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Abstract

Motivated by the heterogeneity of today’s world of wireless communications, there is a

growing demand for terminals supporting different services and applications over a vari-

ety of networks. Reconfigurability is a key ingredient of such terminals in order to deliver

optimal quality of service over diverse communication environments. We consider a recon-

figurable baseband receiver architecture which is capable of dealing with signal formats

from different existing and future air interfaces. The receiver employs signal processing

in the time-frequency (TF) domain implemented by Discrete Fourier Transform (DFT)

filter banks, which is a generalization of the block-wise frequency domain processing in

orthogonal frequency-division multiplexing (OFDM) receivers.

The most challenging task for the reconfigurable receiver design is to handle dispersive

channels in a uniform way when processing signals from different air interfaces. In cyclic

prefix based OFDM systems the diagonalization of the time-invariant channel facilitates

the practical implementation. We propose a TF domain channel diagonalization ap-

proach, which offers similar advantages as the aforementioned channel diagonalization in

OFDM systems and, at the same time, can be applied to arbitrary types of signals. A

central issue in the approach is the choice of a suitable so-called Gabor window function

used for TF signal representation. Some properties of the overall approach, namely the

freedom in the choice of the aforementioned Gabor window function and its scalabil-

ity in time and frequency, facilitate the handling of diverse signal types. Furthermore,

the design can be adapted to radio channels with different delay and Doppler spreads.

We establish a general mathematical framework for window optimization minimizing the

mean-squared sample error caused by the channel diagonalization under the assumption

of a wide-sense stationary uncorrelated scattering impulse response of the considered wire-

less channel. With an enhanced scheme for the parameterization of tight Gabor frames,

the design of the window function defining paraunitary filter banks is formulated as a

convex optimization problem.

Finally, a matched filtering/equalizer based baseband receiver architecture employing the

TF channel diagonalization is proposed which can be considered an important component

for application in future reconfigurable radio systems. The bit-error rate performance

and the computational complexity of the receiver are analyzed for the downlink in the

universal mobile telecommunications system terrestrial radio access (UTRA) with direct-

sequence spread-spectrum signalling (DSSS) and frequency division duplexing.
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Chapter 1

Introduction

1.1 Motivation

Wireless communications has become an inherent part of our everyday life and is still an

active area of research and development. The area of wireless communications comprises

a variety of different systems. The latter include, for example, satellite systems, cellular

radio like the universal mobile telecommunications system (UMTS), radio access sys-

tems like Worldwide interoperability for Microwave Access (WiMAX) and wireless local

area networks (WLANs), digital video broadcast (DVB), short-range radio like Blue-

tooth, wireless body area networks, sensor networks and others. The large number of the

aforementioned systems and advanced wireless systems to be expected in the near future

motivate a trend towards reconfigurable devices with multi-standard capabilities.

The growing demand of making terminals more flexible and adaptive, which can cope

with today’s and future air interfaces in an integrated fashion, comes from the following

aspects. First of all, for different regions such as Europe, North America, and Asia, there

are different wireless standards and spectrum allocation schemes employed. Secondly,

when the users are able to access two or more systems with a single device in an efficient

and seamless manner, they can freely choose different services and applications provided

by such systems. Thirdly, compatibility with the existing standards and the upcoming

ones should be ensured from an economic point of view. For example, terminals of a
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18 Chapter 1. Introduction

third-generation (3G) network like UMTS are designed to also support second-generation

(2G) networks like e.g. the global system for mobile communication (GSM) and to allow

seamless dual-mode operation. Such devices play an important role in the transition

period until the old standard is fully replaced.

A terminal which is able to operate independently of the specific environment is referred

to as universal. With regard to the technology of universal terminals, the software-defined

radio (SDR) concept is a presently popular approach towards reconfigurable system ar-

chitectures for wireless networks and user terminals. The basic concept of SDR is to

introduce flexible terminal reconfiguration by replacing radios completely implemented

in hardware by ones that are configurable or even programmable in software [4, 5]. The

SDR concept includes not only signal processing issues in the complex baseband like vary-

ing sampling rates, different filtering schemes and modulation/demodulation as well as

encoding/decoding schemes, but also reconfiguration in the radio frequency (RF) front-

end and in protocol layers above the physical layer (PHY). Clearly, these layers comprise

radio resource management, networking issues and applications and services which lend

themselves to a pure software implementation.

Reconfigurable systems require different support mechanisms to allow for dynamic air

interface operation at the PHY [4]. The PHY of a wireless terminal usually contains the

blocks for source and channel coding/decoding and the baseband system which is coupled

via analog-to-digital (ADC) and digital-to-analog (DAC) converters, resp., with the RF

front-end terminated by the antennas as shown in Fig. 1.1.

Ideally, the RF front-end of a reconfigurable system should be capable of fulfilling the

RF specifications of the corresponding systems and, at the same time, be tunable over

a wide range of frequency bands. In [6], RF front-end architectures and technologies for

reconfigurable systems are discussed with applications to UMTS and WLAN standards.

Apart from the flexible front-ends, an efficient baseband implementation of the PHY

plays the key role in the design of universal terminals. The objective of the baseband

reconfiguration of SDR is to adapt the functionality of the baseband transceiver chains.

This means that the digital signal processing algorithms making up these chains are to

be adapted so that their post-reconfiguration functionality satisfies the corresponding
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Figure 1.1: Typical signal processing blocks in the PHY of a wireless transceiver [4].

specifications [7]. Here, we concentrate primarily on the digital signal processing aspects

of the receive baseband processing chain, which includes modulation/demodulation, signal

detection algorithms, equalizers, etc. It is envisaged that baseband reconfigurations may

involve a change in modulation, channel description, etc. This may be necessary if the

terminal is to be reconfigured to support a different standard than the one currently in

use.

Devices supporting multiple air interfaces in the form of parallel implementations of the

baseband systems are widely available. In case of a parallel implementation, each sepa-

rate wireless interface can be optimized within the supported standard and designed to

include a dedicated set of functional blocks. The air interfaces encountered in today’s

access networks include single-carrier, spread-spectrum or multi-carrier modulation and

are combined with different multiple-access schemes. Therefore, the parallel implemen-

tation of common modem functions for an increasing number of wireless interfaces to be

supported becomes more and more inefficient which is particularly critical for portable

terminals with their usually strict limitations in power consumption and required large

stand-by times.

In view of the still increasing number of wireless standards, a more future-proof design

approach is to adopt integrated solutions which can be implemented by a monolithic

receiver architecture and which are capable of dealing with different signal formats. A
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monolithic receiver enables a uniform processing of different signals by means of reconfig-

urable multi-purpose signal processing units. Reconfigurability is attained by a limited

set of parameters that determine the operations of the receiver components. The use

of fixed, efficiency-optimized signal processing components for the signal expansion, de-

modulation, channel estimation and decoding is expected to enable real-time operation.

However, many technical challenges remain in designing reconfigurable receivers with a

performance being sufficient for supporting future wireless applications.

1.2 State of the Art

The design of reconfigurable systems aims to provide a common platform for multiple air

interfaces [4]. The Fourth Generation Mobile Forum, the Wireless World Research Forum,

the Information Society Technologies (IST) project Transparently Reconfigurable Ubiq-

uitouS Terminals (TRUST) [8] and the IST program Network of Excellence in Wireless

COMmunications (NEWCOM), among others, are all targeted to promote the integration

of different evolving and emerging wireless access technologies into a common flexible and

extendable platform, so as to provide multiple possibilities for current and future services

and applications within a single terminal [9]. The European research project Flexible

Integrated Radio Systems Technology (FIRST) shows that it is feasible to deploy intel-

ligent multi-mode terminals via SDR technologies, capable of operation with multiple

standards, with the ability to deliver multimedia services to mobile users [10]. Most of

the SDR literature [4, 11] focuses on flexible radio front-ends, higher layer issues such as

radio resource management, and architectural concepts. For the baseband system of the

PHY, a pure SDR system usually has a list of baseband modules with various functional-

ities and implementing different algorithms. A piece of software needs to be downloaded

to the terminal when handling the signal from a new air interface. For the signal demod-

ulation and decoding, some form of hardware acceleration seems inevitable in view of the

high complexity. Rather than by means of software download, reconfigurability can be

enabled through parametric control of fixed receiver elements [12]. This is the concept we

advocate in this work, with the fixed elements being filter banks (FBs) and Fast Fourier

Transform (FFT) algorithms.
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The transform of time-discrete signals into the time-frequency (TF) domain can be ac-

complished by Discrete Fourier Transform (DFT) FBs, for which similarly efficient FFT-

based implementations are available as for plain DFTs [13]. Originally proposed for the

application in speech compression, FBs are used for image processing, and more recently,

in digital communication systems. Some of the latter applications include the design of

oversampled modulated trans-multiplexers with perfect reconstruction (PR) FBs [14], FB

precoding for channel equalization [15], the design of channel coding [16], blind equaliza-

tion in wireless channels [17], and most importantly, generalized multi-carrier modulation

in wireless communications [18, 19]. The DFT-based signal representation in conventional

orthogonal frequency-division multiplexing (OFDM) receivers can be viewed as a special

case where the prototype of the FBs has a rectangular shape. The block-wise Fourier

transform used in OFDM is adequate only for signal processing in the context of linear

time-invariant (LTI) systems, which preserve stationarity during the cyclic extensions of

OFDM signals, but lacks desired frequency resolution in cases of linear time-variant (LTV)

systems. Better results in this respect are obtained by FBs if based on a smoothly shaped

analysis/synthesis window. Different analysis/synthesis windows of the aforementioned

reconfigurable receiver can be tuned to the different standards to be supported.

A large amount of work has been done on FB design in the context of generalized multi-

carrier/multi-tone modulation in wireless/wired communications. Replacing the block-

wise inverse DFT and DFT in the transmitter and receiver, resp., leads to more general

FBs which allow for operation without the rigid framework of rectangular windows and

cyclic prefixes (CPs) in OFDM systems [20, 21]. Interference between adjacent sub-bands

or multi-carrier symbols can be avoided, or at least substantially limited, by choosing

appropriate transmit pulses. In [22], DFT FBs are designed to minimize interference, and

good pulses for both transmitting filters and receiving filters are presented. At the receiver

end the advantages over conventional OFDM include reduced susceptibility to Doppler

spreads, frequency offsets, and phase noise [23]. Suitable detection methods for non-

orthogonal multi-carrier signaling are discussed in [20, 24], while FBs for transmission over

dispersive channels with limited inter-channel and inter-symbol interference are designed

in [19, 25, 26]. In this work we are concerned with FB design for channel diagonalization
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of doubly dispersive wireless channels, which is an important aspect for our design of the

reconfigurable receiver.

As we know, the most difficult challenge for the design of a universal baseband receiver

architecture is the signal distortion caused by the delay and Doppler dispersive radio

channel as explained below. A signal propagating through a wireless channel experi-

ences random fluctuations in time if the transmitter, receiver, or surrounding objects

are moving, which is termed time selectivity or Doppler dispersion of the radio channel,

respectively. Simultaneously, the multipath propagation leads to delay dispersion or fre-

quency selectivity, respectively. Such channels are usually regarded as doubly dispersive

in both delay and Doppler frequency. Hence, the characteristics of the channel makes

it difficult to design reliable systems with guaranteed performance. For dealing with

signal dispersion, fundamentally different approaches are followed in traditional radios

depending on the type of modulation and bandwidth. Receivers for single-carrier signals

typically model the channel as a tapped delay line [27]. From the appropriate coefficients,

denoted as q0, . . . , qD in Fig. 1.2, the information in the transmitted signal can be recov-

ered by means of a matched filtering followed by a sequence detector or using instead an

equalizer followed by a simple detector [28]. Such a time domain channel model is often

· · ·

· · ·

z−1z−1z−1

q0 q1 qD

tapped delay line model

input

signal

signal

output

Figure 1.2: Representation of mappings by radio channels: time domain model.

used in Code-Division Multiple Access (CDMA) [29]. The complexity of the coefficient

estimation and detection schemes increases with the delay dispersion and thus with the

number of taps. OFDM can evade the need for complex equalizers in high data rate

systems with a frequency domain channel model [30]. The cyclic extensions in OFDM
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signals and the frequency domain channel model facilitate a diagonalization of the chan-

nel operators. In the case of sufficiently underspread channels, this scheme approximately

diagonalizes the time-variant multipath channel. This channel diagonalization enables

straightforward demodulation and coefficient estimation and has, along with the avail-

ability of FFT algorithms, led to the popularity of OFDM. Indeed, there are numerous

applications of OFDM which range from digital audio and video broadcasting to WLAN

standards.

While the concept of OFDM receivers requires a CP and a transmission over essen-

tially time-invariant channels, these limitations can be overcome by resorting to alter-

native signal representations, in particular so-called TF signal representations. Most

time-frequency representations (TFRs) are time-variant spectral representations which

are conceptually similar to a musical score with the time running along one axis and in-

stantaneous frequency along the other axis [31]. This kind of signal decomposition plays

an important role in mathematics, physics and engineering [32]. One of the most inter-

esting applications of TFR is in the area of wireless communications. For a linear signal

space, which is a collection of signals such that any linear combination of two elements

is again an element of the space, we consider the subspace L2(Z) which is equipped with

an inner product. While the Fourier transform is adequate for the analysis of stationary

signals, TFRs are often more appropriate for revealing the TF characteristics of transient

signals. There are two main classes of TFRs, namely quadratic TFRs and linear TFRs.

Linear TFRs, which include the short-time Fourier transform, the wavelet transform [33],

and the Gabor transform [34], are of prime interest since they obey the superposition

principle.

In [35], it is shown that signal analysis and synthesis via Gabor frames are efficiently

implemented by DFT FBs while tight Gabor frames are related to paraunitary FBs.

We concentrate on tight frames, which are the generalizations of orthonormal bases [36],

and the corresponding paraunitary FBs. Optimal FBs may be found for certain con-

straints, namely when the design problem can be formulated as a convex optimization

(CO) problem [26], as in [37] for the design of a two-channel multirate FB. CO meth-

ods are also employed in [38] for the design of pulse shapes which minimize inter-carrier
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interference due to frequency offsets in OFDM systems, in [39] for the design of proto-

type filters for filtered multi-tone modulation used in digital subscriber line systems, and

in [40] for the design of FBs for sub-band signal processing under minimal aliasing and

induced distortion. Semidefinite programming (SDP), a branch of CO for which efficient

numerical solution methods are available, has been employed in [41] for the design of a

linear-phase prototype filter with high stop-band attenuation for cosine-modulated FBs.

In [42], two-channel FBs are optimized by SDP where the optimization is based on similar

objective functions as in [41]. The optimization of orthonormal FBs for noise-suppression

applications via CO is discussed in [43].

1.3 Thesis Contribution

The main subject of the thesis is the design of a reconfigurable baseband receiver archi-

tecture with multi-standard capabilities. The baseband receiver supports air interfaces

defined in various standards and standard extensions, and it is adapted to different air

interfaces without the need of software download, which can be viewed as an alternative

to SDR. Furthermore, it can be easily upgraded to future standards and even person-

alized communications where the involved peers of the communication link, rather than

a wireless standard, define the signalling parameters (user-defined modes). In fact, the

adaptability of the receiver can also be attained in response to changing environmental

(channel) characteristics and interference phenomena.

The configuration to different modes is achieved by representing each mode uniquely

using a corresponding set of parameters. The choice of parameters describing each mode

translates the corresponding operational requirements into a corresponding reconfigurable

receiver architecture. The proposed baseband receiver has a fixed overall structure, thus

maintaining the efficiency and compactness of hardware. Moreover, with the parametric

control, we can typically attain a flexibility similar to a SDR approach.

Fig. 1.3 shows the related concepts for designing the reconfigurable receiver. The four

blocks illustrated in the figure are different aspects investigated in this thesis, which are
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 TF channel

diagonalization

efficient FB

implementation

parameterization of

tight Gabor frames

window design

via CO

parametrically controlled

reconfigurable baseband receiver

Figure 1.3: Related concepts for the design of a reconfigurable baseband receiver.

required for a reconfigurable baseband receiver design. Among them, the most impor-

tant concept is the channel diagonalization model in the TF domain based on Gabor

theory of signal representations, which allows signal receptions over doubly dispersive

channels to be processed by the receiver. The natural choice for the signal transform

is the time-discrete Gabor expansion [44] based on a system of TF shifted versions of a

certain window function. Even though this TF domain channel diagonalization is approx-

imative in the general case of time-variant channels and aperiodic signals, for the typical

underspread channels encountered in mobile radio scenarios, the inherent model error can

be limited to a usually acceptable level by choosing an adequate window underlying the

signal transform [45, 46].

Another essential aspect is the design of optimized windows underlying the FBs of dif-

ferent channel characteristics. By extending the work of parameterization of tight Gabor

frames in [47], we constrain the DFT FBs to be paraunitary. We use time and TF domain

errors of the channel diagonalization as objective functions. With the PR condition of

the paraunitary FBs transformed to the time domain, the design of paraunitary FBs is

formulated as a CO problem involving suitable relaxations. Although CO methods are

widely employed for the design of different types of FBs [39, 40], our contribution is the

use of CO methods for the design of paraunitary FBs minimizing the aforementioned TF

channel diagnolization error.
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Finally, a reconfigurable architecture of the baseband receiver has been developed which

makes use of FBs for the sake of efficient signal synthesis and analysis. The parametric

configurations of the signal processing units of the receiver associated with certain modes

are discussed, together with the performance evaluation and complexity analysis.

1.4 Outline of the Thesis

In Chap. 2, the mathematical concepts of the TF representation and processing of signals

are introduced. Oversampled DFT FBs with PR capability are characterized in the

polyphase domain. For paraunitary FBs, the window function defining a tight Gabor

frame is properly parameterized. The signal transform associated with time-discrete

tight Gabor frames fulfills Parseval’s identity. This property is crucial for reconfigurable

receivers as it lets the correlation between two time domain signals be computed based

on the respective TF signal representations.

A TF channel diagonalization is proposed in Chap. 3, where we model the signal distortion

in wide-sense stationary uncorrelated scattering (WSSUS) channels in a way compatible

with the Gabor expansion. A main concern of this chapter is the design of tight Ga-

bor frames facilitating TF domain channel diagonalization with minimal model error for

given channel conditions. More specifically, we minimize the mean-squared error (MSE)

resulting from the diagonalization of random channels with known second-order statis-

tical properties, complying with the WSSUS model. Window functions minimizing the

MSE appearing in both the TF and time domains are obtained via CO. Finally, the opti-

mized window functions are presented for different scenarios and their MSE performance

is investigated.

Chap. 4 describes a reconfigurable baseband receiver employing the TF domain channel

diagonalization presented in Chap. 3. It is shown that the proposed receiver can be

configured to both matched filtering and equalizer based receivers. Oversampled DFT

FBs discussed in Chap. 2 are important elements of the reconfigurable receiver since

they allow the signal processing to be accomplished in the TF domain. The receiver
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architecture is addressed with a description of each functional block. Moreover, the

channel estimation and detection algorithms are described in detail.

In Chap. 5, the baseband receiver configurations for signals from different legacy systems

are shown, e.g. for OFDM and UMTS signals. In particular, the receiver configuration for

UMTS signals is discussed in detail, where the optimized window is adapted to different

channel characteristics, and the performance is compared against a conventional matched

filtering receiver. Furthermore, some of the related issues of the multi-mode transceiver

investigated in the European project Universal RAdio-link platform for efficieNt User-

centric accesS (URANUS) conducted from 2006 until 2008 are summarized.

Chap. 6 gives a summary of the thesis and an outlook to some further research activities.

1.5 Notation

We enclose the arguments of functions defined on a discrete domain Λ in square brackets in

order to distinguish them from functions defined on R
n, e.g. g[i] with i ∈ Λ. The Hilbert

space of square summable functions f : Λ → C is denoted as L2(Λ), and the associated

inner product 〈f, g〉 and L2-norm ‖f‖ are given by
∑

i∈Λ f [i]g∗[i] and
√
〈f, f〉, resp.,

where the asterisk in the superscript denotes complex conjugation. Furthermore, we use

⊙ to denote the element-wise multiplication of two functions f and g with f, g : Λ → C,

i.e., h = f ⊙ g corresponds to h[i] = f [i]g[i] ∀i ∈ Λ. Vectors are represented using

lowercase and matrices using uppercase boldface characters, respectively. The transpose

and Hermitian transpose of a matrix A are denoted as AT and AH, resp., tr(·) represents

the trace, and IN denotes the identity matrix of size N × N . The vector obtained from

A by stacking its columns is denoted as st [A], Diag [a] represents the diagonal matrix

composed from the components of the vector a, and diag [A] the vector constructed

from the diagonal elements of A. The paraconjugate of a polynomial matrix A(z) is

represented as Ã(z), and it is obtained from A(z) by transposing it, conjugating all

of the coefficients of the rational functions in A(z), and replacing z by z−1 [13]. The

nth element of the mth row of a matrix A is represented as [A]m,n. We also use ⊙
to denote the element-wise multiplication of two matrices A and B of size M × N , i.e.
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[A⊙B]m,n = [A]m,n[B]m,n. Furthermore, E [·] denotes the expected value, ℜ(·) and ℑ(·)
represent the real and imaginary part, resp., of complex arguments, mod the modulo

operation,  ,
√
−1, ⌊x⌋ , max{n ∈ Z : n ≤ x}, and ⌈x⌉ , min{n ∈ Z : n ≥ x}.



Chapter 2

Time-Frequency Signal

Representation Concepts

2.1 Introduction

In this chapter, concepts for the TF representation of signals are introduced. The math-

ematical operations as well as the discussed implementations of these operations using

FBs provide the basis for the reconfigurable receiver techniques presented in the follow-

ing chapters. TFRs combine a temporal analysis and a spectral analysis of signals by

representing signals using their TF coordinates. Linear and quadratic TFRs are two

important classes of TFRs. Linear TF signal representations satisfy the superposition

principle, which states that if the signal x(t) is a linear combination of some signals

then the TFR of x(t) corresponds to the linear combination of the respective TFRs. A

quadratic TF signal representation involves the signal in a quadratic form, describing the

energy distribution or the joint TF correlation of the signal.

Gabor analysis is a branch of TF analysis which deals with linear TFRs, being concerned

with the use of discrete coherent families [32]. Such families are obtained by shifting

a given atom (or window) function in time and frequency. The resulting family of TF-

shifted replicas can be used for the transform of a time domain signal into the TF domain.

29
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The so-called Gabor transform is accomplished by projecting the time domain signal onto

the aforementioned family.

The transform of time-discrete signals into the TF domain can be accomplished by DFT

FBs, for which similarly efficient FFT-based implementations are available as for plain

DFTs [13]. There is a close relationship between a number of mathematical concepts

from Gabor analysis and elements from FB theory, a branch of digital signal processing.

Dual Gabor frames, for instance, relate to PR FBs, while tight Gabor frames relate to

paraunitary FBs [35].

Moreover, tight frames can be seen as natural generalizations of orthonormal bases which

are used for instance for the signal representation in OFDM systems. In this work we

are interested exclusively in tight Gabor frames and related paraunitary FBs since the

associated signal transform fulfills Parseval’s identity. This property is crucial for flexible

receivers discussed in Chap. 4.

In Sect. 2.2, the mathematical concepts for TFR and TF processing of signals are in-

troduced. Oversampled DFT FBs, which efficiently implement Gabor frame expansions,

are discussed in Sect. 2.3. A parameterization of tight Gabor frames, needed for the

constraint optimization in Sect. 3.6, is presented in Sect. 2.4.

2.2 Fundamentals of Gabor Analysis

In 1946, Gabor proposed a method to represent a one-dimensional signal in two dimen-

sions, with time and frequency as coordinates [48]. In what was later named the Gabor

expansion, a signal is expanded by means of a family of elementary functions, each of

which is obtained from a certain so-called Gabor atom by translation in time and mod-

ulation in frequency [32]. While originally conceived for continuous signals, the same

concept can be applied to discrete signals [44]. In the following, we will focus on the

time-discrete case.
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Let N and K be two positive integer constants and Λ , Z × {0, . . . , K−1}. Given an

atom g ∈ L2(Z), the set

{gℓ,m [k] : (ℓ,m) ∈ Λ} (2.1)

with

gℓ,m [k] , g [k − ℓN ] exp(2π(k − ℓN)m/K) (2.2)

is referred to as a (time-discrete) Gabor system in L2(Z). The elements of the Gabor

system can be seen as relating to the grid points {(ℓN, 2πm/K) : (ℓ,m) ∈ Λ} of a

lattice overlaying the TF1 plane Z × [0, 2π). As shown in Fig. 2.1, the element g = g0,0

is localized in the origin and its time shifted and frequency modulated version gℓ,m is

localized at (ℓN, 2πm
K

).

Time
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0 N 2N 3N ℓN
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2πm
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2π(K−1)
K
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Figure 2.1: Elements of a Gabor system in the TF plane.

The size of the TF lattice determines the sampling density in the TF plane. The Gabor

system {gℓ,m [k] : (ℓ,m) ∈ Λ} can be classified according to the sampling density of the

TF lattice [32]:

• Overcritical sampling (N < K): The elements of {gℓ,m [k] : (ℓ,m) ∈ Λ} are linearly

dependent, and the oversampling rate of the Gabor system equals K/N .

1With a slight abuse of notation, we will not distinguish between frequency and angular frequency in
the following, where the domain of the latter is defined as [0, 2π).
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• Critical sampling (N = K): Gabor systems {gℓ,m [k] : (ℓ,m) ∈ Λ} consisting of

linearly independent elements are possible.

• Undercritical sampling (N > K): The Gabor family is incomplete in the sense that

the linear span of {gℓ,m [k] : (ℓ,m) ∈ Λ} is a proper subspace of L2(Z).

In this work we consider Gabor systems with N/K ≤ 1, which is a necessary condition

for Gabor frames. To discuss the properties of Gabor frames we shall recall the definitions

of bases and frames. A sequence e1, e2, . . . is a basis for a Hilbert space with a countably

infinite number of dimensions if the following conditions are satisfied:

• The elements e1, e2, . . . span the Hilbert space, i.e., every element f in the Hilbert

space can be represented as

f =
∞∑

j=1

ajej, (2.3)

where a1, a2, . . . are scalar coefficients.

• e1, e2, . . . are linearly independent.

Furthermore, {ej : j ∈ N} is an orthonormal basis if 〈ei, ej〉 = δi,j, where δi,j denotes the

Kronecker delta function. In this case the coefficients are easily found as aj = 〈f, ej〉,
j ∈ N.

If there exist two positive constants A0 and B0 such that

A0‖f‖2 ≤
∑

j∈N

|〈f, ej〉|2 ≤ B0‖f‖2, (2.4)

for every f in the Hilbert space, then {ej : j ∈ N} represents a frame [36]. The numbers

A0 and B0 are the lower and upper frame bounds, respectively. The elements of a frame

are not necessarily linearly independent. It may be possible to remove elements from a

frame without losing property (2.4). If so, given f , the expansion f =
∑

j∈N
ajej is not

unique. A frame is said to be exact if the removal of any element results in a family

which does not span the entire Hilbert space anymore. A sequence e1, e2, . . . is in fact

an exact frame if and only if it is a Riesz basis [36]. In a Hilbert space a Riesz basis is
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related to an orthonormal basis in the sense that the Riesz basis can be obtained from

the orthonormal basis by means of a bounded and invertible operator.

If A0 = B0, {ej : j ∈ N} is called a tight frame, and in this case

∑

j∈N

|〈f, ej〉|2 = A0‖f‖2. (2.5)

Every element in the Hilbert space can be represented as a linear combination of the

elements of a tight frame in analogy to (2.3).

Clearly there are many choices of g, N and K such that {gℓ,m [k] : (ℓ,m) ∈ Λ} represents

a frame or even an orthonormal basis for L2(Z). As an example for an orthonormal

basis, let the atom g have the form of a rectangular window with size N and N = K.

However, as commonly known such rectangularly shaped signals have low resolution in

the frequency domain. The difficulty in designing orthonormal bases (or Gabor frames

with N = K) comprising elements with high resolution in both time and frequency is

expressed formally by the Balian-Low Theorem [18, 32]. In fact, the inherent difficulty of

such bases or Gabor frames, discussed in detail in [49], can be overcome by resorting to

an over-critical sampling. Thus, useful Gabor frames are often overcomplete. The greater

design freedom with Gabor frames at N/K < 1 as compared to orthonormal bases offers

advantages in many applications in signal and also image processing.

For an arbitrary signal x ∈ L2(Z) the inner products of x [k] with every element of a

Gabor system (2.1) form a linear TF representation. In the following, the corresponding

transform onto L2(Λ) is represented by the analysis operator

G : x 7→ Gx = 〈x, gℓ,m〉, (ℓ,m) ∈ Λ, (2.6)

where X [ℓ,m] = Gx is sometimes called a Gabor coefficient. Conversely, a synthesis

operator G∗ can be defined based on (2.1) which maps an arbitrary TF representation

Y ∈ L2(Λ) onto an element of L2(Z) according to

G∗ : Y 7→ G∗Y =
∑

(ℓ,m)∈Λ

Y [ℓ,m] gℓ,m [k] . (2.7)
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The analysis operator G and synthesis operator G∗ are linear operators and they are

adjoint with respect to the inner product operation. If (2.1) defines a Gabor frame, then

there is a so-called Gabor frame operator S , G∗G. Explicitly,

S : x 7→ Sx =
∑

(ℓ,m)∈Λ

〈x, gℓ,m〉gℓ,m. (2.8)

The Gabor frame operator S is a bounded invertible operator subject to

A0 ≤ ‖S‖ ≤ B0. (2.9)

Furthermore,

w = S−1g (2.10)

is called the canonical dual window of g. The window w defines another Gabor frame

{wℓ,m [k] : (ℓ,m) ∈ Λ} with

wℓ,m [k] , w [k − ℓN ] exp(2π(k − ℓN)m/K), (2.11)

and the associated analysis and synthesis operators W and W∗, respectively. The two

frames defined by g, w, N , and K are a dual pair of frames because

x = W∗(Gx) =
∑

(ℓ,m)∈Λ

〈x, gℓ,m〉wℓ,m ∀x ∈ L2(Z). (2.12)

In [34] several examples of dual windows with different lattice parameters are shown.

Moreover, if {gℓ,m [k] : (ℓ,m) ∈ Λ} is a tight frame, then the dual window has the form

w [k] = cg [k] for some constant c > 0 [36]. Therefore, in case of tight Gabor frames,

(2.12) can be rewritten as

x = cG∗(Gx) ∀x ∈ L2(Z), (2.13)

where the constant c equals 1
A0

. Hence, the Gabor frame operator is given as S = A0I
with I denoting the identity operator on L2(Z), and

x =
1

A0

∑

(ℓ,m)∈Λ

〈x, gℓ,m〉gℓ,m ∀x ∈ L2(Z). (2.14)
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The signal representation using tight frames (2.14) shows great similarity with using

orthonormal bases: the difference is that the elements of a tight frame are not nec-

essarily linearly independent, which implies that tight frames are a generalization of

orthonormal bases [36]. One of the advantages of tight frames is that the canonical

dual frame of the tight frame {gℓ,m [k] : (ℓ,m) ∈ Λ} with frame bound A0 is sim-

ply given as { 1
A0

gℓ,m [k] : (ℓ,m) ∈ Λ}, which is shown in (2.14). When A0 = B0 = 1,

{gℓ,m [k] : (ℓ,m) ∈ Λ} represents a normalized tight frame. This special Gabor frame

is also sometimes called Parseval frame since it fulfills Parseval’s identity

‖x‖2 = ‖Gx‖2 ∀x ∈ L2(Z). (2.15)

Furthermore, the inner product 〈x, y〉 of any two x, y ∈ L2(Z) can be computed on the

basis of the respective TF representations Gx and Gy, that is,

〈x, y〉 = 〈Gx,Gy〉 ∀x, y ∈ L2(Z). (2.16)

Henceforth we assume that (2.1) represents a normalized tight Gabor frame. In this case,

it is clear that G∗G is an identity operator on L2(Z). The operator GG∗, on the other

hand, represents the orthogonal projection from L2(Λ) onto Fg , {(Gx)[k] : x ∈ L2(Z)}.
When N/K < 1, the vector space Fg is a proper subset of L2(Λ), i.e., Fg ⊂ L2(Λ).

Fig. 2.2 illustrates the orthogonal projection of X onto Xg = GG∗X, where the vector

space Fg is represented as a one-dimensional space having the form a straight line through

the origin of L2(Λ).

It is obvious that

‖G∗X‖2 ≤ ‖X‖2 ∀X ∈ L2(Λ). (2.17)

We further note that the mapping G : L2(Z) → Fg is an isometry, and ‖g‖2 = N/K.

The properties (2.15) and (2.16) of tight Gabor frames are of prime interest since they let

operations for the signal demodulation at the reconfigurable receiver, such as signal energy

computations and cross-correlations with reference waveforms, be performed directly in

the TF domain.
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Figure 2.2: Orthogonal projection of X ∈ L2(Λ) onto Fg.

2.3 Oversampled DFT Filter Banks

For an efficient computation of TFRs of time-discrete signals on a digital signal processor,

FBs can be employed. Fig. 2.3 shows the notations used in the following to draw the

digital FB diagrams. Uniform FBs are FBs with the same decimation factor in each sub-

x = x1 = x2

x

x1

x2

x = x1 + x2

x1

x2 x

x y

y[k] = x[k − 1]

z−1
(a) (b) (c)

Figure 2.3: (a) A node that branches out, (b) adder, (c) delay element.

band. Signal expansions using uniform FBs with the decimation factor N equal to the

number of sub-bands K, which are called maximally decimated or critically sampled FBs,

are discussed in [13]. FBs with N < K, on the other hand, are referred to as oversampled

FBs, and they are often the preferred option due to the greater design freedom.

Fig. 2.4 depicts a K-channel oversampled FB. The analysis FB splits the input signal

x [k] into K sub-bands by a bank of possibly non-causal, either finite impulse response

or infinite impulse response filters with passband characteristics followed by a down-

sampling. The filters are defined by the transfer functions Dm (z) ,m = 0, . . . , K−1, that

is, the z-transforms of the impulse responses dm [k] ,m = 0, . . . , K−1. An important class
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Figure 2.4: K-channel oversampled FB.

of uniform FBs are DFT FBs, where the impulse response of the mth filter is given by

dm [k] = d [k] e2πkm/K with d [k] denoting the impulse response of the analysis prototype

filter. The down-sampler, also called N -fold decimator, reduces the output sampling rate

by a factor N . The resulting sub-band signals, denoted as v0 [ℓ] , . . . , vK−1 [ℓ], are given

by

vm [ℓ] =
∞∑

k=−∞

x [k] dm [ℓN − k] , m = 0, . . . , K − 1. (2.18)

With dℓ,m [k] = d∗
m [ℓN − k] ,m = 0, . . . , K − 1, (2.18) can further be written as

vm [ℓ] = 〈x, dℓ,m〉 , m = 0, . . . , K − 1. (2.19)

The subsequent synthesis FB usually aims to reconstruct the signal x [k] from the sub-

band signals vm [ℓ] ,m = 0, . . . , K − 1. In general, the output of the synthesis FB is given

as

x̂ [k] =
K−1∑

m=0

∞∑

ℓ=−∞

vm [ℓ] rm [k − ℓN ] , (2.20)

where in the case of DFT FBs rm [k] = r[k]e2πkm/K denotes the impulse response of the

mth synthesis filter with r[k] representing the impulse response of the synthesis prototype

filter. With rℓ,m [k] = rm [k − ℓN ], the signal x̂ [k] is given by

x̂ [k] =
K−1∑

m=0

∞∑

ℓ=−∞

〈x, dℓ,m〉 rℓ,m [k] . (2.21)
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The transfer functions of the synthesis filters are denoted as R0 (z) , . . . , RK−1 (z) in

Fig. 2.4.

2.3.1 Relationship between Oversampled DFT Filter Banks and

Discrete Gabor Frames

As suggested by (2.21), there is a close relationship between the analysis and synthesis

operations based on Gabor frames on the one hand, and the signal transforms by DFT

analysis and synthesis FBs on the other hand. Clearly, the lattice constants underlying the

Gabor expansion can be regarded as corresponding to the down-sampling factor and the

number of sub-bands of an oversampled DFT FB. Furthermore, a one-to-one relationship

can be established between the atom g [k] of a Gabor frame and the impulse response

d [k] = d0 [k] of the analysis prototype filter according to

g [k] = d∗[−k], (2.22)

as well as between the Gabor coefficients and the FB sub-band signals, i.e.,

X [ℓ,m] = vm [ℓ] . (2.23)

A similar relationship applies to the synthesis operations. Given (2.23), the signal ob-

tained from a synthesis FB with a prototype filter having impulse response r [k] = r0 [k]

equals the result of a synthesis operation (2.7) based on a Gabor frame with atom

w [k] = r [k] . (2.24)

Tab. 2.1 summarizes the relationships between oversampled DFT FBs and Gabor frames.

Hence, the Gabor analysis and synthesis operations can be implemented by the corre-

sponding DFT analysis and synthesis FBs. The mapping (2.6) can be implemented by a

K-channel DFT (analysis) FB with prototype filter impulse response d[k] = g∗[−k] fol-

lowed by a down-sampling by factor N [35]. The signal synthesis (2.7) can be implemented
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DFT FB Gabor frame
g [k] = d∗[−k] analysis prototype filter d[k] Gabor atom (or window)g [k]
w [k] = r [k] synthesis prototype filter r [k] Gabor atom w [k]

N down/up-sampling factor time shift
K number of sub-bands frequency shift

vm [ℓ] = X [ℓ,m] sub-band signal vm [ℓ] Gabor coefficient X [ℓ,m]

Table 2.1: The relation of oversampled DFT FBs and Gabor frames.

by an up-sampling by factor N followed by a K-channel DFT (synthesis) FB with pro-

totype filter impulse response r [k] = w [k]. When the two frames {gℓ,m [k] : (ℓ,m) ∈ Λ}
and {wℓ,m [k] : (ℓ,m) ∈ Λ} represent a dual frame pair, a concatenation of the associated

analysis and synthesis FBs provides a PR of the signal, and the construct is thus referred

to as a PR FB. Furthermore, tight Gabor frames are related to paraunitary DFT FBs. As

a consequence of (2.14), paraunitary DFT FBs are special variants of PR FBs where the

prototype filters of the analysis and synthesis FBs are related according to d[k] = r∗ [−k].

Fig. 2.5 shows a paraunitary FB based on a prototype filter with impulse response d[k].

Here, the transfer functions of the analysis FBs are given as D0 (z) , . . . , DK−1 (z). The

...
...

... ...
...

...
...

analysis filter bank synthesis filter bank

x [k]
D0 (z)

D1 (z)

DK−1 (z) N ↓

N ↓

N ↓ D̃0 (z)

D̃1 (z)

D̃K−1 (z)

v0 [ℓ]

v1 [ℓ]

vK−1 [ℓ]
N ↑

N ↑

N ↑

x [k]

Figure 2.5: K-channel paraunitary FB.

transfer functions of the synthesis FBs are the paraconjugates of the transfer functions

D0 (z) , . . . , DK−1 (z). The paraconjugate D̃m (z) of Dm (z) is obtained by conjugating

all of the coefficients of the polynomial function Dm (z), and replacing z by z−1, i.e.,

D̃m (z) = D∗
m (z−1) [13].
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2.3.2 Polyphase Implementation

To discuss the PR condition in the polyphase domain, we first introduce the polyphase

representation of oversampled FBs. The polyphase representation [50] is an impor-

tant concept in multirate signal processing, which leads to efficient implementations of

FBs [13].

Let M denote the least common multiple of N and K, and define L and J such that

LN = JK = M. (2.25)

The M -component polyphase representation of the analysis prototype filter D (z) reads

D (z) =
M−1∑

j=0

z−jDj

(
zM
)
, (2.26)

where

Dj (z) =
∑

k∈Z

d [j + kM ] z−k (2.27)

is the j-th polyphase component of D (z) with d [k] denoting the impulse response of

the analysis prototype filter. The (j + 1)th element of the (i + 1)th row of the K × N

polyphase matrix DP(z) of the analysis FB is defined as

Dij (z) =
L−1∑

l=0

W
i(j+lN)
K z−lDj+lN

(
zL
)
, (2.28)

where WK = e2π/K . Similarly, the (j + 1)th element of the (i + 1)th row of the K × N

polyphase matrix RP(z) of the synthesis FB is given as

Rij (z) =
L−1∑

l=0

W
i(j+lN)
K z−lRj+lN

(
zL
)
, (2.29)

where Rj (z) =
∑

k∈Z
r∗ [−j − kM ] z−k.

Fig. 2.6 shows an equivalent implementation of an oversampled FB. The analysis filters

with the following down-sampling by factor N are realized as a delay chain of size N
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x [k]

N ↓

N ↓

N ↓
v0 [ℓ]

v1 [ℓ]

vK−1 [ℓ]
N ↑

N ↑

N ↑

z−1

z−1

z−1

z−1

z−1

z−1

DP(z) R̃P(z)

x̂ [k]

Figure 2.6: Oversampled FB using polyphase representation.

followed by the polyphase matrix DP(z), while the up-sampling and signal synthesis is

realized by the polyphase matrix R̃P(z) followed by an up-sampling and signal adding.

The paraconjugate R̃P(z) of the polynomial matrix RP(z) is obtained by transposition

followed by element-wise paraconjugation.

The input-output relation (2.21) can be expressed in the polyphase

domain as x̂(z) = R̃P(z)DP(z)x(z), where x(z) = [X0(z), . . . , XN−1(z)]T

and x̂(z) = [X̂0(z), . . . , X̂N−1(z)]T with Xj(z) =
∑

k∈Z
x[−j + kN ]z−k and

X̂j(z) =
∑

k∈Z
x̂[−j + kN ]z−k. It follows that an oversampled FB satisfies the PR

condition with zero delay, i.e, x̂ [k] = x [k], if and only if

R̃P(z)DP(z) = IN , (2.30)

where IN is the N × N identity matrix [13].

Furthermore, in case of an oversampled DFT FB the analysis polyphase matrix DP(z)

can be written as the product of the inverse DFT matrix FH
K and a polynomial matrix

B(z), i.e., DP(z) = FH
KB(z), with FK denoting the DFT matrix of size K × K (defined

as [FK ]m,n = e−2π(m−1)(n−1)/K). As can be shown, the polynomial matrix B(z) is given

as

B(z) , [IK · · · IK ]Diag
[
D0

(
zL
)
, . . . , DM−1

(
zL
) ]




IN

z−1IN

...

z−(L−1)IN




. (2.31)
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The synthesis polyphase matrix, on the other hand, can be expressed as RP(z) = FH
KC(z)

with some polynomial matrix C(z). The resulting implementation is shown in Fig. 2.7.

Usually, because of the simple forms of B(z) and C(z) as compared to DP(z) and RP(z)

...
... ...

...
...

x [k]

N ↓

N ↓

N ↓
v0 [ℓ]

v1 [ℓ]

vK−1 [ℓ]
N ↑

N ↑

N ↑

z−1

z−1

z−1

z−1

z−1

z−1

B(z) FKFH
K C̃(z)

x̂ [k]

NN KKK DP(z) R̃P(z)

Figure 2.7: Oversampled DFT FB using polyphase representation.

and due to the availability of FFT algorithms, the implementation in Fig. 2.7 is compu-

tationally more favorable than the implementation in Fig. 2.6.

As follows from (2.22) and (2.24), in the case of a paraunitary FB d [k] = r∗ [−k] and

thus RP(z) = DP(z). Here, due to the PR condition, D̃P(z)DP(z) = IN . It also follows

that

B̃(z)B(z) = K−1IN . (2.32)

Fig. 2.8 shows a paraunitary FB implemented based on the polyphase representation.

2.4 Parameterization of Tight Gabor Frames

To enable the computation of optimized paraunitary FBs in Chap. 3, some further elabo-

ration of the PR constraints is needed. In [47], a parameterization of tight Gabor frames

on the basis of the polyphase representation was presented. The starting point has been,

however, the polyphase representation of the atom g[k] rather than the polyphase rep-

resentation of the impulse response d [k] as employed in Sect. 2.3.1. The jth polyphase
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x [k]

N ↓

N ↓

N ↓
v0 [ℓ]

v1 [ℓ]

vK−1 [ℓ]
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N ↑

z−1

z−1

z−1

z−1

z−1

z−1

B(z) FKFH
K B̃(z)

x [k]

NN KKK DP(z) D̃P(z)

Figure 2.8: Paraunitary FB using polyphase representation.

component Gj (z) is given by

Gj (z) =
∑

k∈Z

g[j + kM ]z−k. (2.33)

Due to (2.22), Gj (z) = D̃j (z). As easily seen, (2.32) is fulfilled iff (i.e., if and only if)

Ṽ(z)V(z) = K−1IN , where

V(z) , [IK · · · IK ]Diag
[
G0

(
zL
)
, . . . , GM−1

(
zL
) ]




IN

z−1IN

...

z−(L−1)IN




. (2.34)

Hence, the Gabor system represents a tight frame in L2(Z) iff V(z) is paraunitary with

Ṽ(z)V(z) = K−1IN . Note that there are L nonzero elements in each column of V(z) and

J nonzero elements in each row, that is,

[V(z)]m,n = 0 if
(
(m − n) mod B

)
6= 0, (2.35)

where B = N/J = K/L. Consequently, V(z) is paraunitary iff the B matrices V0(z), . . . ,

VB−1(z) of size L×J , which comprise the possibly non-zero elements of V(z) according

to

[Vb(z)]m,n = [V(z)]1+B(m−1)+b,1+B(n−1)+b b = 0, . . . , B − 1, (2.36)
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are all paraunitary. As follows from (2.34) the elements of the B matrices are given as

[Vb(z)]m,n = z−⌊f(m,n)/J⌋GBf(m,n)+b

(
zL
)
, b = 0, . . . , B − 1 (2.37)

with

f(m,n) ,

J−1∑

j=0

L−1∑

ℓ=0

(m + jL − 1)δm+jL,n+ℓJ (2.38)

and δi,j denoting the Kronecker delta.

Example: K = 8, N = 6

Assume a FB with K = 8 sub-bands and a down-sampling factor of N = 6. According

to (2.34), the polynomial matrix V(z) is given as

V(z)=




G0 (z4) 0 z−1G8 (z4) 0 z−2G16 (z4) 0

0 G1 (z4) 0 z−1G9 (z4) 0 z−2G17 (z4)

z−3G18 (z4) 0 G2 (z4) 0 z−1G10 (z4) 0

0 z−3G19 (z4) 0 G3 (z4) 0 z−1G11 (z4)

z−2G12 (z4) 0 z−3G20 (z4) 0 G4 (z4) 0

0 z−2G13 (z4) 0 z−3G21 (z4) 0 G5 (z4)

z−1G6 (z4) 0 z−2G14 (z4) 0 z−3G22 (z4) 0

0 z−1G7 (z4) 0 z−2G15 (z4) 0 z−3G23 (z4)




.

We notice that there are L = 4 and J = 3 nonzero elements in each column and each row

of V(z), respectively. Furthermore, V(z) is split into B = 2 matrices V0(z) and V1(z)

with dimension 4× 3. The matrix V0(z) is generated by collecting the nonzero elements

in the odd-numbered rows of V(z), while V1(z) comprises the nonzero elements in the

even-numbered rows of V(z). It is obvious that the matrix V(z) is paraunitary iff

V0(z) =




G0 (z4) z−1G8 (z4) z−2G16 (z4)

z−3G18 (z4) G2 (z4) z−1G10 (z4)

z−2G12 (z4) z−3G20 (z4) G4 (z4)

z−1G6 (z4) z−2G14 (z4) z−3G22 (z4)




, (2.39)
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and

V1(z) =




G1 (z4) z−1G9 (z4) z−2G17 (z4)

z−3G19 (z4) G3 (z4) z−1G11 (z4)

z−2G13 (z4) z−3G21 (z4) G5 (z4)

z−1G7 (z4) z−2G15 (z4) z−3G23 (z4)




(2.40)

are both paraunitary. The index matrix Findex, defined such that [Findex]m,n = f(m,n),

equals

Findex =




0 4 8

9 1 5

6 10 2

3 7 11




(2.41)

in this example.

Note that if the sequence (⌊f(m,n)/J⌋)m=1,...,L was identical for all column indices n =

1, . . . , J , then the factor z−⌊··· ⌋ could be omitted in (2.37) without any effect on the

condition, i.e.,

Ṽb(z)Vb(z) = K−1IJ , ∀b ∈ {0, . . . , B − 1} . (2.42)

Replacing some Gm

(
zL
)

by the equivalent z−LGM+m

(
zL
)

is a way to align the sequences.

After doing so, we can discard the factors z−⌊··· ⌋ and additionally replace zL in the argu-

ments of the elements of Vb(z) by z. We denote the resulting matrices of size L×J as

W0(z), . . . ,WB−1(z), given by

[Wb(z)]m,n = GBf̄(m,n)+b (z) , b = 0, . . . , B − 1 (2.43)

with the index map

f̄(m,n) ,





f(m,n) if f(m,n) ≥ f(1, n)

f(m,n) + M/B if f(m,n) < f(1, n)
. (2.44)

Since the polynomial matrices V0(z), . . . , VB−1(z) are paraunitary iff the matrices

W0(z), . . . ,WB−1(z) are paraunitary, the Gabor system (2.1) represents a tight frame in

L2(Z) iff

W̃b(z)Wb(z) = K−1IJ ∀b ∈ {0, . . . , B − 1} . (2.45)
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We note that the size of each polynomial matrix Wb(z), their number B, and the in-

dex map f̄(m,n) are fully determined by N and K. Given these two constants, any

tight Gabor frame is uniquely defined by an instance of W0(z), . . . ,WB−1(z) satisfy-

ing (2.45). Clearly, the degree of freedom in choosing any Wb(z) subject to (2.45) in-

creases with the oversampling ratio K/N . The length of the window g [k] is related to

the polynomial orders of the matrices W0(z), . . . ,WB−1(z). We define P as the maxi-

mal polynomial order of the B matrices plus 1. In the case P = 1, all elements of the

matrices are scalars. Hence, the support of the representable functions g[k] is limited

to {Bf̄(m,n) + b : m = 1, . . . , L; n = 1, . . . , J ; b = 0, . . . , B−1}. This set is usually not

of the form Z ∩ [a0, b0] for some a0 ≤ b0 but exhibits ”gaps”. By increasing P longer

windows can be found as will be shown in the example below.

As a consequence of (2.43) and (2.33), the matrices W0(z), . . . ,WB−1(z) and the samples

of g [k] are related through

[Wb(z)]m,n =
P−1∑

p=0

g
[
Bf̄(m,n) + b + Mp

]
z−p, b = 0, . . . , B−1. (2.46)

The polynomial matrices Wb(z) can also be written in the form of a matrix polynomial,

i.e.,

Wb(z) = Wb,0 + z−1Wb,1 + · · · z−(P−1)Wb,P−1, b = 0, . . . , B−1. (2.47)

Here, Wb,0, . . . ,Wb,P−1 are matrices with scalar elements, which correspond to the sam-

ples of the window g [k].

Returning to the above example, the index matrix F̄index relating to the index map

f̄(m,n), resulting from (2.44), reads

F̄index =




0 4 8

9 13 17

6 10 14

3 7 11




. (2.48)
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Furthermore, the matrices (2.43) are given as

W0(z) =




G0 (z) G8 (z) G16 (z)

G18 (z) G26 (z) G34 (z)

G12 (z) G20 (z) G28 (z)

G6 (z) G14 (z) G22 (z)




, (2.49)

and

W1(z) =




G1 (z) G9 (z) G17 (z)

G19 (z) G27 (z) G35 (z)

G13 (z) G21 (z) G29 (z)

G7 (z) G15 (z) G23 (z)




. (2.50)

When P = 1, the matrices Wb(z) comprise scalars, i.e.,

W0(z) = W0,0 =




g [0] g [8] g [16]

g [18] g [26] g [34]

g [12] g [20] g [28]

g [6] g [14] g [22]




(2.51)

and

W1(z) = W1,0 =




g [1] g [9] g [17]

g [19] g [27] g [35]

g [13] g [21] g [29]

g [7] g [15] g [23]




, (2.52)

and the length T of the support of g [k] is T = M = LJB.

When P = 2, W0(z) and W1(z) are polynomial matrices with maximal polynomial order

1, which can be written as

W0(z) =




g [0] g [8] g [16]

g [18] g [26] g [34]

g [12] g [20] g [28]

g [6] g [14] g [22]




︸ ︷︷ ︸
W0,0

+z−1




g [24] g [32] g [40]

g [42] g [50] g [58]

g [36] g [44] g [52]

g [30] g [38] g [46]




︸ ︷︷ ︸
W0,1

(2.53)
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and

W1(z) =




g [1] g [9] g [17]

g [19] g [27] g [35]

g [13] g [21] g [29]

g [7] g [15] g [23]




︸ ︷︷ ︸
W1,0

+z−1




g [25] g [33] g [41]

g [43] g [51] g [59]

g [37] g [45] g [53]

g [31] g [39] g [47]




︸ ︷︷ ︸
W1,1

. (2.54)

The support of the window g [k] now includes twice the number of samples than in the

case P = 1, i.e., T = 2M . Note that an element of W0,0 or W1,0 and the corresponding

element of W0,1 or W1,1 represent two samples of g [k] separated by M samples. In

general, the support of the window includes T = PM = PLJB samples. Thus with fixed

N and K, it is possible to have an arbitrarily long window by choosing an appropriate

polynomial order. As shown in Fig. 2.9 for P = 1 and P = 2, there are some ’gaps’ in

0 B 10B 20B 30B

P = 1:

P = 2:

k

Figure 2.9: Support of the window functions g [k] relating to matrices
W0(z), . . . ,WB−1(z) with maximal polynomial order P − 1 for L = 4, J = 3, P = 1, 2.

the support of the representable functions g[k].

For the window optimization in Sect. 3.6.1 and Sect. 3.6.2, it is helpful to introduce a

window function r[k] which contains the samples of g [k] in a permuted order. Let us

define (r[0], . . . , r[T−1]) as

r[k] = g[Bf̄(m,n) + b + Mp], k = 0, . . . , T−1 (2.55)

with m = (k mod L) + 1, n = ⌊(k mod LJ)/L⌋ + 1, p = ⌊(k mod LJP )/(LJ)⌋, and

b = ⌊k/(LJP )⌋. As follows from (2.46) and (2.55), the matrices W0(z), . . . ,WB−1(z) are

now related to the permuted window r[k] through

[Wb(z)]m,n =
P−1∑

p=0

r[L(J(bP + p) + n − 1) + m − 1]z−p. (2.56)
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The result can easily been seen in the above example. For P = 1, the window r[k] can

be generated by reading the elements of first the matrix W0,0 and then the matrix W1,0

column-wise. For P = 2, r[k] is obtained in a similar way by reading from the four

matrices W0,0, W0,1, W1,0 and W1,1.

With the above discussed parameterization of tight Gabor frames, the tight frame con-

dition is formulated by constraining B polynomial matrices to be paraunitary. As shown

in this section, the samples of the window function are directly related to the entries of

these polynomial matrices, and windows with any lengths can be handled by an appro-

priate polynomial order. The discussed theory will be used for the window optimization

in Chap. 3.





Chapter 3

Efficient Time-Frequency Channel

Representation

3.1 Introduction

In the previous chapter the TF signal representation via Gabor frames and the related FB

implementation have been introduced. In addition to an appropriate signal representa-

tion, reconfigurable receivers can be derived based on a suitable format for the description

of wireless channels.

For dealing with signal dispersion caused by the channel fundamentally different meth-

ods are employed for different signal formats. In systems using OFDM transmission,

the multipath channel can be represented equivalently in the form of parallel single-tap

channels. These taps can be arranged to form a diagonal matrix which multiplies a trans-

mitted signal vector provided in the frequency domain by a block-wise DFT. This channel

diagonalization enables straightforward demodulation and coefficient estimation schemes.

The concept of channel diagonalization of OFDM receivers is limited to time-invariant

channels. However, by resorting to TF signal representations discussed in Chap. 2, these

limitations can be overcome. We discuss a channel diagonalization in the TF domain for

a channel which can be modelled as WSSUS. In this channel representation, the signal

51
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mapping by the channel is efficiently formulated as an element-wise multiplication of each

coefficient of the TF signal representation by the channel gain at the respective TF loca-

tion [51]. This concept for parameterizing linear channels can be seen as a generalization

of the channel diagonalization known from OFDM for arbitrary signals without cyclic

extensions. Moreover, the channel diagonalization can be adapted to different channel

conditions by choosing the underlying Gabor window function and the oversampling ratio.

Even though the TF domain channel diagonalization is approximative in the general case

of doubly dispersive channels, for typical underspread channels encountered in mobile

radio scenarios the inherent model error can be limited to a usually acceptable level

by choosing an adequate window underlying the signal analysis. A major concern of

this chapter is to define optimized TF signal representations for channels with known

statistical properties.

In Sect. 3.2 the WSSUS channel model is discussed for the time-discrete case. A TF

domain channel diagonalization is presented in Sect. 3.3, which is suitable to be combined

with Gabor multipliers to be introduced in Sect. 3.4. The inherent error introduced by

the channel diagonalization is analyzed both in the time domain and the TF domain

in Sect. 3.5. To minimize the mean-squared sample error, the window design problem

is formulated as a convex optimization problem in Sect. 3.6, and numerical results are

presented in Sect. 3.7.

3.2 Representation of WSSUS Channels

The radio channels typically encountered in wireless communications are subject to time-

variance and multipath propagation. In [52], Bello proposed a statistical characteri-

zation of randomly time-variant linear channels in terms of correlation functions and

system functions. In order to describe the input-output behavior of a time-variant time-

continuous channel in the time domain, the time-variant impulse response c (t, τ) is often

employed with t denoting the time dimension and τ the delay dimension. All subsequent

signal representations are to be interpreted in the complex baseband. Given the time-

continuous channel input signal x (t), the noise-free signal at the channel output can be
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written as

y (t) =

∫ ∞

−∞

x (t − τ) c (t, τ) dτ. (3.1)

The TF selectivity of the channel is reflected by the time-variant transfer function C (t, f),

which is obtained by the Fourier transform of c (t, τ) with respect to τ , i.e.,

C (t, f) =

∫ ∞

−∞

c (t, τ) exp (−2πfτ) dτ. (3.2)

The time-variant impulse response and the time-variant transfer function are two of

Bello’s so-called system functions. The others are the delay Doppler spread function and

the Doppler-variant transfer function. The delay Doppler spread function is the Fourier

transformation of the time-variant impulse response with respect to t, which describes the

spreading of the input signal in delay and Doppler dimensions, and a Fourier transform of

the delay Doppler spread function with respect to τ results in the Doppler-variant trans-

fer function. A detailed description of the relation between the four system functions can

be found in [52, 53].

For random channels, the system functions represent stochastic processes of two indepen-

dent variables and will be termed two-dimensional for short1. A widely used statistical

model for time-variant wireless channels is the WSSUS model introduced in [52]. Accord-

ing to the WSSUS model, the time-variant impulse response c (t, τ) represents a stochastic

process being wide-sense stationary (WSS) in the time dimension and uncorrelated scat-

tering (US) in the delay dimension. Here, WSS means that E [c (t, τ) c∗ (t′, τ ′)] depends

on the time difference t∆ = t − t′ rather than on the absolute times t and t′. As a con-

sequence, the time-variant transfer function C (t, f) is a two-dimensional WSS stochastic

process with autocorrelation function

E [C (t, f) C∗ (t′, f ′)] = R (t − t′, f − f ′) = R (t∆, f∆) . (3.3)

The so-called coherence time Tcoh is the time interval over which the channel gain is

1A stochastic process depending on more than one independent variable is sometimes called random

field.
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strongly correlated2. Furthermore, two narrow-band signals undergo correlated attenu-

ations by the channel if their frequency separation is less than the coherence bandwidth

Bcoh. A signal with bandwidth larger than Bcoh is subject to frequency selective fad-

ing. Let Rf (f∆) denote the autocorrelation function in frequency with t∆ = 0, i.e.,

Rf (f∆) = R (0, f∆). The coherence bandwidth is obtained from Rf (f∆), while the coher-

ence time is obtained from the time correlation function of the channel Rt (t∆) = R (t∆, 0).

Moreover, the second-order statistics of the multipath behavior of c (t, τ) are characterized

by Rf (f∆), or, equivalently, by the delay power spectrum

Sdelay (τ) =

∫ ∞

−∞

Rf (f∆) exp (2πτf∆) df∆. (3.4)

The delay power spectrum describes the average received power as a function of the delay

τ . In order to characterize the time variation of the channel, the related Doppler power

spectrum SDoppler (λ) is defined as

SDoppler (λ) =

∫ ∞

−∞

Rt (t∆) exp (−2πλt∆) dt∆, (3.5)

where λ is the Doppler frequency variable. The Doppler power spectrum shows the

average power distribution of the channel output as a function of the Doppler frequency.

For characterizing the delay dispersion of a multipath channel, a widely used parameter

is the root mean squared (RMS) delay spread τRMS [54], which is defined as

τRMS =

√√√√
∫∞

−∞
τ 2Sdelay (τ) dτ∫∞

−∞
Sdelay (τ) dτ

−
(∫∞

−∞
τSdelay (τ) dτ∫∞

−∞
Sdelay (τ) dτ

)2

, (3.6)

where the normalized delay power spectrum Sdelay(τ)/
∫∞

−∞
Sdelay(τ)dτ represents a prob-

ability density function in τ . In analogy to (3.6), the RMS Doppler spread νRMS is defined

as the square root of the second central moment of the Doppler frequency based on the

normalized Doppler power spectrum SDoppler(λ)/
∫∞

−∞
SDoppler(λ)dλ. The coherence time

of a wireless channel is inversely proportional to the Doppler spread of the channel, and

the coherence bandwidth is inversely proportional to the delay spread.

2When the symbol duration is much shorter than Tcoh, the channel is viewed as slowly time-
variant [53].
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The dispersion of the channel is characterized by the scattering function S (τ, λ), which

is obtained from R (t∆, f∆) through a two-dimensional Fourier transform, i.e.,

S (τ, λ) =

∫ ∞

−∞

∫ ∞

−∞

R (t∆, f∆) exp (−2πλt∆) exp (2πτf∆) dt∆df∆. (3.7)

The scattering function can be considered a power spectrum as a function of the delay

and Doppler shift.

For typical underspread channels encountered in wireless systems, S (τ, λ) has a compact

support in (τ, λ). Assume the scattering function has a support of rectangular shape, i.e.,

S (τ, λ) = 0 for(τ, λ) /∈ [−τ0, τ0] × [−λ0, λ0]. (3.8)

If 4τ0λ0 ≤ 1, the channel is said to be underspread [55, 56]. In fact, most wireless channels

are highly underspread, with τ0λ0 ≪ 1. In this case, the channel gain varies slowly over

both time and frequency.

While the aforementioned time-continuous stochastic model of C(t, f) can be used to

describe the propagation channel, the radio channel including the front-ends of digital

transceivers and sampling units without amplifier noise, is usually described by a time-

discrete stochastic model. The characterization of a time-continuous stochastic process

can be carried over to a time-discrete stochastic process by a uniform sampling. The

sampling theorem [57] allows a time-discrete modeling of a linear time-variant system

if the system input is band-limited. In this case, the time-variant convolution relating

the time-continuous input and output signals in (3.1) with each other carries over to

a time-discrete time-variant convolution of the sampled input with a sampled version

of the time-variant impulse response to provide the sampled output signal. Both time-

continuous input and output signals reconstructed from the samples can be shown to

equal the original time-continuous stochastic process in the mean-square sense. Hence,

given the time-discrete input signal x [k], the output of a time-variant channel is expressed

as

y [k] = (Hx)[k] =
∞∑

q=0

c [k, q] x [k − q] , (3.9)
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where H is used in the following as a compact notation to represent the channel operator

for both deterministic and random channels, i.e. the time-variant convolution in (3.9).

Furthermore, the time-discrete time-variant channel impulse response

c [k, q] = c(kTs, qΘ)

is obtained from c (t, τ) by uniformly sampling the latter with a time interval Ts and

delay interval Θ. Fig. 3.1 shows a time-continuous linear time-variant system and a

corresponding linear time-discrete time-variant system. The time-continuous input and

x(t) y(t)time-continuous channel

c (t, τ)

x [k]

c [k, q]

y [k]time-discrete channel

Figure 3.1: Time-continuous and time-discrete systems being equivalent for a band-
limited input x(t).

output signals x(t) and y(t) can be reconstructed from the time-discrete input and output

signals x[k] and y[k], resp., for the assumed band limitation of x(t) and in this case, the

both systems are considered equivalent.

In [58], a time-discrete model for WSSUS channels is discussed which includes the pulse

shaping and sampling. Moreover, for a slowly time-variant channel, where the Doppler

spreads are small with respect to the system bandwidth, the WSS and US properties are

preserved in the time-discrete domain and an equivalent WSSUS time-discrete model is

discussed in [59] including a transmit filter, the linear time-variant channel and a receive

filter.

We consider time-discrete random channels where the time-variant impulse response

c [k, q] represents a two-dimensional zero-mean random process complying with the

WSSUS model. The autocorrelation function of c [k, q] representing the second-order

statistics of the channel is determined by the time correlation function φt [k∆] and the

delay power spectrum Sdelay [q] according to

E [c [k, q] c∗ [k′, q′]] = φt [k∆] Sdelay [q] δq,q′ . (3.10)
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The argument k∆ = k−k′ of the time correlation function reflects wide-sense stationarity

in the time dimension, while δq,q′ implies uncorrelated scattering in the delay dimension.

In analogy to (3.4) the time-discrete delay power spectrum is related to the frequency

correlation function φf [ω∆] through

φf [ω∆] =
∞∑

q=0

Sdelay [q] exp (−ω∆q) , (3.11)

where ω∆ represents the difference in frequency.

Of interest in the context of TF signal processing is the time-variant transfer function

C (k, ω) =
∞∑

q=0

c [k, q] exp (−ωq) , (3.12)

which shows explicitly the TF selectivity of a channel realization as a function of k and

ω. Sampling of C (k, ω) in both the time and frequency dimensions results in a TF

representation of the channel.

3.3 Channel Diagonalization

In a digital signal processor a time-variant random channel can be represented by a

sampled version of the time-variant transfer function C (k, ω) defined by

H [ℓ,m] = C (ℓN, 2πm/K) , (ℓ,m) ∈ Λ, (3.13)

where H [ℓ,m] is called the channel coefficient in the following. For compatibility with

the TF signal representations introduced in Sect. 2.2, the sampling intervals N and 2π/K

are chosen in line with those for the Gabor system (2.1), where N and 2π/K denote the

time and frequency shifts, resp., of the Gabor elementary functions in the TF plane.

Note that N represents an integer sampling interval, while 2π/K is a positive real-valued

sampling interval in the frequency domain.
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The time-variant transfer function represents the complex-valued channel gain over time

and frequency. The time-discrete channel coefficient H [ℓ,m] is defined in (3.13) as the

channel gain at the time ℓN and the frequency 2πm/K. Hence, given the TF represen-

tation X = Gx of a signal x [k] at the channel input, it is straightforward to approximate

the signal y [k] at the channel output by the function

ŷ = G∗ (H ⊙ X) (3.14)

=
∑

(ℓ,m)∈Λ

H [ℓ,m] 〈x, gℓ,m〉gℓ,m, (3.15)

where ⊙ represents the element-wise multiplication of two functions H = H[ℓ,m]

and X = X[ℓ,m] defined on a two-dimensional index set (ℓ,m) ∈ Λ, i.e.,

(H ⊙ X) [ℓ,m] = H[ℓ,m]X[ℓ,m]. The expression G∗ (H ⊙ X), namely the concatenation

of an analysis operator, an element-wise multiplication and a synthesis operator, is known

in the mathematical literature as Gabor multiplier [60]. Here, we use a Gabor multiplier

to approximate y[k] by ŷ[k]. A detailed description of Gabor multipliers can be found in

the next section.

Fig. 3.2 shows an implementation of (3.14) by paraunitary FBs discussed in Sect. 2.3.1,

where Gm(z) , G(z exp (2πm/K)) and G̃m(z) = G∗
m(z−1), m = 0, . . . , K −1, with G (z)

denoting the transfer function of the synthesis prototype filter, which is the z-transform

of g [k]. The TF coefficients X[ℓ,m] with (ℓ,m) ∈ Λ of the signal x [k] are obtained from

...
...

... ...
...

......

analysis filter bank synthesis filter bank

x [k]
G0 (z)

G1 (z)

GK−1 (z) N ↓

N ↓

N ↓ G̃0 (z)

G̃1 (z)

G̃K−1 (z)

H [k/N, 0]

H [k/N, 1]

H [k/N,K − 1]

N ↑

N ↑

N ↑

ŷ[k]

Figure 3.2: TF domain channel diagonalization using FB implementation.
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an analysis FB using G̃m(z). After a down-sampling of the analysis FB output signals

by a factor N , the resulting signals in the mth sub-band are weighted element-wise by

the channel coefficients H[ℓ,m]. After up-sampling by factor N , the sub-band signals are

transformed back to the time domain via the synthesis FB.

Due to the sampling of the time-variant transfer function C (k, ω) of the channel, the

model (3.14) usually only approximates the mapping of the linear operator in (3.9). As a

consequence, the output signal ŷ[k] of the synthesis FB is an approximation of the channel

output signal y[k]. The accuracy of ŷ[k] depends on the channel characteristics and the

underlying Gabor frame. We may expect the model error to be small if the support of

every element gℓ,m [k] of the Gabor frame is highly concentrated around (ℓN, 2πm/K) in

the TF plane such that C (k, ω) is essentially constant within the support of gℓ,m[k]. TF

well-localized window functions fulfilling this condition can be designed for underspread

channels typically encountered in mobile radio scenarios via convex optimization, which

will be shown in Sect. 3.6.

The TF channel diagonalization offers several advantages. First of all, the sampling inter-

vals N and 2π/K can be chosen such that they conform with the channel coherence time

and frequency, resp., thereby treating time and frequency dispersion by an underspread

channel as symmetrical effects. In case of a multipath channel with a small coherence

frequency or, equivalently, a large delay spread, the frequency shift shall be chosen ac-

cordingly small. In this way, the channel diagonalization can be adapted to channels

with different delay and Doppler spreads. Secondly, the formulation of the signal map-

ping by the channel as the element-wise product (3.14) facilitates scalable and efficient

receiver processing known from OFDM, where a ”single-tap” frequency domain equalizer

is employed. Last but not least, the proposed channel description is independent of the

particular signal types, e.g. single-carrier, multi-carrier or spread-spectrum signals, which

makes it suitable for reconfigurable receivers to be used for handling signals from different

air interfaces. The channel diagonalization also enables an efficient channel parameter

estimation scheme [61] and a simple demodulation approach for reconfigurable receivers.
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3.4 Gabor Multipliers

To introduce the definition of Gabor multipliers [62], we use the same notations as in

Chap. 2, i.e., a Gabor atom is denoted as g[k], a corresponding dual atom is denoted as

w[k] and Λ = Z×{0, . . . , K−1} is a TF-lattice. Furthermore, let f [k] be a time-discrete

function in L2(Z), and M [ℓ,m] a time-discrete function in L2(Λ). The Gabor multiplier

associated with (g, w, Λ,M) is defined by

Gg,w,Λ,M(f) =
∑

(ℓ,m)∈Λ

M [ℓ,m] 〈f, gℓ,m〉wℓ,m. (3.16)

As a consequence, the signal representation of f [k] using normalized tight Gabor frames

{gℓ,m [k] : (ℓ,m) ∈ Λ}, i.e. f =
∑

(ℓ,m)∈Λ 〈f, gℓ,m〉 gℓ,m, can be viewed as

Gg,g,Λ,1(f) = f. (3.17)

Thus, Gg,g,Λ,1 represents an identity operator, and in this case g[k] = w[k] and

M [ℓ,m] = 1.

The channel diagonalization discussed in Sect. 3.3 has the form of Gg,g,Λ,H(x) where

H[ℓ,m] represents the channel coefficient. Given the input signal x[k], approximating

the output of a time-variant channel using the form of G∗
(
H ⊙ Gx

)
can be viewed as a

generalization of the representation of the channel output signal used in OFDM systems.

In the latter case, given the channel input signal x[k] and the channel gain h[m],m =

0, . . . , K−1, at each frequency sub-band m, the output signal of a time-invariant channel

outside the cyclic prefix within a symbol period is represented as F−1 (h ⊙Fx), namely

the concatenation of a time-discrete Fourier transform F , an element-wise multiplication

and an inverse time-discrete Fourier transform F−1.

The properties of the Gabor multiplier depend on the TF concentration properties of

the Gabor atom and the lattice constants [62]. Hence, the performance of the Gabor

multiplier for approximating the channel output signal y[k] depends on g [k], N and K.

In [51], M [ℓ,m] is analytically derived for approximating the output signal of a deter-

ministic channel where the objective is to minimize the Euclidean distance between the
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approximated signal vector ŷ and the output signal vector y using the Gabor multiplier.

In the following section we are interested in using the Gabor multiplier to approximate

the output of a random channel with minimal error for given second order channel statis-

tics. The approximation error will be discussed in the mean-square sense in both time

and TF domains.

3.5 Mean-Squared Error Analysis

The TF diagonalization of a time-variant random channel proposed in Sect. 3.3 introduces

a certain error, and the error depends on the chosen Gabor frame and the corresponding

channel characteristics. In this section, we will discuss the error in the mean-squared

sense assuming the random channel is WSSUS. To remain general with respect to signal

and channel properties, we consider the error signals both in time and TF domains under

the assumptions of

• a white random signal at the channel input,

• a random channel H complying with the WSSUS model and unit average channel

gain (i.e., φf [0]=φt [0]=1).

To formulate the MSE, we introduce the aforementioned white random channel input

signal xQ[k] being subject to E [xQ[k]] = 0 and

E
[
x∗

Q[k]xQ[k′]
]

=





δk,k′ for k, k′ ∈
[
− Q

2
, Q

2

]

0 otherwise

(3.18)

with Q an even positive integer.

3.5.1 Mean-Squared Error in the TF Domain

We first consider the formulation of the MSE in the TF domain. Fig. 3.3 shows the

set-up for computing the TF domain channel diagonalization error. Given a random
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random signal

generator

xQ [k] random channel

c [k, q]

yQ [k] signal analysis

signal analysis

G(·)

G(·)

YQ

XQ

H

ŶQ

Figure 3.3: Set-up for calculating the TF domain channel diagonalization error.

input signal xQ [k], the TF representation YQ = GyQ of the actual channel output signal

yQ [k] =
∞∑

q=0

c [k, q] xQ [k − q] appears at the right hand side of the upper chain. In the

lower chain, the TF representation XQ of the input signal xQ [k] is obtained by a signal

analysis operator G, i.e. XQ = GxQ. Then XQ is element-wise multiplied by the channel

coefficient H, and the resulting ŶQ is the approximated channel output signal in the TF

domain.

We formulate the TF domain error EQ introduced by the channel diagonalization (3.14)

as the difference between ŶQ ∈ L2(Λ) and YQ ∈ L2(Λ), i.e.,

EQ = ŶQ − YQ. (3.19)

Since the channel is assumed to be WSS in both time and frequency dimensions, the MSE

of the channel diagonalization is independent of (ℓ,m) ∈ Λ. Hence, the MSE ǫTF per TF

coefficient can be expressed as a function of the prototype g ∈ L2(Z), i.e.,

ǫTF(g) = lim
Q→∞

E


 1

Q
N
· K

∑

(ℓ,m)∈ΛQ

|EQ[ℓ,m]|2



=
N

K
lim

Q→∞

1

Q
E


 ∑

(ℓ,m)∈ΛQ

|H [ℓ,m] 〈xQ, gℓ,m〉 − 〈HxQ, gℓ,m〉|2

 , (3.20)

with ΛQ =
{
−
⌊

Q
2N

⌋
, . . . ,

⌊
Q
2N

⌋}
× {0, . . . , K − 1}.
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It follows that the TF domain MSE introduced by the channel diagonalization can be

expressed as

ǫTF(g) = 2
(
‖g‖2 −ℜ [〈(g ∗ Sdelay) ⊙ φt, g〉]

)
, (3.21)

where a detailed derivation of (3.21) from (3.20) is provided in Appendix A. We notice that

ǫTF(g) depends on the shape of the window g [k] and the second-order channel statistics.

The first term in the brackets of the MSE (3.21) is the energy Eg = ‖g‖2 of g [k], and

the second term can be viewed as a linear operation on g [k]. The convolution of the

delay power spectrum Sdelay with the window g in the time domain is equivalent to the

multiplication of the frequency correlation function φf [ω], i.e., the Fourier transform of

the delay power spectrum according to (3.11), with Fg =
∑∞

k=0 g [k] exp (−ωk) in the

frequency domain. The resulting time domain signal F−1(φf · Fg) is then element-wise

multiplied by the time correlation function φt. For the extreme case when φf [ω] = 1 and

φt [k] = 1, i.e., the channel is flat fading, the MSE ǫTF(g) = 0. If both the time and

frequency correlation functions of the channel are constant in the support of the atom

g [k] in the TF plane, the error is minimized. Hence, when the support of the atom is

highly concentrated in both time and frequency, i.e., it is localized in a relatively small

area in the TF plane, the channel can be viewed as approximately flat in that area. As

a consequence, the MSE ǫTF(g) approaches zero.

To search for optimized window functions minimizing ǫTF(g) for different channel charac-

teristics, (3.21) is used as a cost function. The window optimization can be solved using

SDP methods, which will be discussed in Sect. 3.6.1.

3.5.2 Mean-Squared Error in the Time Domain

Fig. 3.4 shows the set-up for computing the time domain error introduced by the channel

diagonalization. Given a random input signal xQ [k], the actual signal yQ [k] = (HxQ)[k]

at the output of a random channel c [k, q] appears at the right hand side of the upper chain.

Since we are interested in the time domain error now, the analysis operator is not included

in the upper chain unlike in Fig. 3.3. In the lower chain the channel output is reproduced

by a signal analysis operator, an element-wise multiplication with the channel coefficient
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channel diagonalization

random signal

generator

xQ [k] random channel

c [k, q]

yQ [k]

signal analysis

G(·)

signal synthesis

G∗(·)

XQ ŶQ

H

ŷQ[k]

Figure 3.4: Set-up for calculating the time domain channel diagonalization error.

and a synthesis operator, which is the channel diagonalization model shown in Fig. 3.2.

Thus, the time domain error eQ [k] is formulated as the difference between the resulting

signals from the lower chain ŷQ[k] and the upper chain yQ [k], i.e., eQ [k] = ŷQ[k]− yQ [k].

The MSE from the channel diagonalization in the time domain using the set-up in Fig. 3.4

is given by

ǫT(g) = lim
Q→∞

E


 1

Q

Q/2∑

k=−Q/2

|eQ [k]|2



= lim
Q→∞

E


1

Q

Q/2∑

k=−Q/2

∣∣∣∣∣∣

∑

(ℓ,m)∈Λ

H [ℓ,m]〈xQ, gℓ,m〉gℓ,m[k] − (HxQ) [k]

∣∣∣∣∣∣

2
 . (3.22)

Making use of the assumptions at the beginning of this section, the error can be further

written as

ǫT(g) = 1 +
K

N


 ∑

(ℓ,m)∈Λ

φt[ℓN ]φf(2πm/K) |〈g, gℓ,m〉|2 − 2ℜ (〈(g ∗ Sdelay) ⊙ φt, g〉)


 .

(3.23)

A detailed derivation of (3.23) from (3.22) can be found in Appendix B. We notice that

the first term in the brackets depends on the cross-correlations between different elements

of the Gabor frame, weighted by the time and frequency correlation functions, and the

second term also appears in ǫTF(g) (3.21) which is regarded as a linear operation on g[k].

Signal analysis using tight frames with N < K results in an overcomplete representation
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of the original signal. The time domain error eQ [k] = ŷQ[k] − yQ [k] is related to the TF

domain error EQ = ŶQ − YQ as

eQ = G∗(EQ). (3.24)

As from (2.17),

‖G∗(EQ)‖ ≤ ‖EQ‖ , (3.25)

which indicates the MSE in the time domain is not larger than the MSE in the TF

domain.

Having formulated both conditions for the window g[k] to define a tight Gabor frame in

Sect. 2.4 and resulting MSEs from the channel diagonalization based on g[k], we can now

turn to the window design.

3.6 Prototype Design by Convex Optimization

Convex optimization methods aiming at the minimization of convex objective functions

are frequently employed in various areas in engineering. Unlike for more general opti-

mization problems, efficient numerical methods are widely available for finding solutions

of convex optimization problems. A convex optimization problem [63] has the form
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minimize f0(x)

subject to





fi(x) ≤ 0, i = 1, . . . , p

hi(x) = 0, i = 0, . . . , q
, (3.26)

where x ∈ R
n is a vector containing the variables. The functions {f0, . . . , fp : R

n → R}
are convex, i.e., satisfy

fi

(
αx + (1 − α)y

)
≤ fi(αx) + fi

(
(1 − α)y

)
, i = 0, . . . , p (3.27)

for all x,y ∈ R
n and all α ∈ [0, 1], and the functions hi are affine3. It is known that

for a convex optimization problem, any local optimum is a global optimum. Convex op-

timization can be classified as geometric programming and quadratic programing which

includes SDP, second order cone programming, etc. There are several numerical meth-

ods for solving convex optimization problems. The most popular ones among them are

interior-point methods which are described in [64, 65].

3.6.1 Formulation of a SDP Problem (TF Domain MSE)

Let us represent the window to be optimized in the vector form g , [g[0] · · · g[T − 1]]T

such as to comprise the support of g[k] expressed in Sect. 2.4. We consider real-valued

windows g whose L2-norm equals Eg. The restriction to real-valued windows is common

in the literature and limits the complexity. We recall that the TF domain MSE is given

by ǫTF(g) = 2
(
‖g‖2 −ℜ [〈(g ∗ Sdelay) ⊙ φt, g〉]

)
which can be formulated in matrix form

as

ǫTF(g) = 2
(
Eg −ℜ

[
gTBg

])
, (3.28)

3A function f(x) is affine if it has the form f(x) = Ax + b, which consists of a linear transformation
and a translation [63].
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where the matrix B ∈ C
T×T describing the delay and Doppler domain distortions of the

channel can be expressed as

B =




φt [0] Sdelay [T − 1] 0 0 0 0
...

. . . 0 0 0

φt [0] Sdelay

[
T−1

2

]
· · · φt

[
T−1

2

]
Sdelay [T − 1] 0 0

... · · · · · · . . . 0

φt [0] Sdelay [0] φt [1] Sdelay [1] · · · · · · φt [T ] Sdelay [T − 1]




.

(3.29)

Neglecting the constant term 2Eg, we use −2ℜ
[
gTBg

]
as the objective function for the

window optimization. Note that

− 2ℜ
[
gTBg

]
= −gT(B + BH)g, (3.30)

and as a consequence the objective function can be rewritten as gTB0g, where

B0 = −(B + BH) is a Hermitian matrix.

The optimized window g shall be found to minimize the objective function gTB0g for

different channel characteristics B0. In Sect. 2.4, a complete framework is presented for

parameterization of tight Gabor frames. In the following, our objective is to find a window

g minimizing ǫTF and, at the same time, constituting a tight Gabor frame. Thus, the

optimization problem is given by

ĝ = arg min
g∈RT

gTB0g

subject to g defining a tight frame. (3.31)

Next, we need to incorporate the constraints under which ǫTF shall be minimized.

As discussed in Sect. 2.4, the tight frame constraint in (3.31) is equivalent to

B polynomial matrices being paraunitary. With (2.56) we can now translate the

polyphase domain constraints (2.45) into constraints on the permuted window defined

by r =
[
r[0] · · · r[T − 1]

]T
, where T = BLJP . Therefore (3.31) is expressed as
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r̂ = arg min
r∈RT

rTB1r

subject to rTAlr = dl, l = 1, . . . ,W, (3.32)

where dℓ ∈ {K−1, 0} with l = 1, . . . ,W , and B1 is the matrix resulting from B0 by

permuting the rows and columns in accordance with (2.55). We discuss the following two

cases based on the number B of the polynomial matrices Wb(z), b = 0, . . . , B − 1.

1. Case B = 1: There are J constraints in form of rTAℓr = K−1. The ℓth diagonal

constraint matrix Aℓ of size LJP × LJP is defined as

[Aℓ]m,n =





1 if m = n and m ∈ ⋃
p=0,...,P−1

{(pJ + ℓ − 1)L + 1, . . . , (pJ + ℓ)L}

0 otherwise

,

(3.33)

with ℓ = 1, . . . , J .

Additionally, there are J2P − (J + 1)J/2 constraints rTAℓr = 0. The corresponding

matrices AJ+1, . . . , AJ2P−(J−1)J/2 can be defined as the elements of the set resulting from

deleting duplicate elements and zero-matrices from

{(
A ∈ R

LJP×LJP given as

[A]m,n = I+ (m − jL) [Aℓ]m−jL+I−(m−jL)·LJP,n + I+ (n − jL) [Aℓ]m,n−jL+I−(n−jL)·LJP

)
:

j = 1, . . . , JP ; ℓ = 1, . . . , J
}

(3.34)

where

I+ (x) =





1 x > 0

0 x ≤ 0
, (3.35)

and

I− (x) =





1 x ≤ 0

0 x > 0
. (3.36)

2. Case B > 1 : From each of the above defined matrices A1, . . . ,AJ2P−(J−1)J/2, B unique

block diagonal matrices of size T × T (with T = BLJP ) are reproduced, each of which

contains the original matrix as one of the B diagonal blocks of dimension LJP ×LJP .



Chapter 3. Efficient Time-Frequency Channel Representation 69

Hence, there are W , B(J2P − (J − 1)J/2) constraints in total. The constraint matrices

are mutually orthogonal in the sense that tr(AℓA
T
m) = 0 for ℓ 6= m.

Let us consider again the example of N = 6, K = 8, and according to (2.25) L = 4, J = 3

and M = 24. The B = N/J = 2 modified matrices W0(z) and W1(z) of size L × J are

paraunitary, i.e., W̃0(z)W0(z) = K−1IJ , and W̃1(z)W1(z) = K−1IJ . In case of P = 1,

the matrix W0(z) in (2.51) is given by

W0(z) =




g [0] g [8] g [16]

g [18] g [26] g [34]

g [12] g [20] g [28]

g [6] g [14] g [22]




, (3.37)

and the paraunitary condition on the matrix W0(z) can be further expressed as





|g [0]|2 + |g [18]|2 + |g [12]|2 + |g [6]|2 = 1
8

|g [8]|2 + |g [26]|2 + |g [20]|2 + |g [14]|2 = 1
8

|g [16]|2 + |g [34]|2 + |g [28]|2 + |g [22]|2 = 1
8

g [0] g [8] + g [18] g [26] + g [12] g [20] + g [6] g [14] = 0

g [8] g [16] + g [26] g [34] + g [20] g [28] + g [14] g [22] = 0

g [0] g [16] + g [18] g [34] + g [12] g [28] + g [6] g [22] = 0

(3.38)

The first equation in (3.38) can be formulated in matrix form as

gTĀ0g =
1

8
, with Ā0 = Diag([1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0]). (3.39)

Employing the sample permutation of the window function in (2.55), we use the resulting

vector r instead of g. The matrix Ā0 can be reformulated as A0 taking the sample

permutation into account. Thus (3.39) is rewritten as

rTA0r =
1

8
, with A0 = Diag([1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]). (3.40)
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Similarly, A1 for the second equation in (3.38) is given by

A1 = Diag([0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]), (3.41)

and all the remaining equations can be written in matrix forms accordingly.

Let us introduce a matrix R , rrT, and thus the objective function rTB1r can be written

as tr(B1R). The semidefinite relaxation of (3.32) is given by
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R̂ = arg min
R∈ST

tr(B1R)

subject to





R ≥ 0

tr(AlR) = dl, l = 1, . . . ,W
, (3.42)

where ST represents the vector space of symmetric matrices of dimension T×T , and R � 0

denotes that R is positive semidefinite. Via the iterative interior-point algorithm [66], R̂

can be computed numerically. Having found a matrix R̂ ∈ ST corresponding to a global

minimum of (3.42), we have two possible cases. If rank(R̂) = 1, a solution r̂ of (3.32) is

readily obtainable from r̂r̂H = R̂ and the optimal window gSDP[k] is found through (2.55).

If rank(R̂) > 1, which we observe in most of the cases, rank reduction methods must be

employed. We compute a possibly suboptimal window gSDP[k] by the following three

steps:

1. We first find the rank-1 matrix R̂0 which has the least Euclidian distance to R̂.

The approximation problem can be represented as

R̂0 = arg min
R∈ST

∥∥∥R − R̂
∥∥∥

subject to rank(R) = 1. (3.43)

Since R̂ is a Hermitian matrix, it can be written in the form of R̂ = VΣVH by its

eigenvalue decomposition, where Σ is a diagonal matrix containing the eigenvalues

of R̂, and the square matrix V contains all the eigenvectors. We resort to the

matrix R̂0 = (N/K)v0v
H
0 composed by the dominant eigenvector v0 of R̂, since R̂0

is the matrix nearest to R̂ in terms of the Frobenius norm [67].

2. From R̂0 = r̂0r̂
H
0 we obtain the vector r̂0 =

√
N/Kv0, and then r̂0 is translated

into a window ĝ0[k] taking the sample permutation defined in (2.55) into account.

3. After the rank reduction in the first step, the constraints in (3.42) do not hold

anymore, i.e., the resulting window ĝ0[k] generally does not constitute a tight Gabor
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frame. We finally obtain gSDP[k] by the algorithm [68], i.e.,

gSDP = (S−1/2ĝ0), (3.44)

where S−1/2 denotes the square root of the inverse frame operator S discussed in

Sect. 2.2. In fact, (3.44) yields a window gSDP[k] defining a canonical tight frame

with frame bound 1 and, at the same time, minimizing the distance to a given

window (i.e., ĝ0[k]) in terms of the L2-norm.

3.6.2 Formulation of a Convex Optimization Problem (Time

Domain MSE)

In this section we consider the window optimization minimizing the time domain MSE.

The time domain MSE ǫT(g) of the channel diagonalization can be formulated as a convex

function under certain weak assumptions. We consider only real-valued windows as in the

last subsection. In order to eventually arrive at a CO problem, we impose the following

restrictions on the channel statistics:

• The time correlation function is subject to φt[ℓ] ≥ 0 ∀ℓ ∈ Z, as being the case for

Laplacian and many other symmetric Doppler power spectra.

• The frequency correlation function fulfills φf(2πm/K) + φf(−2πm/K) ≥ 0

∀m ∈ {0, . . . , K−1}, as for instance in the case of exponentially decaying delay

power spectra.

We use (3.23) as the objective function, and the term |〈g, gℓ,m〉|2 can be expressed as
(
gTℜ(Eℓ,m)g

)2
+
(
gTℑ(Eℓ,m)g

)2
using (2.2). Choosing ℓ = 1,m = 1 and P = 1 as an
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example, the square matrix E1,1 of dimension T × T is expressed as

E1,1 =




0 0 · · · · · · 0
... 0

0 0 · · · 0

1 0
... 0

0 exp
(

2π
K

)
0 · · · 0

0 0 exp
(

4π
K

)
0

... 0

0 · · · 0
. . . 0 · · · 0

0 · · · 0 exp
(

2(M−N−1)π
K

)
0 · · · 0




, (3.45)

where T = M is the least common multiple of N and K, and the entries of the first

ℓ · N rows are all zeros. The term −2ℜ
(
〈(g ∗ Sdelay) ⊙ φt, g〉

)
of the objective function

can be written in matrix form as discussed in the last subsection. As a consequence, the

objective function (3.23) can be expressed in the form

ǫT(g) =
F∑

k=1

ck

(
gTCkg

)2
+ gTDg + 1 (3.46)

for some F ∈ N depending on the support of g[k], where C1, . . . ,CF ,D are real matrices

and the constants c1, . . . , cF are positive given the above restrictions.

We can now formulate the optimization problem in the form

min
r∈RT

F∑

k=1

ck

(
rTC̄kr

)2
+ rTD̄r

subject to rTAℓr = dℓ, ℓ = 1, . . . ,W, (3.47)

where C̄1, . . . , C̄F , D̄ are the matrices resulting from C1, . . . ,CF ,D by permuting the

rows and columns in accordance with (2.55), and dℓ ∈ {K−1, 0}. Let us use R = rrT to

reformulate the optimization problem as

min
R∈ST

F∑

k=1

cktr
2
(
RC̄k

)
+ tr

(
RD̄

)
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subject to





tr (RAℓ) = dℓ, ℓ = 1, . . . ,W

rank(R) = 1
. (3.48)

In (3.48) we have a convex objective function, however, the set {R ∈ ST : rank(R) = 1}
is non-convex4. Resorting to semidefinite relaxation, we obtain

min
R∈ST

F∑

k=1

cktr
2
(
RC̄k

)
+ tr

(
RD̄

)

subject to





tr (RAℓ) = dℓ, ℓ = 1, . . . ,W

R � 0
. (3.49)

Since S+
T = {R ∈ ST : R � 0} is a convex subset of ST , we now have a CO problem [63].

A simple gradient method can be used to find the optimum solution of unconstrained

CO problems. In the following, the constraints in (3.49) are transformed for applying the

gradient method. Our first step is to rewrite the problem (3.49), making the inequality

constraint R � 0 implicit in the objective:

min
R∈ST

F∑

k=1

cktr
2
(
RC̄k

)
+ tr

(
RD̄

)
+ I(R)

subject to tr (RAℓ) = dℓ, ℓ = 1, . . . ,W, (3.50)

where I(X) is an indicator function defined as

I(X) =





0 X ∈ S+
T

+∞ otherwise
. (3.51)

The logarithmic barrier function defined as

f(X) =





− 1
µ

ln det(X) X ∈ S+
T

+∞ otherwise
, (3.52)

with det(·) denoting the determinant of a matrix and µ > 0, can be employed for approx-

imating the indicator function (3.51). The quality of the approximation improves when

4Clearly, given two N × N matrices A and B with rank 1, a linear combination cA + (1 − c)B, with
c ∈ (0, 1), is in general a matrix with rank 2.
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µ increases. The logarithmic barrier function f(X) is a convex function like the indicator

function I(X), and moreover f(X) is differentiable [63]. We use f(R) to replace I(R) in

(3.50). Then, the resulting objective function reads

F∑

k=1

cktr
2
(
RC̄k

)
+ tr

(
RD̄

)
+ f(R). (3.53)

Since the logarithmic barrier function f(X) is infinite when X /∈ S+
T and almost zero

when X ∈ S+
T and 1

µ
approaches zero, the minimum values of the new objective function

in (3.53) and the original objective function (3.49) are the same. Our second step is to

handle the equality constraints tr (RAℓ) = dℓ, ℓ = 1, . . . ,W , in (3.49). Note that the

constraint matrices Aℓ, ℓ = 1, . . . ,W , are mutually orthogonal, i.e., tr(AlAm) = 0 for

l 6= m, and they span a vector space W. Any R fulfilling the constraints can be written

as

R = RW⊥ + R0, (3.54)

where R0 is a constant matrix given by

R0 =
W∑

ℓ=1

dℓ
Aℓ

‖Aℓ‖
, (3.55)

and RW⊥ ∈ W
⊥ with W

⊥ denoting the vector space orthogonal to W. Therefore, the CO

problem (3.49) can be rewritten as

min
R̂∈W⊥

F∑

k=1

cktr
2
((

R̂ + R0

)
C̄k

)
+ tr

((
R̂ + R0

)
D̄
)
− 1

µ
ln det(R̂ + R0). (3.56)

The gradient in the subspace W
⊥ is obtained by an orthonormal projection of the gradient

in ST onto W
⊥. We use the opposite direction of the resulting gradient vector. A

reasonable step is chosen via the inexact line search [63] such that the objective function

decreases in each iteration. When the norm of the gradient is very close to zero after

a number of iterations indicating proximity to the minimum of the current objective

function, we increase the value of µ, and repeat the whole process until the logarithmic

barrier function is approximately zero.
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Having found a matrix R̂ ∈ ST corresponding to a global minimum of (3.49), there are

two possible cases. If rank(R̂) = 1, a solution r̂ of (3.47) can be obtained from r̂r̂T = R̂

and the optimal window gCO[k] is found through (2.55). If rank(R̂) > 1, rank reduction

methods must be employed. A suboptimal window gCO[k] is found by steps being similar

to those presented in Sect. 3.6.1.

3.7 Numerical Results

We consider a WSSUS channel with unit average channel gain (i.e., φf [0] = φt[0] = 1)

and an exponentially decaying delay power spectrum, the sampled version of which reads

Sdelay[q] = u(q) (1 − exp(−1/τRMS)) exp(−q/τRMS) (3.57)

with u(q) denoting the unit step function and τRMS the RMS delay spread. Typical values

of RMS delay spread are in the order of microseconds in outdoor mobile channels and

nanoseconds in the case of short-range radio indoor environments [69]. For the Doppler

power spectrum, a two-sided exponentially decaying shape is assumed, which results in

the time correlation function

φt[k∆] =
1

1 + 2π2ν2
RMS |k∆|2

, (3.58)

where νRMS represents the RMS Doppler spread. Since choosing an oversampling factor

K/N larger than one increases the degrees of freedom in the window design, we restrict

our attention to scenarios with K > N , involving oversampled FBs.

Fig. 3.5 shows optimized window functions gSDP[k] and gCO[k] for a doubly dispersive

channel with an RMS delay spread τRMS = 1 and an RMS Doppler spread νRMS = 0.01,

as well as their Fourier transforms. The waveforms are obtained numerically for N = 24,

K = 32, P = 2, amounting to a window length of 240 samples. The optimized windows

are found via SDP and CO, and the Fourier transforms of the optimized windows in (a),

(b), resp., versus the normalized frequency ω/2π are shown in Fig. 3.5 (c), (d). The two

optimized windows achieve MSEs of ǫTF(gSDP) = −8.72 dB and ǫT(gCO) = −9.49 dB,
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Figure 3.5: Examples of optimized window functions gSDP[k] and gCO[k] in time
domain (left side) and in frequency domain (right side) for τRMS = 1, νRMS = 0.01.

where the error is represented in decibel, i.e., 10 log10(·). The time domain MSE ǫT is less

than the TF domain MSE ǫTF as discussed in Sect. 3.5.

By increasing the polynomial order of the matrices W0(z), . . . ,WB−1(z), longer windows

are available. The dimension of the optimization problem is increased, as well as the

number of constraints. Fig. 3.6 shows the optimized windows gSDP[k] obtained by solv-

ing (3.42) via SDP for τRMS = 1 and νRMS = 10−5. In Fig. 3.6 (a), N = 48, K = 64,

P = 1, amounting to a window length of 384 samples, and in Fig. 3.6 (b) N = 48, K = 64,

P = 3, resulting in a waveform of 768 samples. Fig. 3.6 (c) and (d) show the respective

Fourier transforms. It is obvious that the optimized window with longer support is more

smooth in the time domain. Moreover, the MSE of the optimized window in Fig. 3.6 (b) is

−29.83 dB, and it is less than the MSE of the window in Fig. 3.6 (a) which is −28.44 dB.

We also observe that the optimized windows gCO[k] via CO results in a reduced MSE



78 Chapter 3. Efficient Time-Frequency Channel Representation

 

(a)

−4N −2N 0 2N 4N
k

g S
D

P
[k

]

−160

−140

−120

−100

−80

−60

−40

−20

0
(c)

−0.5 −0.25 0 0.25 0.5
normalized frequency

m
ag

n
it

u
d
e

[d
B

]

 

(b)

−4N −2N 0 2N 4N
k

g S
D

P
[k

]

−160

−140

−120

−100

−80

−60

−40

−20

0(d)

−0.5 −0.25 0 0.25 0.5
normalized frequency

m
ag

n
it

u
d
e

[d
B

]

Figure 3.6: Examples of optimized window functions via SDP in time domain (left
side) and in frequency domain (right side) for different polynomial orders: (a) and (c),
P = 1; (b) and (d), P = 3.

when P increases, however at the cost of an increasing computational complexity.

Fig. 3.7 shows the optimized pulses gCO[k] obtained by numerically solving the CO prob-

lem (3.49) for different channel conditions. An RMS delay spread τRMS = 3 and an RMS

Doppler spread νRMS = 0.001 are assumed in Fig. 3.7 (a), while τRMS = 3, νRMS = 0.01

in Fig. 3.7 (b). Fig. 3.7 (c) and (d) show the Fourier transforms of the optimized win-

dows in (a) and (b). Obviously, the optimized waveforms become more concentrated in

the time domain as the Doppler spread increases (see Fig. 3.7 (b) versus Fig. 3.7 (a)).

For increasing Doppler spreads the coherence time of the channel decreases, and thus to

limit the MSE the optimized windows have a smaller support. The two shown optimized

windows achieve MSEs of −16.01 dB and −8.44 dB, respectively.

Note that the TF shifted versions of the optimized window are used for the channel
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Figure 3.7: Examples of optimized window functions via CO in time domain (left
side) and in frequency domain (right side) for different channel statistics: (a) and (c),
τRMS = 3, νRMS = 0.001; (b) and (d), τRMS = 3, νRMS = 0.01.

diagonalization. The cross-correlations between the optimized window g [k] and its TF

shifted versions {gℓ,m [k] : (ℓ,m) ∈ Λ} is known as ambiguity function. For g ∈ L2(Z),

the ambiguity function of g is defined by

Ag[ℓ,m] = 〈g, gℓ,m〉 , (3.59)

where gℓ,m is given by (2.2) as gℓ,m [k] = g [k − ℓN ] exp(2π(k − ℓN)m/K) with ℓ,m rep-

resenting the indices of the time and frequency shifts, respectively. Fig. 3.8 shows as an

example the absolute value of the ambiguity function |AgCO
[ℓ,m]| obtained from CO with

N = 24, K = 32, P = 2 for a channel with τRMS = 5, νRMS = 0.01. It is shown in Fig. 3.8

that the ambiguity function of the optimized window is concentrated in a small area,

which indicates that the optimized window is highly correlated only with functions being



80 Chapter 3. Efficient Time-Frequency Channel Representation

−10

−5

0

5

10

−5

0

5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ℓm

ab
so

lu
te

va
lu

e
of

th
e

am
b
ig

u
it
y

fu
n
ct

io
n

Figure 3.8: Ambiguity function of the optimized window gCO[k] with N = 24, K = 32,
P = 2 for a channel with τRMS = 5, νRMS = 0.01.

located in the direct neighborhood in the TF domain. Hence, the optimized window

function has a relatively good TF concentration property.

The achievable MSEs (3.23) by optimized windows are shown in Fig. 3.9 for N = 24,

K = 32, P = 2. The RMS delay spread τRMS ranges between 1 and 8 samples while

the RMS Doppler spread νRMS equals 10−2. For every considered τRMS a window gCO[k]

is obtained by numerically solving the CO problem (3.49), and a window gSDP[k] by

solving (3.42) through SDP, where both approaches require the aforementioned additional

steps for rank reduction. The global minimum of the objective function in (3.49), that

is prior to the rank reduction, serves as a lower bound in the figure. The offsets of

ǫT(gCO) and ǫT(gSDP) from the lower bound reflect the impact of the rank reduction.

Additionally, the figure shows the MSEs resulting from choosing a window gRRC[k] with a

root-raised-cosine (RRC) shaped magnitude spectrum with width 2π/K and roll-off factor

K/N−1. We choose this window function for comparison since it can be shown that the

window gRRC[k] with the aforementioned parameter can constitute a tight Gabor frame

while exhibiting superior TF localization properties compared to rectangularly shaped

windows. Finally, for the verification of ǫT(gCO), we also run system-level Monte-Carlo
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Figure 3.9: Model errors by windows gCO[k] and gSDP[k] optimized through CO and
SDP, resp., and by window gRRC[k] with RRC shaped magnitude spectrum versus τRMS

at νRMS = 10−2.

simulations involving the actual FBs based on the optimized windows gCO[k]. The input

signals x and WSSUS channels are generated by random number generators, and the

signals y = Hx and ŷ = G∗(H⊙ (Gx)) are obtained. An analysis of the error signals leads

to the same results as given by ǫT(gCO).

Obviously, solving (3.49) leads to pulses with better performance than solving (3.42) for

RMS delay spreads less than 5 samples. For larger τRMS the resulting MSEs are almost the

same, where the toll taken by the rank reduction following CO exceeds the one following

SDP. The considerable offset of the MSEs from the lower bound for smaller τRMS further

indicates that here the rank reduction has a significant impact on the windows. We

observe that rank reduction generally has a limited effect when the delay and Doppler

spreads are of similar extent, that is, when in the TF plane the delay spread relative to the

sampling interval in time (i.e., τRMS/N) is of the same order of magnitude as the Doppler

spread relative to the sampling interval in frequency (i.e., νRMS/K
−1). For example, for

the scenario with τRMS = 1, νRMS = 0.01, the optimized window via CO for N = 24,

K = 32, P = 2 results in a MSE of −9.49 dB which is shown in Fig. 3.9. To limit the
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effect of the rank reduction, we change the lattice constants to be N = 9, K = 12, however

keeping the oversampling ratio K/N as 4/3, and in this case τRMS/N ≈ νRMS/K
−1. The

resulting optimized window has a much better performance, which results in a MSE of

−16.12 dB. Note that this result is not shown in Fig. 3.9.

The relatively high MSEs found in Fig. 3.9 are a result of the product τRMSνRMS being in

the order of 10−2, a much larger value than encountered in typical mobile radio scenarios.

In environments with such severe dispersion in both time and frequency, the model error

performance can actually be improved by increasing the oversampling ratio K/N . This

can be seen in Tab. 3.1, showing some values of ǫT(gCO), ǫT(gSDP) and ǫTF(gSDP) observed

for choosing different oversampling ratios. An RMS delay spread of 1 sample and a RMS

N K oversampl. ratio ǫTF(gSDP) ǫT(gSDP) ǫT(gCO)
24 32 4/3 -8.29 dB -7.39 dB -9.49 dB
20 32 8/5 -9.89 dB -8.48 dB -11.78 dB
16 32 2 -12.06 dB -9.69 dB -14.83 dB
12 32 8/3 -15.38 dB -10.90 dB -18.57 dB
8 32 4 -21.09 dB -11.70 dB -22.43 dB
4 32 8 -23.25 dB -11.79 dB -23.85 dB

Table 3.1: Model error for different oversampling ratios.

Doppler spread νRMS = 0.01 are assumed here, and P = 2. The oversampling ratio K/N

is increased from 4/3 to 8 by decreasing the down-sampling factor N from 24 to 4. The

number of sub-bands K is fixed to 32. Both TF and time domain MSE performances

clearly improve with the oversampling ratio. Again, as discussed before, the performance

of the windows obtained from the CO is always better in comparison with the windows

obtained from the SDP.



Chapter 4

Generic Reconfigurable Receiver

Architecture

In this chapter, we investigate the design of a reconfigurable baseband receiver architec-

ture which is capable of dealing with various signals from different air interfaces. The

proposed TF channel diagonalization in Chap. 3 does not rely on a particular signal

format (e.g., single-carrier GSM signals, multi-carrier WLAN signals, spread-spectrum

UMTS signals), making it suitable for flexible radio systems. In the following, a flexible

baseband receiver architecture is discussed which is based upon the TF channel diagonal-

ization. The receiver includes several key modules implementing signal processing tasks

in the TF domain. In addition, the proposed architecture can be configured to both a

matched filtering based receiver and an equalization based receiver.

The burst structures defined in the various standards for cellular systems and wireless

local and personal area networks differ substantially. However, commonly the bursts

incorporate preamble and pilot signals for the synchronization and channel parameter

estimation as well as information-bearing signals which are usually subject to a linear

modulation scheme. Therefore, we assume in the following that the baseband transmit

signals generally follow the form

x[k] =

Q∑

q=1

sqzq[k] + p[k] (4.1)

83
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with s1, . . . , sQ denoting Q information signals which modulate the elementary waveforms

z1[k], . . . , zQ[k], and p[k] representing the pilot signal. An elementary waveform can, for

example, be a complex exponential as in the case of OFDM signals, or have the form of

a pseudo-noise (PN) sequence as in the case of direct-sequence spread-spectrum (DSSS)

signaling. For the purpose of channel estimation at the receiver, a preamble/pilot signal

p[k] is often transmitted. The preamble/pilot signal may be confined to isolated time

intervals, or exhibit constant power as in the case of a CDMA system with a dedicated

pilot channel to be transmitted in the same time and frequency slots as the information

bearing signals sqzq[k].

The baseband signal at the receiver reads

y[k] = (Hx)[k] + v[k], (4.2)

where v[k] represents the additive front-end noise, which is a white random process. The

TF representation of a burst y[k] to be processed comprises K samples in the frequency

dimension (corresponding to the number of FB elements) and D samples in time dimen-

sion for a total of DK samples, constituting a K ×D matrix Y. The DK samples relate

to the TF grid points in the set

{0, N, . . . , (D − 1)N} ×
{

0,
2π

K
, . . . ,

2π(K − 1)

K

}
, (4.3)

where N is the spacing in time (corresponding to the down-sampling factor of the FB),

and 2π
K

is the spacing in frequency which is discussed in Sect. 2.2. In this chapter, the

TF representations of signals are denoted in the aforementioned matrix forms.

Fig. 4.1 sketches the structure of the reconfigurable baseband receiver. The time-discrete

received signal y [k] is represented in the TF domain as Y at the output of the analysis

FB. The K × D-dimensional TF matrix representations Z1, . . . ,ZQ, and P of the ele-

mentary waveforms z1[k], . . . , zQ[k] and the pilot signal p[k], resp., are not necessary to

be computed on-line by analysis FBs, but they can be pre-computed and read from local

repositories. The locally reproduced pilot signal representation P is used together with

the TF representation Y of the received signal to calculate an estimate Ĥ of the matrix H
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ŝ
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Figure 4.1: Reconfigurable baseband receiver architecture.

of size K × D which contains the channel parameter estimates. The channel parameters

are defined in Sect. 3.3 as the channel gain values at the grid points in the TF plane,

which correspond to samples of the time-variant channel transfer function. Moreover, the

TF domain channel diagonalization enables relatively simple parameter estimation and

demodulation schemes. The module of f(Ĥ) in the figure represents a function of the

estimated channel parameter matrix Ĥ, which can be either f(Ĥ) = Ĥ∗ or f(Ĥ) = Ĥ+,

where Ĥ∗ denotes the matrix with every element being the complex conjugate of the

corresponding element of Ĥ and Ĥ+ is defined as the result of element-wise inversion of

Ĥ.

In the following, we will discuss the different functional blocks of the receiver architecture

in detail. First, the blocks of the function f(Ĥ) and the calculation of the pulse cross-

correlation matrix Â will be described for two different ways of demodulation, namely

based on matched filtering in Sect. 4.1 or equalization in Sect. 4.2. Then, the channel

estimation scheme will be discussed in Sect. 4.3 followed by the detector description in

Sect. 4.4. A control scheme for setting up the overall receiver functionality is described

in Sect. 4.5. Finally, in Sect. 4.6, the complexity of the receiver is analyzed in terms of

the required numbers of complex multiplications and additions per detected symbol.
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4.1 Matched Filtering Based Receiver Structure

Fig. 4.1 represents a reconfigurable receiver with signal demodulation based on matched

filtering in case f(Ĥ) = Ĥ∗, where the pulse cross-correlation is computed as in Fig. 4.2.

The pulse cross-correlator block, which will be described in detail subsequently, includes

Ĥ

Z1, . . . ,ZQ

Â〈·, ·〉

Figure 4.2: Pulse cross-correlation block of the matched filtering based receiver ar-
chitecture.

an element-wise multiplication and an inner product operation, while TF representations

Z1, . . . ,ZQ of the elementary waveforms are provided by a local repository. To compute

the TF representations Z1, . . . ,ZQ of the elementary waveforms and P of the pilot signal,

on-line computations are required for some scenarios, e.g., in UMTS systems where the

elementary waveforms and the pilot signal are subject to time-variant signature spreading

and scrambling operations. Based on the latter, the signals from different sources can

be separated from each other at the receiver. Note that due to the time-variance of the

elementary waveform spreading and the scrambling, it is not possible to pre-compute the

corresponding TF coefficients. Hence, extra analysis FBs are required for the purpose of

calculating the TF coefficients in real time. For other scenarios, e.g., OFDM systems, the

TF coefficients can be pre-computed and obtained from local repositories.

Note that matched filtering of the information-bearing part y [k]− (Hp)[k] of the received

signal y [k] against the Q distorted waveforms yields

uq = 〈y −Hp,Hzq〉, q = 1, . . . , Q. (4.4)

The coefficients u1, . . . , uQ represent a sufficient statistics for the decoding problem under

the assumption of v[k] representing an additive white Gaussian noise (AWGN) process.
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The receiver structure in Fig. 4.1 is based on the signal processing in the TF domain,

and tight Gabor frames which fulfill Paseval’s identity are used for signal analysis at the

receiver. Therefore, according to (2.16), the estimated sufficient statistics (4.4) required

by the subsequent detector can be computed in the TF domain as

ûq = 〈Y − Ĥ ⊙ P, Ĥ ⊙ Zq〉 (4.5)

=
K∑

i=1

D∑

j=1

(
[Y]i,j − [Ĥ]i,j[P]i,j

)
[Ĥ∗]i,j[Z

∗
q]i,j

= 〈Ĥ∗ ⊙
(
Y − Ĥ ⊙ P

)
,Zq〉, (4.6)

where [Y]i,j, [Ĥ∗]i,j, [P]i,j and [Z∗
q]i,j denote the ith element in the jth column of Y, Ĥ∗,

P and Z∗
q, respectively. The qth elementary waveform and the pilot signal at the channel

output in the TF domain are approximated as Ĥ ⊙ Zq and Ĥ ⊙ P, resp., employing the

TF domain channel diagonalization. The receiver is designed to perform an element-wise

multiplication of the estimated information-bearing part of the received signal by Ĥ∗, i.e.,

Ĥ∗⊙
(
Y − Ĥ ⊙ P

)
in (4.6), rather than an element-wise multiplication of the elementary

waveforms by Ĥ, i.e., Ĥ ⊙ Zq as in (4.5). The reformulation of the sufficient statistics

in such a way has two advantages. First, it reduces the complexity in some scenarios

considerably. For instance, in the UMTS downlink, the multiplexing of various physical

channels results in a large number of elementary waveforms, and the TF representation

of each waveform at the channel output needs to be computed according to (4.5). By

a rearrangement of the computation of the sufficient statistics in (4.6), the element-wise

multiplication of a large number of elementary waveforms in the TF domain can be

avoided. Secondly, it facilitates a common receiver architecture of a matched filtering

based receiver and an equalization based receiver.

From (4.1) and (4.2), the received signal reads

y[k] =

(
H
(

Q∑

q=1

sqzq + p

))
[k] + v[k]. (4.7)
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By inserting (4.7) in (4.4), the vector u comprising u1, . . . , uQ as components can be

expressed as

u = As + v, (4.8)

where the vector s comprising the signals s1, . . . , sQ represents the transmitted codeword,

and the matrix A denotes the pulse cross-correlation matrix. The noise vector v contains

the terms 〈v,Hz1〉, . . . , 〈v,HzQ〉, which are the correlations of the noise signal with all

possible waveforms, and consequently the noise is not white any more. The jth element

of the ith row of the Q×Q matrix A is given as

[A]i,j = 〈Hzj,Hzi〉, i, j ∈ {1, . . . , Q}. (4.9)

The diagonal of the matrix A contains the energies of the waveforms

(Hz1)[k], . . . , (HzQ)[k] at the channel output, whereas the off-diagonal values in A

contain the waveform cross-correlations. Furthermore, E
[
vvH

]
= N0A, where N0

denotes the spectral power density of v[k].

A baseband receiver may first compute the sufficient statistics u and pulse cross-

correlation matrix A, and then perform demodulation and decoding on the basis of (4.8).

As shown in Fig. 4.1, the receiver calculates the estimates
(
û, Â

)
of (u,A), based on

the channel parameter estimates Ĥ. In (4.5) the elements of û are computed in the TF

domain, and the elements of Â are computed in the TF domain as

[Â]i,j = 〈Ĥ ⊙ Zj, Ĥ ⊙ Zi〉 i, j ∈ {1, . . . , Q}. (4.10)

Fig. 4.2 shows the calculation of the pulse cross-correlations (4.10). As shown in the

figure, the TF representation of the transmit side elementary waveforms Z1, . . . ,ZQ

are mapped to the TF representations of the waveforms at the channel output, i.e.,

(Ĥ ⊙ Z1), . . . , (Ĥ ⊙ ZQ), by an element-wise multiplication. This simple operation re-

sults from the TF domain channel diagonalization (3.14) discussed in Sect. 3.3. Then the

pulse cross-correlation matrix Â is computed by the inner product operation between all

the distorted elementary waveforms in the TF domain according to (4.10).
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The TF representation of the baseband signal at the receiver y [k] can be written for

perfectly known channel coefficients H as

Y = H ⊙
(

Q∑

q=1

sqZq + P

)
+ W. (4.11)

Since, in general, representing the channel output using the proposed TF channel diago-

nalization is only an approximation, the matrix W in (4.11) represents the inherent error

from the channel diagonalization together with the TF representation V of the noise v[k],

i.e., W = V−E. The TF domain error from the channel diagonalization is expressed as

E = H ⊙
(

Q∑

q=1

sqZq + P

)
− G

(
H
(

Q∑

q=1

sqzq + p

))
, (4.12)

with the channel input signal
∑Q

q=1 sqzq + p instead of xQ in Fig. 3.3, which is in line

with (3.19). In the following, we treat the model error as a part of the noise, and refer

to W as the TF representation of the noise signal.

4.2 Equalizer Based Receiver Structure

If we choose the function block f(Ĥ) = Ĥ+ and the pulse cross-correlation depicted

in Fig. 4.3, Fig. 4.1 shows a baseband receiver architecture based on the TF domain

equalization. Note that the pulse cross-correlator in Fig. 4.3 does not use the estimated

Ĥ

Z1, . . . ,ZQ

Ã〈·, ·〉

Figure 4.3: Pulse cross-correlation block of the equalizer based receiver architecture.

channel coefficients Ĥ, since the signal at the TF signal correlator input is assumed
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perfectly equalized corresponding to H[ℓ,m] = 1 ∀(ℓ,m) ∈ Λ, so that a premultiplication

of Zq in Fig. 4.3 can be saved. In Fig. 4.1, the equalization is carried out in the TF

domain by an element-wise multiplication of the TF representation of the information-

bearing part Y − Ĥ⊙P of the received signal with the inverse of the individual channel

coefficients Ĥ+. The resulting signal in the TF domain reads Ĥ+ ⊙
(
Y − Ĥ ⊙ P

)
.

As shown in Fig. 4.3, the pulse cross-correlations are computed by the inner product

operation between all of the elementary waveforms. Therefore, the jth element of the ith

row of the pulse cross-correlations matrix Ã is given by

[Ã]i,j = 〈Zj,Zi〉 i, j ∈ {1, . . . , Q}. (4.13)

The correlations of the equalized signal with the elementary waveforms z1[k], . . . , zQ[k]

are also computed in the TF domain, which yields

ũq =
〈
Ĥ+ ⊙

(
Y − Ĥ ⊙ P

)
,Zq

〉
. (4.14)

Assume the vector ũ comprises the elements ũ1, . . . , ũQ. In analogy with (4.8), the vector

ũ can be expressed as

ũ = Ãs + ṽ, (4.15)

where the elements of the vector ṽ are given by

[ṽ]j =
〈
Ĥ+ ⊙ W,Zj

〉
. (4.16)

Subsequently, demodulation and decoding are carried out based on ũ and the pulse cross-

correlation matrix Ã. However, when the estimated channel gain Ĥ is small in certain

TF locations, the noise is amplified.

An equalizer based receiver is a favorable choice for certain system scenarios such as in the

UMTS downlink. In this case, the transmit signal comprises signals to be used commonly

by all users, like e.g. pilot signals, as well as signals dedicated to the individual users.

As mentioned above, the signals belonging to the various so-called physical channels are

encoded by different spreading codes and additionally scrambled, where only the desired
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user is able to correlate and decode the corresponding signal. The signals of the other users

are regarded as interferences to the desired signal for a certain user. However, since the

signals for all users are distorted by a common channel in the downlink, the orthogonality

of signals associated with different users can be restored by channel equalization. Thus,

the channel equalization option is more suitable in this scenario than matched filtering.

4.3 Channel Estimation

It has been shown that the choice of the receiver architecture translates to a correspond-

ing choice of f(Ĥ) and pulse cross-correlation according to Sect. 4.1 and Sect. 4.2. In

this section, the TF domain channel estimation will be discussed. The aforementioned

estimate Ĥ of the channel coefficients is provided by a channel estimator, which operates

in the TF domain and takes as input the observation Y and a locally reproduced pilot

signal representation P in a similar manner as channel estimators in OFDM receivers.

The channel estimator in Fig. 4.1 provides estimates of the sampled version H of the

time-variant transfer function. Only non-blind parameter estimation is considered in

the receiver since the common standards indeed include pilot signals for the purpose of

channel estimation. The transmitted signal is assumed to contain both an information

signal and a pilot signal p[k] being known at the receiver. The embedding of p[k] in the

transmit signal (4.1) is arbitrary. The pilot signal may precede the information signal

(as a preamble) or it may be superimposed to the information signal, as in the case of

CDMA systems with a common pilot channel. Rather than knowing the pilot signal in

the time domain, the receiver shall have knowledge of the TF coefficients P of the pilot

signal.

We consider the case of a pilot signal superimposed to the Q information signals in (4.1).

With the discussed channel diagonalization, the output of the analysis FB in Fig. 4.1 can

be written as in (4.11). Note that the channel gains [H]i,j and [H]i′ ,j′ belonging to nearby

TF slots (i, j) and (i
′

, j
′

), resp., are highly correlated if
∣∣i − i

′
∣∣NTs is much smaller than

the coherence time of the channel and
∣∣j − j

′
∣∣ /(KTs) is much smaller than the coherence

bandwidth of the channel. Pilot aided channel estimation in OFDM systems usually has
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two steps. In the first step, the initial estimate [H̆]i,j of the channel parameter is obtained

by dividing the received signal Y element-wise by the transmitted pilot signal P in the

TF domain, i.e.,

H̆ = Y ⊙ P+ (4.17)

= H + H ⊙
(

Q∑

q=1

sqZq

)
⊙ P+ + W ⊙ P+, (4.18)

where (4.18) is obtained from (4.17) by applying (4.11).

In the second step, the final estimates [Ĥ]i,j of the channel parameter are attained from

[H̆]i,j by a two-dimensional interpolation or filtering. The two-dimensional filtering has

the form

[Ĥ]i,j =
K∑

i′=1

D∑

j′=1

q(i, j, i
′

, j
′

)[H̆]i′ ,j′ . (4.19)

The estimates interpolated over the entire TF grid in such a way form a two-dimensional

Wiener filtering [70]. The choice of the two-dimensional estimation window q(i, j, i
′

, j
′

) de-

pends on the cross-correlations of the channel parameters and thus on delay and Doppler

spreads. Smaller Doppler spreads suggest the inclusion of a larger number of samples in

the time dimension, while smaller delay spreads suggest the inclusion of a larger number

of samples in the frequency dimension for the estimation of [H]i,j. In general, the channel

estimator needs knowledge of the TF representation of the pilot signal and additionally

the information of the delay and Doppler spreads in order to compute the estimation

window.

Efficient TF channel parameter estimators operating on the basis of (4.11) for doubly

dispersive channels are presented in [61]. Upon stacking the TF coefficients of the received

signal, the pilot signal, the information signal and the noise into corresponding vectors, the

two-dimensional estimation problem can be translated into a one-dimensional problem.

This leads to a reformulation of (4.11) according to

st [Y] = st [H] (Diag [st [S]] + Diag [st [P]]) + st [W] , (4.20)

where S =
∑Q

q=1 sqZq.
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Assume that st [S] represents a white random process with E [st [S]] = 0, and

E
[
st [S] (st [S])H

]
= ǫsIDK . The noise st [W] is also white, i.e., E [st [W]] = 0 and

E
[
st [W] (st [W])H

]
= ǫwIDK . The information signal st [S], the noise signal st [W], and

the channel st [H] are further assumed to be mutually independent random vectors. The

linear minimum mean-squared error (LMMSE) estimate of st [H] can be expressed as

st
[
ĤLMMSE

]
= Rh

((
BHB

)
Rh + (ǫs + ǫw) IDK

)−1
BHst [Y] , (4.21)

where B = Diag [st [P]]. The covariance matrix is defined as Rh = E
[
st [H] (st [H])H

]
,

which depends on the environment and can be computed from the delay and Doppler

power spectra.

By replacing BHB by ǫpIDK , where ǫp denotes the mean pilot energy per TF slot, we

obtain the modified LMMSE (MLMMSE) estimate

st
[
ĤMLMMSE

]
= Rh (ǫpRh + (ǫs + ǫw) IDK)−1 BHst [Y] . (4.22)

However, the computational complexity of the estimator is very high due to the large ma-

trix dimensions. For WSSUS channels with a separable scattering function, the covariance

matrix Rh can be written as

Rh = Rt ⊗ Rf , (4.23)

where Rt represents the D × D covariance matrix defined by [Rt]i,j = φt [(i − j)N ], Rf

represents the K×K covariance matrix defined by [Rf ]i,j = φf

[
2π(i−j)

K

]
, and ⊗ denotes the

Kronecker product [67]. The time correlation function φt and the frequency correlation

function φf have been defined in Sect. 3.2.

Let Rt = UtΞtU
H
t and

Rf = UfΞfU
H
f (4.24)

represent the singular value decompositions of the two Hermitian covariance matrices [71].

The matrices Ut and Uf are unitary and Ξt and Ξf are diagonal matrices with real non-

negative diagonal elements. Using some properties of the Kronecker product [67], the
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MLMMSE estimate in (4.22) can be further written as

ĤMLMMSE = Uf

(
C ⊙

(
UH

f (Y ⊙ P∗)U∗
t

))
UT

t , (4.25)

with the K × D matrix C defined by st [C] = diag [Ξh], where

Ξh , (Ξt ⊗ Ξf) (ǫp (Ξt ⊗ Ξf) + (ǫs + ǫw) IDK)−1 . (4.26)

The simplified estimator (4.25) has a lower computational complexity. Moreover, the

complexity can be further reduced with low-rank approximation of the covariance matrices

Rt and Rf by neglecting the diagonal elements of Ξt and Ξf which are below a certain

threshold value.

When the symbol duration of the signal is much smaller than the channel coherence

time, the channel can be regarded purely frequency-selective. In this case, the channel

parameters are constant in the time dimension, i.e., [H]i,1 = [H]i,2 = . . . = [H]i,j = [h]i,

which simplifies their estimation. Here, h is the column vector whose ith component is

given by [h]i which, in turn, represents the channel gain in the ith sub-band. According

to (4.24), (4.25) and (4.26) the MLMMSE estimate of h is given by

ĥMLMMSE = Rf

(
Rf + D−1

(
ǫs

ǫp

+
ǫw

ǫp

)
IK

)−1

D−1ǫ−1
p (Y ⊙ P∗)1, (4.27)

where 1 is a vector of size D with all elements being one.

4.4 Detector

In the following, different detection methods for the matched filtering based receiver

architecture are discussed. Given the estimated sufficient statistics û, the pulse cross-

correlation matrix Â and the codebook Ω, different standard decoding methods are avail-

able on the basis of (4.8). Options for the estimation of the codeword s ∈ Ω include

• the maximum-likelihood (ML) estimate given as ŝML = arg mins∈Ω sHÂs−2ℜ(ûHs),
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• the zero-forcing (ZF) based estimate given as ŝZF = D(Â−1û) with D : C
Q → Ω a

certain detection rule,

• the LMMSE based estimate given as ŝLMMSE = D((Â + γ−1IQ)−1û),

with γ denoting the ratio of the mean energy of the signals s1, . . . , sQ over N0.

For the ZF approach, the multiplication of û by Â−1 yields

ŝZF = Â−1û = s + Â−1v. (4.28)

The multiplication with the inverse of Â can be efficiently implemented using iterative

methods like the Gauss-Seidel iteration [67]. The demodulation and decoding procedure

based on the resulting ŝZF may first calculate the log-likelihood ratios for all bits encoded

in the symbols in ŝZF, using [Â]−1
i,i N0 as the estimate for the ith noise variance, and then

perform soft-decision decoding.

When the ZF approach is applied to the equalizer based receiver architecture, the output

of the TF signal correlator ũ is multiplied by Ã−1, i.e.,

s̃ZF = Ã−1ũ = s + Ã−1ṽ. (4.29)

It turns out that the statistics of the noise terms resulting from ZF in a matched fil-

tering based receiver and from ZF in an equalizer based receiver are identical, i.e.,

E
[
Â−1vvHÂH−1

]
= E

[
Ã−1ṽṽHÃH−1

]
. A detailed proof is shown in Appendix C. How-

ever, if the transmitted signal includes orthogonal signal components destined for other

users, in the case of an equalization the orthogonality is preserved and the vector ũ does

thus not contain multiple access interference (MAI). In contrast, in the case of a matched

filtering based receiver, the output of the TF signal correlator û, in general, does contain

MAI. Therefore, if the performance of the matched filtering based receiver is interference-

limited, the equalizer based receiver can be used to overcome the interference limitation.



96 Chapter 4. Generic Reconfigurable Receiver Architecture

4.5 Parametric Control

Since the operation of the various receiver entities in Fig. 4.1 is defined by the signal

format at hand, they can be implemented in the form of a reconfigurable hardware, being

controlled by a limited number of parameters. For example, parameters for describing

analysis FB configurations are required, including the down-sampling factor, the number

of sub-bands, and the window function related to the impulse response of the prototype

filters, which can be optimized for different channel conditions. Further parameters may

be used for specifying the signal subsets for the two repositories, providing the chan-

nel statistics for the window optimization and defining the signal mapping schemes and

decoding methods.

Tab. 4.1 shows the control parameters for the reconfigurable receiver with the possible val-

ues for each parameter and a short description explaining the used parameter acronyms.

The baseband receiver architecture can be configured to a matched filtering based receiver

or an equalizer based receiver by choosing different parameters for the block f(Ĥ), and

both types are flexible to handle signal formats of various air interfaces. The analysis FB

is configured by the window function g [k], the down-sampling factor N , and the num-

ber of sub-bands K. Two repositories contain the TF representations of the elementary

waveforms and the pilot signals for all possible modes. An exception are modes where

the transmit signals are subject to scrambling in the form of a multiplication by a PN

sequence. In this case the repositories need to replicate the scrambling operations, hence,

the TF representations of the elementary waveforms and pilot signals need to be com-

puted on-line. For the channel estimation the RMS delay and Doppler spreads of the

channel are required, as well as for obtaining the optimized window. The channel estima-

tion schemes discussed in Sect. 4.3 for both time-invariant and time-variant channels can

be employed. The mapping scheme of the transmitted signal is required by the receiver

and therefore shown in the table. There is also a parameter describing the detection

method which can be chosen from the three discussed methods in Sect. 4.4.
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parameter parameter set description

ROM
receiver operation mode

{1,2} ROM =1: matched filtering (f(Ĥ) = Ĥ∗)

ROM =2: equalization (f(Ĥ) = Ĥ+)
g [k] R

T window function
N N down-sampling factor of the analysis FB
K N number of sub-bands of the analysis FB

EWR
TF elementary waveform representation

{1,2} EWR=1: pre-compute
EWR=2: on-line compute

PR
pilot signal representation

{1,2} PR=1: pre-compute
PR=2: on-line compute

CEM

channel estimation method
CEM=1: channel estimation

{1,2} for time-invariant channel
CEM=2: channel estimation

for time-variant channel
τRMS R+ RMS delay spreads in samples
νRMS R+ RMS Doppler spreads in samples

MAP
{BPSK, QPSK, bit-to-signal mapping scheme

16-QAM, 64-QAM}
DEC {ZF, LMMSE, ML} decoding method

Table 4.1: Parameters for baseband receiver control.

4.6 Complexity

In this section the complexity of the reconfigurable baseband receiver in Fig. 4.1 is inves-

tigated. The complexities of the various functional blocks, such as the analysis FB for

computing the TF representation of the received signal, channel estimation, TF domain

correlation, and signal detection are assessed in terms of complex multiplications (CMs)

and complex additions (CAs). Since on-line computations for TF representations of the

elementary waveforms and the pilot signal are only necessary for UMTS signals, we dis-

cuss their complexity in the next chapter. Moreover, the complexity of the waveform

cross-correlation block is also not included in this section since it crucially depends on

the signal format, so that we discuss it later using a UMTS downlink signal as an example.



98 Chapter 4. Generic Reconfigurable Receiver Architecture

4.6.1 TF Representation of the Received Signal

The TF coefficients Y are computed by means of an analysis FB from the received signal

y [k] in the baseband. The FB is implemented as a uniform DFT FB [13] based on the

time-discrete window g [k] with a length of T samples. A DFT FB includes a polyphase

filtering and a K-point FFT, and yields sequences of K-dimensional vectors, one vector

per time slot. The computational complexity of the DFT FB per output vector is as

follows:

• The K-point FFT requires no more than (K/2) log2 K CMs and K log2 K CAs if

K is a power of 2.

• The polyphase filtering requires no more than T CMs and T − K CAs.

Thus, for computing the TF coefficients describing the received signal,

((K/2) log2 K + T ) CMs and (K log2 K + T − K) CAs (4.30)

per FB output vector are required.

4.6.2 Channel Estimation

The receiver calculates the channel parameter estimates by means of the TF represen-

tation of the known pilot signal. As in (4.25), the unitary matrices Ut, Uf , and C

are determined by the channel covariance matrix Rh, and they can be computed off-

line. The estimated channel parameters computed on-line from the analysis FB output

Y via (4.25) involves four matrix multiplications and two element-wise multiplications.

Thus, the number of CMs is 2DK(D+K +1) per TF coefficient, and the number of CAs

is 2DK(D + K − 1) per TF coefficient, where D =
⌈

Tr

N

⌉
with Tr denoting the length of

the received signal.

Note that the computational complexity can be further reduced by reducing the rank of

the covariance matrices Rt and Rf to D0 and K0, resp, where D0 ≤ D and K0 ≤ K. As a
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result of the reduced matrix dimensions, the computation of the channel estimates requires

only D0K0(D+K+1)+DK(D0+K0+1) CMs, and D0K0(D+K−1)+DK(D0+K0−1)

CAs, or approximately

(D0 + K0 + 1) CMs and (D0 + K0 − 1) CAs (4.31)

per channel coefficient if D0 and K0 are relatively small numbers.

4.6.3 TF Domain Correlation

For the matched filtering based receiver, the correlation of y[k] with (Hzq)[k] in the TF

domain involves an element-wise multiplication of Ĥ∗, Y and Zq and a summation. This

requires (
2

⌈
Tr

N

⌉
K

)
CMs and

(⌈
Tr

N

⌉
K − 1

)
CAs (4.32)

per symbol. For the equalizer based receiver, the TF domain correlator performs an

element-wise multiplication of Ĥ+, Y and Zq and a summation. The number of the

operations is the same as in (4.32).

4.6.4 Detection

For analyzing the computational complexity of the detector, we consider the ZF approach

as an example. As shown in (4.28), a matrix inversion is required followed by a matrix

multiplication. For the matched filtering based receiver, the inversion of the matrix Â of

dimension Q × Q has a complexity O(Q3) using, for example, Gauss-Jordan elimination

methods. In contrast, for the equalization based receiver, the matrix Ã is often a diagonal

matrix, in which case inversion requires only Q multiplications.





Chapter 5

Application of Flexible Radios

The matched filtering/equalizer based baseband receiver architecture discussed in Chap. 4

can principally be applied to all burst types featuring linear modulation and pilot/pream-

ble signals. In the following, receiver configurations for OFDM and DSSS signals are

investigated. Other forms of single-carrier and multi-carrier signals can be handled in

similar ways. Through linearization even some nonlinear modulation schemes – such as

Gaussian-filtered minimum shift keying adopted in the GSM standard – can be dealt

with [72], but elaborating on this issue is beyond the scope of this thesis.

The proposed receiver architecture in Chap. 4 can easily be configured to a conventional

OFDM receiver, as shown in Sect. 5.1.1. It is clear that the performance is expected to

be similar to the conventional OFDM receiver, and thus this issue is not discussed in this

chapter. Rather, we will focus on the receiver configuration for the UMTS downlink with

wide-band CDMA (WCDMA). The corresponding performance is studied on different

levels, from the inner receiver performance with perfect and imperfect channel estimation

to the link level performance. Moreover, the computational complexity of the matched

filtering/equalizer based receiver is discussed for UMTS signals. Finally, some issues

related to reconfigurable receiver design, which were investigated within the framework

of the IST project URANUS, are addressed.

101
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5.1 Legacy Systems

5.1.1 OFDM-Based Air Interfaces

In an OFDM system, the input data stream is divided into several parallel sub-streams

of reduced data rate and each sub-stream is modulated and transmitted on a separate

orthogonal sub-carrier. The increased symbol duration due to the reduced data rate and

the introduction of the CP, which is typically a repetition of the last samples of data

portion of the block prepended to the data payload, improve the robustness of OFDM

signals against the frequency-selective fading of multipath channels in wireless commu-

nications [73]. The inter-symbol-interference (ISI) can be eliminated as long as the CP

duration is longer than the channel delay spread. Furthermore, OFDM systems exploit

the frequency diversity of multipath channels by coding and interleaving the information

across the sub-carriers prior to transmissions. As a spectrum efficient multiplexing tech-

nique which is capable of achieving high data rates, OFDM has been adopted in standards

as: IEEE802.11a, WLAN, DVB-T and IEEE 802.16 WiMAX.

The reconfigurable receiver architecture in Fig. 4.1 can easily be configured to emulate a

conventional OFDM receiver by properly chosen control parameters as shown in Tab. 5.1.

The down-sampling factor N and the number of sub-bands K of the FB are chosen in

parameter parameter value
ROM 1

g [k] g [k] =

{
1 for k = 0, . . . , K − 1
0 otherwise

N OFDM symbol length
K the number of sub-carriers

EWR 1
PR 1

CEM 1
τRMS R+

νRMS approximately zero
MAP QPSK, 16-QAM, 64-QAM
DEC ZF, MMSE

Table 5.1: Parameters for baseband receiver control for OFDM signals.
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line with the OFDM symbol length and the number of sub-carriers, respectively. Here,

we have N > K. The window function g[k] of the analysis FB has a rectangular shape

with length K, while the length of the CP equals Tg = N − K. The CP is inserted at

the beginning of each OFDM symbol in the transmitter. By choosing a window having a

rectangular shape with length K in the receiver, the FB operations are reduced to plain

FFT/IFFT operations and the CPs are eliminated before the further signal processing.

In this configuration, because of N > K, (2.1) does not represent a Gabor frame but

rather a Gabor system with undercritical sampling. This has to do with the fact that

the receiver disregards the signal parts in the CP. Moreover, the elementary waveforms

are orthogonal to each other, and their TF representations Z1, . . . ,ZQ as well as the

TF representation of the pilot signal P can be pre-computed and read from the local

repositories. The channel is usually regarded as static during the transmission of at least

one OFDM symbol. In indoor scenarios as encountered in indoor WLANs the channel is

even considered quasi-stationary during a whole data packet period [30].

In this configuration, the time-discrete signal analysis corresponds to block-wise per-

formed DFTs. Perfect timing recovery is assumed, i.e., the system clock at the receiver

is synchronized with that at the transmitter taking into account the delay associated

with signal propagation. We further assume that the channel has a negligible Doppler

dispersion and the delays of the essential signal parts do not exceed the length of the

CP, such that an elementary waveform at the channel output, e.g., (Hzq)[k], is perfectly

represented as H⊙Zq. The cross-correlation matrix A has the form of a diagonal matrix

due to the orthogonality between the elementary waveforms. The error-rate performance

of this receiver mode matches the performance of conventional OFDM receivers. Fur-

thermore, the channel estimator presented in Chap. 4.3 reduces to an OFDM channel

estimator taking the second-order channel statistics into account, the performance of

which is investigated in [70].

5.1.2 DSSS-Based Air Interfaces

In DSSS signalling, the data signal is spread over a much wider frequency band than

required [74]. Due to the multiplication of the user data signal with a PN sequence, the
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resulting DSSS signal appears similar to random noise to receivers having no knowledge

of the used PN sequence [28]. The PN sequence is also called a spreading sequence and

represents a user signature. The spreading sequence is composed of chips of duration

Tchip. One of the most important parameters of a DSSS system is the spreading factor SF

denoting the ratio of the chip rate and the data rate. The frequency diversity inherent

in spread spectrum signals makes them robust to fading from multipath propagation and

also to narrow-band interference. In wireless communications there are a number of air

interfaces adopting DSSS signaling, such as WLANs, UMTS or Bluetooth.

Tab. 5.2 shows the control parameters for a DSSS compliant mode, which are used be-

low for the inner receiver performance evaluation. Unlike the configuration for OFDM

parameter parameter description
ROM 1
g [k] optimized window
N 96
K 128

EWR 2
PR 2

CEM 2
τRMS R+

νRMS R+

MAP 16-QAM, 64-QAM, 256-QAM
DEC ZF

Table 5.2: Parameters for baseband receiver control for DSSS signals.

signals, optimized window functions as presented in Chap. 3 are used for signal analysis.

Furthermore, real-time computations for the TF coefficients of the elementary waveforms

and the pilot signal may be required. If so, the two local repositories in Fig. 4.1 are

replaced by the blocks shown in Fig. 5.1.

5.1.2.1 Performance

In the universal mobile telecommunications system terrestrial radio access (UTRA) fre-

quency division duplexing (FDD) air interface, the chip rate is 3.84Mchip/s [1]. One

signal frame has a length of 10ms which is divided into 15 slots as shown in Fig. 5.2 for
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elementary waveform analysis

filter bankgenerator

pilot signal analysis

filter bankgenerator

z1[k], . . . , zQ[k] Z1, . . . ,ZQ

p[k] P

Figure 5.1: Set-up for the on-line computation of TF representations of the elementary
waveforms and the pilot signal.

the case of the downlink. The downlink Dedicated Physical Channel (DPCH) applies

time multiplexing for physical control information and user data transmission [75]. The

dedicated physical data channel (DPDCH) carries the user data whereas the dedicated

physical control channel (DPCCH) carries the control information, including the transmit

power control (TPC) signal, the transport format combination indicator (TFCI) signal,

and the pilot signal. In UTRA FDD, a slot comprises 2560 chips of duration Tchip = 260 ns

DATA TPC TFCI DATA PILOT

DPDCH DPCCH DPCCH DPCCHDPDCH

0 1 2 3 . . . 14

2560 chips

10 ms

Slot

Downlink
DPCH

Figure 5.2: Downlink DPCH control/data multiplexing [1].

each. All downlink physical channels are subject to a spreading and a scrambling oper-

ation as shown in Fig. 5.3 except for the synchronization channel. In the figure, Cch,SF ,n

represents the nth PN sequence, in the UMTS standard named channelization code, with

spreading factor SF . Spreading/channelization codes are used for the separation of the
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downlink 

physical 

channel

serial

to

parallel

modulation 

mapper

Cch,SF ,n

I

Q



I + Q

Sdl,n

S

Figure 5.3: UMTS downlink spreading and scrambling [2].

signals belonging to different physical channels. Orthogonal variable spreading factor

(OVSF) codes are employed in UTRA FDD, allowing for generating channelization codes

Cch,SF ,n with different lengths. The codes are real valued, and a certain channelization

code Cch,SF ,n is employed for the spreading of both the inphase I and quadrature Q

branches. A single complex valued chip sequence is obtained after the combining of the

two branches. For facilitating the separation of signals from different base stations in the

user terminal, in addition to the spreading a scrambling is performed. That is, the spread

signal is chip-wise multiplied by a certain scrambling code Sdl,n, without having an effect

on the sampling rate [2].

In the following performance evaluation, we assume a spreading factor SF = 16, resulting

in Q = 160 symbols per burst, randomly generated complex channelization/scrambling

codes with elements from {±1± j}, and Q-ary quadrature amplitude modulation (QAM)

with Gray encoding. Also randomly generated for every simulated burst reception is a

realization of a doubly dispersive channel in line with the Gaussian WSSUS model with

a one-sided exponentially decaying delay power spectrum and a two-sided exponentially

decaying Doppler power spectrum with a RMS Doppler spread 400Hz and different val-

ues of RMS delay spreads. The matched filtering based baseband receiver proposed in

Sect. 4.1 is considered with the signal analysis operation using N = 96 and N/K = 3
4

along with optimized window functions. Since K = 128 = 64 ·Tchip, the signal analy-

sis involves 128-point FFT computations at a double chip rate sampling. The detector

performs ZF and symbol detection.

The observed bit-error rates (BERs) in the absence of front-end noise are shown in Fig. 5.4
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for perfect channel estimation (i.e., Ĥ = H) and RMS delay spreads between 0.5µs and

4µs, and in Fig. 5.5 for computing Ĥ on the basis of an overlaid pilot signal with similar

form and equal power as the information-bearing signal and τRMS between 0.25µs and

2µs.
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rectangular window, 256-QAM
rectangular window, 64-QAM
rectangular window, 16-QAM
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optimized windows, 64-QAM
optimized windows, 16-QAM

Figure 5.4: : BER performance of reconfigurable receiver in UTRA FDD compliant
mode with perfect channel knowledge.

Choosing orthogonal channelization codes for the information and pilot signals, Ĥ is

computed according to formula (4.25) in Sect. 4.3. For comparison, the two figures also

show the performance of a similar receiver based on block-wise DFT computations, that

is, N = 48·Tchip and N/K = 1 along with a rectangularly shaped window of length N .

The error-rate performance can obviously be substantially improved through window

optimization. Since no forward error correction (FEC) is employed a BER of up to 10−3

may be acceptable. With optimized window functions and perfect channel knowledge

this is achieved even with 256-QAM unless the RMS delay spread exceeds 1µs, which is

usually not the case in UTRA cells1. As in most receiver architectures deviations in the

channel parameters resulting from pilot signal-based channel estimation have a dominant

effect on the error rates, as can be concluded from Fig. 5.5. Higher-order QAM may

1In [76] RMS delay spreads of 0.17µs for suburban and 0.65µs for urban environments have been
found.
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Figure 5.5: : BER performance of reconfigurable receiver in UTRA FDD compliant
mode with pilot signal-based channel estimates.

only be viable at smaller delay spreads, yet there is also a clear benefit from window

optimization in scenarios with imperfect channel knowledge.

In the following, we show the matched filtering based receiver performance taking into

account the front-end noise with FEC. The BERs are obtained from employing the mul-

tipath channel model defined as case 6 in [77]. Four paths with four different delays and

Rayleigh fading characteristics, and a classical U-shaped Doppler spectrum are assumed.

The RMS delay spread is approximately 240 ns, and the Doppler spectrum results from

assuming a speed of 250 km/h and a 2140 MHz carrier frequency. In the simulations

the transmitted signal is constituted by two physical channels, i.e., a data channel with

spreading factor 16 and channelization code Cch,16,1, and the common pilot channel using

channelization code Cch,16,0. Furthermore, QPSK modulation and a RRC pulse shaping

filter are employed.

Fig. 5.6 shows BERs versus Eb

N0
defining bit energy over noise power spectral density,

which is the signal-to-noise ratio (SNR) per bit. The simulation results are obtained with

FEC, employing the rate-1
2

convolutional code defined in the IEEE 802.11a standard.

The transmitter generates sequences comprising 32000 coded bits. Each bit sequence is
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Figure 5.6: Coded BER performance over a doubly dispersive channel of an ideal
matched filtering receiver and the reconfigurable receiver.

interleaved and divided into 100 blocks of 320 bits each. Each block forms the 160 QPSK

signals transmitted within one slot of a superframe. The channels associated with the 100

blocks are generated independently, adopting the channel model described above. In the

receiver the signals resulting from the demodulation are de-interleaved. The information

bits are finally obtained by a Viterbi decoder.

Fig. 5.6 shows the resulting error rates by the receiver configuration based on matched

filtering with the channel estimation scheme described in Sect. 4.3, and for scenarios

with only one user, for two users (i.e., with an additional data channel using the chan-

nelization code Cch,16,2), and for four users (i.e., with three additional data channels with

Cch,16,2, Cch,16,3, Cch,16,4). As shown in the figure, the performance degradation in the re-

configurable receiver (RRX) compared to an ideal matched filter (MFRX) is very small.

The RRX uses the pilot-aided channel estimation scheme discussed in Chap. 4, while the

MFRX employs an ideal matched filtering, that is, the observed signal is matched in the

time domain against the elementary waveforms as appearing at the channel output, being

computed using perfect channel knowledge.
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5.1.2.2 Complexity

In this subsection we discuss the total complexities of the matched filtering based receiver

and the equalizer based receiver for UMTS signals. With a spreading factor SF and an

oversampling factor F , one elementary waveform spans Te = SF F samples. Note that

because the scrambling is employed on top of the channelization codes, the TF repre-

sentations of the elementary waveforms and the pilot signal are required to be computed

on-line as discussed before.

The complexity of computing the TF coefficients Z1, . . . ,ZQ of the elementary waveforms

via a DFT FB is analogous to the complexity of the received signal expansion. Since

on average a transmit side elementary waveform coincides with portions of the base

functions associated with
⌈

Te+T
N

⌉
time slots per symbol, the complexity related to the

DFT FB amounts to

⌈
Te + T

N

⌉
((K/2) log2 K + T ) CMs and

⌈
Te + T

N

⌉
(K log2 K + T − K) CAs (5.1)

per symbol. A DFT FB with the same computational complexity per output vector is

employed for representing the pilot signal.

For the matched filtering based receiver architecture, the energies of the elementary wave-

forms are required in order to facilitate demodulation of higher-order QAM signals and

soft-decision decoding. The signal cross-correlations, on the other hand, are only needed

in more sophisticated receivers such as receivers performing cancellation of ISI, an issue

which is not considered here. The energies of the elementary waveforms can be obtained

by computing the sums of the squared magnitudes of the respective TF coefficients. This

requires (⌈
Te + T

N

⌉
K

)
CMs and

((⌈
Te + T

N

⌉
K − 1

))
CAs (5.2)

per symbol on average.

For the equalization based receiver architecture, the cross-correlations of the transmitted

elementary waveforms are also needed. Since the transmitted elementary waveforms are

often designed to be orthogonal, the corresponding pulse cross-correlation matrix has the



Chapter 5. Application of Flexible Radios 111

form of a diagonal matrix containing the energies of the elementary waveforms. This

requires the same number of operations as in (5.2).

Tab. 5.3 provides the numbers of CMs and CAs for the matched filtering based receiver

configuration. Assume that K = 128, N = 96, and a window function of length T = 136.

For different spreading factors the resulting complexities are listed separately for the

signal correlation (the sum of (4.30), (4.32) and (5.1)), the channel estimation (4.31), and

the waveform cross-correlation computation (5.2).

spreading factor (CMs,CAs) for (CMs,CAs) for (CMs,CAs) for
SF signal correlation channel estimation waveform cross-correlation
16 (2264, 2967) (2560, 2304) (256, 255)
32 (3104, 3999) (2560, 2304) (384, 383)
64 (3688, 4903) (5120, 4608) (384, 383)
128 (5952, 7871) (7680, 6912) (640, 631)
256 (9384, 12647) (15360, 13824) (896, 895)

Table 5.3: Matched filtering based receiver complexities per symbol in (CMs,CAs).

The numbers in Tab. 5.3 define the number of operations per symbol. The equalizer

based receiver has the similar computational complexity as the matched filtering based

receiver. A conventional rake receiver requires even less operations than the matched

filtering based receiver, but more sophisticated receiver architectures being considered

today like, e.g., receivers performing frequency domain equalization may be similarly

complex as the equalizer based receiver. In fact, the bulk of the above operations account

for FFTs. Furthermore, there is plenty of room for complexity optimization. For instance,

all correlations are assumed above to be carried out over the entire frequency spectrum.

However, at F > 1 and proper pulse shaping filtering, almost K(F − 1)/F of the K

sub-bands essentially do not carry signals and can thus be neglected.

5.2 URANUS

In the context of flexible radio design for next generation communication systems, the

reconfigurable baseband receiver architecture discussed in Chap. 4 has been investigated

in the European IST project URANUS. The main objective of the URANUS project was



112 Chapter 5. Application of Flexible Radios

to develop a universal radio link platform able to be incorporated in any existing propri-

etary or standardized radio access system, in a seamless way [9]. The URANUS approach

supports the simultaneous usage of links with different air interfaces and, in particular,

eases the introduction of future user-defined mode operation and reconfigurable air in-

terfaces [9]. Fig. 5.7 shows the scenarios for employing the aforementioned URANUS

concept. The scenarios include standard selection diversity, the aforementioned possi-

Figure 5.7: Scenarios for using URANUS concept [3].

bility of user-defined proprietary PHY transmission, location-based reconfiguration for

seamless roaming and future-proof reconfiguration for soft infrastructure upgrading.

The core of the URANUS concept is the PHY design. Apart from flexible front-ends and

interfaces to higher layers, the efficient baseband implementation of the PHY plays the

key role in universal radio-link platforms. It combines the advantageous implementation

properties of orthogonal multi-carrier transmission with the required generality of the

baseband signaling format or mode, where each mode is uniquely represented by a cor-

responding set of parameters. The proposed overall transceiver structure is independent
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of the specific choice of the parameter set and, thus, of the mode at hand. URANUS

is therefore the solution that implements a generalized modem that can be quickly and

easily tailored to the given application. Due to the fixed transceiver architecture, the

URANUS approach is also a hardware approach. It attains both the efficiency and com-

pactness of hardware and the flexibility that we can typically attain with a pure software

based approach.

In [78], a reconfigurable baseband transmitter architecture is presented with a common

waveform processing module for different standards/modes. Linear, single-carrier and

multi-carrier modulation schemes are considered. For single-carrier modulations some

extra processing on the digital level is required in order to generate transmit signals by

a conventional transmitter, while multi-carrier modulation schemes can be directly en-

compassed with no extra signal processing. The reconfigurable transmitter design also

employs the Gabor theory of TF signal representations, and thus involves DFT FBs in the

architecture. Although the complexity of the reconfigurable transmitter increases com-

pared to a conventional transmitter implementation, it gains the flexibility of generating

various signal formats with a fixed baseband architecture.

Some of the reconfigurable baseband receiver concepts presented in this thesis are out-

comes of the URANUS project. While the TF channel diagonalization by means of

properly designed paraunitary FBs has been shown to have a great potential, there are a

number of related issues that need to be addressed on the way to practical solutions, such

as adequate channel estimation methods, synchronization, radio resource management,

and others. In [79], a matched filtering based TF domain synchronization scheme has

been discussed. The known PN sequences are used as preambles for synchronization. To

be compatible with the TF signal processing at the receiver, the conventional frequency

domain synchronization is extended to a generic approach of acquisition in the TF do-

main. Another related topic investigated within the project is bit and power loading for

reconfigurable transmitters. The one-dimensional water filling principle in the frequency

domain has been generalized to a two-dimensional water surface principle which is ap-

plicable in the TF domain [80]. Optimized power allocation strategies have been derived

taking into account the dependencies of the power between the elementary functions used

to synthesize the transmit signal.



114 Chapter 5. Application of Flexible Radios

The URANUS validation has been accomplished using a digital baseband implementation

with focus on PHY aspects. Both the reconfigurable transmitter and receiver function-

alities have been implemented. The ST Microelectronics GreenSIDE board developed

for base stations [81] has been used as validation platform. The PHY functions defined

by both UMTS/WCDMA and WiMAX/IEEE802.16e standards are included in the im-

plementation. The validation platform enables real-time operation and the switching

between different modes of operation. The measurement results have been presented

in [82] with a concise description of the set-up for the test scenarios. The measure-

ments included transceiver characteristics such as the signal spectra, receiver sensitivity,

throughput, BERs, symbol-error rates, and block-error rates.



Chapter 6

Conclusions and Outlook

6.1 Conclusions

The growing number of standards for wireless access and networking motivates a trend

towards reconfigurable transceiver devices. Since the assembling of tailored solutions for

single standards into hybrid devices has clear limitations, multi-mode monolithic receiver

devices for universal wireless communications that support a wide range of air interfaces

are highly desired.

In this thesis, a reconfigurable baseband receiver architecture with multi-standard capa-

bility is proposed, which represents a generalization of OFDM receivers in the following

aspects. First, since tight frames used for signal transformations in the proposed receiver

are natural generalizations of orthonormal bases used for signal transforms in OFDM re-

ceivers, the efficient handling of dispersive channels by OFDM receivers can be inherited

by the reconfigurable receiver being not limited to signals with cyclic extensions. Sec-

ondly, the signal processing in an OFDM receiver is performed in the frequency domain,

whereas the proposed reconfigurable receiver processes the signals in the TF domain.

Thirdly, the reconfigurable receiver is designed to handle the signals at the output of

doubly dispersive channels, while OFDM receivers are usually limited to deal with sig-

nals from time-invariant multipath channels. Finally, the reconfigurable receiver employs

115



116 Chapter 6. Conclusions and Outlook

FB implementations with window functions of arbitrary shapes, while in OFDM a block-

wise FFT is performed.

The TF domain channel diagonalization is the key for deriving a uniform architecture

of the baseband receiver. Optimized paraunitary FB configurations are presented which

facilitate diagonalization of doubly dispersive channels with limited values of the inherent

MSE between the received signal and its model used for the receiver design. It is shown

that the optimization of paraunitary FBs for given channel statistics can be formulated

as a CO problem making use of a suitable parameterization of tight frames. However, in

certain scenarios the necessary rank reduction following the CO has a significant impact on

the window shapes. The induced potential degradation of the MSE performance may be

evaded by choosing appropriate lattice constants N and K, specifying the down-sampling

factor and the number of sub-bands, respectively. In general, the MSE performance can

be improved at the cost of a higher complexity in terms of numbers of coefficients by

increasing the oversampling ratio.

Flexible radio architectures based on the TF domain channel diagonalization have been

investigated for both OFDM and DSSS signals. The proposed receiver architecture can

be easily configured to a matched filtering based receiver and an equalizer based receiver.

The case of DSSS signals in line with the downlink UTRA FDD air interface specification

has been studied as an example. We find that in typical urban and suburban environ-

ments the impact of the channel diagonalization error can be limited to acceptable levels

through window design, however, the performance degradation due to imperfect channel

estimation may be considerable. The computational complexity required for demodu-

lation depends on signal structures associated with specific air interfaces. However, in

general the complexity can be assumed to be comparable to the complexity of corre-

sponding single mode receivers with frequency domain processing. Of course generality

and reconfigurability always come at a certain cost in error-rate performance and/or

complexity.
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6.2 Open Problems

The FB based reconfigurable baseband receiver is designed so far for employing single user

detection methods. An extension towards the inclusion of multiuser detection methods

would make the architecture even more attractive for base stations for example in UMTS

systems.

It has been discussed that one may benefit from the equalizer based receiver architecture

with respect to complexity due to the restoring the orthogonality of signals in scenarios

such as UMTS downlink transmission. However, the simple inversion of the channel

coefficients clearly leads to a noise amplification and more robust detection schemes should

therefore be investigated like e.g. LMMSE approaches.

As for the window optimization of the TF domain channel diagonalization, more efficient

convex optimization algorithms can be employed. Furthermore, by alternative rank re-

duction procedures the MSE of the channel diagonalization can be reduced which will

result in improved receiver performance.





Appendix A

Derivation of MSE in the TF

Domain

The MSE (3.20) in the TF domain ǫTF can be written as

ǫTF(g) =
N

K
lim

Q→∞

1

Q
E


 ∑

(ℓ,m)∈ΛQ

|H [ℓ,m] 〈xQ, gℓ,m〉|2
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)



︸ ︷︷ ︸
ϕ3

, (A.1)

where ℜ (·) denotes the real part operator. Both the input signal power and the gain of

the channel are normalized to unity, and therefore

ϕ1 = ϕ2 = ‖g‖2 . (A.2)
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By applying (3.12) and (3.13) ϕ3 can be rewritten as

ϕ3 =
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K
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)
(A.5)

= ℜ [〈(g ∗ Sdelay) ⊙ φt, g〉] , (A.6)

where ∗ denotes convolution. To obtain (A.4) from (A.3) we apply (3.18), and to arrive at

(A.5), (3.10) is used. For the derivation of (A.6) from (A.5), the definition of time-discrete

Gabor systems (2.2) is applied.

Thus, ǫTF(g) is given by

ǫTF(g) = 2
(
‖g‖2 −ℜ [〈(g ∗ Sdelay) ⊙ φt, g〉]

)
. (A.7)
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Derivation of MSE in the Time

Domain

The MSE (3.22) in the time domain ǫT can be written as

ǫT(g) = lim
Q→∞
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(B.1)

Both the input signal power and the gain of the channel are normalized to unity, and

therefore ϕ̃2 = 1.
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In (B.1), ϕ̃1 can be expressed as
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where ΛQ =
{
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× {0, . . . , K − 1}. To obtain (B.3) from (B.2) we ap-

ply (3.12), (3.13), and (3.18), and to arrive at (B.4) we use (3.10). Using (2.2) and (3.11),

ϕ̃1 can now be expressed as
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Finally, ϕ̃3 can be rewritten as
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We use (3.18) to obtain (B.7) from (B.6), and for the derivation of (B.8), (3.10) is applied.

Thus, ǫT(g) is given by

ǫT(g) = 1 +
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Appendix C

The Statistics of the Noise Term

Resulting from ZF

Assume the matrix Z̄ of dimension (DK)×Q with jth column st [Zq] containing the TF

coefficients of the qth elementary waveforms zq. As a consequence, the matrix Ã with

elements [Ã]i,j = 〈Zj,Zi〉 can be written as Ã = Z̄HZ̄. Assume the noise is white with

power density N0, i.e, E
[
WWH

]
= N0I. According to (4.16), the covariance of ṽ is

expressed as

E
[
ṽṽH

]
= N0Z̄

HDiag
[
st
[
Ĥ
]]−1

Diag
[
st
[
Ĥ
]]H−1

Z̄. (C.1)

Thus, the covariance of the term Ã−1ṽ is given by

E
[
Ã−1ṽṽHÃH−1
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=
(
Z̄HZ̄

)−1
E
[
ṽṽH

] (
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−1Diag

[
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Ĥ
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Diag
[
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[
Ĥ
]]H−1

Z̄H−1

. (C.2)

Similar to the above result, the covariance of Â−1v in (4.28) of the matched filtering

based receiver can be written as

E
[
Â−1vvHÂH−1

]
= N0Â

H−1

. (C.3)
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Note that the matrix Â with the entries [Â]i,j = 〈Ĥ ⊙ Zj, Ĥ ⊙ Zi〉 can be written as

Â = Z̄Hst
[
Ĥ
]H

st
[
Ĥ
]
Z̄, and its inverse Â−1 can therefore be expressed as

Â−1 = Z̄−1

(
st
[
Ĥ
]H
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[
Ĥ
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Z̄H−1

. (C.4)

Applying (C.4), the covariance of Â−1v in (C.3) can be further written as

E
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Note that Diag
[
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[
Ĥ
]]−1

Diag
[
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]]H−1

=
(〈
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]
, st
[
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]〉)−1

. From (C.2) and

(C.5), we have

E
[
Â−1vvHÂH−1

]
= E

[
Ã−1ṽṽHÃH−1

]
, (C.6)

which indicates the statistics of the noise term after the ZF approach from both matched

filtering based receiver and equalizer based receiver are the same.
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