
Resource Elasticity at Task-Level
Jonas Posner
Advisor: Prof. Dr. Claudia Fohry
Research Group Programming Languages / Methodologies
University of Kassel, Germany
{jonas.posner | fohry}@uni-kassel.de

https://www.uni-kassel.de/
go/IPDPS21

Motivation
• Adaptive resourcemanagementof supercomputershighly
improve throughput and decrease energy consumption.

• Adaptivity must be backed by at least three major layers:
1. global job schedulers,
2. programming systems, and
3. algorithms/applications.

• Recent research addresses these layers, but no
comprehensive solution has yet been established.

• Problem: Elastic algorithms cause a non-negligible
additional development e�ort.

Contribution
• Thisworkproposes a novel resource elasticity scheme:
• Applications using our runtime automatically adapt to
the addition and release of multiple compute nodes

• No explicit synchronization points or additional
programming e�ort are required.

• Intermediate level of a task-based runtime system.
• The load is automatically balanced dynamically.

Dynamic Independent Tasks
• Tasks are free of side e�ects.
• Task processing may generate a task result and new tasks.
• Task results are reducible.
• Each worker maintains a partial result.
• The final result is computed from the partial results.
• Each compute node runs a single process that maintains
multiple workers.

• Local workers share tasks with other local workers.
• When a process runs out of tasks, the process attempts
to steal tasks from random processes, followed by lifeline
buddies, which are predetermined by a graph.

Resource Elasticity Scheme
• Addition and release of nodes is controlled by process 0,
which can not be released.

• Resource changes can be triggered any time, but multiple
requests are handled sequential.

• Actions are performed distributed and asynchronously to
task processing, but not to work stealing.

• When releasing nodes:
• Thecorrespondingprocesses stopprocessingandsend
all remaining tasks and results to staying processes.

• The lifeline-graph is recalculated to exclude the
processes to be released from future work stealing.

• When adding nodes:
• New processes are started on these nodes.
• The lifeline-graph is recalculated, with the new
processes automatically being given tasks.

Experiments
• We implemented the elasticity scheme and conducted
experiments with up to 128 nodes.

• Two synthetic benchmarks (StatSyn and DynSyn) provide
smooth weak scaling with a base calculation time of 100s.

• Adding and releasing compute nodes is triggered a�er 50s
running time, and a�ects the total running time.

Conclusion
• Our novel task-level resource elasticity scheme enables
the addition and release of nodes on-the-fly.

• No explicit synchronization points or additional
programming e�ort is required.

• Experiments have shown low costs and good scalability
for both adding and releasing nodes.

• Future work should integrate handling unexpected
resource changes, such as fail-stop failures.

Performance
Costs for Releasing Nodes

Ti
m
e
in
se
c

Released Nodes

DynSyn
StatSyn

0

0.1

0.2

0.3

0.4

1 2 4 8 16 32 64

Costs for Adding Nodes

Ti
m
e
in
se
c

Added Nodes

DynSyn
StatSyn

0

0.5

1

1.5

2

1 2 4 8 16 32 64


