
Locality-Flexible and Cancelable Tasks
for the APGAS Library

Jonas Posner
Research Group Programming Languages / Methodologies
University of Kassel, Germany
jonas.posner@uni-kassel.de https://www.uni-kassel.de/

go/EuroHPC20

Motivation
• Parallel programs should deal with both shared and distributedmemory.
• Many applications deploy locality-flexible tasks that can be run properly on any

resource.
• Programmers do not want to worry about load balancing.
• Someapplications, suchas searchproblems, benefit fromacancellation if a specific

result is reached.
• Needed: Dynamic load balancing over all resources and an easy to use

cancellation option provided by the runtime.

Background
• The APGAS library is part of IBM’s X10 project and implements an asynchronous

PGAS (Partitioned Global Address Space) variant in Java.
• A place comprises a partition of the global address space and a subset of the

computational resources.
• Tasks can be created asynchronously on user-specified places.

Design
• For intra-place load balancing, each place maintains Java’s Fork/Join-Pool with

multiple workers.
• For inter-place load balancing, each place maintains one manager thread, which

follows the lifeline scheme.
• A manager monitors its local pool and tries to steal tasks from remote places if the

local pool gets empty (coordinated work stealing).
• Stolen tasks are inserted into the local pool and scheduled to all local workers by

Java’s Fork/Join-Pool.
• Eachmanager logs its incoming and outgoing steals.
• When a place runs out of tasks, the manager sends its steal log to place 0 and goes

inactive.
• An inactive manager is reactivated by a new task in its pool.
• The manager on place 0 accumulates all steal logs and thus performs the global

termination detection.
• Cancellation dequeues all system-wide unprocessed tasks.

CPU

Place

Worker Manager

...
Place

CPU CPU CPU CPU CPU

Worker Worker Worker Worker WorkerManager

Figure 1: Hybrid Work Stealing for Intra- and Inter-Place Load Balancing

RelatedWork
• HabaneroUPC++: Provides an asyncAny construct. In contrast to our

implementation, it uses RDMA for victim selection, a dedicated CPU core for
work stealing, binds to C++, tasks cannot be canceled.

• Charm++: Distributed objects of iterative applications can be migrated
automatically between processors using various load balancing strategies.

References
[1] J. Posner and C. Fohry. “A Combination of Intra- and Inter-place Work Stealing for the APGAS

Library”. In: Parallel Processing and Applied Mathematics. Springer, 2018, pp. 234–243.
[2] J. Posner and C. Fohry. “Hybrid Work Stealing of Locality-Flexible and Cancelable Tasks for the

APGAS Library”. In: The Journal of Supercomputing (2018).
[3] Jonas Posner. Extended APGAS library repository. 2019. URL: https : / / github . com /

posnerj/PLM-APGAS.

Solution
• We have extended APGAS by dynamic hybrid work stealing, working on shared and

distributedmemory simultaneously.
• APGAS programmers use independent locality-flexible sequential tasks and do not

need to worry about load balancing.
• Results can be easily stored and reduced.
• All system-wide unprocessed tasks can be canceled.
• Usable through some novel constructs, mainly asyncAny.

Example: Approximation ofπ
1 // Blocks until all tasks within have been processed
2 finishAsyncAny(() -> {
3 for (long i = 0; i < numTasks; ++i) {
4 // Submits locality-flexible and cancelable tasks
5 asyncAny(() -> {
6 long tmp = 0;
7 for (long j = 0; j < pointsPerTask; ++j) {
8 double x = 2 * random() - 1.0;
9 double y = 2 * random() - 1.0;

10 tmp += (x * x + y * y <= 1) ? 1 : 0;
11 }
12 // Adds the task result to the worker result
13 mergeAsyncAny(new PiRes(tmp, pointsPerTask));
14 // Reduces all worker result and cancels the
15 // calculation when the threshold is reached
16 if (reduceAsyncAny().getResult() > threshold) {
17 cancelAllAsyncAny();
18 }
19 });
20 }
21 });
22 // Reduces all worker results
23 PiRes piRes = (PiRes) reduceAsyncAny();
24 long result = piRes.getResult();
25 long points = piRes.getPoints();
26 System.out.println("Pi=" + 4.0 * result/points);

Performance

Sp
ee
du
p

Nodes (Worker)

UTS
NQueens

BC
TSP
Pi

MatMul

20

40

60

80

100

120

1 (4
0)

8 (
32
0)

16
(64
0)

32
(12
80
)

64
(25
60
)

128
(51
20
)

Figure2: SpeedupsofUnbalancedTreeSearch (UTS),NQueens, BetweennessCentrality
(BC), Travel Salesmen Problem (TSP), Pi and Matrix Multiplication (MatMul) with up
to 128 Nodes, each with 40 Workers (in total 5120), over execution time of one node
(40 Workers). Parallel implementations use asyncAny and strong scaling.

Future Work
• Fault-tolerance for asyncAny to tolerate permanent place crashes. Crashes are

automatically detected and lost tasks are restored from task backups at runtime.
• Malleability for asyncAny. Places can be added and removed to running

applications and tasks are always distributed accordingly.

The EuroHPC Summit Week conference series receives funding from the European Union's Horizon 2020 research 

and innovation programme under grant agreement No 800957 (EXDCI-2), 823767 (PRACE-6IP), 824151 (HPC-GIG).
#EHPCSW

Title example poster presentation

Subtitle of the poster 

https://github.com/posnerj/PLM-APGAS
https://github.com/posnerj/PLM-APGAS

