
OpenCL – An effective programming model for data parallel computations at the
Cell Broadband Engine

Jens Breitbart and Claudia Fohry
Research Group Programming Languages / Methodologies

Universität Kassel, Germany
Email:{jbreitbart, fohry}@uni-kassel.de

Abstract—Current processor architectures are diverse and
heterogeneous. Examples include multicore chips, GPUs and
the Cell Broadband Engine (CBE). The recent Open Compute
Language (OpenCL) standard aims at efficiency and portabil-
ity. This paper explores its efficiency when implemented on
the CBE, without using CBE-specific features such as explicit
asynchronous memory transfers. We based our experiments on
two applications: matrix multiplication, and the client side of
the Einstein@Home distributed computing project. Both were
programmed in OpenCL, and then translated to the CBE. For
matrix multiplication, we deployed different levels of OpenCL
performance optimization, and observed that they pay off on
the CBE. For the Einstein@Home application, our translated
OpenCL version achieves almost the same speed as a native
CBE version.

Another main contribution of the paper is a proposal for an
additional memory level in OpenCL, called static local memory.
With little programming expense, it can lead to significant
speedups such as factor seven for reduction. Finally, we studied
two versions of the OpenCL to CBE mapping, in which the
PPE component of the CBE does or does not take the role of
a compute unit.

I. INTRODUCTION

Since a few years, advances in processor speed are chiefly
due to adding multiple cores to a single chip. Moreover,
a new generation of accelerators, e. g. GPUs, FPGAs and
the Cell Broadband Engine (CBE), has entered the market
and provides for a multiple of the processing power of even
multicore CPUs. Current architectures are diverse and het-
erogeneous, including features such as VLIW or SIMD pro-
cessing, special-purpose cores, complex memory hierarchies,
hierarchical arrangement of processors, and asynchronous
memory transfers.

To use the high performance potential of these architec-
tures, special programming techniques are required that, at
present, are low-level and architecture-specific. With the goal
to achieve portability and efficiency, the Open Compute Lan-
guage (OpenCL) [1] was suggested recently as a standard
for programming both multicore CPUs and accelerators. The
standard is currently supported by NVIDIA in a developer
version of their GPU driver, and by AMDs Stream SDK
for x86 CPUs and AMD GPUs. Apple ships an OpenCL
implementation with OS X 10.6. Furthermore, IBM released
a first technical preview of OpenCL for the Power/VMX and

CBE systems which, however, is still at an early stage of
development and requires developers to use features that are
uncommon on other hardware. Hence, the question remains
open as to which degree OpenCL achieves its goal.

This paper comes to a mainly positive answer for data
parallel computations on the CBE. Before we can explain
our results, some background on OpenCL and CBE is
needed, more details are given in Sects. II and III.

OpenCL is an industry standard from the Khronos group,
supported by AMD, IBM, Intel, NVIDIA, and others. It
models heterogeneous processing platforms, consisting of
a host and one or several devices. A device comprises
multiple compute units, composed of multiple processing
elements each. Computation is organized into work-groups
that contain work-items to be run in parallel. Work items
are mapped to processing elements, and work-groups are
mapped to compute units. Memory is organized as a hier-
archy, with a major bottleneck between local memories of
compute units and global memory. To speed up memory ac-
cesses, techniques such as switching between multiple work-
items mapped to the same processing element, asynchronous
memory accesses, and prefetching are used.

The CBE is the first incarnation of the Cell Broadband
Engine Architecture (CBEA), designed by a collaboration
between Sony, Toshiba and IBM. It is a single-chip multi-
processor that comprises one general-purpose CPU, called
PowerPC Processing Element (PPE), and up to eight special-
purpose compute engines, called Synergistic Processor Ele-
ments (SPEs). Memory is divided into local stores of SPEs
and main memory, there is no hardware cache at the SPEs.
Memory transfers must be managed by the programmer, who
can interleave transfers and computation for efficiency, or
use software caches in the local store.

Our concept of mapping OpenCL to CBE is quite obvious:
We identify the host with the PPE, and each compute unit
with an SPE. The SPEs sequentially process the work-items
that OpenCL runs in parallel on the processing elements.
Global memory is identified with main memory, and local
memory is identified with local store, the complete mapping
is more complicated and explained in Sect. III. While
a compiler will be clearly needed for practical use, this
experimental study relies on a manual implementation of

 sequential WG .. WG

 per WG parallel WI WI WI WI

static local memory

 global memory cache, if existent

 global memory

priv.
mem

priv.
mem

priv.
mem

local memory local memory

priv.
mem

host device (s)

 CU CU

 prefetch

asynchronous

PE PE PE PE

..

kernel

Figure 1. Extended OpenCL model

the mapping with C macros.
The question as to whether the mapping leads to an

efficient implementation of OpenCL on the CBE has differ-
ent aspects: First, OpenCL programs translated to the CBE
should have no significant performance loss as compared to
native CBE programs. We studied this question with a real
application, the client side of the gravitational physics simu-
lation Einstein@Home. We found that the OpenCL version
runs at almost the same speed as a native version developed
by the same author with about the same importance attached
to optimization.

Second, OpenCL exposes many hardware features that are
found in CBE in a somewhat different form. Variants of an
OpenCL program may use these features to a different de-
gree, depending on their level of optimization. The faster the
programs appear to be at the OpenCL level, the faster they
should run on the architecture. This relation obviously holds
for NVIDIA GPUs, as their native CUDA language is very
close to OpenCL. For CBE, we studied the relation with the
example of matrix multiplication at different optimization
levels. We found that ordering memory accesses for locality
and explicitly managing local memory pays off, whereas
asynchronous memory transfers do not.

Third, all major performance optimizations applicable
on the CBE should be possible to express at OpenCL
level. While the Einstein@Home result suggests this to be
basically true, we found a performance optimization that
can not yet be expressed: static local memory. In fact,

this optimization is not restricted to CBE, and we suggest
to extend OpenCL accordingly. In OpenCL, local memory
belongs to a work-group, but occasionally data are reused
between work groups. If they run on the same compute
unit, it is sufficient to store the data once. Static local
memory is different from global memory in that it can not
be accessed by the host and is typically faster, even faster
than global memory cache. We suggest to extend OpenCL by
an additional address space modifier for static local memory,
and provide two examples for the usefulness of this easy-to-
use technique: constant tables and reduction. For reduction,
speedups up to a factor of seven are achieved.

A forth contribution of this paper is experiments with the
mapping scheme. In addition to the scheme described above,
we studied a heterogeneous variant in which the PPE takes
the role of both the host and an additional compute unit.
This variant lead to additional speedups.

The paper is organized as follows. First, Sect. II gives
an overview of the OpenCL standard and Sect. III intro-
duces the CBE. Next, Sect. IV describes our mapping from
OpenCL to the CBE, including remarks on implementation.
Experiments with different optimization levels in OpenCL
and their performance impact on the CBE are reported
on in Sect. V. Section VI introduces the Einstein@Home
application and compares implementations with and without
OpenCL. Next, Sect. VII is devoted to the static local mem-
ory extension, and Sect. VIII to the heterogeneous mapping
scheme. The paper finishes with an overview of related work

 WG .. WG

 per WG sequential WI WI WI WI

static local mem

 global memory

priv
mem

priv
mem

priv
mem

local mem local mem

priv
mem

PPE

 (PPE) SPE SPE

asynch

..

kernel

software cache

local
store

sequential (interleaved)

Figure 2. Mapping of extended OpenCL model to CBE

and conclusions, in Sects. IX and X, respectively.

II. OPENCL

OpenCL is a framework for parallel computing consisting
of a language, API, libraries and a runtime system. It
was originally designed by Apple, and then turned over to
the Khronos Group. The first version of the standard was
released in May 2009.

As depicted in Fig. 1, OpenCL is based on a platform
model that divides a system into one host and one or several
devices (e.g. GPUs). The devices act as co-processors to the
host. They are subdivided into multiple so-called compute
units (CUs), which are again subdivided into one or multiple
processing elements (PEs). Note that the static local memory
component is not part of the standard, but an extension
proposed in this paper.

An OpenCL application is run on the host, which sends
instructions, bundled in special functions called kernels, to
the device for execution. The OpenCL standard defines a
data parallel and a task parallel programming model. The
former is the primary model, and we restrict consideration to
this one. In the data parallel model, the device runs multiple
instances of the kernel in parallel on different data. Each
instance is called a work-item (WI). While all work-items
run the same kernel, they may perform different instructions
at a time. Work-items can be arranged in so-called work-
groups (WGs). OpenCL defines indexing schemes by which
a work-item can be uniquely identified through either a
global ID, or a work-group ID together with a local ID.

The work-groups are assigned to CUs, where the work-
items of each group are run in parallel on the PEs. Typically,
multiple work-groups are assigned to the same CU, and
multiple work-items are assigned to a PE. Conceptually, both

are executed in sequence, but an implementation may use the
excess parallelism for hiding memory latency (by switching
between work-groups or work-items, respectively). Synchro-
nization of work-items is possible within a work-group only,
and takes the form of a barrier. OpenCL also supports a
fence operation to provide for memory consistency within a
work-group.

This model is almost identical to NVIDIAs GPU program-
ming model CUDA, except that CUDA uses different names.
In CUDA, work-items are called threads, and work-groups
are called threadblocks.

OpenCL also defines a programming language for writing
kernels, which is an extension of C. Kernels are executed
within their own memory domain and may not directly
access host main memory. Kernel memory is divided into
four distinct regions:

• Global memory, a kind of ”device main memory”,
can be accessed by all work-items and the host in
reads/writes.

• Constant memory is similar to global memory, except
that work-items may only read from this memory.

• Local memory is read/write memory local to a work-
group, and is shared by all work-items of this group.

• Private memory is local to each work-item.
The mapping of memory regions to the hardware is
implementation-defined, but typically local memory is faster
than global memory. The OpenCL programming language
defines type qualifiers to specify in which memory region a
variable is stored or a pointer points to.

As a kernel can neither access host main memory nor
dynamically allocate global and constant memory, all mem-
ory management must be done by the host. The OpenCL
API provides functions to allocate linear memory blocks in

local
store

local
store

cache
(2 levels)

 EIB

main memory

PPE SPE
1

SPE
6

. . .

. . .

explicitly managed
 (DMA)

Figure 3. Cell Broadband Engine overview

global or constant memory, as well as to copy data to or
from these blocks. In most cases, the host copies all input
data to the kernel memory domain prior to a kernel launch,
and the result back afterwards.

Memory access latency is arguably the most important
issue on modern processor architectures. On NVIDIA GPUs,
for example, accessing global memory costs up to 100 times
as much as executing a compute instruction for 32 work-
items. Due to this high discrepancy, program performance
is often dominated by memory access time, a problem
referred to as the memory wall. The problem is somewhat
reduced if the hardware caches global memory data on
the device, which OpenCL allows but does not require.
Moreover, OpenCL supports several techniques for hiding
memory latency:

• use of excess parallelism as described above
• asynchronous memory access, i.e., explicitly overlap-

ping calculations and memory transfers
• prefetching based on programmer hints as to which

global memory data are accessed next and should be
cached (if cache exists)

III. CELL BROADBAND ENGINE OVERVIEW

The CBE (and its corresponding architecture CBEA) is a
completely redesigned processor that was originally intended
to be used in gaming consoles, but is now used in areas
such as high performance computing as well. As depicted
in Fig. 3, it is a heterogeneous CPU that provides two
kinds of cores on the same chip: one PPE and up to eight
SPEs. The PPE is a relatively slow in-order CPU based on
the Power4 architecture, whereas most of the processing
power is provided by the SPEs. These are SIMD cores
with 256 KB of fast on-chip memory called local store.
All compute elements are connected through a high-speed

interconnect bus (EIB). The original CBE with 3.2 GHz
had a peak performance of over 200 GFLOPS for single-
precision, and 15 GFLOPS for double-precision arithmetic.
The current CBEA release, called PowerXCell, improves
double-precision performance to 100 GFLOPS. We used a
Playstation 3 with an original CBE with six SPEs for the
work presented in the following sections.

The CBE is typically programmed in C, processor-specific
functionalities are accessed through function calls. At assem-
bler level, the architecture also supports SIMD instructions,
which refer to 128 bits, i.e. four words.

The CBE tackles the memory wall in a different way from
other current processors. To bring more compute elements
onto the chip, it omits caches for the SPEs, and instead
focuses on interleaving computation and memory access.

A software challenge introduced by the CBE design is
the need for explicit management of memory transfers by
the programmer. PPE and SPEs are equipped with a DMA
engine. While the PPE can access main memory directly, an
SPE only has direct access to its own local store. Between
main memory and local store, data must be moved explicitly
by DMA transfers, and therefore data must be partitioned to
fit the limited size of this store. As an alternative, some
current compilers support software caching, i.e., part of the
local store is maintained as a conventional cache managed
automatically. Software caching comes at the price of not
being able to overlap calculations and memory transfers.

IV. OPENCL IMPLEMENTATION FOR THE CBEA

Both OpenCL and CBE programs are based on C,
extended by keywords and/or function calls. Ideally, an
implementation would automatically compile an OpenCL
program into a C program with function calls for CBE.
For the purposes of this experimental study, we chose

Table I
OVERVIEW OF PROGRAM VERSIONS

α naive matrix multiplication
β blocked matrix multiplication
γ blocked matrix multiplication with preloading
δ blocked matrix multiplication with preloading by vloadn bypassing cache
ε like δ, but with asynchronous memory transfers
ζ assembler version using SIMD units

Table II
RUNNING TIME IN SECONDS FOR MULTIPLYING TWO 2048 ∗ 2048 MATRIXES

Hardware PPE GTX 6 SPEs
Version α β γ δ ε ζ
Time (s) 1682 0.9 767 37.3 15.9 2.3 2.5 0.2

a simpler approach. We use a semi-automatic translation
scheme based on C macros, which requires slight changes
of the kernel syntax. Moreover, at the host side, function
calls resemble the inofficial OpenCL C++ bindings available
on the OpenCL homepage [2]. The bindings were chosen
since our programs partially rely on the CuPP library [3], a
framework of easier-to-use interfaces for reoccuring tasks.

Our implementation is illustrated in Fig. 2. It maps the
host to the PPE, and each CU to an SPE. A variant in
which the PPE additionally takes the role of another CU is
discussed in Sect. VIII. We experimented with one OpenCL
device only. In the base variant, which is referred to except
in Sect. VIII, work-groups are statically mapped to SPEs,
i.e., each SPE processes about the same number of work-
groups. The groups are processed sequentially, as are the
work-items in the groups. When a barrier or memory fence
is encountered, all work-items are run sequentally up to
this point, and then the program continues behind it. This
behavior is implemented by our macro based translation
scheme. At the beginning/end of a kernel function a macro
called START/END must be called. These macros start and
end loops that are used to sequentially execute the work
items. A barrier is implemented as a joined END and START
macro, which first end the loops and than restart the loops,
so it is guaranteed that all calculations for all work items
prior the barrier are executed before the barrier or memory
fence.

Global and constant memories are implemented as soft-
ware cached main memory, with the only difference that
constant memory is declared as const. Local and private
memories are both mapped to the local store of the SPEs.
Variables in local memory are stored once for each work-
group, and variables in private memory are stored once for
each work-item.

The implementation conforms to the relaxed memory
consistency model of OpenCL, which requires local memory
to be consistent at a barrier or fence only, and does not
require global memory to be consistent across work-groups.

As an aside, our mapping easily provides for atomic
operations, which are an optional extension of the OpenCL

standard. Local memory accesses are always atomic since
at no point multiple work-items of the same group are
executed. Global memory atomics correspond to the atomic
operations provided by IBMs Cell Broadband Engine SDK.

V. EVALUATION OF THE MEMORY SYSTEM

This section investigates to which degree performance op-
timizations at the OpenCL level pay off on the architecture.
For their importance, emphasis is given to optimizations
of memory accesses. The following evaluation is based on
the well-known matrix multiplication example: Given square
matrices A, B, C of size n2, calculate A ∗ B = C. The
following program versions have in common that a work-
item corresponds to the calculation of one element of C.
Obviously, all work-items can be executed in parallel. An
overview of the different versions is given in Table. I.

Table II shows running times of the program versions,
all performed at single precision. It also includes two
reference times: naive matrix multiplication on the PPE
(corresponding to version α described below), and optimized
matrix multiplication as provided by NVIDIA for CUDA at a
GeForce GTX 280 (a current high-end card with a theoretical
peak performance of about 1 TFlop).

Version α is a naive matrix multiplication, in which each
matrix element C[i][j] =

∑
k

A[i][k] ∗B[k][j] is calculated

independently from other C[i][j]. The algorithm is well-
known to have low memory locality since successive ac-
cesses to elements of A, B are too far away to keep data in
cache. For instance, A[0][0] is required for the calculations
of C[0][j] (j = 0 . . . n), but as work-items are executed one
after another, A[0][0] needs to be reloaded for each j. The
low memory locality is both visible at OpenCL level and
reflected in the measured running time in Table II.

Version β uses a well-known blockwise matrix multi-
plication algorithm, which is described for instance in [4]
for CUDA. The algorithm exploits memory locality by
partitioning A, B, C into square submatrices. Calculation
of each subblock Csub of C proceeds in a coordinated way
(see Fig. 4). First, a subblock of A is multiplied with the cor-

A B C

. =
1. 4.3.2.

1.

2.

4.

3.

Figure 4. Blocked matrix multiplication overview

responding subblock of B, i.e., C[i][j] =
∑
k

A[i][k]∗B[k][j]

is calculated for all C[i][j] from Csub for only a range of
k. Then, computation proceeds with the next subblocks of
A, B, and so on. The scheme exhibits memory locality as
successive accesses to the same elements of A, B are con-
centrated in time. In OpenCL, the scheme is implemented
by mapping calculation of each Csub to a work-group, and
separating submatrix multiplications by a barrier. Version β
is much faster than α at both the OpenCL and CBE levels,
since data can be stored in global memory cache or software
cache, respectively. Our experimental results show that the
best performance is achieved with a work group size of
128 ∗ 128.

Despite the usefulness of caching, in version β interfer-
ence of cache lines cannot be completely precluded, and
cache maintenance induces some overhead. Therefore, we
developed version γ, which uses local memory to explicitly
store data of subblocks. In this version, subblocks of A, B
are explicitly loaded to local memory prior to each submatrix
multiplication by normal (cached) global memory accesses.
Again, the optimization pays for both OpenCL and CBE.

Version δ resembles version γ, but deploys a special
function of OpenCL, called vloadn() to load chunks of
data from global memory to local memory. We implemented
it with a DMA transfer and a barrier waiting for its com-
pletion. Unlike version γ, it bypasses the cache, leading to
a large performance increase. This result indicates that the
performance penalty of global memory cache is significant
and that on the CBE – even though global memory is
cached – explicit management of local memory may pay
off.

None of the versions explained before tries to hide
memory latency. The purpose of version ε is studying the
performance impact of overlapping memory transfers and
calculations. This type of parallelism can be expressed
explicitly in OpenCL, with asynchronous memory transfers.
These, however, are hard to program and are hardly seen
on other architectures. Relying on this feature would most
likely result in poor performance on other architectures, for

example reference [5] suggests not to use it for Power/VMX
CPUs. Since OpenCL is an abstract model that requires
translation, the same type of parallelism can alternatively
be exploited by the compiler (or macros-based translation
scheme), which makes programming easier. For our matrix
multiplication example, we chose this option, based on
version δ.

In our implementation, up to four work-groups are pro-
cessed at a time. When one of them is waiting for global
memory data, it is suspended and another work-group takes
over. Only four work groups can be in progress, as otherwise
their memory footprint (e.g. private memory data of all
work-items) would be too large. When the forth group starts
accessing memory, the first suspended group is reactivated,
and waits for completion of its memory transfer before
continuing. Because of the large memory footprint, we
additionally had to change work-group size. In all versions
prior to ε, it was 1282, but now it is 642. Having more
work-groups increases the overhead for memory transfers,
as it increases the numer of DMA transfers, and reduces the
performance of the DMA engine. For this reason, version
ε is slower than version δ. To isolate the effect, we re-run
version δ with work-group size 642. In this case, version δ
required 2.7 seconds, and is thus slower than version ε.

Overlapping memory transfers and calculations lead to
only small speedups for two reasons: First, the amount
of local memory required is rather high, which allows for
only a small number of concurrently processed work-groups
and does not allow for a significant amount of latency
hiding. Second, as version ζ below indicates, the program
is compute-bound and not memory-bound.

An OpenCL feature not exploited by our mapping is
parallelism among work-items of a group. While the CBE
does not support the same level of multiprocessor parallelism
as found in GPUs, its SIMD units may still be deployed.
OpenCL programmers typically strive for SIMD parallelism,
since CUDA comprises this type of parallelism as well.
Therefore, a compiler for the CBE can often bundle in-
structions of four work items to generate SIMD instructions.

Table III
RUNNING TIME IN SECONDS FOR A SHORT EINSTEIN@HOME TESTCASE

Number of SPEs
1 2 3 4 5 6

Native 172 111 91 81 76 73
Local memory 189 122 99 88 83 79
Static local memory 169 111 90 83 78 75
Static local memory with PPE 116 95 85 79 75 72

Version ζ uses assembler code written by Hackenberg [6]
that exploits the SIMD units to improve the performance of
the calculations. The large improvement shown in Table II
suggests that mapping parallel work-items to SIMD units is
worthwhile. We leave this optimization for future work, as
we do with the cache prefetch instruction.

VI. PERFORMANCE COMPARISON TO NATIVE
APPLICATION

This section reports on our experiments with the
client side of the Einstein@Home distributed computing
project [7]. The application issues a brute force search for
gravitational waves in a large data set collected by detectors
all over the world. Most of the calculations are double
precision. The application has already been implemented
previously by one of the authors for both CUDA and the
CBE [8]. It fits the data parallel model of OpenCL quite well,
as there are ”groups” of independent calculations whose
results must be reduced [9]. We reimplemented the CUDA
version in OpenCL, mapping calculation groups to work-
groups, and individual calculations to work-items.

Since the size of calculation groups varies, but OpenCL
requires work-group sizes to be constant throughout a kernel
call, the maximum size is computed prior to each call and
work-groups with less calculations have idle work-items.
Input data are not moved to local memory, since data
accesses cannot be planned in advance. Instead, all reads
correspond to cached global memory accesses. The reduc-
tion is implemented with local memory atomic operations.

The first two lines of Table III compare the performance of
our OpenCL-based implementation to an optimized version
of the native program mentioned above. The native version
is slightly faster than the OpenCL version, as we cannot
express all optimizations of the original client with OpenCL.
This problem is detailed in the next section. Nevertheless,
the outcome suggests that the use of OpenCL hardly hurts
the performance as compared to a native CBE implementa-
tion.

VII. AN IMPROVED MEMORY SYSTEM

Comparing the native and OpenCL Einstein@Home pro-
gram versions, we observed that one optimization from the
native version was not possible to appropriately express in
OpenCL: use of a lookup table in fast memory to calculate
sinus and cosinus values faster. In the native version, the
table is hold in local store and initialized once for every

SPE. In OpenCL, local memory belongs to a work-group,
and thus the table must be reinitialized for each work-group.

To prevent this problem, we propose a new level of
memory that we call static local memory. This memory is
local not to a work-group but to a CU, and can be accessed
by all work-items scheduled there. Static local memory must
be initialized by the first work-group, and the final result
must be taken out by the last. Therefore the programmer
must be able to identify these groups. Accesses to static local
memory are faster than accesses to global memory even if
the data are cached, since cache maintenance is expensive as
has been discussed in Sect. V. Static local memory further
speeds up the Einstein@Home application, as can be seen
in the third line of Table III.

Besides constant tables, static local memory has more
applications. We investigated reduction, which is an impor-
tant parallel programming pattern. In our implementation,
one work-item is used for every data item to be reduced.
Each work-group first combines its data in a local memory
location. Then, the standard OpenCL version writes the
results directly to a global memory location by an atomic
operation (e.g. add). The static local memory version, in
contrast, adds the results in a static local memory location,
and only the last work-group of each CU accesses global
memory. Table IV shows performance numbers for adding
225 values. On six SPEs, a speedup of 7 is achieved.
For the high importance of reductions, we consider this
improvement worth adding a new memory level to OpenCL,
especially as it is easy to use.

VIII. HETEROGENEOUS COMPUTING USING THE PPE

This section investigates a heterogeneous variant of our
mapping scheme, in which the PPE takes the role of both
the host and a CU to increase the available processing power.
The architecture of the PPE differs from that of an SPE in
that it has no local store and instead uses a traditional cache
hierarchy. Therefore, local and private memory are mapped
to main memory.

As we were not able to capture the performance difference
to an SPE by a constant factor, we dynamically scheduled
work-groups to SPEs, using a similar scheme as the guided
work distribution of OpenMP [10]: First large chunks of
work are assigned, and then this size is decreased. As can
be seen in the last line of Table III, inclusion of the PPE has a
similar effect as adding an SPE. The small gain achieved on

Table IV
RUNNING TIME IN SECONDS FOR A REDUCTION OF 225 ELEMENTS WITH AND WITHOUT STATIC LOCAL MEMORY

Hardware PPE GTX Number of SPEs
1 2 3 4 5 6

local memory 10.1 1.2 21.9 8.0 3.6 2.6 2.0 1.8
static local memory 17.5 5.3 1.0 0.4 0.28 0.25

six SPEs is due to the overall running time being dominated
by the sequential fraction of the program. Dynamic schedul-
ing induces little overhead: static scheduling optimized for
Einstein@Home improved the performance by only 0.7% on
six SPEs.

IX. RELATED WORK

Our implementation resembles the one presented by
IBM [5], but has some advantages. The IBM implementation
is available for both Power/VMX and CBE, and requires
a different programming style for the two systems. For
example, on the CBE the use of asynchronous memory
transfers is highly recommended, but should be avoided
for Power/VMX. Our results suggest that even on the CBE
asynchronous memory transfers are not necessarily required
for performance, which supports portability of OpenCL
programs to different architectures.

Another project called OpenCL PS3 [11] has the goal
to make an OpenCL implementation available at the PS3,
but at the time of this writing there is not yet a release
available. Gpuocelot [12] is a project that uses the CUDA
assembler language PTX as a platform to generate code for
different hardware architectures. At present, only CBEA is
supported. There is no performance evaluation available for
this approach.

X. CONCLUSION

In this paper, we have demonstrated that OpenCL is an
effective programming model for the CBE. We provided an
implementation that maps the host to the PPE and each CU
to an SPE, as well as a variant in which the PPE takes part
in the computation as well. Consideration was restricted to
data parallel programs and the data parallel programming
model of OpenCL.

We evaluated the implementation with two applications:
matrix multiplication and the Einstein@Home client. With
the former, we showed that a higher degree of OpenCL
optimization leads to faster CBE programs, i.e., OpenCL
correctly reflects major performance factors of the archi-
tecture. For the latter, an OpenCL program translated to
CBE was shown to be only slightly slower than a native
CBE program developed under similar conditions. Some
architectural features such as the use of SIMD units and
prefetching have not yet been studied, and are left for future
research.

As another main contribution, we proposed an extension
to OpenCL, static local memory. This additional memory

level is easy to use and brings about performance gains such
as a factor of 7 for reduction. We expect static local memory
to be beneficial beyond CBE for all hardware architectures
that have local memory, e.g. GPUs. Investigation of other
architectures as well as other algorithms that may profit from
static local memory is left for future research.

REFERENCES

[1] “The OpenCL Specification. Version 1, revision 43,”
May 2009. [Online]. Available: \url{http://www.khronos.
org/registry/cl/specs/opencl-1.0.43.pdf}

[2] “Khronos OpenCL API registry,” http://www.khronos.org/
registry/cl/. [Online]. Available: \url{http://www.khronos.
org/registry/cl/}

[3] J. Breitbart, “CuPP - a framework for easy CUDA inte-
gration,” in IEEE Int. Parallel and Distributed Processing
Symposium, 2009, available in Digital Library.

[4] NVIDIA Corporation, “NVIDIA CUDA compute unified de-
vice architecture programming guide. Version 2.3,” NVIDIA
Corporation, 2009.

[5] “OpenCL development kit for linux on power,” http:
//www.alphaworks.ibm.com/tech/opencl/. [Online]. Available:
\url{http://www.alphaworks.ibm.com/tech/opencl/}

[6] D. Hackenberg, “Fast Matrix Multiplication on Cell
(SMP) Systems,” http://www.tu-dresden.de/zih/cell/matmul.
[Online]. Available: \url{http://www.tu-dresden.de/zih/cell/
matmul}

[7] “Einstein@Home Homepage,” http://einstein.phys.uwm.edu.

[8] J. Breitbart and G. Khanna, “An exploration of CUDA and
CBEA for Einstein@Home,” in Int. Conf. on Parallel Pro-
cessing and Applied Mathematics (PPAM). Springer LNCS,
2009, to appear.

[9] J. Breitbart, “Case studies on GPU usage and data structure
design,” Master’s thesis, University of Kassel, 2008.

[10] “OpenMP Application Program Interface. Version 3.0,” May
2008, http://www.openmp.org/mp-documents/spec30.pdf.

[11] “OpenCL PS3,” http://sites.google.com/site/openclps3/. [On-
line]. Available: \url{http://sites.google.com/site/openclps3/}

[12] G. Diamos, A. Kerr, and M. Kesavan, “Translating GPU
binaries to tiered SIMD architectures with Ocelot,” Georgia
Institute of Technology, School of Electrical and Computer
Engineering, Tech. Rep., 2009.

