structure
subdomains, respectively). The simulator componentsra&piendent and can even implement different models.
Instances of the coupling components C1..14 — which areémphted with the help of the presented skeleton
— are created to couple respective fields. These couplingponents do not need to be homogeneous, they
may implement different algorithms. The mapping of the comgnts to the processors in the last step can be
done arbitrarily, which is a property of the software comgutrapproach. Dynamic allocation of the resources for
optimised load balancing can be realised by usimgponent migratioto dynamically move a running component
to another processor. This is an interesting feature on imeshvith non-uniform memory architecture.

skeletons we aim for — where its providstbtsare occupied by specific implementations — may provide the
same functionality as MpCCI. Nonetheless it is only a spge@ae. Figure 1 shows a layout sketch of a skeleton
based architecture for coupled simulation, where modwlegihctional slots are termed pslicies Skeletons in
this architecture are used to provide code generators ¢arnent programing tasks in simulator coupling:

o Writing wrapper code for a specific simulator to provide a dimgpinterface
e Implementing a time-integration scheme
e Implementing an interpolation scheme

e Managing distributed instances and connect solvers wittngcon boundaries

By providing an architecture instead of a precast soluttostomisations become implicitly supported; in this way
the coupling algorithm is modelled as white-box and only ommn structure is fixed.
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2.3.1 General Architecturefor Coupled Simulation on Distributed Memory Machines

An important feature of MpCCI is an optimal communicatioragtgy in distributed coupled simulations, where
communication only occurs between processors of couplethd® (see Fraunhofer (2008b)). In a skeleton based
component architecture, this goal can also be achieveduatiebfmore, general domain decomposition algorithms
or a coupling of different models — i.e. potential flow in tlz field, incompressible flow near the boundary layer
— may be formulated in a natural way. Domain decompositiam lma considered as a special case of coupled
simulation, where domains are homogeneous — i.e. the mesitesiodels match.

Therefore, the context independent component interfaes®eus on can be used to implement a general parallel
coupling environment. Assuming that a meaningful pantitig of the domain is given, each subdomain can be
simulated in a separate simulator component. The genealisdtdemonstrated in figure 2.

2.4 TheVision: Plug-and-Play Algorithms

At this point we want to present further advantages of th@@sed skeleton based coupling architecture. If new
algorithms like higher order time-integration schemes kbamprovided as skeletons, research groups would be
able to exchange coupling algorithms in their software $jmigy using a different skeleton or policy. A broader
scientific exchange would be possible and individual redeprojects may be able to focus on specific tasks, which
results in a better separation of concerns. It becomeskgedsi a group to publish achievements in a reusable
way, so that other groups can take the provided solution arglipinto their project code. Reimplementations of
algorithms — necessary in classical programming — can bilago

The need for reimplementing code in classical programmasgehnumber of disadvantages for algorithm devel-
opment; time is consumed in reimplementing the code, @éjand finally in integrating the new algorithm into
the existing project code. Skeletons instead can be vedfiddequirements they put to their context can be stati-
cally asserted by introducing black-box interfaces betwespective subsystems. The explicit interfaces allow the
respective black-box subsystem to be tested for asseditg@redefined semantics, so that quality enhancements
and better maintainability of the software can be achietuhlly, scientific results become better reproducible in
that way.

3 Outlook and futurework

Skeleton based software is not a new technology (see CoB®)t3oday it is technically implemented by tech-
nologies like C++-templates (spelicy-based desigim Alexandrescu (2001)). The problem with these technolo-
gies is that they are complex and therefore hard to undetstad handle.

The goals of the envisioned skeleton based architectur@rlgnbe achieved if the methodology is simple and

does not enforce users to become specialists in this field tite same as with general purpose programming
languages: users do not want (and need) to understand havotgiler builds assembler code to implement a
f or -loop. For that reason, the mightiness of complex technetogke C++-templates has to be reduced to a level
of abstraction which is specific enough to model FSl-alhong. For achieving this goal, a programming language
providing exactly the mentioned special purpose abstrastis to be developed.

For providing a user-interface to the code generation msi@domain specific language (DSL) (see Sloane et al.
(2003)) is to be defined. The technical realisation of théeskas can be done with the help of C++-templates,
which provide abstractions for programming general puepmsie-generators. The envisioned DSL will help to
hide the complexity of the template-based implementatiomfthe user of the algorithmic skeletons.

3.1 TheAnticipated Paradigm-Shift

The paradigm-shift we anticipate is an introduction of a wewcern into coupled simulation. The concerns which
are already established in the scientific community are emattics, physics and engineering. Computer science,
as another important contributor, is by now involved by pdowg general purpose programming constructs like
standard programming languages or by providing precaskiiax solutions like MpCCI. The goal of providing
specialised abstractions by developing new languages igetéollowed.
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With our future work, we want to open this door to provide splgurpose abstractions and a specialised program-
ming language, to provide a higher degree of flexibility ipjgorting algorithm development. We think building a
common basis of algorithmic knowledge is very importantriragea of active research. A positive effect of skele-
tons compared to programming technologies as C++-tengpisitbeir formal definition; skeleton contributions of
research groups can be described in the common languagetioémmetics, without having to describe things in
natural or pseudo languages.

Acknowledgement Thanks to Rainer Niekamp for his time; let our discussiona$uitful as in the past.
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ABSTRACT
We consider some of the open problems in fluid-structureacten:

- The lack of ‘optimistic’ proofs about the order of tempocainvergence of the coupled system if staggered
or loose coupling techniques are used;

- The lack of a systematic and unified treatment of inforrmatiansfer between structural models that are of
lower order than the surface of the fluid domain;

- The shortcomings in techniques for the treatment of lagdyfsurface motion within flow solvers; options
presently advocated are either embedded/immersed teswilat are poorly suited for RANS applications,
or ALE/body fitted techniques that are poorly suited for agtlons with change of topology and/or crack
formation; and

The achievable accuracy for coupled nonlinear problems tlae implications this has for numerical meth-
ods.

1 Introduction

Over the last three decades, the trend in each of the indilidigciplines that are required in order to predict
the behaviour of processes or products - fluid dynamics¢tstral mechanics, combustion, heat transfer, control,
acoustics, electromagnetics, etc. - has followed the & iottom-up direction. Starting from sufficiently simple
geometries and equations to have an impact and be identfiedmputational’, more and more realism was added
at the geometrical and physics level. While the engineerninggss (Figure 1) follows the line: project, objectives,
optimization goals, discipline, problem definition, gridg, solution of the PDE and evaluation, the developments
(in particular of software) in the Computational Scienaasdtto run in the opposite direction: once a solver is
developed, grid generation becomes the next bottleneckh &\dtomatic grid generation, the fast preparation of
run-time data (i.e. the link CAD - problem definition - gridrggration) requires attention. Once the workflow
in an individual discipline has been sufficiently automatie link to other disciplines becomes attractive. And
as multi-disciplinary runs become routine, we may envisiomplete multidisciplinary optimization and project
management. With the advancement of numerical techniquietha advent first of affordable 3-D graphics work-
stations and scalable compute servers, and more recenpigrebnal computers with sufficiently large memory
and 3-D graphics cards, public domain and commercial soétigr each of the ‘computational core disciplines’
has matured rapidly and received wide acceptance in thgrdasid analysis process. Most of these packages (9)
are now at the threshold mesh generator: pre-processos. helsi prompted the development of the next logical
step: multi-disciplinary links of codes, a trend that isaclg documented by the growing number of publications
and software releases in this area.

The desire to solve multidisciplinary problems can not drgyexplained by the maturity of discipline codes. In-
deed, the biggest payoffs expected from multidisciplinanglysis are increasedsight into complex physical
phenomena and industrial processes, leading to a more ebmpsiveoptimization of products and processes.
The space of possible approximations for coupled fluid cttine and thermal analysis is shown in Figure 2. Note
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Figure 1: Design and Analysis Process in Engineering

that for each discipline, different levels of physical appmations and realism are possible. The CPU cost, as
well as model preparation times, can vary by orders of magritis one moves away from the origin. Application
areas associated with particular locations in this fluidicttire- thermal- analysis space have been compiled in
Figure 3. These only represent the better known applicatesses of what is a fast-growing range of possibilities.
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Figure 2: CFD/CSD/CTD Space
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Figure 3: CFD/CSD/CTD Application Areas

More than a decade has passed since the first large-scalstfluadure interaction calculations using nonlinear

structural and fluid models were attempted (17; 6; 19). Whiayrpractical problems have been solved success-
fully (i.e. meaningful insight has been obtained from thesapled simulations), a number of problems already
encountered early on persist. The present paper drawdiattén some of these. It is the authors’ hope that

mathematicians and engineers will focus their attentionh@se so that a firmer theoretical foundation of these
methods can be achieved, the robustness of algorithms iewueqh, and the range of applicability is expanded.

2 Theory

Consider the simplest case of a coupled fluid-structurestakeproblem. Assume that the grids are matching
exactly at the interfaces, and that the discretizationssach that the degrees of freedom (positions, velocities,
temperatures) are the same as well. Integrating impliti#ycomplete system in time yields the following matrix
system:

Kss st Kst Aus rs
Kfs Kff Kft Aqu = ry s (1)
Kis th Ky Auy rg

where the sub-indices, f,t stand for structure, fluid and thermal fields,are the unknowns; the right-hand
sides (sum of internal and external forces/ fluxes), theatiabsub-matrices are the ones usually obtained for each
sub-discipline, and the off-diagonal sub-matrices regmethe coupling between disciplines.

As long as the grids are not moving and the continuity acreddsiis guaranteed, a formal analysis similar to that
of single-discipline codes can be made. This means thatdioonders of convergence for spatial and temporal
scales can be obtained.

However, if the fluid mesh moves (ALE frame), or the grids aldfimterfaces are non-matching, it suddenly
becomes much more difficult to obtain formal orders of cogeace. Even in the case of just a flowfield with
prescribed mesh motion, work by Farhat et al. (12; 13) yieldg the following rather pessimistic estimate: Given
a p-th order time-accurate scheme on a fixed mesh, and if Hoeetik geometric conservation law is satisfied to
p-th order, the overall scheme on a moving mesh is at leasdtadriler. Imagine the average code developer that
has spent months developing p-th order accurate schemggspdind that when the mesh is moved the best that
can be hoped for is ‘at least 1st order’. Intuitively, thitiregste seems overly pessimistic, and it is surprising that
we do not even have some simple empirical benchmarks teasséstain if this is indeed so.
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3 Treatment of Lower Dimensional Abstractions

Lower dimensional abstractions are very common in comjmutat structural dynamics (CSD). Examples include
trusses, beams, plates and shells. In many cases the ussefdbstractions from 3-D bodies implies a reduction
in CPU and memory requirements of several orders of magaivithout omission of relevant physics, and it is
only natural that these are widely used. For example, the diSfetization of the F16 shown in Figure 4 contains
all the relevant eigenmode data for an aeroelastic analysis

CSD Discretization (Beams, Shells) Surface of CFD Discretization

Figure 4: Aeroelastic Simulation of F16: CSD Model and Scefaf CFD Mesh

Problems can arise, however, when load and position inféom#as to be transferred to and from these lower
dimensional abstractions to the surface of a 3-D computatiftuid dynamics (CFD) mesh. Figures 5,6 illustrate
possible cases.

/CFD Surface

CSD Abstraction: Beam CSD Abstraction: Shell

Figure 5: Lower Dimensional Abstractions in CSD

If the beam is associated with a complete airfoil sectiorofamon situation in the aerospace industry) the section
is moved/rotated rigidly. Care has to be taken how to defiresthiface section associated with a beam element
(this is particularly the case for curved sections). Moerpwhen several beams come together, the situation
becomes rather complicated, and one typically ends up watssgy problem specific coding. As far as the authors
are aware, thus far a general formulation to link beams to@GHD surfaces has not been found.

Wing Surface

Multi-Valued
Correlation (Corner)
Correlation Beam/CSD Surface

Figure 6: Load and Position Transfer for Beams
If the beams are free standing (e.g. columns), a generab{(i€legant) way of handling them is as follows: for
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each beam element, construct a set of ‘loaded trianglestéflact the cross-section shape of the beam (circular,
square, I-section, L-section, etc.). As the beams can cogether at arbitrary angles, these sections are closed.
Forces are then obtained for the triangles, and resultidglrforces and moments can be computed for the beams.
Needless to say, this approach only works for embedded ¢fidX0), as there is no guarantee that the triangular
elements will not intersect with very small angles or leavat gaps, making body-fitted grids nearly impossible.
Alternatively, one could construct a small tetrahedralirfes each beam and use an immersed of ficticious domain
method (2; 28; 3; 4; 14; 22) to obtain the loads.

Beam Loads Loads

CFD

Beam Model Triangulation of
Each Element/Section

Figure 7: Load Transfer Via Local Triangulation of Beams

Overlap/Gap Region

Figure 8: Possible Problems at Joints/Corners

For shells, the situation is usually not as bad as for beanwsveMer, as Figure 9 shows, there may be areas of
the CFD surface mesh that are not covered by CSD shells. Hpwotieed in such cases is again left to a certain
degree of trial and error. Usually, all points that may beaisged with a shell are moved in accordance with the

shell displacements and rotations. However, ‘end sectisnsh as leading and trailing edges, can only be moved
rigidly based on the closest shell edge associated with .th&snwith beams, this does not present problems if

the edges are straight (e.g. the leading edge of a wing). wawir corners, a CFD surface mesh point may be

associated with several edges, requiring ‘problem spéciiding. As with beams, a general way of treating such

cases has proven elusive thus far.

CSD Abstraction: Shell

Figure 9: Load and Position Transfer for Shells
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4 CFD Specific Problems

The main impediment to routine FSI calculations with largestnmovement and RANS grids has been the han-
dling of moving bodies in the mesh. Two complimentary pasisigs that have been widely pursued are the use of
body-fitted grids and embedded/immersed techniques. Niothese is universally applicable.

Thebody fitted approach is characterized by:

- The need for a fairly clean surface to define the computatidaomain and/or the wetted surfaces;
- Accurate and straightforward application of boundaryditons;

- Near-optimal grids for Reynolds-averaged Navier-Staggslications (i.e. highly stretched grids in bound-
ary layers and wakes);

- Moving grids, which implies the use of an arbitrary LagreamgEulerian reference frame for the partial
differential equations solved,;

- The need for sophisticated mesh movement strategies ér tvévoid tangling and frequent remeshing;

- The need for a meshing tool as part of the solver in orderrtesh automatically regions of deformed/bad
elements;

- After remeshing, the solution will have to be interpolafeain the old to the new mesh; for compressible
flows, this may not present major problems; however, forimgessible flows the interpolated fields will
not be divergence free, prompting spurious ‘spikes’ in frespure and the need of divergence cleanup tools.

Theembedded/immersedapproach is characterized by:

- The ability to handle ‘dirty’ surfaces, such as those thaymarise due to contact/penetration;

- The possibility of a reduction of local order of PDE approzgiion (i.e. solution degradation) near embed-
ded/immersed boundaries due to imposition of boundaryitiond;

- The difficulty of introducing stretched elements to regdboundary layers;
- The necessity of adaptivity for most cases, making mpebasarallelization difficult;

- If the CSD surface moves, points that ‘emerge’ on the otlter of a structure will have to be extrapolated
from neighbours; as before, experience indicates thatitiés not present problems for compressible flows;
however, for incompressible flows the extrapolated vejoeitl not be divergence free, prompting spurious
‘spikes’ in the pressure and the need of local divergenancip tools;

- For problems with moving boundaries the information regdito build the proper boundary conditions for
elements close to the surface or inside the bodies can takeséderable amount of time; and

- For fluid-structure interaction problems, obtaining théormation required to transfer forces back to the
structural surface can also be time-consuming.

Most of the elements required to achieve fast and reliabtiesdor each of these approaches have been worked
on during the last two decades. For mesh movement, nonlsmarg (5; 11; 10; 25), Laplacian-based (18)
or Elasticity-based (24; 23) smoothing techniques haven leposed. Projective prediction (21) and linelet
preconditioning (26) is used extensively to reduce CPUireqents. For local/global remeshing, see (16), (27).
In order to relate embedded/immersed CSD data to the CFD, mpsimal spatial data structures have been devised
(20; 21). The treatment of embedded/immersed boundariashigve higher order accurary in the CFD solvers
has also received considerable attention (2; 28; 3; 4; 2R 2%

Nevertheless, given the high CPU and memory requirementE$fand DNS calculations for realistic Reynolds-
numbers e > 10°), RANS simulations will remain relevant for at least anattveo decades. Therefore, the need
to be able to cover dirty geometries with RANS-suitable griginains an active area of research.
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5 Achievable Accuracy and Accuracy Requirements

Let us consider, as an example, a typical fluid-structureraation calculation with nonlinear CFD and CSD ef-
fects: blasts on buildings (7; 8).

A simulation of this kind will start with a description of tHmuilding that is suitable for a CSD calculation. Here
we already encounter a major source of possible errors. féarpuildings are built completely ‘CAD to mortar’,
implying that many material and geometrical parametersl tede estimated or guessed. Moreover, for obvious
practical reasons, this already implies a considerableuataf abstraction: columns may become beams, floors
and windows are represented by shells, some walls will reqainforced concrete modeling, and machinery may
be modeled as solid blocks. Furthermore, the material nsogiéllhave to be chosen. A fluid dynamicist, used to
‘clean’ materials like air or C4, can only marvel at the ntulie of models and parameters encountered in materi-
als such as concrete, wood, or composites. A typical CSD soidable for impact will have a dozen models for
concrete. Each of these models will have anywhere from 5 fmat&meters. Which ones to choose for a particular
building depends very much on the experience and the faityliaith runs like these of the analyst. In most
cases, more than one set of parameters is run so as to gaugeetimtivity. The important point is that after all
this abstraction and modeling, the error that can be hopasificexceed 1%, no matter how accurate the numerics
are.

Given that large plastic deformation will occur during thwrit is advisable to define the wetted surfaces (which
form the boundaries of the fluid domain) from the CSD modethia way, the two grids can be ‘glued’ together.
For Euler and LES/DNS simulations, no further modeling isded. However, for RANS simulations, the struc-
tural dynamics expert has to marvel at the multitude of tietee models available in typical CFD codes. Which
one to choose again depends very much on the experienceafarifiarity with runs like these of the analyst.
If we add to this the variability of high explosive materigtlse error that can be hoped for will greatly exceed 1%,
no matter how accurate the numerics are.

Once the run starts, as the grids will not be matching exaictigrpolation and projection will introduce further
errors. This will again limit the achievable accuracy. Hinaf cracks form or breakup occurs, topology changes
and the associated interpolation errors during remeshisglation extrapolation will limit accuracy.

Itis therefore highly likely that such complex coupled evegring problems will never be solved to better than 1%
accuracy. This is not a calamity, as many of these calculati@vertheless yield meaningful insight that can be
used for decision-making, design and optimization. On themhand, attempting runs with very high order FEM,
FVM of FDM schemes seems contrary to wisdom in this context.

6 Conclusions and Outlook

Fluid-structure interaction techniques have flourisheer dkie last decade. While many commercial packages at
present advertise such capabilities, it is fair to say thas¢ options are seldomly used for production runs. The
present paper has considered some open problems in whatd@msd a large field of research. In particular:

- The lack of ‘optimistic’ proofs about the order of tempocainvergence of the coupled system if staggered
or loose coupling techniques are used,;

- The lack of a systematic and unified treatment of inforrratiansfer between structural models that are of
lower order than the surface of the fluid domain;

- The shortcomings in techniques for the treatment of laggytsurface motion within flow solvers; options
presently advocated are either embedded/immersed tegwilgat are poorly suited for RANS applications,
or ALE/body fitted techniques that are poorly suited for agtlons with change of topology and/or crack
formation; and

- The achievable accuracy for coupled nonlinear problems tiae implications this has for numerical meth-
ods.
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It is the authors’ hope that mathematicians and enginedr$ogus their attention on these so that a firmer the-
oretical foundation of these methods can be achieved, thestoess of algorithms is improved, and the range of
applicability is expanded.
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ALE and Fluid Structure Interaction. Application to Industrial Problems

E. Longatte , Z. Ozdemir, M. Souli

Multi-physics numerical computation requires a good ckaitcode coupling schemes when several single-physics
codes are involved. Several methods have been used in fluaduse interaction problems involving either par-
titioned or monolithic procedure. The present work is dedoto simulation of fluid structure interaction for
flow-induced vibration problems using a partitioned progex] which combines the advantages of both weak and
strong coupled schemes. Specific attention is paid to emenggervation at the fluid structure interface, especially
for moving structure and when strong non linear behaviouyecur in both fluid and structure systems. In the
present paper, three coupling algorithms are used and ceetpan a simple one dimensional problem. Numerical
results are discussed in terms of energy conservation ptiege

1 Introduction

Study of dynamical structures submitted to cross flows léatlexchanger, tube bundles or panel flutter, requires
fluid and structure solvers to be solved at the same time. ddrishe performed by several ways. A first method
consists in solving fluid and structure equations in a sisgktem using monolithic algorithm. This is a strong
coupling process ensuring energy conservation of thectulipled fluid structure system. However this approach is
often hard to set up for industrial applications as it reggigignificant developments in fluid and structure solvers,
this difficulty can be overcome by using a partitioned pragednsuring an external coupling of separated codes.
This method is easier to set up and it allows independent husdelopments in both fluid and structure solvers.
The procedure is iterative and each iteration is made oéthteps: first computation of fluid forces acting on the
structure by solving a CFD problem; second estimation afcstire displacement and velocity induced by fluid
forces, solving a structure dynamic problem; finally adaadion of the fluid domain according to the structure
wall motion. This approach has a great flexibility due to itsdularity. The partitioned procedure may rely on
several kinds of time coupling schemes, explicit or impligd Explicit coupling, fluid and structure computations
are staggered in time. All explicit coupling algorithms éméntly introduce energy because it is impossible to
predict correctly the structural displacement inducingect forces when solving the fluid problem.

The partitioned procedure may rely on several schemeshsynous or asynchronous explicit algorithms or im-
plicit time coupling schemes. With explicit schemes, fluidiatructure computations are staggered in time and,
as a result, artificial energy may be produced at the fluiccsira interface. In order to reduce interface energy
imbalance using explicit methods, explicit asynchronaiemes have been introduced to solve problems in aeroe-
lasticity by Piperno et al. (1995) , Farhat et al. (1995). linipstaggered method have also been introduced by
several authors; Hermann and Steindorf (1999) , Tallec aadriv(2001) , Mani (2003); to ensure better energy
conservation.

This paper is devoted to the presentation of several expliad implicit code coupling schemes. Their different
properties are presented and results are compared toiaabdglution for a simple one dimensional problem.
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2 Computational process
2.1 Codecoupling procedure

The fluid structure code coupling procedure is based on timeeimental method and each time step is made
of three steps: first computation of fluid forces acting ongtracture, second resolution of structure dynamics
equation, then fluid mesh update by using a fluid mesh displaneprocess like an Arbitrary Lagrangian Eulerian

(ALE) formulation Hughes et al. (1981) , Souli and Zolesio6@2).

In their previous research work, Farhat and Lesoinne (188v¢ shown that the loss in time accuracy and nu-
merical stability of the partitioned procedure can be duthelack of energy conservation at the fluid structure
interface, this energy is numerically, and hence artifigialeated at the interface by staggering explicit methods.
Explicit coupling methods cannot conserve energy at therfate, however, the coupling force passed from the
fluid to the structure can be properly adjusted in order tarebthe imbalance energy and reduce it as much as
possible. For this purpose an evaluation of the energy pegd at the fluid structure interface using fluid structure
coupling schemes is considered below.

On one hand energy variation induced by fluid computatioraaeh¢ime step is expressed by the following equa-
tion:
ABFH = —FpP (XL - X3) (1)

whereFJI”r1 designates fluid forces acting on the structure at tifié, X" and X! are fluid domain boundary
displacement (or boundary mesh displacement) at tifhesid™*1.

On the other hand, the structure displacement can be mobglesing a classical structural dynamic equation of
the form:
MA, +CV, + K, X, =F, 2

where F, designates forces acting on the structure, depending onumerical scheme we are using, the force
F,can be similar or different from the fluid forc€, in Equation (1), an appropriate choice of the foicemay
reduce energy dissipation at the fluid structure interfac&quation (2) A,, V, and X are structure acceleration,
velocity and displacement. To illustrate energy variatiwasured by structure computation, let us take an example
where Equation (2) is solved using a Newmark algorithm foretiintegration, with the Newmark parameters
a=p=1/2.

MSA;H—l + Csvvsn-&-l + KSXSn-&-l — an+1

Terms are estimated at first order as follows:

A
Vit =i+

t
SAn+ art) ®

At
X;l+1 = le + ?(Vs‘n + ‘/sn+1)

Structure energy is the sum of kinetic energy and potentiafgy. Hence energy variation provided by structure
computation between time¢8andt™+! can be written as:

1 1
ABIT = BIT = BI(4) = o (VT V)M (VI = V) o (X 4 XT) K (X - XD
= ALV M ATHY2 L Ap X2 R L2 (4)
= At VT2 (MSAZ“/ 2 4 KSXZ“/Q)

_ At'vgn+1/2 (FJ’;L-‘rl/Q B Csvgn+1/2)

1/2 n+1 n 1/2 X7L+1 X'n.
whereV" /2 — % and X712 — %

Finally one gets:
Fptt 4 Fr

ABIT = (X = XT) = = AV ROy (5)
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2.2 Interface Conditions

The energy variation induced by the second term of the Egu#b) is due to the structure dampi@gand does
not account for artificial interface energy. To reduce epémpalance at the interface, the following relation must

be satisfied :
n+1 n+1 n an + anJrl n n+1 n n+1
AEIH = (X - XD) St = FP (X - X)) = AR (6)

Values of X" and F}* are the structural displacements and fluid forces at the $luictture interface estimated by
the structure and fluid solvers. Code coupling schemes aehan this relation and displaceméf, and force
F must be built to minimize energy variation. In the followisgction, three explicit and implicit code coupling
schemes are presented.

3 Staggered Solvers
3.1 Explicit Synchronous Algorithm (ESA)

With explicit scheme, structural displacement§™* at timet"*! are induced from fluid force computatidry’

at timet"*! based on the fluid mesh position,, at timet"*!. The synchronous scheme gives a prediction of
fluid structure interface position at tim&+! by using previous positions at time¢s and¢"*!. The following
integration scheme is applied:

X = X7 + ag AtV + a At (V= Vi @)

where, X" designates structure displacement at tifheX”, is the mesh displacement at tirfg V" andV "~ 'are
the structure velocity at time’, and+"~! andy, and o, are specific code coupling scheme coefficients to be
chosen.

Fluid forcesF**! acting on the structure are calculated and structure displantX”*! is deduced from the
mechanical equation, wherg, anda;are chosen to get high order accuracy in the code couplingnseh For
a,=1 anda;=0.5 a second order code coupling scheme in time is obtained.

This algorithm was introduced by Farhat et al. (1995) andhd&aand Lesoinne (1997), where good results have
been obtained in aeroelasticity problems like flow past pnger. However it does not satisfy the geometric
conservation law at the interface (CGL, Thomas and LombE®@9)).

3.2 Explicit Asynchronous Algorithm (EAA)

With an asynchronous code coupling scheme fluid and strigitoblems are not solved at the same time step.
Fluid computation is expressed at tinfe" /2 and structure computation at tinyet! .

The following prediction of first order is used for fluid meskmlacement:

At
Xntl/2 — xn o4 SV (8)

Then fluid forces are computed at tirtiet!. This procedure ensures geometry mesh conservation anslites
also displacement and velocity continuity at the fluid stuee interface according to the Geometric Conservation
Law (CGL, Thomas et Lombard, 1979). For example, by usingtiegious Newmark structure solver algorithm
and the trapezoidal rule,the energy conservation projeedgduced from the following relation:

vn = X;:L+1/2 — X:rll_l/Q _ X:L — X‘?il + ‘/sn — ‘/snil —yn (9)
e At B At 2 S

wherd/? is the mesh velocity at timé.
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3.3 Implicit Algorithm (1A)

An implicit code coupling scheme is also possible by usingtarative method. This method has been used by
several authors for different applications, Hermann amihgorf (1999), Abouri et al. (2003) and Longatte et al.

(2003b). This algorithm uses convergent explicit preditsi of the coupled fluid structure system. Subcycling is
involved to get convergence for each sub-system and aiariiesed on the fluid force or structure velocity is used
at each time step to stop the numerical process. For the datigruof the fluid and structure variables at step

t"*1, the following steps are used :

1. fluid force computatiof '+ )"

2. prediction of structure displacemen”+1)*

3. deformation of the current geome(@’;“)k

4. determination of the new geome(@}”rl)fwr1 and forceS(F}z+1)k+1

R ()|

(P71’

5. calculation of the error estimatakl = ’(

If the error estimator is smaller than a critical value thiee hext time step is incremented. The process restarts
from the initial state™ and the last velocity estimati¢¥,**!)* is used for the next subcycling of the algorithm.
To illustrate the property of the previously mentioned @&ipband implicit code coupling schemes (ESA, EAA,
IA), a one-dimensional test case is investigated belows Thse is described in detail by Longatte et al. (2003a)
and Longatte et al. (2009).

4 Onedimensional FSI Application

In this part a one-dimensional test case is consideredvdtias two structures with nodal mass linked by a spring
with a stiffness and no damping, Figure 1.

Figure 1: Simple 1D FSI problem

The system satisfies the following mass spring equations :

X}

Mi=pa" + KX} = KX (10)
d?X2

MQT; + K X2 =KX} (12)

whereM,, M,, X, and X, are the structure masses and displacements, respectively.

If the following initial conditions on initial structure dplacement and velocitid§ andV;, are imposed:

X1(00=4 (12)
V3(0) = V4(0) = 0 (13)
and with the additional conditiomt/s = %an analytical solution is given by
X1(t) = Acos(wt) (14)
XZ(t) = —2X,(t) (15)

wherew = /3K, /M, designates the system circular frequency Aride amplitude displacement.
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4.1 Interface Conditions

In order to study interface energy variation, fluid and stieenergye ,and £, can be estimated under the assump-
tion that the first equation of the system describes thetstreicisplacement and the second equation describes the
fluid forces at the coupling interface. Thus, fluid forcesragbn structure is given by = K. X7'. If the explicit
synchronous or asynchronous code coupling scheme is chibgeconditions to minimize numerical energy are
deduced from Equation (6).

These extrapolations are not necessary with an implicie amipling scheme because fluid force is predicted by
a series of subcycling in the fluid computation.

4.2 Schemeproperties

In what follows, one compares energy conservation prageif ESA, EAA and 1A schemes by using one-

dimensional test-case. Fluid and structure energy vanadre reduced by using scheme ESA or scheme IA.
For different time step sizes, energy error is plotted far tiwree different algorithms in Figures 2 and 3 using
At =10"3 andAt = 1075,

[I.15 1 L] I l
Exp Synchronous : :
— = - Exp Asynchronous
— = = Implicit
0.1 v
e
S
= .
i ; -
=, u.ﬂﬁ ................ . .....
o : i
a
c
11}
l] _______________________________
0.05 ‘ ‘ " :
0 20 40 60 80 100

Time
Figure 2: Comparison of the energy variation Sanumerical scheme@\t=10"3)

For the implicit staggered algorithm, energy conservatiogatisfied, no artificial energy has been produced by
the algorithm. However for the two explicit methods, art#flcenergy has been induced in the system. The
explicit staggered schemes can not satisfy in the same tafoeity and displacement continuity and it leads
to energy imbalance. From this simple one dimensional el@nipis obvious that the explicit asynchronous
algorithm (EAA) gives better energy conservation than tkaieit synchronous algorithm (ESA), and numerical
error decrease with time step.

One can conclude that numerical damping created by implicéxplicit asynchronous code coupling schemes
is lower than damping generated by explicit synchronougmeh Besides a comparison with a fully implicit
monolithic procedure by using a fluid structure finite eletreade is achieved in Table 4.2. The two masses and
the spring are modeled as two discrete elements and a llagaet. As shown for the partitioned implicit code
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Coupling scheme Error on displacement | Error on energy
Explicit synchronous | 7.08910° 8.67107°
Explicit asynchronous | 5.40410~° 6.97 1076
Implicit 1,85110° 9.0210-12
Analytical solution 0 0

Table 1: Comparison of analytical and numerical solutions

coupling scheme, the monolithic procedure provides gosdltgin terms of energy conservation. A fully implicit
monolithic process involves a strong coupling solver.

5 Conclusion

Coupling codes method are often the choice for solving cemfiliid structure interaction problems. This ap-
proach presents a great flexibility and modularity, a va#daCFD and structural dynamics codes can be coupled
using an efficient coupling interface, this method takesaathge of the parallel processing within each analysis
code. Unlike coupled fluid structure algorithms which preselarge size of the coupled fluid-structure interaction,
the decoupled linear systems solved at each non linear Mete@tion present are reasonably well conditioned.

In this paper, numerical schemes for code coupling and doai@n method for energy conservation for time inte-

gration algorithm in partitioned procedures are preseatetidiscussed in terms of energy conservation properties.
This method was validated on a simple mass spring systentgpnob
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Transonic Flutter Prediction for a Generic Fighter Configuration

S. Marques, K. Badcock, H. Khodaparast, J. Mottershead

The computation of transonic aeroelastic stability, caguiee significant computational resources. The approach
used in the current paper, is to view the problem of compufimier onset as a stability problem for a steady
state of the coupled fluid-structural system. The stallilityndary is determined by solving non-linear eigenvalue
problem. An eigenvalue solver based on the Schur Complevhethiod, is used to compute flutter at transonic
conditions of realistic configurations. The developmera géneric fighter configuration, based on published data
is described. Aerodynamic surface pressures were matchpdhlicly available data and the structural model
was updated according to measured natural frequencies.ulRegalidate the efficiency and robustness of the
Schur method against a model wing and a typical generic figiaefiguration.

1 Introduction

Advanced fighter aircraft can suffer from aeroelastic in#itées in the transonic regime. Typical aerodynamic
analysis tools for flutter calculations rely on panel methodurkovich (2003), coupled with a Computational

Structural Dynamics (CSD) model. Such methods are basethearlaerodynamics and are insensitive to the
physics that dominate transonic flows. Computational Fiyshamics (CFD) can improve on linear methods.

However, when computing flows with shock-waves, CFD basétéflanalysis requires time-accurate simulations,
which are impractical for parametric studies.

The coupled system stability can be studied by analysingetgonse in time to an initial disturbance, Woodgate
et al. (2005). This approach requires unsteady calcukatidvith today’s computational resources, this is still a
formidable task and unfeasible when a large parameter spsaxts to be analysed. To overcome these difficulties,
several alternative methods have been investigated sutdtadriven models, Lucia et al. (2004), or the Harmonic
Balance method, Thomas et al. (2006). A particularly ativadechnique is to study the stability of the coupled
system steady state directly. Assuming a Hopf Bifurcatability is lost when the system Jacobian matrix has a
pair of eigenvalues which cross the imaginary axis. The isliéa compute when this happens at a computational
cost much less than time domain analysis.

The paper presented here, is a result of a continuous eédfati;ock et al. (2004), Badcock et al. (2005), Woodgate
and Badcock (2007), in applying eigenvalue stability asialyo flutter problems. The latest development divides
the coupled system into a framework consistent with the S€amplement Method, Badcock and Woodgate
(2008) and applies model updating techniques to improvstiiuetural model, Friswell and Mottershead (1995).
The formulation is described and applied to mode trackind futter analysis of two distinct configurations: a

model wing and a realistic generic fighter configuration.

2 Aeroelastic Stability Formulation
2.1 Coupled Formulation
The coupled CFD-CSD semi-discrete system, can be written as

dw

=R (w.p) )
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where: .
w = [ws, W 2

is a vector containing the fluid and structural unknowngpeetively. The residudR:
R=[R; Ry 3)

is a vector containing the fluid residud,;, and the structural residuadR,. The residual also depends on the
parametey:, which is independent of; 1. usually takes the form of dynamic pressure or altitude.

The Euler equations describing the flow field are discrdtiee curvilinear multi-block body conforming grids,
using a cell-centred finite volume method, which convehts partial differential equations into a set of ordinary
differential equations. The convective terms are disseetusing Osher’s upwind method, Osher and Chakravarthy
(1983). Monotone Upwind Scheme for Conservation Laws (MUB@riable extrapolation (see van Leer (1974))
is used to provide second-order accuracy with the Van Alsdiaiter to prevent spurious oscillations around
shock waves. Further details on the flow solver are given kgcBek et al. (2000). The structural residual is
built up from the modal form of the structural equations, gisting of a linear restoring force and a general force
formed by projecting the fluid surface forces onto the modmsh. The structural model is built out of simplified
components such as beams and plates.

2.2 Schur Complement Eigenvalue Solver

As described above, the stability of the equilibria poinegtiation 1 is determined by eigenvalues of the Jacobian
matrix, A = 6—5. Stability is considered to be lost through a Hopf Bifuroativhere a complex conjugate pair

of eigenvalues oA crosses the imaginary axis. The calculation of the Jacoligsmmost conveniently done by
partitioning the matrix as:

ORy ORy
5, ow, A Ags
ORs; ORq A A
ows Ow,

Ay corresponds to the Jacobian of the fluid system and has begadianalytically. In the current work, and as

is conventional in aircraft aeroelasticity, the structisrenodelled by a small number of modes, and so the number
of fluid unknowns is far higher than the structural unknowHsis means that the Jacobian matrix has a large, but
sparse, bloclA ¢ surrounded by thin strips foA s, and A,;. The termA , arises from the dependence of the
CFD residual on the mesh motion and speeds, which in turnndiepe the structural solution. These terms are
currently evaluated using finite differences. The tekgy is due to the dependence of the generalised forces on the
surface pressures. Finall ., is the Jacobian of the structural equations with respedtéstructural unknowns.
The details of the Jacobian calculation can be found in Beldebal. (2004).

To compute the onset of instability, the aeroelastic eigkr/problem needs to be solved. This corresponds to the
normal modes under load from the aerodynamic forces. Thaneiue problem is formulated as:

[ App Ay ]

= 5
A, A, |PTP ®)

wherep is the complex eigenvector andis the corresponding eigenvalue. The eigenvector is aldgitipaed
according to the fluid and structural components:

p= [pfv ps]T (6)

It can be shown, Bekas and Saad (2005), that for a matrixtipagd asA, if ) is an eigenvalue oA but not an
eigenvalue ofA ¢, then it must also be an eigenvalueSif):

S (A) ps = Aps ()

whereS()\) is given by:
S(\) = Ay — Agp (Ayy — NI Ay, 8)
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Figure 1: Structural and CFD grid

This small non-linear eigenvalue problem can be solved bywatbh-type approach. However, formisgstill
requires solving A ;; — A\I) " A s, which is still too expensive for every combination)ofind .. To overcome
this, the following expansion fA ;; — AI) ™" is considered:

-1 —1 —1A-1 2A—1A—-14x-1
(A=A mAL A GA L +HNA A A 9
This allows pre-computation of the coefficient matriceshia €xpansion.

In order to converge, the series expansion requitese small. IfAq is the eigenvalue oA ., then is considered
a small change from,. This allows reformulation 08(\), by usingXq as a shift to the full eigenvalue problem
and therefore replacing sy by Ay — AgI and A, by A, — A\oI. TheS matrix is reformulated as:

S(A) = (Ags — XoI) — Agp (Ays —)\OI—)\I)’lAfS (20)
and eq.9 is now given by:
(Aff — Aol — /\I)_1 ~ (Aff — )\01)_1 + A (Aff — )\01)_2 + A2 (Aff — )\0]:)_3 - (11)

The non-linear problem is solved forand the eigenvalue for the original system is given\gy+ A. Further
details on the implementation of this method is given by Ba#iand Woodgate (2008).

3 Results
3.1 Goland Wing

The first test case presented here is the Goland wing. Théstwas been the subject of several computational
studies. The Goland wing uses a 4% thick parabolic aerdfdsi;a rectangular wing with dimensio8 x 6ft. A
detailed description of the structural model used in thiski®given by Beran et al. (2004) and is shown in figure
1-a). The Goland wing is very flexible and flutter can occumeatlow Mach numbers.

The multi-block CFD grid for the wing follows a O-O topology@ a slice normal to the surface is shown in
figure 1-b). A fine grid was generated with about 236 thousanidtg, from which a coarser level was extracted
by removing every other point and resulted in a mesh with 8bighnd points. The first four mode shapes were
obtained with MSC Nastran and mapped onto the CFD grid. Batbthe mapping process are given by Rampu-
rawala (2006). Initial tests were performed at a freestr&anh number of 0.5 an@® angle of attack. Altitude
was used as a bifurcation parameter. The initial matricee wemputed at an altitude of 30000ft and the altitude
range went down to 10000ft below sea level. The coarse gtaliledions were performed on a single desktop
computer. Five full evaluations &(\) at equally spaced altitudes were also done, to assess thmegof the
series expansion. The total runtime using the series eigrangs 12 minutes, while the five full evaluations took
about 25 minutes.
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Figure 3: CFD grid and structural model

Figure 2 is obtained by calculating the eigenvalue of themabmode at the highest altitude. At the highest
altitude, the influence of the fluid is small and the eigeraldepend mostly on the normal modes. As the
bifurcation parameter is reduced, the influence of the fluidh® eigenvalues increases and the remainder of the
graph is filled. At about 6000ft, the first bending and torsiomodes begin to interact leading to flutter. The
graphs also show the excellent level of agreement, betweefull Evaluation of eq. 8 or approximating it by
using the series expansion defined in eq. 9.

3.2 Generic Fighter Configuration

The generic fighter configuration, shown in figure 3 is basetheri-16 fighter. The objective of this model is to
represent a realistic aircraft, both in terms of aerodyiearand structural dynamics. The aeroelastic behaviour of
the F-16 has been the focus of several investigations, Dief2I190), Geuzaine et al. (2003). Furthermore, there
is substantial information in the public domain for thiscaéft; this allowed the development of a test case model
that is representative of a typical fighter configuration.

The overall dimensions of the model have been scaled bas#tedi16. A block structured grid was generated
which has 890 thousand points and 240 blocks for the full gondition. The full span grid was obtained by
reflecting a half span grid. The surface grid is shown in figgsa® and shows that the points are concentrated
on the wing which contributes most to the aeroelastic respomhe wing section consists of a NACA64A204
profile, with a wing root twist of—1° leading to a wing tip twist of-2.4°. The wing twist was evaluated by
comparing surface pressures against results given by BiearejDubben (2005); figure 4 shows the comparison
of the surface pressures at two locations along the spanliustration of the surface flow field, corresponding
to the case quoted above is also given in figure 5. The stalatuodel consists of three main elements, the
wing, leading and trailing edge flap, as shown in figure 3-bhe Three components are modelled with shell
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Figure 4: Surface pressure compariséf:= 0.85, o = 2.12°

Figure 5: Surface pressure flow fieldf = 0.85, o = 2.12°

elements. The leading and trailing edge devices are coshécthe main wing by spring elements. Material and
model properties, such as density, Young’s modulus anddheral thicknesses are calculated based on model
updating against mode frequencies. The following pararsetere used: density, Young's modulus, directional
spring stiffnessesk,, ky, k-, ko, ke, k¢ ), 13 thicknesses along the span. Denegri (2000) identifiechtades that
contributed to flutter. An optimisation problem was set uging the two frequencies identified experimentally as
an objective function. The structural model was given the@&hmeters and the objective function is given by eq.
12. The optimisation process, selects the parameters thahise the overall sum described by eq. 12.

n e\ 2
f=min [Z Wi (:j;) ] (12)
i=1

1

whereW; represents the model parameters, given in tableflandw{ represent the experimental and model
frequencies respectively for modes 2 and 3. Table 2 showmitied and final results for the frequencies for the
modes identified by Denegri (2000) as contributing to flutfére structural model mode shapes and the mapping
onto the CFD grid for the two relevant modes are shown in figureThe flutter calculations for this case were
performed at M=0.85 an@® angle of attack. All calculations were performed on 32 pssoes. The steady state
was calculated in about 10min. Precomputing the matricethéoseries approximations for 10 modes took about
12h. An altitude sweep was performed between 3000m down @0r6(below sea-level. This set of results is
illustrated in figure 7. No flutter is observed for this configfion.
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Model Para- | Initial Value Final Value Model Para- Initial Value Final Value
menter - W; menter - W;
Density 4000kg/m3 4010.4kg/m3 Young's 1.0 x 101X N/m? | 6.437 x 10'°N/m?
Modulus
ky 1 x10"N/m | 1x10"N/m ky 1 x10°N/m 1 x10"N/m
k., 1x10"N/m | 9.48 x 105N/m || kg 1 x10"N/m 9.93 x 10°N/m
ke 1x10"N/m | 9.84 x 105N/m || k¢ 1 x10°N/m 1 x10°"N/m
ty 0.200m 0.144m to 0.088m 0.060m
t3 0.088m 0.058m ta 0.088m 0.043m
ts 0.088m 0.159m te 0.088m 0.095m
t7 0.088m 0.136m ts 0.088m 0.091m
tg 0.088m 0.099m t1o 0.088m 0.088m
t11 0.088m 0.076m t12 0.088m 0.060m
t13 0.088m 0.053m
Table 1: Model Parameters Definition
Mode | Initial FE Model (Hz) | Denegri data (Hz) Final FE Model| Mode Shape

1 7.329 - 3.920 symmetric

2 11.983 9.191 9.191 anti-symmetric

3 17.165 9.964 9.964 anti-symmetric

4 21.396 - 22.452 anti-symmetric

5 31.019 - 22.608 symmetric

6 34.380 - 24.020 anti-symmetric

7 41.109 - 26.772 symmetric

8 41.217 - 31.292 anti-symmetric

9 44.905 - 40.040 symmetric

10 45.504 - 41.695 anti-symmetric

Table 2: Structural Model Updating: Frequency matching
4 Conclusion

A methodology to construct and analyse realistic aerdelasbdels has been presented. Model updating tech-
nigques allow the development of structural models that ipequivalent outputs to real structures. The Schur
Complement method permits fast and robust computationitéadreigenvalues and conditions that lead to the
onset of flutter. The methodology shown here also providéaildd information about modal interaction that
cause instabilities. The computations on two distinct¢ases, Goland wing and a generic fighter configuration,
validated the methods presented in this paper.
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Solving FSI problems with high resolution and using a component
framework in parallel

J. Rang, J. S@bn, H. G. Matthies

In this note fluid-structure interaction problems are tre@twith a partitioned approach. For the fluid part of the
problem the finite volume code OpenFOAM and for the strugbam the finite element code ParaFep is used.
The communication between the different codes is realistedive help of the component template library (CTL).
Therefore the different solvers are transformed into sliedasoftware components which are controlled from a
third code. The final non-linear system is solved with araiige method, i.e. a staggered scheme or a block-
Gauss-Seidel method. The implementation is explained @ame& sumerical results show the advantages of the
numerical method.

1 Introduction

The interaction of fluid and structure appears in severakneh areas (Dinkler and Rang, 2008), e.g. the numerical
simulation of offshore wind turbines, see (Srisupattardtvat al., 2004) and (Meyer and Matthies, 2004), or of
biomechanical processes.

In the case of fluid-structure interaction problems a fluid astructure problem are solved which are coupled with
the boundary conditions defined on the so-called interfa&ea connecting part of the boundary. The computation
of the numerical solution needs the simultaneous solutidineostrong coupled equations of both problems. Often
problems of fluid-structure interaction have a strong ddpany between fluid and structure (Morand and Ohayon,
1995) and (Le Tallec and Mouro, 2001).

For building a monolithic solver (Rugonyi and Bathe, 2000is difficult to find a free available software system
which knows at the same time finite elements, finite volumelsdififerent time discretisation schemes for first and
second order systems. This is one reason to use a modulaaappnd partitioned methods (Rugonyi and Bathe,
2000; Felippa and Park, 1980; Mok and Wall, 2001; Pipernd.e1895; Matthies and Steindorf, 2002; Matthies
et al., 2006; Steindorf, 2002), i.e. the fluid and the stmectoroblem are solved numerically by two different
codes. In our approach we use OpenFOAM for solving the fluil RaraFep (Niekamp, 2001) for solving the
structure part. In this note we concentrate on the commtiaicaf the different solvers and on the solution
strategies of the non-linear system. The communicatiowdss the solvers can be realised with the help of the
Component Template Library (CTL) (Niekamp, 2005), i.e. sbbsers are transformed into software components
and are controlled from outside with a central unit. Sincel@fDAM and ParaFep can be executed in parallel it
is possible that the FSI simulation runs in parallel, too.r&wer it is in our approach possible that only one of the
codes is executed in parallel.

One disadvantage of the partioned approach is the solufitimedfinal non-linear system. Since we are using
two different codes a part of this non-linear system is kntyw®©penFOAM and the other is known by ParaFep.
Therefore we are using iterative methods as the staggehedngcor the block-Gauss-Seidel-scheme to solve this
non-linear system.

The paper is structured as follows. First we give a shorbihicting into the two subproblems. In chapter 3 the

coupling is discused and the Component Template Library j@&Tintroduced. Finally we present some numerical
examples which show that our implementations give goodtesu
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2 The subproblems

The fluid problem is described by the incompressible NaSimkes equations and the elastic structure is modelled
with equations from elasto-dynamics.

The description of the fluid in domains with moving boundaian be directly included into the equations, i.e. the
Arbitrary-Lagrange-Eulerian (ALE)-Formulation can beoskn (Nath, 1973). The fluid field is described with a
local or an Eulerian approach and the motion of the bound#hyant agrangian approach. The combination of both
approaches can be done with a modification of the convectileeities in a local representation. The discretisation
in space can be done with finite volumes and in the time withGhenk-Nicolson scheme. A program code
which knows both discretisation schemes is OpenFOAM whgcni open source code. It is programmed in the
programming language C++. The main application is computat fluid dynamics (CFD), i.e. the incompressible
Navier-Stokes equations. OpenFOAM can be executed inlphandth the help of MPI and it supports mesh motion
and topology changes. Moreover a pre- and postprocessaligled (FoamX and ParaFOAM).

The equations of the structure should be formulated in the o&fluid-structure interaction problems in such a way
that large deformations of the structure are possible (Vérigg?008). Therefore we use equations of geometric
non-linear elasto-dynamics which are represented in adreggan formulation. The equations are discretised in
space with finite elements and in time with the Newmark sch@vagthies et al., 2006). The code ParaFep is used
to solve this part of the problem. ParaFep is an in-house whitsh was developed at the institute of Structural and
Numerical Mechanics in Hannover. The main application ameastructural mechanics problems, i.e. problems
from elasto-dynamics. ParaFep supports adaptivity andbeaxecuted in parallel.

3 The coupling and the Component Template Library

Since we are using two different codes for the fluid and thecsiire problem it is computational too expensive to
solve the final non-linear system in one program. Therefwegtrtitioned approach is used, i.e. each subproblem
is solved by its own code. It is of course clear that eitherrs genall time step size or some iterative method for
solving the non-linear system should be used to get a gooencahapproximation.

There are several reasons why partioned methods shoulddoe @@ne advantage of this technique is the re-
usability of existing software which can be used withougéarchanges or improvements. Moreover the best codes
for each subproblem can be used and included into the FSiksdion.

The numerical solution depends strongly on the couplingtti bodes (Morand and Ohayon, 1995) and (Le Tallec
and Mouro, 2001). One possibility are staggered schemeashveine often called loosely coupled. In this approach
the non-linear system is only solved one time in each timp. sBnce the coupling conditions are not satisfied,
only relative small time step sizes can be used. Otherwisgenigal instabilities will arise (Steindorf, 2002).

The block-Gauss-Seidel method iterates the solution ohthrelinear system. This approach is implicit, and
therefore the coupling is strong. But the block-Gauss-&eaitethod may also fail for some strongly coupled
problems (Matthies et al., 2006). For this class of problaiispossible to use a block-Newton method, (Steindorf,
2002) where the final system is solved with Newton’s methaat tBis method needs cross-derivatives which are
not explicitely known in a partitioned scheme. A simplificat is the inexact block-Newton method (Steindorf,
2002). In this case the cross derivatives are approximé®teindorf, 2002). In this note we use the staggered and
the block-Gauss-Seidel scheme for solving the non-lingstes.

One question is the implementation of the whole concept.siinglest idea is that one of the solvers is the master
unit. In this case the coupling algorithm can be implemetitedne of the codes but this approach has several
disadvantages. Libraries used by the codes may be incdrtgatid the implementation is difficult since at least
one code has to be modified.

Another approach are software components (Szyperski,)1995bftware component is a piece of software which
offers (via an interface) a predefined service and which lis mbcommunicate with other components. Clemens
Szyperski and David Messerschmitt define several criteriadftware components: Software components should
be multiple-usable which means that they can be executedrallel. The implementation of them should be
realised in a non-context-specific way, i.e. they are exgbahle. Software components can be composed with
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other components and they are encapsulated, i.e. they arénvestigable through its interfaces. Moreover
software components are units which are independent obgeygnt and versioning.

Solver
CTL
Vs
rf
Dy
Ny N Usg

Fluid Interface Structure
OpenFOAM Translator ParaFep
solve@y, py) translator\ ;, N ;) solvefus, rs)

Figure 1: Communication between OpenFOAM, ParaFep, an@The

In our implementation the master unit is a third code whichtias the fluid and the structure code from outside.
Both codes are transformed into software components ancbtinenunication between the master unit and these
software components is done by using the Component Temlatary (CTL) (Niekamp, 2005). The CTL as a
generative component framework introduces a high-pedioca component model and allows the development of
high-performance applications with negligible overheldurthermore helps to integrate different programming
languages and paradigms as well as an extensible amounhafigoication protocols including MPI. Furthermore
CTL components can themselves be intrinsically parallel (ising IMPI on a cluster).

Figure 1 shows a realization for the fluid-structure intéoac A component calle&olverinitialises first all vari-
ables and gives the velocity to the fluid solver OpenFOAM. We have build a software compbdnéOpenFOAM
such that it can simulate with this information one time stBpe numerical results are written into files which can
be read by the solver. It is important for the simulation ti&t pressure; can be transformed with the help of
the translator to interface nodes of the structure and imtoekf;. These forces are given to the structure solver
ParaFep which simulates a time step and which returns displantsu.

Figure 2 shows how OpenFOAM (Version 1.2) is called in a cmgpbrocess. The C++ fronter@ oaminterfaces
to OpenFOAM. The interfacing can be done via file editing aystesm calls. Of course the usage@foam
requires an OpenFOAM model, calledcasein the OpenFOAM world. Additionally this model has to fit to
the requirements of the used OpenFOAM solver. In the ifstdlon phase of af oaminstance the model
is geometrically discretised by calling OpenFOAM’s mesheockMesh. During the proper FSI ru®f oam
gets the mesh motion at the FSI boundary as velocities. Theities are computed bgi&f, wheredu is the
displacement change during the time stkp Of oamwrites these velocities to the mesh motion fitet i onU
of the model’s start-time directory. Subsequently the ei\coFoamAut oMot i onMod is called via a system
call to solve the fluid problem. This solver is only an extensdfi coFoamAut oMot i on. It writes the pressure
at the boundary to an additional file nameBoundar y. This approach is more economic than extracting these
pressures from pressure fjje Of oamreads these pressures and returns them to the calling éestan

4 Numerical examples

We test our implementation with several test examples. Thedne is a flexible beam which is connected with
a quadratic rigid-body. At certain fluid velocities vorticbreak off and the elastic beam begins to move. Further
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Figure 2: Usage of OpenFOAM (Version 1.2)

examples are an elastic glass fibre in a soap film and an etadtion in a flow.

4.1 Elastic cantilever beam

Our first example is an elastic cantilever beam from (Wall Bagnm, 1998). In this example the fluid induces
oscillations of a flexible beam. The elastic structure istamted with a quadratic rigid-body from which at certain
fluid velocities and Reynolds numbers vortices break ofé (Sgure 3). The elastic structure moves due to this
vortices.
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Figure 3: Elastic cantilever beam: Domain

As parameters for the simulation we choose for the strudheeelasticity module? = 2,5 - 10° N/m?, the
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Poisson number, = 0.35 and the density, = 100 kg/m3. For the fluid the density; = 1.18 kg/m3, the
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Figure 4: Elastic cantilever beam: Coarse mesh

viscosityvy = 1.82 - 10°Ns/n? and the inflow velocityy, = 0.513 m/s,v, = 0 m/s are chosen. The width of
the elastic structure i = 0.6 mm. All the dimensions and the boundary conditions are ptesein Figure 3. A
coarse discretisation of the fluid domain can be found in féigu

For our numerical computations we refine the coarse mest~gaee 4) three times. We have 48448 degrees of
freedom for the velocity and for the pressure. In Figure 5 vesent the numerical results after 14.8 and 15 s. It can
observed that the elastic beam shows large displacemahtbathe amplitude of the movement is approximately
0.9 cm. This result fits to other calculations presented fei{@orf, 2002; Walhorn et al., 2001; Wall, 1999).

4.2 Glass fibre in a soap film

For this problem we have a thin glass fibre (thickness app@ok.mm) which is fixed with a stainless-steel rod
in a flowing soap film (1.5 % dawn dish detergent, dengity= 1000k/m®). The length of the glass fibre varies
between 1 and 5 cm, the elasticity module is giverfby- 2 - 10-°Nm. The geometry of the problem is shown in
Figure 6.

There are many good arguments to consider this problem whidie to (Alben et al., 2002) and (Alben and
Shelley, 2004). The geometry is relatively simple and twaahsional. Moreover the fluid motion is laminar
and there exists a unique stationary geometry at the fin#igosf the glass fibre for every combination of fluid
velocity and stiffness of the beam.

This test case offers two possibilities to compare the nigakresults with the experimental data ((Alben et al.,
2002) and (Alben and Shelley, 2004)). The first one is a coisaiof the final deviation of the glass fibre which
depends on the parameter of the fluid- and the structure grglile. the densities of fluid and structure, the
elasticity module, etc. Is is possible to reduce the numbéee parameters such that only one remains. But this
is only possible if the viscosity, the length and the thidsef the fibre are not changing too much. In this case a
non-dimensional parametgr(see (Alben et al., 2002) and (Alben and Shelley, 2004)) eatefined

prfL?
=U
n=U\ =55

whereU is the velocity of the fluid and. is the length of the glass fibre. Since no experimental gedesawith
the final position of the glass fibre are printed in the refeesr(Alben et al., 2002) and (Alben and Shelley, 2004),
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Figure 5: Numerical results for the flexible beam after 148 after 15.0s

d

A
Y

Figure 6: Glass fibre in a soap film (Measurements are in mm)

a direct comparison is not possible. Therefore a compavisttna mathematical model is possible (see Figure. 7).
There are quiet large differences between the experimgatahetries fory = 16 and our computation. These
differences appear since no re-meshing is done and thengiztions of the mesh are quiet large.

The theory and the measurements offer a second possilolitthé comparison of experiments and numerical
simulations since the ratio of effeminateness of the fibkthe drag can be considered. The drag coefficient

Cq:=2-drag/(ps fLU?)

is nearly independent from (for smalln), but decreases then witjr 2/, if the glass fibre is moving under the
influence of the fluid (see Figure 8).
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Figure 7: Comparison of displacements of the glass fibre ifiterdnt . Black: Experiment from (Alben and
Shelley, 2004), Coloured: FSI-Simulation

T TT T T \\\I T L \\I T T T T TrTrT

i ~N + WIREHSVAFSI &

3 n Measurements + A

i + 1
10 — ]
F ]

i Tt et )
1¢p .

0.01 0.1 100

Figure 8: Drag of the glass fibre in the soap film, FSI-resaltomparison with measured data (Alben et al., 2002)
and (Alben and Shelley, 2004).

The differences between our FSI-simulations and the meeadata are due to the fact that a shorter glass fibre
is used in our calculation. A longer glass fibre blocks a gmepart of the profile of the channel, such that the
pressure difference between upper and bottom side of tresifibreases. Sina€; ~ 2 our FSI simulation seems

to be correct. This is a similar result to the measuremendspidite in a tow-dimensional free flow (see (Hoerner,
1958)).

Column in a flow

A rectangular freestanding column with an inflow of 1 m/s frira left is our first 3D test case. The upper part
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Figure 9: Deviation of the columnabs(U)” is the velocity of the deviation in m/s.

of the column is bent due to the influence of the flow pressutkiareaches the neutral position quickly (see
Figure. 9. The final deviation has the correct magnitudelferstructure and the fluid which we consider. For this
test case no comparable data from experiments or other rmahapproximations are known. Nevertheless the
numerical results show that our implementation give gosdilts.

5 Summary

In this note we have presented a strategy for solving fluidesitre interaction problems with a partioned method.
The fluid and the structure code are realized as so-calléd/as@f components and the communication between
solver and software components is done with the help of theg@ment Template Library (CTL). Finally we
present 2 and 3 dimensional examples which show that ouritiigogives quiet accurate results.
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Fluid-Structure Interaction.
Theory, Numerics and Applications
pp. 215- 230
Herrsching am Ammersee, 29.9.-1.10.2008

Numerical simulation of fluid-structure interaction with applicati on to
aneurysm hemodynamics

M. Razzagq, S. Turek, J. Hron, J. F. Acker, F. Weichert, M. \Waigh Q. Grunwald, C. Roth, and B. F. Romeike

As an example for fluid-structure interaction in biomedipeiblems, the influence of endovascular stent implan-
tation onto cerebral aneurysm hemodynamics is numericallgstigated. The aim is to study the interaction of
the elastic walls of the aneurysm with the geometrical staghe implanted stent structure for prototypical 2D
configurations. This study can be seen as a basic step towaedsnderstanding of the resulting complex flow
phenomena so that in future aneurysm rupture shall be seppteby an optimal setting for the implanted stent
geometry. From the mathematical side, numerical techrsdoesolving the problem of fluid-structure interaction
with an elastic material in a laminar incompressible vissdlow are described. An Arbitrary Lagrangian-Eulerian
(ALE) formulation is employed in a fully coupled monolithiay, considering the problem as one continuum. The
mathematical description and the numerical schemes arged in such a way that more complicated consti-
tutive relations (and more realistic for biomechanics apations) for the fluid as well as the structural part can
be easily incorporated. We utilize the well-knowsPfinite element pair for discretization in space to gain high
accuracy and perform as time-stepping the 2nd order Craigkdson, resp., Fractional-Ste-scheme for both
solid and fluid parts. The resulting nonlinear discretizégiedraic system is solved by a Newton method which ap-
proximates the Jacobian matrices by the divided differsrmproach, and the resulting linear systems are solved
by iterative solvers, preferably of Krylov-multigrid typ@reliminary results for the stent-assisted occlusion of
cerebral aneurysm are presented. Since these results amently restricted to 2D configurations, the aim is not
to predict quantitatively the complex interaction meclsams between stents and elastic walls of the aneurysm,
but to analyse qualitatively the behaviour of the elasfidt the walls vs. the geometrical details of the stent for
prototypical flow situations.

1 Introduction

In this contribution, we consider the general problem ofwiss flow interacting with an elastic body which is being
deformed by the fluid action. Such a problem is of great imgrareé in many real life applications, and typical
examples of this type of problem are the areas of biomedig@sfiwhich include the influence of hemodynamic
factors in blood vessels, cerebral aneurysm hemodynajoios Jubrication and deformable cartilage and blood
flow interaction with elastic veins (Appanaboyina et al.02)) (Valencia et al., 2008), (Fernandez et al., 2008),
(Tezduyar et al., 2007), (Tezduyar et al., 2008). The thamlenvestigation of fluid-structure interaction profie

is complicated by the need of a mixed description for bothgpathile for the solid part the natural view is the
material (Lagrangian) description, for the fluid it is usuahe spatial (Eulerian) description. In the case of their
combination some kind of mixed description (usually refdrto as the Arbitrary Lagrangian-Eulerian description
or ALE) has to be used which brings additional nonlineanitipithe resulting equations (see (Hron and Turek,
2006b)).

The numerical solution of the resulting equations of thedflstiructure interaction problem poses great challenges
since it includes the features of structural mechanicg] flynamics and their coupling. The most straightforward
solution strategy, mostly used in the available softwarekpges (see for instance (Hron et al., 2002)), is to de-
couple the problem into the fluid part and solid part, for eatthose parts using some well established method
of solution; then the interaction process is introducedxéareal boundary conditions in each of the subproblems.
This has the advantage that there are many well tested neatheréthods for both separate problems of fluid flow
and elastic deformation, while on the other hand the treatrokthe interface and the interaction is problematic
due to high stiffness and sensitivity. In contrast, the nlitimo approach discussed here treats the problem as a
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single continuum with the coupling automatically takerecaf as internal interface.

Beside a short description of the underlying numerical etspegarding discretization and solution procedure for
this monolithic approach (see (Razzaq et al., 2008), (HnahTaurek, 2006a)), we concentrate on prototypical nu-
merical studies for 2D aneurysm configurations. The comegimg parametrization was based on abstractions of
biomedical data (i.e., cutplanes of 3D specimens from Nesfaéfel white rabbits as well as computer tomographic
and magnetic resonance imaging data of human neurocréam@)r studies, we allow the walls of the aneurysm to
be elastic and hence deforming with the flow field in the veddelreover, we examine several configurations for
stent geometries which clearly influence the flow behavisidia of the aneurysm such that a very different elastic
displacement of the walls is observed too. We demonstrateeither the elastic modeling of the aneurysm walls
as well as the proper description of the geometrical detditbe shape of the aneurysm and particularly of the
stents is of great importance if the complex interactiomieen structure and fluid shall be quantitatively analyzed
in future, especially in view of more realistic blood flow nedsl and anisotropic constitutive laws of the elastic
walls.

2 Fluid-structure interaction problem formulation

The general fluid-structure interaction problem consisth® description of the fluid and solid fields, appropriate
interface conditions at the interface and conditions fertbmaining boundaries, respectively. In this paper, we
consider the flow of an incompressible Newtonian fluid intérg with an elastic solid. We denote the domain
occupied by the fluid b and the solid by at the timet € [0, T]. LetI? = QPN Qf be the part of the boundary
where the elastic solid interacts with the fluid. In the faling, the description for both fields fields and the
interface conditions are introduced. Furthermore, ditmaBon aspects and solution procedures are presented in
the next section.

2.1 Constitutive relations for the fluid

The fluid is considered to bgewtonian, incompressibleand its state is described by theslocityand pressure
fieldsvP, pP respectively. The constant density of the fluighfsand the kinematic viscosity is denoted &, The

balance equations are:
b

Dv . . .
p'Dﬁ =dive®, divv’=0 in QP 1)
In order to solve the balance equations we need to specifydhstitutive relations for the stress tensors. For the

fluid we use the incompressible Newtonian relation
0® = —pPl+ (VP + (IVP)T), @)

wherepu represents the dynamic viscosity of the fluid gifds the Lagrange multiplier corresponding to the in-
compressibility constraint in (1). The material time dative depends on the choice of the reference system. There
are basically 3 alternative reference systems: the Eulefi@ Lagrangian, and the Arbitrary Lagrangian-Eulerian
formulation. The most commonly used description for thedflsiructure interaction is the ALE description. For
the ALE formulation presented in this paper, correspondiisgretization techniques are discussed in section 3.
Let us remark that also nonnewtonian flow models can be usedddeling blood flow, for instance of Power Law
type or even including viscoelastic effects (see (Daman#.e2008)) which is planned for future extensions.

2.2 Constitutive relations for the structure

The structure is assumed to blasticandcompressible Its configuration is described by the displacemént

with velocity fieldv® = "d—ﬂs. The balance equations are:
stS S S\\,S H S S, H S
pEer(Dv W =divo®+p°g, in Q. 3)

Written in the more common Lagrangian description, i.e. wépect to some fixed reference (initial) st@fe we
have

o%us
ot?

pS =div(JoSF ) +p%, in QS (4)
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The constitutive relations for the stress tensors for thepressible structure are presented, however, also incom-
pressible structures can be handled in the same way (see &bTurek, 2006b)). The density of the structure in
the undeformed configuration @. The material elasticity is characterized by a set of twapeaters, the Poisson
ratio v® and the Young modulug. Alternatively, the characterization is described by theE coefficientsA ® and

the shear modulug®. These parameters satisfy the following relations

AS HS(3AS 4+ 2u2)

5_7 T e

Vi BT o) ©
E VSE

S __ S __

=307 A " @i )

wherev® = 1/2 for a incompressible and® < 1/2 for a compressible structure. In the large deformatior cas
it is common to describe the constitutive equation usingesststrain relation based on the Green Lagrangian
strain tensoE and the 2.Piola-Kirchhoff stress tens§E) as a function oE. The 2.Piola-Kirchhoff stress can be
obtained from the Cauchy streg$ as

S=JF1c5F T, (7
and the Green-Lagrange tengoas
1
EZE(FTF—I). (8)

In this paper, the material is specified by giving the Caudhsss tensoo® by the following constitutive law for
the St.Venant-Kirchhoff material for simplicity

oS = %F()\S(trE)l +2USE)FT S5 = AS(trE)I + 2u°E. ©)

J denotes the determinant of the deformation gradient tefasdefined as= = | + CuS. Similar as in the case of
more complex blood flow models, also more realistic conttiurelations for the anisotropic behavior of the walls
of aneurysms can be included which however is beyond theesafihis contribution.

2.3 Interaction conditions

The boundary conditions on the fluid-solid interface areiass] to be

o’n=0%, VWw=v5 on Y (10)

wheren is a unit normal vector to the interfad€. This implies the no-slip condition for the flow and that the
forces on the interface are in balance.

3 Discretization and solution techniques

In this study, we restrict at the moment to two dimensionscilgillows systematic tests of the proposed methods
for biomedical applications in a very efficient way such tthegt qualitatitive behaviour can be carefully analyzed.
The corresponding fully implicit, monolithic treatment thie fluid-structure interaction problem suggests that an
A-stable second order time stepping scheme and that thefeaiteeslements for both the solid part and the fluid
region should be utilized. Moreover, to circumvent the flinidompressibility constraints, we have to choose a
stable finite element pair. For that reason, the conformiggaaratic, discontinuous line&y,P; pair, see Figure

1 for the location of the degrees of freedom, is chosen whitihe explained in the next section.

3.1 Space discretization

Let us define the usual finite dimensional spddedsr displacementy for velocity, P for pressure approximation
as follows

U={uel”(I,WH»?(Q)?),u=00ndQ},
V ={veL?(1,W2(Q)]?) nL(I,[L?()]?),v = 00n dQ},
P={peLl’(I,L*(Q))},
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Figure 1: Location of the degrees of freedom for @, element.

then the variational formulation of the fluid-structuredrgction problem is to fin¢u,v, p) € U xV x P such that
the equations are satisfied for &, £, y) € U x V x P including appropriate initial conditions. The spatk¥, P
on an intervalt",t"*] would be approximated in the case of Qg P; pair as

Un = {un € [C(Qn)]%,un|T € [Qa(T)]> VT € Fh,un=00ndQ},

Vh = {Vh € [C(Qn)]%, VhlT € [Q2(T)]? VT € Fh,Vh=00n3dQ},

Ph={ph € L*(Qn), pnlr €PL(T) VT € F}.

Let us denote by the approximation ofi(t"), vjj the approximation of(t") and py; the approximation op(t").
Consider for eacfi € Ty, the bilinear transformatiogyr : T — T to the unit squar&. Then,Q2(T) is defined as

Qu(T) = {go gt : ge span< 1,x,y,xy. X%, ¥2, X2y, y?X, x2y? > } (11)

with nine local degrees of freedom located at the verticedpaints of the edges and in the center of the quadri-
lateral. The spack;(T) consists of linear functions defined by

Pu(T) = {qoyrt:qe span< 1,x,y >} (12)

with the function value and both partial derivatives lochie the center of the quadrilateral, as its three local
degrees of freedom, which leads to a discontinuous presdure inf-sup condition is satisfied (see (Boffi and
Gastaldi, 2002)); however, the combination of the bilineansformation with a linear function on the reference

squareP (T) would imply that the basis on the reference square did ndagothe full basis. So, the method can
at most be first order accurate on general meshes (see (Aehald 2002), (Boffi and Gastaldi, 2002))

IP— Pl = O(h). (13)

The standard remedy is to consider a local coordinate sy&&em) obtained by joining the midpoints of the
opposing faces of (see (Arnold et al., 2002), (Rannacher and Turek, 1992ye,1.999)). Then, we set on each
elementl

P (T):=span<1,&,n>. (14)

For this case, the inf-sup condition is also satisfied andélcend order approximation is recovered for the pressure
as well as for the velocity gradient (see (Boffi and Gast&dd2), (Gresho, 1990))

Ip—pnll=0O(h*) and [|O(u—un)lp=O(h?). (15)

For a smooth solution, the approximation error for the vigyda the Lo-norm is of ordetO(h?®) which can easily
be demonstrated for prescribed polynomials or for smooth oia appropriate domains.

3.2 Time discretization

In view of a more compact presentation, the applied timerdismation approach is described only for the fluid part
(see (Razzaq, 2009) for more details). In the following, ernict to the (standard) incompressible Navier-Stokes
equations

Vi —VAV+v-Ov+0Op=f, divv=0, in Qx(0,T], (16)
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for given forcef and viscosityy, with prescribed boundary values on the bound2®@and an initial condition at
t = 0. Then, the usua-scheme for time discretization reads:

Basic 6-scheme:Givenv" andK = tn, 1 —t,, then solve for = v"*! andp = p™*?

v—\"

+0[-vAv+v-Ov]+Op=g"?! divv=0, in Q (17)

with right hand sideg™?! := "1+ (1— 0)f" — (1— 6)[—vAv" + V" Ov"].

The parametef has to be chosen depending on the time-stepping schemefe-gl for the Backward Euler
(BE), or 8 = 1/2 for the Crank-Nicholson-scheme (CN) which we prefer. Thesgure ternilp = Op™*! may

be replaced b@Op™! + (1— 6)0p", but with appropriate postprocessing, both strategiesteaolutions of the
same accuracy. In all cases, we end up with the task of sglatreach time step, a nonlinear saddle point problem
of given type which has then to be discretized in space agidedcabove.

These two methods, CN and BE, belong to the grouPié-Stepd-schemesThe CN scheme can occasionally
suffer from numerical instabilities because of its only welamping property (not strongly A-stable), while the
BE-scheme is of first order accuracy only (however: it is acdgcandidate for steady-state simulations). Another
method which has proven to have the potential to excel inahimspetition is the Fractional-Stepscheme (FS).

It uses three different values fé and for the time stefk at each time level. In (Razzaq et al., 2008), (Turek
et al., 2006) we additionally described a modified Fracti@tap-6-scheme which particularly for fluid-structure
interaction problems seems to be advantageous. A detaktigtion will appear in the thesis (Razzaq, 2009).

3.3 Solution algorithms

The system of nonlinear algebraic equations arising fragtiverning equations described above reads

S S 0 u fu
Su Sv kB vV | = fy (18)
Bl oB] 0 p

which is a typical saddle point problem, whe3elescribes the diffusive and convective terms from the goxgr
equations. The above system of nonlinear algebraic equsatiB) is solved using Newton method as basic itera-
tion. The basic idea of the Newton iteration is to find a rooadfinction,R(X) = 0, using the available known
function value and its first derivative, wheXe= (up, Vh, pn) € Un % Vi X By. One step of the Newton iteration can
be written as

-1
XM= xn— [gi(x”)} R(X™). (19)

1. LetX" be some starting guess.
2. Set the residuum vect®&" = R(X") and the tangent matri&k = S—Q(X“).

3. Solve for the correctionX
AdX =R".

4. Find optimal step lengtt.
5. Update the solutioX™?! = X" — wdX.

Figure 2: One step of the Newton method with line search.

This basic iteration can exhibit quadratic convergencerigeml that the initial guess is sufficiently close to the

solution. To ensure the convergence globally, some impnevis of this basic iteration are used. The damped
Newton method with line search improves the chance of cgevere by adaptively changing the length of the

correction vector. The solution update step in the Newtothote(19) is replaced by

XM= X"~ wdX, (20)
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where the parametep is determined such that a certain error measure decreae§Tigrek, 1999), (Hron and

Turek, 2006a) for more details). The Jacobian ma@ﬁ%& can be computed by finite differences from the
residual vectoR(X)

{oR [RI(X"+ ajey) — [R] (X"~ ajey) o

- n ~

wheree;j are the unit basis vectors R' and the coefficienta; are adaptively taken according to the change in the
solution in the previous time step. Since we know the spapsittern of the Jacobian matrix in advance, which
is given by the used finite element method, this computateonle done in an efficient way so that the linear
solver remains the dominant part in terms of the CPU time (Serek, 1999), (Turek and Schmachtel, 2002) for
more details). A good candidate, at least in 2D, seems to beeet dolver for sparse systems like UMFPACK
(see (Davis and Duff, 1999)); while this choice providesyveabust linear solvers, its memory and CPU time
requirements are too high for larger systems (i.e. more #2000 unknowns). Large linear problems can be
solved by Krylov-space methods (BiCGStab, GMRes, see éBat al., PA 1994)) with suitable preconditioners.
One possibility is the ILU preconditioner with special timant of the saddle point character of our system, where
we allow certain fill-in for the zero diagonal blocks, seegBitey and Wang, 1997).

As an alternative, we also utilize a standard geometricigridtapproach based on a hierarchy of grids obtained
by successive regular refinement of a given coarse mesh. dmplete multigrid iteration is performed in the
standard defect-correction setup with the V or F-type cy@lhile a direct sparse solver (Davis and Duff, 1999)
is used for the coarse grid solution, on finer levels a fixed mem(@2 or 4) of iterations by local MPSC schemes
(Vanka-like smoother) (Turek, 1999), (Vanka, 1985), (Heard Turek, 2006a) is performed. Such iterations can
be written as

ul+t ul Swiar Swig; 07" deﬂl
Vi =V —w 5 [ Sua Swo  kBg def,
pl+1 p elemend; | By, GBjg O defl,

The inverse of the local systems (3389) can be done by hardware optimized direct solvers. THentdal
interpolation is used as the prolongation oper&uiith its transposed operator used as the restridtienP' (see
(Hron et al., 2002), (Turek, 1999) for more details).

4 Problem description

In the following, we consider the numerical simulation oésjal problems encountered in the area of cardiovas-
cular hemodynamics, namely flow interaction with thick-dldeformable material, which can become a useful
tool for deeper understanding of the onset of diseases dfuthean circulatory system, as for example blood cell
and intimal damages in stenosis, aneurysm rupture, ei@tuaftthe new surgery techniques of heart, arteries and
veins (see (Appanaboyina et al., 2008)pkiner et al., 2008) (Valencia et al., 2008) and therein ditedature).

In this contribution, prototypical studies are performedtrain aneurysm. The word ‘aneurysm’ comes from the
latin wordaneurysmavhich means dilatation. Aneurysm is a local dilatation ie tall of a blood vessel, usually
an artery, due to a defect, disease or injury. Typicallyhasaneurysm enlarges, the arterial wall becomes thinner
and eventually leaks or ruptures, causing subarachnoiditeage (SAH) (bleeding into brain fluid) or formation

of a blood clot within the brain. In the case of a vessel ruptthiere is a hemorrhage, and when an artery ruptures,
then the hemorrhage is more rapid and more intense. Inesténe wall thickness can be up to 30% of the diameter
and its local thickening can lead to the creation of an argurso that the aim of numerical simulations is to relate
the aneurysm state (unrupture or rupture) with wall presswall deformation and effective wall stress. Such a
relationship would provide information for the diagnosigldareatment of unrupture and rupture of an aneurysm
by elucidating the risk of bleeding or rebleeding, respetyi

In order to use the proposed numerical methods for aneurgsnotlynamics, simplified two-dimensional exam-
ples, which however include the interaction of the flow with tleformable material, are considered. Flow through
a deformable vein with elastic walls of a brain aneurysmrnsusated to analyse qualitatively the described meth-
ods; here, the flow is driven by prescribing the flow velocityree inflow part of the boundary while the elastic
part of the boundary is either fixed or stress-free. Both @fidke walls are fixed at the inflow and outflow, and
the flow is driven by a periodical change of the inflow at thé éefd.
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4.1 Geometry of the problem

For convenience, the geometry of the fluid domain under denation is currently based on 2D models (see Fig.
3) which allows us to concentrate on the detailed qualiagivaluation of our approach based on the described
monolithic ALE formulation. The underlying constructioftbe (2D) shape of the aneurysm can be explained as
follows:

e The bent blood vessel is approximated by quarter circlesratthe origin.
e The innermost circle has the radiumBy the next has®m and the last one hasZdmm

e This results in one rigid inner wall and an elastic wall beaw@mm and 5mmof thickness ®5mm
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Figure 3: Left: Schematic drawing of the measurement sectMiddle: Mesh without stents (776 elements).
Right: Mesh with stents (1431 elements) which are part okthmulations.

The aneurysm shape is approximated by two arcs and linesécting the arcs tangentially. The midpoints of
the arcs are the same (-6.75; 6), they have the radilB5hmand 125mm They are intersected tangentially by
lines at angular value 1.3 radians. This results in a watktinéss of QL25mmfor the elastic aneurysm walls (see
Fig. 3). The examined stents are of circular shape, placékdeoneck of the aneurysm, and we use three, resp., five
stents (simplified ‘circles’ in 2D as cutplanes from 3D coufa@fions) of different size and position. The stents
also consist of a grid, immersed in the blood flow, which isated at the inlet of the aneurysm so that in future
elastic deformations of the stents can be included, tooesmreal life, the stent is a medical device which consists
of a wire metal wire tube. Stents are typically used to ke¢grias open and are located on the vessel wall while
this stent is immersed in the blood flow (Fig. 3). The purpdsthis device is to reduce the flux into and within
the aneurysm in order to occlude it by a clot or rupture. Treuaysm is then intersected with the blood vessel and
all missing angular values and intersection points can bergiéned.

4.2 Boundary and initial conditions

The (steady) velocity profile, to flow from the right to thetlpart of the channel, is defined as parabolic inflow,
namely _

v2(0.y) =U(y—6)(y—8). (22)
Correspondingly, the pulsatile inflow profile for the norste tests for which peak systole and diastole occur for
At = 0.25s andAt = 0.75srespectively, is prescribed as

VP(t,0,y) = vP(0,y)(1+ 0.75sin(27t)). (23)

The natural outflow condition at the lower left part effeetiv prescribes some reference value for the pressure
variable p, herep = 0. While this value could be arbitrarily set in the incompiilescase, in the case of a
compressible structure this might have influence onto tresstand consequently the deformation of the solid.
The no-slip condition is prescribed for the fluid on the other boundamtgya.e. top and bottom wall, stents and
fluid-structure interface.
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5 Numerical results

The newtonian fluid used in the tests has a densfty= 1.035x 10 %kg/mn? and a kinematic viscosity? =
3.38mn?/swhich is similar to the properties of blood. If we prescribe tnflow speed) = —50mnys, this results

in a Reynolds numbdRe~ 120 based on the prescribed peak systole inflow velocity badvidth of the veins
which is 2nmsuch that the resulting flow is within the laminar region. dpaeter values for the elastic vein in
the described model are as follows: The density of the uplpstie wall ispS = 1.12 x 10-%kg/mn?, solid shear
modulus isu® = 42.85kg/mmg, Poisson ratio iw’P = 0.4, Young modulus i€ = 12kN/mn?. As described
before, the constitutive relations used for the materiedstlae incompressible Newtonian model (2) for the fluid
and a hyperelastic neo-Hookean material for the solid. €hace includes most of the typical difficulties the
numerical method has to deal with, namely the incomprdggibind significant deformations.

From a medical point of view, the use of stents provides aniefft treatment for managing the difficult entity of
intracranial aneurysms. Here, the thickness of the ansuwyall is attenuated and the aneurysm hemodynamics
changes significantly. Since the purpose of this deviceésmtrol the flux within the aneurysm in order to occlude
it by a clot or rupture, the resulting flow behavior into andhin the aneurysm is the main objective, particularly
in view of the different stent geometries. Therefore, weidiett for the 2D studies to locate the (2D parts of the)
stents only in direct connection to the aneurysm.

Comparing our studies with the CFD literature (see (Feraardal., 2008), (Appanaboyina et al., 2008), (Valencia
et al., 2008), (Torri et al., 2007a), (Torri et al., 2007b¥gyveral research groups focus on CFD simulations with
realistic 3D geometries, but typically assuming rigid walh contrast, we concentrate on the complex interaction
between elastic deformations and flow perturbations indiumethe stents. At the moment, we are only able
to perform these simulations in 2D, however, with theseistudve should be able to analyse qualitatively the
influence of geometrical details onto the elastic materéavior, particularly in view of more complex blood

models and constitutive equations for the structure. Tbegethe aims of our studies can be described as follows:

1. What is the influence of the elasticity of the walls onto the/fbehavior inside of the aneurysm, particularly
w.r.t. the resulting shape of the aneurysm?

2. What is the influence of the geometrical details of the (2B)ts, that means shape, size, position, onto the
flow behavior into and inside of the aneurysm?

3. Do both aspects, small-scale geometrical details asage#llastic fluid-structure interaction, have to be
considered simultaneously or is one of them negligible Bt frder approximation?

4. Are modern numerical methods and corresponding CFD atinuk tools able to simulate qualitatively the
multiphysics behavior of such biomedical configurations?

In the following, we show some corresponding results fordascribed prototypical aneurysm geometry, first for
the steady state inflow profile, followed by nonsteady test#he pulsatile inflow, both with rigid and elastic walls,
respectively.

5.1 Steady configurations

Due to the given inflow profile, which is not time-dependenij due to the low Re numbers, the flow behaviour
leads to a steady state which only depends on the elastiaitihe shape of the stents. Moreover, for the following
simulations, we only treat the aneurysm wall as elasticcatre. Then, the aneurysm undergoes some slight
deformations which can hardly be seen in the following figutdowever they result in a different volume of the
flow domain (see Fig. 6) and lead to a significantly differectl flow behaviour since the spacing between stents
and elastic walls may change (see the subsequent colorgsgtu
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Figure 4: Deformed mesh for steady configuration withountstewith elastic wall (left). Mesh for rigid wall
(right).

i
Y

1Y

i
St
[ty
'
3
!
it

T
)

ori
T

5
TR
““‘.‘“"\‘
e

o
()
et
Staasiie
AT
Fiasisty
pres
“‘
i

)
3
2
v
T
v
e
i
AT
T

3
i

T

ey

A
2%
e

5
i

eaey
u
=50

S
S
B

it

5

ul

&

5
1
T
&5
ol
e
P
L

LR
e
<

!
fa

Figure 5: Deformed mesh for steady configuration with steditgents (left) and 5 stents (right).
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Figure 6: Resulting volume of the fluid domain for differepndigurations.

In the following pictures, we visualize the different flowHaviour by coloring due the velocity magnitude and by
showing corresponding vector plots inside of the aneuryanticularly the influence of the number of stents onto

the complete fluid flow through the channel including the aygm can be clearly seen.
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Figure 7: Rigid wall without stents.
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Figure 8: Elastic aneurysm wall without stents.
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Figure 9: Elastic aneurysm wall with 3 stents.
Cells Vect Mag Cells Vect Mag
503 16
I:45.3 14
[ — 12
— 332
— 302 |-
25.2 8
20.1 8
— 131
.
101
5.03 2
1] o

Figure 10: Elastic aneurysm wall with 5 stents.
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Summarizing these results for steady inflow, the simulatiirow that the stent implantation across the neck of the
aneurysm prevents blood penetration into the aneurysnuiuridoreover, the elastic geometrical deformation of
the wall is slightly reduced by implanting the stents whiile tocal flow behaviour inside of the aneurysm is more
significantly influenced by the elastic properties of thesowtall, particularly due to different width between stents
and walls of the aneurysm. In the next section, we will coaisitle more realistic behaviour of flow configurations
with time-dependent pulsatile inflow which will be analyzied the case of elastic behaviour of the aneurysm
walls.

5.2 Pulsatile configurations

For the following pulsatile test case, we have taken agaratieurysm part as elastic while the other parts of the
walls belonging to the channel are rigid. First of all, westagain (see Fig. 11) the resulting volume of the flow
domain for 5, 3 and no stents. In all cases, the oscillatifgbieur due to the pulsative inflow is visible which
also leads to different volume sizes. Looking carefullyret tesulting flow behaviour, we see global differences
w.r.t. the channel flow near the aneurysm, namely due to ffereint flow rate into the aneurysm, and significant
local differences inside of the aneurysm.
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Figure 11: Volume of the domain with rigid and elastic bebaviof the aneurysm wall.
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Figure 12: Snapshot for the magnitude of velocity for confidions with no, 3 and 5 stents.
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Figure 14: Left column: no stent. Middle column: 3 stentgyRicolumn: 5 stents. Figures demonstrate the local
behaviour of the fluid flow inside of the aneurysm during ondey

227



6 Summary and future developments

We presented a monolithic ALE formulation of fluid-struaunteraction problems suitable for applications with
finite deformations of the structure and laminar viscous $loparticularly arising in biomechanics. The corre-
sponding discrete nonlinear systems result from the fidément discretization by using the high ordgsP;
FEM pair which are solved monolithically via discrete Newiteration and special Krylov-multigrid approaches.
While we restricted in the presented studies to the simplifiese of newtonian fluids and small deformations,
the used numerical components allow the system to be couyptadcadditional models of chemical and electric
activation of the active response of the biological matersawvell as power law models used to describe the shear
thinning property of blood. Further extension to viscottasodels and coupling with mixture based models for
soft tissues together with chemical and electric proceasesd allow to perform more realistic simulations for
real applications.

In this contribution, we applied the presented numericettéques to fluid-structure interaction problems which
examine prototypically the influence of endovascular si@pilantation onto aneurysm hemodynamics. The aim
was, first of all, to study the influence of the elasticity af thialls onto the flow behaviour inside of the aneurysm.
Moreover, different geometrical configurations of impkhstent structures have been analysed in 2D. These 2D
results are far from providing quantitative results fortsaccomplex multiphysics configuration, but they allow

a qualitative analysis w.r.t. both considered componerasely the elastic behaviour of the structural parts and
the multiscale flow behaviour due to the geometrical detdithe stents. We believe that such basic studies may
help towards the development of future ‘Virtual Flow Laborées’ which individually assist to develop personal
medical tools in an individual style.

AcknowledgmentThe authors want to express their gratitude to the GermaedRes Association (DFG), funding
the project as part of FOR493 and TRR30, the Jindrich NecateC®r Mathematical Modeling, project LC06052
financed by MSMT, and the Higher Education Commission (HEPakistan for their financial support of the
study. The present material is also based upon work kingipeded by the Homburger Forschunysferungspro-
gramm (HOMFOR) 2008.

References

Appanaboyina, S.; Mut, F.;éhner, R.; Scrivano, E.; Miranda, C.; Lylyk, P.; Putman,Cepral, J.: Computational
modelling of blood flow in side arterial branches after stenbf cerebral aneurysninternational Journal of
Computational Fluid Dynami¢2, (2008), 669—676.

Arnold, D. N.; Boffi, D.; Falk, R. S.: Approximation by quathieral finite elementVMath. Comput.71, (2002),
909-922.

Barrett, R.; Berry, M.; Chan, T. F.; Demmel, J.; Donato, JanBarra, J.; Eijkhout, V.; Pozo, R.; Romine, C.;
Van der Vorst, H.:Templates for the solution of linear systems: Building kéofor iterative methodsSIAM,
Philadelphia (PA 1994).

Boffi, D.; Gastaldi, L.: On the quadrilater@,bP; element for the stokes problemnt. J. Numer. Meth. Fluids39,
(2002), 1001-1011.

Bramley, R.; Wang, X.SPLIB: A library of iterative methods for sparse linear gmt Department of Computer
Science, Indiana University, Bloomington, IN (199f},t p: / / www. cs. i ndi ana. edu/ ft p/ brani ey/
splib.tar.gz.

Damanik, H.; Hron, J.; Ouazzi, A.; Turek, S.: A monolithic MEapproach for non-isothermal incompressible
viscous flows. InJournal of Computational Physicaccepted (2008).

Davis, T. A.; Duff, I. S.: A combined unifrontal/multifroat method for unsymmetric sparse matricBACM
Trans. Math. Software?5, (1999), 1-19.

Fernandez, M. A.; Gerbeau, J.-F.; Martin, V.: Numericaldettion of blood flows through a porous interface.
ESAIM: Mathematical Modelling and Numerical Analyl&, (2008), 961—990.

Gresho, P. M.: On the theory of semi-implicit projection huts for viscous incompressible flow and its imple-
mentation via a finite element method that also introducesaaly consistent mass matrix, part 1: Thedny.
J. Numer. Meth. Fluids11, (1990), 587-620.

228



Hron, J.; Ouazzi, A.; Turek, S.: A computational compariebtwo fem solvers for nonlinear incompressible flow.
In: E. Bansch, ed.Challenges in Scientific ComputingNCSE, pages 87-109, Springer (2002).

Hron, J.; Turek, S.:Lecture Notes in Computational Science and EngineeringidFStructure Interaction —
Modelling, Simulation, Optimizatiorspringer, ISBN 3-540-34595—7 (2006a).

Hron, J.; Turek, S.: A monolithic FEM/multigrid solver forl& formulation of fluid structure interaction with
application in biomechanics. In: H.-J. Bungartz; M. &fgh, eds.Fluid-Structure Interaction: Modelling, Sim-
ulation, OptimisationLNCSE, Springer (2006b).

Lohner, R.; Cebral, J.; Appanaboyina, S.: Parabolic regassoundary gradient€ommunications in Numerical
Methods in Engineering24, (2008), 1611-1615.

Rannacher, R.; Turek, S.: A simple nonconforming quadhikdtstokes elemenNumer. Methods Partial Differ-
ential Equations.8, (1992), 97-111.

Razzaq, M.: Numerical techniques for solving fluid-structure intefant problems with applications to bio-
engineering PhD Thesis, TU Dortmund, to appear (2009).

Razzag, M.; Hron, J.; Turek, S.: Numerical simulation of ilaan incompressible fluid-structure interaction for
elastic material with point constraintst. IAdvances in Mathematical Fluid Mechancis-Dedicated tov@rmi
paolo Galdi on the Occasion of his 60th Birthd&pringer, submitted (2008).

Tezduyar, T.; Sathe, S.; Cragin, T.; Nanna, B.; Conklin, Bausewang, J.; Schwaab, M.: Modeling of fluid
structure interactions with the space time finite elemeAtserial fluid mechanicsinternational Journal for
Numerical Methods in Fluid$4, (2007), 901-922.

Tezduyar, T.; Sathe, S.; Schwaab, M.; Conklin, B.: Artefiiald mechanics modeling with the stabilized space
time fluid structure interaction techniquaternational Journal for Numerical Methods in Fluids7, (2008),
601-629.

Torri, R.; Oshima, M.; Kobayashi, T.; Takagi, K.; Tezduyar, Influence of wall elasticity in patient-specific
hemodynamic simulation€omputers and Fluids36, (2007a), 160—168.

Torri, R.; Oshima, M.; Kobayashi, T.; Takagi, K.; Tezduy&r, Numerical investigation of the effect of hyperten-
sive blood pressure on cerebral aneurysm dependence dfebean the aneurysm shagaternational Journal
for Numerical Methods in Fluid$4, (2007b), 995-1009.

Turek, S.: Efficient Solvers for Incompressible Flow Problems: An Alhoic and Computational Approach
Springer-Verlag (1999).

Turek, S.; Rivkind, L.; Hron, J.; Glowinski, R.: Numericalusly of a modified time-steeping theta-scheme for
incompressible flow simulationgournal of Scientific Computin@8, (2006), 533-547.

Turek, S.; Schmachtel, R.: Fully coupled and operatottismi approaches for natural convection flows in enclo-
sureslnternational Journal for Numerical Methods in Fluid40, (2002), 1109-1119.

Valencia, A.; Ladermann, D.; Rivera, R.; Bravo, E.; Galudz, Blood flow dynamics and fluid—structure interac-
tion in patient -specific bifurcating cerebral aneurysmternational Journal for Numerical Methods in Fluids
58, (2008), 1081-1100.

Vanka, S.: Implicit multigrid solutions of Navier-Stokeguations in primitive variablesl. of Comp. Phys65,
(1985), 138-158.

Address:M. Razzaq (corresponding author), S. Turek, and J. F. Aédkggewandte Mathematik und Numerik, (LS
1), TU Dortmund, Vogelpothsweg 87, D-44227, Dortmund r@any. it azzag@rat h. t u- dor t nund. de)

J. Hron, Institute of Mathematics, Charles University,de, Czech Republic.

F. Weichert, Department of Computer Graphics, TU Dortm@ermany.

I. Q. Grunwald, C. Roth, Department of Neuroradiology, M.givar, Department of Pathology,

Saar State University Medical School, Homburg Saar, Geyman

B. F. Romeike, Department of Neuropathology, Friedrichiliar University Jena, Germany.

229



230



Fluid-Structure Interaction.
Theory, Numerics and Applications
pp. 231- 252
Herrsching am Ammersee, 29.9.-1.10.2008

Multiscale Sequentially-Coupled Arterial Fluid—Structure Inter action
(SCAFSI) Technique

Tayfun E. Tezduyar, Kenji Takizawa and Jason Christopher

We present the multiscale versions and extensions of theeSgajly-Coupled Arterial Fluid—Structure Interac-
tion (SCAFSI) technique. The SCAFSI technique was intexdias an approximate FSI approach in arterial fluid
mechanics. It is based on the assumption that the arterifrd@ation during a cardiac cycle is driven mostly by
the blood pressure. First we compute a “reference” artedaformation as a function of time, driven only by the
blood pressure profile of the cardiac cycle. Then we compwsegaience of updates involving mesh motion, fluid
dynamics calculations, and recomputing the arterial defation. Although the SCAFSI technique was developed
and tested in conjunction with the stabilized space—timgESTFSI) technique, it can also be used in conjunction
with other moving-mesh FSI modeling approaches. The SSEEEBhique is based on the Deforming-Spatial-
Domain/Stabilized Space—Time (DSD/SST) formulation asdpplemented with a number of special techniques
developed for arterial FSI. These include a recipe for p@&-Eomputations that improve the convergence of the
FSI computations, using an estimated zero-pressure attgeiometry, layers of refined fluid mechanics mesh near
the arterial walls, and a special mapping technique for sfy&tg the velocity profile at an inflow boundary with
non-circular shape. The SCAFSI technique provides a coatipaglly more economical alternative to the fully
coupled FSI approach in arterial fluid mechanics. It alsorgs additional flexibility, such as being able to carry
out the computations in a spatially or temporally multiscédshion. In the test computations we report here for
the spatially multiscale versions and extensions of the 8T Aechnique, we focus on a patient-specific middle
cerebral artery segment with aneurysm, where the artergrgetry is based on computed tomography images.
The arterial structure is modeled with the continuum elennegide of hyperelastic (Fung) material.

1 Introduction

We are seeing more research emphasis on computation aahbftigid—structure interaction (FSI) problems (see,
for example, Torii et al. (2004); Gerbeau et al. (2005); iTetial. (2006a,b); Bazilevs et al. (2006); Torii et al.
(2007a); Tezduyar et al. (2007b); Torii et al. (2007b); Tem=t et al. (2008); Bazilevs et al. (2008); Torii et al.
(2008); Tezduyar et al. (July 2008); Torii et al. (July 2008)Vhile an increased emphasis on biomechanics re-
search is part of the reason, it is also because there hasrhe#memphasis on FSI modeling in general (see, for
example, Tezduyar et al. (1993, 1994); Mittal and Tezdu$804, 1995); Johnson and Tezduyar (1999); Kalro
and Tezduyar (2000); Stein et al. (2000); Tezduyar and O$20¢ ); Ohayon (2001); Tezduyar et al. (2004); Torii
et al. (2004); van Brummelen and de Borst (2005); Michlerle(2005); Gerbeau et al. (2005); Tezduyar et al.
(2006a,b); Torii et al. (2006a); Tezduyar et al. (2006c);iiTet al. (2006b); Dettmer and Peric (2006); Bazilevs
et al. (2006); Khurram and Masud (2006); Kuttler et al. (20Q6hner et al. (2006); Bletzinger et al. (2006); Torii
et al. (2007a); Masud et al. (2007); Sawada and Hisada (20d) et al. (2007); Tezduyar and Sathe (2007); Tez-
duyar et al. (2007b); Torii et al. (2007b); Tezduyar et aQ(@); Bazilevs et al. (2008); Kuttler and Wall (2008);
Dettmer and Peric (2008)). The Deforming-Spatial-Donttabilized Space—Time (DSD/SST) formulation Tez-
duyar (1992); Tezduyar et al. (1992a,c); Tezduyar (2003 wioduced in 1991 as a general-purpose interface-
tracking (i.e. moving-mesh) technique for simulation ofiflproblems with moving boundaries or interfaces, in-
cluding FSI. The stabilization components used are thea8tiiae-Upwind/Petrov-Galerkin (SUPG) Hughes and
Brooks (1979); Brooks and Hughes (1982) and Pressureli@iagiPetrov-Galerkin (PSPG) Tezduyar (1992);
Tezduyar et al. (1992d) methods. An earlier version of thesgure stabilization, for Stokes flows, was intro-
duced in Hughes et al. (1986). The DSD/SST formulation, ttegrewith the mesh update methods Tezduyar et al.
(1992b); Johnson and Tezduyar (1994); Tezduyar (2001)ale®e in conjunction with the DSD/SST formulation
and block-iterative coupling Tezduyar (2004) (see Tezdeyal. (2006a,b); Tezduyar and Sathe (2007) for the
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terminology), has been the core technology used in thei@rtes$| computations reported by Torii et al. Torii et al.
(2004, 2006a,b, 2007a,b, 2008, July 2008) for patientipémage-based geometries. The cases studied in these
articles by Torii et al. were almost all for middle cerebrdbay segments with aneurysm, and the geometries were
constructed from computed tomography images.

The stabilized space—time FSI (SSTFSI) technique wasduotred recently in Tezduyar and Sathe (2007). It is
based on the new-generation DSD/SST formulations, whiate &kso introduced in Tezduyar and Sathe (2007).
The SSTFSI technique was extended in Tezduyar et al. (2@DAS8, July 2008) to arterial FSI, with emphasis
on arteries with aneurysm. The arterial geometries wereoappations to patient-specific image-based geome-
tries, mainly to those reported by Torii et al. A number of@pktechniques for arterial FSI were developed in
conjunction with the SSTFSI technique. These include usimgstimated zero-pressure arterial geometry Tez-
duyar et al. (2007a, 2008), a special mapping techniquepkeciying the velocity profile at an inflow boundary
with non-circular shape, using layers of refined fluid meatemesh near the arterial walls Tezduyar et al. (July
2008), a recipe for pre-FSI computations that improve thevemence of the FSI computations Tezduyar et al.
(2007b, 2008), and the Sequentially-Coupled Arterial ESIAFSI) technique Tezduyar et al. (2007¢c, 2008, July
2008) The need for an estimated zero-pressure arterial gepis based on recognizing that the patient-specific
image-based geometries correspond to time-averaged plesdure values. With the special mapping technique
for inflow boundaries with non-circular shapes, we can dpabe velocity profiles in a way that is somewhat
consistent with a preferred profile, such as a paraboliclprofi Womersley solution Womersley (1955). With
the explicitly-contolled mesh refinement near the artesialls, we can increase the accuracy in computing the
wall shear stress. The recipe for pre-FSI computations sed@n the assumption that the arterial deformation
during a cardiac cycle is driven mostly by the blood pressiiifee SCAFSI technique, which is an approximate
FSI approach in arterial fluid mechanics, is also based dradsmption.

The SCAFSI technique was introduced in Tezduyar et al. (2020F08), where the technique was in early stages
of its development, the description was rather cursory,thadest computations were limited. A more extensive
description of the SCAFSI technique was provided in Tezdeyal. (July 2008), together with a wider set of test
computations. The test computations were for the abdoraioidic and cerebral aneurysms, and the arterial ge-
ometries used in the computations were close approxinstmpatient-specific image-based data. The multiscale
versions and extensions of the SCAFSI technique were int@diin Tezduyar et al. (July 2008), and the test com-
putations were presented for the temporally multiscalsigar using different time step sizes for the structural and
fluid mechanics parts. In the spatially multiscale versiand extensions proposed in Tezduyar et al. (July 2008),
fluid mechanics meshes with different refinement levels aelat different stages of the FSI computation. We
use a relatively coarser mesh at the early stages and rabertgghly-refined mesh for the stage where we plan
to do the high-accuracy fluid mechanics computations, sstheawall shear stress computation. In this paper we
present the test computations we have recently carried ibltthae spatially multiscale versions and extensions.
We use actual patient-specific image-based data. Spelyifiaa focus on the bifurcating middle cerebral artery
segment of a 67 year-old female with aneurysm, which wasrteghan Torii et al. (2007b, 2008, July 2008). The
structural modeling for the arteries is based on the continelement made of hyperelastic (Fung) material. In
this paper we also evaluate the performances of differgatstyf structural mechanics meshes.

For the governing equations, the SSTFSI technique, theeptroé estimated zero-pressure arterial geometry, and
the recipe for pre-FSI computation, we refer the reader twliligar and Sathe (2007); Tezduyar et al. (2007b,

2008). The SCAFSI algorithm is described in Section 2, asdnitiltiscale versions and extensions in Section 3.
The special mapping technique is described in Section 4 efaénonditions for the test computations are given

in Section 5, and the test results are presented in Sectitm $ection 7, we extend the multiscale sequentially-

coupled FSI technique from arterial fluid mechanics to othesses of applications. The concluding remarks are
given in Section 8.

2 SCAFSI Algorithm

The SCAFSI stage of the computations is preceded by a seedf $r computation steps., which can be found
in Tezduyar et al. (2007b, 2008). In the SCAFSI techniqust fie compute a “reference” (i.e. “base”) arterial
deformation as a function of time, driven only by the blooégsure, which is given as a function of time by
specifying the pressure profile in a cardiac cycle. Then wepde a sequence of updates involving mesh motion,
fluid dynamics calculations, and recomputing the arterédibdnation. The SCAFSI steps are described below.
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Step 1

Compute the “reference” arterial displacement:
(Yr)n n=1,2,---my,

Driven only by the blood pressure:pg(t)

Predictor options in moving from time levelto n + 1:

((YR)nJrl)O = (YR)n (1)
((YR)n+1)0 = 2(Yg)n — (YR)n—1 (2)
(YR)ns1)" = 3(YR)n—3(Yr)n-1+ (YR)n 2 3)
(Y)os1)? = (V) t OB = Rmt 0y b)) (4)

Pr(tn) — PR(tn—1)

Nodal values ofpgr(t,): (PRr)x

Nodal values of the interface stress(Hg),,

Step 2
Compute the “reference” mesh motion:
(VR)n n=1,2,ny

Predictor options:

(VR)as1)” = 0 ()
((VR)71,+1)0 - (VR)n (6)
(VR)nt1)? = 2(VR)n — (VR)n-1 @)
(VR)ns1)" = 3(VR)n —3(VR)n-1 + (VR)n_2 (8)
(VRdor)® = (Vay+ VB = VRoL oy () ©)

pR(tn) - pR(tn—l)

Step 3

For zero-stress conditions at the outflow boundaries, coerthe time-dependent flow field and the corresponding
interface stress: (H;),, n=1,2,---ny

Predictor options:

(P)nt1)’ = (P1)n (10)
(P)nt1)’ = 2(P1)n— (P1)n1 (11)
(P)nt1)’ = 3(P1)n—3(P1)no1 + (P1)no (12)
()’ = P+ PPt 17, 13)

Ultn) — Ultn-1)
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Here U(t) is the cross-sectional average of the inflow velocity. Toaerde the stability of the computation in
Step 4, smoothe(H), ),, by time averaging:

(Hy)p —woHy)n + w1 (Hi)pe1r + Hi)p—1) + wro (Hi)ng2 + (Hi)n—2)
+  wis (Hi)nts + (Hi)n—3) + wia (H1)ppa + (Hi)p—a) (14)

Options for time-averaging weights:

1

(w07w:|:17w:t27w:t37w:t4) = §(372>17070) (15)
1

(wOawil7Wi27wi3>wﬁ:4) = E(473527170) (16)
1

(wo, W1, Wra, We3, Wra) = %(574,3,27 1) (17)

Now the total interface stress:(Hg),, + (Hi),

Step 4

Compute the updated arterial displacement:
Y, n=12--ny

Predictor options:

2Y, - Y,y (18)
(YR)nt1 + (Y1)n41)° (19)

AA
< =
3 3
;¥
— —
S~—
o (=)
([

Displacement increment: (Y1), = Y, — (Yg)»

Predictor options for the displacement increment:

(YD)ns1)! = (Yi)n (20)

(YD)nt1)! = 2(Y1)n — (Y1)no1 (21)

(YD)ns1)" = 3(Y1)n = 3(Y1)no1 + (Y1)n—2 (22)
Step 5

Compute the updated mesh motion:
V., n=1,2,---ng

Predictor options:

(V)" = 0 (23)
(Vn-‘rl)o = (VR)n—i-l + ((Vl)n+1)0 (24)
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Mesh-motion increment: (V1), =V, — (Vg)n

Predictor options for the mesh-motion increment:

(Vi)ns1)’ = 0 (25)

((V1)71,+1)0 = (Vl)n (26)

(VD)n41)? = 2(Vi)n — (Vi)nt (27)

((Vl)n-‘rl)o = B(Vl)n - 3(V1)n—1 + (Vl)n—Q (28)
Step 6

For zero-stress conditions at the outflow boundaries, coerthe time-dependent flow field and the corresponding
interface stress: (Hy),, n=1,2,---ny

Predictor options:

((P2)r1,+1)0 = (P2)n (29)

(P2)nt1)’ = 2(P2)n — (P2)n (30)

(P2)ns1)” = 3(P2)n —3(P2)n—1+ (P2)ns (31)

(Po)ui)’ = (Po)+ 2Pt sy ) pygr,) (32)
n+1 2t G = Ut 1) n+1 N

((P2)n+1)0 = (Pi)ntm1 (33)

Now the total interface stress:(Hg),, + (H2),

The SCAFSI algorithm described above is based on the asgnmpiat in computations with more than one
outflow boundary, we specify the same traction conditionafidr Versions of the SCAFSI technique that do not
rely on that assumption were proposed in Tezduyar et aly @208). These versions are applicable even if the
outflow traction conditions are not specified explicitly bo¢ modeled as a function of the flow rate at each outflow
boundary. We refer the interested reader to Tezduyar ehdl, 2008).

Remark 1 Clearly, the SCAFSI technique result in savings in compliriee compared to the (fully) coupled arte-
rial FSI (CAFSI) technique. These savings come from varaspects of SCAFSI, which can be found in Tezduyar
et al. (July 2008).

Remark 2 The predictors given by Egs. (30) and (31) were written irdligar et al. (July 2008) with a subscript
typo in each equation. Although the typos were obvious, weeaslao point that out here.

Remark 3 Due to a combination of publisher’s typesetting errors arigimierpretation of what has been used in
the computations, the predictor options identified in Tgzdet al. (July 2008) as those used in the test computa-
tions were not the ones that were actually used. The pradigitions used, in reference to the equation numbers
of this paper, were those given by Egs. (2), (5), (10), (I8) &nd (33). We wanted to correct that here.

3 Multiscale Versions and Extensions of the SCAFSI Technique

Temporally multiscale. A temporally multiscale version of the SCAFSI technique wasposed in Tezduyar

et al. (July 2008), where different time step sizes are usethé structural and fluid mechanics parts. This version
was tested in Tezduyar et al. (July 2008) on FSI modeling ofddlm cerebral artery segment with aneurysm.
The arterial geometry was a close approximation to the pasigecific image-based geometry used in Torii et al.
(2007a). The geometry used in Torii et al. (2007a) was etddaftom the computed tomography model of an artery
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segment from a 57 year-old male. The arterial wall was mabelth the continuum element made of hyperelastic
(Fung) material. The mesh for the artery had four-nodetietteal elements, with two elements across the arterial
wall. The time step size for the structural mechanics pasttwéce that of the fluid mechanics part. The multiscale
SCAFSI computation resulted in good mass balance, and thdiéitdl obtained looked essentially the same as the
flow field from the CAFSI computation. Time histories of théeaial volume and (spatially-averaged) interface
stress obtained with the multiscale SCAFSI technique wkse ery close to those obtained with the CAFSI
technique.

Spatially multiscale. Spatially multiscale versions and extensions of SCAFShrie&pes were also proposed
in Tezduyar et al. (July 2008), where the fluid mechanics mestith different refinement levels are used at
different stages of the SCAFSI computation. In the versilied SCAFSI M1SC, a more refined fluid mechanics
mesh is used at SCAFSI Steps 5 and 6 than the mesh used at &tep8.2WVith this approach, we can increase the
accuracy of the fluid mechanics solution at the final stagd,ljafore we calculate the fluid mechanics quantities
that we are interested in, such as the wall shear stress. By asrelatively coarser fluid mechanics mesh at
Steps 2 and 3, we avoid incurring high computational costaates where a highly-refined fluid mechanics mesh
is not needed for accurately computing the arterial shagefaaction of time. In the extension called SCAFSI
M1C, we first compute the arterial shape with the CAFSI teghaiand a relatively coarser fluid mechanics mesh,
followed by mesh motion and fluid mechanics computationk @itnore refined mesh. Again, by using a relatively
coarser mesh at the stage where a highly-refined fluid mechargsh is not needed, we reserve our computational
effort for the final stage, where we do need a highly-refineid floechanics mesh to calculate the fluid mechanics
quantities such as the wall shear stress. We present tleotaputations we have recently carried with the SCAFSI
M1SC and SCAFSI M1C techniques in Section 6.

4 Special Technigues

Time-integration point for the incompressibility constraint. For integration of the incompressibility-constraint

term over each space—time slab, we propose to use only @ggatipn point in time, shifted to the upper time level

of the slab. All other terms in the space—time finite elemenmiilation would be integrated by using Gaussian
quadrature points in time, with the number of points set tatewier we intended to have for the overall formulation.
With this technique, for any time level, as we move to leveb + 1, the incompressibility constraint equation

focuses on the velocity fielth”), ;.

Special mapping.Some inflow profiles require the inlet to be circular, howetee inlets in many of the geome-
tries we encounter are not circular. Furthermore, as tleeyadeforms, the inlet shape changes. Thus, even if the
inlet is initially circular, it will not remain so once defored. To address this requirement, we have developed
a special mapping technique to map the inflow boundaries fromcircular shapes to circular shapes. Here the
actual inflow profileU(z, t), wherez is the coordinate vector in the inflow plane, is obtained bypiag from

a preferred inflow profilé/¥ (r, ¢), wherer is the circular coordinate. The variabtds defined ab < r < g,
whererg is the boundary radius. The method involves the following sieps:

1. Mapz tor:

ezl
Tz = zall + 1z — zcl

r(2)

B, (34)

where subscripts “C” and “B” indicate the centroid and theselst boundary point Using this mapping, we
first calculate a “trial” velocity:

UT(z,t) =U"(r,1), (35)

where the superscript “T” stands for “trial”.

2. Adjust the velocity:

Q) T
U(zat) = U (Z,t), (36)
Jrew U (2, 8)dD
where() is the flow rate and'nry, is the discretized inflow area; i.e. the integration are&dfinite element
space.
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This technique is applicable to any preferred inflow profibeJuding the Womersley profile Womersley (1955),
as described in the next section.

5 General Conditions for the Test Computations

All computations were carried out in a parallel computingisonment. All computations were completed with-
out any remeshing. The fully-discretized, coupled fluid atrdctural mechanics and mesh-moving equations are
solved with the quasi-direct coupling technique (see $ad&i2 in Tezduyar and Sathe (2007)). In solving the lin-
ear equation systems involved at every nonlinear iteratt@hGMRES search technique Saad and Schultz (1986)
is used with a diagonal preconditioner. The:6—S—FSI sequence is used in the computations (see Section 6.2
in Tezduyar et al. (2008)). This is slightly different frotmet S—F—FSI sequence described in Tezduyar et al.
(2008) in that it includes an extra structural mechanicg stieich incorporates the traction obtained from the fluid
computation. This helps to match the structure mesh to tlie $hiution and provides a better starting point for
the FSI computations. In the spatially multiscale SCAFShpatations, Step 1-6 predictor options used are those
given by Egs. (2), (5), (10), (18), (23) and (29). We note thatpressure predictor option used at Step 6 is dif-
ferent than the one used in the SCAFSI computations reportédzduyar et al. (July 2008). This is because in
the spatially multiscale SCAFSI computations the fluid natbs mesh at (Step 5 and) Step 6 is different than
the fluid mechanics mesh used at the earlier stages, andictteetiee pressure values obtained at the earlier stages
cannot be directly used as pressure predictors at Step 6tifibeaveraging weights are those given by Eq. (17).
The time-averaging, however, is not used in the SCAFSI M1@mgdation. The predictor options we are us-
ing are relatively simple ones among those proposed. We texpect that using more sophisticated predictors
would change the results that much, since the SCAFSI remdtalready quite close to the CAFSI results. Among
the options proposed for the time-averaging weights, weusairgg the one with the largest spread. We have not
experimented with the options with narrower spread.

Fluid and structure properties. As it was done for the computations reported in Torii et a002, 2006a,b,
2007a,b), the blood is assumed to behave like a Newtoniath (feie Section 2.1 in Tezduyar et al. (2008)). The
density and kinematic viscosity are set to 1,000 Kgand 4.0<10~% m?/s. The material density of the arterial
wall is known to be close to that of the blood and thereforés£000 kg/m. The arterial wall is modeled with the
continuum element made of hyperelastic (Fung) materiaé Fing material constanf3; and D, (from Huang

et al. (2001)) are 2.644710° N/m? and 8.365, and the penalty Poisson’s ratio is 0.45. Arteriesurrounded by
tissues, and we expect those tissues to have a damping@iféoe structural dynamics of the arteries. Therefore
we add a mass-proportional damping, which also helps in veérgdhe high-frequency modes of the structural
deformation. The damping coefficiemts chosen in such a way that the structural mechanics cotgmegaemain
stable at the time-step size used. The valug v$ed in the test computations reported in this paper willibeng

in the section where we describe those test computations.

Boundary conditions. At the inflow boundary we specify the velocity profile as a flioic of time. We use a
velocity waveform which represents the cross-sectionadimam velocity as a function of time, whetg, € C

are the Fourier coefficients of the waveform. Assuming thatrhaximum velocity occurs at= 0 and that the
artery is rigid and the cross-sectional shape is a perfecieciwe can apply the Womersley Womersley (1955)
solution as follows:

2 N Vii3) — Vi (Z)43
oo a1 () ) St e ). e

Here N is the number of Fourier coefficients (we ude = 20), T is the period of the cardiac cycle) is

the Bessel functions of the first kind of order:0s the imaginary number, aridl is the Womersley parameter:
YT = rgy/(27)/(vT), andv is the kinematic viscosity. We use the special mapping tieclendescribed in
Section 4 for non-circular shapes. At the two outflow bouiedamve specify the same traction boundary condition.
The traction condition is based on a pressure profile, whisla function of time, is determined based on the flow
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rate using the Windkessel model Otto (1899). From Eq. (3@)phtain the flow rate:

Q(t) /OTB 21rUY (r, t)dr

-1
4 N Jo(TVERE) -2 (T\/Ez%) JU(TVE3) .
= w322 4 mrd Z Ay, . exp (z27rk:) , (38)
2 — Jo(YVkiz) — 1 T
al t
= Z By, exp (ZQﬂ'kT) ; (39)

k=0

whereJ; is the Bessel function of the first kind of order 1, and for tiot@al convenience we introduce another
set of coefficientsB;, € C. The pressure, based on the Windkessel model, can be wagten

t i1 T
w0y = e (-5 [ gemes (g5)drm. (@0)

whereC andR are the compliance and resistance of the distal arterialarks, andy is a constant of integration.
Substituting Eq. (39) into Eq. (40), we obtain:

p(t) = Z m]fBTk_Fl {exp (z%rk:;) — exp <_];C)] + po. (41)
T

k=0 R

After a sufficient number of periods, thep (— ) term in Eq. (41) goes t0:

T B, t

k
t) = =Y ————exp 2k~ | + po. 42
p() C’kOZQWk‘—I—RCep(Z 1) po (42)

Here% is only a profile factor, because it is a parameter which ootg an each Fourier coefficient. We qs%

to 18.2 and the other parameter%, andpy, are set in such a way that the range for the pressure profiteris

80 to 120 mm Hg for normal blood pressure. Figure 1 shows themetric flow rate and the outflow pressure
profile. On the arterial walls, we specify no-slip boundamyditions for the flow. In the structural mechanics part,
as boundary condition at the ends of the arteries, we setitmeat component of the displacement to zero, and for
one of those nodes we also set to zero the tangential disptatecomponent that needs to be specified to preclude
rigid-body motion.
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Figure 1: Volumetric flow rate and outflow pressure profilehwhe maximum value marked.

Preconditioning technique. In computations with hyperelastic materials, we do not cataphe diagonal of the
tangent stiffness matrix. Therefore, as proposed in Teadelal. (July 2008), we use a diagonal preconditioner
based on the assembly of only the element-level lumped mas&esm¢, ., but after being multiplied by a factor
that, to some extent, takes into account the material s8nThe expression for that multiplication factor can be
found in Tezduyar et al. (July 2008). We use the “SelectivaliSg” technique (see Remark 14 in Tezduyar and

Sathe (2007)) to dynamically shift the emphasis betweefiuiteand structure parts.
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6 Test Computations

The geometry of the arterial lumen is from Torii et al. (2002608, July 2008), which was extracted from the
computed tomography model of a bifurcating segment of tradhaicerebral artery of a 67 year-old female with
aneurysm. The diameter of the arterial lumen is 2.39 mm ainftev, and 1.53 and 1.73 mm at the two outflow
ends. The Womersley parameférand the period of the cardiac cycle described in Section 5, are 1.5 and
1.0 s, respectively. We use the “estimated zero-presstegadigeometry”, as described in Tezduyar et al. (20074,
2008). In estimating that geometry, the time-averagedevafithe blood pressure, obtained by averaging over a
cardiac cycle, is 92.2 mm Hg. As the zero-pressure shapesea scaled down version of the geometry used
in Torii et al. (2007b, 2008, July 2008). We try different Wedickness ratios with the zero-pressure shape until we
obtain, approximately, #0% wall-thickness ratio (relative to the diameter of the aaldumen) at the inflow. At
each iteration, the trial wall-thickness ratio is globallyiform, but the base length scales for the four “patches” ar
defined individually, with a smooth transition between th&cpes. The length scales for the inflow and two outflow
patches are the lumen diameters at those ends. The lenggH@ctne aneurysm patch is 0.6{lumen diameter

at the inflow). Figure 2 shows, for the zero-pressure corditipm, the wall thickness normalized by the wall
thickness at the inflow. The structural mechanics mesh attery consists of 8,067 nodes and 5,316 eight-node

Figure 2: Zero-pressure surface configuration colored mgttmalized wall thickness.

hexahedral elements, with 2,689 nodes and 2,658 four-naaigritateral elements on the fluid—structure interface.
Figure 3 shows the structural mechanics mesh. We have tweodaf elements across the arterial wall, which
we believe to be sufficient based on our earlier numericés iesolving the inflation of a thick-walled cylinder
slice. Those tests were carried out with 3D elements, undeepstrain conditions, and with material properties
and length and force scales similar to those we are usingftietiee arterial wall. The results were accurate even
with a single element across the arterial wall. In additiwa,report here some recent tests we carried out with the
actual arterial geometry we are focusing on in this paper.

To evaluate the performance of the structural mechanich méh two layers of elements across the arterial
wall, we tested three additional structural mechanics eesinder a prescribed traction over a cardiac cycle. The
prescribed traction comes from the “fine” mesh FSI compaotatiescribed in the later parts of this section. The
structural mechanics mesh properties are shown in Tabléaé& omly difference among the hexahedral meshes is
the number of element layers across the arterial wall. Tinattedral mesh is based on a triangular surface mesh
which is the same as the fluid interface mesh in the FSI cortipnta All meshes have the same number of nodes at
the inlet and each outlet boundary. The results for all hegedd meshes are geometrically almost identical during
the cardiac cycle, while the tetrahedral mesh results ifghtd} different geometry. When we rotate and translate
the deformed tetrahedral mesh, the geometries are verlasifeée Figure 4). The least-squares projection of the
traction from the triangular surface mesh to the quadriéteurface mesh is the likely reason behind the small
differences observed in the structure mesh deformatiohe differences are insignificant when solving for the
flow field within the artery. Since the results are geomeliicaimost identical, we provide lumen volume as a
guantitative measurement of the differences. Each mesimeglas a percentage of the volume of the hexahedral
mesh with four layers, is shown in Table 1. These volume satmain almost constant throughout a cardiac cycle.
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Figure 3: Structural mechanics mesh.

Hexahedral Tetrahedral
Number of layers 1 2 4 2
Number of nodes 5,378 | 8,067 | 13,445 9,171
Number of elements| 2,658 | 5,316 | 10,632 36,312
[ Lumen volume [ 97.6%] 99.4%[ 100% | 97.1%|

Table 1: Volume ratios for different structural mechaniasines.

We use two different fluid mechanics meshes. A “coarse” mehd®,850 nodes and 88,573 four-node tetrahedral
elements, and a “fine” mesh with 22,775 nodes and 128,813Tode tetrahedral elements. The fine mesh has four
layers of elements with higher refinement near the arterédll Whe thickness of the first layer is approximately
0.02 mm. The coarse mesh has one layer of elements with omtfdckness, and the thickness is approximately
0.2 mm. The coarse and fine meshes have the same number ofamadelements at the fluid—structure interface:
3,057 nodes and 6,052 three-node triangular elementsceFigshows the mesh at the fluid—structure interface and
the inflow plane for the coarse and fine meshes.

The computations are carried out with the SSTFSI-TIP1 tegln(see Remarks 4 and 7 in Tezduyar et al. (2008))
and the SUPG test function option WTSA (see Remark 1 in Tezdetyal. (2008)). The stabilization parameters
used are those given by Egs. (12)—(18) in Tezduyar et al8)20he damping coefficientis set to 1.5 10" s~

The time-step size is 3.333072 s. In the CAFSI computations, the number of nonlinear itenatper time step

is 6, and the number of GMRES iterations per nonlinear itemas 300 for the fluid and structural mechanics parts,
and 30 for the mesh moving part. For all six nonlinear iteraithe fluid scale is set to 1.0 and the structure scale
to 50. In the SCAFSI M1SC computation, we use at Step 2 andStiep coarse mesh, which reduces the cost of
the computations, and at Step 5 and Step 6 the fine mesh, witicases the accuracy of the flow field computed.
The number of nonlinear iterations per time step is 5 for thie finechanics part and 4 for the structural mechanics
and mesh moving parts. The number of GMRES iterations peinear iteration is 150, 50 and 30 for the fluid
mechanics, structural mechanics and mesh moving pargsectagely. In the SCAFSI M1C computation, Steps
1-4 are replaced with a CAFSI computation with the coarsenm&hke arterial shape obtained from the CAFSI
computation is used at Step 5 and Step 6 with the fine meshhén wiords, Step 4 arterial shape comes from the
reduced-cost CAFSI computation with the coarse mesh, anfirte mesh used at Step 5 and Step 6 increases the
accuracy of the flow field computed. The number of nonlineaations per time step is 5 for the fluid mechanics
part and 4 for the structural mechanics and mesh moving.pahs number of GMRES iterations per nonlinear
iteration is 150, 50 and 30 for the fluid mechanics, stru¢tmechanics and mesh moving parts, respectively.
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Figure 4: Structural mechanics computations with presdritvaction at the maximum outflow pressure. Blue
represents the hexahedral mesh with four layers and redatedi the tetrahedral mesh with two layers. The left
picture shows the original deformed geometries. The rightupe shows the geometries after the tetrahedral mesh
is rotated by).75° clockwise around an axis parallel to the inflow direction &nasislated to align the inlets.

Remark 4 In our current implementation, the nonlinear iterations foe structural mechanics and mesh moving
parts are not separable. Therefore the mesh motion can amlgomputed while computing the arterial defor-
mation. Because of that, Step 4 arterial geometry does roblig come directly from the CAFSI computation
with the coarse mesh, but it is recomputed with the interfi@sses obtained from that CAFSI computation. The
differences are very minor.

Remark 5 The fluid mechanics computation at Step 6 requires an irfiiaVv field. For SCAFSI versions that

are not spatially multiscale, this initial flow field comeseditly from Step 3. For the spatially multiscale versions
and extensions, we propose to use an initial flow field obthfream Step 3 by projection. In our current imple-

mentation, however, we do not have that projection capgbilhstead, we carry out a very brief fluid mechanics
computation to produce a divergence-free flow field. Thevinflelocity for this brief computation is the velocity
at the beginning of Step 6. The initial condition consistargssentially-zero velocity field.

We achieve good mass balance in all computations. We vériftylly comparing the rate of change for the artery
volume and the difference between the volumetric inflow amtflawv rates. Figure 6 shows the mass balance for
the CAFSI computations with the coarse and fine meshes. é&-igsihows the mass balance for the SCAFSI M1SC
and SCAFSI M1C computations. Figure 8 shows, in terms of ttexial volume, the comparisons between the
CAFSI computations with the coarse and fine meshes and thd=SCM1SC and SCAFSI M1C computations.
Figures 9 and 10 illustrate the flow field for the CAFSI compiotas with the coarse and fine meshes. The flow
fields for the SCAFSI M1SC and SCAFSI M1C computations arerggally indistinguishable from the flow field
for the CAFSI computation with the fine mesh. They are not shiere. Figures 11 and 12 illustrate the wall shear
stress for the CAFSI computations with the coarse and findeses Figures 13 and 14 illustrate the wall shear
stress for the SCAFSI M1SC and SCAFSI M1C computations. rEid® shows the time-averaged wall shear
stress for the CAFSI computations with the coarse and findneses-igure 16 shows the time-averaged wall shear
stress for the SCAFSI M1SC and SCAFSI M1C computations.efaldhows the maximum, mean and minimum
values of the wall shear stress for the CAFSI computationis thie coarse and fine meshes. Table 3 shows the

Peak Systole Time Average
Mesh | Maximum | Mean | Maximum | Mean | Minimum
Coarse 127 47 39 15 0.50
Fine 227 55 58 17 0.27

Table 2: A bifurcating middle cerebral artery segment witkarysm. Wall shear stre%&yn/ch] for the CAFSI
computations with the coarse and fine meshes. Spatial maxiend mean at the peak systole, and the spatial
maximum, mean and minimum of the time-averaged values.

maximum, mean and minimum values of the wall shear stresh&CAFSI| computation with the fine mesh and
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the SCAFSI M1SC and SCAFSI M1C computations.

Peak Systole Time Average
Computation Maximum | Mean | Maximum | Mean | Minimum
CAFSI Fine Mesh 227 55 58 17 0.27
SCAFSI M1SC 227 55 60 17 0.29
SCAFSI M1C 225 55 60 17 0.30

Table 3: A bifurcating middle cerebral artery segment witkuarysm. Wall shear stre%&yn/cmz] for the CAFSI
computation with the fine mesh and the SCAFSI M1SC and SCAFBT Momputations. Spatial maximum and
mean at the peak systole, and the spatial maximum, mean anichum of the time-averaged values.

7 Multiscale Sequentially Coupled FSI (SCFSI) Techniques

In this section we propose to extend the multiscale secalgnrtioupled FSI technique from arterial fluid mechan-
ics to other classes of applications. The underlying cotsceq! still essentially be the same as those described
in Section 3. The name, however, will be Multiscale SeqadigtiCoupled FSI (SCFSI) Technigue, which no
longer implies a functionality limited to arterial fluid meenics. Specifically, we are proposing the SCFSI M1C
technique as a way of reducing the FSI computational efféwéne we do not need it and increasing the accu-
racy of the fluid mechanics computations where we need ae;etailed flow computation. We propose to first
compute the structural deformation with the (fully) coupESI (CFSI) technique and a relatively coarser fluid
mechanics mesh, followed by mesh motion and fluid mechawicgpatations with a more refined mesh. We also
propose a time-integration version of this, where we firghgote the structural deformation with the CFSI tech-
nigue and a time-step size as small as it is need in that catiput followed by mesh motion and fluid mechanics
computations with a smaller time-step size that might beleédor more accurate, detailed flow computation.

To illustrate how the spatially multiscale SCFSI M1C tecjus works, we carry out FSI computations for 2D
flow past a flexible beam. The problem set up is shown in FiglireThe length and thickness of the beam are
2.0 m and 10.0 cm. Its density, modulus of elasticity and $twis ratio are 1.135810* kg/m?, 1.2x10" N/m?
and 0.3. At the midpoint cross-section of the beam all dispieents are set to zero. The fluid density and
kinematic viscosity are 1,000 kgArand 1.0<10~2 m?/s. The flow boundary conditions in the 2D plane are
shown in Figure 17. The inflow velocity is 1.0 m/s. Because wdhk computations with 3D FSI solvers, at
the lateral computational boundaries perpendicular tahhid direction we use slip conditions. The structure is
modeled with the geometrically nonlinear continuum elermeade of linearly elastic material (see Section 2.2.1
in Tezduyar et al. (2007b)).

The structural mechanics mesh consists of 410 nodes andidi®®n@de hexahedral elements, with 40 elements
along the beam, 4 elements across the thickness, and onerglienthe third direction. We use two different fluid
mechanics meshes. A “coarse” mesh with 8,476 nodes and2£H88node tetrahedral elements, and a “fine”
mesh with 25,536 nodes and 75,936 four-node tetrahedralesls. The fine mesh has 8 layers of elements with
higher refinement near the beam, starting with the firstrltlyiekness of 3 cm, and increasing with a factor of
1.1 from one layer to the next. The coarse mesh has 4 layeterokats with higher refinement near the beam,
and all four layers have the same thickness of 10 cm. At thd-firucture interface, the fine mesh nodes match
the structure nodes fully along the beam, and with intereélsvo structure elements at the top and bottom of
the beam. The coarse mesh nodes match the structure nogledarg the beam, with intervals of two structure
elements.

The computations are carried out using SSTFSI-TIP1 tecienjgee Remarks 4 and 7 in Tezduyar et al. (2008)),
with the SUPG test function option WTSA (see Remark 1 in Teadeay al. (2008)). The stabilization parameters
used are those given in Tezduyar et al. (2008) by Egs. (18)-a(d (19)—(20), with theg,s\, term dropped from
Eqg. (19). The time-step size is %Q0~2 s. In the CFSI computation with the coarse mesh, the numbrerdinear
iterations per time step is 4, and the number of GMRES it@natper nonlinear iteration is 120 for the fluid and
structural mechanics parts, and 60 for the mesh moving parthe first nonlinear iteration the structure scale is set
to 1.0x10~8, and back to 1.0 for the remaining iterations. In the CFS|gotation with the fine mesh, the number
of nonlinear iterations per time step is 4, and the numbedRES iterations per nonlinear iteration is 240 for the
fluid and structural mechanics parts, and 60 for the meshmgqart. For the first nonlinear iteration the structure
scale is setto 1.010~%, and back to 1.0 for the remaining iterations. In the SCFSCMmputation, the number
of nonlinear iterations per time step is 3 for the fluid medbsapart and 1 for the mesh moving part. The number
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of GMRES iterations per nonlinear iteration is 80 for thedlmechanics part and 60 for the mesh moving part. In
the CFSI computation with the fine mesh and SCFSI M1C comipatahe starting (velocity and pressure) values
for the fluid mechanics part come by a least-squares projefitom the values obtained in the CFSI computation
with the coarse mesh, followed by a one time-step computatith a very small time-step size (5<20~° s) just

to recover the divergence-free condition, followed by ‘qmere clipping” (see Tezduyar and Sathe (2007) for a
brief description of “pressure clipping”). Figure 18 showsterms of the (upper-) tip displacement of the beam,
the comparison between the CFSI computations with the eaard fine meshes. Figure 19 shows the vorticity
field for the CFSI computation with the coarse mesh. Figurst2vs the vorticity field for the CFSI computation
with the fine mesh and SCFSI M1C computation.

8 Concluding Remarks

We presented the multiscale versions and extensions ofttpecatially-Coupled Arterial Fluid—Structure Interac-
tion (SCAFSI) technique, with emphasis on the spatiallytiscihle versions and extensions. The original version
of the SCAFSI technique was introduced as an approximate@bach in arterial fluid mechanics and is based
on the assumption that the arterial deformation during diaarcycle is driven mostly by the blood pressure. In
that original version, first we compute a “reference” agkdeformation as a function of time, driven only by
the blood pressure profile of the cardiac cycle. Then we coengisequence of updates involving mesh motion,
fluid dynamics calculations, and recomputing the arterggbdmation. Although they can also be used in con-
junction with other moving-mesh FSI modeling approaches SCAFSI technique and its multiscale versions and
extensions were developed and tested in conjunction witlstdbilized space—time FSI (SSTFSI) technique. The
SSTFSI technique is based on the Deforming-Spatial-Dot&tdbilized Space-Time (DSD/SST) formulation and
is supplemented with a number of special techniques desdlfgr arterial FSI. These special techniques include
using an estimated zero-pressure arterial geometry, aaspeapping technique for specifying the velocity pro-
file at an inflow boundary with non-circular shape, using taya refined fluid mechanics mesh near the arterial
walls, and a recipe for pre-FSI computations that improeecttnvergence of the FSI computations. The SCAFSI
technique provides a computationally more economicatradtése to the fully coupled FSI approach in arterial
fluid mechanics. It also brings additional flexibility, suak being able to carry out the computations in a spa-
tially or temporally multiscale fashion. In the temporathultiscale version, we can use different time step sizes
for the structural and fluid mechanics parts. In the spatiallltiscale versions and extensions, fluid mechanics
meshes with different refinement levels are used at diffestages of the FSI computation. A relatively coarser
mesh is used at the early stages, and a more refined mesh iatubedtage where we do the high-accuracy fluid
mechanics computations, such as the wall shear stress tatiopu We presented the test computations we have
recently carried out with the spatially multiscale versi@md extensions of the SCAFSI technique. We used actual
patient-specific image-based data, where the arterial g&gns based on computed tomography images. Specif-
ically, we focused on the bifurcating middle cerebral arisegment of a 67 year-old female with aneurysm. We
modeled the arterial wall with the continuum element madeypkrelastic (Fung) material. Our test computations
show that the spatially multiscale SCAFSI technique is & edfective way of reducing the FSI computational
effort where it is not needed and increasing the accuracieofltiid mechanics computations where it is needed.
We also extended the multiscale sequentially-coupled &3irique from arterial fluid mechanics to other classes
of applications, calling it Multiscale Sequentially-Cdeg FSI (SCFSI) Technique, so that the name no longer
implies a functionality limited to arterial fluid mechanick the context of FSI computations for 2D flow past a
flexible beam, we demonstrated how the spatially multis8&€SI technique works.

ACKNOWLEDGMENT

This work was supported in part by a Seed Grant from the Gu#fSC@enter for Computational Cancer Research
funded by John & Ann Doerr Fund for Computational Biomedicitt was also supported in part by the Rice Com-
putational Research Cluster funded by NSF under Grant CAP3AD9, and a partnership between Rice University,

AMD and Cray. We are grateful to Dr. Ryo Torii (Imperial Cak) and Professor Marie Oshima (University of
Tokyo) for providing the arterial geometry and inflow veliyailata used in the computations.

References

Bazilevs, Y.; Calo, V.; Hughes, T.; Zhang, Y.: Isogeomefhicd—structure interaction: theory, algorithms, and
computationsComputational Mechani¢€3, (2008), 3-37.

243



Bazilevs, Y.; Calo, V.; Zhang, Y.; Hughes, T.: Isogeomethitd—structure interaction analysis with applications
to arterial blood flowComputational Mechani¢c88, (2006), 310-322.

Bletzinger, K.-U.; Wuchner, R.; Kupzok, A.: Algorithmiceatment of shells and free form-membranes in FSI.
In: H.-J. Bungartz; M. Schafer, ed$:luid—Structure Interactionvol. 53 of Lecture Notes in Computational
Science and Engineeringages 336—355, Springer (2006).

Brooks, A.; Hughes, T.: Streamline upwind/Petrov-Galerdrmulations for convection dominated flows with
particular emphasis on the incompressible Navier-Stogesteons.Computer Methods in Applied Mechanics
and Engineering32, (1982), 199-259.

Dettmer, W.; Peric, D.: A computational framework for flisttucture interaction: Finite element formulation and
applicationsComputer Methods in Applied Mechanics and Engineerd®%, (2006), 5754-5779.

Dettmer, W.; Peric, D.: On the coupling between fluid flow anesitnmotion in the modelling of fluid—structure
interaction.Computational Mechani¢g3, (2008), 81-90.

Gerbeau, J.-F.; Vidrascu, M.; Frey, P.: Fluid—structuteriaction in blood flow on geometries based on medical
images Computers and Structure83, (2005), 155-165.

Huang, H.; Virmani, R.; Younis, H.; Burke, A.; Kamm, R.; Ld®,; The impact of calcification on the biomechan-
ical stability of atherosclerotic plagueSirculation, 103, (2001), 1051-1056.

Hughes, T.; Brooks, A.: A multi-dimensional upwind schemitghwo crosswind diffusion. In: T. Hughes, e#i;
nite Element Methods for Convection Dominated FloaeD-Vol.34, pages 19-35, ASME, New York (1979).

Hughes, T.; Franca, L.; Balestra, M.: A new finite elementrfolation for computational fluid dynamics: V. Cir-
cumventing the Balika—Brezzi condition: A stable Petrov—Galerkin formuatof the Stokes problem accom-
modating equal-order interpolationrSomputer Methods in Applied Mechanics and Engineerbfy (1986),
85-99.

Johnson, A.; Tezduyar, T.: Mesh update strategies in ghfalite element computations of flow problems with
moving boundaries and interfac&Somputer Methods in Applied Mechanics and Engineerititp, (1994),
73-94.

Johnson, A.; Tezduyar, T.: Advanced mesh generation anatepaethods for 3D flow simulationSomputational
Mechanics23, (1999), 130-143.

Kalro, V.; Tezduyar, T.: A parallel 3D computational metHod fluid—structure interactions in parachute systems.
Computer Methods in Applied Mechanics and Engineerdi@®, (2000), 321-332.

Khurram, R.; Masud, A.: A multiscale/stabilized formutatiof the incompressible Navier—Stokes equations for
moving boundary flows and fluid—structure interacti@omputational Mechani¢88, (2006), 403-416.

Kuttler, U.; Forster, C.; Wall, W.: A solution for the incomgssibility dilemma in partitioned fluid—structure
interaction with pure Dirichlet fluid domain€omputational Mechani¢88, (2006), 417-429.

Kuttler, U.; Wall, W.: Fixed-point fluid—structure interd@n solvers with dynamic relaxatiolComputational
Mechanics43, (2008), 61-72.

Lohner, R.; Cebral, J.; Yang, C.; Baum, J.; E.L.MestreaupS0.: Extending the range of applicability of the
loose coupling approach for FSI simulations. In: H.-J. Bantgy M. Schafer, edsEluid—Structure Interaction
vol. 53 of Lecture Notes in Computational Science and Engineepages 82—-100, Springer (2006).

Masud, A.; Bhanabhagvanwala, M.; Khurram, R.: An adaptiesimrezoning scheme for moving boundary flows
and fluid—structure interactio@omputers & Fluids36, (2007), 77-91.

Michler, C.; van Brummelen, E.; de Borst, R.: An interfaceAtlen—Krylov solver for fluid—structure interaction.
International Journal for Numerical Methods in Fluidé7, (2005), 1189-1195.

Mittal, S.; Tezduyar, T.: Massively parallel finite elemexamputation of incompressible flows involving fluid-
body interactionsComputer Methods in Applied Mechanics and Engineerdi@, (1994), 253-282.

Mittal, S.; Tezduyar, T.: Parallel finite element simulatiof 3D incompressible flows — Fluid-structure interac-
tions. International Journal for Numerical Methods in Fluid®1, (1995), 933-953.

244



Ohayon, R.: Reduced symmetric models for modal analysisitefrnal structural-acoustic and hydroelastic-
sloshing system&omputer Methods in Applied Mechanics and Engineeri®g, (2001), 3009-3019.

Otto, F.: Die grundform des arteriellen pulsggitung fur Biologie 37, (1899), 483-586.

Saad, Y.; Schultz, M.: GMRES: A generalized minimal residalgorithm for solving nonsymmetric linear sys-
tems.SIAM Journal of Scientific and Statistical Computig(1986), 856—869.

Sawada, T.; Hisada, T.: Fuid—structure interaction amglgEthe two dimensional flag-in-wind problem by an
interface tracking ALE finite element methddomputers & Fluids36, (2007), 136—146.

Stein, K.; Benney, R.; Kalro, V.; Tezduyar, T.; Leonard, Alccorsi, M.: Parachute fluid—structure interactions:
3-D ComputationComputer Methods in Applied Mechanics and Engineeri®@®, (2000), 373—386.

Tezduyar, T.: Stabilized finite element formulations fotampressible flow computation8dvances in Applied
Mechanics 28, (1992), 1-44.

Tezduyar, T.: Finite element methods for flow problems wittving boundaries and interfaceschives of Com-
putational Methods in Engineering, (2001), 83-130.

Tezduyar, T.: Computation of moving boundaries and intex$aand stabilization parametdrgernational Journal
for Numerical Methods in Fluid43, (2003), 555-575.

Tezduyar, T.: Finite element methods for fluid dynamics withving boundaries and interfaces. In: E. Stein; R. D.
Borst; T. Hughes, edsEncyclopedia of Computational Mechanit®lume 3: Fluids, chap. 17, John Wiley &
Sons (2004).

Tezduyar, T.; Aliabadi, S.; Behr, M.; Johnson, A.; Mittal; $arallel finite-element computation of 3D flows.
Computer 26, 10, (1993), 27-36.

Tezduyar, T.; Aliabadi, S.; Behr, M.; Mittal, S.: Massivedgrallel finite element simulation of compressible and
incompressible flowsComputer Methods in Applied Mechanics and Engineerlid®, (1994), 157-177.

Tezduyar, T.; Behr, M.; Liou, J.: A new strategy for finite mlent computations involving moving boundaries and
interfaces — the deforming-spatial-domain/space—timeguure: I. The concept and the preliminary numerical
tests.Computer Methods in Applied Mechanics and Engineer@4g 3, (1992a), 339—-351.

Tezduyar, T.; Behr, M.; Mittal, S.; Johnson, A.: Computatiaf unsteady incompressible flows with the finite
element methods — space—time formulations, iterativaesgfies and massively parallel implementations. In:
New Methods in Transient AnalysRVP-Vol.246/AMD-Vol.143, pages 7-24, ASME, New York (239.

Tezduyar, T.; Behr, M.; Mittal, S.; Liou, J.: A new strategyr ffinite element computations involving mov-
ing boundaries and interfaces — the deforming-spatialadofspace—time procedure: 1l. Computation of free-
surface flows, two-liquid flows, and flows with drifting cytiers.Computer Methods in Applied Mechanics and
Engineering 94, 3, (1992c), 353-371.

Tezduyar, T.; Cragin, T.; Sathe, S.; Nanna, B.: FSI commurtatin arterial fluid mechanics with estimated
zero-pressure arterial geometry. In: E. Onate; J. GarciBgRjan; T. Kvamsdal, edVarine 2007 CIMNE,
Barcelona, Spain (2007a).

Tezduyar, T.; Mittal, S.; Ray, S.; Shih, R.: Incompressiltdev computations with stabilized bilinear and linear
equal-order-interpolation velocity-pressure eleme@tanputer Methods in Applied Mechanics and Engineer-
ing, 95, (1992d), 221-242.

Tezduyar, T.; Osawa, Y.: Fluid—structure interactions paeachute crossing the far wake of an aircr@imputer
Methods in Applied Mechanics and Engineerit§1, (2001), 717-726.

Tezduyar, T.; Sathe, S.: Modeling of fluid—structure intdicms with the space—time finite elements: Solution
techniqueslnternational Journal for Numerical Methods in Fluids4, (2007), 855-900.

Tezduyar, T.; Sathe, S.; Cragin, T.; Nanna, B.; Conklin, Bausewang, J.; Schwaab, M.: Modeling of fluid—
structure interactions with the space—time finite elemeAtterial fluid mechanicslnternational Journal for
Numerical Methods in Fluid$4, (2007b), 901-922.

245



Tezduyar, T.; Sathe, S.; Keedy, R.; Stein, K.: Space—tirtlenigues for finite element computation of flows with
moving boundaries and interfaces. In: S. Gallegos; |. Harr8. Botello; F. Zarate; G. Ayala, ed®roceed-
ings of the Ill International Congress on Numerical Methad$€ngineering and Applied SciencED-ROM,
Monterrey, Mexico (2004).

Tezduyar, T.; Sathe, S.; Keedy, R.; Stein, K.: Space-timtefglement techniques for computation of fluid—
structure interaction€Computer Methods in Applied Mechanics and Engineerd®%, (2006a), 2002—2027.

Tezduyar, T.; Sathe, S.; Schwaab, M.; Conklin, B.: Arteflizid mechanics modeling with the stabilized space—
time fluid—structure interaction techniquaternational Journal for Numerical Methods in Fluids7, (2008),
601-629.

Tezduyar, T.; Sathe, S.; Stein, K.: Solution techniquesHerfully-discretized equations in computation of fluid—
structure interactions with the space—time formulatiddsmputer Methods in Applied Mechanics and Engi-
neering 195, (2006b), 5743-5753.

Tezduyar, T.; Sathe, S.; Stein, K.; Aureli, L.: Modeling afifl—structure interactions with the space—time tech-
niques. In: H.-J. Bungartz; M. Schafer, eddyid—Structure Interactionvol. 53 of Lecture Notes in Computa-
tional Science and Engineeringages 50-81, Springer (2006c).

Tezduyar, T.; Schwaab, M.; Sathe, S.: Arterial fluid mecbamiith the sequentially-coupled arterial FSI tech-
nigue. In: E. Onate; M. Papadrakakis; B. Schrefler, édsuypled Problems 20Q07TCIMNE, Barcelona, Spain
(2007c).

Tezduyar, T.; Schwaab, M.; Sathe, S.: Sequentially-Caupleerial Fluid—Structure Interaction (SCAFSI)
technique (July 2008)Computer Methods in Applied Mechanics and Engineerimgplished online, DOI:
10.1016/j.cma.2008.05.024.

Torii, R.; Oshima, M.; Kobayashi, T.; Takagi, K.; Tezduyar, Influence of wall elasticity on image-based blood
flow simulation.Japan Society of Mechanical Engineers Journal Seried0A(2004), 1224-1231, in Japanese.

Torii, R.; Oshima, M.; Kobayashi, T.; Takagi, K.; Tezduydr; Computer modeling of cardiovascular fluid—
structure interactions with the Deforming-Spatial-Domi8tabilized Space—Time formulaticdomputer Meth-
ods in Applied Mechanics and Engineerjii@5, (2006a), 1885-1895.

Torii, R.; Oshima, M.; Kobayashi, T.; Takagi, K.; Tezduya&r, Fluid—structure interaction modeling of aneurysmal
conditions with high and normal blood pressut@smputational Mechani¢88, (2006b), 482-490.

Torii, R.; Oshima, M.; Kobayashi, T.; Takagi, K.; Tezduyar; Influence of wall elasticity in patient-specific
hemodynamic simulation€omputers & Fluids36, (2007a), 160-168.

Torii, R.; Oshima, M.; Kobayashi, T.; Takagi, K.; Tezduya@r, Numerical investigation of the effect of hyper-
tensive blood pressure on cerebral aneurysm — Dependettice effect on the aneurysm shap#ernational
Journal for Numerical Methods in Fluid$4, (2007b), 995-1009.

Torii, R.; Oshima, M.; Kobayashi, T.; Takagi, K.; Tezduyar, Fluid—structure interaction modeling of a patient-
specific cerebral aneurysm: Influence of structural mode@omputational Mechanic¢#3, (2008), 151-159.

Torii, R.; Oshima, M.; Kobayashi, T.; Takagi, K.; Tezduyar, Fluid—structure interaction modeling of blood flow
and cerebral aneurysm: Significance of artery and aneurliapes (July 2008)Computer Methods in Applied
Mechanics and Engineeringublished online, DOI: 10.1016/j.cma.2008.08.020.

van Brummelen, E.; de Borst, R.: On the nonnormality of ®rhiion for a fluid-structure interaction problem.
SIAM Journal on Scientific Computing7, (2005), 599-621.

Wall, W.; Genkinger, S.; Ramm, E.: A strong coupling paotittd approach for fluid—structure interaction with
free surfacesComputers & Fluids36, (2007), 169-183.

Womersley, J.: Method for the calculation of velocity, rafdlow and viscous drag in arteries when the pressure
gradient is knownJournal of Physiology127, (1955), 553-563.

Address: T.E. Tezduyar (corresponding author), K. Takizawa and Jis&ipher, Mechanical Engineering, Rice
University — MS 321, 6100 Main Street, Houston, Texas 77 QA
email:t ezduyar @i ce. edu

246



o
= SN
SOOI
AT AN CONANIA

o

=

;g
*

AV AVAVAVAYA'
i

K
AR
W
N

=N
N
N

SN

7o

SN
R
N

VOSK)
ASZO
JAvAvavava

XAAO

VaVa
vavavs

1V
A

A
\/
5

\/
W

’f
N\
AN§ ‘V

W

IS SOUNASS
ORISR
TSN
{PSOAINSEORN 4
AOTTRNOONN A
RN NN 4K
RN s
SN e N 4
SR W s
= AT
otYavavavavari/ ‘ng%%::_gn ava
o

AN
SN
AN
A\
W
1y

A\,

X
Vi
W,

AV,

S

.
AV

S
2
YAV,

S

5832

RIS

SRS

VAN

NS

A

K

‘4
ol
4

X
P

[
§V

15 vATaTa!
s

V4
£

&
KR
pVAY
N
Po

Al
%
s

VAY

AVAY
N/

S

=

YRY
&
~

R
ST

AN

N
4Vavi
K
S0
d
o
ér

-;‘;;;
E»
oK
K]
Vv

S5

v,

o

vl
i
Y]
g
o

i
)
'V

Figure 5: A bifurcating middle cerebral artery segment aitieurysm. Fluid mechanics mesh at the fluid—structure

interface and the inflow plane for the coarse and fine meshes.
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Figure 6: A bifurcating middle cerebral artery segment vatieurysm. Verification of mass balance for the
CAFSI computation with the coarse (left) and fine (right) hmess Volumetric inflow rate, difference between the
volumetric inflow and outflow rates, and rate of change foratiery volume.
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Figure 7: A bifurcating middle cerebral artery segment vatieurysm. Verification of mass balance for the
SCAFSI M1SC (left) and SCAFSI M1C (right) computations. Moletric inflow rate, difference between the
volumetric inflow and outflow rates, and rate of change foratiery volume.
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Figure 8: A bifurcating middle cerebral artery segment aitieurysm. Arterial volume. Left: comparison between
the CAFSI computations with the coarse and fine meshes. R@grmparison between the CAFSI computation
with the fine mesh and the SCAFSI M1SC and SCAFSI M1C commuisiti
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Figure 9: A bifurcating middle cerebral artery segment vétreurysm. Flow field for the CAFSI computation
with the coarse mesh when the volumetric flow rate is maximleft) @nd when the outflow pressure is maximum
(right). Velocity vectors colored by magnitude.

Figure 10: A bifurcating middle cerebral artery segmentweiheurysm. Flow field for the CAFSI computation
with the fine mesh when the volumetric flow rate is maximumt)lahd when the outflow pressure is maximum
(right). Velocity vectors colored by magnitude.
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Figure 11: A bifurcating middle cerebral artery segmentwveiheurysm. Wall shear stress for the CAFSI com-

putation with the coarse mesh when the volumetric flow ratedagimum (left) and when the outflow pressure is
maximum (right).

L, 228.
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Figure 12: A bifurcating middle cerebral artery segmentwveiheurysm. Wall shear stress for the CAFSI com-

putation with the fine mesh when the volumetric flow rate is imasn (left) and when the outflow pressure is
maximum (right).
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Figure 13: A bifurcating middle cerebral artery segmenhvaiheurysm. Wall shear stress for the SCAFS|I M1SC
computation when the volumetric flow rate is maximum (leftiavhen the outflow pressure is maximum (right).
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Figure 14: A bifurcating middle cerebral artery segmenhwvaibeurysm. Wall shear stress for the SCAFSI M1C
computation when the volumetric flow rate is maximum (leftlavhen the outflow pressure is maximum (right).
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Figure 15: A bifurcating middle cerebral artery segmentwveiheurysm. Time-averaged wall shear stress for the
CAFSI computations with the coarse (left) and fine (rightshes.
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Figure 16: A bifurcating middle cerebral artery segmentwvaibeurysm. Time-averaged wall shear stress for the
SCAFSI M1SC (left) and SCAFSI M1C (right) computations.
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Figure 17: 2D flow past a flexible beam. Problem set up. The imo@as indicated are in meters. The length and
thickness of the beam are 2.0 m and 10.0 cm. At the midpoimstsesection of the beam all displacements are set
to zero. The flow boundary conditions in the 2D plane are gid next to each boundary. The inflow velocity is
1.0 m/s.

251



0.24

Coarse mesh
Fine mesh —---

0.20

0.16

Tip Displacement (m)

0.12

0.08

Time (s)

Figure 18: 2D flow past a flexible beam. (Upper-) Tip displaeamComparison between the CFSI computations
with the coarse and fine meshes.

Figure 19: 2D flow past a flexible beam. Vorticity field for th&&l computation with the coarse mesh, at the
instant corresponding tot =5 s in Figure 18.

Figure 20: 2D flow past a flexible beam. Vorticity field for th&® computation with the fine mesh (left) and
SCFSI M1C computation (right), at the instant correspogdint = 5 s in Figure 18.
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Fluid-Structure Interaction.
Theory, Numerics and Applications
pp. 253- 264
Herrsching am Ammersee, 29.9.-1.10.2008

Fluid-Structure-Acoustic Interaction of a Thin, Flexible Platein the Wake
of a Wall-Mounted Square Cylinder

T. Uffinger, F. Schfer, S. Becker, J. Grabinger, M. Kaltenbacher

A coupled simulation approach for fluid-structure-acoastiteractions is presented, which considers both the
flow-induced sound and the sound due to structural vibratioFhe proposed computation scheme is based on a
partitioned approach that uses different simulation cofteshe flow simulation and the structural and acoustic
computations. The flow simulation is done by an in-housesfirstume code solving the incompressible Navier-
Stokes equations in space and time. For the structural mech@&omputations, an in-house finite-element multi-
physics code is applied, which is also able to solve the amusve equation describing the wave propagation
to the far field. An implicit coupling scheme with sub-itésas in each time step is employed for fluid-structure
interaction. The computation of the aeroacoustic soundaseld on Lighthill's theory. The structural-acoustic
coupling is realized by applying appropriate boundary citiods to the acoustic wave equation.

The above-described methodology is applied to a simplifatifrof a car underbody. The acoustic field due to the
interaction of a thin, flexible plate representing covesrgg the car underbody and a turbulent flow is investigated.
The flexible plate is part of an otherwise rigid wall that issoflown by air. To model obstacles typically found at

real car underbodies, a square cylinder is placed upstredthe flexible plate. The Reynolds number of the flow
based on the free stream veloctiy and the obstacle heig6t(i80.

Nomenclature

oV Swept volume P Transport variable

€ Convergence criterion c Speed of sound

n Local coordinate e Finite element

® Acoustic velocity potential i Grid node/center

p Fluid density l FSl iteration counter

00 Ambient density n Iteration counter

Ps Density of mechanical structure n Normal vector

Tij Shear stress tensor P Pressure

Tw Wall shear stress Do Ambient pressure

£ Local coordinate p’ Acoustic pressure fluctuations
Aw Grid displacement t Tangential vector

I's Diffusion coefficient u; Velocity

Ug.i Grid velocity T;j Lighthill tensor

w Structural displacement U Free-stream velocity

yT Dimensionless wall scale 1% Volume

D Edge length of square cylinder CFD Computational fluid dynamics
E Modulus of elasticity Ccv Control volume

K, Grid noder FSI Fluid-structure interaction

L Load vector LES Large-eddy simulation

N Interpolation function RANS Reynolds averaged Navier-Stokes
Qo Source/sink Re Reynolds number

S Surfacei of a CV
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1 Introduction

In many technical applications, the interaction of a fluidvflwith a flexible structure leads to structural vibrations

and thereby to the generation of vibrational sound. Addélty, aeroacoustic sound is generated by turbulent
fluctuations within the fluid. In such flows, sound is a resfilth@ complex interaction between fluid mechanics,

structural mechanics and acoustics. As the generated seoffién considered as noise, its reduction is of major
interest. For this purpose, a deeper understanding of th&iqai phenomena taking place in flow configurations
with fluid-structure-acoustic interactions is needed.

Vibrating structures, and in particular vibrating plataese of special interest for applications in aviation angaut
motive engineering, hence the topic has received muchtitteim the literature. One of the early investigations
in this direction was the work of Davies (1971), where theitexion of a thin flexible panel by wall-pressure
fluctuations of a turbulent boundary layer was studied usmaglal analysis. The boundary layer excitation of
flexible plates and the resulting emission of noise have ladsm investigated by, e.g., Graham (1996), Howe and
Shah (1996), Frampton and Clark (1997), and Mazzoni andinisen (1999). In most of the studies, the influ-
ence of the fluid on the flexible plate is modeled based on spetthe turbulent wall-pressure fluctuations in the
boundary layer. The flow above the plate is not resolved iaideh more explicit treatment of the flow over the
plate was performed by Zolotarev (1997) and Tang et al. (R0@3ere the fluid flow was modeled using potential
theory. Tang et al. (2005) estimated the sound resulting ttee interaction between a single model vortex and a
flexible wall in order to investigate the basic mechanismtheffluid-structure-acoustic interaction. With respect
to the treatment of the fluid flow, studies considering a highkolved flow based on the Navier-Stokes equations
are rare. There has also been very little work towards a @dlypled treatment of fluid flow, structural mechanics
and acoustics at a realistic level of detail [see, e.g., alisind Gordnier (2004) and Vergne et al. (2007)]. How-
ever, such a methodology would be very helpful for improvimg understanding of the mechanisms leading to the
emission of sound and for taking measures towards a reduictitow-induced and vibrational noise.

In this paper, a numerical simulation approach for the cedipfeatment of fluid-structure-acoustic interactions
is presented. The method considers acoustic pressuredtiocts which are low compared with the overall fluid
pressure, so that the acoustic feedback on the fluid and ostiilreture can be neglected. This assumption is
valid for many technical applications. By this simplifiaatj a reduction in complexity can be achieved, resulting
in three subproblems which can be treated and computedatelyarfluid-structure interaction, fluid-acoustic
coupling and structure-acoustic coupling. The proposétvace architecture is based on a partitioned approach,
i.e., different codes are used for the computation of fluidadgics, structural mechanics and acoustics. For the
flow simulation, an in-house finite-volume code is applieat golves the incompressible Navier-Stokes equations
in space and time. For structural mechanics, an in-houge-fshement code is used. The coupling between fluid
and structure is realized by a code coupling interface. Dingpuitation of flow-induced sound relies on Lighthill’s
analogy and a finite-element discretization of the acousdire equation describing the wave propagation to the far
field. Vibrational sound is computed from the structural emment by applying appropriate boundary conditions
to the wave equation. Details of the simulation approactyaen in Section 2.

Our computational methodology is applied to a simplified elaaf a car underbody. Basically, the flow over a
flat plate is considered, where most of the plate is rigid pgaut of it is made of a thin, flexible blank representing
coverings, which are often installed to improve the aeradlyic properties of cars. Additionally, a square cylinder
is placed upstream of the flexible structure to model obssatyipically found with real car underbodies.

2 Numerical Method

The applied numerical computation scheme is based on di@aetl simulation approach. Two different codes are
used for the computation of fluid-structure-acoustic iatéons. For the fluid simulation, the finite-volume CFD
solver FASTEST-3D [see Durst and 3dér (1996)] is applied, which has been developed at thé@utesof Fluid
Mechanics, University of Erlangen-Nuremberg. The striadtmechanics problem is solved with the multiphysics
finite-element code CFS++ [see Kaltenbacher et al. (20@@)jeloped at the Department of Sensor Technology,
University of Erlangen-Nuremberg. The wave equation ofabeustic problem is also solved with CFS++. For
the coupling between FASTEST-3D and CFS++, realizing thiel-Btructure interaction, the commercial code
coupling interface MpCCI [see Ahrem et al. (2003)] is usedschematic of the software architecture is shown in
Figure 1.

The CFD code FASTEST-3D is capable of computing incompbésdiow fields with heat and mass transfer of
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FASTEST-3D

MpCCI

fluid dynamics coupling

> finite-volume method > conservative interpolation

of fluid loads

» bilinear interpolation of
structural displacement

» three-dimensional, un-
steady fluid dynamics
(LES)
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CFS++
acoustics structural mechanics

> finite-element method > finite-element method

> vibrational/flow induced
sound

» linear/nonlinear structural
mechanics

Figure 1: Coupled computation scheme for the simulationuddfstructure-acoustic interactions

Newtonian fluids. It is based on the finite-volume method. d@iseretization of the Navier-Stokes equations is of
second-order accuracy in space and time. Both Reynoldage®Navier-Stokes (RANS) and large-eddy simula-
tions (LES) can be carried out with the software. For prolslewith fluid-structure-acoustic interactions, usually
the unsteady and three-dimensional flow field is needed. , THES is the turbulence model mainly used for this
kind of simulations. In FASTEST-3D, a Smagorinsky subgidle model is implemented for LES. The code
works on block-structured grids, which allows the treattefitomplex geometries. The implementation of multi-
grid schemes and the parallelization and vectorizatiodl @h@ortant code sections ensure efficient computations
on high-performance computing platforms.

CFS++ is a simulation environment for multiphysics simigias. Currently, discretized forms of differential
equations of structural mechanics, acoustics and eleatoetics are implemented. The discretization is done
using the finite-element method. In the present work, CFS+ised to solve the structural mechanics problem
and the acoustic wave equation, which describes the sompagation to the far field.

Provided that the acoustic pressure fluctuations are lovpeoed with the fluid pressure, no feedback of acoustics
on the fluid or on the structure has to be considered. Undeatisiumption, the fluid-structure interaction splits into
three subproblems, which can be treated and computed selgarfluid-structure interaction, fluid-acoustic cou-
pling and structure-acoustic coupling. Details of the dimgpalgorithms between the different physical domains
are given in the following sections.

2.1 Fluid-structureinteraction

The fluid-structure interaction is realized by an impli@tpling between FASTEST-3D and CFS++. As a coupling
interface, MpCCl is used, which provides the interpolatidrdata between the fluid and the structural grid. A
schematic of the implicit coupling for fluid-structure irgetion is shown in Figure 2. At the beginning of the
fluid-structure iteration loop, the flow solution is detenmi by FASTEST-3D. The resulting fluid loads (pressure
forces and shear stress forces) on the structure are daldwdad transmitted to CFS++ via MpCCI. Taking the
fluid loads into account, the structural mechanics probksolved. The displacement of the structure is then sent
to FASTEST-3D. Based on the structural displacement ancethdting deformation of the fluid domain, the fluid
grid is adapted. In most cases, no dynamic equilibrium betwike flow and the structural mechanics solution is
achieved by cycling the fluid-structure iteration loop onlyce. Therefore, the procedure is repeated within the
same time step until equilibrium is reached. The convergaemiterion is based on the change of the mechanical
displacementv between two subsequent iterations:
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Figure 2: Schematic of the implicit algorithm for the fluithscture interaction
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where! denotes the iteration counter of the fluid-structure iteratoop, || ||2 the L2-norm ands the desired
accuracy. At the beginning of each time step, an optionaliptien of the structural deformation can be carried
out. The prediction extrapolates the position of the bomndaing its positions at previous time steps. In many
cases, this procedure can significantly reduce the numhb@FDfiterations needed until convergence is reached.

Since the fluid and structural grids are typically non-matghan interpolation is necessary for the above-men-
tioned transfers of data between the flow and the structueghamics solver. Depending on the type of data to
be exchanged, different interpolation techniques are.us@d the interpolation of the structural displacement,
bilinear interpolation is empolyed. On the fluid-structimeerface, for each grid nodeof the fluid grid the
according surface of the finite elemenbdf the structural mechanics grid, in whic¢hs located, is determined.
Then the positiorg; andn; of the nodei referring to the local coordinate system of the finite eletri€nny) is
calculated. The displacement (&;, n;) of the nodel is computed with the equation

4
w(&m) = Y N, (Gm)wr, 2)
r=1

wherewg, are the displacements of the nod€s, K, K3 and K, of the surface of the finite elemenatand
N, (§,n) are the bilinear interpolation functions, defined as folow

Ng, (&m)=1-8§1 —n)

Ni, (§&,m) =€ —n) 3)
Ni, (&m) =&n

Ng, (&n)=Q1-&n

An illustration of bilinear interpolation of the displacemt from the structural mechanics to the fluid grid is given
in Figure 3.

For the transfer of integral fluid loads, conservative iptdaition is applied to ensure that the sum of the loads
over the whole fluid-structure interface is the same on thd #uad the structural mechanics grid. As for bilinear

interpolation, the coordinates andx; of a fluid grid nodei in the local coordinate system of the surface of the
finite element of the structural mechanics grid are computed. The loadribniion L}ZT to the nodedy, of e

due to the fluid load.; at the grid nodé is calculated using the following equation:

Ly = Ng (&m)L;  for  r=1,234 )

4
The interpolation functionsVg, (£,7) are the same as in equation (3). Note that Ni. = 1, so that the

n=1
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fluid mechanics grid
j:t structural mechanics grid

source node

e destination node

Figure 3: Bilinear interpolation of a variable from the stiwral mechanics to the fluid mechanics grid

interpolation is really conservative. The load vedigiis defined as
Li=p-n-S;+71,-t-5; (5)

wherep is the pressuren the wall-normal vector at grid node.S; the area of the grid celf;,, the wall shear stress
andt the tangential vector atparallel to the local flow direction. Conservative inteigt@n of the fluid loads
from the fluid to the structural mechanics grid is illustchie Figure 4.

Due to the structural displacement and the resulting dedtiom of the flow boundaries, the fluid grid in the interior
of the flow domain has to be adapted accordingly. For thisgeeprobust and fast algebraic methods are used. If
the deformation of the boundary is known on two oppositedafea grid block, linear interpolation is employed
to determine the grid deformation in between. Linear irtéapon of the node displacemefitw along a grid line

is visualized in Figure 5, following the equation

Aw(£) = EAw(0) + (1 - §Aw(1) (6)

Linear interpolation cannot be used if two adjacent or mhemttwo block faces of the grid have moved due to
fluid-structure interaction. In this case, transfinite iptdation is applied. Transfinite interpolation is basedaon
superposition of two shear transformations and one terrsalupt transformation. The grid displacemén at
the position(¢, ) can therefore be computed with the following equation:

Aw(&,n) = A(&n) + B(&n) —T(&n) (7)
with
A, m) = eAw(0,m) + (1 = Aw(L,n), shear transformations (8)
B(ﬁﬂ?) = UAW(@O) + (1 - W)AW(§7 1)7

T(&,n) = B(A(&,n)) =nA(£,0) + (1 —n)A(E,1)  tensor product transformation

As a consequence of grid movement, the control volumes dfuttegrid change with time, which has to be taken
into account in the finite-volume formulation of the Navi&iekes equations. The integral form of the general

fluid mechanics grid
j:t structural mechanics grid

source node

® destination node

Figure 4: Conservative interpolation of a variable fromfilnéd mechanics to the structural mechanics grid
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Figure 5: Linear interpolation of the node displacemenngla grid line

conservation law for a variabl is given by

O(p®) 0P
\%4 S S 14
For moving grids, the volum& and the surfacé of a control volume are functions of tim#&, = V(¢) andS =

S(t). By means of the three-dimensional Leibniz equation, tre farm containing the time derivative can be
transformed as follows:

d(p®) .. d
/ 5t dv = pm / p2dV — /(pug,]‘b)dS] (10)
V(t) V(t) S(t)
In this relationshipy, ; refers to the velocity of the grid movement. Inserting eguef10) in equation (9), one
obtains: q 50
&/p@dv + /pUj‘I)de —/puq7j<I>de - /I‘q)a—dSJ = /Q@dv (11)
i .
v s s s ! \
N—_——

rate of change in convective fluxes over convective grid  diffusive fluxes over a sources/sinks
a moving CV a CV surface fluxes CV surface in CV

Summing the convective terms leads to the arbitrary LadgasmBulerian formulation (ALE) of the conservation

law:
%/p(deJr/p(uj — ug ;) ©dS; —/Fq>ggid5j = /Qédv (12)
\%4 S S |4
The convective flux over the control volume surface depemdg on the differences between flow velocity
and grid velocityu, ;. Special cases arg, ; = 0 andu, ; = u;, which lead to an Eulerian or a Lagrangian
formulation, respectively.

The discretization of the grid fluxes is based on the spacsezgation law, which is obtained by insertifig= 1,
p = constant and)s = 0 into equation (12):

d
& / dv — / Ug,dej =0 (13)
V(t) S(t)

This relationship must be fulfilled for each control volumks discretized form using an implicit three-point
scheme of second order is

30V, — sy
/ u!]adej = Z <I€2Atk> ) k= w, S, b» t» n, e (14)
S(t) k

In this equation, the so-called swept volunigs and Vk”+1 are used. They represent the volume that is spanned
by the movement of surfadeof a control volume between the time steps 1 andn orn andn + 1, respectively.

An illustration of swept volumes can be found in Figure 6. &ipn (14) can be used to deduce a discretized form
of the convective grid fluxes. Based on an implicit threeapetheme, this leads to the following discretization:

30V, — v
/ (pug,;®)dS; = (P‘I’Zﬂkzmk’) (15)
5(t) k
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Figure 6: lllustration of swept volumes (CV = control volughe

2.2 Fluid-acoustic coupling

The computation of flow-induced sound is based on Lighthéihalogy [see Lighthill (1952, 1954)]. Lighthill
derived the following inhomogeneous wave equation, whiebcdbes the acoustic wave propagation to the far
field, from the momentum equation of fluid mechanics:

1 32p/ 62p/ 82Tij

o2 912 Owidr; (16)

The acoustic pressure fluctuations are denotepl bjhe so-called Lighthill tensdr;; is defined as follows:
Tij = pusu; + [(p — po) — (p — po)] ij + 7 (17)

In equation (17 denotes the fluid density,the fluid pressurey, andp, the ambient density and pressuréhe
speed of sound and; the viscous stress tensor. According to Lighthill's angldg; formulates the flow-induced
sources of the inhomogeneous wave equation as acousticugpadel sources. In many applications, sound due to
viscous effects and to entropy changes can be neglectdthtsbe second and the third terms on the right-hand side
of equation (17) can be skipped. Only the turbulent sounee te:;u; is considered in the present work. Based on
this approximation, the acoustic source term is calculfxtad the veloctiy field. Finally, the propagation of sound
to the far field is computed by solving the inhomogeneous weapetion (16) using a finite-element formulation.

2.3 Structure-acoustic coupling

The vibrational sound is computed by imposing the struttm@ement as a boundary condition to the acoustic
wave equation. The wall-normal component of the acoustitigka velocity u; must be equal to the wall-normal
component of the structural velocity sryct

nzu; = N Uj struct (18)

Using the formulation of the acoustic velocity potentiafor the acoustic wave equation that has to be solved,
the left-hand side of equation (18) can be rewritten in a ncorezenient way(u; = —d¢/0x;). Furthermore, the
structural velocityu; syruct can be expressed as a time derivative of the structuraladispienty;. This leads to a
von Neumann boundary condition for the acoustic velocityeptal o:

o, Mo
Based on this boundary condition, the propagation of vibnai noise to the far field is computed by solving the
wave equation fop using the finite-element method. The acoustic pressuirethen obtained by’ = p - dp/0t.

19)

Further information about the coupling algorithms can henfbin the work of Scéfer et al. (2006, 2008). A benefit
of the computation scheme presented for fluid-structuoesstic interactions is the optimization of each code for
its special field of application, which is due to the partigol simulation approach. Additionally, FASTEST-3D
and CFS++ can be adapted if necessary, because they arethathse codes. Therefore, flexiblility is increased
compared with commercial solutions. Moreover, an advantager experimental methods is the possibility of
computing separately the sound caused by the fluid flow onribehand and by the structural movement on the
other.
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3 Application of the computational methodology

The presented computational methodology is applied to plgied model of a car underbody. The setup consists
of a thin, flexible plate that is part of an otherwise rigid lwallo model obstacles often found with real car
underbodies, a square cylinder is mounted on the wall ugstief the flexible plate and perpendicular to the free
stream (see Figure 7).

The flexible plate is made of stainless steel and has a thiskoe40um. The density i, = 7850 kg/m3, the
modulus of elasticity? = 2 x 10! kg/m/sQ, and the Poisson number is 0.3. The edge length of the square
cylinder isD = 0.02 m and the free-stream velocity., was set to 20 m/s. Considering a flow of air at ambient
conditions, this corresponds to a Reynolds nuniber= 26 000 based o/, andD. The dimensions of the flow
domain referring taD are shown in Figure 8(a). In dimensional notation theylase x 0.2 x 0.22 m? (length x

width x height). The flexible structure is clamped at both its ugstrand downstream edges. The area including
the clamping of the flexible structure is just called 'platethe following. The plate is pre-stressed in the main
flow direction at a value of x 10¢ N/m”. The domain of aeroacoustic and vibrational sound is visedlin
Figure 8(b). The computational domain of the acoustic datmns is much larger than the flow domain because
we are interested in the radiation of noise to the far field.

In the flow simulation, for all walls no-slip boundary condits are chosen. At the upper boundary, symmetry
is assumed, whereas in the spanwise direction a periodicdaoy condition is applied. To model the inflow, a
measured velocity profile of the time-averaged main flow coment is used. The other two velocity components
at the inflow are set to zero. At the outlet, a convective owtftondition is imposed. The spatial discretization of
the flow domain is realized by a block-structured grid. Althh the geometry is fairly simple, a very high number
of control volumes is necessary to resolve the boundarydayiéne fluid grid consists of about six million control
volumes, so that all boundaries can be resolved properlighwheans that the dimensionless wall seatedoes
not exceed a value of 0.4 based on the time-averaged velogdy The flow simulation is carried out as LES
using a Smagorinsky subgrid scale model. The spatial dizat®n utilizes a central differencing scheme and the
temporal discretization is based on an implicit three-psalneme. Both are of second order of accuracy. The time
step is chosef.5 x 10~ s. Due to the large number of control volumes, use of higlieperance computers is
necessary. The computations run on four computing nodeh, eguipped with two dualcore processors (IBtel
Xeorf® 5160) and8 GB of main memory. First, the unsteady development of the fleldl is computed until a
fully developed turbulent state is reached, before finallidflstructure interaction is activated.

For the structural mechanics model, periodic boundary itiong are applied in the spanwise direction. The spatial
discretization of the computational domain is done by heral elements. The number of nodes is a8 t00.

In the finite-element computation of structural mechanigbnear basis functions with an incompatible mode

approach to account for shear locking effects are used. ®erean implicit second-order time discretization

scheme of the Newmark type is applied [see Kaltenbacher7(200he time step size of the structural mechanics
simulation is the same as that for the flow simulation.

For the free borders of the acoustic domain, absorbing kemyrzbnditions are chosen, while the rigid walls are
acoustically reflective. At the flexible wall, we apply thehdmogeneous von Neumann boundary condition of

equation (19). As for the structural mechanics grid, theiapdiscretization for the acoustic domain is made up
of hexahedral elements. The number of nodes is approxiyn&ielooo.

air flow

|:> obstacle

wall flexible plate wall

Figure 7: Setup of the test case
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Figure 8: Computational domains

4 Results

The computed flow field averaged in time and in the spanwisetiim is depicted in Figure 9. Figure 9(a) shows
the average velocity in the main flow direction and Figure) (e distribution of the turbulent kinetic energy.
Behind the square cylinder obstacle, a recirculation regiith a length of about1 D can be seen. Additionally,

k[m#s?: 2 4 6 8 10121416 1820 22 24 26 28 30 32 34 36 38 40 42

Ulmis]: 6-4-20 2 4 6 81012141618202224

(a) Average velocity in the main flow direction (b) Distribution of the turbulent kinetic energy

Figure 9: Flow field averaged in time and in the spanwise tioac

in front of the cylinder and also directly behind it, smalk&condary vortices appear. In front of the obstacle
no significant turbulence is found. The laminar to turbulkeansition is taking place in the shear layer above the
cylinder. Instabilities in this region lead to the formatiof unsteady vortex structures and therefore to an incdease
amount of turbulent kinetic energy.

The vortex formation behind the square cylinder is viswaliin Figure 10. Figure 10(a) shows a snapshot of
pressure isosurfaces and Figure 10(b) timelines basedrtinl@dracing techniques, both at an arbitrary instant
of time. It can be seen very well how instabilities in the shager between the main flow and the recirculation
region evolve to vortices, which become larger while they @nvectively transported downstream. The darker
part of the wall in Figure 10(a) represents the flexible pldaEspecially in the downstream part of the plate the
vortices come close to the plate, which makes an interabitween the flow and the structure likely.

The bending of the plate at an arbitrary instant of time isnsh@ Figure 11. The structural displacement is
clearly dominated by the first eigenmode of the plate. Adddily, a higher eigenmode with a lower amplitude
of displacement can be seen. Both modes are uniform in thenépa direction. The temporal evolution of the
displacement of the point in the middle of the plate is showfrigure 12(a). The first eigenmode of the plate
clearly dominates the amplitude of the oscillation. The Biongbes of the higher frequency is considerably smaller.
The amplitudes of both the first and of the higher eigenmoddrarreasing over time. Possibly, the geometric
linear model used in the structural mechanics computati®m®t suited for the present problem. For future
investigations, the use of a non-linear model should beidersd. The frequency spectra of the displacement and
the velocity of the point in the middle of the plate are pldtie Figure 12(b). The frequencies corresponding to the
two mentioned eigenmodes can be seen as peaks atd0rahd 1380 Hz. The other peaks found in the spectra
correspond to further eigenmodes, which are all homogeneothe spanwise direction. No inhomogeneous
eigenmodes are excited in the present case, although dumm@geneous modes are observed in a modal analysis
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(a) Pressure isosurfaces (b) Timelines

Figure 10: Vortex formation behind the square cylinder abtlst (snapshots at an arbitrary instant of time)

[ T T
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Figure 11: Snapshot of the plate displacement (visuatinaif displacement magnified by a factor of 20)

of the plate.

The coupled computation scheme described above allowgdosdparate determination of flow-induced and vi-
brational sound. The spectral density of the sound predsuet for the two sound components is depicted in
Figure 13. The evaluation considers three angular positionthe boundary of the acoustic computation domain
[see Figure 8(b)]. The aeroacoustic sound predominantwstbroadband noise. Nevertheless, the broad peak
around140 Hz in Figure 13(a) indicates an influence of the structuraveneent on the flow-induced sound. As
the structural movement acts directly as a source for thepatetion of vibrational sound, the same peaks as in
Figure 12(b) can be found in the spectrum of the vibrationahsl [Figure 13(b)].

5 Conclusion

A coupled simulation approach for fluid-structure-acaustteractions was presented, which assumes acoustic
pressures that are low compared with the fluid pressure. siimglification is valid for many of the technically
relevant problems of fluid-structure-acoustic interattidn this case the problem splits into three subproblems,
which can be treated and computed separately: fluid-steidtteraction, fluid-acoustic coupling and structure-
acoustic coupling. A partitioned simulation approach weitimite-volume CFD code for the flow computation and

a multiphysics finite-element code for structural mechsaied acoustics was used. Both are inhouse codes, which
increases flexibility and adaptability. An implicit coupdj between fluid mechanics and structural mechanics
was applied for the simulation of fluid-structure interan8. Computations of flow-induced sound were based
on Lighthill's analogy. The acoustic sources for the inhgemeous wave equation were determined from the
velocity field of the fluid simulation. The evaluated strueldisplacement was used as a boundary condition for
the computation of the vibrational sound. The flow-induced e vibrational sound were computed separately,
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which is a great advantage over experimental methods.

The simulation approach presented was applied to a simphfiedel of a car underbody. The acoustic field due
to the interaction between a thin, flexible plate in the wake wall-mounted square cylinder and a turbulent flow
was investigated. Detailed analysis of the obtained date ggasonable results, which shows the capability of the
simulation approach to treat fluid-structure-acoustierattions. To validate the numerical results, comparisons
with experimental data have to be made in the future.

Acknowledgment

Financial support from the Bavarian Research FoundatiayéBsche Forschungsstiftung, BFS) is gratefully ac-
knowledged.

References
Ahrem, R.; Hackenberg, M. G.; Redler, R.; Roggenbunck, JaClll — Mesh-Based Parallel Code Coupling

Interface. Tech. rep., Institute of Algorithms and ScigntComputing (SCAI), GMD, http://www.mpcci.org
(2003).

263



Davies, H. G.: Sound from Turbulent-Boundary-Layer-EadiPanelsJournal of the Acoustical Society of Amer-
ica, 49, 3 (Part 2), (1971), 878-889.

Durst, F.; Schfer, M.: A Parallel Block-Structured Multigrid Method fthie Prediction of Incompressible Flows.
International Journal of Numerical Methods in Fluid22, (1996), 549-565.

Frampton, K. D.; Clark, R. L.: Power Flow in an AeroelastiatelBacked by a Reverberant Cavilgurnal of the
Acoustical Society of Americ&02, 3, (1997), 1620-1627.

Graham, W. R.: Boundary Layer Induced Noise in Aircraft,tRalhe Flat Plate ModelJournal of Sound and
Vibration, 192, 1, (1996), 101-120.

Howe, M. S.; Shah, P. L.: Influence of Mean Flow on Boundarydrg@enerated Interior Noisdournal of the
Acoustical Society of Americ89, 6, (1996), 3401-3411.

Kaltenbacher, M.Numerical Simulation of Mechatronic Sensors and Actuatminger, 2nd edn. (2007).

Kaltenbacher, M.; Hauck, A.; Triebenbacher, S.; Link, GahB L.: CFS++: Coupled Field Simulation. Tech. rep.,
Department of Sensor Technology, University of Erlangemdiberg (2007).

Lighthill, M. J.: On Sound Generated Aerodynamically — [.n@eal TheoryProceedings of the Royal Society of
London. Series A, Mathematical and Physical Scien2es, (1952), 564-587.

Lighthill, M. J.: On Sound Generated Aerodynamically — lirbulence as a Source of SouRtoceedings of the
Royal Society of London. Series A, Mathematical and PhlySicences222, (1954), 1-32.

Mazzoni, D.; Kristiansen, U.: Finite Difference Method filile Acoustic Radiation of an Elastic Plate Excited
by a Turbulent Boundary layer: a Spectral Domain Solutilow, Turbulence and Combustipf1, (1999),
133-159.

Schafer, F.; Ali, I.; Becker, S.; Kaltenbacher, M.; Escobar,; Mink, G.: Computational Aeroacoustics using
MpCCI as Coupling Interface between Fluid Mechanics, $tmat Mechanics and Acoustics. IRroceedings
of the 7th MpCCI User Foruprpages 98-111, St. Augustin, Germany (February 21-22 2006)

Schéfer, F.; Kniesburges, S.; Uffinger, T.; Becker, S.; Grabmd.; Link, G.; Kaltenbacher, M.: Numerical Simu-
lation of Fluid-Structure- and Fluid-Structure-Acoudtiteraction based on a Partitioned Coupling Scheme. In:
High Performance Computing in Science and Engineer@mginger, Munich (2008).

Tang, S. K.; Leung, R. C. K,; So, R. M. C.; Lam, K. M.: AcoustiadRation by Vortex Induced Flexible Wall
Vibration. Journal of the Acoustical Society of Ameridd8, 4, (2005), 2182-2189.

Vergne, S.; Auger, J.-M.; &ié, F.; Jacques, A.; Nicolopoulos, D.: Aeroelastic Noise.@ Wagner; T. Hittl;
P. Sagaut, edsl,arge-Eddy Simulation for Acousticgages 272—-293, Cambridge University Press, Cambridge
(2007).

Visbal, M. R.; Gordnier, R. E.: Numerical simulation of thet@raction of a transitional boundary layer with a 2-D
flexible panel in the subsonic regimimurnal of Fluids and Structure49, (2004), 881-903.

Zolotareyv, |.: Fluid-Structural-Acoustical Interact®nof a Thin Plate in a Channel with Flowing Fluiimerican
Society of Mechanical Engineerk, (1997), 403-410.

Address:Dipl.-Ing. T. Uffinger, Dr. F. Schfer, Dr. S. Becker, Institute of Fluid Mechanics (LSTM), itkrsity of
Erlangen-Nuremberg, CauerstralRe 4, 91058 Erlangen, Ggrma

email:t homas. uf fi nger @ st m uni - er | angen. de,

frank. schaefer @st m uni - erl angen. de, stefan. becker @stm uni-erl angen. de

M.Sc. J. Grabinger, Department of Sensor Technology (LBEBjversity of Erlangen-Nuremberg, Paul-Gordan-
StralRe 3/5, 91052 Erlangen, Germany

email:j ens. gr abi nger @ se. eei . uni - erl angen. de

Prof. M. Kaltenbacher, Chair of Applied Mechanics, Uniigr®f Klagenfurt, Universiatsstral’e 67-69, 9020
Klagenfurt, Austria

email: manf r ed. kal t enbacher @ni - kl u. ac. at

264



Fluid-Structure Interaction.
Theory, Numerics and Applications
Pp. 265-276

Herrsching am Ammersee, 29.9.-1.10.2008

Projection-based reduced-order model of strongly-coupled fluid-structure
interaction by monolithic space-time modes

A. Zilian, A. Vehre, D. Dinkler

The focus of this work is the development of reduced models for engineering applications in complex bidirectional
fluid-structure interaction. In the simultaneous solution procedure, velocity variables are used for both fluid and
solid, and the whole set of model equations is discretized by a stabilized time-discontinuous space-time finite ele-
ment method. Flexible structures are modeled using a three-dimensional continuum approach in a total Lagrangian
setting considering large displacements and rotations. In the flow domain the incompressible Navier-Stokes equa-
tions describe the Newtonian fluid. A continuous finite element mesh is applied to the entire spatial domain, and the
discretized model equations are assembled in a single set of algebraic equations, considering the two-field problem
as a whole. The continuous fluid-structure mesh with identical orders of approximation for both solid and fluid in
space and time automatically yields conservation of mass, momentum and energy at the fluid-structure interface.
A mesh-moving scheme is used to adapt the nodal coordinates of the fluid space-time finite element mesh to the
structural deformation. The computational approach for strongly coupled fluid-structure interaction is used to
create suitable reduced models of generic nonlinear problems. Reduction is performed with monolithic projection-
based space-time modes, ensuring strong coupling of fluid and structure in the reduced model. The contribution
discusses results using proper orthogonal decomposition (POD) for determination of monolithic space-time modes
in the reduction of fluid-structure systems.

Address: A. Zilian (corresponding author), Institute for Structural Analysis, Technische Universitit Braunschweig,
Beethovenstr. 51, Braunschweig (GERMANY).
email: a.zilian@tu-bs.de

1 Introduction

Numerical simulations of fluid-structure interaction phenomena are still computationally expensive. In this con-
tribution, a methodology for a strongly coupled model with space-time-discretization is described, so that simula-
tions of fluid-structure interaction problems can be carried out using a reduced coupled model. The reduction of
the original model, which is discretized by the space-time finite element method for both continua, is achieved by
projection with space-time modes, i.e. the reduction modes contain a discretization both in space and time, see
Vehre (2006). Numerical examples show that complex fluid-structure interaction problems can be simulated rather
accurately using the reduced model with only few generalized coordinates.

2 Governing equations and space-time weak formulation

The following sections give the mathematical description of the boundary-coupled fluid-structure problem, in-
volving an elastic structure at large deformations and a viscous incompressible fluid in terms of the strong form
equations. The weak form is derived in context of the space-time finite element method and a monolithic solution
approach. The final weak formulation is constructed in terms of velocities for the involved continua, simplifying
the realization of coupling conditions considerably.
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2.1 Strong form of fluid and structure

Structure. The conservation of momentum of a solid body at small strains is described on the material configu-
ration
pov —Vo-(FS)—fh =0 on Qo (D

with density pg and volume force f. The domain Qg = €2y x I refers to the space-time continuum under consid-
eration with the spatial reference domain €2y and time interval I = [t,,t.]. A linear elastic material behavior is
assumed and given in its rate form

Ccl':S—E=o0, )
where S, E and C are 2nd Piola-Kirchhoff stress, Green-Lagrange strain rate and fourth order elasticity tensor,
respectively. The rate of strain at a material point is a function of deformation and velocity state

E(v,u) = % (Vov + (Vov)T + (Vou)"Vov + (Vov) ' Vou) . (3)

Dirichlet and Neumann boundary conditions are defined on the outer space-time boundary Py = I'g x I of the
solid body
v—-v=0 on Fj and to—to=0 on P, 4)

where ¥ and t are imposed boundary velocities and tractions, respectively. Moreover, the dynamic problem at
hand requires the definition of initial values for the velocity state

v(x,t=0)—wv; (x)=0 on Qp 5)

in the spatial domain.

Fluid. The incompressible Navier-Stokes equations are used to describe viscous flow at moderate speeds. Mo-
mentum balance is defined on the current configuration

pvi+v-Vv)—=V.-T—-f=0 on Q (6)
and accompanied by the continuity equation or incompressibility contraint on the velocity field
V:-v=0 on Q. @)
Assuming a Newtonian fluid, the constitutive relation
T =2uD(v) — pI 3

between Cauchy stress state T and the rate of strain
1
D(v) = 5 (Vov + (Vov)") ©)

introduces hydrostatic pressure p and viscosity p of the fluid. Again, Dirichlet and Neumann boundary conditions
are defined on the space-time boundary P = I" x I of the fluid body

v—v=0 on P" and t—t=0 on P! (10)

where ¥ and t are imposed boundary velocities and tractions, respectively. Compatible (divergence-free) initial
values for the velocity state
v(x,t=0) = v, (x) =0 on Qg (1)

are required in the whole spatial domain.

Coupling conditions. Flow domain and structural domain are coupled along the common space-time boundary
R representing the fluid-structure interface. At the interface no-slip conditions are applied, requesting continuity
of fluid and structural velocities

vi—v*=0 on R (12)
ensuring herewith geometrical conservation. Further, in order to fulfill momentum balance at the interface, fluid
and solid interfacial tractions have to be of the same magnitude and opposite direction

dr
tf + d—rots =0 on R. (13)
The referential solid traction t° is projected to the current frame.
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2.2 Weak form

The weighted residual method is applied to the strong form equations of solid, fluid and coupling conditions
presented in the previous section. The resulting weak form of the whole coupled system and the space-time
domain is then discretized using the space-time finite element method, see Argyris and Scharpf (1969), and a time-
discontinuous Galerkin method for integration in time. The basic idea of a space-time discretization is to include
the temporal axis in the finite element discretization. For numerical efficiency the space-time domain ) is divided
into a sequence of NV time slabs Q™ = Q™ X [t,, t,+1], as shown in Figure 1, which are solved successively.

Ip

Figure 1: Discretization of the continuous space-time domain using space-time finite elements.

At time instant ¢,, the energy of the discretized system at the end of the previous time slab ¢ must be equal to the
energy at the beginning of the next time step ¢,". For time-discontinuous approximations of field unknowns this
leads to additional jump terms in the weak form. Moreover, spatial discretizations from ¢,, and ¢,; do not need to
be conforming. For first order ordinary differential equations the resulting time integration scheme is A-stable and
third-order accurate for linear temporal interpolation.

Solid. The stabilized space-time finite element formulation of the structural part (1)-(5) within the time slab Qo ,
including boundaries I ,, reads

6v - po v dQo +/ E(dv,u): S dQ, — ov - £y dQo (14a)

Qo,n Qo,n Qo,n

+> / §S: (C™': S —E(v,u) dQo (14b)

+ [ av(ED) - po(vith) = v(t,) d (14c)
Qo

+37 [ 8S(th) e (St — S(t,) do (14d)
o Jog

+> / Tiz 0V + (po v — divo(FS) — £5) dQo (14e)

- ov - Eo dPQ =0 A 5V, 6S . (14f)
R,

In equation (14) line (a) represents the weak form of the momentum conservation and line (b) fulfills the constitu-
tive law on element level, leading to the mixed-hybrid formulation of (Knippers and Harbord, 1994), where only
the velocities are global degrees of freedom. The jump terms for velocities (c) and stresses (d) satisfy the initial
conditions of the time slab in integral form. The stabilization term, which is needed for wave propagation prob-
lems, is shown in line (e). For the parameter Tjj the definition of (Hughes and Hulbert, 1988) is used. Interpolation
functions for velocities are chosen to be bilinear in space and discontinuous linear in time, while the stress inter-
polation is discontinuous and incompletely linear in space and discontinuous linear in time, see (Hiibner, 2003).
Time integration of the velocities leads to the displacement field u, which is used for computation of the rate of
the Green-Lagrange strain tensor and for specifying the current position of the fluid-structure interface.
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Fluid. The weighted residual formulation of the strong forms of the incompressible viscous fluid (6)-(11) in a
space-time slab @)} using the Galerkin method reads as

/6v-p(v)t+v~VV)th+/D((Sv) :2MDth—/V~(5v)det—/5v-pbth (15a)
QY

QY QY QY

+ [anvovae, (15b)
QY

+ /(5V(t:) cp(v(th) —v(t;))dQ (15¢)
QTL

1
+ Z /(pévyt +pv-V(év) =V -T(0v,dp) - T; (pve+pv-Vv =V T —pb)dQ: (15d)
e QE?

- / ov-tdP, =0 Vv, dp. (15e)

Pn,h

t

Line (15a) represents the weak form of conservation of momentum, fulfilling the constitutive relation for the
Newtonian fluid and the kinematics exactly. The incompressibility constraint is weighted with the variation of the
pressure in line (15b). Line (15c) ensures the consistent transfer of kinetic energy from the previous time slab end
at t,, to the current time slab at ¢,}. The weighted residual form is stabilized by a Galerkin/least squares term,
see Masud and Hughes (1997), of the momentum balance in line (15d). The Galerkin/least squares stabilization
suppresses numerical oscillations in solutions to hyperbolic differential equations by the introduction of additional
numerical diffusion, allowing herewith the application of equal order approximations of velocities and pressure for
the incompressible flow field. The stabilization parameter 7 is determined for each element e using the definition
given by Tezduyar et al. (1992). Neumann boundary conditions can be imposed in a weak sense by (15e), while
(10) is treated a priori as an essential boundary condition.

Fluid-structure coupling. The space-time finite element formulation of the coupling conditions (12)-(13) uses
boundary traction variables on the interface in order to fulfill momentum conservation and geometrical continuity
between structure and fluid in integral form, see Hiibner et al. (2004). In particular, the velocity values of the
Dirichlet boundary conditions of the fluid are substituted by structural velocities and the fluid boundary tractions
act as surface loads onto the structure
F F_ S F 4 F s dly g
ot -(v —v)dP— ov:-t"dP — ov -(—(H‘t>dP0. (16)
Pc Pec B)C 0

The tractions are projected onto the reference configuration and change their sign, since the unit outward normal
vectors of fluid and structure are of opposite directions.

As an alternative, one may use direct coupling of fluid and structural velocity degree of freedom in case of fitting
mesh discretizations along the common fluid-structure interface. This enables the feature of an unconstrained
formulation in terms of the coupling conditions and improves efficiency in the numerical solution.

Monolithic system of equations. The monolithic discrete form of fluid, structure, and coupling conditions of
one space-time slab results in a single equation system, shown in Figure 2 (depicted without pressure) and therefore
allows the analysis of the strongly coupled system.

The resulting highly nonlinear system — describing both fluid and structure — is solved by a Picard iteration scheme
in terms of secants.
Ax )X} =bx""") (17

Nonlinearities in the coefficient matrix A are due to nonlinear kinematics of the structure, the convection and
stabilization terms of the fluid and the motion of the fluid space-time mesh. In the considered applications, the
iteration scheme reaches the coupled monolithic solution to a time slab within 3 to 4 steps. Within each nonlinear
iteration step ¢ the monolithic linear system of equations is solved by an ILU(k)-preconditioned GMRES solver
with restart 50.
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Figure 2: Structure of algebraic system: use of Lagrange multipliers (left) and native velocity coupling (right).

For an in-depth description of the design and implementation of the space-time finite element method for fluid-
structure interaction, the interested reader is referred to the following publications: Walhorn (2002); Hiibner
(2003); Hiibner et al. (2004); Walhorn et al. (2005); Kolke (2005); Hiibner and Dinkler (2005); Zilian and Legay
(2008), where the eligibility of the monolithic space-time finite element method for strongly coupled fluid-structure
interaction problems is demonstrated and validated on a number of applications in aero- and hydro-elasticity.

3 Modal reduction of strongly-coupled fluid-structure interaction

Due to requirements of resolving boundary layers, detachment and vortex shedding sufficiently correct, the dis-
cretization of fluid-structure interaction problems results in large-scale algebraic systems. As a side effect of refined
meshes around flow-immersed structures, one increases the band of higher frequencies in the solution spectrum
of the coupled problem. Concerning efficient and stable solution procedures this behavior is not desirable and in
terms of the physical phenomena also not necessary for a number of fluid-structure problems.

The key of modal reduction methods is to filter out less important information in the solution space to a given
problem. For fluid-structure interaction this relates to identification of major interaction effects for a nonlinear
problem at hand and to build an efficient reduced problem-dependent model of predefined accuracy to the unre-
duced physics. Projection-based system reduction is focused on lowering the need to computational resources
(memory and computation time) by making the transition from a large number of (nodal) natural degrees of free-
dom to a small number of generalized degrees of freedom. Together with domain-wide specified basis functions
(modes) the generalized coordinates should be able to approximate the system behavior. This approach is espe-
cially advantageous if a system has to be investigated numerically for a number of different modes of excitation
resulting in qualitative similar responses.

3.1 Projection-based modal reduction

The monolithic nonlinear discrete system in Eq. (17) describes the coupled behavior of the full fluid-structure
system in terms of the natural degrees of freedom x* = [¥1 91 pT] (velocities and pressure). In a projection-
based reduction approach the approximation space V" of the natural solution of discrete dimension M is projected

to the lower-dimensional space of the generalized basis P"
x = Py, (18)

where y is the vector of N generalized degrees of freedom and P = [p; p2 ... pn] contains the associated
reductions vectors (projection modes) column-wise. The minimum requirement to the set of reduction vectors is
linear independency. If the behavior of the fluid-structure model is mainly governed by large coarse-scale coherent
structures in fluid and solid, one usually choses N < M. While within the fluid energy is dissipated on the
small scales, large-scale effects contain the majority of kinetic energy, allowing good representation of dynamic
fluid-structure phenomena.

The residual of the discrete natural weak form to the monolithic fluid-structure formulation is transformed in terms
of a Bubnov-Galerkin projection

P” A(Py) Py = P” b(Py) (19)
leading to the much smaller set of only NV discrete equations
A(y)y =b(y). (20)
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The choice of the reduced basis is of great influence on the properties of the reduced system. If the modes are
orthogonal with respect to the unreduced coupled coefficient matrix A, the reduced system will be de-coupled
(diagonal) and each equation could be integrated in time independently as long as the system behavior is linear.
In case of nonlinear equations as for the fluid-structure problem at hand, the reduced system is fully coupled. The
changing characteristics of the system before and after modal reduction are summarized in Figure 3.

’ dimension M ‘ — ’ dimension NV ‘
’ coupled equations ‘ — ’ coupled or uncoupled equations ‘
’ dof with different physical meanings ‘ — ’ generalized coordinates in energy form ‘
’ ansatz functions locally supported ‘ — ’ global modes ‘
’ arbitrary nonlinearities ‘ — ’ direct or approximated nonlinearities ‘

Figure 3: Comparison of characteristics of the discrete equations of the original (left) and reduced model (right).

3.2 Monolithic space-time modal reduction of coupled problems

With traditional modal reduction one discretizes the weak form of the model equations in space first and then
performs the reduction step. The resulting system in terms of the vector of generalized coordinates is then evolved
in time, see Clough and Penzien (1975). Using the proposed space-time finite element discretization of the fluid-
structure problem, the reduced basis is defined in space-time and together with the generalized coordinates already
covers time-dependent effects. This space-time view of modal reduction to fluid-structure interaction may incor-
porate changes of the fluid domain due to structural response in terms of mesh-motion techniques more easily.

The non-reduced monolithic space-time system of equations can be written for time slab n as
A(x",g")x" =b(x"",g"), @n

where g denotes dependency on the current geometry of the space-time mesh. Considering a block Gauss-Seidel
iteration scheme to resolve mesh deformation and quadratic nonlinearities introduced by the convection term in
the weak form of the Navier-Stokes equations, one obtains

onn + Alx" = bo + Boxnil. (22)

Introducing equal reduced test and trial spaces P" with the Bubnov-Galerkin approach in Eq. (18) together with a
vector of generalized unknowns y, the reduced discrete weak form transforms to

sy" (PTAP y"+PTAP y" —PTby —P'BPy" ') =0. (23)

Each entry y; in the vector of generalized coordinates y describes the participation factor of the associated global
space-time mode p; and therefore all influences to the combined solid and fluid state (velocities and pressure)
simultaneously. Monolithic reduction modes inherently ensure strong coupling of fluid pressure and velocity as
well as structural velocity. The matrices Ay = Ag(x" 1), A; = A1(x") and By = Bg(x"™!) follow directly
by projection of the weak form and are stored for computation. Reduction and global assembly are performed
matrix-free on the element level. Thus, the total reduced fluid-structure equation system is N X N and can be
solved nearly in real-time without large storage requirements.

3.3 Generation of the reduced space-time basis: Proper Orthogonal Decomposition (POD)

The choice of the reduced basis impairs the quality of the reduced solution to the fluid-structure interaction problem
considerably. Therefore, the projection matrix P has to be filled with appropriate basis vectors, where a good
method of determination strongly depends on the character of the underlying set of partial differential equations,
involved nonlinearities, the reduction approach itself, and the type of excitation. Within the presented framework
the focus is on the determination of basis vectors taking advantage of the monolithic space-time formulation of the
problem and enabling herewith a uniform approach to modal reduction of fluid-structure interaction.
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The method of Proper Orthogonal Decomposition (POD), which has been successfully applied to fluid and solid
body dynamics, enables efficient extraction of coherent structures from experimental and simulation data. The
method of snapshots in the POD, see Sirovich (1987), allows the generation of a reduced basis for nonlinear
problems by the use of existing representative computational results. Therefore, the snapshot approach is well
suited for quasi-steady and slightly transient response of a coupled system.

The non-orthogonal data snapshots of a representative time interval ¢g,, pj, are collected in a matrix of dimension
M x K

R=[ry rar3 ... rgl, (24)

where r; is a space-time solution vector of the monolithic fluid-structure system in Eq. (21) and K < M. The
temporal distance between the snapshots has to be large enough to ensure a set of uncorrelated snapshots. For
orthogonalization, the eigenproblem

1
(ERTR—)\Z-I)qi:O i=1,..., K. (25)
is solved and the resulting K eigenvectors are used to generate the set of basis vectors for model reduction

p: = Raq;. (26)

A common mode selection criterium is the relative magnitude of the associated eigenvalues, determining the energy
contained in that mode during the snapshot phase. In the examples presented in the next section, only a fraction
of the K snapshot-generated projection vectors is used for efficiency. In contrast to other POD-based reduction
methods, the mean flow is not to be subtracted from the snapshot input data, such that the sum of the eigenvalues is
not zero but equal to the total energy contained in the mean flow. The POD therefore delivers the mean flow basis
vector as the mode of largest energy.

4 Examples
4.1 Cavity flow with compliant bottom

An incompressible fluid in a quadratic cavity is set in motion by a harmonic excitation at the top as specified in
Fig. 4. No-slip boundary conditions apply at the side walls and along the interface to the compliant structure
at the bottom. The fluid develops a harmonic cavity flow with changing sign of the velocity components. With
Q = 10 rad/s the excitation period, and therefore the period of the flow motion, is 7" = /5 s. The fluid has
density py = 1 kg/m?® and dynamic viscosity u = 1 kg/m/s leading to a Reynolds number of Re = 1. The elastic
structure is of Youngs modulus E = 1.5 - 10~* N/m?, Poisson ratio v = 0.35 and density ps = 1073 kg/m3.
Point A (2/3,0) is used to compare full and reduced solutions to the coupled fluid-structure system in terms of
the motion of the membrane structure. The fluid domain is coarsely discretized by 12 x 12 elements. A matching
fluid-structure interface mesh is obtained by using 12 x 2 solid elements for the membrane-like structure. The time
step size At = 0.01 s is chosen according to the period 7" of the excitation.
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Figure 4: Driven cavity with compliant bottom: system definition, resultant reduced velocity and pressure fields.

In a time interval of ts,p;, = 1.6 s 10 snapshots are taken at each 16th time step and the POD is performed.
The snapshot phase (SnPh) is identical to 2.5 times the period of excitation. The choice of a non-integer multiple
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excludes unwanted special situations affecting the modal reduction in space-time. The mean flow, averaged over
one period, is zero due to the symmetry of the system. All generalized coordinates of the reduced coupled system
are free, since boundary conditions are incorporated by the set of reduced basis vectors. Inspection of the eigen-
value spectrum of the POD underlines, that a pair of modes is dominating but not the mean flow mode. Figure 4
shows at the right the velocity fields of the first and third space-time mode column-wise and the pressure field of
the first mode is depicted in the third column. The upper row gives the ¢, -state at the beginning of the space-time
slab, while the bottom row shows the state at , ;. The membrane displacements are magnified for illustration.
In the fluid domain and close to the membrane structure the interaction effect of fluid and structure is reflected by
increased pressure differences compared to the situation with a fixed bottom.
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SnPh /-
? 0.002 -
1=
£
o 0.000 -
o
© I
% -- with 1 mode
= — with 2 modes
0 -0.002 — not reduced ]
-0.004 - \/ ‘ \/ ‘ B

6.0 znﬁ 8.0 Time 5

Figure 5: Driven cavity with compliant bottom: motion of point A, comparison of full and reduced computation.

Modal reduction is performed according to Eq. (23). Figure 5 shows a comparison of the results obtained for
membrane vertical displacement at point A using one and two space-time modes. Using only one mode leads to
an almost phase-correct but a non-symmetric diffusive reduced solution. If two space-time modes are used for
the modal reduction, the reduced solution of just 2 degrees of freedom meets the non-reduced solution to the full
system consisting of 5,766 unknowns.

The example shows that the strong coupling of both continua is well represented in the reduced model. While the
structural displacements remain small and most of the energy is related to the fluid, the overall structural behavior
is very good approximated. Without monolithic modes for the modal reduction this result is hardly to achieve.

4.2 Vortex-induced vibration of a plate

The following example discusses the application of the proposed reduction method to the fluid-structure benchmark
situation proposed by Wall (1999). This coupled problem involves strong interactions of an incompressible fluid
and a plate-like structure, where depending on initial tip displacements different and not always quasi-steady
solutions are obtained. The reduction method must be able to project the complex system behavior onto the
reduced model.

[ set | E [ v ]
(@ [ 2.5-10"N/m? [ 0.35
() | 2.5-10° N/m? | 0.35

Table 1: Parameter sets for the elastic plate structure.

A thin and slender structure is located in the wake of quadratic bluff body in such a way, that it is excited due to
continuous vortex shedding. Figure 6 shows the geometrical system setup and its discretization by finite elements.
The spatial mesh consists of 8,338 fluid elements and 136 structural elements which leads to a total of 52,766
equations of the full monolithic space-time discretization. Based on this discretization, a numerical reference
solution is available in Walhorn (2002) and allows the determination of the quality of the reduced solution. The
inflow velocity is of ¥, = 31.5 cm/s. With the dynamic viscosity p = 1.82 - 1074 g/cm/s and a fluid density
ps = 1.18-1072 g/cm? the Reynolds number of the flow problem is Re = 204. Two different parameter settings,
see Table 1, are investigated for the elastic structure at plane stress and of constant density ps = 0.1 g/cm3.
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The time step size At = 0.005 s is chosen according to the Strouhal number associated with the vortex shedding
phenomenon.
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Figure 6: Vortex-induced vibration of plate: system definition and mesh of full discretization.

Parameter set (a). Due to the stiff structure in parameter set (a) small structural displacements and small mesh
deformations indicate limited influence of nonlinear behavior in the system. Figure 7 shows the tip displacement
in the time interval and the dominance of 2 frequencies in the oscillation. The interval of the snapshot phase is
chosen ts, prn, = 1.0 s and every 10 time steps a total of 20 snapshots is taken for generation of the reduced basis,
such that one period of the low-frequency range is covered. In Figure 8 the first three ;7 -modes are shown in terms
of the velocity state (left) and pressure state (right). The mean flow is not subtracted from the snapshots.
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Figure 7: Vortex-induced vibration of plate (a): tip displacement and choice of snapshot phase / small deformations.

As in the previous example the method of reduction given by Eq. (23) is used with monolithic modes and reduced
coupled system matrix. In the right of Fig. 7 the tip velocity of the not reduced and the reduced solution using
10 modes is compared. The amplitude for both computations is nearly equivalent and the reduced solution is
governed by only a few lower frequencies. The reduction method is able to capture the phenomena of vortex
shedding and plate vibration. The displacement solution underlines accumulation of errors in the reduced solution
to the structural velocity state. The deviation can be lowered by increasing the number of space-time modes in the
basis used for reduction.

Parameter set (b). The transient tip displacement is much more complex in this setting than for parameter set
(a), see left in Figure 9. An analysis of the frequency spectrum shows that more than two frequencies dominate
the structural response due to interaction with the fluid. Therefore, the POD snapshot phase is chosen larger with
tsnphr = 2 s and a total of 20 snapshots is taken every 20th time step. Figure 9 (middle) compares the tip velocity
of the plate for the not reduced system to the reduced solution using the first 13 space-time modes. The reduction
method is able to capture the system behavior until ¢ = 3.3 s quite well, but afterwards deviates from the reference
solution. The same holds for the horizontal velocity in point A given in Figure 9 (right). For the system governed
by various dominant frequencies the complex behavior is not well projected to the reduced model by the chosen
POD snapshot method and parameters due to higher-order nonlinearities introduced by large mesh deformations,
and these issues are in the focus of ongoing research.
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Figure 8: Vortex-induced vibration of plate (a): first 3 modes (velocity, pressure) of reduced model.

5 Conclusions

In this work a modal reduction method using space-time modes for strongly coupled fluid-structure interaction
problems is investigated. Taking a verified and validated monolithic space-time finite element model as a basis,
projection-based reduction is performed on all terms of the weak form of governing equations up to second order
using monolithic space-time modes of a time slab. Evolution of the reduced solution in time is not necessary, since
transient effects are already incorporated by the chosen space-time reduction basis. The snapshot method of the
Proper Orthogonal Decomposition is used for generation of the reduction basis. For convection-dominated fluid
dynamics pairwise conjugated space-time modes are generated, representing phase-shifted coherent structures that
positively affect the projection of the convective terms in the weak form. The single mean flow mode is part of
the POD-generated basis. Application of the reduction method to fluid-structure interaction problems involving
vortex-shedding at small structural displacements shows good agreement with the full solution even if only a small
number of modes are used for reduction.
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