
Resource Elasticity at Task-Level
Jonas Posner

Advisor: Prof. Dr. Claudia Fohry
University of Kassel, PLM, Germany
{jonas.posner | fohry}@uni-kassel.de

Abstract—Adaptive resource management of supercomputers enables the resources of running jobs
to be changed dynamically, which highly improves the throughput of supercomputers compared to
conventional static resource management. However, adaptivity must be addressed by both global job
schedulers and user applications, for which a non-negligible additional development effort arises.

This work proposes a novel resource elasticity scheme at the intermediate level of a task-based runtime
system. Applications using our runtime system automatically adapt to the addition and release of
multiple compute nodes and dynamically balance the load without requiring additional development
effort. Experiments using up to 128 nodes demonstrate low costs and great scalability for both adding
and releasing multiple compute nodes on-the-fly.

Keywords—Resource Elasticity, Malleability, Task-based Parallel Programming

1 Introduction

Adaptive resource management of supercomputers offers several benefits compared to conventional static
resource management, including highly improved global throughput and decreased energy consumption [1, 2].
However, adaptivity must be backed by at least three major layers: (1) global job schedulers, (2) programming
systems, and (3) algorithms/applications. Moreover, a communication API between (1) and (2) must be
provided. Recent research addresses these layers, but no comprehensive solution has yet been established.

Elastic algorithms cause a non-negligible additional development effort, and often focus on iterative
approaches that automatically provide explicit synchronization points. This work, in contrast, proposes a
novel resource elasticity scheme at the intermediate level of a task-based runtime system. Applications using
our runtime automatically adapt to the addition and release of multiple compute nodes and dynamically
balance the load without requiring explicit synchronization points or additional programming effort.

We build on the dynamic independent tasks pattern (DIT ), which is well suited for tree-based algorithms
solving search, optimization, and approximation problems [3, 4]. In DIT, tasks encapsulate sub-computations
that can be executed in parallel to other tasks. Tasks can not communicate with other tasks, except for
parameter passing when generating child tasks at runtime. Typically, DIT is coupled with work stealing to
balance the load dynamically at runtime. This work considers a multi-threaded lifeline-based variant [5], in
which each compute node runs a single process that maintains multiple worker threads. Local workers share
tasks with other local workers, and only when the entire process runs out of tasks, the process attempts to
steal tasks from random processes, followed by lifeline buddies. The latter are predetermined by a graph,
and record unsuccessful steal requests and possibly answer them later.

Section 2 sketches our scheme, Section 3 reports experiments, and Section 4 finishes with conclusions.

2 Resource Elasticity Scheme

Addition and release of compute nodes is controlled by process 0 (denoted as P0), which can not be released.
Resource changes can be triggered any time, but multiple requests are handled sequential. Added processes
are denoted as P(add), extracted ones as P(rel), and staying ones as P(stay). Following actions are
performed concurrently to task processing, but not to work stealing.

Release: P0 broadcasts a list of all P(rel). Each P(rel) will no longer send steal requests to other
processes. Each P(stay) recalculates the lifeline graph avoiding a dissection of it and deletes all open steal
requests from/to any P(rel) to avoid sending/receiving tasks to/from any P(rel). Each process notifies P0
of the completion of these actions. When P0 has received all acknowledgments, it is guaranteed that no steal
requests related to any P(rel) are open and no more will be sent. Nevertheless, any P(rel) may still process
tasks. Thus, P0 causes each P(rel) to stop task processing, and to send all open tasks and interim results
to a lifeline buddy (if no lifeline buddy stays, a random P(stay) is chosen). After system-wide success, all
P(rel) have no tasks left, and will not be included into any steal request. Thus, P0 shuts down all P(rel).

Add: P0 starts all P(add), which automatically connect to the running application. Afterwards, P0
causes all processes to recalculate the lifeline graph, and all new lifeline buddies of each P(add) immediately
send tasks to them.



3 Experiments

We implemented the elasticity scheme by extending the multi-threaded Global Load Balancing library [5] and
used the elastic runtime “APGAS for Java” [6] for parallelization. Experiments were run on Goethe-HLR [7]
using up to 128 nodes, each providing two 20-core CPUs. We started one process per node; each with
40 worker threads. We deployed two synthetic benchmarks (called StatSyn and DynSyn), which perform
some placeholder computations to provide smooth weak scaling enabling an accurate analysis of running
times. All runs were configured with a base computation time of 100s, so that run without any resource
changes takes this time plus some time for work stealing. Adding and releasing compute nodes is triggered
after 50s running time, and affects the total running time.

StatSyn generates 6K tasks per worker and distributes them evenly at the beginning. DynSyn starts the
computation with one task, and generates a perfect m-ary task tree dynamically at runtime, resulting in an
average of 10M tasks per worker. For both benchmarks, tasks have a 20% variation in their duration.

Figures 1 and 2 report the running time overheads for halving and doubling the number of compute nodes,
respectively. Releasing costs vary between 0.01s and 0.26s for StatSyn and 0.19s and 0.45s for DynSyn, and
are mainly caused by sending tasks and results from P(rel) to P(stay). Adding costs vary between 1.40s
and 1.84s for StatSyn and 0.37s and 0.76s for DynSyn, and are mainly caused by the delay of new workers
until they can start task processing. Thus, adding nodes incurs slightly higher costs than releasing nodes.
Adding costs are about 1s higher for StatSyn than for DynSyn, because proportionally more additional work
stealing is caused for StatSyn than for DynSyn. Since both releasing and adding new compute nodes is
performed in a distributed way and asynchronously to task processing, the costs increase only gently with
the number of nodes, resulting in good scalability.

T
im

e
in

se
c

Released Nodes

DynSyn
StatSyn

0

0.1

0.2

0.3

0.4

1 2 4 8 16 32 64

Figure 1: Costs for releasing nodes

T
im

e
in

se
c

Added Nodes

DynSyn
StatSyn

0

0.5

1

1.5

2

1 2 4 8 16 32 64

Figure 2: Costs for adding nodes

4 Conclusions

In this work, we have proposed a novel task-level resource elasticity scheme that enables the addition
and release of compute nodes on-the-fly, without requiring explicit synchronization points or additional
programming effort. We have conducted experiments with our implementation of the scheme, which have
shown low costs and good scalability for both adding and releasing compute nodes.

Future work should consider more benchmarks and a deeper cost analysis. In addition, the resource
elasticity scheme should be extended to be able to cope with unexpected resource changes, such as
fail-stop failures.

References
[1] S. Iserte, R. Mayo et al., “DMRlib: Easy-coding and efficient resource management for job malleability,” TC, 2020.

[2] M. Chadha, J. John et al., “Extending SLURM for dynamic resource-aware adaptive batch scheduling,” in HiPC, 2020.

[3] B. Archibald, P. Maier et al., “YewPar: Skeletons for exact combinatorial search,” in PPoPP, 2020.

[4] R. Harrison, G. Beylkin et al., “MADNESS: A multiresolution, adaptive numerical environment for scientific simulation,”
SIAM, 2016.

[5] P. Finnerty, T. Kamada et al., “Self-adjusting task granularity for global load balancer library on clusters of many-core
processors,” in PMAM, 2020.

[6] O. Tardieu, “The APGAS library: resilient parallel and distributed programming in Java 8,” in SIGPLAN, 2015.

[7] Goethe-HLR, 2021. [Online]. Available: https://www.top500.org/system/179588


