
On Optimal Temporal Locality of Stencil Codes

Claudia Leopold
Friedrich-Schiller-Universität Jena

Institut für Informatik
07740 Jena, Germany

claudia@informatik.uni-jena.de

Keywords
Data locality, tiling, relaxation methods, lower bounds

ABSTRACT
Iterative solvers such as the Jacobi and Gauss-Seidel relaxation
methods are important, but time-consuming building blocks of many
scientific and engineering applications. The performance problems
are largely due to cache misses, and can be reduced by tiling the
codes. Whereas previous research has shown the usefulness of
tiling by experimentally comparing the run times of tiled and orig-
inal codes, it did not tackle the question as to whether further im-
provements are possible. In this paper, we give a negative answer,
regarding the exploitation of temporal locality in one step of a 2-
dimensional stencil code. We derive upper and lower bounds that
match up to a factor of about 1 + 2/M , where M is the cache size.
For the upper bounds, we investigate some modifications of tiling.

1. INTRODUCTION
Many scientific and engineering applications require the solution
of partial differential equations (PDEs). A common approach dis-
cretizes the input domain, thereby transforming the PDE into a
sparse system of linear equations, and then solves the system it-
eratively. Classical iterative solvers include the Jacobi and Gauss-
Seidel relaxation methods, which have nowadays been largely re-
placed by more efficient schemes such as multigrid. Nevertheless,
the classical methods remain important, because they are building
blocks of the advanced schemes, and because they have similar
computational properties.

The Jacobi and Gauss-Seidel methods are frequently denoted as
stencil codes, because they update array elements according to some
fixed pattern, called stencil. The kernels are depicted in Fig. 1. As
the figure shows, stencil codes perform a sequence of sweeps over a
large array; in each sweep, all array elements are updated using the
values of a few neighbors. In Fig. 1, for instance, it is four neigh-
bors plus the array element itself so that we speak of a five-point
stencil.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC 2002, Madrid, Spain
c© 2002 ACM 1-58113-445-2/02/03...$5.00

As Fig. 1 shows, the Jacobi scheme updates the array elements
based on neighbors from the last iteration, whereas the Gauss-Seidel
scheme uses neighbors from both the present and last iterations.
Consequently, within a sweep, there are no data dependencies be-
tween updates (*) in the case of Jacobi, but there are data dependen-
cies in the case of Gauss-Seidel. In other words, the Gauss-Seidel
scheme imposes more constraints on the execution order, and thus
exhibits less opportunities for optimization through reordering.

Stencil codes are among the most time-consuming routines in many
applications, and thus it makes sense to strive for ultimate perfor-
mance. As has been observed by, for instance, Douglas et al. [1],
it is, in particular, cache misses that slow down the execution of
stencil codes. How stringent the problem is depends on cache size,
array size, and dimensionality of the array [6].

Even without optimization, stencil codes exhibit a certain degree
of locality. Consider the Gauss-Seidel code in Fig. 1a), and assume
column-major storage order. First there is spatial locality because
the accesses to A(I−1, J), A(I, J), A(I +1, J) . . . in the inner
loop refer to the same cache line (except at line boundaries).

Second, A(I, J) is used in the updates of A(I −1, J), A(I, J),
and A(I+1, J). Since the I-loop is innermost, A(I, J) remains in
cache in-between these three updates. This is denoted as temporal
locality because it is the same array element that is reused (as op-
posed to different elements from the same cache line in the case of
spatial locality).

Third, if the cache is large enough to hold two columns of A (plus
a few elements), A(I, J) also remains in cache in-between the up-
dates of A(I, J−1), A(I, J), and A(I, J+1). This use of temporal
locality in the second dimension is often exploited by L2 caches,
but less often by L1 caches. Tiling is a well-known program trans-
formation that exploits this type of reuse for small caches, too, as
we will see in Sect. 4.

Throughout the paper, we restrict ourselves to the investigation of
temporal locality, by assuming line size one. Furthermore we ig-
nore the possibility of thrashing, that is the fact that limited cache
associativity may lead to conflict misses. Thrashing can be avoided
through tile size selection and padding, as it is discussed, for in-
stance, in [6]. These techniques complement locality optimization.

The paper supposes a cache size less than N , so that temporal local-
ity in the second dimension is not exploited by the input codes. We
derive upper and lower bounds for the number of cache misses. The
lower bounds are new, and the upper bounds are based on tiling [9,

a) do T = 1, time
do J = 1, N-1
do I = 1, N-1
A(I,J) = W1*A(I-1,J) + W2*A(I+1,J)

+ W3*A(I,J-1) + W4*A(I,J+1)
+ W5*A(I,J); (*)

end do
end do

end do

b) do T = 1, time
do J = 1, N-1
do I = 1, N-1
B(I,J) = W1*A(I-1,J) + W2*A(I+1,J)

+ W3*A(I,J-1) + W4*A(I,J+1)
+ W5*A(I,J); (*)

end do
end do
do J = 1, N-1
do I = 1, N-1
A(I,J) = W1*B(I-1,J) + W2*B(I+1,J)

+ W3*B(I,J-1) + W4*B(I,J+1)
+ W5*B(I,J); (*)

end do
end do

end do

Figure 1: a) Gauss-Seidel, and b) Jacobi code. A and B are
assumed to be [0 . . . N] × [0 . . . N] arrays.

6]. The bounds match up to a factor of 1 + ε/M for cache size
M , where ε differs between 2.1 and 4.2 depending on the particu-
lar code. The upper bounds incorporate some minor modifications
of tiling, which slightly reduce the number of cache misses, but do
not lead to overall performance gains.

Briefly stated, the paper shows that tiling works well for stencil
codes, and that it is not worthwhile to investigate locality optimiza-
tion any further. The result refers to one sweep through the array
and assumes that (*) is considered a unit. The latter assumption has
been made to guarantee bitwise-identical results as compared to the
original codes.

Section 2 of the paper presents the lower bound proof, which ap-
plies to both the Gauss-Seidel and the Jacobi schemes. We first
derive an asymptotic bound, and afterwards estimate the constant
factor. Section 3 deals with the upper bound. We present and ana-
lyze the tiled algorithms, and discuss modifications that further im-
prove the constant. Section 4 surveys related work, and Section 5
finishes with conclusions.

2. LOWER BOUND
We consider one sweep through the array, that is, one iteration of
the outer time loop for Gauss-Seidel, or one execution of the, say,
upper loop nest for Jacobi, and take each update (*) as a unit. Fur-
thermore, we assume cache size M and line size 1.

Our argumentation resembles the red-blue pebble game of Hong
and Kung [2] insofar as that we argue on the best schedule of a pro-
gram dag. The program dag is the directed acyclic graph whose
nodes are marked with the updates (*) for I, J = 1 . . . N − 1,

and whose arcs reflect data dependencies. Data dependencies ex-
ist from iterations (I−1, J) to iterations (I, J), and from iterations
(I, J−1) to iterations (I, J) in the Gauss-Seidel scheme. The lower
bound proof, actually, does not take the data dependencies into ac-
count, which is correct because a lower bound to the unconstrained
problem is always a lower bound to the constrained problem, too.

Similarly, we do not rely on a particular cache replacement scheme.
The lower bound refers to user-controlled data placement, but, con-
sequently, also holds for any common scheme such as LRU.

In the literature, cache misses are frequently classified as cold misses
(the first access to an element), capacity misses (misses due to lim-
ited cache capacity), and conflict misses (misses due to thrashing).
Independent of optimization, the Gauss-Seidel and Jacobi schemes
always take (N + 1)2 − 4 cold misses since all elements of A (ex-
cept the corners) must be read. Here we analyze the number of
capacity misses. We speak of redundant computations if, for any I ,
J , update (*) is executed more than once.

THEOREM 2.1. Any schedule of the dag, including schedules
with redundant computations, takes Ω(N2/M) capacity misses.

PROOF. Let Sched be any schedule, that is, any assignment
of dag nodes to execution times. Since the operations (*) have
equal lengths, Sched can also be considered as an operation se-
quence. We partition Sched into subsequences S1, S2, . . . Sk of
successive operations such that S1, S2, . . . Sk−1 consist of exactly
M2 operations, and Sk consists of up to 2M2 operations. Note
that k ≥ b(N −1)2/M2c, where inequality holds for redundant
computations.

The codes under consideration typically take 5 accesses per array
element. If the element belongs to the boundary of A, it is less, if
redundancy is used, it is more accesses. We say that an element e
that is accessed by Si is touched only by Si if

• the number of accesses to e in Si is less than the total number
of accesses to e in Sched , or

• e belongs to the boundary of A, or

• a neighbor of e belongs to the boundary of A.

LEMMA 2.2. By any Si, at least 3M array elements are touched
only.

PROOF. (Lemma 2.2): The proof will use the fact that the ele-
ments accessed in (*) are neighbors, and it will deploy a geometric
argumentation. Therefore, we model the array by a (square) rect-
angle that is composed of small squares for the A(I, J). Just think
of the rectangle as being drawn on squared paper such that each
A(I, J) corresponds to the printed square in the I-th row and J-th
column of the rectangle.

Now consider any particular Si, and let F denote the geometric
figure that corresponds to Si, that is, the figure that consists of
those printed squares whose array elements are updated in Si. Fur-
thermore, let R be the smallest axes-parallel rectangle that com-
pletely holds F . Obviously, the length l and width w of R fulfill

l

w

F

R
*

Figure 2: Minimum boundary length of F . For illustration, the
boundary segments on the left are printed as dashed lines.

l · w ≥ M2. Here, we take the side length of a printed square as
the unit of length, and the printed square itself as the unit of area.

Next we show that the boundary of F has a certain minimum length.
Without loss of generality, we assume that F is connected; other-
wise closing up the parts of F would shorten the boundary. By
segment, we denote a side of a printed square. Since R is min-
imum, F has at least l vertical boundary segments on the left, l
vertical boundary segments on the right, w horizontal boundary
segments on the top, and w horizontal boundary segments on the
bottom (see Fig. 2). This makes up for a total boundary length of
at least 2l + 2w ≥ 2M2/w + 2w = f(w).

The minimum of function f is easily determined by elementary
analysis. Since f ′(w) = −2M2/w2 + 2, there is only one local
optimum within the interval 1 ≤ w ≤ M2, namely w = M . The
corresponding value is f(M) = 4M , which is less than f(1) and
f(M2). Consequently, the boundary of F has length at least 4M .

Going back from the geometric model to the codes, an update of
A(I, J) at the, say, left boundary of Si involves A(I−1, J), but
A(I−1, J) is touched only since the update of A(I−1, J) does
not belong to Si. This argumentation does not apply to the A(I, J)
at the left boundary of A, but these data are trivially touched-only
by definition. Hence, at any boundary segment, two array elements
are touched only: one outside Si (here A(I−1, J)), and one in-
side Si (here A(I, J)). The number of touched-only elements is
less than twice the total boundary length, however, since squares
adjoin up to four segments. For instance, the square marked ’*’
in Fig. 2 adjoins the segments to the left, right, and above it. The
claimed value of 3M follows from the observation that l ≥ M or
w ≥ M . Assuming l ≥ M , in each row at least 3 elements are
touched by vertical segments. Consequently, at least 3M elements
are touched-only by Si.

PROOF. (Theorem 2.1, continued): The number of pairs (Si, e)
with Si touching-only e is

Z ≥ 3kM

We distinguish four types of pairs (Si, e), which are disjoint:

1. All accesses to e in Sched are carried out in Si, and e or a
neighbor of e belong to the boundary of A.

2. One of the accesses to e in Si is the first access toe in Sched
(not counting type 1 pairs).

3. One of the accesses to e in Si is the last access to e in Sched
(not counting type 1 pairs).

4. e is accessed in Si, but neither for the first nor for the last
time.

Altogether, Sched contains at most 4(N + 1) + 4(N − 1) pairs of
type 1. We denote the total number of type 2, 3, and 4 pairs by Zin,
Zout, and ZinOut, respectively. From Zin + Zout + ZinOut ≥
Z −8N and Zin = Zout follows Zout +ZinOut ≥ (Z −8N)/2.

At most M data are kept in cache in-between successive Si’s, sum-
ming up to W ≤ (k − 1) · M elements for the whole schedule.
Consequently, at least

Zout + ZinOut − W ≥ 1.5kM − 4N − k · M + M

≥ 0.5b(N − 1)2/M2c · M − 4N + M

elements must be reloaded after having been replaced from cache.
In other words, there are

0.5b(N − 1)2/M2c · M − 4N + M = Ω(N2/M)

capacity misses, provided that N is significantly larger thanM .

To determine the constant factor in the bound, assume, for instance,
N ≥ 100, and 2 ≤ M ≤ N/10. Then, (N − 1)2/N2 > 0.98, and
thus

b(N − 1)2/M2c ≥ b0.98N2/M2c ≥
(

0.98N2/M2 − 1
)

Since N2/M2 ≥ 100, we can further estimate 0.98N2/M2−1 ≥
0.97N2/M2. From N2/M ≥ 10N , we get 0.48N2/M − 4N +
M ≥ 0.08N2/M for the minimum number of cache misses. The
constant factor approaches 0.5 as N2/M grows.

3. UPPER BOUND
For M < N , the original codes take about 3N2 cache misses
since each A(I, J) is accessed in three columns. Tiling, a well-
known compiler optimization [9, 10], improves the codes by ex-
ploiting temporal locality in the second dimension. The tiled code
for Gauss-Seidel is given in Fig. 3. The Jacobi code is analogous
and has been omitted for brevity. As Fig. 4 illustrates, tiling par-
titions A into horizontal stripes, which are dealt with in sequence,
that is, first all updates of the uppermost stripe are carried out, then
all updates of the next stripe, and so on. The stripes are denoted
as tiles. Note that the data dependencies of Gauss-Seidel are re-
spected, since iteration (I, J) is carried out after iterations (I−1, J)
and (I, J−1).

Tile sizes are chosen such that three columns of a tile fit into cache
simultaneously, that is, S = bM/3c for Gauss-Seidel. Capac-
ity misses occur at tile boundaries only. Since the total length of
these boundaries is N · (dN/bM/3ce − 1), the number of capacity
misses is

N · (dN/bM/3ce − 1) ≤ N2/bM/3c ≤ N2/(M/3 − 1)

≤ 3N2/(M − 3) ≤ 3.1N2/M

where the last inequality holds for M ≥ 100.

The constant factor is somewhat higher for Jacobi since the cache
must hold entries of two arrays. If the cache holds three columns

do T = 1, time
do II = 1, N-1, S
do J = 1, N-1
do I = II, min(II+S-1, N-1)
A(I,J) = W1*A(I-1,J) + W2*A(I+1,J)

+ W3*A(I,J-1) + W4*A(I,J+1)
+ W5*A(I,J+1) (*)

end do
end do

end do
end do

Figure 3: Tiled code for Gauss-Seidel

Tiles

Figure 4: Execution order of the tiled scheme

of the right-hand array and one column of the left-hand array, we
get up to 4.2N2/M capacity misses.

The results indicate very close to optimum cache performance since
the total number of cache misses, including cold misses, can be
estimated by

Upper bound

Lower bound
<

(N + 1)2 − 4 + 3.1N2/M

(N + 1)2 − 4 + 0.08N2/M

< 1 + 3.1/M

For the Jacobi scheme, the corresponding bound is 1 + 4.2/M .

Since M is typically large, the results clearly discourage further re-
search into temporal locality optimization. Nevertheless, for com-
pleteness, the following paragraphs discuss some modifications of
tiling that bring the upper and lower bounds even closer together.

Improved Analysis
First, we can increase the tile size without changing the tiling tech-
nique itself. Observe that an update to A(I, J) in Gauss-Seidel
does not access A(I −x, J − 1) or A(I +x, J +1) for x > 0.
Thus, instead of three columns as assumed above, it is sufficient
to keep two columns plus one element in cache. Similarly, the Ja-
cobi scheme does not reuse elements of the left-hand array, and it
is sufficient to keep two columns plus two elements in cache. This
modification improves the relation between upper and lower bound

Figure 5: Snake-like scheme for Jacobi

to

(N + 1)2 − 4 + 2.1N2/M

(N + 1)2 − 4 + 0.08N2/M
≤ 1 + 2.1/M

for both Gauss-Seidel and Jacobi.

In practice, the cache replacement policy must be taken into ac-
count. For matrix A, the LRU scheme works fine since the two
columns to be kept in cache contain just the least recently used ele-
ments of A. In the Jacobi scheme, array B interferes with array A,
but a write-around cache can avoid that.

Snake-Like Scheme for Jacobi
The codes of Fig. 3 do not reuse data between successive tiles, even
though the tiles have data in common. Figure 5 depicts a snake-like
scheme that exploits a certain amount of inter-tile reuse for Jacobi.
The tiles have the same heights as above, namely (about) M/2, so
that all intra-tile locality is exploited. Additionally, inter-tile local-
ity is exploited at the turning points. The idea is illustrated in Fig. 5:
Before a turning point, updates are carried out column-wise, and at
the point, updates are carried out row-wise. While approaching
the turning point, column lengths are reduced, and then they are
increased again.

Assuming user-controlled data placement, cache size M is suffi-
cient. The diagonal, which is marked by a dotted line in Fig. 5, has
length M/2. At any one time, the cache must hold two reduced-
length columns, as well as those entries of the diagonal that have
been touched thus far. As the columns shrink when the diagonal
grows, the elements fit into cache simultaneously.

Unfortunately, the performance impact of snaking is low, since
inter-tile locality is exploited for only M/2 columns at the turn-
ing points. There is one turning point per tile (either on the left or
on the right side), and thus the number of capacity misses is

2.1 · (N − M/2) · (N/M)

Snaking complicates the program structure, and thus impairs other
performance factors such as the number of mispredicted branches
and instruction cache misses. Therefore the overall performance is
not improved.

Skewed Scheme for Gauss-Seidel
Snaking can be applied to the Jacobi scheme only. Since part of
the rows are processed from right to left, the data dependencies
of the Gauss-Seidel scheme are not respected. Figure 6 depicts a
modification that is applicable to both schemes. It uses diagonal
tiles instead of horizontal ones, and processes the tiles from left

.
..

Figure 6: Skewed scheme for Jacobi

to right. Obviously, data dependencies are respected if, within a
tile, the updates are carried out column-by-column, starting with
the leftmost column.

Whether the scheme reduces cache misses depends on the partic-
ular values of N , M . The skewed scheme, like the base scheme,
uses tile heights of about M/2, and capacity misses occur at tile
boundaries. The sum of tile boundary lengths can easily be seen to
be 2N2/M , which is the same as the total boundary length of the
base scheme, indicating an equal number of cache misses.

The skewed scheme has the advantage that the heights of the first
and last tiles may be somewhat increased, which is not possible
for the base scheme: At the very beginning, data are updated in
diagonals, instead of in columns, until the diagonal has reached
length M/2 (dotted line in Fig. 6) These M/2 elements are kept
in cache while a diagonal stripe of height M/4 is then updated
column-by-column. Only thereafter, the first capacity misses occur,
that is, the first (and last) tiles have width3M/4.

In the simulation of a small Gauss-Seidel instance with N = 8 and
M = 14, our skewed scheme reduced the number of cache misses
from 72 to 70. For realistic input sizes, the improvement is even
less, and it is dominated by the higher costs that are due to a more
complicated program structure.

4. RELATED WORK
The compiler optimization community has conducted much research
on tiling (e.g. [3, 5, 9, 10]). Nevertheless, Douglas et al. [1] observe
that current production compilers are not able to tile even elemen-
tary stencil codes. Part of the reason may be differences in the way
tiling works for stencil codes as compared to dense linear algebra
codes (the focus of compiler research). There, the data of a tile are
moved into cache together, and then stay until the processing of the
tile is complete. Tiled stencil codes, in contrast, keep only a few
columns in cache, to be efficient.

Several papers deal with tiling specifically for stencil codes. Clos-
est to ours is work by Rivera and Tseng [6] who present tiled 3D
codes that are analogous to our 2D codes. They also discuss tile
size selection and padding to avoid conflict misses. Like us, they
refer to a single sweep and consider updates as a unit. The effec-
tiveness of tiling is shown experimentally, lower bounds are not
given.

In other papers, tiling is used to exploit reuse among different sweeps.
Leiserson et al. [4] describe the base idea: The array is covered with
kernel tiles of size s× s. In order to carry out t sweeps on a kernel
tile, a larger tile of size s+2t × s+2t is loaded into fast memory. In

recent work, Douglas et al. [1], Sellappa [7], and Song and Li [8]
adapt and improve the base scheme for specific cases.

Douglas et al. [1] and Sellappa [7] incorporate their modifications
into multigrid programs. Multigrid is also considered in more the-
oretical work by Leiserson et al. [4] who show that cache misses
can be asymptotically reduced if updates are not considered a unit.

5. CONCLUSIONS
This paper has derived matching upper and lower bounds on the
number of cache misses for one sweep of the Jacobi and Gauss-
Seidel relaxation methods. The bounds match up to a factor of
about 1 + 2/M , where M is the cache size. The result shows
that the standard technique of tiling achieves a close to optimum
number of cache misses.

Moreover we have investigated how the gap between upper and
lower bounds can be closed. We found three modifications: in-
creased tile size, snaking, and skewing that further reduce the num-
ber of cache misses. Snaking and skewing do not lead to overall
speedups, however, as they complicate program structure. In ongo-
ing work, we are generalizing our techniques to 3D stencil codes
and tiling schemes for the time loop.

6. REFERENCES
[1] C. C. Douglas, U. Rüde, J. Hu, and M. Bittencourt. A guide

to designing cache aware multigrid algorithms. In Concepts
of Numerical Software, Notes on Numerical Fluid
Mechanics. Vieweg-Verlag, 2001. To appear.

[2] J.-W. Hong and H. T. Kung. I/O complexity : The red-blue
pebble game. In Proc. ACM Symposium on Theory of
Computing, pages 326–333, 1981.

[3] I. Kodukula, K. Pingali, R. Cox, and D. Maydan. An
experimental evaluation of tiling and shackling for memory
hierarchy management. In Proc. ACM Int. Conf. on
Supercomputing, pages 482–491, 1999.

[4] C. E. Leiserson, S. Rao, and S. Toledo. Efficient out-of-core
algorithms for linear relaxation using blocking covers.
Journal of Computer and System Sciences, 54(2):332–344,
Apr. 1997.

[5] G. Rivera and C.-W. Tseng. A comparison of compiler tiling
algorithms. In 8th Int. Conf. on Compiler Construction,
pages 168–182. LNCS 1575, 1999.

[6] G. Rivera and C.-W. Tseng. Tiling optimizations for 3D
scientific computations. InProc. Supercomputing. IEEE,
2000. Available at http://www.supercomp.org/sc2000/
Proceedings/start.htm.

[7] S. Sellappa. Cache-efficient multigrid algorithms. Master’s
thesis, University of North Carolina at Chapel Hill, Dept. of
Computer Science, 2000.

[8] Y. Song and Z. Li. New tiling techniques to improve cache
temporal locality. In Proc. of the ACM SIGPLAN Conf. on
Programming Language Design and Implementation, pages
215–228, 1999.

[9] M. E. Wolf and M. S. Lam. A data locality optimizing
algorithm. SIGPLAN Notices, 26(6):30–44, 1991.

[10] M. Wolfe. High Performance Compilers for Parallel
Computing. Addison-Wesley, 2000.

