Modulhandbuch
M.Sc. Elektrotechnik
Stand: 01.04.2020
Ausbildungsziele

Der Masterstudiengang Elektrotechnik baut als zweiter universitärer Abschluss auf einer Ausbildung zum Bachelor of Science Elektrotechnik oder auf einem gleichwertigen Abschluss auf. Die Absolventen des Masters sollen über solides interdisziplinäres Hintergrundwissen verfügen und auf dieser Basis neue Verfahren und Prinzipien in den Bereichen der Informations- und Kommunikationstechnik, der Mikro- und Nanoelektronik, der Elektroniktechnologie, der Automatisierungs- und der Energietechnik entwickeln, um damit die Lebensqualität der Menschen in vielfacher Hinsicht nachhaltig zu verbessern.

Ziel des Masterstudiengangs ist es, den Studierenden ein nachhaltiges Ingenieurwissen sowie die Befähigung zum selbständigen wissenschaftlichen Arbeiten zu vermitteln. Realisiert wird dies u.a. durch eine frühzeitige Einbindung der Studierenden in Forschungs- und Entwicklungsprojekte sowie der Ausbildung dienende Projekte. Die Absolventen erhalten die wissenschaftliche Qualifikation für eine Promotion.

Die Absolventen können national und international im Bereich der Forschung und Entwicklung eingesetzt werden. Sie besitzen Kompetenz im Bereich des Projektmanagements und der Selbstorganisation. Sie sind für Führungsaufgaben einsetzbar.

Die angestrebten Lernziele des Masterstudiengangs Elektrotechnik stellen sich im Einzelnen wie folgt dar:

- **Ziel Wissens- und Kenntnisstand:**
 - Die Absolventen verfügen über ein vertieftes Wissen in den mathematisch-naturwissenschaftlichen Bereichen.
 - Die Absolventen erlangen vertiefte Kenntnisse in den elektrotechnischen Grundlagen.
 - Die Absolventen verfügen über erweiterte und angewandte fachspezifische Grundlagen der Elektrotechnik.

- **Ziel Analyse- und Methodenkompetenz:**
 - Die Absolventen sind in der Lage, komplexe elektrotechnische und interdisziplinäre Aufgabenstellungen zu erkennen und einzuordnen.
 - Die Absolventen besitzen die Fähigkeit zur Bewertung und sicheren Anwendung analytischer Methoden.
 - Die Absolventen können selbständig Lösungsmethoden entwickeln und beurteilen.
 - Die Absolventen können sich in neue Wissensgebiete einarbeiten und dazu entsprechende Recherchen durchführen und die Ergebnisse bewerten.

- **Ziel Ingenieuranwendung und Ingenieurpraxis:**
 - Die Absolventen sammeln tiefgehende wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten.

- **Ziel Soziale Kompetenz:**
 - Die Absolventen bilden eine stabile Persönlichkeit.
 - Die Absolventen erlangen die Fähigkeit zur effektiven Führung interdisziplinärer Teams.
 - Die Absolventen besitzen die Fähigkeit zu allein verantwortlicher Leitung und Führung.
 - Die Absolventen arbeiten und forschen in nationalen und internationalen Kontexten.
INHALTVERZEICHNIS

1. **PFLICHTMODULE** ... 6
 - Differentialgleichungen ... 6
 - Introduction to Signal Detection and Estimation .. 8
 - Magnetische Bauelemente .. 10
 - Methoden der experimentellen Validierung .. 12
 - Numerische Mathematik für Ingenieure ... 14
 - Optimierungsverfahren ... 16
 - Photonische Komponenten und Systeme ... 18
 - Abschlussarbeit Master ... 20

2. **SCHWERPUNKTMODULE ELEKTRISCHE ENERGIESYSTEME** 22
 - Elektrische Anlagen und Hochspannungstechnik II (ab SS2020) 22
 - Dynamisches Verhalten elektrischer Maschinen .. 24
 - Elektrische Anlagen und Anlagenschutz (bis WS2019/20) .. 26
 - Regelung und Netzintegration von Windkraftanlagen .. 29

3. **SCHWERPUNKTMODULE MEß-, STEUERUNGS- UND REGELUNGSTECHNIK** 31
 - Adaptive und prädiktive Regelung .. 31
 - Analog- und digitale Messtechnik .. 33
 - Lineare Optimale Regelung ... 35

4. **SCHWERPUNKTMODULE INFORMATIONS- UND KOMMUNIKATIONSTECHNIK** 37
 - Introduction to Information Theory & Coding ... 37
 - Microwaves and Millimeter Waves I .. 39
 - Prozessrechner ... 41

5. **SCHWERPUNKTMODULE ELEKTRONIK UND PHOTONIK** 43
 - Halbleiterraumelemente - Theorie und Modellierung .. 43
 - Halbleiterlaser .. 45
 - Optical Communication Systems ... 47

6. **WAHLMODULE** ... 49
 - Antriebstechnik II .. 49
 - Ausgewählte Kapitel der Kommunikationstechnik II .. 51
 - Ausgewählte Kapitel der Mikroprozessortechnik .. 53
 - Ausgewählte Methoden linearer und nichtlinearer Regelungssysteme 55
 - Brennstoffzellentechnik in der Energieversorgung ... 57
 - Communication Technologies I .. 59
 - Communication Technologies II .. 61
 - Computer Arithmetik .. 63
 - Digital Communication Over Fading Channels .. 64
 - Digital Communication Through Band-Limited Channels .. 66
 - Elektrische Entladungen und Durchschläge in Hochspannungsisolierstoffen 68
 - Elektrische Systeme in der Formel Student - Master Level ... 69
 - Elektromagnetische Theorie der Mikrowellen und Antennen 71
 - Energiemanagement in Gebäuden ... 73
 - Energietechnisches Praktikum II ... 75
 - Energiewirtschaftliche Aspekte der Energietechnik I ... 77
 - Energiewirtschaftliche Aspekte der Energietechnik II .. 79
FAHRZEUGDYNAMIK ... 81
FAHRZEUGTECHNIK: AKTUELLE KOMPONENTEN UND SYSTEME .. 82
FINITE ELEMENTE METHODE AM BEISPIEL MAGNETFELDBERECHNUNG ELEKTRISCHER MASCHINEN 84
HOCHSPANNUNGSMESSTECHNIK .. 85
HYBRIDE UND VERNETZTE REGELUNGSSYSTEME .. 86
INFORMATIONEN- UND KOMMUNIKATIONSSTRUKTUREN IN DER ENERGIEWIRTSCHAFT ... 88
INTELLIGENTE STROMNETZE .. 90
LEISTUNGSSELEKTRONIK FÜR REGENERATIVE UND DEZENTRALE ENERGIESYSTEME ... 92
LESENMEN IN KOLLABORATIVEN MULTI-AGENTEN SYSTEMEN ... 94
MICROWAVE INTEGRATED CIRCUITS II .. 95
MICROWAVES AND MILLIMETER WAVES II .. 97
MIKROSYSTEMTECHNIK ... 99
MOBILE RADIO ...101
MODERNE ANTRIEBSSTRÄNGE IN KRAFTFAHRZEUGEN ...103
NANOPHOTONIK ..105
NANOSENSORIK UND -AKTUATORIK ...107
NEURONALE METHODEN FÜR TECHNISCHE SYSTEME ..109
NUMERISCHE METHODEN DER ELEKTROMAGNETISCHEN FELDTHEORIE I111
NUMERISCHE METHODEN DER ELEKTROMAGNETISCHEN FELDTHEORIE II113
NUTZUNG DER WINDENERGIE ...115
OPTIMALE VERSUCHSPLANUNG FÜR TECHNISCHE SYSTEME ...117
OPTOELEKTRONIK ..119
PATTERN RECOGNITION ...121
PHOTOVOLTAIK SYSTEMTECHNIK ..122
PLANUNG UND BETRIEBSFÜHRUNG ELEKTRISCHER NETZE ...124
POWER SYSTEM DYNAMICS ...126
PROJEKT ZUM WISSENSCHAFTLICHEN ARBEITEN (MASTER) ..128
RECHNERGESTÜTZTE MESSVERFAHREN ...130
RECHNERGESTÜTZTER ENTWURF MIKROELEKTRONISCHER SCHALTUNGEN132
REGELUNG ELEKTRISCHER ANTRIEBE ..134
REGELUNGSVERFAHREN MIT NEURONALEN NETZEN ..136
REKONFIGURIERBARE STRUKTUREN ...138
RF SENSOR SYSTEMS ...140
ROBUSTE UND OPTIMALE REGELUNG ..142
SCHALTUNGSENTWURF MIT HDLS ..145
SEMINAR ANTRIEBS- UND KEZ-SYSTEMTECHNIK ..146
SEMINAR FAHRZEUGMECHATRONIK ..147
SEMINAR IM FACHGEBIET FAHRZEUGSYSTEME UND GRUNDLAGEN DER ELEKTROTECHNIK 148
SEMINAR REGELUNGS- UND SYSTEMTHEORIE ...149
SEMINAR ÜBER AKTUELLE THEMEN DER ELEKTROMAGNETISCHEN FELDTHEORIE151
SIGNAL PROCESSING IN WIRELESS COMMUNICATIONS ..153
SIMULATION REGENERATIVER ENERGIESYSTEME ...155
SOFTWAREPRAXISTUM PANDAPIPER ..157
SPEICHER IN DER ENERGIEVERSORGUNG – BATTERIETECHNIK ...159
STANDORTBewERTUNG FÜR WINDENERGIEANLAGEN ..162
STUDENTENSEMINAR ELEKTRONIK UND PHOTONIK ..164
STOCHASTIK FÜR INGENIEURE ..166
SYNTHSE UND OPTIMIERUNG MIKROELEKTRONISCHER SYSTEME168
SYSTEMTHEORIE DER ENERGIEWENDE ..170
TECHNIK IM BEREICH NEUER MEDIEN ...172
TECHNOLOGIE DER ELEKTRONIK UND PHOTONIK ...173
THEORIE SICHERHEITSGERICHTETER RECHNERSYSTEME .. 176
VERTEILTE SYSTEME - ARCHITEKTUREN UND DIENSTE .. 178
WINDENERGIEPROGNOSE MIT NEURONALEN NETZEN ... 179
ZUVERLÄSSIGKEITSTHEORIE FÜR RECHNERSYSTEME ... 181
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Differentialgleichungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Wolfram Koepf</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Wolfram Koepf und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul: Ja</td>
</tr>
<tr>
<td>Schwerpunktmodul:</td>
<td></td>
</tr>
<tr>
<td>Wahlmodul:</td>
<td></td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS: 3 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>1 SWS Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 60 h Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>120 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Kenntnisse entsprechend der Inhalte und angestrebten Lernerbergisse der Bachelor-Module „Mathematik / Differentialgleichung / Funktionentheorie“ oder „Technische Systeme im Zustandsraum“</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Der/die Lernende kann die Eigenschaften und die Struktur der Lösung von Differentialgleichungen erfassen, dazu gehörige grundlegende mathematische Zusammenhänge durchschauen, entsprechende Methoden anwenden sowie die mathematische Fachsprache angemessen verwenden. Lernergebnisse in Bezug auf die Studiengangsziele:</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen</td>
</tr>
<tr>
<td></td>
<td>- Sicheres Anwenden und Bewerten analytischer Methoden</td>
</tr>
<tr>
<td></td>
<td>- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse</td>
</tr>
<tr>
<td></td>
<td>- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Prüfungsleistung: Klausur</td>
</tr>
<tr>
<td></td>
<td>Dauer: 120-180 min.</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafel, Beamer</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
</tr>
</tbody>
</table>
| Literatur: | Burg, Haf, Meister, Wille: Höhere Mathematik für Ingenieure
Forster: Analysis II
Grüne, Junge: Gewöhnliche Differentialgleichungen
Strampp: Ausgewählte Kapitel der höheren Mathematik
Strampp: Aufgaben zur Ingenieurmathematik
Walter: Gewöhnliche Differentialgleichungen
Weitere Literatur wird in der Vorlesung bekanntgegeben |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Introduction to Signal Detection and Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Dirk Dahlhaus</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Dahlhaus und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum | Pflichtmodul: Ja
Schwerpunktmodul:
Wahlmodul: Ja, wenn nicht als Pflichtmodul gewählt |
| Lehrform/SWS: | 3 SWS: 2 SWS Vorlesung
1 SWS Übung |
| Arbeitsaufwand: | 180 h: 45 h Präsenzzeit
135 h Selbststudium |
| Kreditpunkte: | 6, davon 2 CP als integrierte Schlüsselkompetenz |
| Empfohlene Voraussetzungen: | Grundlagen über Zufallsvariablen |
| Angestrebte Lernergebnisse | Der Student kann
- optimale und suboptimale statistische Schätzverfahren herleiten und deren Güte quantifizieren
- Klassifizierungsverfahren entwickeln |
| Inhalt: | Elements of hypothesis testing; mean-squared estimation covering the principle of orthogonality, normal equations, Wiener filters, related efficient numerical methods like Levinson-Durbin recursion, Kalman filters, adaptive filters; classification methods based on linear discriminants, kernel methods, support vector machines; maximum-likelihood parameter estimation, Cramer-Rao bound, EM algorithm |
| Studien-/Prüfungsleistungen: | Form: mündl. Prüfung
Dauer: 30 Min. |
<p>| Medienformen: | Beamer, Tafel, Papier |
|---|</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Magnetische Bauelemente</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>MBE</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td>Magnetische Bauelemente zum Messen, Steuern und Übertragen</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td>Magnetische Bauelemente (Vorlesung) Magnetische Bauelemente (Übung)</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Peter Zacharias</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Peter Zacharias und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul: Ja Schwerpunktmodul: Ja, wenn nicht als Pflichtmodul gewählt Wahlmodul: Ja, wenn nicht als Pflichtmodul gewählt</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS: Vorlesung 3 SWS 1 SWS Übung/Präsentation</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 60 h Präsenzzeit 120 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Vorlesungen: Leistungselektronik, Werkstoffe der ET Grundlagen der theoretischen Elektrotechnik</td>
</tr>
<tr>
<td></td>
<td>Lernergebnisse in Bezug auf die Studiengangsziele: Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen Sicheres Anwenden und Bewerten analytischer Methoden Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten</td>
</tr>
</tbody>
</table>
| Inhalt: | Physikalische Grundlagen der magnetischen Eigenschaften von Werkstoffen
Hartmagnetische und weichmagnetische Werkstoffe
Messmethoden zur Bestimmung magnetischer Feldgrößen in Bauelementen und Schaltungen
Magnetische Bauelemente in der Messtechnik (Aufbau und Dimensionierung von Strom- und Spannungswandlern, Flux-Gate-Sensor, magnetische Antennen, Magnetische Sensoren zur zerstörungsfreien Materialprüfung)
Lineare magnetische Bauelemente der Übertragungstechnik (HF-Übertrager, HF-Drosseln, Impuls-Übertrager, Kabel-Transformatoren, Blümlein-Transformator, magnetische Konzentratoren)
Magnetische Bauelemente in der Filtertechnik
Nichtlineare magnetische Bauelemente
(Magnetische Elemente als flussgesteuerte Schalter und Speicher für Signale/Energie, Transduktoren in Schalt- netzteilen, magnetische Konstanter)
Gestaltung von gedruckten Schaltungen |
| --- | --- |
| Studien-/Prüfungsleistungen: | Form: schriftliche oder mündliche Prüfung
Dauer: 90min bzw. 60min |
| Medienformen: | Laptop-Präsentation, Tafel, Arbeitsblätter, Skript |
Joachim Franz: EMV: Störungssicherer Aufbau elektronischer Schaltungen 2008
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Methoden der experimentellen Validierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td>Methoden der experimentellen Validierung (Vorlesung) Methoden der experimentellen Validierung (Übungen)</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Ludwig Brabetz</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Ludwig Brabetz und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul: Ja Wahlmodul: Ja, wenn nicht als Pflichtmodul gewählt</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS: 3 SWS Vorlesung 1 SWS Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180: 60 h Präsenzzeit 120 h Eigenstudium,</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Module „Lineare Algebra“, „Analysis“, „Stochastik in der technischen Anwendung“</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Der/die Lernende kann, - Validierungsschritte im Entwicklungsprozess einordnen, - Hypotesentests durchführen und Versuchspläne ableiten, - Ansätzen zur Effizienzsteigerung von Systemen und Prozessen beurteilen. - Validierungsmethoden vergleichen und bewerten</td>
</tr>
</tbody>
</table>
| Studien-/Prüfungsleistungen: | Form: Klausur, schriftliche Prüfung
Dauer: 120 min |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Beamer, Skript, Tafel</td>
</tr>
</tbody>
</table>
H. Petersen, „Grundlagen der statistischen Versuchsplanung“, ecomed, Lech, 1991
V. V. Federov, „Theory of optimal experiments“, Academic Press, 1972
S. Brandt, „Datenanalyse“, Wissenschaftsverlag, 1981
H. Bandemer et.al., „Optimale Versuchsplanung“, Teubner Verlag, 1994 |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Numerische Mathematik für Ingenieure</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td>Numerische Mathematik für Ingenieure (Vorlesung) Numerische Mathematik für Ingenieure (Übungen)</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Meister</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Meister und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul: Ja Schwerpunktmodul: Ja, wenn nicht als Pflichtmodul gewählt Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS: 3 SWS Vorlesung 1 SWS Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180: 60 h Präsenzzeit 120 h Eigenstudium,</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Fundierte Kenntnisse der Inhalte der Mathematikmodule aus dem Bachelor</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Iterative und direkte Verfahren zur Lösung linearer Gleichungssysteme Interpolation Numerische Integration Numerische Methoden für Differentialgleichungen</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Form: Schriftliche Prüfung Dauer: (120-180 min.), Studienleistungen werden vom jeweiligen Dozenten zu Beginn der Lehrveranstaltung festgelegt.</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafel, Beamer</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Hanke-Bourgeois: Grundlagen der Numerischen Mathematik und des wissenschaftlichen Rechnens</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Plato: Numerische Mathematik kompakt</td>
</tr>
<tr>
<td></td>
<td>Köckler, Schwarz: Numerische Mathematik</td>
</tr>
<tr>
<td></td>
<td>Meister: Numerik linearer Gleichungssysteme</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Optimierungsverfahren</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>OPT</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Olaf Stursberg</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Olaf Stursberg und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflicht: Ja</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmoodul: Ja</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja, wenn nicht als Pflichtmodul gewählt</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS: 3 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>1 SWS Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 60 h Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>120 h Eigenstudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6, davon 1 CP als integrierte Schlüsselkompetenz</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Mathematik-Kenntnisse, wie sie üblicherweise im Bachelor von Ingenieurstudiengängen vermittelt werden; insbesondere sind Kenntnisse der linearen Algebra, der Analysis sowie der Differential- und Integralrechnung in einer Variablen empfohlen</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Der / die Lernende kann:</td>
</tr>
<tr>
<td></td>
<td>- Typen von Optimierungsproblemen klassifizieren,</td>
</tr>
<tr>
<td></td>
<td>- geeignete mathematische Darstellungen von technischen Optimierungsaufgaben bestimmen,</td>
</tr>
<tr>
<td></td>
<td>- die Lösung von Optimierungsaufgaben berechnen,</td>
</tr>
<tr>
<td></td>
<td>- die theoretischen Prinzipien der Optimierung durchschauen und algorithmischen Lösungsansätzen zuordnen,</td>
</tr>
<tr>
<td></td>
<td>- die Optimalität eines Lösungsvorschlags für ein gegebenes Entscheidungsproblem beurteilen,</td>
</tr>
<tr>
<td></td>
<td>- und verschiedene Algorithmen zur mathematischen Optimierung implementieren und anwenden.</td>
</tr>
<tr>
<td>Lernergebnisse in Bezug auf die Studiengangsziele:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen</td>
</tr>
<tr>
<td></td>
<td>- Sicheres Anwenden und Bewerten analytischer Methoden</td>
</tr>
<tr>
<td></td>
<td>- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse</td>
</tr>
<tr>
<td></td>
<td>- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Einführung in die Optimierung mathematischer Funktionen, Anwendungsbeispiele; Klassen von Optimierungsproblemen;</td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Medienformen: Foliensatz zu den wesentlichen Inhalten, Tafel, Skript, Übungsaufgaben, Internetseite mit Sammlung sämtlicher relevanter Information und den Dokumenten zur Lehrveranstaltung</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Photonische Komponenten und Systeme</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>PKS</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. rer. nat Hartmut Hillmer</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Bangert, Hillmer, Witzigmann und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul: Ja</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmodul:</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja, wenn nicht als Pflichtmodul gewählt</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>3 SWS Vorlesung, 1 SWS Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 60 h Präsenzzeit, 120 h Eigenstudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6, davon 1 CP als integrierte Schlüsselkompetenz</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundlagenkenntnisse in den Bereichen Optik, elektronische Bauelemente, Theoretische Elektrotechnik</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Der/die Studierende kann</td>
</tr>
<tr>
<td></td>
<td>das Zusammenwirken von photonischen Komponenten in Systemen nachvollziehen.</td>
</tr>
<tr>
<td></td>
<td>Problemlösungen durch interdisziplinäre Analogien sowie dem Verständnis von Naturphänomenen als Lösungsansätze formulieren.</td>
</tr>
<tr>
<td></td>
<td>theoretische Modellrechnungen aufbereiten, veranschaulichen und mit experimentellen Messwerten vergleichen.</td>
</tr>
<tr>
<td></td>
<td>grundlegende Prinzipien (Aufbau und Wirkungsweise) photonischer Bauelemente und Systeme sowie Einsatzgrundsätze photonischer Komponenten und System erkennen.</td>
</tr>
<tr>
<td>Lernergebnisse in Bezug auf die Studiengangsziele:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen</td>
</tr>
<tr>
<td></td>
<td>Sicheres Anwenden und Bewerten analytischer Methoden</td>
</tr>
<tr>
<td></td>
<td>Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse</td>
</tr>
<tr>
<td></td>
<td>Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Einführung in die Photonik für die Energietechnik, die Mess-Steuer-und Regelungstechnik, die Medizintechnik, die Umweltystemtechnik, die Sicherheitstechnik, die Informations- und Kommunikationstechnik, die Produktionsstechnik und die Kybernetik. Theoretische Grundlagen: Halbleiter- und Wellenleitermodelle, Fourier-Optik, nichtlineare Optik.</td>
</tr>
<tr>
<td>photonische Komponenten: LED, OLED, Laser (Festkörper, Gas), Photodiode, Solarzellen), Anwendungen/Systeme: Laser in Produktions- und Medizintechnik, optische Bordnetze, Sensorik/Bio-Chips, Spektroskopie, Beamer, Speichermedien, Beleuchtung</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen: Form: mündliche Prüfung Dauer: 30min</td>
<td></td>
</tr>
<tr>
<td>Medienformen: Beamer, Tafel, Overhead-Projektor</td>
<td></td>
</tr>
<tr>
<td>Weitere Literatur wird in der Vorlesung bzw. auf den Homepages der Fachgebiete bekannt gegeben.</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Abschlussarbeit Master</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Sommersemester/ Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Abschlussarbeiten werden von mehreren Professoren des Fachbereichs angeboten. Bitte die Aushänge der Fachgebiete bzw. die Hinweise im Veranstaltungsplan beachten. Bei eigenen Ideen für Abschlussarbeiten sollen die Studierenden die Hochschullehrer direkt ansprechen.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td></td>
</tr>
<tr>
<td>Sprache:</td>
<td>nach Vereinbarung</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul in der Hauptstudienphase M.Sc. Elektrotechnik</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>6-monatige Bearbeitungszeit</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>900 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>30, davon zählen 6 CP zu den integrierten Schlüsselkompetenzen</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Die Abschlussarbeit soll zeigen, dass die Kandidatin oder der Kandidat in der Lage ist, in einem vorgegebenen Zeitraum eine wissenschaftliche und/oder praxisorientierte Problemstellung des Fachs mit wissenschaftlichen Methoden und Erkenntnissen des Fachs zu lösen.</td>
</tr>
</tbody>
</table>

Lernergebnisse in Bezug auf die Studiengangsziele:
- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen
- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen
- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen
- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen
- Sicheres Anwenden und Bewerten analytischer Methoden
- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden
- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse
- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten
- Bildung einer stabilen Persönlichkeit
- Erwerben der Fähigkeit zur effektiven Führung interdisziplinärer Teams
- Erwerben der Fähigkeit zu allein verantwortlicher Leitung und Führung

20
<table>
<thead>
<tr>
<th></th>
<th>- Arbeiten und Forschen in nationalen und internationalen Kontexten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalt:</td>
<td>Wechselnde Inhalte je nach Themenstellung</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Benotete Abschlussarbeit, Präsentation der Forschungsarbeit in einem Kolloquium</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>Abhängig vom gewählten Thema</td>
</tr>
</tbody>
</table>
2. Schwerpunktmodule Elektrische Energiesysteme

<table>
<thead>
<tr>
<th>Veranstaltungsname:</th>
<th>Elektrische Anlagen und Hochspannungstechnik II (ab SS2020)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td>Elektrische Anlagen und Hochspannungstechnik II (Vorlesung)</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Albert Claudi</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Albert Claudi und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch, z.T. englische Vorlagen und Datenblätter</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul: Ja</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmodul: Ja, wenn nicht als Schwerpunktmodul gewählt</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS: 4 SWS Vorlesung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 60 h Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>120 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Vorlesung AHT I</td>
</tr>
</tbody>
</table>

Angestrebte Lernergebnisse

Lernergebnisse in Bezug auf die Studiengangsziele:
- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen
- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen
- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen
- Sicheres Anwenden und Bewerten analytischer Methoden
- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden
- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten
- Arbeiten und Forschen in nationalen und internationalen Kontexten

Inhalt:

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wechselspannungsprüftechnik</td>
</tr>
<tr>
<td>2</td>
<td>Gleichspannungsprüftechnik</td>
</tr>
<tr>
<td>3</td>
<td>Stoßspannungsprüftechnik</td>
</tr>
<tr>
<td>4</td>
<td>Stoßstromprüftechnik</td>
</tr>
<tr>
<td>5</td>
<td>Elektromagnetische Beeinflussung und Abnahmeprüfung</td>
</tr>
<tr>
<td>6</td>
<td>Überspannungen und Isolationskoordination Netzbetrieb</td>
</tr>
<tr>
<td>7</td>
<td>Schutzeinrichtungen</td>
</tr>
<tr>
<td>8</td>
<td>Monitoring und Diagnose</td>
</tr>
</tbody>
</table>

Studien-/Prüfungsleistungen:

- Form: Mündliche oder schriftliche Prüfung
- Dauer: 2h

Medienformen:

- Folien, Overhead-Projektor, Tafel, Demonstrationsfilme, Vorführungen im Labor, Anschauungsobjekte, Skript zum Download

Literatur:

- Blitz- und Überspannungsschutz für elektrische und elektronische Systeme: Schimanski, J.: Überspannungsschutz
- Weitere Literaturangaben in den Vorlesungen
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Dynamisches Verhalten elektrischer Maschinen</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Marcus Ziegler</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Marcus Ziegler und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul: Ja</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja, wenn nicht als Schwerpunktmodul gewählt</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS: 3 SWS Vorlesung 1 SWS Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 60 h Präsenzzeit 120 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6, davon 1 CP als integrierte Schlüsselkompetenz</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Kenntnis der Vorlesung Elektrische Maschinen</td>
</tr>
<tr>
<td></td>
<td>Lernergebnisse in Bezug auf die Studiengangsziele:</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen</td>
</tr>
<tr>
<td></td>
<td>- Sicheres Anwenden und Bewerten analytischer Methoden</td>
</tr>
<tr>
<td></td>
<td>- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden</td>
</tr>
<tr>
<td></td>
<td>- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten</td>
</tr>
<tr>
<td></td>
<td>- Arbeiten und Forschen in nationalen und internationalen Kontexten</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Allgemeine Zweiachsen- und Raumzeigertheorie</td>
</tr>
<tr>
<td></td>
<td>Strukturbild der Gleichstrommaschine</td>
</tr>
<tr>
<td></td>
<td>Zweiaachsentheorie</td>
</tr>
<tr>
<td></td>
<td>Transientes und subtransientes Verhalten der fremderregten Synchronmaschine</td>
</tr>
<tr>
<td></td>
<td>Simulation und Strukturbild der permanentmagneterregten Synchronmaschine</td>
</tr>
<tr>
<td></td>
<td>Simulation und feldorientierte Regelung der Asynchronmaschine</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Form: schriftlichen Prüfungen:</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Dauer: 150min</td>
<td></td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Präsentation, Skript</td>
</tr>
<tr>
<td>Literatur:</td>
<td>H.O. Seinsch:</td>
</tr>
<tr>
<td></td>
<td>Ausgleichsvorgänge bei elektrischen Antrieben, Teubner-Verlag, Stuttgart 1991</td>
</tr>
<tr>
<td></td>
<td>G. Pfaff:</td>
</tr>
<tr>
<td></td>
<td>Regelung elektrischer Antriebe I, II, Oldenbourg-Verlag, München 1994</td>
</tr>
<tr>
<td></td>
<td>P. Vas:</td>
</tr>
<tr>
<td></td>
<td>Electrical Machines and Drives; Clarendon Press, Oxford, 1992</td>
</tr>
<tr>
<td></td>
<td>Vorlesungsskript des Fachgebiets</td>
</tr>
</tbody>
</table>
Veranstaltungsname: **Elektrische Anlagen und Anlagenschutz (bis WS2019/20)**

<table>
<thead>
<tr>
<th>ggf. Modulniveau</th>
<th>Master</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Kürzel</td>
<td>EAA</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
</tbody>
</table>
| ggf. Lehrveranstaltungen | Elektrische Anlagen und Hochspannungstechnik II (Vorlesung)
| | Blitz- und Überspannungsschutz für elektrische und elektronische Systeme (Vorlesung) |

Studiensemester:
Sommernummer (AHT II)
Wintersemester (Blitz- und Überspannungsschutz)

Modulverantwortliche(r):
Prof. Dr.-Ing. Albert Claudi

Dozent(in):
Prof. Dr.-Ing. Albert Claudi, Dr.-Ing. Gernot Finis und Mitarbeiter

Sprache:
Deutsch, z.T. englische Vorlagen und Datenblätter

Zuordnung zum Curriculum
Pflichtmodul:
Schwerpunktmodul: Ja
Wahlsmodul: Ja, wenn nicht als Schwerpunktmodul gewählt

Lehrform/SWS:
4 SWS, Vorlesung Anlagen & Hochspannungstechnik II
1 SWS, Vorlesung Blitz und Überspannungsschutz.

Arbeitsaufwand:
230 h: 75 h Präsenzzeit
155 h Selbststudium

Kreditpunkte:
8
Vorlesung Anlagen & Hochspannungstechnik II: 6, davon 1 CP als integrierte Schlüsselkompetenz
Vorlesung Blitz und Überspannungsschutz: 2

Empfohlene Voraussetzungen:
Vorlesung AHT I

Angestrebte Lernergebnisse
Elektrische Anlagen und Hochspannungstechnik II:
Wie entstehen Überspannungen im Netz, wie werden sie beherrscht und wie wird die Isolation der Anlagen ausgelegt, um einen sicheren Netzbetrieb zu gewährleisten? Wie wird der Personenschutz realisiert im gestörten und ungestörten Netzbetrieb, welche Schutzeinrichtungen gibt es, um Anlagen im Netz vor Zerstörung zu bewahren, wie gelingt es, selektiv nur die gestörte Komponente im Netz abzuschalten?
Anlagen im Netz haben einen hohen Investitionswert und sollen möglichst lange betrieben werden, typisch sind Laufzeiten von 10 bis 60 Jahren. Ein Ausfall durch Isolationsversagen am Ende der Lebenszeit kann zu
Netzstörungen (Blackouts) und extremen Folgeschäden führen. Das Monitoring- und Diagnose- Kapitel zeigt auf, mit welchen Mitteln eine Zustandsbewertung von Anlagen On-line oder Off-line erfolgt.

Blitz- und Überspannungsschutz für elektrische und elektronische Systeme:

Lernergebnisse in Bezug auf die Studiengangsziele:
- Erwerben von vertiefen Kenntnissen in den elektrotechnikspezifischen Grundlagen
- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen
- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen
- Sicheres Anwenden und Bewerten analytischer Methoden
- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden
- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten
- Arbeiten und Forschen in nationalen und internationalen Kontexten

Inhalt:
Elektrische Anlagen und Hochspannungstechnik II:
Kapitel 1 Wechselspannungsprüftechnik
Kapitel 2 Gleichspannungsprüftechnik
Kapitel 3 Stoßspannungsprüftechnik
Kapitel 4 Stoßstromprüftechnik
Kapitel 5 Elektromagnetische Beeinflussung und Abnahmeprüfung
Kapitel 6 Überspannungen und Isolationskoordination
Netzbetrieb
Kapitel 7 Schutzeinrichtungen
Kapitel 8 Monitoring und Diagnose

Blitz- und Überspannungsschutz für elektrische und elektronische Systeme:
Entstehung von Stoßströmen und Überspannungen
Wirkungsparameter von Blitzströmen und Überspannungen
<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Form: Mündliche oder schriftliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer: 2h</td>
<td></td>
</tr>
</tbody>
</table>

| Medienformen: | Folien, Overhead-Projektor, Tafel, Demonstrationsfilme, Vorführungen im Labor, Anschauungsojekte, Skript zum Download |

Modulbezeichnung: **Regelung und NetzinTEGRATION von Windkraftanlagen**
ggf. Modulniveau: Master
ggf. Kürzel: RNWKA
ggf. Untertitel:
ggf. Lehrveranstaltungen:
Studiensemester: Sommersemester
Modulverantwortliche(r): Dr. –Ing. Christian Nöding
Dozent(in): Dr. –Ing. Christian Nöding und Mitarbeiter
Sprache: Deutsch
Zuordnung zum Curriculum: Pflichtmodul:
Schwerpunktmodule: Ja
Wahlmodul: Ja, wenn nicht als Schwerpunktmodul gewählt

<table>
<thead>
<tr>
<th>Lehrform/SWS:</th>
<th>bis WS2019/20: 2 SWS Vorlesung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ab SS2020: 4 SWS: 3 SWS Vorlesung 1 SWS Übung</td>
</tr>
</tbody>
</table>

| Arbeitsaufwand: | 180 h: 60 h Präsenzzeit |
| | 120 h Selbststudium |

Kreditpunkte: 6, davon 1 CP als integrierte Schlüsselkompetenz

Empfohlene Voraussetzungen: Lehrveranstaltungen Nutzung der Windenergie, Elektrische Maschinen, Regelungstechnik

Lernergebnisse in Bezug auf die Studiengangsziele:
- Erwerben von vertieften Kenntnissen in den elektrotechniksspezifischen Grundlagen
- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen
- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen
- Sicheres Anwenden und Bewerten analytischer Methoden
- Selbstständiges Entwickeln und Beurteilen von Lösungsmethoden
- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten
- Arbeiten und Forschen in nationalen und internationalen Kontexten

Inhalt:
- Funktionsstrukturen von Windkraftanlagen
- Synchron- und Asynchrongeneratoren für Windkraftanlagen: Anforderungen, Auslegungsaspekte, mechanische und elektrische Ausgleichsvorgänge
Regelungstechnische Konzeptionen für Insel-, Netz- und Verbundbetrieb
Regelungstechnische Auslegung und Anlagensimulation: Verhalten der Anlagenkomponenten, Entwicklung von Regelungs- und Simulationsstrukturen, Reglerdimensionierung
Betriebsergebnisse

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Form: Klausur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer: 90 min.</td>
<td></td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Beamer, Skript, Tafel</td>
</tr>
</tbody>
</table>

Literatur:
- HEIER, S.: Nutzung der Windenergie. 5. Auflage, Verlag Solarpraxis AG, Berlin 2007;
- weitere Literatur wird in der Vorlesung angegeben.
3. Schwerpunktmodule Mess-, Steuerungs- und Regelungstechnik

<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Adaptive und Prädiktive Regelung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>Kürzel</td>
<td>APR</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Olaf Stursberg</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Olaf Stursberg und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul: Ja</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmag: Ja</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja, wenn nicht als Schwerpunktmag gewählt</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS:</td>
</tr>
<tr>
<td></td>
<td>3 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>1 SWS Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h:</td>
</tr>
<tr>
<td></td>
<td>60 h Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>120 h Eigenstudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6, davon 1 CP als integrierte Schlüsselkompetenz</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundprinzipien der Regelungstechnik einschließlich der linearen Regelungssysteme gemäß des Bachelor-Moduls „Lineare und nichtlineare Regulationssysteme“</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Der / die Lernende kann:</td>
</tr>
<tr>
<td></td>
<td>- Modelle für Systeme mit Streckenänderungen aus Messdaten durch Identifikation bestimmen,</td>
</tr>
<tr>
<td></td>
<td>- prädiktive Regelungskonzepte konzipieren und entwickeln,</td>
</tr>
<tr>
<td></td>
<td>- adaptive Regler synthetisieren und entwerfen,</td>
</tr>
<tr>
<td></td>
<td>- die theoretischen Prinzipien der adaptiven und prädiktiven Regelung durchschauen und erklären,</td>
</tr>
<tr>
<td></td>
<td>- die Ergebnisse adaptiver und prädiktiver Regelungen beurteilen und hinterfragen,</td>
</tr>
<tr>
<td></td>
<td>- sowie die erlernten Regelungsmethoden implementieren und anwenden.</td>
</tr>
<tr>
<td></td>
<td>Lernergebnisse in Bezug auf die Studiengangsziele:</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen</td>
</tr>
<tr>
<td></td>
<td>- Sicheres Anwenden und Bewerten analytischer Methoden</td>
</tr>
<tr>
<td></td>
<td>- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden</td>
</tr>
<tr>
<td></td>
<td>- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Vortragsfolien, Tafel, Vorführungen am Rechner</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Analoge und digitale Messtechnik</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>ADM</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Peter Lehmann</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Lehmann und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul: Schwerpunktmodul: Ja</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja, wenn nicht als Schwerpunktmodul gewählt</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS: 3 SWS Vorlesung 1 SWS Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 60 h Präsenzzeit 120 h Eigenstudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6, davon 1 CP als integrierte Schlüsselkompetenz</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundlagen der Elektrotechnik I u. II, Analysis, elektrische Messtechnik</td>
</tr>
<tr>
<td></td>
<td>Vorteilhaft: Fouriertransformation, Sensoren und Messsysteme, Matlab-Kenntnisse</td>
</tr>
</tbody>
</table>

Angestrebte Lernergebnisse

Der / die Lernende kann:
- sich ein fundiertes Verständnis zeitgemäßer Verfahren der analogen und digitalen Analyse und Verarbeitung von Messsignalen erschließen,
- theoretischen Kenntnisse durch eigene Programmierübungen ergänzen und überprüfen,
- elementare Signal- und Bildverarbeitungsaufgaben bewerten und lösen,
- sicher mit Begriffen und Aufgabenstellungen der Signalverarbeitung in der Messtechnik umgehen,
- Abstraktionsvermögen im Sinne einer systemtheoretischen Denkweise entwickeln,
- ererbte Kenntnisse in der Praxis nutzen.

Lernergebnisse in Bezug auf die Studiengangsziele:
- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen
- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen
- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen
- Sicheres Anwenden und Bewerten analytischer Methoden
- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden
- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten
| Inhalt: | Teile 1: Analoges Messtechnik
Analoge Systeme
Messverstärker / Verstärkerschaltungen
Analoge Filter
Analogue-Digital-Umsetzer
Digital-Analog-Umsetzer
Schnittstellen (Messgeräte / Peripherie)
Teil 2: Digitale Messtechnik
Analoge und digitale Signale
Zeitbereich / Frequenzbereich (Fourier-Transformation)
Abtastung und Rekonstruktion
Diskrete Fourier-Transformation, FFT
Spektralanalyse
Korrelationsanalyse
Zeit-Frequenz-Analyse
Laplace- und z-Transformation
Hilbert-Transformation
Stochastische Signale
Digitale Filterung
Digitale Bildverarbeitung (Grundlagen) |
| --- | --- |
| Studien-/Prüfungsleistungen: | Form: Klausur bzw. mündliche Prüfung
Dauer: 2 Std. (Klausur) bzw. 30 Min. (mündl. Prüfung) |
| Medienformen: | Skript, Beamerpräsentationen, Tafel-Erläuterungen, Matlab-Übungen mit Musterlösungen |
| Literatur: | Tietze, U.; Schenk, Ch.: Halbleiter-Schaltungslehre, Springer 2010;
Brigham, E. O.: FFT-Anwendungen, Oldenbourg 1997;
Kammeyer, K.-D., Kroschel K.: Digitale Signalverarbeitung, Teubner 2006;
Jähne, B.: Digitale Bildverarbeitung, Springer 2005 |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Lineare Optimale Regelung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulniveau:</td>
<td>Master</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>LOR</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. rer. nat Arno Linnemann</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. rer. nat Arno Linnemann und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum

<table>
<thead>
<tr>
<th>Pflichtmodul:</th>
<th>Schwerpunktmodul:</th>
<th>Wahlmodul:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ja</td>
<td>Ja, wenn nicht als Schwerpunktmodul gewählt</td>
</tr>
</tbody>
</table>

Lehrform/SWS:

- 4 SWS: 3 SWS Vorlesung
- 1 SWS Übung

Arbeitsaufwand:

- 180 h: 60 Stunden Präsenzzeit
- 120 Stunden Eigenstudium

Kreditpunkte:

- 6, davon 1 CP als integrierte Schlüsselkompetenz

Empfohlene Voraussetzungen:

Kenntnisse entsprechend der Inhalte und angestrebten Lernergebnisse der Bachelor-Module „Lineare und nichtlineare Regelungssysteme“ und „Matlab Grundlagen“

Angestrebte Lernergebnisse

Der/die Lernende kann
- LQR-Zustandsregler berechnen,
- Kalman-Filter in den Regelkreis integrieren,
- die Regelgüte bewerten und hinterfragen,
- die Möglichkeiten und Grenzen der LQR-Regelung einschätzen,
- die zugrundeliegende mathematische Theorie durchschauen und
- dazugehörige regelungstechnische Software anwenden und entwickeln.

Lernergebnisse in Bezug auf die Studiengangsziele:
- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen
- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen
- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen
- Sicheres Anwenden und Bewerten analytischer Methoden
- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden
- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten
- Arbeiten und Forschen in nationalen und internationalen Kontexten

Inhalt:

Optimale Regelung linearer Systeme mit quadratischem Gütekriterium (LQR), Zustandsrückführung, Kalman-Fil-
<table>
<thead>
<tr>
<th>terung, Ausgangsrückführung, Sollwert- und Folgeregelung, Gütekriterien im Frequenzbereich und im stochastischen Kontext, Optimale Steuerung linearer Systeme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
</tr>
<tr>
<td>Form:</td>
</tr>
<tr>
<td>Prüfungsleistung: Mündliche Prüfung oder Klausur</td>
</tr>
<tr>
<td>Studienleistung: Übungsaufgaben</td>
</tr>
<tr>
<td>Dauer:</td>
</tr>
<tr>
<td>30 Minuten (mündl. Prüfung) bzw. 90 Minuten (Klausur)</td>
</tr>
<tr>
<td>Medienformen:</td>
</tr>
<tr>
<td>Folien, Tafel, Vorführungen am Rechner</td>
</tr>
<tr>
<td>Literatur:</td>
</tr>
<tr>
<td>- Weitere Referenzen im www</td>
</tr>
</tbody>
</table>
4. Schwerpunktmodule Informations- und Kommunikationstechnik

<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Introduction to Information Theory & Coding</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Dirk Dahlhaus</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Dahlhaus und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul: Schwerpunktmodul: Ja</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja, wenn nicht als Schwerpunktmodul gewählt</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS: 3 SWS Vorlesung 1 SWS Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 60 h Präsenzzeit 120 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6, davon 2 CP als integrierte Schlüsselkompetenz</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Introduction to Digital Communications</td>
</tr>
</tbody>
</table>

Angestrebte Lernergebnisse

Der Student kann
- grundlegende Zusammenhänge der Informationstheorie anwenden
- optimale und suboptimale Verfahren zur Block- und Faltungscodierung und -decodierung entwickeln und anwenden
- optimale und suboptimale Verfahren zur Quellencodierung und -decodierung entwickeln und anwenden

Lernergebnisse in Bezug auf die Studiengangsziele:
- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen
- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen
- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen
- Sicheres Anwenden und Bewerten analytischer Methoden
- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden
- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten
- Arbeiten und forschen in nationalen und internationalen Kontexten
Inhalt:
- Fundamentals in information theory, entropy, mutual information
- Typical sequences and Shannon capacity for the discrete memoryless channel
- Channel coding: block codes, cyclic block codes, systematic form
- Soft and hard decisions and performance; interleaving and code concatenation
- Convolutional codes: tree and state diagrams, transfer function, distance properties; the Viterbi algorithm
- Source coding: fixed-length and variable-length codes, Huffman coding; the Lempel-Ziv algorithm; coding for analog sources, rate-distortion function; pulse-code modulation; delta-modulation, model-based source coding, linear predictive coding (LPC)

Studien-/Prüfungsleistungen:
- Form: mündliche Prüfung
- Dauer: 30 Min.

Medienformen:
- Beamer, Tafel, Papier

Literatur:
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Microwaves and Millimeter Waves I</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>MMW1</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Axel Bangert</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Axel Bangert und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Englisch/Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul: Ja</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmodul: Ja</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja, wenn nicht als Schwerpunktmodul gewählt</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>5 SWS: 2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>1 SWS Übung</td>
</tr>
<tr>
<td></td>
<td>2 SWS Praktikum</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 75 h Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>105 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6, davon 2 CP als integrierte Schlüsselkompetenz</td>
</tr>
<tr>
<td>Vorlesung/Übung:</td>
<td>4</td>
</tr>
<tr>
<td>Praktikum:</td>
<td>2</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundkenntnisse im Bereich Hochfrequenztechnik</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Der/die Studierende kann:</td>
</tr>
<tr>
<td></td>
<td>• Verschiedene Mikrowellensystemkomponenten benennen</td>
</tr>
<tr>
<td></td>
<td>• Funktionsweise verschiedener Mikrowellenbaulementen beschreiben und gegenüberstellen</td>
</tr>
<tr>
<td></td>
<td>• Mikrowellenschaltungen mit Signalflussgraf analysieren und berechnen</td>
</tr>
<tr>
<td></td>
<td>• Fehlermodelle erklären</td>
</tr>
<tr>
<td></td>
<td>• Lineare Verstärkerschaltungen entwerfen</td>
</tr>
<tr>
<td></td>
<td>• Mikrowellenoszillatoren nach linearem Verfahren konstruieren</td>
</tr>
<tr>
<td>Lernergebnisse in Bezug auf die Studiengangsziele:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen</td>
</tr>
<tr>
<td></td>
<td>- Sicheres Anwenden und Bewerten analytischer Methoden</td>
</tr>
<tr>
<td></td>
<td>- Selbstständiges Entwickeln und Beurteilen von Lösungsmethoden</td>
</tr>
<tr>
<td></td>
<td>- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten</td>
</tr>
<tr>
<td></td>
<td>- Arbeiten und Forschen in nationalen und internationalen Kontexten</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Grundlagen, Mikrowellennetzwerke und deren Berechnungsverfahren, n-Tor, Streumatrix, Signalflussgraf, Aufbau und Wirkungsweise verschiedener Mikrowellenkomponenten, S-Parameter-Messung, Kalibration, Ferrit-Materialien, Halbleiterbauelemente, Linearverstärkerentwurf, Oszillatorentwurf</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Form: Klausur, Praktikumsbericht Dauer: 120min Nach vorheriger Ankündigung durch den Dozenten können beim Praktikum Anwesenheitslisten geführt werden.</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Beamer, Tafel, Overhead-Projektor, Labor</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Prozessrechner</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>PR</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. habil. Josef Börcsök</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Börcsök und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul: Ja</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmodul: Ja, wenn nicht als Schwerpunktmodul gewählt</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul:</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS: 2 SWS Vorlesung 2 SWS Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 60 h Präsenzzeit 120 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6, davon 1 CP als integrierte Schlüsselkompetenz</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Programmierkenntnisse, Grundlagen der Informatik, Digitaltechnik, Mikroprozessoren oder Rechnerarchitektur, Regelungstechnik, Mathematik</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Die Studierenden sollen den Aufbau und Wirkungsweise von Prozessrechnersystemen klassifizieren können, die Hard- und Softwarekomponenten einstufen und bewerten, sowie die Steuerungsmöglichkeiten mittel Prozessrechner ableiten. Die Möglichkeiten der Modellierungen der zu steuernden oder zu regelnden Prozesse und deren mathematische Beschreibungen sollen bewertet und eingestuft werden können.</td>
</tr>
<tr>
<td></td>
<td>Lernergebnisse in Bezug auf die Studiengangsziele:</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen</td>
</tr>
<tr>
<td></td>
<td>- Sicheres Anwenden und Bewerten analytischer Methoden</td>
</tr>
<tr>
<td></td>
<td>- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden</td>
</tr>
<tr>
<td></td>
<td>- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten</td>
</tr>
<tr>
<td></td>
<td>- Arbeiten und Forschen in nationalen und internationalen Kontexten</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Struktur von Prozessen, Mathematische Modellbeschreibungen, Aufbau von Prozessrechner- und Automatisierungssystemen, Aufbau und Wirkungsweise von Peripherieeinheiten, Echtzeiteigenschaften Programmierung und Werkzeugauswahl, Vorstellung marktüblicher Systeme und Werkzeuge mit Bezug auf die Anwendung, Beispielanwendungen aus verschiedenen Applikationen</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| Studien-/Prüfungsleistungen: | Form: Prüfungsleistungen: Klausur 120 Min. oder mündliche Prüfung 40 Min.
Studienleistungen : Hausarbeit, Referat/Präsentation |
| Medienformen: | Beamer, Tafel, Papier, Demonstration, Arbeiten am PC |
| Literatur: | Heidepriem, Prozessinformatik 1, Oldenburg 2000
Heidepriem, Prozessinformatik 2, Oldenburg 2001
Lauber, R., Prozessautomatisierung, Springer 1989
Färber, G. Prozessrechentechnik, Springer 1994
Börcsök, J. Prozessrechner und Automation, Heise 1999
Weitere Literatur wird in der Lehrveranstaltung bekannt gegeben. |
5. Schwerpunktmodule Elektronik und Photonik

<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Halbleiterbauelemente - Theorie und Modellierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td>Semiconductor Devices - Theory and Modelling</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Bernd Witzigmann</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Witzigmann und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch/deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul: Schwerpunktmodul: Ja</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja, wenn nicht als Schwerpunktmodul gewählt</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>3 SWS: 2 SWS Vorlesung 1 SWS Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>170 h: 45 h Präsenzzeit 125 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6, davon 2 CP als integrierte Schlüsselkompetenz</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundlagen Mathematik (PDE, Numerik), Werkstoffe der Elektrotechnik, Elektronische Bauelemente</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Der/die Lernernde kann:</td>
</tr>
<tr>
<td></td>
<td>- die Funktionsweise von Halbleiterbauelementen mit</td>
</tr>
<tr>
<td></td>
<td>Schwerpunkt auf den Prinzipien und mathematischen Modellen skizzieren</td>
</tr>
<tr>
<td></td>
<td>- Dioden, Transistoren, Leuchtdioden (LEDs) und Solarzellen erklären</td>
</tr>
<tr>
<td></td>
<td>- Den Einfluss der Nanotechnologie auf neue Konzepte wird (Nanodrähte, Quantenpunkte) beurteilen</td>
</tr>
<tr>
<td></td>
<td>- in den Übungen Computersimulationen mit kommerziellen Softwarepaketen anwenden</td>
</tr>
<tr>
<td>Lernergebnisse in Bezug auf die Studiengangsziele:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen</td>
</tr>
<tr>
<td></td>
<td>- Sicheres Anwenden und Bewerten analytischer Methoden</td>
</tr>
<tr>
<td></td>
<td>- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden</td>
</tr>
<tr>
<td></td>
<td>- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten</td>
</tr>
<tr>
<td></td>
<td>- Arbeiten und Forschen in nationalen und internationalen Kontexten</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Einführung Halbleiter</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td>Einführung in die Quantenmechanik</td>
</tr>
<tr>
<td></td>
<td>Numerische Modellierung</td>
</tr>
<tr>
<td></td>
<td>PN-Diode</td>
</tr>
<tr>
<td></td>
<td>MOSFET</td>
</tr>
<tr>
<td></td>
<td>Leuchtdiode</td>
</tr>
<tr>
<td></td>
<td>Solarzelle</td>
</tr>
<tr>
<td></td>
<td>Nanostrukturen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Form: Regelmäßiges Bearbeiten von Übungsaufgaben, mündliche Prüfung (30 Min.) oder ggf. Klausur (2 Stunden)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Medienformen:</th>
<th>Power-Point-Präsentation, Tafel</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Literatur:</th>
<th>Ibach, Lueth Festkörperphysik</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wuerfel, Solarzellen</td>
</tr>
<tr>
<td></td>
<td>Cohen Tannoudji, Quantum Mechanics</td>
</tr>
<tr>
<td></td>
<td>- Vorlesungsskript</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Halbleiterlaser</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td>Semiconductor Lasers</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td>Semiconductor Lasers (VL)</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Hartmut Hillmer</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Hillmer und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zuordnung zum Curriculum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflichtmodul:</td>
</tr>
<tr>
<td>Schwerpunktmodul:</td>
</tr>
<tr>
<td>Wahlmodul:</td>
</tr>
<tr>
<td>Wahlmodul:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform/SWS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 SWS:</td>
</tr>
<tr>
<td>2 SWS Vorlesung</td>
</tr>
<tr>
<td>1 SWS Übung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>180 h:</td>
</tr>
<tr>
<td>45 Stunden Präsenzzeit</td>
</tr>
<tr>
<td>135 Stunden Eigenstudium</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kreditpunkte:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6, davon 2 CP als integrierte Schlüsselkompetenz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Voraussetzungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen in Halbleiter Bauelementen, Werkstoffkunde, Komponenten der Optoelektronik (Pflicht)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angestrebte Lernergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Der/die Studierende kann</td>
</tr>
<tr>
<td>- den Aufbau und die Funktionsweise von Halbleiterlaser sowie signifikanten optoelektronischen Bauelementen und Systemen nachvollziehen.</td>
</tr>
<tr>
<td>- das große Anwendungspotential von Halbleiterlasern und optoelektronischen Komponenten überblicken.</td>
</tr>
<tr>
<td>- das komplexe Zusammenspiel der elektronischen, thermischen und optischen Phänomene in Laserdioden ermessenes.</td>
</tr>
<tr>
<td>- die Zusammenhänge zwischen optischen, quantenmechanischen und akustischen Resonatoren erkennen.</td>
</tr>
<tr>
<td>- Bisher ungelöste Probleme durch Übertragung und Analogien lösen.</td>
</tr>
</tbody>
</table>

Lernergebnisse in Bezug auf die Studiengangsziele:
- Erwerben von vertieften Kenntnissen in den elektrotechni-ksspezifischen Grundlagen
- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen
- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen
- Sicheres Anwenden und Bewerten analytischer Methoden
- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden
- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten
<table>
<thead>
<tr>
<th>Inhalt:</th>
<th>- Arbeiten und Forschen in nationalen und internationalen Kontexten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Ein-, Zwei- und Drei-dimensionale optische Gitter und photonische Kristalle</td>
</tr>
<tr>
<td></td>
<td>- "Light Processing": Schalter, Splitter, Verstärker, Multiplexer, Demultiplexer, Strahlwandler, Weichen</td>
</tr>
<tr>
<td></td>
<td>- Optische Kommunikationssysteme: WDM, TDM</td>
</tr>
<tr>
<td></td>
<td>- Aufzeigen der Analogien zwischen optischen, quantenmechanischen und akustischen Resonatoren, Eigenwerte und Eigenfunktionen in Helmholtz-, Schödinger- und Wellen-Gleichungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Form: Mündliche Prüfung, 30min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Präsentation, Skript, Tafel, Übungsblätter</td>
</tr>
<tr>
<td></td>
<td>M. Young: Optics and lasers, Springer-Verlag, Heidelberg, 1993</td>
</tr>
</tbody>
</table>

Weitere Literatur wird in der Vorlesung bzw. auf der Homepage des Fachgebiets bekannt gegeben.
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Optical Communication Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>OCS</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Axel Bangert</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Axel Bangert und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Englisch/Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul: Ja</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmodul: Ja, wenn nicht als Schwerpunktmodul gewählt</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja, wenn nicht als Schwerpunktmodul gewählt</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>5 SWS: 2 SWS Vorlesung 2 SWS Seminar 1 SWS Praktikum</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 75 h Präsenzzeit 105 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6, davon 3 CP als integrierte Schlüsselkompetenz</td>
</tr>
<tr>
<td>Vorlesung:</td>
<td>3</td>
</tr>
<tr>
<td>Seminar:</td>
<td>2</td>
</tr>
<tr>
<td>Praktikum:</td>
<td>1</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundlagenkenntnisse in den Bereichen Kommunikationssysteme und optoelektronische Bauelemente</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Der/die Studierende kann:</td>
</tr>
<tr>
<td></td>
<td>• verschiedene Systemanordnungen analysieren</td>
</tr>
<tr>
<td></td>
<td>• Standardisierungsvorschriften wiedergeben</td>
</tr>
<tr>
<td></td>
<td>• Tauglichkeit verschiedener Komponenten prüfen</td>
</tr>
<tr>
<td></td>
<td>• Optische Übertragungsstrecken planen</td>
</tr>
<tr>
<td></td>
<td>• Elektrooptische Stufen für hohe Übertragungsrate konzipieren</td>
</tr>
<tr>
<td></td>
<td>• Optische Kommunikationssysteme vergleichen und begutachten</td>
</tr>
<tr>
<td></td>
<td>• Literaturquellen hinterfragen und einstufen</td>
</tr>
<tr>
<td></td>
<td>• Aktuelle Forschungsergebnisse erklären</td>
</tr>
<tr>
<td>Lernergebnisse in Bezug auf die Studiengangsziele:</td>
<td>- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen</td>
</tr>
<tr>
<td></td>
<td>- Sicheres Anwenden und Bewerten analytischer Methoden</td>
</tr>
<tr>
<td></td>
<td>- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden</td>
</tr>
<tr>
<td></td>
<td>- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten</td>
</tr>
</tbody>
</table>
- Arbeiten und Forschen in nationalen und internationalen Kontexten

Inhalt:
Grundlagen der faseroptischen Übertragung, Fibre-To-The-X-Technologien, WDM, Photonische Netzwerke, SONET-Standard, Systemaspekte, Einsatz nanophotonischer Komponenten in optischen Kommunikationssystemen, Elektronische Hochgeschwindigkeits-Systemkomponenten in optischen Kommunikationssystemen

Studien-/Prüfungsleistungen:
Form: schriftlich/mündlich, Seminarvortrag
Dauer: schriftlich 120 min/ mündlich 20 min
Nach vorheriger Ankündigung durch den Dozenten können beim Praktikum Anwesenheitslisten geführt werden.

Medienformen:
Beamer, Tafel, Overhead-Projektor

Literatur:
6. Wahlmodule

<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Antriebstechnik II</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
</tbody>
</table>
| ggf. Lehrveranstaltungen | Antriebstechnik II (Vorlesung)
 | Antriebstechnik II (Übung) |
| Studiensemester: | Wintersemester |
| Modulverantwortliche(r): | Prof. Dr.-Ing. Marcus Ziegler |
| Dozent(in): | Prof. Dr.-Ing. Marcus Ziegler und Mitarbeiter |
| Sprache: | Deutsch |
| Zuordnung zum Curriculum | Pflichtmodul:
 | Schwerpunktmodul:
 | Wahlmodul: Ja |
| Lehrform/SWS: | 4 SWS: | 3 SWS Vorlesung
 | 1 SWS Übung |
| Arbeitsaufwand: | 180 h: | 60 h Präsenzzeit
 | 120 h Selbststudium |
| Kreditpunkte: | 6 |
| Empfohlene Voraussetzungen: | Mathematik-Grundvorlesungen (Differentialgleichungen), Grundlagen der Regelungstechnik, Technische Mechanik, Leistungselektronik, Elektrische Maschinen; Elektrische Antriebstechnik I, Grundlagen der Technischen Elektronik |
Ziel der Vorlesung ist die Vermittlung von Kenntnissen zu Antriebsstrukturen aus Sensorik, Regelung, Stromrichter und elektrischer Maschine an Beispielen von Produktionsmaschinen und Elektrofahrzeugen.

Lernergebnisse in Bezug auf die Studiengangsziele:
- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen
- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen
- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen
- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen
- Sicheres Anwenden und Bewerten analytischer Methoden
- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden |
- Einarbeiten in neue Wissensgebiete, Durchführen von
 Recherchen und Beurteilen der Ergebnisse
- Tiefgehende und wichtige Erfahrungen in praktischen
 technischen und ingenieurwissenschaftlichen Tätigkei-
 ten
- Arbeiten und Forschen in nationalen und internationa-
 len Kontexten

| Inhalt: | Realisierung digitaler Regelstrukturen
| Komponenten für digitale Regelungen
| Umrichter für Drehfeldmaschinen
| Verfahren zur Pulsmustergenerierung bei Pulsumrichtern
| Regelverfahren für Drehfeldmaschinen
| Ausgewählte Beispiele für Antriebssysteme |
| Studien-/Prüfungsleistungen: | Form: mündliche Prüfung
<p>| Dauer: 30 min |
| Medienformen: | Folien, Umdrucke, Power-Point-Präsentationen |
| Literatur: | Aktuelle Literatur wird in der Vorlesung benannt. |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Ausgewählte Kapitel der Kommunikationstechnik II</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester, Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Klaus David</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. David und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>nach Absprache</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul:</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmodul:</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS: Vorlesung, Übung, Seminar</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 60 h Präsenzzeit 120 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Introduction to Communications 1 (ITC1)</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Der/die Lernende kann ausgewählte Themen auf dem Gebiet der Kommunikationstechnik untersuchen, konzipieren und einschätzen</td>
</tr>
<tr>
<td></td>
<td>Lernergebnisse in Bezug auf die Studiengangsziele:</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertieften Kenntnissen in den elektrotechnischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen</td>
</tr>
<tr>
<td></td>
<td>- Sicheres Anwenden und Bewerten analytischer Methoden</td>
</tr>
<tr>
<td></td>
<td>- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden</td>
</tr>
<tr>
<td></td>
<td>- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse</td>
</tr>
<tr>
<td></td>
<td>- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten</td>
</tr>
<tr>
<td></td>
<td>- Arbeiten und Forschen in nationalen und internationalen Kontexten</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Ausgewählter Themen auf dem Gebiet der Kommunikationstechnik</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Form: Studienleistungen (b/nb): Referat/Präsentation, Bericht, Anwesenheitspflicht 80%</td>
</tr>
<tr>
<td></td>
<td>- Prüfungsleistungen: mündliche Prüfung, ggf. Klausur</td>
</tr>
<tr>
<td></td>
<td>- Dauer: mündl. 30, schriftl. 120 Minuten</td>
</tr>
<tr>
<td></td>
<td>- Nach vorheriger Ankündigung durch den Dozenten können Anwesenheitslisten geführt werden.</td>
</tr>
</tbody>
</table>
| Medienformen: | Vorlesungsfolien, auch als PDF zum Download
http://www.comtec.eecs.uni-kassel.de/akk/ |
|--------------|--|
| Literatur: | Die aktuell gültige Übersicht, wird in der Einführungs-
veranstaltung zur Verfügung gestellt |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Ausgewählte Kapitel der Mikroprozessortechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester, Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Josef Börcsök</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Börcsök und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td></td>
</tr>
<tr>
<td>Pflichtmodul:</td>
<td></td>
</tr>
<tr>
<td>Schwerpunktmodul:</td>
<td></td>
</tr>
<tr>
<td>Wahlmodul:</td>
<td>Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS</td>
</tr>
<tr>
<td></td>
<td>2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>2 SWS Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h:</td>
</tr>
<tr>
<td></td>
<td>60 h Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>120 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Signalverarbeitung mit Mikroprozessoren 1, Rechnerarchitektur</td>
</tr>
<tr>
<td>Lernergebnisse in Bezug auf die Studiengangsziele:</td>
<td>Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen</td>
</tr>
<tr>
<td></td>
<td>Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>Erwerben von erweiterten und angewandten fachspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen</td>
</tr>
<tr>
<td></td>
<td>Sicheres Anwenden und Bewerten analytischer Methoden</td>
</tr>
<tr>
<td></td>
<td>Selbständiges Entwickeln und Beurteilen von Lösungsmethoden</td>
</tr>
<tr>
<td></td>
<td>Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse</td>
</tr>
<tr>
<td></td>
<td>Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten</td>
</tr>
<tr>
<td></td>
<td>Arbeiten und Forschen in nationalen und internationalen Kontexten</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Vertiefte Kenntnisse moderner Rechner- und Mikroprozessor-Architekturen sowie Peripherieeinheiten und deren effiziente Programmierung.</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Form: Klausur 120 Min. oder mündliche Prüfung 40 Min., Hausarbeit</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Beamer, Papier, Tafel, Demonstration, Design- und Entwurfsarbeiten am PC</td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Flik, T., Mikroprozessortechnik, Springer 2001</td>
<td></td>
</tr>
<tr>
<td>Hennessy, J.L., Computer Architecture, - A quantitative approach, Morgan Kaufmann 2002</td>
<td></td>
</tr>
<tr>
<td>Weitere Literatur wird in der Lehrveranstaltung bekannt gegeben.</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Ausgewählte Methoden linearer und nichtlinearer Regelungssysteme</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>Modulniveau:</td>
<td>Master</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>ALN</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. rer. nat. Arno Linnemann</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. rer. nat. Arno Linnemann und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Basismodul:</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmodul:</td>
</tr>
<tr>
<td></td>
<td>Wahlpflichtmodul:</td>
</tr>
<tr>
<td></td>
<td>Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>5 SWS: 2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>1 SWS Übung</td>
</tr>
<tr>
<td></td>
<td>2 SWS Praktikum</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 75 h Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>105 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Kenntnisse entsprechend der Inhalte und angestrebten</td>
</tr>
<tr>
<td></td>
<td>Lernerergebnisse der Bachelor-Module „Lineare und nicht-</td>
</tr>
<tr>
<td></td>
<td>lineare Regelungssysteme“, „Ereignisdiskrete Systeme</td>
</tr>
<tr>
<td></td>
<td>und Steuerungstheorie“ sowie „Matlab Grundlagen“.</td>
</tr>
<tr>
<td>Angestrebte Lernerergebnisse:</td>
<td>Der/die Lernende kann</td>
</tr>
<tr>
<td></td>
<td>- komplexe Regelungen planen, entwickeln und beurteilen,</td>
</tr>
<tr>
<td></td>
<td>- die Unterschiede zwischen linearen und nichtlinearen</td>
</tr>
<tr>
<td></td>
<td>sowie zwischen zeitkontinuierlichen und zeitdiskreten</td>
</tr>
<tr>
<td></td>
<td>Regelungen herausstellen und bewerten,</td>
</tr>
<tr>
<td></td>
<td>- anwendungsspezifische Problemstellungen analysieren</td>
</tr>
<tr>
<td></td>
<td>und sich für geeignete Entwurfsmethoden entscheiden,</td>
</tr>
<tr>
<td></td>
<td>- Regelungssoftware entwickeln und damit zielgerichtet</td>
</tr>
<tr>
<td></td>
<td>experimentieren,</td>
</tr>
<tr>
<td></td>
<td>- Regelungsergebnisse beurteilen, das Vorgehen rech-</td>
</tr>
<tr>
<td></td>
<td>fertigen und die getroffenen Entscheidungen überzeugend</td>
</tr>
<tr>
<td></td>
<td>begründen und verteidigen.</td>
</tr>
<tr>
<td>Lernerergebnisse in Bezug auf die Studiengangsziele:</td>
<td>Erwerben von vertieften und angewandten fachspezifischen</td>
</tr>
<tr>
<td></td>
<td>Grundlagen der Elektrotechnik</td>
</tr>
<tr>
<td></td>
<td>- Erkennen und Einordnen von Aufgabenstellungen der</td>
</tr>
<tr>
<td></td>
<td>Elektrotechnik</td>
</tr>
<tr>
<td></td>
<td>- Selbständiges Entwickeln elektrotechnischer Produkte auf</td>
</tr>
<tr>
<td></td>
<td>Schaltungs- und Systemebene</td>
</tr>
<tr>
<td></td>
<td>- Sammeln angemessener Erfahrungen in praktischen</td>
</tr>
<tr>
<td></td>
<td>und ingenieurwissenschaftlichen Tätigkeiten</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von Strategien für lebenslanges Lernen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben der Fähigkeit interdisziplinär zu denken</td>
</tr>
<tr>
<td></td>
<td>- Anwenden und Vertreten von Lösungsstrategien.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>In der Vorlesung und Übung werden als Ergänzung zu den</td>
</tr>
<tr>
<td></td>
<td>Inhalten des Bachelor-Moduls „Lineare und nichtli-</td>
</tr>
</tbody>
</table>
neare Regelungssysteme“ weiterführende und vertie-
fende Methoden behandelt. Bei der Auswahl der Themen
werden die Interessen der Studierenden berücksichtigt.
Folgende Inhalte stehen unter anderem zur Wahl:
- Auslegung von Kompensatoren
- Regelung bei periodischen Eingängen
- Regelung mit zwei Freiheitsgraden und Vorsteuerung
- Störgrößenbeobachtung und –kompensation
- Zeitvariable lineare und nichtlineare Systeme
- Zeitdiskrete nichtlineare Regelung
- Wurzelortskurven zeitdiskreter Systeme
- Regelung durch Entkopplung
- Modale Synthese und dezentrale Regelung
- Strukturelle Analyse mit Graphen
- Stabilitätsanalyse nichtlinearer Systeme im Frequenz-
bereich und IO-Stabilität
- Vergleichsfunktionen und Input-to-State Stability
- Invarianzprinzip von LaSalle
- Differential-algebraische Gleichungen

Im Praktikum werden die Methoden der Lehrveranstal-
tung sowie die der Bachelor-Module „Lineare und nicht-
lineare Regelungssysteme“ und „Ereignisdiskrete Sys-
teme und Steuerungstheorie“ auf mehrere Laboraufbau-
ten angewendet. Folgende Teile stehen unter anderem
zur Wahl:
- Entwurf einer schrittweisen Ablaufsteuerung für ein
 Fahrrstuhlsystem
- Modellierung eines verkoppelten Mehrgrößensystems
 mit Reglerentwurf für eine Helikopteremulation
- Trajektorienfolgeregelung für einen mobilen Roboter
- Modellbildung, Systemanalyse und Auslegung eines
 nichtlinearen Reglers für ein mechanisches Mehrfach-
pendelsystem

| Studien-/Prüfungsleistungen: | Form: Studienleistung: Für das Praktikum Anfertigung
| | eines Ergebnisberichts und Präsentation der
| | Ergebnisse
| | Prüfungsleistung: mündliche Prüfung
| | (zur Vorlesung, zur Übung und zum Praktikum)
| | Dauer: Prüfungsleistung: 30 Minuten
| Medienformen: | Tafel, Folien, Vorführungen am Rechner, eigenständige
| Versuchsdurchführung an den Versuchsanlagen im Labor
| Literatur: | Wird in der Lehrveranstaltung bekannt gegeben (abhän-
<p>| gig von der Themenauswahl). |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Brennstoffzellentechnik in der Energieversorgung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BZE</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester, Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dr. –Ing. Christian Nöding</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. –Ing. Christian Nöding und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul: Schwerpunktmodul: Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS: Vorlesung: 1,5 SWS Übung: 1 SWS Seminar: 1,5 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 60 h Präsenzzeit 120 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Kenntnisse in Physik, Grundlagen Elektrotechnik</td>
</tr>
</tbody>
</table>

Angestrebte Lernergebnisse

Die Studierenden können
- die Funktion und den Entwicklungsprozesses von Brennstoffzellentypen und Brennstoffzellensystemen in stationären, mobilen und portablen Bereich erläutern,
- die physikalischen und elektrotechnischen Zusammenhänge von stationären und mobilen Systemen beschreiben,
- technische Synergien aufzeigen,
- technische Risiken und Zusammenhänge erfassen,
- den Bezug bereits erlernter Basiskompetenzen zu Anwendungen und deren technischen Umsetzungen und Randbedingungen herstellen.

Lernergebnisse in Bezug auf die Studiengangsziele:
- Erwerben von Grundlagen und vertieftem Wissen im Bereich Brennstoffzellen
- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen
- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen
- Sicheres Anwenden und Bewerten analytischer Methoden
- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden
- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten
- Arbeiten und Forschen in nationalen und internationalen Kontexten
- Erwerben von Wissen zur Gestaltung von Brennstoffzellensystemen die ein Vielzahl zusätzlicher Komponenten benötigen
Die Studenten sollen in die Lage versetzt werden, technische Herausforderungen und Möglichkeiten von Brennstoffzellensystemen, zu verstehen und die Wechselwirkungen auf andere Bereiche einzuschätzen.

| Inhalt: | - Einleitung Energieproblematik
- Einführung Wasserstofftechnik (Herstellung und Speicherung)
- Grundlagen Brennstoffzellen
 1. Geschichte
 2. Funktionsprinzip
 3. BZ-Typen
- Grundlegende chemische Zusammenhänge
 1. Butler-Volmer-Kinetik
 2. Tafelparameter
 3. Dreiphasengrenzschicht
- BZ-Modellierung (Adaptierung auf elektrische Ersatzschaltbilder)
- BZ-Steuerung
- BZ-Betrieb
 1. Temperaturüberwachung
 2. Drucküberwachung
 3. Befeuchtung
- BZ-Anwendungen
 1. Stationär als BHKW
 2. Mobil in Fahrzeugen
 3. Portabel in Kleinanwendungen
 4. Nischenprodukte im Boot und Caravanbereich
- Energiebilanzierung
- Wirkungsgradbetrachtung (System, elektrisch, thermisch, usw.) |

| Studien-/Prüfungsleistungen: | Voraussetzung: Ausarbeitung / Präsentation Seminar
Form/Dauer: schriftlich: 90min / mündlich: 30min
Nach vorheriger Ankündigung durch den Dozenten können beim Seminar Anwesenheitslisten geführt werden. |

| Medienformen: | Beamer, Foliensammlung, Tafel, |

| Literatur: | P. Kurzweil: Brennstoffzellentechnik: Grundlagen, Komponenten, Systeme, Anwendungen
J. Töpler, J. Lehmann: Wasserstoff und Brennstoffzelle: Technologien und Marktperspektiven: Technik, Marktpotentiale, Bewertung
G. Hoogers (Ed.) Fuel Cell Technology Handbook
F. Barbir, PEM Fuel Cells – Theory and Practice
C. H. Hamann, W. Vielstich, Elektrochemie
Aktuelle Literatur wird in der Vorlesung benannt. |
Modulbezeichnung: Communication Technologies I

Studiensemester: Sommersemester

Modulverantwortliche(r): Prof. Dr.-Ing. Klaus David

Dozent(in): Prof. Dr.-Ing. David und Mitarbeiter

Sprache: Englisch

Zuordnung zum Curriculum
Pflichtmodul: Schwerpunktmodul: Wahlmodul: Ja

Lehrform/SWS: 4 SWS: Vorlesung, Übung
Arbeitsaufwand: 180 h: 60 h Präsenzzeit
120 h Selbststudium

Kreditpunkte: 6

Empfohlene Voraussetzungen: Mobile Computing / Introduction to Communication II oder vergleichbar

Angestrebte Lernergebnisse

Der/die Lernende kann fortgeschrittene und aktuelle Themen auf den Gebieten Data Mining und Context Awareness untersuchen und hinterfragen.

Lernergebnisse in Bezug auf die Studiengangsziele:
- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen
- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen
- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen
- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen
- Sicheres Anwenden und Bewerten analytischer Methoden
- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden
- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse
- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten
- Arbeiten und Forschen in nationalen und internationalen Kontexten

Inhalt:
- Fortgeschrittene und aktuelle Themen auf den Gebieten Data Mining und Context Awareness
- Anwendung von Algorithmen des maschinellem Lernens auf Applikationen für Context Awareness
- Schreiben von wissenschaftlichen Ausarbeitungen und Präsentationen sowie Programmierung von Applikationen für Context Awareness
| Studien-/Prüfungsleistungen: | Form: Studienleistungen (b/nb): Referat/Präsentation, Bericht, Anwesenheitspflicht 80%
Prüfungsleistungen: mündliche Prüfung, ggf. Klausur
Dauer: mündl. 30, schriftl. 120 Minuten
Nach vorheriger Ankündigung durch den Dozenten können Anwesenheitslisten geführt werden. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Vorlesungsfolien, auch als PDF zum Download http://www.comtec.eecs.uni-kassel.de/itc_1/</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Die aktuell gültige Übersicht, wird in der Einführungsveranstaltung zur Verfügung gestellt</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Communication Technologies II</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Klaus David</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. David und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul: Schwerpunktmodul: Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS: Vorlesung, Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 60 h Präsenzzeit 120 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Introduction to Communications 2 (ITC2)</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Der/die Lernende kann fortgeschrittene und aktuelle Themen auf dem Gebiet der mobilen Netze und Anwendungen bis hin zu Pervasive Computing untersuchen und hinterfragen</td>
</tr>
<tr>
<td></td>
<td>Lernergebnisse in Bezug auf die Studiengangsziele:</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen</td>
</tr>
<tr>
<td></td>
<td>- Sicheres Anwenden und Bewerten analytischer Methoden</td>
</tr>
<tr>
<td></td>
<td>- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden</td>
</tr>
<tr>
<td></td>
<td>- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse</td>
</tr>
<tr>
<td></td>
<td>- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten</td>
</tr>
<tr>
<td></td>
<td>- Arbeiten und Forschen in nationalen und internationalen Kontexten</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Fortgeschrittene und aktuelle Themen auf dem Gebiet der mobilen Netze und Anwendungen wie: XML Java Service discovery Bayesian networks Localisation with GPS weitere aktuelle Themen</td>
</tr>
</tbody>
</table>
| Studien-/Prüfungsleistungen: | Form: Studienleistungen (b.nb): Referat/Präsentation, Bericht, Anwesenheitspflicht 80%
Prüfungsleistungen: mündliche Prüfung, ggf. Klausur
Dauer: mündl. 30, schriftl. 120 Minuten
Nach vorheriger Ankündigung durch den Dozenten können Anwesenheitslisten geführt werden. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Vorlesungsfolien, auch als PDF zum Download http://www.comtec.eecs.uni-kassel.de/itc_2/</td>
</tr>
</tbody>
</table>
| Literatur: | Die aktuell gültige Übersicht, wird in der Einführungsveranstaltung zur Verfügung gestellt
Kurose/Ross, Computernetworks, Addison Wesley, 2nd Edition, English
Dimitri Bertsekas, Rober Gallager, Data networks, Prentice Hall, 1992, English
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Computer Arithmetik</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modultyp:</td>
<td>Master</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Peter Zipf</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr.-Ing. Martin Kumm</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch, Englisch nach Absprache möglich</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Basismodul:</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS: 3 SWS Vorlesung 1 SWS Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 60 h Präsenzzeit 120 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6 CP</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Digitale Logik, wünschenswert aber keine notwendige Voraussetzung: Rechnerarchitektur</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Der/die Lernende kann,</td>
</tr>
<tr>
<td></td>
<td>- den Aufbau arithmetischer Einheiten moderner Computer beurteilen,</td>
</tr>
<tr>
<td></td>
<td>- unterschiedliche Darstellungen von Zahlen auf Computern anwenden,</td>
</tr>
<tr>
<td></td>
<td>- arithmetische Einheiten für Grundrechenarten sowie elementarer Funktionen entwerfen.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>- Zahlendarstellungen (Festkomma-/Gleitkommaformat, Darstellung negativer Zahlen, alternative Zahlensysteme)</td>
</tr>
<tr>
<td></td>
<td>- Addition/Subtraktion (Ripple-Carry Addierer, Carry-Lookahead Addierer, Parallel Prefix Adder)</td>
</tr>
<tr>
<td></td>
<td>- Kompressor Trees (Wallace Tree, Dadda Tree)</td>
</tr>
<tr>
<td></td>
<td>- Multiplikation (Baugh-Wooley- und Booth-Multiplizierer, Higher Radix Multiplizierer)</td>
</tr>
<tr>
<td></td>
<td>- Division (Restoring/Non-restoring Division, SRT Division)</td>
</tr>
<tr>
<td></td>
<td>- Funktions-Approximation (Normalisierung und Bereichsreduktion, Polynom-, Rational- und Spline-Approximation, CORDIC Algorithmus, Multipartite Table Methode)</td>
</tr>
<tr>
<td></td>
<td>- Gleitkomma-Arithmetik (Addition/Subtraktion, Multiplikation, Division)</td>
</tr>
<tr>
<td></td>
<td>- Besonderheiten auf FPGAs</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Studienleistungen: keine</td>
</tr>
<tr>
<td></td>
<td>Prüfungsleistungen: Mündliche Prüfung (etwa 40 Min.)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Folien/Beamer, Tafel</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Digital Communication Over Fading Channels</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Dirk Dahlhaus</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Dahlhaus und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul:</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmódul:</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>2 SWS Vorlesung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>120 h: 30 h Präsenzzeit 90 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Signalübertragung, Introduction to Digital Communications, Digital Communication Through Band-Limited Channels</td>
</tr>
</tbody>
</table>

Angestrebte Lernergebnisse

Der Student kann
- breitbandige Übertragungsverfahren mit Bandspreiztechnik entwerfen und deren Übertragungsgüte analysieren
- Synchronisationsverfahren für Bandspreizsysteme anwenden und deren Güte quantifizieren
- Schwundkanäle charakterisieren und analysieren
- Verfahren zur Mehrbenutzerdetektion miteinander vergleichen und entsprechend der Anwendung auswählen

Lernergebnisse in Bezug auf die Studiengangsziele:
- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen
- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen
- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen
- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen
- Sicheres Anwenden und Bewerten analytischer Methoden
- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden
- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse
- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten
- Arbeiten und Forschen in nationalen und internationalen Kontexten
Inhalt:
Multichannel and multicarrier transmission, orthogonal frequency-division multiplexing (OFDM), spread spectrum (direct sequence, frequency hopping), PN sequences, transmission over fading multipath channels, channel coding for multipath channels, multiple-input multiple-output (MIMO) transmission, multiuser detection, code-division multiple access (CDMA) and random access

Studien-/Prüfungsleistungen:
Form: mündl. Prüfung
Dauer: 30 Min.

Medienformen:
Beamer, Tafel, Papier

Literatur:
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Digital Communication Through Band-Limited Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Dirk Dahlhaus</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Dahlhaus und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul:</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmodul:</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>3 SWS: 2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>1 SWS Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 45 h Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>135 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Signalübertragung, Introduction to Digital Communications</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Der Student kann</td>
</tr>
<tr>
<td></td>
<td>- Verfahren zur Träger- und Taktsynchronisation entwerfen und deren Übertragungsgüte analysieren</td>
</tr>
<tr>
<td></td>
<td>- Signalisierungs- und Entzerrungsverfahren für lineare bandbegrenzte Kanäle entwerfen und miteinander vergleichen</td>
</tr>
<tr>
<td></td>
<td>- Mehrträgerverfahren bewerten und gegenüber anderen Entzerrungsverfahren einstufen</td>
</tr>
<tr>
<td></td>
<td>Lernergebnisse in Bezug auf die Studiengangsziele:</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen</td>
</tr>
<tr>
<td></td>
<td>- Sicheres Anwenden und Bewerten analytischer Methoden</td>
</tr>
<tr>
<td></td>
<td>- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden</td>
</tr>
<tr>
<td></td>
<td>- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse</td>
</tr>
<tr>
<td></td>
<td>- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten</td>
</tr>
<tr>
<td></td>
<td>- Arbeiten und Forschen in nationalen und internationalen Kontexten</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Carrier and timing recovery, signalling in band-limited channels, transmission over linear band-limited channels, intersymbol interference, adaptive equalization, multicarrier transmission</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Studien-/Prüfungsleistungen: | Form: mündl. Prüfung
Dauer: 30 Min. |
<p>| Medienformen: | Beamer, Tafel, Papier |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Elektrische Entladungen und Durchschläge in Hochspannungisolierstoffen</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. A. Claudi</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. A. Claudi und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch/englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td></td>
</tr>
<tr>
<td>Pflichtmodul:</td>
<td></td>
</tr>
<tr>
<td>Schwerpunktmodul:</td>
<td></td>
</tr>
<tr>
<td>Wahlmodul:</td>
<td>Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>3 SWS Seminar</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>120h: 45h Präsenzzeit 75h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>AHT1, AHT2</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Die Studierenden können</td>
</tr>
<tr>
<td></td>
<td>- erklären, wie Entladungen entstehen.</td>
</tr>
<tr>
<td></td>
<td>- beurteilen, welche Mechanismen und Prozesse zum Durchschlage führen.</td>
</tr>
<tr>
<td></td>
<td>- Isolierstoffe und ihr Design optimieren.</td>
</tr>
<tr>
<td></td>
<td>- vorgegebene bzw. bekannte Algorithmen anwenden.</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Form: Referat / Präsentation und Bericht</td>
</tr>
<tr>
<td></td>
<td>Dauer: 30min Vortrag + 30min Diskussion</td>
</tr>
<tr>
<td></td>
<td>Nach vorheriger Ankündigung durch den Dozenten können Anwesenheitslisten geführt werden.</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafel, Whiteboard, Beamer, Vortrag</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Elektrische Systeme in der Formula Student - Master Level</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Winter-/Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. habil. Peter Zacharias</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dozenten der Elektrotechnik</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch, Englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td></td>
</tr>
<tr>
<td>Pflichtmodul:</td>
<td></td>
</tr>
<tr>
<td>Schwerpunktmodul:</td>
<td></td>
</tr>
<tr>
<td>Wahlmodul:</td>
<td>Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS Projektarbeit</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 90 h Präsenzzeit 90 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Der/Die Studierende kann:</td>
</tr>
<tr>
<td></td>
<td>• komplexe Zusammenhänge im Automobilbereich analysieren, verstehen und erklären</td>
</tr>
<tr>
<td></td>
<td>• bestehende Konzepte analysieren und Vorschläge zur Verbesserung und/oder Optimierung erarbeiten</td>
</tr>
<tr>
<td></td>
<td>• sich selbstständig in neue Themengebiete einarbeiten sowie Vor- und Nachteile abwägen</td>
</tr>
<tr>
<td></td>
<td>• Prototypen anfertigen, testen und die Ergebnisse interpretieren</td>
</tr>
<tr>
<td></td>
<td>• die Arbeitsschritte und Entscheidungen nachvollziehbar erklären und dokumentieren</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Je nach Aufgabenstellung, z.B.:</td>
</tr>
<tr>
<td></td>
<td>• Energieversorgungskonzepte</td>
</tr>
<tr>
<td></td>
<td>• Systemarchitektur für elektronische Bordnetze</td>
</tr>
<tr>
<td></td>
<td>• Sensoren und Messwerterfassung für Zustände im Fahrbetrieb</td>
</tr>
<tr>
<td></td>
<td>• Sicherheitsrelevante Signalgebung und Informationsverarbeitung</td>
</tr>
<tr>
<td></td>
<td>• Fahrzeugsteuerung im Fahrbetrieb</td>
</tr>
<tr>
<td></td>
<td>• Fahrzeugsicherheit</td>
</tr>
<tr>
<td></td>
<td>• Mensch-Maschine-Schnittstelle</td>
</tr>
<tr>
<td></td>
<td>• Kommunikationssysteme im Fahrzeug</td>
</tr>
<tr>
<td></td>
<td>• Steuermodule für Fahrzeugfunktionen</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistung:</td>
<td>Mündliche Prüfung im Rahmen eines Kolloquiums</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Vorträge, Präsentationen, Supervision</td>
</tr>
<tr>
<td>Literatur:</td>
<td>M. Trzesniowski: "Rennwagentechnik"</td>
</tr>
<tr>
<td></td>
<td>M. Reisch: "Elektronische Bauelemente"</td>
</tr>
<tr>
<td></td>
<td>K. Reif: "Automobilelektronik"</td>
</tr>
<tr>
<td></td>
<td>K. Kark: "Antennen und Strahlungsfelder"</td>
</tr>
<tr>
<td></td>
<td>K. Schreiner: "Basiswissen Verbrennungsmotor"</td>
</tr>
<tr>
<td></td>
<td>R. Teichmann et al.: "Grundlagen Verbrennungsmotor"</td>
</tr>
<tr>
<td></td>
<td>Ggf. themenspezifische Literatur zur Aufgabenstellung</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Elektromagnetische Theorie der Mikrowellen und Antennen</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>EFTMA</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td>Electromagnetic Theory for Microwaves and Antennas</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester/Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>PD Dr.-Ing. Marklein</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>PD Dr.-Ing. Marklein und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>MSc: Deutsch / Englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul: Schwerpunktmodul: Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>3 SWS: 2 SWS Vorlesung 1 SWS Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>120 h: 45 h Präsenzzeit 75 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Gute Kenntnisse der Grundlagen der Elektrotechnik, Höheren Mathematik, Elektromagnetische Feldtheorie, Mathematische Grundlagen der Elektromagnetischen Feldtheorie</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Der/die Lernende kann:</td>
</tr>
<tr>
<td></td>
<td>- Selbstständig Fragestellungen der elektromagnetischen Feldtheorie mit Anwendung in der Mikrowellen- und Antennentechnik sowie der Optik, basierend auf den in der Vorlesung vermittelten Inhalten beurteilen und lösen</td>
</tr>
<tr>
<td></td>
<td>Lernergebnisse in Bezug auf die Studiengangsziele:</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen</td>
</tr>
<tr>
<td></td>
<td>- Sicheres Anwenden und Bewerten analytischer Methoden</td>
</tr>
<tr>
<td></td>
<td>- Selbstständiges Entwickeln und Beurteilen von Lösungsmethoden</td>
</tr>
<tr>
<td></td>
<td>- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse</td>
</tr>
<tr>
<td></td>
<td>- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten</td>
</tr>
<tr>
<td></td>
<td>- Arbeiten und Forschen in nationalen und internationalen Kontexten</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Grundlagen der Elektromagnetischen Feldtheorie, Elektromagnetische Wellen, Leitungstheorie, Netzwerktheorie Elektromagnetischer Wellen, Zeitabhängige Randwertprobleme, Metallische Wellenleiter und Resonatoren, Periodische Strukturen und gekoppelte Moden, Dispersive und anisotrope Medien, Elektromagnetische Quellenfelder, Antennen, Gauß’sche Strahlen, Integralgleichungen, Beugungstheorie, Inverse Streuprobleme</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Form; Regelmäßiges Bearbeiten von Übungsaufgaben und Kurztests. Klausur Dauer: (2 Stunden)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafel, Beamer, Multimedia-Animationen</td>
</tr>
<tr>
<td>Modulbezeichnung</td>
<td>Energiemanagement in Gebäuden</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>Ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>Ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Prof. Dr.-Ing. Martin Braun</td>
</tr>
<tr>
<td>Dozent(inn)en</td>
<td>Prof. Dr.-Ing. Martin Braun und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul:</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmodul:</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul:</td>
</tr>
<tr>
<td></td>
<td>Ja</td>
</tr>
<tr>
<td>Lehrform</td>
<td>2 SWS Vorlesung und Praktikum</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>90 h:</td>
</tr>
<tr>
<td></td>
<td>30 h Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>60 h Selbststudium</td>
</tr>
<tr>
<td>Credits</td>
<td>3</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>- Grundlegende Kenntnisse einer objektorientierten Programmiersprache, z. B. Java (bevorzugs), C++</td>
</tr>
<tr>
<td></td>
<td>- oder grundlegende Kenntnisse eines Tabellenkalkulationsprogrammes, z. B. Excel</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Vermittlung von Grundkenntnissen zum Energiemanage-</td>
</tr>
<tr>
<td></td>
<td>ment im Gebäudebereich bei Berücksichtigung dezentraler Strom- und Wärmeerzeuger (z.B. Photovoltaik, BHKW), Strom- und Wärmespeicher (z.B. Batterien, latente Wärmespeicher), und steuerbarer und verschiebbarer Lasten (z.B. Wärmepumpen, Beleuchtung).</td>
</tr>
<tr>
<td></td>
<td>Lernergebnisse in Bezug auf die Studiengangsziele:</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen</td>
</tr>
<tr>
<td></td>
<td>- Sicheres Anwenden und Bewerten analytischer Methoden</td>
</tr>
<tr>
<td></td>
<td>- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden</td>
</tr>
<tr>
<td></td>
<td>- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse</td>
</tr>
<tr>
<td></td>
<td>- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten</td>
</tr>
<tr>
<td></td>
<td>- Arbeiten und Forschen in nationalen und internationalen Kontexten</td>
</tr>
<tr>
<td>Inhalt</td>
<td>- Dezentrale Stromerzeugung</td>
</tr>
<tr>
<td></td>
<td>- Stromspeicherung</td>
</tr>
<tr>
<td>Fachgebiete</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>- Wärmeerzeugung</td>
<td></td>
</tr>
<tr>
<td>- Raumklimatisierung</td>
<td></td>
</tr>
<tr>
<td>- Wärmespeicherung</td>
<td></td>
</tr>
<tr>
<td>- Beleuchtungstechnik</td>
<td></td>
</tr>
<tr>
<td>- Wärmedämmung</td>
<td></td>
</tr>
<tr>
<td>- Gebäudebusssysteme und Smart Meter</td>
<td></td>
</tr>
<tr>
<td>- Anwendungen</td>
<td></td>
</tr>
<tr>
<td>- Modellierung, Simulation und wirtschaftliche Bewertung von Energiemanagement-Komponenten sowie Geräten, Gebäuden als Teil des Gesamtsystems (inkl. softwaretechnischer Umsetzung)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung: Seminararbeit</td>
</tr>
</tbody>
</table>
| Die Seminararbeit kann entweder in Form einer Simulation mit dem Java-basierten Energiemanagement-Frame-
work OGEMA oder einer wirtschaftlichen Bewertung eines Energiemanagement-Systems erfolgen. |
| Prüfungsleistung: Abschnitts-Prüfung |
| Dauer: 30 Minuten (Klausur) |

<table>
<thead>
<tr>
<th>Medienformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tafel, Overhead-Projektor, Beamer, PC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur wird in der Vorlesung benannt.</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Modulniveau</td>
</tr>
<tr>
<td>Kürzel</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
</tbody>
</table>
| Dozent(in): | Prof. Dr.-Ing. Albert Claudi und Mitarbeiter
| | Prof. Dr.-Ing. Peter Zacharias und Mitarbeiter
| | Prof. Dr. rer. nat. Ludwig Brabetz und Mitarbeiter
| | Prof. Dr.-Ing. Marcus Ziegler und Mitarbeiter |
| Sprache: | Deutsch |
| Zuordnung zum Curriculum | Pflichtmodul:
| | Schwerpunktmodul:
| | Wahlmodul: Ja |
| Lehrform/SWS: | 3 SWS Praktikum |
| Arbeitsaufwand: | 120 h: 45 h Präsenzzeit
| | 75 h Eigenstudium |
| Kreditpunkte: | 4 |
| Empfohlene Voraussetzungen: | Grundlagen der Energietechnik
| | Grundlagen der Regelungstechnik,
| | Elektrische Maschinen
| | Anlagen und Hochspannungstechnik I und II |
| Angestrebte Lernergebnisse | Festigung der Funktionsprinzipien in Energietechnischen Anlagen.
| Inhalt: | - Teil I (Anlagen und Hochspannungstechnik)
| | Ein aktueller Versuch aus der Hochspannungsprüfo-
| | der oder messtechnik
| | - Teil II (Elektrische Energieversorgungssysteme)
| | a) Transistoren als Leistungsstärker
| | b) Pulsweitenmodulation |
- Teil III (Fahrzeugsysteme)
 a) Elektrischer Speicher
- Teil IV (Elektrische Maschinen)
 a) Synchronmaschine
 b) Asynchronmaschine

| Studien-/Prüfungsleistungen: | Form: Studienleistung: Anfertigung eines Ergebnisberichts, Präsentation der Ergebnisse, Testat, Abschlussgespräch mit dem Betreuer
| | Prüfungsleistung: mündliche Prüfung
| | Nach vorheriger Ankündigung durch die Dozenten können Anwesenheitslisten geführt werden.

| Medienformen: | eigenständige Versuchsdurchführung im Labor
| Literatur: | Hinweise werden in den Versuchsanleitungen gegeben
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Energiewirtschaftliche Aspekte der Energietechnik I</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing Peter Zacharias</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing Zacharias und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul:</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmmodul:</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>2 SWS Vorlesung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>110 h: 30 h Präsenzzeit 80 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Entwicklungs energiewirtschaftlicher Ankoppelungskompetenz für Elektro- und Maschinenbauingenieure</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Lernergebnisse in Bezug auf die Studiengangsziele:</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen</td>
</tr>
<tr>
<td></td>
<td>- Sicheres Anwenden und Bewerten analytischer Methoden</td>
</tr>
<tr>
<td></td>
<td>- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden</td>
</tr>
<tr>
<td></td>
<td>- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse</td>
</tr>
<tr>
<td></td>
<td>- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten</td>
</tr>
<tr>
<td></td>
<td>- Arbeiten und Forschen in nationalen und internationalen Kontexten</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Energiereserven und -ressourcen nicht-erneuerbarer Energien</td>
</tr>
<tr>
<td></td>
<td>Potentiale erneuerbarer Energiequellen</td>
</tr>
<tr>
<td></td>
<td>Beschreibende Energiestatistik</td>
</tr>
<tr>
<td></td>
<td>Analytische Energiestatistik</td>
</tr>
<tr>
<td></td>
<td>Unternehmen und Branchen der Energiewirtschaft</td>
</tr>
<tr>
<td></td>
<td>Rationelle Energieanwendung</td>
</tr>
<tr>
<td></td>
<td>Soziale Kosten des Energieverbrauchs</td>
</tr>
<tr>
<td></td>
<td>Energiebedarfs-Prognosen und Energieszenarien</td>
</tr>
<tr>
<td></td>
<td>Energiepolitische Maßnahmen technischer Art</td>
</tr>
</tbody>
</table>

77
| Studien-/Prüfungsleistungen: | Form: schriftliche Prüfung
Dauer: 60min |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>diverse</td>
</tr>
</tbody>
</table>
| **Literatur:** | **SCHIFFER, H.-W.: Energiemarkt Bundesrepublik Deutschland. 5. Auflage, TÜV Rheinland, Köln 1995;**
ALTNER u.a.: Zukunftige Energiepolitik. Economica, Bonn 1995. |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Energiewirtschaftliche Aspekte der Energietechnik II</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester:</th>
<th>Sommersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing Peter Zacharias</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing Zacharias und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zuordnung zum Curriculum</th>
<th>Pflichtmodul:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwerpunktmidonul:</td>
<td>Wahlmodul: Ja</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform/SWS:</th>
<th>2 SWS Vorlesung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeitsaufwand:</td>
<td>110 h: 30 h Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>80 h Selbststudium</td>
</tr>
</tbody>
</table>

| Kreditpunkte: | 4 |

| Empfohlene Voraussetzungen: | |

<table>
<thead>
<tr>
<th>Angestrebte Lernergebnisse</th>
<th>Entwicklung energiewirtschaftlicher Ankoppelungskompetenz für Elektro- und Maschinenbauingenieure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lernergebnisse in Bezug auf die Studiengangsziele:</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen</td>
</tr>
<tr>
<td></td>
<td>- Sicheres Anwenden und Bewerten analytischer Methoden</td>
</tr>
<tr>
<td></td>
<td>- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden</td>
</tr>
<tr>
<td></td>
<td>- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse</td>
</tr>
<tr>
<td></td>
<td>- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten</td>
</tr>
<tr>
<td></td>
<td>- Arbeiten und Forschen in nationalen und internationalen Kontexten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalt:</th>
<th>Energiereserven und -ressourcen nicht-erneuerbarer Energien</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Potential erneuerbarer Energiequellen</td>
</tr>
<tr>
<td></td>
<td>Beschreibende Energiestatistik</td>
</tr>
<tr>
<td></td>
<td>Analytische Energiestatistik</td>
</tr>
<tr>
<td></td>
<td>Unternehmen und Branchen der Energiewirtschaft</td>
</tr>
<tr>
<td></td>
<td>Rationelle Energieanwendung</td>
</tr>
<tr>
<td></td>
<td>Soziale Kosten des Energieverbrauchs</td>
</tr>
<tr>
<td></td>
<td>Energiebedarfs-Prognosen und Energieszenarien</td>
</tr>
<tr>
<td></td>
<td>Energiepolitische Maßnahmen technischer Art</td>
</tr>
</tbody>
</table>
| Studien-/Prüfungsleistungen: | Form: schriftliche Prüfung
Dauer: 60 min |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Diverse</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Fahrzeugdynamik</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>FZD</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Michael U. Fister</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr.-Ing. Christian Spieker</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul:</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>3 SWS:</td>
</tr>
<tr>
<td></td>
<td>1 SWS Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h:</td>
</tr>
<tr>
<td></td>
<td>105 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundlagen der Regelungstechnik</td>
</tr>
</tbody>
</table>

Angestrebte Lernergebnisse
Die Studierenden sollen in die Lage versetzt werden
- grundlegende Begriffe der Fahrzeugdynamik zu verstehen und erklären zu können,
- die dynamischen Kenngrößen von Fahrzeugen zu bestimmen und
- selbst Simulationsmodelle zu erstellen und die Ergebnisse zu interpretieren.

Inhalt:
Aus dem Inhalt:
- Reifenkräfte und –momente,
- Längsdynamik,
- Querdynamik,
- Vertikaldynamik,
- Regelsysteme (ASB, ASR, ESP) und
- simulatorische Umsetzung und Analyse der Fahrzeugdynamik.

Studien-/Prüfungsleistungen:
Klausur (60 min) oder mündliche Prüfung (30 min)

Medienformen:
Beamer, Skript, Tafel, Simulationsrechner

Literatur:
- Dieter Schramm et al., „Modellbildung und Simulation der Dynamik von Kraftfahrzeugen“, Springer, 2. 2013
- Stefan Breuer et al., „Fahrzeugdynamik“, Springer 2015
- Manfred Mitschke et al., „Dynamik der Kraftfahrzeuge“, Springer, 5. 2014
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Fahrzeugtechnik: Aktuelle Komponenten und Systeme</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kurzel</td>
<td>KEF</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Ludwig Brabetz</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. rer.nat. Ludwig Brabetz,</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr.-Ing. Albert Claudi,</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr.-Ing. Marcus Ziegler,</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr.-Ing. Adrian Rienäcker,</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr.-Ing. Bernhard Schweizer,</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr.-Ing. Michael Fister,</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr.-Ing. Peter Zacharias,</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr.-Ing. Ludger Schmidt</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul:</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmodul:</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>2 SWS Ringvorlesung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>110h: 30h Präsenz 80h Eigenstudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundlagen der Elektrotechnik, Mechanik und Antriebstechnik</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Die Studierenden können</td>
</tr>
<tr>
<td></td>
<td>- die Funktion und den Entwicklungsprozess von</td>
</tr>
<tr>
<td></td>
<td>automotiven Systemen erläutern,</td>
</tr>
<tr>
<td></td>
<td>- die Zusammenhänge zwischen Mechanik und Elektro-</td>
</tr>
<tr>
<td></td>
<td>technik in automobilen Systemen beschreiben,</td>
</tr>
<tr>
<td></td>
<td>- technische Synergien aufzeigen,</td>
</tr>
<tr>
<td></td>
<td>- technische Risiken und Zusammenhänge erfassen,</td>
</tr>
<tr>
<td></td>
<td>- den Bezug bereits erlernter Basiskompetenzen zu</td>
</tr>
<tr>
<td></td>
<td>Anwendungen und deren technischen Umsetzungen</td>
</tr>
<tr>
<td></td>
<td>und Randbedingungen herstellen.</td>
</tr>
</tbody>
</table>

Lernergebnisse in Bezug auf die Studiengangsziele:
- Erwerben von vertieftem Wissen im automobiltechnischen Bereich
- Erwerben von vertieften Kenntnissen in den elektrotechnik- und maschinenbauspezifischen Grundlagen
- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen
- Erkennen und Einordnen von interdisziplinären Aufgabenstellungen im Automobil
- Beurteilen der Auswirkungen von Änderungen auf das Gesamtsystem
- Sicheres Anwenden und Bewerten analytischer Methoden
Selbständiges Entwickeln und Beurteilen von Lösungsmethoden
- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse
- Tiefgehende und wichtige Erfahrungen in praktischen, technischen und ingenieur-wissenschaftlichen Tätigkeiten

Inhalt:

Die Ringvorlesung ergänzt die Vorlesungen in den Studiengängen Elektrotechnik, Mechatronik und Maschinenbau und fügt die Anforderungen und die verbundenen Disziplinen im Automobilbau zusammen und verknüpft diese mit praxisnahen Beispielen. Themen sind im Einzelnen:
- Architektur von Fahrzeugbordnetze und Einfluss von Nebenaggregate
- Aufbau elektrischer Maschinen im Fahrzeug und Regelung
- Anforderungen an E-Maschinen bei Hochspannungen
- hybride Antriebsstränge
- Stromrichter im Fahrzeug
- Optimierung von Verbrennungsmotoren
- Bedienkonzepte im Fahrzeug

Studien-/Prüfungsleistungen: Klausur, 90min oder mündliche Prüfung, 30min
Medienformen: Bekanntgabe durch Profs. (Beamer, Skript, Tafel)
Literatur: Hinweise in der Vorlesung
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Finite Elemente Methode am Beispiel Magnetfeldberechnung Elektrischer Maschinen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>Kürzel</td>
<td>FEM</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester/Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Marcus Ziegler</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Marcus Ziegler und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul: FEM</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmodul:</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>2 SWS Seminar/Praktikum</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>90 h: 30 h Präsenzzeit 60 h Eigenstudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundlagen der Energietechnik</td>
</tr>
<tr>
<td></td>
<td>Elektrische Maschinen</td>
</tr>
<tr>
<td></td>
<td>Feldtheorie</td>
</tr>
<tr>
<td></td>
<td>Interesse an Simulationen und Skriptprogrammierung</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Grundlagen der Bedienung eines Programms zur Berechnung elektromagnetischer Felder auf der Basis der Finite Elemente Methode.</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Eigenständige Durchführung teilweise unter Anleitung im Rechnerverbund</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Hinweise werden in der Kick-Off Veranstaltung gegeben</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Hochspannungsmesstechnik</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>Kürzel</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Albert Claudi</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Albert Claudi</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul:</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmodul:</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>2 SWS Vorlesung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>90 h: 30 h Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>60 h Eigenstudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundlagen der Elektrotechnik 1,2</td>
</tr>
<tr>
<td></td>
<td>Anlagen und Hochspannungstechnik I</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Hochspannungs-Impulstechnik im Zeit- und Frequenzbereich</td>
</tr>
<tr>
<td></td>
<td>Übertragungsverhalten, Faltung, Digitalrekorder, Messung von Stoßströmen und Stoßspannungen, Kalibrierung von Meßsystemen.</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Form: mündliche Prüfung</td>
</tr>
<tr>
<td></td>
<td>Dauer:</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Overhead, Beamer, Tafel</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Wird während der Lehrveranstaltung bekanntgegeben</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Hybride und Vernetzte Regelungssysteme</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>Kürzel</td>
<td>HVR</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Olaf Stursberg</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Olaf Stursberg und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zuordnung zum Curriculum</th>
<th>Pflichtmodul:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schwerpunktmodul:</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform/SWS:</th>
<th>4 SWS: 3 SWS Vorlesung 1 SWS Übung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 60 h Präsenzzeit 120 h Eigenstudium</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kreditpunkte:</th>
<th>6, davon 1 CP als integrierte Schlüsselkompetenz</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Voraussetzungen:</th>
<th>Kenntnisse entsprechend der Inhalte und angestrebten Lernergebnisse der Bachelor-Module „Lineare und nicht-lineare Regelungssysteme“ und „Ereignisdiskrete Systeme und Steuerungstheorie“; außerdem ist das Bachelor-Modul „Matlab Grundlagen“ hilfreich</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Angestrebte Lernergebnisse</th>
<th>Der / die Lernende kann:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- die besonderen Merkmale von hybridem dynamischem Systemverhalten interpretieren und begründen,</td>
</tr>
<tr>
<td></td>
<td>- den Bezug zu wertekontinuierlichen und ereignisdiskreten sowie verteilten Systemen herstellen,</td>
</tr>
<tr>
<td></td>
<td>- fundamentale Eigenschaften hybrider Systeme analysieren und Schlüsse für die gezielte Systembeeinflussung ziehen,</td>
</tr>
<tr>
<td></td>
<td>- Strategien zur Regelung und Steuerung hybrider bzw. vernetzter Systeme in Matlab entwerfen,</td>
</tr>
<tr>
<td></td>
<td>- das geregelte bzw. gesteuerte dynamische Verhalten vernetzter Regelsysteme bewerten und hinterfragen,</td>
</tr>
<tr>
<td></td>
<td>- und sich Urteile zur Eignung verschiedener Methoden für hybride und vernetzte Systeme bilden.</td>
</tr>
</tbody>
</table>

Lernergebnisse in Bezug auf die Studiengangsziele: |
- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen |
- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen |
- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen |
- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen |
- Sicheres Anwenden und Bewerten analytischer Methoden |
- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden |
- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse |
- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten
- Arbeiten und Forschen in nationalen und internationalen Kontexten

| Inhalt: | - Einführung in hybride dynamische Systeme und Anwendungsbeispiele,
- Definition und Eigenschaften hybrider Automaten,
- Geschaltete und Schaltende dynamische Systeme,
- Hybride Petri-Netze und Hybride Statecharts,
- Numerische Simulation hybrider Systeme, Stabilitätsanalyse für hybride Dynamiken,
- Erreichbarkeitsanalyse und formale Verifikation,
- Entwurf schaltender Regler für hybride Systeme,
- Berechnung mengenbasiert Regler und Hybride Optimalesteuerung.
- Sliding-Mode Regelung
- Stochastische hybride Systeme
- Modellierung vernetzter Regelungssysteme
- Stabilität von Systemen mit Kommunikationskomponenten
- Entwurf von Reglern für vernetzte und kooperative Systeme |
| Studien-/Prüfungsleistungen: | Form: Prüfungsleistung: Klausur oder mündl. Prüfung
Studienleistung: Übungsaufgaben
Dauer: 90 Minuten (Klausur) bzw. 30 Minuten (mündl. Prüfung) |
<p>| Medienformen: | Folien, Tafel, Vorführungen am Rechner, Rechnerübungen |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Informations- und Kommunikationsstrukturen in der Energiewirtschaft</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Clemens Hoffmann</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr.-Ing. Reinhard Mackensen</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul:</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmodul:</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>2 SWS: Vorlesung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>120 h: 30 h Präsenzzeit 90 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundlagen: Empfohlen werden Kenntnisse der Energiewirtschaft und des Energiemanagements, sowie Grundlagen der Informatik und Informationstechnik, weiterhin Grundkenntnisse im Bereich Softwareentwicklung/Softwareentwurf</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>- Einführung - Überblick über die Inhalte der Lehrveranstaltung. Beteiligte und Rollen in der Energiewirtschaft</td>
</tr>
</tbody>
</table>
| - Einsatz von IKT in der Energiewirtschaft und im Smart Grid
| - Kommunikationsstrukturen in der Energiewirtschaft
| - Datenmodelle und Schnittstellentechnologien in der Energiewirtschaft
| - IKT gestützte Prognoseverfahren, Wind/PV-Prognosen, Lastprognosen, Einsatz, Ersatzwertbildung
| - Energieinformationsnetze
| - Energiewirtschaftliche Optimierungsmodelle
| - Aggregationsmodelle, Virtuelle Kraftwerke, DSM
| - Meter, Smart Meter, Homeautomation
| - Softwarearchitekturen
| - Datenbankstrukturen
| - Objektorientierte Softwareentwicklungsmethoden
| - Rolle von E-Energy
| - IKT-Sicherheit

Studien-/Prüfungsleistungen: Mündliche Prüfung plus schriftliche Ausarbeitung oder Seminarvortrag

Medienformen: Beamer, Tafel, Papier, Computer; Die Vorlesungsfolien und -skripte werden zum Download zur Verfügung gestellt.

Literatur:

- Clemens Dähne, IT-Lösungen in der Energiewirtschaft heute und morgen, VWEW Energieverlag 2003
- Hans-Jürgen Appelrath, Future Energy Grid: Migrationspfade in das Internet der Energie, Acatech 2013
- Hans-Jürgen Appelrath (Hrg.), IT-Architekturentwicklung im Smart Grid: Perspektiven für eine sichere marktabhängige Integration erneuerbarer Energien, Springer Verlag 2012
- Helmut Krcmar, Einführung in das Informationsmanagement, Springer Verlag 2010
- Oliver Vogel et al., Software-Architektur: Grundlagen - Konzepte – Praxis, Spektrum Verlag 2008
- Werner Poguntke, Basiswissen IT-Sicherheit, Verlag w3l AG 2013

Weitere Literatur in der Vorlesung.
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Intelligente Stromnetze</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
</tbody>
</table>

| Studiensemester: | Vorlesung: Wintersemester
	Seminar: Wintersemester/Sommersemester
Modulverantwortliche(r):	Prof. Dr. Ing. Martin Braun
Dozent(in):	Prof. Dr. Ing. Martin Braun und Mitarbeiter
Sprache:	Deutsch

Zuordnung zum Curriculum	Pflichtmodul:
	Schwerpunktmodul:
	Wahlmodul: Ja

| Lehrform/SWS: | 2 SWS: Vorlesung
| | 2 SWS: Seminar |

| Arbeitsaufwand: | Vorlesung 90 h: 30 h Präsenzzeit
| | 60 h Selbststudium
| | Seminar 90 h: 30 h Präsenzzeit
| | 60 h Selbststudium |

| Kreditpunkte: | Vorlesung: 3
| | Seminar: 3 |

| Empfohlene Voraussetzungen: | Grundlagen Energietechnik und Elektrische Anlagen |

| Angestrebte Lernergebnisse | Vorlesung: |

	Seminar:
	Der/die Studierende kann zu einem aktuellen Thema aus dem Bereich intelligenten Stromnetze selbständig
	- Eine Literaturrecherche durchführen
	- Modelle und Simulationsverfahren nachvollziehen und auswerten
	- Wissenschaftliche Untersuchungen und Erkenntnisse aufbereiten und in eigenen Worten wiedergeben
	- In wissenschaftlicher Form dokumentieren und Präsentieren

	Lernergebnisse in Bezug auf die Studiengangsziele:
	- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen
	- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen
	- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen
- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen
- Sicheres Anwenden und Bewerten analytischer Methoden
- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden
- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse
- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten
- Arbeiten und Forschen in nationalen und internationalen Kontexten

Inhalt:

Vorlesung:
- Regelmöglichkeiten dezentraler Erzeuger, Speicher, Elektrofahrzeuge und Lasten
- Aggregation, Virtuelle Kraftwerke, Mikronetze
- Smart Metering, Informations- und Kommunikations technik
- Netzanschlussbedingungen und Systemdienstleistungen (z.B. Spannungs- und Frequenzhaltung)
- Netzqualität und Netzstabilität
- Auslegungs- und Betriebsverfahren für aktive Verteilungsnetze

Seminar:

Studien-/Prüfungsleistungen:

Vorlesung:
Form: Klausur oder mündliche Prüfung
Dauer: 90 Minuten (Klausur) bzw. 30 Minuten (mündl. Prüfung)

Seminar:
Literaturrecherche und Aufbereitung eines wissenschaftlichen Themas, Seminararbeit, Seminarvortrag (ca. 45 Minuten inkl. Diskussion)
Nach vorheriger Ankündigung durch den Dozenten können beim Seminar Anwesenheitslisten geführt werden.

Medienformen:
Beamer, Tafel, Overhead-Projektor

Literatur:
Literatur wird in der Vorlesung benannt.
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Leistungselektronik für regenerative und dezentrale Energiesysteme</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Peter Zacharias</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Mike Meinhardt</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul:</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmodul:</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS: 3 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>1 SWS Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 60 h Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>120 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Vorlesung: Leistungselektronik I</td>
</tr>
</tbody>
</table>
| Angestrebte Lernergebnisse | Kennen lernen von praktisch relevanten der leistungs-
| | elektronischen Schaltungen für dezentrale und regenera-
| | tive Energieversorgungssysteme, Vorgehen bei der Pro-
| | duktentwicklungsmethodik an einem vereinfachten Bei-
| | spiel, praktische Übungen zur Schaltungssimulation und
| | zu technischen Präsentationen, Einblicke in Fertigungs-
| | bereiche im Rahmen einer Exkursion |

Lernergebnisse in Bezug auf die Studiengangsziele:
- Erwerben von vertieftem Wissen in mathematisch-
 naturwissenschaftlichen Bereichen
- Erwerben von vertieften Kenntnissen in den elektro-
 technikspezifischen Grundlagen
- Erwerben von erweiterten und angewandten fachspezi-
 fischen Grundlagen
- Erkennen und Einordnen von komplexen elektrotech-
 nischen und interdisziplinären Aufgabenstellungen
- Sicheres Anwenden und Bewerten analytischer Me-
 thoden
- Selbständiges Entwickeln und Beurteilen von Lö-
 sungsmethoden
- Einarbeiten in neue Wissensgebiete, Durchführen von
 Recherchen und Beurteilen der Ergebnisse
- Tiefgehende und wichtige Erfahrungen in praktischen
 technischen und ingenieurwissenschaftlichen Tätigkei-
 ten
- Arbeiten und Forschen in nationalen und internationa-
 len Kontexten

Inhalt: Einführung in die dezentrale Energieversorgung
Leistungselektronische Grundlagen
Photovoltaik-Wechselrichter zur Netzkopplung
| Bi-direktionale Batteriestromrichter für die Inselnetzversorgung |
| Produktentwicklung von leistungs-elektronischen Geräten |
| Simulation leistungselektronischer Systeme |
| Serienfertigung von Photovoltaik-Wechselrichtern |
| Alle Teile ungefähr gleiches Gewicht (4 h) |
| Exkursion (8 h) |
| Referatsvorträge von Studenten als Teil der Prüfungsleistung (6 h) |

<p>| Studien-/Prüfungsleistungen: | Form: schriftlich: 90min / mündlich: 60min Dauer: |
| Medienformen: | Power-Point-Präsentation, Schaltungssimulationsoftware |
| Literatur: | Literaturliste wird in Vorlesung verteilt |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Lernen in kollaborativen Multi-Agenten Systemen</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. rer. nat. Kurt Geihs</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. rer. nat. Kurt Geihs und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul: Schwerpunktmodul: Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS: 2 SWS Vorlesung 2 SWS Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 60 h Präsenzzeit 120 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Verständnis der kollaborativen verteilten Systeme, insbesondere Multi-Agenten Systeme (MAS), deren Intelligenz durch maschinelle Lernverfahren gestaltet wird, z.B. dezentralisierte Marktbewirtschaftung oder ein Team von Fußballrobotern.</td>
</tr>
</tbody>
</table>
| Angestrebte Lernergebnisse | • Agentenmodell und Selbst-X Eigenschaften
| | • Kollaboration und Konkurrenz in Multi-Agenten Systemen
| | • Natur-inspirierte Algorithmen
| | • Maschinelles Lernen, insb. Reinforcement-Lernen
| | • Reale Anwendungsbeispiele: Fußballroboter-Team und mehr |
| Inhalt: | Studienleistungen: Übungen
| | Prüfungsleistungen: Mündliche Prüfung (25 Minuten) oder schriftliche Prüfung (120 Minuten) |
| Literatur: | • Weiss, Gerhard (ed.): Multiagent Systems – A Modern Approach to Distributed Artificial Intelligence
| | • Mohri Mehryar et al: Foundations of Machine Learning
| | • Bonabeau, Eric et al: Swarm Intelligence – From Natural to Artificial Systems
| | • Brueckner Sven et al (ed.): Engineering Self-Organising Systems: Methodologies and Applications
<p>| | • Shen, Weiming et al: Multi-Agent Systems for concurrent Intelligent Design and Manufacturing |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Microwave Integrated Circuits II</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>MIC2</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Axel Bangert</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Axel Bangert und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Englisch/Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul: 2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmodule: 1 SWS Übung</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>5 SWS: 2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>1 SWS Übung</td>
</tr>
<tr>
<td></td>
<td>2 SWS Seminar</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 75 h Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>105 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6 Vorlesung/Übung: 4 Seminar: 2</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundkenntnisse auf den Gebieten Halbleitertechnik, Bauelemente, Schaltungstechnik und Hochfrequenztechnik</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Der/die Studierende kann:</td>
</tr>
<tr>
<td></td>
<td>• Verschiedene III-V-Halbleiterbauelemente gegenüberstellen</td>
</tr>
<tr>
<td></td>
<td>• Modellierungsansätze unterscheiden</td>
</tr>
<tr>
<td></td>
<td>• Verschiedene Modelle erklären und bewerten</td>
</tr>
<tr>
<td></td>
<td>• Extraktionsverfahren verallgemeinern</td>
</tr>
<tr>
<td></td>
<td>• Nichtlineare Modelle überprüfen</td>
</tr>
<tr>
<td></td>
<td>• Schaltungen nach nichtlinearen Methoden entwickeln</td>
</tr>
<tr>
<td></td>
<td>• Bauelemente und zugehörige Modelle bzgl. ihrer Einsatzmöglichkeiten bewerten</td>
</tr>
<tr>
<td>Lernergebnisse in Bezug auf die Studiengangsziele:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen</td>
</tr>
<tr>
<td></td>
<td>• Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>• Erwerben von erweiterten und angewandten fachspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>• Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen</td>
</tr>
<tr>
<td></td>
<td>• Sicheres Anwenden und Bewerten analytischer Methoden</td>
</tr>
<tr>
<td></td>
<td>• Selbständiges Entwickeln und Beurteilen von Lösungsmethoden</td>
</tr>
<tr>
<td></td>
<td>• Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse</td>
</tr>
</tbody>
</table>
- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten
- Arbeiten und Forschen in nationalen und internationalen Kontexten

|----------------|---|
| Studien-/Prüfungsleistungen: | Form: schriftlich/mündlich, Seminarvortrag
Dauer: schriftlich 120min/ mündlich 20min
Nach vorheriger Ankündigung durch den Dozenten können beim Seminar Anwesenheitslisten geführt werden. |
<p>| Medienformen: | Beamer, Tafel, Overhead-Projektor |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Microwaves and Millimeter Waves II</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>MMW2</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Axel Bangert</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Axel Bangert und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Englisch/Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td></td>
</tr>
<tr>
<td>Pflichtmodul:</td>
<td></td>
</tr>
<tr>
<td>Schwerpunktmmodul:</td>
<td></td>
</tr>
<tr>
<td>Wahlmodul:</td>
<td>Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>5 SWS:</td>
</tr>
<tr>
<td></td>
<td>2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>1 SWS Übung</td>
</tr>
<tr>
<td></td>
<td>2 SWS Praktikum</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h:</td>
</tr>
<tr>
<td></td>
<td>75 h Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>105 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Vorlesung/Übung: 4</td>
</tr>
<tr>
<td></td>
<td>Praktikum: 2</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundkenntnisse im Bereich Hochfrequenztechnik</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Der/die Studierende kann:</td>
</tr>
<tr>
<td></td>
<td>• Verschiedene Wellenleiter unterscheiden</td>
</tr>
<tr>
<td></td>
<td>• Feldverteilungen in Leitungsstrukturen ermitteln</td>
</tr>
<tr>
<td></td>
<td>• Ausbreitungsmoden in Übergängen einschätzen</td>
</tr>
<tr>
<td></td>
<td>• Resonatoren entwerfen und beurteilen</td>
</tr>
<tr>
<td></td>
<td>• Komplexes Schaltungsverhalten überprüfen</td>
</tr>
<tr>
<td></td>
<td>• Verschiedene Antennenstrukturen berechnen und gegenüberstellen</td>
</tr>
<tr>
<td>Lernergebnisse in Bezug auf die Studiengangsziele:</td>
<td></td>
</tr>
<tr>
<td>- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen</td>
<td></td>
</tr>
<tr>
<td>- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen</td>
<td></td>
</tr>
<tr>
<td>- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen</td>
<td></td>
</tr>
<tr>
<td>- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen</td>
<td></td>
</tr>
<tr>
<td>- Sicheres Anwenden und Bewerten analytischer Methoden</td>
<td></td>
</tr>
<tr>
<td>- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden</td>
<td></td>
</tr>
<tr>
<td>- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse</td>
<td></td>
</tr>
<tr>
<td>- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten</td>
<td></td>
</tr>
<tr>
<td>- Arbeiten und Forschen in nationalen und internationalen Kontexten</td>
<td></td>
</tr>
</tbody>
</table>
Inhalt:
Leitungstheorie, Wellenleiter, Leitungsgleichungen, Feldverteilung in Rechteck- und Rundhohlleitern sowie Dielektrischen Wellenleitern, Mikrowellen-Resonatoren, Wellenleiter-Resonatoren, Dielektrischer Resonator, Anwendung von Resonatoren in Filtern und Oszillatoren, Mikrowellenantennen

Studien-/Prüfungsleistungen:
Form: schriftlich/mündlich, Praktikumstest
Dauer: schriftlich 120min/ mündlich 20min
Nach vorheriger Ankündigung durch den Dozenten können beim Praktikum Anwesenheitslisten geführt werden.

Medienformen:
Beamer, Tafel, Overhead-Projektor, Labor

Literatur:
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Mikrosystemtechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td>Microsystem Technology</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td>Microsystem Technology (VL) Microsystem Technology lab (P)</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Hartmut Hillmer</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Hillmer und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>English</td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum
- Pflichtmodul:
- Schwerpunktmodule:
- Wahlmodule: Ja

Lehrform/SWS:
- 4 SWS: 2 SWS Vorlesung
- 2 SWS Praktikum

Arbeitsaufwand:
- 180 h: 60 h Präsenzzeit
- 120 h Selbststudium

Kreditpunkte:
- Vorlesung: 4
- Praktikum: 2

Empfohlene Voraussetzungen:
- Grundlagenkenntnisse in Halbleiter-Bauelementen (Transistor, Laser Diode, LED, Photodiode), Werkstoffkunde und Optik (VL Komponenten der Optoelektronik)

Angestrebte Lernergebnisse
- Der/die Studierende kann
 - Grundlagen in der Mikrosystemtechnologie, insbesondere von Mikro-Elektro-Mechanischen Systemen (MEMS) und optischen MEMS erkennen.
 - die Frage, warum die Miniaturisierung so viele Vorteile bietet, beantworten und erklären. Dies wird nachhaltig durch Schlüsselexperimente, welche in der LV vorgeführt werden, gefestigt.
 - Problemlösungen u.a. durch Anwendung interdisziplinärer Analogien erarbeiten.
 - optische Eigenschaften ingenieursmathematisch beschreiben und eigene Ergebnisse in wissenschaftlich adäquater Form aufbereiten und präsentieren.
 - die erlernten theoretischen Kenntnisse anhand eines optischen Aktuators (u.a. mikromechanisch abstimmbare optische Filter) vertiefen.

Lernergebnisse in Bezug auf die Studiengangsziele:
Inhalt:

- Einführung in die Mikrosystemtechnologie, Miniaturisierung und Nanotechnologie. Gründe für die fortschreitende Miniaturisierung und Integration, verschiedene Arten der Integration.

Studien-/Prüfungsleistungen:

- Form: Mündliche Prüfung (VL), 30min Schriftliche Ausarbeitung (Praktikum)
- Nach vorheriger Ankündigung durch den Dozenten können beim Praktikum Anwesenheitslisten geführt werden.

Medienformen:

- Präsentation, Skript, Tafel, Laborexperimente

Literatur:

- Dossier: Mikrosystemtechnik, Spektrum der Wissenschaften, Sonderband 4
- Weitere Literatur wird in der Vorlesung bzw. auf der Homepage des Fachgebiets bekannt gegeben.
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Mobile Radio</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Dirk Dahlhaus</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Dahlhaus und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul: Schwerpunktmódul: Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>3 SWS: 2 SWS Vorlesung 1 SWS Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h: 45 h Präsenzzeit 105 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundlagen stochastischer Prozesse, einfacher Hypothesentests und linearer zeitinvarianten Systeme</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Grundlagenkenntnisse der physikalischen Schicht zellulärer Mobilfunksysteme</td>
</tr>
<tr>
<td></td>
<td>Lernergebnisse in Bezug auf die Studiengangsziele:</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen</td>
</tr>
<tr>
<td></td>
<td>- Sicheres Anwenden und Bewerten analytischer Methoden</td>
</tr>
<tr>
<td></td>
<td>- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden</td>
</tr>
<tr>
<td></td>
<td>- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse</td>
</tr>
<tr>
<td></td>
<td>- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten</td>
</tr>
<tr>
<td></td>
<td>- Arbeiten und Forschen in nationalen und internationalen Kontexten</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Der Student kann</td>
</tr>
<tr>
<td></td>
<td>- Mobilfunkkänale deterministisch oder stochastisch charakterisieren</td>
</tr>
<tr>
<td></td>
<td>- CDMA-Systeme hinsichtlich ihrer Leistungsfähigkeit bewerten</td>
</tr>
<tr>
<td></td>
<td>- Verfahren der Array-Signalverarbeitung für die Interferenzunterdrückung einsetzen</td>
</tr>
</tbody>
</table>
| Studien-/Prüfungsleistungen: | Form: mündl. Prüfung
Dauer: 30 Min. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Beamer, Tafel, Papier</td>
</tr>
</tbody>
</table>
S.Verdu, Multiuser Detection, Cambridge, 1998
A.J. Viterbi, CDMA - Principles of Spread Spectrum Communications, Wireless Communications Series, Addison-Wesley, 1995
Modulbezeichnung: *Moderne Antriebsstränge in Kraftfahrzeugen*
ggf. Modulniveau: Master
ggf. Kürzel: MAK
ggf. Untertitel:
ggf. Lehrveranstaltungen: Moderne Antriebsstränge in Kraftfahrzeugen
Studiensemester: Sommersemester
Modulverantwortliche(r): Prof. Dr. Michael U. Fister
Dozent(in): Prof. Dr. Michael U. Fister
Sprache: Deutsch
Zuordnung zum Curriculum: Pflichtmodul:
 SchwerpunktmODULE:
 Wahlmodul: Ja
Lehrform/SWS:
 4 SWS:
 2 SWS Vorlesung
 2 SWS Übung
Arbeitsaufwand:
 180 h:
 60 h Präsenzzeit
 120 h Selbststudium
Kreditpunkte: 6
Empfohlene Voraussetzungen:
Angestrebte Lernergebnisse: Der/die Studierende kann
 - die Zusammenhänge und die Komponenten im An-
 triebsstrang vom Antriebsmotor (Verbrennungs- und/o-
 der elektrische Motoren) bis hin zu den Antriebsräder
 n verstehen.
 - die Kennfelder von Antriebsmaschinen auf das
 Fahrzeugkennfeld anpassen und einen Antriebsstrang
 mathematisch beschreiben.
Inhalt: Aus dem Inhalt:
1. Antriebsarten, Anordnungen, Getriebetypen
2. Leistungsbedarf, Leistungsangebot
 - Radwiderstände, Luftwiderstände, Steigung, Beschleu-
 nungen
3. Übersicht Antriebsaggregate
 - VM, EM, Hybrid, EM mit BZ, Motorkennfelder
4. Wahl der Übersetzungen
 - kleinste Ü., größte Ü., Spreizung
5. Zusammenarbeit VM-Getriebe
 - Zugkraftdiagramm, Fahrleistungen, Kraftstoffver-
 brauch, Emissionen, dynamisches Verhalten, Komfort
6. Anfahr-, Schaltelemente
 - trockene Kupplung, nasse Kupplung, Drehmomentwand-
 ler, 2- Scheiben Trockenkupplung
7. Systematik Fahrzeuggetriebe
 - Anordnung, Querdynamik Front/Heckantrieb, Allrad,
 Grundsätzlicher Aufbau Getriebe, Handschalter, AMT,
 DCT, AT, CVT, evtl. Hydrostaten
Studien-/Prüfungsleistungen: schriftliche Prüfung (120 min.)
Medienformen: Beamer, Tafel, ausgeführte Beispiele
Literatur:
 - Fahrzeuggetriebe; Bartsche Nauheimer; Springer
 - Automatische Fahrzeuggetriebe; H.J. Förster; Springer
Verlag
- Bosch; Kraftfahrtechnisches Taschenbuch, Vieweg-Verlag
- Konventioneller Antriebsstrang und Hybridantriebe mit Brennstoffzelle und alternativen Kraftstoffen; Konrad Reif; Vieweg und Tesbner; ISBN 3834813036
Weitere Literatur wird in der Vorlesung bzw. auf der Homepage des Fachgebiets bekannt gegeben.
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Nanophotonik</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td>Nanophotonik</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. rer. nat. Thomas Kusserow</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. rer. nat. Thomas Kusserow und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch/Englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul:</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmódul:</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>3 SWS Vorlesung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>120 h: 45 Stunden Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>75 Stunden Eigenstudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4 CP</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundlagen der technischen Optik, Werkstoffkunde, Felder und Wellen in optoelektronischen Bauelementen</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Der/die Studierende</td>
</tr>
<tr>
<td></td>
<td>- kann die Eigenschaften und Funktionsweise von optischen Strukturen im Nanometerbereich nachvollziehen.</td>
</tr>
<tr>
<td></td>
<td>- hat ein fundiertes Verständnis für unterschiedlichen Eigenschaften der verwendeten Materialien und wie diese zu den verschiedenen Wechselwirkungen mit Elektromagnetischen Wellen führen</td>
</tr>
<tr>
<td></td>
<td>- hat einen guten Überblick über die möglichen Anwendungsgebiete für Dünnschichtoptik, Photonische Kristalle, Plasmonik, effektive Brechungsindex Modelle und die Ausnutzung des optischen Nahfelds.</td>
</tr>
<tr>
<td></td>
<td>- Bisher ungelöste Probleme durch Übertragung des erlangten Wissens und Analogien lösen.</td>
</tr>
</tbody>
</table>

Lernergebnisse in Bezug auf die Studiengangsziele:
- Erwerben von vertieften Kenntnissen zu Wechselwirkungen von elektromagnetischen Wellen mit Materie
- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen
- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen
- Sicheres Anwenden und Bewerten analytischer Methoden
- Selbstandiges Entwickeln und Beurteilen von Lösungsmethoden
- Verständnis für die Grundlagen und Einschränkungen der üblichen wissenschaftlichen Modelle
- Kenntnis über die fachspezifische Arbeitsweise und den Stand der nationalen und internationalen Forschung

Inhalt: Grundlagen periodischer Nanostrukturen in der Optik
- Spezielle Gebiete der Dünnlichhtoptik
- Zwei- und dreidimensionale Photonische Kristalle und deren Anwendungen in u.a. den Bereichen Wellenleiter, Filter, Laser, Fasern, Fanoresonanzen
- Metallische Nanostrukturen und deren Anwendung. Plasmonik, Oberflächenzustände, Wellenleiter, optische Antennen, Nutzung des optischen Nahfeldes
- Methode der effektiven Brechungsindizes
- Diskussion der wichtigen Materialeigenschaften von Metallen, Dielektrika und Halbleitern bzgl. der Nanophotonik

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Form: Mündliche Prüfung, 30min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Präsentation, Skript, Tafel</td>
</tr>
<tr>
<td></td>
<td>Weitere Literatur wird in der Vorlesung bzw. auf der Homepage des Fachgebiets bekannt gegeben.</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Nanosensorik und -aktuatorik</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td>Nanosensorics and -actuatorics</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td>Nanosensorics (Vorlesung) Principles of Optical Metrology (Seminar)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester:</th>
<th>Wintersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Hartmut Hillmer, Prof. Dr. Lehmann</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Lehmann und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>English</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zuordnung zum Curriculum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflichtmodul:</td>
</tr>
<tr>
<td>Schwerpunktm듈:</td>
</tr>
<tr>
<td>Wahlmodul:</td>
</tr>
<tr>
<td>Ja</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform/SWS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung:</td>
</tr>
<tr>
<td>2 SWS</td>
</tr>
<tr>
<td>Seminar:</td>
</tr>
<tr>
<td>2 SWS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>180 h:</td>
</tr>
<tr>
<td>60 h Präsenzzeit</td>
</tr>
<tr>
<td>120 h Eigenstudium</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kreditpunkte:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6, davon 3 CP als integrierte Schlüsselkompetenz</td>
</tr>
<tr>
<td>Vorlesung:</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>Seminar:</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Voraussetzungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundwissen in Optik, Werkstoffkunde und Halbleiterbauelementen (LV Elektronische Bauelemente, LV Werkstoffe der Elektrotechnik, LV Komponenten der Optoelektronik, LV Sensoren und Messsysteme)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angestrebte Lernergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Der/die Studierende kann</td>
</tr>
<tr>
<td>- Synergien und Analogien zwischen Ingenieurs- und Naturwissenschaften entdecken.</td>
</tr>
<tr>
<td>- Informationen sinnig selektieren und für klar strukturierte und informative Vorträge aufbereiten.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernergebnisse in Bezug auf die Studiengangsziele:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen</td>
</tr>
<tr>
<td>- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen</td>
</tr>
<tr>
<td>- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen</td>
</tr>
<tr>
<td>- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen</td>
</tr>
<tr>
<td>- Sicheres Anwenden und Bewerten analytischer Methoden</td>
</tr>
<tr>
<td>- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden</td>
</tr>
<tr>
<td>- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse</td>
</tr>
</tbody>
</table>
- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten
- Arbeiten und Forschen in nationalen und internationalen Kontexten

Inhalt:

Einführung in die Sensorik und Aktuatorik für die Informations-, Mess-, Steuer- und Regelungstechnik.

Aus dem Inhalt:

- Mikroskopische Bildgebung und Verarbeitungstechniken
- Konfokale Mikroskopie
- Interferometrie: Weißlicht, -Integrierte Bauweise
- Digitale Holographie und holographische Mikroskopie
- Optische Sensoren
- Glasfaser-Sensoren
- Dünnenschicht Herstellung und deren Charakterisierung (Ellipsometrie, RHEED)
- Absorptions-Spektroskopie, Gas-Sensorik
- Intra-Kavitäts-Absorptionsspektroskopie, Modenkonzentrenz
- Photolumineszenz
- Bio- und Chemo-Sensorik
- Raster- u. Tunnel-Elektronenmikroskopie
- Rastersondenmikroskopie, Biegebalkensensorssysteme
- Magnetowiderstandssensorik (GMR)

Studien-/Prüfungsleistungen:

Form: Mündliche Prüfung, 30 min
Vortrag (Seminar)
Dauer: 30 bis 45 min.
Nach vorheriger Ankündigung durch den Dozenten können beim Seminar Anwesenheitslisten geführt werden.

Medienformen:

Beamer, Tafel, Laborexperimente

Literatur:

Weitere Literatur wird in der Vorlesung bzw. auf der Homepage des Fachgebiets bekannt gegeben.
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Neuronale Methoden für technische Systeme</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>NeuMe</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Ludwig Brabetz</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Ludwig Brabetz und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul: Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul:</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>3 SWS: 2 SWS Vorlesung 1 SWS Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>120 h: 45 h Präsenzzeit 75 h Eigenstudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Lineare Algebra, Analysis</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Der/die Lernende kann,</td>
</tr>
<tr>
<td></td>
<td>- Neuronale Architekturen und dazugehörige Lernalgorithmen erklären,</td>
</tr>
<tr>
<td></td>
<td>- Erweiterungen für vorhandene Lernalgorithmen entwickeln,</td>
</tr>
<tr>
<td></td>
<td>- Eignung Neuronaler Verfahren für technische Problemlösungen beurteilen.</td>
</tr>
<tr>
<td></td>
<td>Lernergebnisse in Bezug auf die Studiengangsziele:</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertiefen Kenntnissen in den elektrotechnischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen</td>
</tr>
<tr>
<td></td>
<td>- Sicheres Anwenden und Bewerten analytischer Methoden</td>
</tr>
<tr>
<td></td>
<td>- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden</td>
</tr>
<tr>
<td></td>
<td>- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilung der Ergebnisse</td>
</tr>
<tr>
<td></td>
<td>- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten</td>
</tr>
<tr>
<td></td>
<td>- Arbeiten und Forschen in nationalen und internationalen Kontexten</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Geschichtliche Entwicklung,</td>
</tr>
<tr>
<td></td>
<td>Die einfachste Verarbeitungseinheit: das Neuron.</td>
</tr>
</tbody>
</table>
Architekturen neuronaler Netze: Hopfield-Modelle; einfache Perzeptrons; Multi-Layer Perzeptrons; dynamische Netze.
Lernverfahren: Delta-Rule, Backpropagation, Varianten der Backpropagation, Newton- und Levenberg-Marquardt-Lernverfahren.
Anwendungen: Mustererkennung, Funktionsapproximation.

| Studien-/Prüfungsleistungen: | Form: Klausur, schriftliche Prüfung
Dauer: 120 min |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Beamer, Skript, Tafel</td>
</tr>
</tbody>
</table>
Rüdiger Brause, „Neuronale Netze“ , Teubner Verlag 1995
Raul Rojas, „Theorie der neuronalen Netze“, Springer Verlag 1993 |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Numerische Methoden der Elektromagnetischen Feldtheorie I</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>NFTI</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td>Computational Electromagnetics (CEM)</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td>Vorlesung/Übung/Praktikum</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Witzigmann</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Witzigmann und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch/ englisch</td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum
- Pflichtmodul:
- Schwerpunktmodul:
- Wahlmodul: Ja

Lehrform/SWS: 5 SWS: 2 SWS Vorlesung 1 SWS Übung 2 SWS Praktikum

Arbeitsaufwand: 180 h: 75 h Präsenzzeit 105 h Selbststudium

Kreditpunkte: 6
 - Vorlesung: 4
 - Praktikum: 2

Empfohlene Voraussetzungen: Gute Kenntnisse der Grundlagen der Elektrotechnik, Höheren Mathematik, Elektromagnetische Feldtheorie

Angestrebte Lernergebnisse
Der/die Lernende kann
- verschiedene numerische Methoden zur Lösung der Maxwell’schen Gleichungen im Zeit- und Frequenzbereich skizzieren und beurteilen
- numerische Methoden zur Lösung der Maxwell’schen Gleichungen implementieren und anwenden

Lernergebnisse in Bezug auf die Studiengangsziele:
- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen
- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen
- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen
- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen
- Sicheres Anwenden und Bewerten analytischer Methoden
- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden
- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse
- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten
- Arbeiten und Forschen in nationalen und internationalen Kontexten
<table>
<thead>
<tr>
<th>Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einführung in die Theorie und Anwendung verschiedener numerischer Methoden auf Problemstellungen der elektromagnetischen Feldtheorie; Finite Differenzen Methode (FDM), Finite Differenzen im Zeitbereich (FDTD), Finite Elemente Methode (FEM), Finite Volumen Methode (FVM), Momenten-Methode, Randelementmethode. Praktische Implementierung einiger dieser Methoden. Praktische Anwendung einiger dieser Methoden mit kommerzieller Simulationssoftware.</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
</tr>
<tr>
<td>Medienformen:</td>
</tr>
<tr>
<td>Tafel, Beamer, PC, Compute-Cluster</td>
</tr>
<tr>
<td>Literatur:</td>
</tr>
</tbody>
</table>
Modulbezeichnung: **Numerische Methoden der Elektromagnetischen Feldtheorie II**

<table>
<thead>
<tr>
<th>ggf. Modulniveau</th>
<th>Master</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Kürzel</td>
<td>NFT II</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td>Computational Electronics</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td>Vorlesung/Übung/Praktikum</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Witzigmann</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Witzigmann und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch / englisch</td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum:
- Pflichtmodul:
 - Schwerpunktmodule:
 - Wahlmodul: Ja

Lehrform/SWS:
- 5 SWS: 2 SWS Vorlesung
- 1 SWS Übung
- 2 SWS Praktikum

Arbeitsaufwand:
- 180 h: 75 h Präsenzzeit
- 105 h Selbststudium

Kreditpunkte:
- 6
 - Vorlesung: 4
 - Praktikum: 2

Empfohlene Voraussetzungen:
- Gute Kenntnisse der Grundlagen der Elektrotechnik, Höheren Mathematik und Elektromagnetischen Feldtheorie, Grundkenntnisse in Halbleitermaterialien

Angestrebte Lernergebnisse:
- Der/die Lernende kann:
 - die Diskretisierungsmethoden der Halbleitertransportgleichungen, der Schrödinger-Gleichung, und der Kontinuumsmechanik erklären und entwickeln
 - kommerzielle Bauelementssimulationen anwenden,
 - numerische Methoden zur Lösung von Halbleitertransportproblemen implementieren

Lernergebnisse in Bezug auf die Studiengangsziele:
- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen
- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen
- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen
- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen
- Sicheres Anwenden und Bewerten analytischer Methoden
- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden
- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse
- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten
- Arbeiten und Forschen in nationalen und internationalen Kontexten

<table>
<thead>
<tr>
<th>Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halbleitertransport: Boltzmannungleichung, Drift-Diffusion, Box-Methode, Randbedingungen</td>
</tr>
<tr>
<td>Schrödingergleichung: Eigenwertprobleme, kp-Methode, Finite-Elemente Methode</td>
</tr>
<tr>
<td>Kontinuumsmechanik: Grundgleichungen, Anwendung auf Nanostrukturen, Diskretisierung</td>
</tr>
<tr>
<td>Praktische Anwendung dieser Methoden mit kommerzieller Simulationssoftware.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mündliche Prüfung (30 Minuten)</td>
</tr>
<tr>
<td>Nach vorheriger Ankündigung durch den Dozenten können beim Praktikum Anwesenheitslisten geführt werden.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tafel, Beamer, PC, Compute-Cluster</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Selberherr, Analysis and Simulation of Semiconductor Devices</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Kreditpunkte:</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
</tr>
</tbody>
</table>

Angestrebte Lernergebnisse

Lernergebnisse in Bezug auf die Studiengangsziele:
- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen
- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen
- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen
- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen
- Sicheres Anwenden und Bewerten analytischer Methoden
- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden
- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse
- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten
- Arbeiten und Forschen in nationalen und internationalen Kontexten

Inhalt:

Historische Entwicklung und Stand der Technik
Meteorologische und geographische Einflüsse
Windturbinen: Systematik, Berechnungsgrundlagen, Aufbau und Verhalten der Komponenten
| Mechanisch-elektrische Energiewandlung: Gleichstrom-, Synchron- und Asynchrongeneratoren, Sondermaschinen, Triebstrang, Netzverkabelung |
| Windenergieanlagen zur Stromerzeugung: Einsatzmöglichkeiten, Anlagenbeispiele, Funktionsstrukturen, Betriebsarten, Regelungskonzepte |
| Speicher |
| Wirtschaftlichkeitsbetrachtung |
| Rechtliche Aspekte |

| Studien-/Prüfungsleistungen: |
| Form: Klausur oder mündliche Prüfung |
| Dauer: schriftlich: 60min / mündlich: 30min |

| Medienformen: |
| Allgemeine Informationen http://www.sheier.com, Veranstaltungsspezifische Webseite, Arbeitsunterlagen, Folien etc., Powerpoint-Präsentation |

<p>| Literatur: |
| HEIER, S.: Nutzung der Windenergie. 5. Auflage, Verlag Solarpraxis AG, Berlin 2007; |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Optimale Versuchsplanung für technische Systeme</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>OptVP</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Ludwig Brabetz</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Brabetz und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td></td>
</tr>
<tr>
<td>Pflichtmodul:</td>
<td></td>
</tr>
<tr>
<td>Schwerpunktmmodul:</td>
<td></td>
</tr>
<tr>
<td>Wahlmodul:</td>
<td>Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS: 2 SWS Vorlesung 2 SWS Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 60 h Präsenzzeit 120 h Eigenstudium,</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Lineare Algebra, Analysis, Grundlagen der Statistik</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Der/die Lernende kann,</td>
</tr>
<tr>
<td></td>
<td>- Hypothesentests sowie Standard und optimale Versuchspläne klassifizieren,</td>
</tr>
<tr>
<td></td>
<td>- Erweiterungen für Versuchspläne ableiten,</td>
</tr>
<tr>
<td></td>
<td>- Versuchsergebnisse und Modellansätze statistisch bewerten.</td>
</tr>
</tbody>
</table>

Lernergebnisse in Bezug auf die Studiengangsziele:
- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen
- Erwerben von vertieften Kenntnissen in den elektrotechnischen Grundlagen
- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen
- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen
- Sicheres Anwenden und Bewerten analytischer Methoden
- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden
- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse
- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten
- Arbeiten und Forschen in nationalen und internationalen Kontexten

Inhalt:
Stochastische Grundlagen
Prüfung von statistischen Hypothesen, Versuchsplanung: vollfaktorielle und teilkfaktorielle Versuchspläne, zentral-zusammengesetzte Versuchspläne, optimale Versuchspläne, Regressionsanalyse
| Studien-/Prüfungsleistungen: | Form: Klausur, schriftliche Prüfung
Dauer: 90 min |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Beamer, Skript, Tafel</td>
</tr>
</tbody>
</table>
| Literatur: | H. Petersen, „Grundlagen der deskriptiven und mathematische Statistik“, ecomed, Lech, 1991
H. Petersen, „Grundlagen der statistischen Versuchsplanung“, ecomed, Lech, 1991 |
Modulbezeichnung: Optoelektronik

ggf. Modulniveau Master

ggf. Kürzel Optoelectronics

ggf. Untertitel Practicum Optoelectronics II

Studiensemester: Wintersemester/Sommersemester

Modulverantwortliche(r): Prof. Dr. rer. nat. Hartmut Hillmer

Dozent(in): Prof. Dr. rer. nat. Hillmer und Mitarbeiter

Sprache: englisch

Zuordnung zum Curriculum Pflichtmodul:
Schwerpunktmodul:
Wahlmodul: Ja

Lehrform/SWS: 4 SWS: 2 SWS Praktikum

2 SWS Seminar

Arbeitsaufwand: 180 h: 60 Stunden Präsenzzeit

120 Stunden Eigenstudium

Kreditpunkte: 6

Praktikum: 3

Seminar: 3

Empfohlene Voraussetzungen: Grundlagen in Halbleiter-Bauelementen, Werkstoffkunde, Komponenten der Optoelektronik (Pflicht)

Angestrebte Lernergebnisse Der/die Studierende kann
- optoelektronische Bauelemente und Systeme, Strukturen und Funktionsprinzipien optoelektronischer Komponenten, sowie deren großes Anwendungspotential erkennen.
- komplexe Probleme anhand interdisziplinärer Ansätze lösen. Sie verstehen die erfolgreichen Lösungen aus der Natur zur Erweiterung des Wissenshorizonts eines fortgeschrittenen Ingenieurs.
- einen Vortrag optimiert aufbauen
- Inhalte auf wissenschaftlichem Niveau verständlich einem Publikum vermitteln.

Lernergebnisse in Bezug auf die Studiengangsziele:
- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen
- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen
- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen
- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen
- Sicheres Anwenden und Bewerten analytischer Methoden
- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden
- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse
- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten
- Arbeiten und Forschen in nationalen und internationalen Kontexten

Inhalt:

- Vertiefung der Vorlesungsinhalte auf dem Gebiet Halbleiterlaser-Technologien und optischen Kommunikationssysteme
- Gemessen werden: a) Spektrale Variation der verschiedenen Moden der Diodenlaser bei verändertem Anregungsstrom und Temperatur, b) die Charakteristik der Lichtleistung als Funktion des Stroms, c) die charakteristische Temperatur T_c.
- Evaluation, Interpretation, Dokumentation und Präsentation der Messergebnisse.
- Spezielle fortgeschrittene Themen aus der Optoelektronik (Seminar).

Studien-/Prüfungsleistungen:

Form: Vortrag, schriftliche Ausarbeitung
Nach vorheriger Ankündigung durch den Dozenten können Anwesenheitslisten geführt werden.

Medienformen:

Präsentation, Skript, Tafel, Übungsblätter
Nach vorheriger Ankündigung durch den Dozenten können Anwesenheitslisten geführt werden.

Literatur:

H. Hultzsch: Optische Telekommunikationssysteme, Damm Verlag, 1996

Weitere Literatur wird in der Vorlesung bzw. auf der Homepage des Fachgebiets bekannt gegeben.
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Pattern Recognition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>Ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>Ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Prof. Dr. Bernhard Sick</td>
</tr>
<tr>
<td>Dozent(inn)en</td>
<td>Prof. Dr. Bernhard Sick und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch/englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul:</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmodul:</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform</td>
<td>4 SWS: 3 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>1 SWS Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>180 h: 60 h Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>120 h Selbststudium</td>
</tr>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Grundkenntnisse Stochastik, Analysis und lineare Algebra</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Kenntnisse: theoretische Grundlagen der Mustererkennung (probabilistische Sichtweise)</td>
</tr>
<tr>
<td></td>
<td>Fertigkeiten: Einsatz von Techniken zur Parameterschätzung für verschiedene Modelle, Entwicklung neuer Modelle</td>
</tr>
<tr>
<td></td>
<td>Kompetenzen: Bewertung von praktischen Anwendungen, selbstständige Entwicklung von neuen Anwendungen</td>
</tr>
<tr>
<td>Inhalt</td>
<td>Die Vorlesung beschäftigt sich mit Grundlagen der Mustererkennung aus einer probabilistischen Sichtweise. Folgende Themen werden besprochen: Grundlagen (u.a. Stochastik, Modellselktion, Curse of Dimensionality, Entscheidungs- und Informationstheorie), Verteilungen (u.a. Multinomial-, Dirichlet-, Gauss- und Student-Verteilung, Nichtparametrische Schätzung), Lineare Modelle für Regression, Lineare Modelle für Klassifikation, Mischmodelle und Expectation Maximization, Approximative Inferenz, Kombination von Modellen, Beispielanwendungen (Online-Clustering, Anomalieerkennung u.a.)</td>
</tr>
<tr>
<td>Studien- und Prüfungsleistungen</td>
<td>Mündliche Prüfung (ca. 20 min)</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Präsentation mit Beamer und Overhead, Papierübungen</td>
</tr>
<tr>
<td>Literatur</td>
<td>Folien,</td>
</tr>
<tr>
<td></td>
<td>Weitere Literatur wird in der Vorlesung bekannt gegeben.</td>
</tr>
</tbody>
</table>
Modulbezeichnung: Photovoltaik Systemtechnik

ggf. Modulniveau: Master
ggf. Kürzel
ggf. Lehrveranstaltungen

| Studiensemester: | Vorlesung/Übung Wintersemester
| Praktikum Sommersemester/Wintersemester |

| Modulverantwortliche(r): | Prof. Dr. Ing. Martin Braun

| Dozent(in): | Prof. Dr. Ing. Martin Braun und Mitarbeiter |

| Sprache: | Deutsch |

| Zuordnung zum Curriculum | Pflichtmodul:
| Wahlmodul: |

| Lehrform/SWS: | 5 SWS:
| 3 SWS Vorlesung/Übung
| 2 SWS Praktikum |

| Arbeitsaufwand: | Vorlesung/Übung 120 h:
| 45 h Präsenzzeit
| 75 h Selbststudium
| Praktikum: 90 h
| 30 h Präsenzzeit
| 60 h Selbststudium |

| Kreditpunkte: | 4 Credits Vorlesung/Übung
| 3 Credits Praktikum |

| Empfohlene Voraussetzungen: | Grundlagen Energetik und Elektrische Anlagen |

| Angestrebte Lernergebnisse | Teil 1: Grundlagen:
| Die Studierenden werden mit den Grundlagen der Photovoltaik vertraut gemacht.

Teil 2: Systemtechnik
| Den Studierenden soll die Kompetenz vermittelt werden, photovoltaische Stromversorgungen zu entwerfen, deren Energieerträge zu bestimmen und dabei die Netzan schlussbedingungen zu berücksichtigen.

Praktikum:
| - Kennen lernen der Komponenten, die in den unterschiedlichsten Photovoltaiksystemen eingesetzt werden
| - Kennen lernen der wichtigsten Zusammenhänge bei Photovoltaiksystemen

Lernergebnisse in Bezug auf die Studiengangsziele:
| - Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen
| - Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen
| - Erwerben von erweiterten und angewandten fachspezifischen Grundlagen
| - Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen
| - Sicheres Anwenden und Bewerten analytischer Methoden
| - Selbständiges Entwickeln und Beurteilen von Lösungsmethoden |
- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse
- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten
- Arbeiten und Forschen in nationalen und internationalen Kontexten

| Inhalt: | Teil 1: Grundlagen: Grundlagen (Einstrahlung, Funktionsweise Solarzelle) und Systemkomponenten (Zellen, Module, Leistungselektronik)
| | Teil 2: Systemtechnik Entwurf von photovoltaischen Stromversorgungen (netzgekoppelt, netzautark), Bestimmung der Energieerträge, Netzanschlussbedingungen
| | Praktikum:
| | Versuch 1:
| | - Kennlinienaufnahme eines Solarmoduls
| | - Kennlinienaufnahme eines Solarmoduls bei unterschiedlichen Bestrahlungsstärken
| | Versuch 2:
| | - Temperatureinfluss auf die Kennlinie eines Solarmoduls
| | - Einfluss des Neigungswinkels auf die Leistungsabgabe eines Solarmoduls
| | - Aufnahme eines Tagesganges für Sommer und Winter
| | Versuch 3:
| | - Reihenschaltung von Solarmodulen
| | - Parallelschaltung von Solarmodulen
| | - Abschattung von Solarmodulen ohne Bypassdiode
| | - Abschattung von Solarmodulen mit Bypassdiode
| | Versuch 4:
| | - Photovoltaikanlage im Netzparallelbetrieb
| | - Messung des Wechselrichterwirkungsgrades
| | - Photovoltaikanlage im Inselnetzbetrieb
| | Versuch 5:
| | - PV-Netzintegration am Beispiel eines Backup- und Hybrid-Systems
| | - Auslegung einer PV-Anlage mit einem Simulationsprogramms
| Studien-/Prüfungsleistungen: | Form: Klausur (90 Minuten)
| | Praktikum: Abschluss test, Ausarbeitung der Versuchsunterlagen
| | Nach vorheriger Ankündigung durch den Dozenten können beim Praktikum Anwesenheitslisten geführt werden.
| Medienformen: | Vorlesung/Übung: Beamer, Tafel, Overhead-Projektor
| | Praktikum: Versuchsunterlagen, Tafel, Laborausstattung
| Literatur: | Literatur wird bekannt gegeben.
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Planung und Betriebsführung elektrischer Netze</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
</tbody>
</table>

Studiensemester: Sommersemester
Modulverantwortliche(r): Prof. Dr. Ing. Martin Braun
Dozent(in): Prof. Dr. Ing. Martin Braun und Mitarbeiter
Sprache: Deutsch
Zuordnung zum Curriculum
Pflichtmodul:
Schwerpunktmodul:
Wahlmodul: Ja

<table>
<thead>
<tr>
<th>Lehrform/SWS:</th>
<th>4 SWS: 2 SWS Vorlesung 2 SWS Übung</th>
</tr>
</thead>
</table>

Arbeitsaufwand:
Vorlesung 90 h: 30 h Präsenzzeit
60 h Selbststudium
Übung 90 h: 30 h Präsenzzeit
60 h Selbststudium

Kreditpunkte: 6

Empfohlene Voraussetzungen: Berechnung elektrischer Netze

Angestrebte Lernergebnisse
Ziel ist die Vermittlung von erweiterten Kenntnissen in der Berechnung elektrischer Energienetze insbesondere im Hinblick auf dem Einsatz in der Planung und Betriebsführung.
Der/Die Studierende
- entwickelt ein Verständnis über verschiedene erweiterte Berechnungsmethoden elektrischer Netze
- kennt erweiterte Berechnungsmethoden elektrischer Netze und die Einsatzgebiete in Planung und Betriebsführung der jeweiligen Methoden
- kann Aufgabenstellungen der Planung und Betriebsführung elektrischer Netze selbstständig lösen und die Ergebnisse interpretieren.

Lernergebnisse in Bezug auf die Studiengangsziele:
- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen
- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen
- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen
- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen
- Sicheres Anwenden und Bewerten analytischer Methoden
- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden
- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse
- Tiefgehende und wichtige Erfahrungen in praktischen
technischen und ingenieurwissenschaftlichen Tätigkeiten
- Arbeiten und Forschen in nationalen und internationalen Kontexten

| Inhalt: | - Wichtige Netzbetriebsmittel
- Auslegung und Planung von Netzen
- Asset Management
- Zuverlässigkeitsrechnungen
- Schutztechnik
- Kurzschlussrechnung (unsymmetrisch)
- Leittechnik
- Systemdienstleistungen
- Netzbetrieb |
| --- | --- |

| Studien-/Prüfungsleistungen: | Form: Klausur oder mündliche Prüfung
Dauer: 90 Minuten schriftlich oder 30 Minuten mündlich |
| --- | --- |

<table>
<thead>
<tr>
<th>Medienformen:</th>
<th>Beamer, Tafel, Overhead-Projektor</th>
</tr>
</thead>
</table>

Heuck, K.-D. Dettmann, D. Schulz: Elektrische Energieversorgung, Vieweg+Teubner, 2010
| --- | --- |

Weitere Literatur wird in der Vorlesung benannt
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Power System Dynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>PSD</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Ing. Martin Braun</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Ing. Martin Braun und Mitarbeitende</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul:</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmodul:</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS: 2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>2 SWS Übung</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 60 h Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>120 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundlagen Mathematik</td>
</tr>
<tr>
<td></td>
<td>Grundlagen Elektrotechnik</td>
</tr>
<tr>
<td></td>
<td>Grundlagen Energietechnik</td>
</tr>
<tr>
<td>Ziel ist die Vermittlung von Grundkenntnissen in der Dynamik und Stabilität elektrischer Energienetze.</td>
<td>Angestrebte Lernergebnisse</td>
</tr>
<tr>
<td>Der/Die Studierende</td>
<td>Lernergebnisse in Bezug auf die Studiengangsziele:</td>
</tr>
<tr>
<td>- entwickelt ein Verständnis für die Modellierung von dynamischen Komponenten von Energieversorgungssystemen einschließlich ihrer Regler</td>
<td>- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen</td>
</tr>
<tr>
<td>- versteht das Verhalten von Systemen bestehend aus mehreren dynamischen Komponenten und kennt den Unterschied der dabei auftretenden Phänomene</td>
<td>- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen der Elektrotechnik</td>
</tr>
<tr>
<td>- ist in der Lage die Stabilität von Energieversorgungssystemen zu beurteilen.</td>
<td>- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen</td>
</tr>
<tr>
<td></td>
<td>- Sicheres Anwenden und Bewerten analytischer Methoden</td>
</tr>
<tr>
<td></td>
<td>- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden</td>
</tr>
<tr>
<td></td>
<td>- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse</td>
</tr>
<tr>
<td></td>
<td>- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten</td>
</tr>
</tbody>
</table>
- Arbeiten und Forschen in nationalen und internationalen Kontexten

| Inhalt: | - Introduction
- Generator Models
- Load Models
- Rotor Angle Stability
- Frequency Stability
- Voltage Stability |
| Studien-/Prüfungsleistungen: | Form: Klausur
Dauer: 90 Minuten |
<p>| Medienformen: | Beamer, Tafel, Overhead-Projektor |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Projekt zum wissenschaftlichen Arbeiten (Master)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester/Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Studiendekan</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Diverse</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch, nach Absprache Englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul:</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmodul:</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>1 SWS: Projekt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>60 h: 15 h Präsenzzeit 45 h Eigenstudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>2</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Es sollen vorwiegend berufsbezogene Qualifikationen bei der Bearbeitung von konkreten elektrotechnischen Problemen erworben werden. Dazu zählen:</td>
</tr>
<tr>
<td></td>
<td>- Handlungskompetenz: Probleme erkennen, gliedern, beschreiben; Zielvorstellungen und Beurteilungsmaßstäbe entwickeln; Entscheidungen füllen</td>
</tr>
<tr>
<td></td>
<td>- Zusammenarbeit in der Gruppe: Arbeitsteilige Problembearbeitung; Kommunikation mit Gruppenmitgliedern; gruppendynamische Probleme (Passivität, Konflikte) lösen</td>
</tr>
<tr>
<td></td>
<td>- Arbeit nach Plan: selbstständige Planung der eigenen Aktivitäten; Einhalten des vorgegebenen Terminplans</td>
</tr>
<tr>
<td></td>
<td>- Interdisziplinäres Arbeiten: Einfluss verschiedenartiger Fachgebiete auf die Problemlösung erkennen; Befragen von Experten, Benutzung von Fachliteratur; Prüfen, Anpassen und Verwenden vorhandener Teillösungen</td>
</tr>
<tr>
<td></td>
<td>- Erarbeiten von Fachinhalten: exemplarisch am konkreten Problem (anstatt fachsystematisch); als Motivation und/oder Bezugspunkt für fachsystematische Lehrveranstaltungen</td>
</tr>
<tr>
<td></td>
<td>- Dokumentation von Ingenieurarbeit: nachvollziehbare, begründete Darstellung der Arbeitsschritte und Arbeitsergebnisse; zweckmäßige Darstellungsformen (Zeichnung, Tabellen, Skizzen, Quellenangaben, ingeniurmäßige Formulierungen)</td>
</tr>
</tbody>
</table>

Lernergebnisse in Bezug auf die Studiengangsziele:
- Erwerben von fundierten Kenntnissen in den elektrotechnischen Grundlagen
- Erwerben von vertieften und angewandten fachspezifischen Grundlagen der Elektrotechnik
- Erkennen und Einordnen von Aufgabenstellungen der Elektrotechnik
- Sicheres Auswählen und Anwenden analytischer Methoden
- Selbständiges Entwickeln elektrotechnischer Produkte auf Schaltungs- und Systemebene
- Sammeln angemessener Erfahrungen in praktischen und ingenieurwissenschaftlichen Tätigkeiten
- Erwerben von Strategien für lebenslanges Lernen
- Erwerben der Fähigkeit initiativ allein sowie im Team zu arbeiten
- Lernen Verantwortung zu übernehmen und verantwortungsbewusst zu handeln
- Erwerben der Fähigkeit zu kommunizieren und interaktiv zu arbeiten
- Anwenden und Vertreten von Lösungsstrategien
- Erwerben der Fähigkeit interdisziplinär zu denken.
- Einarbeiten in neue Wissensgebiete und Durchführen entsprechender Recherchen

<table>
<thead>
<tr>
<th>Inhalt:</th>
<th>Wechselnde Inhalte je nach Themenstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Schriftliche Ausarbeitung (Projektbericht)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>Abhängig vom gewählten Thema</td>
</tr>
</tbody>
</table>
Modulbezeichnung: Rechnergestützte Messverfahren

ggf. Modulniveau
Master

ggf. Kürzel
RMV

ggf. Untertitel

ggf. Lehrveranstaltungen
Rechnergestützte Messverfahren (Vorlesung)
Fortgeschrittenen Praktikum Messtechnik (Praktikum)

Studiensemester:
Wintersemester

Modulverantwortliche(r):
Prof. Dr.-Ing Peter Lehmann

Dozent(in):
Prof. Dr.-Ing Lehmann und Mitarbeiter

Sprache:
deutsch

Zuordnung zum Curriculum

<table>
<thead>
<tr>
<th>Pflichtmodul:</th>
<th>Schwerpunktmodul:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wahlmodul: Ja</td>
</tr>
</tbody>
</table>

Lehrform/SWS:

<table>
<thead>
<tr>
<th>4 SWS:</th>
<th>2 SWS Vorlesung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS:</td>
<td>praktische Übungen</td>
</tr>
</tbody>
</table>

Arbeitsaufwand:

<table>
<thead>
<tr>
<th>180 h:</th>
<th>60 h Präsenzzeit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>120 h Eigenstudium</td>
</tr>
</tbody>
</table>

Kreditpunkte:

<table>
<thead>
<tr>
<th>6, davon 3 CP als integrierte Schlüsselkompetenz</th>
<th>Vorlesung: 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Praktikum: Studienleistung</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen:

Elektrische Messtechnik, ETP 2, Matlab-Kenntnisse, Sensoren und Messsysteme

Angestrebte Lernergebnisse

Der / die Studierende kann:

- sich die komplexen Methoden der modernen rechnergestützten Messtechnik erschließen,
- anhand von Praxisbeispielen insbesondere aus der optischen Messtechnik komplexe Messanordnungen analysieren und hinterfragen,
- die Überführung und Auswertung von Messdaten auf Digitalrechnern durchführen,
- messtechnische Aufgabenstellungen weitgehend selbständig lösen,
- tiefgehendes fachliches Verständnis und eine zielgerichtete methodische Vorgehensweise kombinieren,
- theoretische Vorkenntnisse strukturieren, bewerten und zur Durchführung des praktischen Teils nutzen.

Lernergebnisse in Bezug auf die Studiengangsziele:

- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen
- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen
- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen
- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen
- Sicheres Anwenden und Bewerten analytischer Methoden
- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden
- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse
- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten
- Arbeiten und Forschen in nationalen und internationalen Kontexten

| Inhalt: | - Übertragungsverhalten von Messsystemen
- Fourieranalyse
- Optische Abbildung
- Messtechnische Bildverarbeitung
- Multisensor-Systeme
 (Beispiel Drehmomentmessung)
- Interferometrie
- Spektrometrie
- Signalverarbeitung
 (Phasenanalyse, Zeit-Frequenzanalyse)
- Übertragung von Messsignalen |

| Studien-/Prüfungsleistungen: | Form: Schriftl. Ausarbeitung (Hausarbeit), Prüfungsgespräch
Dauer: 30 Min.
Nach vorheriger Ankündigung durch den Dozenten können beim Praktikum Anwesenheitslisten geführt werden. |

| Medienformen: | Beamerpräsentation durch Dozenten, Erklärungen, Anregungen durch Praktikumsbetreuer, Kurzpräsentationen und schriftliche Ausarbeitungen zu den Schwerpunktthemen, |

<p>| Literatur: | Praktikumsunterlagen FPM, Fachliteratur (themenabhängig) wird in der Veranstaltung bekannt gegeben |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Rechnergestützter Entwurf mikroelektronischer Schaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Peter Zipf</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Peter Zipf und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch, Englisch nach Absprache möglich</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul: Schwerpunktm职能部门: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>1 SWS Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h:</td>
</tr>
<tr>
<td></td>
<td>45 h Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>135 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Kenntnisse in diskreter Mathematik</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Die/der Lernende kann</td>
</tr>
<tr>
<td></td>
<td>- Ablauf und Ziele des physikalischen Entwurfs skizzieren,</td>
</tr>
<tr>
<td></td>
<td>- vorgegebene bzw. bekannte Algorithmen erklären,</td>
</tr>
<tr>
<td></td>
<td>- Teilalgorithmen zu einem Gesamtablauf kombinieren</td>
</tr>
<tr>
<td></td>
<td>- Implementierungen gegebener Algorithmen vergleichen,</td>
</tr>
<tr>
<td></td>
<td>- Implementierungen von Algorithmen entwickeln,</td>
</tr>
</tbody>
</table>
| | - Platzierungs- und Verdrahtungsergebnisse qualitativ be-
| | urteilen. |
| | - Simulationsverfahren erklären und klassifizieren |

Lernergebnisse in Bezug auf die Studiengangsziele:
- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen
- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen
- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen
- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen
- Sicheres Anwenden und Bewerten analytischer Methoden
- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden
- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse
- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten
- Arbeiten und Forschen in nationalen und internationalen Kontexten
Inhalt:

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Klausur (90 Min.) oder mündl. Prüfung (etwa 40 Min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Folien, Beamer, Tafel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Jens Lienig: Layoutsynthese elektronischer Schaltungen, Springer Verlag, 1. Auflage, 2006</td>
</tr>
</tbody>
</table>

Weitere Literatur wird in der Vorlesung bzw. auf der Homepage des Fachgebiets bekannt gegeben.
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Regelung elektrischer Antriebe</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Marcus Ziegler</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Marcus Ziegler und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td></td>
</tr>
<tr>
<td>Pflichtmodul:</td>
<td></td>
</tr>
<tr>
<td>Schwerpunktmodul:</td>
<td></td>
</tr>
<tr>
<td>Wahlmodul:</td>
<td>Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS: 2SWS Seminar 2SWS Praktikum</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 90 h Präsenzzeit 90 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundlagen der Regelungstechnik Grundlagen der Energietechnik Elektrische Maschinen Dynamisches Verhalten elektrischer Maschinen Antriebstechnik I Antriebstechnik II Interesse an regelungstechnischen Prozessen</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Vertieftes fachübergreifendes Wissen aus dem Bereich Antriebsregelung.</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Form: Praktischer Aufbau, 10 seitige Ausarbeitung, 15 min Präsentation</td>
</tr>
</tbody>
</table>
| Prüfungsleistung: mündliche Prüfung
Nach vorheriger Ankündigung durch den Dozenten können Anwesenheitslisten geführt werden. |
|---|
| **Medienformen:**
Beamer, Tafel, Papier, PC, Labor, PowerPoint, Matlab/Simulink, DSpace |
| **Literatur:**
dSpace: Rapid Control Prototyping – Handbücher (Ste-
hen am Lehrstuhl zur Verfügung) |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Regelungsverfahren mit neuronalen Netzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>RV NN</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Ludwig Brabetz</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Brabetz und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul: 2 Schwerpunktmodule: Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS: 2 SWS Vorlesung 2 SWS Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 60 h Präsenzzeit 120 h Eigenstudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Lineare Algebra, Analysis, Grundlagen der Regelungstechnik, Grundlagen der Neuronalen Netze</td>
</tr>
</tbody>
</table>

Angestrebte Lernergebnisse

Der/die Lernende kann,
- Neuronale Regelungsstrukturen und dazugehörige Adoptionsverfahren klassifizieren,
- Lernalgorithmen ableiten,
- Eignung von Regelstrukturen für Regelaufgaben bewerten,
- Eigenschaften von Regelstrukturen bezüglich Regelgüte und Stabilität beurteilen.

Lernergebnisse in Bezug auf die Studiengangsziele:
- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen
- Erwerben von vertieften Kenntnissen in den elektrotechnischen Grundlagen
- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen
- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen
- Sicheres Anwenden und Bewerten analytischer Methoden
- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden
- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse
- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten
- Arbeiten und Forschen in nationalen und internationalen Kontexten
| Studien-/Prüfungsleistungen: | Form: Klausur, schriftliche Prüfung
Dauer: 120 min |
| Medienformen: | Beamer, Skript, Tafel |
| Literatur: | Magnus Norgaard et al., "Neural Networks for Modelling and Control of Dynamic Systems", Springer Verlag 2000
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Rekonfigurierbare Strukturen</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Peter Zipf</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Peter Zipf und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>nach Absprache</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul:</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmodul:</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS:</td>
</tr>
<tr>
<td></td>
<td>2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>2 SWS Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h:</td>
</tr>
<tr>
<td></td>
<td>60 h Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>120 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundlagen der Digitaltechnik, wenn möglich Kenntnisse zu Rechnerarchitekturen</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Die/der Lernende kann</td>
</tr>
<tr>
<td></td>
<td>- den prinzipiellen Aufbau von FPGAs skizzieren,</td>
</tr>
<tr>
<td></td>
<td>- Methoden der Platzierung und Verdrahtung sowie deren Zusammenhang erklären,</td>
</tr>
<tr>
<td></td>
<td>- Quantitative Architekturentscheidungen begründen,</td>
</tr>
<tr>
<td></td>
<td>- verschiedene Architekturmodelle und Rekonfigurationsverfahren beschreiben und bewerten,</td>
</tr>
<tr>
<td></td>
<td>- eigene Architekturvorschläge entwickeln,</td>
</tr>
<tr>
<td></td>
<td>- Verfahren der dynamischen Rekonfiguration erklären</td>
</tr>
<tr>
<td></td>
<td>- Einsatzmöglichkeiten von FPGAs einschätzen</td>
</tr>
<tr>
<td>Lernergebnisse in Bezug auf die Studiengangsziele:</td>
<td>- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertiefen Kenntnissen in den elektrotechnikspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen</td>
</tr>
<tr>
<td></td>
<td>- Sicheres Anwenden und Bewerten analytischer Methoden</td>
</tr>
<tr>
<td></td>
<td>- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden</td>
</tr>
<tr>
<td></td>
<td>- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse</td>
</tr>
<tr>
<td></td>
<td>- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten</td>
</tr>
<tr>
<td></td>
<td>- Arbeiten und Forschen in nationalen und internationalen Kontexten</td>
</tr>
</tbody>
</table>
Inhalt:

Studien-/Prüfungsleistungen:
Mündl. Prüfung (etwa 40 Min.) oder Hausarbeit mit Präsentation

Medienformen:
Folien, Beamer, Tafel, Rechnerübung

Literatur:
- Vaughn Betz, Alexander Marquardt, Jonathan Rose: Architecture and CAD for Deep-Submicron FPGAs, Springer Verlag, 1999
- Ramachandran Vaidyanathan, Jerry Trahan: Dynamic Reconfiguration: Architectures and Algorithms (Series in Computer Science), Springer Netherlands, 2003
Weitere Literatur wird in der Vorlesung bzw. auf der Homepage des Fachgebiets bekannt gegeben.
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>RF Sensor Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>RFSS</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Axel Bangert</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Axel Bangert und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Englisch/Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul: 2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmodul: 1 SWS Übung</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS: 2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>1 SWS Übung</td>
</tr>
<tr>
<td></td>
<td>1 SWS Praktikum</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 60 h Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>120 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Vorlesung/Übung: 4</td>
</tr>
<tr>
<td></td>
<td>Praktikum: 2</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundkenntnisse auf den Gebieten Hochfrequenztechnik und Messtechnik</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Der/die Studierende kann:</td>
</tr>
<tr>
<td></td>
<td>- Verschiedene Radarverfahren erklären</td>
</tr>
<tr>
<td></td>
<td>- Sicherheitsvorschriften benennen</td>
</tr>
<tr>
<td></td>
<td>- Radiometrische Systeme entwickeln</td>
</tr>
<tr>
<td></td>
<td>- Verschiedene Sensorsysteme bzgl. ihrer Anwendungen klassifizieren</td>
</tr>
<tr>
<td></td>
<td>- Mikrowellenquellen einstufen</td>
</tr>
<tr>
<td></td>
<td>- Optische Quellen bzgl. ihrer Eignung in Radarsystemen beurteilen</td>
</tr>
</tbody>
</table>

Lernergebnisse in Bezug auf die Studiengangsziele:
- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen
- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen
- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen
- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen
- Sicheres Anwenden und Bewerten analytischer Methoden
- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden
- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse
- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Form: schriftlich/mündlich, Praktikumstest Dauer: schriftlich 120min/ mündlich 20min Nach vorheriger Ankündigung durch den Dozenten können beim Praktikum Anwesenheitslisten geführt werden.</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Beamer, Tafel, Overhead-Projektor, Labor</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Robuste und Optimale Regelung</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>Kürzel</td>
<td>ROR</td>
</tr>
<tr>
<td>Lehrveranstaltungen</td>
<td>Robuste Regelung (RR), Vorlesung und Übung</td>
</tr>
<tr>
<td></td>
<td>Optimale Regelung (OR), Vorlesung und Übung</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Olaf Stursberg</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. rer. nat Arno Linnemann und Mitarbeiter (RR)</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr.-Ing. Olaf Stursberg und Mitarbeiter (OR)</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul:</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmodul:</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>5 SWS: RR: 2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>0,5 SWS Übung</td>
</tr>
<tr>
<td></td>
<td>OR: 2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>0,5 SWS Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 75 h Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>105 h Eigenstudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Vorlesung Robuste Regelung: 3</td>
</tr>
<tr>
<td></td>
<td>Vorlesung Optimale Regelung: 3</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Der/die Lernende kann</td>
</tr>
<tr>
<td></td>
<td>- die Robustheit von linearen Regelkreisen ermitteln und bewerten,</td>
</tr>
<tr>
<td></td>
<td>- robuste Regler mit Hilfe des „Loop-Shapings“ bestimmen,</td>
</tr>
<tr>
<td></td>
<td>- H_∞-Regler berechnen und das Ergebnis interpretieren,</td>
</tr>
<tr>
<td></td>
<td>- die Möglichkeiten und Grenzen der H_∞-Regelung beurteilen,</td>
</tr>
<tr>
<td></td>
<td>- Regler mit Hilfe der µ-Synthese entwerfen</td>
</tr>
<tr>
<td></td>
<td>- für kompliziertere Aufgaben der optimalen Regelung die Entscheidung für geeignete Lösungsmethoden treffen,</td>
</tr>
<tr>
<td></td>
<td>- Strategien zur Lösung von Aufgaben der optimalen Regelung entwerfen,</td>
</tr>
<tr>
<td></td>
<td>- Reglerparameter in optimaler Weise bestimmen und ihre Optimalität nachweisen,</td>
</tr>
<tr>
<td></td>
<td>- das Ergebnis der Reglersynthese hinterfragen sowie</td>
</tr>
<tr>
<td></td>
<td>- Software anwenden und entwickeln.</td>
</tr>
<tr>
<td>Lernergebnisse in Bezug auf die Studiengangsziele:</td>
<td>- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen</td>
</tr>
</tbody>
</table>
- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen
- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen
- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen
- Sicheres Anwenden und Bewerten analytischer Methoden
- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden
- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse
- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten
- Arbeiten und Forschen in nationalen und internationalen Kontexten

Inhalt:

| RR: |
| --- | --- |
| Eingrößensysteme mit multiplikativen Unsicherheiten, Loop Shaping, H_∞-Regelung, Satz der kleinen Verstärkung, strukturierte Unsicherheiten, μ-Analyse und Synthese, Modellreduktion
| OR: |
| Optimierung von dynamischen Systemen, Optimale Regelung durch Dynamische Programmierung, Variationsrechnung in der Optimalsteuerung, Optimale Regelung nichtlinearer Systeme nach dem Maximumprinzip, Regelung mit Linearen Matrix-Ungleichungen und semidefinite Programmierung |

Studien-/Prüfungsleistungen:

- Prüfung: Je eine mündliche Prüfung oder Klausur für RR und OR
- Studienleistung: Übungsaufgaben
- Dauer: Je 30 Minuten (mündliche Prüfung) bzw. 90 Minuten (Klausur)

Medienformen:

- Tafel, Folien, Vorführungen am Rechner

Literatur:

- Weitere Referenzen im www
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Schaltungsentwurf mit HDLs</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Peter Zipf</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Peter Zipf und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch, Englisch nach Absprache möglich</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Pflichtmodul:</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmodul:</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS: 2 SWS Vorlesung 2 SWS Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 60 h Präsenzzeit 120 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Vorlesung Digitale Logik</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Die/der Lernende kann</td>
</tr>
<tr>
<td></td>
<td>- Grundelemente einer Hardwarebeschreibungssprache benennen,</td>
</tr>
<tr>
<td></td>
<td>- die Funktionsweise der Sprachelemente erläutern,</td>
</tr>
<tr>
<td></td>
<td>- in einer HDL beschriebene Schaltungen interpretieren,</td>
</tr>
<tr>
<td></td>
<td>- Beschreibungen von Standardschaltungen in einer HDL entwerfen,</td>
</tr>
<tr>
<td></td>
<td>- mit Synthesesoftware Entwürfe implementieren.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Syntax und Semantik einer HDL, verschiedene Modellierungsmöglichkeiten, Beschreibung von Standardfunktionalitäten (Schaltnetze, Zustandsautomaten, Datenpfadfunktionalität), Synthese von konkreten Schaltungen mit kommerzieller CAD-Software.</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>mündl. Prüfung (etwa 40 Min.) oder Klausur (90 Min.)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Folien/Beamer, Tafel, Rechnerübungen</td>
</tr>
<tr>
<td></td>
<td>Weitere Literatur wird in der Vorlesung bzw. auf der Homepage des Fachgebiets bekannt gegeben.</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Seminar Antriebs- und Kfz-Systemtechnik</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Marcus Ziegler</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Marcus Ziegler und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul:</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmodule:</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>2 SWS Seminar</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>90 h: 30 h Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>60 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Elektrische Antriebe durchdringen vermehrt die Hoheitsgebiete des klassischen Maschinenbaus. Diesem Strukturwandel müssen sich die Unternehmen stellen.</td>
</tr>
<tr>
<td></td>
<td>Ziel des Seminars ist die Fähigkeit, sich in aktuelle Themen der Antriebstechnik auf der Basis internationaler Literatur selbständig einzuarbeiten und sie zu präsentieren.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Quellen für Wissen</td>
</tr>
<tr>
<td></td>
<td>Methoden der Recherche</td>
</tr>
<tr>
<td></td>
<td>Schreiben eines Fachaufsatzes</td>
</tr>
<tr>
<td></td>
<td>Präsentation in Form von Poster oder Vortrag</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Form: 5 Seiten nach IEEE Standard geschrieben, zusätzlich Vortrag oder Poster</td>
</tr>
<tr>
<td></td>
<td>Dauer: 15 Minuten</td>
</tr>
<tr>
<td></td>
<td>Nach vorheriger Ankündigung durch den Dozenten können Anwesenheitslisten geführt werden.</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Power-Point-Präsentationen</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Aktuelle Literatur wird in der Vorlesung benannt.</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Seminar Fahrzeugmechatronik</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Michael U. Fister</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr.-Ing. Christian Spieker</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul:</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmodule:</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>2 SWS Seminar</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>90 h: 30 h Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>60 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Ziel des Seminars ist die Fähigkeit, sich in</td>
</tr>
<tr>
<td></td>
<td>- aktuelle Themen der Fahrzeugmechatronik auf der Basis internationaler Literatur selbständig einzuarbeiten,</td>
</tr>
<tr>
<td></td>
<td>- ausgewählte Lösungswege zu bewerten und zu interpretieren,</td>
</tr>
<tr>
<td></td>
<td>- Vergleiche mit alternativen Lösungen selbst zu gestalten und</td>
</tr>
<tr>
<td></td>
<td>- die Ergebnisse in Vortrag und schriftlicher Ausarbeitung darzustellen.</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Schriftliche Ausarbeitung und Seminarvortrag</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>Wird abhängig von der Themenstellung ausgewählt</td>
</tr>
</tbody>
</table>
Modulbezeichnung: **Seminar im Fachgebiet Fahrzeugsysteme und Grundlagen der Elektrotechnik**

<table>
<thead>
<tr>
<th>ggf. Modulniveau</th>
<th>Master</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester:</th>
<th>Sommer- und Wintersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Ludwig Brabetz</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Ludwig Brabetz und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum
- Pflichtmodul:
- Schwerpunktmodul:
- Wahlmodul: Ja

Lehrform/SWS: 4 SWS Seminar
Arbeitsaufwand: 180 h: 60 h Präsenzzeit 120 h Selbststudium
Kreditpunkte: 6

Empfohlene Voraussetzungen: EESI und EESII

Angestrebte Lernergebnisse
- Selbständige Einarbeitung in ein wissenschaftliches Themengebiet mit Bezug zu Fahrzeugsystemen
- Umsetzung der erarbeiteten Inhalte.
- Interpretation der Ergebnisse.
- Bewertung des ausgewählten Lösungswegs
- Vergleich mit alternativen Lösungen
- Schriftliche Ausarbeitung und Darstellung der wesentlichen Seminarergebnisse

Studien-/Prüfungsleistungen: Schriftliche Ausarbeitung und Seminarvortrag
Nach vorheriger Ankündigung durch den Dozenten können Anwesenheitslisten geführt werden.

Medienformen:

Literatur: Wird abhängig von der Themenstellung ausgewählt
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Seminar Regelungs- und Systemtheorie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>Kürzel</td>
<td>SemRS</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Sommersemester/Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing Olaf Stursberg</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing Olaf Stursberg und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zuordnung zum Curriculum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflichtmodul:</td>
</tr>
<tr>
<td>Schwerpunkt:</td>
</tr>
<tr>
<td>Wahlmodul:</td>
</tr>
<tr>
<td>Ja</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform/SWS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3SWS:</td>
</tr>
<tr>
<td>1 SWS Seminar</td>
</tr>
<tr>
<td>2 SWS Projekt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 h:</td>
</tr>
<tr>
<td>30 h Präsenzzeit</td>
</tr>
<tr>
<td>90 h Eigenstudium</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kreditpunkte:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4, davon 3 CP als integrierte Schlüsselkompetenz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Voraussetzungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenntnisse entsprechend der Inhalte und angestrebten Lernergebnisse der Bachelor-Module „Grundlagen der Regelungstechnik“, „Lineare und nichtlineare Regelungssysteme“ und „Ereignisdiskrete Systeme und Steuerungstheorie“</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Angestrebte Lernergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Der / die Lernende kann:</td>
</tr>
<tr>
<td>- die wesentlichen Aspekte einer anspruchsvoller rege-</td>
</tr>
<tr>
<td>- lungstechnischen Aufgabenstellung interpretieren,</td>
</tr>
<tr>
<td>- sich mögliche Problemlösungen anhand ausgegebener</td>
</tr>
<tr>
<td>- Literatur erschließen,</td>
</tr>
<tr>
<td>- die Eignung einer Methodik zur Lösung der Regelungs-</td>
</tr>
<tr>
<td>- oder Steuerungsaufgabe bewerten,</td>
</tr>
<tr>
<td>- die Methodik für die Aufgabenstellung in Software im-</td>
</tr>
<tr>
<td>- plementieren und validieren,</td>
</tr>
<tr>
<td>- den Lösungsweg und die wesentlichen Ergebnisse in</td>
</tr>
<tr>
<td>- Vortrag und schriftlicher Ausarbeitung darstellen.</td>
</tr>
</tbody>
</table>

Lernergebnisse in Bezug auf die Studiengangsziele:
- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen
- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen
- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen
- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen
- Sicheres Anwenden und Bewerten analytischer Methoden
- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden
- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse
- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten
- Arbeiten und Forschen in nationalen und internationalen Kontexten

Inhalt:
In jedem Semester werden zu einem aktuellen Oberthema aus dem Gebiet der Regelungs- und Systemtheorie Problemstellungen definiert und jeder teilnehmende Studierende arbeitet auf der Grundlage ausgegebener Literatur einen Lösungsweg aus, implementiert diesen auf dem Rechner und validiert die Vorgehensweise durch numerische Simulation. Die Studierenden stellen ihre Ergebnisse in Seminarvorträgen sowie in einer schriftlichen Ausarbeitung vor.

Studien-/Prüfungsleistungen:
Form: Studienleistung: Bearbeitung einer regelungstheoretischen Aufgabe inklusive Implementierung, Halten eines Seminarvortrags; Verfassen einer Seminararbeit; Teilnahme an den Vorträgen aller Teilnehmer
Prüfungsleistung: im Anschluss an den Vortrag findet eine ausführliche Diskussion statt, in der die Studierenden ihr Verständnis der Thematik zeigen sollen; in die Benotung geht die Problemlösung, der Vortrag, die Diskussion und die schriftliche Seminararbeit ein.
Dauer: 90 Minuten für Vortrag mit Diskussion
Nach vorheriger Ankündigung durch den Dozenten können beim Seminar Anwesenheitslisten geführt werden.

Medienformen:
Projektion von Folien, Tafel

Literatur:
Ausgewählte Fachliteratur zu den ausgegebenen Themen wird spezifisch über die Webseite der Lehrveranstaltung zur Verfügung gestellt
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Seminar über aktuelle Themen der elektromagnetischen Feldtheorie</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td>Current Topics in Electromagnetic Field Theory (Sem)</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester/Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Witzigmann</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Witzigmann und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch/englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul: Schwerpunktmódul: Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>2 SWS Seminar</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>110 h: 45 h Präsenzzeit 65 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Kenntnisse in elektromagnetischer Feldtheorie oder Halbleiter</td>
</tr>
</tbody>
</table>

Angestrebte Lernergebnisse

Der/die Lernende kann
- Stand der Forschung in ausgewählten Themen der Photonik, Elektromagnetik, Numerischen Modellierung, Nanowissenschaften erklären
- wissenschaftlichen Vortrag zu einem aktuellen Thema entwickeln, inkl. Literaturrecherche durchführen
- Diskussionskultur entwickeln

Lernergebnisse in Bezug auf die Studiengangsziele:
- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen
- Erwerben von vertiefen Kenntnissen in den elektrotechnikspezifischen Grundlagen
- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen
- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen
- Sicheres Anwenden und Bewerten analytischer Methoden
- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden
- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse
- Tiefegehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten
- Arbeiten und Forschen in nationalen und internationalen Kontexten

Inhalt:
aktuelle Themen der Photonik, Elektromagnetik, sowie Optoelektronik (Bereich Theorie, Numerik, Design, Anwendung)
| Studien-/Prüfungsleistungen: | Form: Vortrag.
Dauer: 30 Min
Nach vorheriger Ankündigung durch den Dozenten können Anwesenheitslisten geführt werden. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Beamer.</td>
</tr>
<tr>
<td>Literatur:</td>
<td>aktuelle Fachliteratur</td>
</tr>
</tbody>
</table>
Modulbezeichnung:
Signal Processing in Wireless Communications

ggf. Modulniveau:
Master

ggf. Kürzel

ggf. Untertitel

ggf. Lehrveranstaltungen
Signal Processing in Wireless Communications (Seminar)
Simulation of Digital Communication Systems using MATLAB (Praktikum)

Studiensemester:
Seminar: Wintersemester
Praktikum: Wintersemester/Sommersemester

Modulverantwortliche(r):
Prof. Dahlhaus

Dozent(in):
Prof. Dahlhaus und Mitarbeiter

Sprache:
Englisch

Zuordnung zum Curriculum

- Pflichtmodul:
- Schwerpunktmodul:
- Wahlmodul: Ja

Lehrform/SWS:

- 4 SWS:
 2 SWS Seminar
 2 SWS Praktikum

Arbeitsaufwand:

- 180 h:
 60 h Präsenzzeit
 120 h Selbststudium

Kreditpunkte:

- 6
 - Seminar: 3
 - Praktikum: 3

Empfohlene Voraussetzungen:
Signalübertragung, Introduction to Signal Detection and Estimation, Introduction to Information Theory and Coding

Angestrebte Lernergebnisse

Der Student kann
- unterschiedliche Signalverarbeitungsverfahren in drahtlosen Übertragungssystemen analysieren und hinsichtlich ihrer Leistungsfähigkeit und der Komplexität miteinander vergleichen
- Implementierungen von Signalverarbeitungsverfahren in realen Standardisierungen bewerten
- grundlegende Verfahren zur Simulation von Kommunikationssystemen anwenden und Erweiterungen für vorhandene Algorithmen entwickeln

Lernergebnisse in Bezug auf die Studiengangsziele:
- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen
- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen
- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen
- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen
- Sicheres Anwenden und Bewerten analytischer Methoden
- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden
- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse
- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten
- Arbeiten und Forschen in nationalen und internationalen Kontexten

Inhalt:
- Overview of existing wireless communication systems, basics in the characterization of wireless channels and signal processing in wireless transceivers, channel modelling, signal processing at the transmitter with/without channel coding for different wireless systems, selected topics from signal processing (e.g. radio frequency identification (RFID)), short-range radio, satellite communications, radio broadcast with analog modulation, Wireless Personal Area Networks (WPANs), Wireless Local Area Networks (WLANs), cellular radio of second (2G), third generation (3G) and systems beyond 3G, software tools for research and development, standardization bodies and research trends in the area of signal processing in wireless communication systems.
- Introduction to MATLAB and its most important commands, simulation of a simple transmission chain, channel coding (convolutional codes), coding gain, channels with multipath propagation, channel models with fading and bit-error rate performance for binary signalling, transmission with orthogonal frequency-division multiplexing (OFDM), interleaving, implementation of an OFDM modem.

Studien-/Prüfungsleistungen:
Form: Seminarpräsentation, Programmierung und mündl. Prüfung
Dauer: 30 Min.
Nach vorheriger Ankündigung durch den Dozenten können Anwesenheitslisten geführt werden.

Medienformen:
Beamer, Tafel, Papier, Computer,

Literatur:
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Simulation regenerativer Energiesysteme</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Peter Zacharias</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Mike Meinhardt</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul: 2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4SWS: 2 SWS Vorlesung 2 SWS Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>120 h: 60 h Präsenzzeit 120 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Leistungselektronik (3010), Regelung elektrischer Energiesversorgungseinheiten (3030)</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Möglichkeiten und Grenzen von Simulation inkl. Modellierung in Forschung und Entwicklung kennenlernen, Praktische Anwendung von Simulationstools (exemplarisch) üben, Simulationsergebnisse einschätzen und deuten lernen</td>
</tr>
<tr>
<td></td>
<td>Lernergebnisse in Bezug auf die Studiengangsziele:</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen</td>
</tr>
<tr>
<td></td>
<td>- Sicheres Anwenden und Bewerten analytischer Methoden</td>
</tr>
<tr>
<td></td>
<td>- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden</td>
</tr>
<tr>
<td></td>
<td>- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse</td>
</tr>
<tr>
<td></td>
<td>- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten</td>
</tr>
<tr>
<td></td>
<td>- Arbeiten und Forschen in nationalen und internationalen Kontexten</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Einsatz von Simulation in Forschung und Entwicklung Überblick über typische regenerative Energiesversorgungssysteme Systemorientierte Modellierung der Komponenten regenerativer Energiesysteme</td>
</tr>
<tr>
<td>Überblick über Simulationstools</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Praxisorientierte Durchführung/ Simulation von realen Systemen</td>
<td></td>
</tr>
<tr>
<td>Validierung und Verifizierung der Simulationsergebnisse</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>schriftlich: 60min / mündlich: 30min</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Medienformen:</th>
<th>Beamer, Tafel</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Literatur:</th>
<th>wird in der Vorlesung bekannt gegeben</th>
</tr>
</thead>
</table>
Modulbezeichnung: Softwarepraktikum pandapower
ggf. Modulniveau Master
ggf. Kürzel
ggf. Untertitel
ggf. Lehrveranstaltungen

Studiensemester: Wintersemester/Sommersemester
Modulverantwortliche(r): Prof. Dr. Ing. Martin Braun
Dozent(in): Prof. Dr. Ing. Martin Braun und Mitarbeiter
Sprache: Deutsch und Englisch
Zuordnung zum Curriculum
- Pflichtmodul:
- Schwerpunktmodul:
- Wahlmodul: Ja

Lehrform/SWS: 3 SWS Praktikum
Arbeitsaufwand: 120 h: 45 h Präsenzzeit
75 h Selbststudium
Kreditpunkte: 4

Empfohlene Voraussetzungen: Grundlagen Mathematik
Grundlagen Elektrotechnik
Grundlagen elektr. Energietechnik
Grundlagen höhere Programmiersprache (z.B. Python, C++, etc.)
Berechnung elektrischer Netze

Angestrebte Lernergebnisse
Ziel ist die Vermittlung von Fertigkeiten in der Berechnung elektrischer Energienetze.

Der/Die Studierende
- kennt eine moderne und dynamische Open Source Netzberechnungssoftware (pandapower),
- kann grundlegende Berechnungen zur Auslegung
- von Netzen sowie der Netzintegration von Anlagen
- selbständig mit der Netzberechnungssoftware
- durchführen und die Ergebnisse interpretieren,
- lernt den Umgang mit kollaborativ entwickelter Software.

Lernergebnisse in Bezug auf die Studiengangsziele:
- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen
- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen
- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen
- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen
- Sicheres Anwenden und Bewerten analytischer Methoden
- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden
- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse
- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten
- Arbeiten und Forschen in nationalen und internationalen Kontexten

| Inhalt: | - Einführung in die Netzberechnungssoftware pandapower
- Einführung in die Entwicklungsumgebung (Python, git)
- Komponentenmodelle (Transformatoren, Leitungen, elektrische Maschinen)
- Leistungsflussrechnung (Grundfallrechnung, Lösungsalgorithmen, Erweiterungen)
- Auslegung von Netzen |

| Studien-/Prüfungsleistungen: | Form: 120 min praktische Prüfung oder Hausarbeit
Nach vorheriger Ankündigung durch den Dozenten können Anwesenheitslisten geführt werden. |

| Medienformen: | PC, Beamer, Tafel, Overhead-Projektor |

| Literatur: | https://www.uni-kassel.de/eecs/fachgebiete/e2n/software/pandapower.html
Weitere Literatur wird in der Vorlesung benannt |
Modulbezeichnung: Speicher in der Energieversorgung – Batterietechnik

ggf. Modulniveau: Master

ggf. Kürzel: SEB

ggf. Untertitel:

ggf. Lehrveranstaltungen:

Studiensemester: Sommersemester

Modulverantwortliche(r): Dr. –Ing. Christian Nöding

Dozent(in): Dr. –Ing. Christian Nöding und Mitarbeiter

Sprache: Deutsch

Zuordnung zum Curriculum: Pflichtmodul: Schwerpunktmmodul: Wahlmodul: Ja

Lehrform/SWS: 4 SWS: 1,5 SWS Vorlesung 1 SWS Übung 1,5 SWS Seminar

Arbeitsaufwand: 180 h: 60 h Präsenzzeit 120 h Selbststudium

Kreditpunkte: 6

Empfohlene Voraussetzungen: Kenntnisse in Physik, Grundlagen Elektrotechnik

Angestrebte Lernergebnisse: Die Studierenden können
- Unterschiedliche Speichertechnologien für das elektrische Versorgungssystem benennen und darstellen
- Insbesondere die Funktion und den Entwicklungsprozess von Batterietypen und Batteriesystemen erläutern,
- die physikalischen und elektrotechnischen Zusammenhänge von stationären und mobilen Systemen beschreiben,
- technische Synergien aufzeigen,
- technische Risiken und Zusammenhänge erfassen,
- den Bezug bereits erlernter Basiskompetenzen zu Anwendungen und deren technischen Umsetzungen und Randbedingungen herstellen.

Lernergebnisse in Bezug auf die Studiengangsziele:
- Erwerben von Grundlagen und vertieftem Wissen im Bereich Speichertechnologien und Batterietypen
- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen
- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen
- Sicheres Anwenden und Bewerten analytischer Methoden
- Selbständiges Entwickeln und Beurteilen von Lösungs- methoden
- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten
- Arbeiten und Forschen in nationalen und internationalen Kontexten
- Erwerben von Wissen zur Gestaltung von Brennstoffzellensystemen die ein Vielzahl zusätzlicher Komponenten benötigen

Die Studenten sollen in die Lage versetzt werden, technische Herausforderungen und Möglichkeiten von Speichersystemen, insbesondere elektrochemischen Speichern zu verstehen und die Wechselwirkungen auf andere Bereiche einzuschätzen.

Inhalt:

- Einleitung Energie- und Speicherproblematik
- Einführung in die verschiedenen Speichertechnologien
 1. Kondensatoren (Supercaps)
 2. Spulen (Supraleitung)
 3. Thermische Speicher
 4. Mechanische Speicher (Schwungrad)
 5. Nutzung von Kavernen
- Einführung Batterietechnik
- Grundlagen Batterien
 1. Geschichte
 2. Funktionsprinzip
 3. Batterietypen (Blei bis Li-Po…)
- Grundlegende chemische Zusammenhänge
- Batteriemodellierung
- Systembetrieb (Temperaturüberwachung)
- Batterieanwendungen
 1. Stationär
 2. Mobil in Fahrzeugen (Kleintraktion)
 3. Kleinmobile
 4. Portabel in Kleinstanwendungen
- Energiebilanzierung
- Wirkungsgradbetrachtung (System, elektrisch, thermisch, usw.)
- Synergieeffekte mit anderen Technologien

Studien-/Prüfungsleistungen:

Medienformen:

Beamer, Foliensammlung, Tafel,

Literatur:

W. Weydanz, A. Jossen: Moderne Akkumulatoren richtig einsetzen

M. Sterner, J. Stadler: Energiespeicher - Bedarf, Technologien, Integration

E. Rummich: Energiespeicher: Grundlagen - Komponenten - Systeme und Anwendungen

H. A. Kiehne (Ed.): Battery Technology Handbook

Aktuelle Literatur wird in der Vorlesung benannt.
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Standortbewertung für Windenergieanlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Clemens Hoffmann</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr.-Ing. Doron Callies, Dipl.-Geökol. Lukas Pauscher</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul:</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 Tage Blockseminar 1 Tag Vorträge durch die studierenden.</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>120 h: 40 h Präsenzzeit: 28 Stunden Vorlesung/Übung, 4 Stunden Exkursion zum IWES 200 m Messmast 1 Tag Seminarvorträge</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Studenten sollen am Ende in der Lage sein</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Vortrag mit Kolloquium und mündliche Prüfung zum Blockseminar</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafel und Beamer (.ppt – Ausarbeitungen)</td>
</tr>
</tbody>
</table>
IEC 61400-12-1:2005 Power performance measurements of electricity producing wind turbines
Technische Richtlinien für Windenergieanlagen, Teil 6 Bestimmung von Windpotential und Energieerträgen, Revision 9
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Studentenseminar Elektronik und Photonik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>Ggf. Kürzel</td>
<td>SEP</td>
</tr>
<tr>
<td>Ggf. Untertitel</td>
<td>Seminar Electronics and Photonics</td>
</tr>
<tr>
<td>Ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester</td>
<td>Wintersemester/Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Prof. Dr. rer. nat. Hartmut Hillmer</td>
</tr>
<tr>
<td>Dozent(inn)en</td>
<td>Bangert, Hillmer, Witzigmann</td>
</tr>
<tr>
<td>Sprache</td>
<td>Englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul:</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmodul:</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform</td>
<td>4 SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>180 h: 60 h Präsenzzeit 120 h Selbststudium</td>
</tr>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Fundierte Kenntnisse in den Bereichen Optik, Photonik, Theoretische Elektrotechnik</td>
</tr>
</tbody>
</table>

Angestrebte Lernergebnisse

- Der/die Studierende kann
 - nanophotonische und nanoelektronische Bauelemente und Systeme sowie Aufbau und Wirkungsweise nanophotonischer und nanoelektronischer Komponenten zuordnen.
 - mittels vertiefter Präsentationstechniken (Gliederung, roter Faden, Strukturierung, Gestik, Mimik, Sprache, Spannungsbögen, präzises Einhalten von Zeitvorgaben) zwei umfangreiche und wissenschaftlich anspruchsvolle Vorträge optimiert aufbauen.
 - einen möglichst effizienten und nachhaltigen Wissenstransfer zum Zuhörer erlangen und zuvor gesteckte Ziele erreichen.
 - ein für die Studierenden neues Thema selbständig erarbeiten.

Lernergebnisse in Bezug auf die Studiengangsziele:

- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen
- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen
- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen
- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen
- Sicheres Anwenden und Bewerten analytischer Methoden
- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden
- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse
<table>
<thead>
<tr>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Themenbeispiele: Integration elektronischer Schaltungen, MODFETs, HEMTs, niederdimensionale elektronische Baulemente, ein-zwei- und drei-dimensional photonische Kristalle, Quantenstrukturen in der Elektronik und Photonik, ein-zwei- und drei-dimensional elektronische Kristalle, Halbleiterlaser und Photodioden extrem hoher Modulationsbandbreite, optische Fasern mit photonischen Kristallen, komplex gekoppelte Halbleiterlaser, Materialfragen hybrider Baulementestrukturen, spektral ultraschnell abstimmbare DFB Laser und VCSEL, DFB Laser mit axial varierten Gitterperioden/Kopplungskeffizienten/Tastverhältnis, Mikroscheibenlaser, nanoelektronische und nanophotonische Eigenschaften des VCSELs, Photonisch integrierte Kommunikationssysteme, Faser-Bragg-Gittern, Amplituden- Frequenz- und Phasenmodulationstechniken, Gassensorik auf der Basis der Modenkonkurrenz und des relativen Intensitätsrauschens, Polymere in der Photonik, und weitere spezielle fortgeschrittene Themen aus der Elektronik und Optoelektronik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form: Präsentationen (2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beamer, Tafel, Overhead-Projektor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>- H. Hultzsch: Optische Telekommunikationssysteme, Damm Verlag, 1996</td>
</tr>
</tbody>
</table>

Weitere Literatur wird in der Lehrveranstaltung bzw. auf den Homepages der Fachgebiete bekannt gegeben.
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Stochastik für Ingenieure</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Meister</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Alle Dozenten des Institutes Mathematik</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul:</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmódul:</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS:</td>
</tr>
<tr>
<td></td>
<td>2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>2 SWS Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h:</td>
</tr>
<tr>
<td></td>
<td>60 h Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>120 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Kenntnisse der Inhalte der Module Mathematik aus dem Bachelor</td>
</tr>
<tr>
<td></td>
<td>Lernergebnisse in Bezug auf die Studiengangsziele:</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen</td>
</tr>
<tr>
<td></td>
<td>- Sicheres Anwenden und Bewerten analytischer Methoden</td>
</tr>
<tr>
<td></td>
<td>- Selbstständiges Entwickeln und Beurteilen von Lösungsmethoden</td>
</tr>
<tr>
<td></td>
<td>- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse</td>
</tr>
<tr>
<td></td>
<td>- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten</td>
</tr>
<tr>
<td></td>
<td>- Arbeiten und Forschen in nationalen und internationalen Kontexten</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Grundkenntnisse in R und die Erzeugung von Zufallszahlen in R</td>
</tr>
</tbody>
</table>
Wahrscheinlichkeitsraum, Zufallsvariable, Verteilungsfunktion
Diskrete und stetige Verteilungen
Bedingte Wahrscheinlichkeiten, stochastische Unabhängigkei
Markovketten
Erwartungswert, Varianz, Quantile
Kovarianz, Regression
Punktsschätzungen
Erwartungstreue, Konsistenz, Maximum-Likelihood-Schätzungen
Tests bei Normalverteilung
Nichtparametrische Tests
Konfidenzintervalle

| Studien-/Prüfungsleistungen: | Schriftliche Prüfung (120-180 min.)
Studienleistungen werden vom jeweiligen Dozenten zu Beginn der Lehrveranstaltung festgelegt und sind Voraussetzung zur Klausurteilnahme. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Tafel, Beamer, Computer</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Synthese und Optimierung mikroelektronischer Systeme</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Peter Zipf</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Peter Zipf und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch, Englisch nach Absprache möglich</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul:</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmodul:</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>3 SWS: 2 SWS Vorlesung 1 SWS Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 60 h Präsenzzeit 120 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Kenntnisse in diskreter Mathematik und im Entwurf digitaler Schaltungen (Bachelor-Level)</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Die/der Lernende kann</td>
</tr>
<tr>
<td></td>
<td>- den Ablauf und die Ziele der High-Level Synthese skizzieren,</td>
</tr>
<tr>
<td></td>
<td>- vorgegebene bzw. bekannte Algorithmen erklären,</td>
</tr>
<tr>
<td></td>
<td>- Implementierungen gegebener Algorithmen vergleichen,</td>
</tr>
<tr>
<td></td>
<td>- Erweiterungen für vorhandene Algorithmen entwickeln,</td>
</tr>
<tr>
<td></td>
<td>- Synthesergebnisse qualitativ beurteilen.</td>
</tr>
<tr>
<td></td>
<td>Lernergebnisse in Bezug auf die Studiengangsziele:</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertiefen Kenntnissen in den elektrotechnikspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen</td>
</tr>
<tr>
<td></td>
<td>- Sicheres Anwenden und Bewerten analytischer Methoden</td>
</tr>
<tr>
<td></td>
<td>- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden</td>
</tr>
<tr>
<td></td>
<td>- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse</td>
</tr>
<tr>
<td></td>
<td>- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten</td>
</tr>
<tr>
<td></td>
<td>- Arbeiten und Forschen in nationalen und internationalen Kontexten</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Mündl. Prüfung (etwa 40 Min.) oder Hausarbeit mit Präsentation</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Folien, Beamer, Tafel</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Systemtheorie der Energiewende</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester/Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Clemens Hoffmann</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Clemens Hoffmann und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch/Englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul:</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmodul:</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>2 SWS Vorlesung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>120 h: 30 h Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>90 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundlagen Mathematik, Informatik, Physik, Chemie, Biologie, Elektrotechnik</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Der Entwurf Erneuerbarer Energiesysteme ist komplexer als der herkömmlicher Energieversorgungssysteme. Die Dynamik der Erzeugung ist höher als die der Last und erfordert eine Vielzahl neuer technischer und wirtschaftlicher Steuerungsmechanismen. Ziel der Vorlesung ist die Ausbildung zu einem „Systemarchitekten der Energiewende“. Es werden technische und ökonomische Planungsfähigkeiten vermittelt, um ein Erneuerbares Energieversorgungssystem für ein lokales, regionales, nationales oder kontinentales Versorgungsgebiet systemtheoretisch und systemanalytisch entwerfen zu können. Lernergebnisse in Bezug auf die Studiengangsziele:</td>
</tr>
<tr>
<td></td>
<td>- Erwerb von Urteilsfähigkeit über energiepolitische und -ökonomische Kräftekonstellationen und Erwerb begrifflicher Konzepte, um in diesen Kontexten handeln zu können.</td>
</tr>
<tr>
<td></td>
<td>- Erkennen und Einordnen von komplexen interdisziplinären Aufgabenstellungen</td>
</tr>
<tr>
<td></td>
<td>- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden</td>
</tr>
<tr>
<td></td>
<td>- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse</td>
</tr>
<tr>
<td></td>
<td>- Arbeiten und Forschen in nationalen und internationalen Kontexten</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen und wirtschaftlichen Bereichen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Die Vorlesung kombiniert die Energiewissenschaftlichen Inhalte mit den mathematischen und physikalischen Methoden, die zu quantitativen Beurteilungen notwendig sind.</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
</tbody>
</table>
| Energiewissenschaft: | - Analyse der Energieverbrauchssektoren
- Potenzialanalyse Erneuerbarer Energiequellen
- Optimaler Entwurf des Mischungsverhältnisses der Energiequellen
- Auslegung von Energietransport- und Verteilungsnetzen
- Lösungen für das Ausgleichs- und Speicherproblem
- Finanzierungskonzepte für die Transformation eines Energiesystems
- Umweltprobleme der Energieerzeugung
- Klimatologie und Meteorologie
- Umbau des Mobilitäts-Sektors
- Umbau des Wärme-Sektors
- Wesen erfinderischer Tätigkeit
- Politische Implementierung |
| Mathematische und physikalische Methoden: | Kombinatorik und Wahrscheinlichkeitstheorie, mathematische Optimierung, numerische Mathematik, mathematische Modellbildung, Kybernetik; Elemente der Kontinuums-Mechanik, Elektrodynamik, Thermodynamik und Strahlungphysik |
| Studien-/Prüfungsleistungen: | Form: Mündliche Prüfung und Referat oder Klausur
Dauer: 30 min (mündliche Prüfung), 60 min (Klausur) |
<p>| Medienformen: | Beamer, Tafel, Papier, Computer; Die Vorlesungsfolien und -skripte werden zum Download zur Verfügung gestellt. |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Technik im Bereich neuer Medien</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Wloka</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Wloka und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul:</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmodul:</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS: 2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>2 SWS Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 60 h Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>120 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundlagen der Ingenieur-Informatik für ET oder Graphische Simulation für Informatik, Grundkenntnisse in Computergraphik und 3D-Studio MAX</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Modellierung und Animation von menschenartigen 3D Modellen (Avatare) / fortgeschrittene Modellierungs- und Animationstechniken in 3D Studio MAX</td>
</tr>
<tr>
<td></td>
<td>Lernergebnisse in Bezug auf die Studiengangsziele:</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden</td>
</tr>
<tr>
<td></td>
<td>- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Introduction</td>
</tr>
<tr>
<td></td>
<td>Virtual Humans</td>
</tr>
<tr>
<td></td>
<td>Modelling</td>
</tr>
<tr>
<td></td>
<td>Global Avatar Centered Modeling Software</td>
</tr>
<tr>
<td></td>
<td>Body Modelling</td>
</tr>
<tr>
<td></td>
<td>Modelling Head</td>
</tr>
<tr>
<td></td>
<td>Animation Body</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Studienleistung: Keine</td>
</tr>
<tr>
<td></td>
<td>Prüfungsleistung: Hausarbeit (30 % semesterbegleitende Projekte und 70 % Endprojekt)</td>
</tr>
<tr>
<td></td>
<td>Weitere Informationen siehe moodle</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>Skript zur Vorlesung</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Technologie der Elektronik und Photonik</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td>Technologies in Electronics and Photonics</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td>Technology of Electronic and Optoelectronic Devices (Vorlesung)</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td>Semiconductor Memories (Vorlesung)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester:</th>
<th>Sommersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. H. Hillmer</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. H. Hillmer und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>English</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zuordnung zum Curriculum</th>
<th>Pflichtmodul:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schwerpunktmodul:</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform/SWS:</th>
<th>4 SWS Vorlesung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 60 h Präsenzzeit 120 h Eigenstudium</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kreditpunkte:</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung Technology of Electronic and Optoelectronic Devices:</td>
<td>3</td>
</tr>
<tr>
<td>Vorlesung Semiconductor Memories:</td>
<td>3</td>
</tr>
</tbody>
</table>

| Empfohlene Voraussetzungen: | Grundwissen in Halbleiter Bauelementen, Werkstoffkunde und Optik (LV Elektronische Bauelemente, LV Werkstoffe der Elektrotechnik, LV Komponenten der Optoelektronik) |

<table>
<thead>
<tr>
<th>Angestrebte Lernergebnisse</th>
<th>Der/die Studierene kann</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>die Grundlagen für die technologische Herstellung von elektronischen und optoelektronischen Bauelementen (z.B. Transistoren, ICs, Halbleiterlaser und optische Filter) erfassen. Dies umfasst spezifische Prozesse, technologische Methoden und Aufbau und Wirkungsweise der korrespondierenden Geräte.</td>
</tr>
<tr>
<td></td>
<td>zukünftige Perspektiven, den zukünftigen Markt und aktuelle internationale Forschungsthemen einordnen. Ein wichtiger Schwerpunkt ist die Fokussierung auf anschauliches Verständnis, Methodik statt Faktenwissen, Zukunftsperspektiven und Marktvisionen.</td>
</tr>
<tr>
<td></td>
<td>Problemlösungen, u.a. durch Anwendung interdisziplinärer Analogien erarbeiten.</td>
</tr>
<tr>
<td></td>
<td>die Grundlagen der modernen IC Technologie (Rechner- und Speicherschips), sowie die Grenzen der aktuellen Herstellungstechnologien der Halbleiterspeicher aufzeigen.</td>
</tr>
<tr>
<td></td>
<td>grundlegend notwendige Kenntnisse zur Durchführung praktischer Arbeiten und Projekte im Bereich der Halbleiterindustrie und Forschung, speziell im Bereich DRAM erarbeiten.</td>
</tr>
</tbody>
</table>

Lernergebnisse in Bezug auf die Studiengangsziele:
| Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen |
| Erwerben von vertieften Kenntnissen in den elektrotechnikspezifischen Grundlagen |
| Erwerben von erweiterten und angewandten fachspezifischen Grundlagen |
| Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen |
| Sicheres Anwenden und Bewerten analytischer Methoden |
| Selbständiges Entwickeln und Beurteilen von Lösungsmethoden |
| Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse |
| Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten |
| Arbeiten und Forschen in nationalen und internationalen Kontexten |

Inhalt:

- Einführung in moderne Fabrikationsprozesse der optischen Fasern, Wellenleitern, Halbleiterlasern, Transistoren und ICs.
- Kristallwachstum: Halbleiter Wafer, Dünnfilmepitaxie
- Lithografie: optische, Röntgen, Elektronenstrahl, Ionenstrahl, EUVL, Nanoimprint
- Plasmaprozesse und Vakuumtechnologie
- Depositionstechniken: Aufdampfen, Sputtern, Plasma unterstützte Technologien
- Trocken- und Nass-chemisches Ätzen, Reinraumtechnologie
- Fabrikationstechnologien für elektronische Bauelemente (planare Transistoren, IC), optoelektronische Bauelemente (Halbleiterlaser, DFB Gitter), und mikro-opto-elektro-mechanische Systeme (MOEMS)

Einführung in das Gebiet Halbleiterspeicher, unterschiedliche Formen / Typen von Halbleiterspeicher, der MOSFET als Haupthelement einer Speicherzelle, Prozessstechnologie für die Halbleiterspeicher-Technik, Simulationen und Modellrechnungen, fortgeschrittene Themen aus dem Bereich Halbleiterspeicher, zukünftige Speicherarten

Studien-/Prüfungsleistungen:

- Form: Mündliche Prüfung
- Dauer: 20 min für die jeweilige Prüfung

Medienformen:

- Beamer, Tafel, Skript

Literatur:

Weitere Literatur wird in der Vorlesung bzw. auf der Homepage des Fachgebiets bekannt gegeben.
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Theorie sicherheitsgerichteter Rechnersysteme</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Josef Börcsök</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Josef Börcsök und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul: Schwerpunktmoodle: Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS: 2 SWS Vorlesung 2 SWS Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 60 h Präsenzzeit 120 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Abgeschlossenes B.Sc.-Studium, Programmierkenntnisse, Grundlagen der Informatik, Digitaltechnik, Mikroprozessoren oder Rechnerarchitektur, Regelungstechnik, Mathematik</td>
</tr>
<tr>
<td></td>
<td>Lernergebnisse in Bezug auf die Studiengangsziele:</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von vertiefen Kenntnissen in den elektrotechnikspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen</td>
</tr>
<tr>
<td></td>
<td>- Sicheres Anwenden und Bewerten analytischer Methoden</td>
</tr>
<tr>
<td></td>
<td>- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden</td>
</tr>
<tr>
<td></td>
<td>- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse</td>
</tr>
<tr>
<td></td>
<td>- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten</td>
</tr>
<tr>
<td></td>
<td>- Arbeiten und Forschen in nationalen und internationalen Kontexten</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Mathematische Modelle von Komponenten und Systemen, Funktionsblock- und Markov-Analyse und Berechnung gegebener Architekturmodelle, Modellbeschreibungen, Test-, Prüfverfahren,</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Form: Klausur 120 Min. oder mündliche Prüfung 40 Min., Hausarbeit, Referat/Präsentation</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Beamer, Papier, Tafel, Demonstration am PC</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Barlow, R. E., Engineering Reliability, ASA.SIAM 1998</td>
</tr>
<tr>
<td></td>
<td>Bitter, P., Technische Zuverlässigkeit, Springer 1977</td>
</tr>
<tr>
<td></td>
<td>Leitch, R. D., Reliability Analysis for Engineers, Oxford Science Publication 1995</td>
</tr>
<tr>
<td></td>
<td>Börcsök, J., Electronic Safety Systems, Hüthig 2004</td>
</tr>
<tr>
<td></td>
<td>Neumann, P., Computer Related Risk, Addison Wesley 1995</td>
</tr>
<tr>
<td></td>
<td>Goble, W., Evaluation Control Systems Reliability, ISA 1992</td>
</tr>
<tr>
<td></td>
<td>Skript, wird zu Veranstaltungsbeginn ausgegeben Weitere Literatur wird in der Lehrveranstaltung bekannt gegeben.</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Verteilte Systeme - Architekturen und Dienste</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Geihs</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Geihs und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul: Schwerpunktmodul: Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS: 2 SWS Vorlesung 2 SWS Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 60 h Präsenzzeit 120 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Kenntnis und kritische Beurteilung der systemtechnischen Grundlagen verteilter Systeme; praktischer Umgang mit Middleware-Produkten.</td>
</tr>
<tr>
<td></td>
<td>Lernergebnisse in Bezug auf die Studiengangsziele:</td>
</tr>
<tr>
<td></td>
<td>- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen</td>
</tr>
<tr>
<td></td>
<td>- Sicheres Anwenden und Bewerten analytischer Methoden</td>
</tr>
<tr>
<td></td>
<td>- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden</td>
</tr>
<tr>
<td></td>
<td>- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse</td>
</tr>
<tr>
<td></td>
<td>- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Form: Klausur</td>
</tr>
<tr>
<td></td>
<td>Dauer: 120 Min</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Wird in der Vorlesung bekannt gegeben.</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Windenergieprognose mit neuronalen Netzen</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. rer. nat. Clemens Hoffmann</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. rer. nat. Heinrich Werner</td>
</tr>
<tr>
<td>Sprache:</td>
<td></td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul:</td>
</tr>
<tr>
<td></td>
<td>Schwerpunktmodule:</td>
</tr>
<tr>
<td></td>
<td>Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS: Vorlesung & Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 60 h Präsenzzeit 120 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundkenntnisse MATLAB</td>
</tr>
</tbody>
</table>
| Angestrebte Lernergebnisse | - **Wissen:** verschiedene Typen von neuronalen Netzen kennen und auf technische Probleme anwenden können. Beurteilung der Fähigkeiten verschiedener Netztypen bei der Lösung technischer Probleme insbesondere der Windenergieprognose.
- **Fähigkeiten:** Konstruktion neuronaler Modelle für Windenergievorhersagen mit MATLAB. Training und Analyse solcher Netze und Einbindung in Nutzerprogramme.
- **Kompetenzen:** Präsentation von Modellen vor nicht-Experten Publikum, Abschätzung von Vorteilen und Nachteilen verschiedener Ansätze und Konfidenzaussagen. |
| Inhalt: | - Neuronale Netze: Tool für Datenanalyse und Modellierung
- Modelle mit funktionalen Verhalten, feed forward Netze
- Modelle mit relationalen Verhalten, feedback Netze
- Trainingsmethoden
| Studien-/Prüfungsleistungen: | Form: Programmierprojekt und Präsentation
Dauer: 45 min |
<p>| Medienformen: | Beamer, Papier, Tafel, Demonstration, Design- und Entwurfsserarbeiten am PC |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Zuverlässigkeitstheorie für Rechnersysteme</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Moduliniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>Zuverlässigkeitstheorie für Rechnersysteme</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Josef Börsök</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Josef Börsök und Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Pflichtmodul: Schwerpunktmoodul: Wahlmodul: Ja</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS: 2 SWS Vorlesung 2 SWS Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h: 60 h Präsenzzeit: 120 h Selbststudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Programmierkenntnisse, Grundlagen der Informatik, Digitaltechnik, Mikroprozessoren oder Rechnerarchitektur, Regelungstechnik, Mathematik</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse</td>
<td>Beurteilung und Bewertung von Modellen unterschiedlichen Rechnerarchitekturen. Bestimmung der Zuverlässigkeitsparameter. Ableiten der der Klassifizierung gegebener Architekturmodelle</td>
</tr>
</tbody>
</table>

Lernergebnisse in Bezug auf die Studiengangsziele:
- Erwerben von vertieftem Wissen in mathematisch-naturwissenschaftlichen Bereichen
- Erwerben von vertieften Kenntnissen in den elektrotechnischspezifischen Grundlagen
- Erwerben von erweiterten und angewandten fachspezifischen Grundlagen
- Erkennen und Einordnen von komplexen elektrotechnischen und interdisziplinären Aufgabenstellungen
- Sicheres Anwenden und Bewerten analytischer Methoden
- Selbständiges Entwickeln und Beurteilen von Lösungsmethoden
- Einarbeiten in neue Wissensgebiete, Durchführen von Recherchen und Beurteilen der Ergebnisse
- Tiefgehende und wichtige Erfahrungen in praktischen technischen und ingenieurwissenschaftlichen Tätigkeiten
- Arbeiten und Forschen in nationalen und internationalen Kontexten

Funktionsblockanalyse, Markovmodell, etc. Test-, Prüfverfahren, Beispielanwendungen aus verschiedenen Anwendungsbereichen

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Form:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prüfungsleistungen: Klausur 120 Min. oder mündliche Prüfung</td>
</tr>
<tr>
<td></td>
<td>Studienleistungen: Hausarbeit, Referat/Präsentation</td>
</tr>
</tbody>
</table>

| Medienformen: | Beamer, Tafel, Papier, Demonstration an PC und Modellen |

Literatur:	Barlow, R. E., Engineering Reliability, ASA.SIAM 1998
	Bitter, P., Technische Zuverlässigkeit, Springer 1977
	Leitch, R. D., Reliability Analysis for Engineers, Oxford Science Publication 1995
	Börcsök, J. Electronic Safety Systems, Hüthig 2004
	Skript, wird zu Veranstaltungsbeginn ausgegeben. Weitere Literatur wird in der Lehrveranstaltung bekannt geben.