
Exploiting Non-Uniform Reuse for Cache Optimization:
A Case Study

Claudia Leopold
Friedrich-Schiller-Universität Jena

Institut für Informatik
07740 Jena, Germany

claudia@informatik.uni-jena.de

Keywords: Data locality, caching, program restructuring

ABSTRACT
Due to the growing gap between processor speeds and memory
speeds, cache optimizations have an increasing impact on sequen-
tial and parallel program performance. Existing techniques such as
loop tiling focus on reuse between uniformly generated references,
that is, between array accesses whose index expressions differ in a
constant term only. In this paper, we show that the exploitation of
non-uniform reuse can be worthwhile as well. We introduce two
novel program restructuring techniques called folding and snaking,
and study their performance impact on an exemplary loop nest.
Folding achieves a speedup of up to 2.5, for this example, and the
combined speedup of folding and tiling is up to 5.8.

1. INTRODUCTION
As has been widely observed, the performance of programs strongly
depends on their ability to use caches efficiently. The importance
of cache consciousness grows as the gap between processor speeds
and memory speeds is getting larger. Furthermore, in shared- mem-
ory parallel machines, the existence of multiple processors increases
the memory load.

To avoid program slowdown by memory access latency, data should
be reused multiple times after having been loaded into cache. This
can be achieved by program restructuring. Besides other factors, it
is in particular the locality of a program whose improvement leads
to speedups. Locality, or more specifically data locality, denotes
the degree of concentration of the accesses to the same cache line
during program execution.

Several locality optimization techniques have been proposed [1, 12,
17, 18], part of which are used in commercial compilers. Examples
of techniques include:

• Loop permutation – Changing the order of loops in a nest

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC 2001, Las Vegas, NV
c© 2001 ACM 1-58113-324-3/01/02...$5.00

• Loop tiling – Blocking the loop iterations as explained later,
and

• Array transpose – Changing the storage order of matrices,
for instance from row-major to column-major.

Most of the existing transformations refer to loop nests. As a com-
mon characteristic, these transformations exploit either self-reuse
(a single program statement accesses the same cache line multiple
times), or reuse between uniformly generated references [5, 17]. A
uniformly generated reference is a pair of array accesses whose in-
dex functions differ in a constant term only. For example, in the
loop nest

for (i=2; i<N; i++)
for (j=2; j<N; j++)

A[i] = A[i+1] + A[i-2] +A[j]

the references A[i], A[i+1], and A[i−2] are uniformly generated,
whereas the references A[i] and A[j] are not.

Wolf and Lam [17] state that “little exploitable reuse exists between
non-uniformly generated references”, and thereby refer to a specific
class of transformations (unimodular transformations and tiling).
In this paper, we reconsider this statement, taking other transfor-
mations into account. We show that if a program exhibits non-
uniform reuse, then its exploitation can improve the performance
significantly. Therefore we study an example program and investi-
gate in-depth the performance impact of various optimizations. We
introduce a novel transformation called folding that exploits non-
uniform reuse. In our example, folding achieves speedups of 1.14
to 2.5. It is thus comparable to tiling, the transformation that has
previously been recommended for the example. Tiling and folding
can be combined and then achieve speedups of up to 5.8.

Folding has been invented with the help of a locality optimization
tool called IBLOpt. This tool suggests a second transformation,
snaking, but the performance impact of snaking is minor. For both
transformations, we present performance numbers measured on a
Pentium PC and a DEC Alpha workstation. Furthermore we inves-
tigate the interplay between the novel transformations and standard
compiler techniques. We refer to gcc and the Portland Group C
compiler. In addition to running times, we measure cache misses
and other metrics through the processor-internal hardware perfor-
mance counters.

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.

SAC 2001, Las Vegas, NV
© 2001 ACM 1-58113-287-5/01/02…$5.00

560

Section 2 of this paper introduces the example program, outlines
the IBLOpt tool, and explains the suggested transformations fold-
ing and snaking. Section 3 describes the experimental setting and
then lists and discusses our experimental results. Section 4 surveys
related work, and Section 5 finishes with conclusions.

2. FOLDING AND SNAKING
Our example program is given in Fig. 1. It has been adapted from
Wolf and Lam [17], where it was used as an illustrative example for
tiling. In [17], f was not specified, but assumed to be any simple
function that accesses its arguments. We set f(a, b) = a + b since
a concrete function is needed for the experiments. Furthermore we
have inserted initialization and printout statements to prevent the
compiler from applying unwanted optimizations, in particular dead
code elimination.

float f(float a, float b) return a+b;
main() {
/* Declarations and Initializations */
for (i=0; i<N; i++)

for (j=0; j<N; j++)
h+=f(A[i],A[j]);

/* Printout */
}

Figure 1: Input program

The example was input into the IBLOpt locality optimization tool
[9, 10]. This tool produces suggestions for an improved program
structure by optimizing one or several small instances of a given
program. It unrolls the loops of the instance into a sequence of ele-
mentary assignment statements, and reorders the assignments such
that the locality is improved and data dependencies are respected.
To estimate the quality of the modified programs, the tool refers to
a virtual cache whose capacity must be less than the number of in-
puts. In our case, the small instance was formed by setting N = 6,
cache capacity= 4, and cache line size= 2.

Before we discuss the suggested transformations, let us first look at
Fig. 2a), which visualizes the input program. Note that the program
refers to a one-dimensional array, but both axes are indexed with
this array, and thus a two-dimensional structure arises. Position (i,
j) in the figure stands forf(A[i], A[j]). The arrows indicate the
order of executing the function calls.

Figure 2b) illustrates folding. For all i, j, the function calls f(A[i],
A[j]) and f(A[j], A[i]) access the same array elements, and thus
locality is improved by executing the calls of each pair immediately
after each other. Visually, this transformation corresponds to fold-
ing the lower left triangle of the figure over the upper right one. As
indicated by the arrows, the execution order is thus

(0, 0), (0, 1), (1, 0), (0, 2), (2, 0) . . .

Figure 2c) shows snaking. This transformation improves locality
since cache line (A[4], A[5]) is loaded into cache in the first row of
Fig. 2c), and reused in the second.

Folding and snaking can be combined with tiling. This transfor-
mation is well-known, and is illustrated in Fig. 2d). Combining
folding, snaking, and tiling, we obtain the program in Fig. 2e).

0

1

2

3

4

5

0 1 2 3 4 5

0

1

2

3

4

5

0 1 2 3 4 5

0

1

2

3

4

5

0 1 2 3 4 5

0

1

2

3

4

5

0

1

2

3

4

5

0 1 2 3 4 5

a) b)

c) 0 1 2 3 4 5d)

e)

Figure 2: Program Variants: a) input, b) fold, c) foldSnake, d)
tile, e) foldSnakeTile

Figure 2e) is the output of the IBLOpt tool. To state it in more de-
tail, IBLOpt outputs a sequence of statement instances and a struc-
tured representation thereof that correspond to the execution order
in Fig. 2e) (except for minor differences). It reports a number of
simulated cache misses of 14 for the program in Fig. 2a), 8 for
Fig. 2d), and 4 for Fig. 2e). From the IBLOpt output, the codes in
Fig. 3 have been derived manually. We use the abbreviations fold
if only folding is applied to the input program, tileFold if tiling and
folding are applied, and so on.

Folding exploits reuse between non-uniformly generated references
A[i] and A[j]. According to the classification scheme of Wolf and
Lam [17], this reuse is group-temporal, since different array ac-
cesses reuse the same data element. Snaking, in contrast, exploits
self-temporal reuse, since the data element is reused by the same
array access.

Although we refer to a single example program in this paper, fold-
ing and snaking are more general. Snaking can be combined with
tiling in many loop programs, e.g. in matrix multiplication, but
only occasionaly improves the performance. Folding can be gen-
eralized to loop nests in which two or more non-consecutive loop
iterations access the same data, provided that the accesses occur at
symmetric positions in the program, and that the transformation is
not prevented by data dependencies. Symmetry is required since

561

a) for (jj=0;jj<N;jj+=s)
for (i=0;i<N;i++)
for (j=jj;j<jj+s && j<N;j++)

h+=f(A[i],A[j]);

b) for (i=0;i<N;i++)
h+=f(A[i],A[i]);
for (j=i+1;j<N;j++)
h+=f(A[i],A[j]);
h+=f(A[j],A[i]);

c) for (jj=0;jj<N;jj+=s)
for (j=jj;j<jj+s && j<N;j++)
for (i=jj;i<jj+s && i<N;i++)
h+=f(A[j],A[i]);

for (i=jj+s;i<N;i++)
for (j=jj;j<jj+s && j<N;j++)
h+=f(A[j],A[i]);
h+=f(A[i],A[j]);

d) for (jj=0;jj<=N-2*s;jj+=2*s)
for (j=jj;j<jj+s;j++)
for (i=jj;i<jj+s;i++)
h+=f(A[j],A[i]);

for (i=jj+s;i<N;i++)
for (j=jj;j<jj+s;j++)
h+=f(A[j],A[i]);
h+=f(A[i],A[j]);

for (i=N-1;i>=jj+2*s;i--)
for (j=jj+s;j<jj+2*s;j++)
h+=f(A[j],A[i]);
h+=f(A[i],A[j]);

for (j=jj+s;j<jj+2*s;j++)
for (i=jj+s;i<jj+2*s;i++)
h+=f(A[j],A[i]);

for (j=jj;j<N;j++)
for (i=jj;i<N;i++)
h+=f(A[j],A[i]);

Figure 3: Program variants: a) tile, b) fold, c) tileFold, d) tile-
FoldSnake (braces are omitted for brevity)

the accesses of each pair must be brought together without overly
complicating the program structure.

3. EXPERIMENTAL EVALUATION
We experimentally compared the running time and other perfor-
mance metrics of the program variants input, tile, fold, tileFold, and
tileFoldSnake. Here, input refers to the input program from Fig. 1,
and the other program variants are the same as in Fig. 3, except that
declarations, initialization, and printout were added. N was set to
30000. With this value, the running time is manageable, and matrix
A fits neither into L1 cache nor into L2 cache (for the D-variants).
In preliminary experiments with N = 300000, comparable results
were obtained.

The entries of array A are either type float, or a structure type that
comprises seven floating point numbers. In the former case, the
program variants are marked with a final F, and in the latter with a
final D: inputF, tileF, inputD, and so on. The D-variants reduce the
amount of spatial reuse.

We ran the experiments on two machines: a Pentium PC and a DEC
Alpha workstation. The PC has a 266 MHz Pentium II processor
with 16 KByte L1 data cache, 16 KByte L1 instruction cache, and
512 KByte L2 mixed data/instruction cache. For both L1 and L2,
the cache line size is 32 Byte (= 8 floating point numbers), and the

caches are 4-way set-associative.

The DEC Alpha workstation has a 500 MHz Alpha 21164 proces-
sor with 8 KByte L1 data cache, 8 KByte L1 instruction cache, 96
KByte L2 mixed data/instruction cache, and 8 MByte L3 cache.
The line sizes of L1 and L2 are 32 Byte. L1 and L3 are direct-
mapped, and L2 is 3-way set-associative.

We worked with two different compilers: gcc and the Portland
Group C Compiler pgcc. Except where otherwise noted, options
gcc -O4 -funroll-loops and pgcc -fast -Mvect -Minline -Munroll
were used. We found these options to be most efficient forinputF.

Options -O4 and -fast switch on various compiler optimizations
that are rather unrelated to caches. -funroll-loops and -Munroll al-
low the compiler to unroll loops. -Minline allows the compiler to
eliminate the function call to f , carrying out the addition directly in
the main function. Inlining is automatically switched on with gcc
-O4.

The option -Mvect instructs pgcc to attempt vectorization, which
includes tiling and other loop transformations. In our example,
these transformations are not applied. As gcc has no corresponding
option anyway, the programs were tiled manually in both cases.

We chose the tile sizes by trying out the whole spectrum of reason-
able opportunities and selecting the optimum, independently for
each program variant. Figure 4 shows examples of outputs that we
obtained during this stage. Here and in all tables below, running
times are measured in seconds.

Figure 4 (and Tables 3 and 4 below) report the number of cache
misses. These numbers have been obtained with the Performance
Counter Library PCL [2], a set of architecture-independent library
functions for accessing processor-internal hardware performance
counters. PCL calls have been inserted into the source programs
right before and after the loops, so that only the loop nests of Fig. 3
were measured, not the initialization or printout statements. Nev-
ertheless, the measured values have limited accuracy. Particularly
on the PC, they refer to all active processes, not just the one we
are interested in. To reduce this problem, the experiments were
run during periods of low load, and each experiment was repeated
ten times. We report the minimum value obtained; as argued in
Mukhopadhyay [13], the minimum is more meaningful than the
average.

Tables 1 to 4 show representative results in a summarized form.
For pgcc, a compiler directive has been inserted into the source
program such that loop distribution is prevented for loops with a
body of the form h+ = . . . ; h+ = Otherwise, pgcc splits
these loops into two, and thus destroys the effect of folding.

Table 1: Performance Overview of F-variants – Running Time
inputF tileF foldF tileFoldF tiFoSnF

PC, gcc 14.33 15.95 11.08 10.26 10.22
PC, pgcc 14.20 16.90 12.48 10.39 12.61
Alpha 11.10 12.77 8.99 10.96 12.6

The results clearly demonstrate the usefulness of folding. With
speedup being defined as the ratio between the running times of
the input and current programs, the speedup is a factor of 1.14 to
2.5. The cache misses are reduced by a factor of about two. The

562

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

R
un

ni
ng

 T
im

e

Tile Size

PC, gcc, Running Time

inputD
foldD
tiledD

tileFoldD
tileFoldSnakeD

1e+06

1e+07

1e+08

1e+09

0 200 400 600 800 1000

L1
 D

at
a

C
ac

he
 M

is
se

s

�

Tile Size

PC, gcc, L1 Misses

100000

1e+06

1e+07

1e+08

1e+09

0 200 400 600 800 1000

L2
 D

at
a

C
ac

he
 M

is
se

s

�

Tile Size

PC, gcc, L2 Misses

Figure 4: Influence of Tile Size on Performance Measures

Table 2: Performance Overview of D-variants – Running Time
inputD tileD foldD tileFoldD tiFoSnD

PC, gcc 60.83 19.26 24.58 10.49 10.45
PC, pgcc 63.9 21.03 25.69 12.06 13.08
Alpha 50.97 14.80 27.01 11.99 13.20

Table 3: Performance Overview of D-variants – L1 Misses di-
vided by 106

inputD tileD foldD tileFoldD tiFoSnD
PC, gcc 788.39 5.14 394.00 1.08 2.58
PC, pgcc 789.24 7.95 394.08 3.79 1.44
Alpha 852.30 11.29 424.11 6.68 6.86

performance impact of snaking is minor: Whereas the number of
L2 cache misses is quite consistently reduced, the running time gets
worse in several cases.

As a general observation, speedups are much higher for the D- than
for the F-variants, because the F-variants can make better use of
spatial locality. Since a cache miss occurs only once per 8 array ac-
cesses, its cost is dominated by other delays. In consequence, tiling
speedups are low or even negative. The D-variants use less spatial
locality, and thus cache misses have a much higher performance
impact.

In almost all cases, tiling, folding, and snaking reduce the number
of cache misses. A few exceptions are probably due to conflict
misses. The overall performance, in contrast, is sometimes de-
graded. This degradation is due to a more complicated program
structure that increases the number of conditional tests, instruc-
tion cache misses etc. To better understand the reasons, we have
measured various other performance counters that are supported
by PCL. We found that in particular the number of mispredicted
branches goes up.

Folding does not only reduce the number of cache misses, but also
the number of floating point operations. By analyzing the gcc gen-
erated assembler code, we observed that when input carries out
the four operations h+=A[i]; h+=A[j]; h+=A[i]; h+=A[j]; fold car-
ries out the three operations reg=A[i]+A[j]; h+=reg; h+=reg. Only
part of the overall speedup is due to this effect, however. We have
checked that claim by replacing h+=f(. . .); h+=f(. . .) by h+=f1(
. . .); h+=f2(. . .), with f1 denoting addition and f2 subtraction.

A favorable property of folding is its amenability to a combina-
tion with tiling, in which the overall performance effect is approxi-
mately additive. In the first row of Table 2, for instance, the speedup
of tiling and folding is about a factor of three each, and the speedup
of the combined transformation is about a factor of six.

Finally, we investigated the following variant of our original input
program, in which f is an addition of three arguments:

for (i=0; i<N; i++)
for (j=0; j<N; j++)

for (k=0; k<N; k++)
h+=f(A[i],A[j],A[k]);

For this 3-dimensional example, we implemented tiling and fold-

563

Table 4: Performance Overview of D-variants – L2 Misses di-
vided by 106

inputD tileD foldD tileFoldD tiFoSnD
PC, gcc 688.95 1.57 207.18 0.49 0.22
PC, pgcc 699.87 1.68 227.38 0.57 0.35
Alpha 414.49 2.11 191.27 1.00 0.93

Table 5: Running Times for the 3-dimensional Program
inputF tileF foldF inputD tileD foldD

PC, gcc 15.28 19.43 12.78 26.40 19.75 12.79
PC, pgcc 16.04 26.42 13.25 26.51 30.38 13.73
Alpha 12.45 14.25 9.10 20.05 14.45 10.16

ing, and measured running times for the F- and D-variants. The
results are qualitatively the same as in the previous example, and
are summarized in Table 5.

4. RELATED WORK
Cache optimization techniques include program restructuring [11,
17] and data transformations [3, 7, 14, 16]. Wolf and Lam [17]
provide a theoretical foundation for perfect loop nests, and suggest
an algorithm that combines loop permutation, reversal, skewing,
and tiling.

Work on tiling has, among other aspects, investigated the choice
of tile size [4, 14], and the combination of tiling with padding [6,
14]. These aspects concern the avoidance of conflict misses, and
are typically uncoupled from the decision to tile or not. Rivera and
Tseng [15] discuss the application of tiling to multi-level memory
hierarchies and conclude that it is usually sufficient to base pro-
gram restructuring on a two-level model. An alternative to tiling
is shackling [8]. This class of transformations is quite general, but
includes neither folding nor snaking.

5. CONCLUSIONS
We have studied in-depth the performance impact of various pro-
gram restructuring techniques on the example of a particular loop
nest. Two novel transformations, folding and snaking, were sug-
gested, of which in particular folding was found to be useful. Fold-
ing exploits the group-temporal reuse between non-uniformly gen-
erated references, a performance potential that has thus far been
neglected in previous research. Folding achieves speedups of up
to 2.5 for our example and can profitably be combined with tiling.
In future work, we plan to investigate further applications, larger
problem sizes, and other compilers.

6. REFERENCES
[1] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler

transformations for high-performance computing. ACM
Computing Surveys, 26(4):345–420, Dec. 1994.

[2] R. Berrendorf and H. Ziegler. PCL: The Performance
Counter Library: A Common Interface to Access Hardware
Performance Counters on Microprocessors (Version 1.2),
1998/99. FZJ-ZAM-IB-9816, Available at
http://www.fz-juelich.de/zam/PCL/.

[3] S. Chatterjee and S. Sen. Cache-efficient matrix
transposition. In Proceedings of the Sixth IEEE International
Symposium on High-Performance Computer Architecture,
pages 195–205, 2000.

[4] S. Coleman and K. S. McKinley. Tile size selection using
cache organization and data layout. ACM SIGPLAN Notices,
30(6):279–290, June 1995.

[5] D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache
and local memory management by global program
transformation. Journal of Parallel and Distributed
Computing, 5(5):587–616, Oct. 1988.

[6] S. Ghosh, M. Martonosi, and S. Malik. Cache miss
equations: A compiler framework for analyzing and tuning
memory behavior. ACM Transactions on Programming
Languages and Systems, 21(4):703–746, Nov. 1999.

[7] M. Kandemir, J.Ramanujam, and A. Choudhary. Improving
cache locality by a combination of loop and data
transformations. IEEE Transactions on Computers, 48(2),
1999.

[8] I. Kodukula, K. Pingali, R. Cox, and D. Maydan. An
experimental evaluation of tiling and shackling for memory
hierarchy management. In Proceedings of the ACM Int.
Conference on Supercomputing, pages 482–490, 1999.

[9] C. Leopold. Arranging statements and data of program
instances for locality. Future Generation Computer Systems,
14:293–311, 1998.

[10] C. Leopold. Generating structured program instances with a
high degree of locality. In Proceedings of the 8th Euromicro
Workshop on Parallel and Distributed Processing, pages
267–274. IEEE Computer Society Press, 2000.

[11] K. S. McKinley, S. Carr, and C.-W. Tseng. Improving data
locality with loop transformations. ACM Transactions on
Programming Languages and Systems, 18(4):424–453, July
1996.

[12] S. S. Muchnick. Advanced compiler design and
implementation. Morgan Kaufmann Publishers, 1997.

[13] N. Mukhopadhyay. On the Effectiveness of Feedback-Guided
Parallelization. PhD thesis, University of Manchester, 1999.

[14] G. Rivera and C.-W. Tseng. A comparison of compiler tiling
algorithms. In Proceedings of the Int. Conference on
Compiler Construction, pages 168–182. Springer LNCS
1575, 1999.

[15] G. Rivera and C.-W. Tseng. Locality optimizations for
multi-level caches. In SC’99, 1999. Available at
http://w3.csc.ucm.es/Otros/sc99/techpap.htm.

[16] O. Temam, E. D. Granston, and W. Jalby. To copy or not to
copy: A compile-time technique for assessing when data
copying should be used to eliminate cache conflicts. In
Proceedings IEEE Supercomputing’93. IEEE Computer
Society Press, 1993.

[17] M. E. Wolf and M. S. Lam. A data locality optimizing
algorithm. SIGPLAN Notices, 26(6):30–44, June 1991.

[18] M. J. Wolfe. High Performance Compilers for Parallel
Computing. Addison-Wesley, 1996.

564

