Locality Optimization for Program Instances

Claudia Leopold

Fakultat fiir Mathematik und Informatik
Friedrich-Schiller-Universitat Jena
07740 Jena, Germany

claudia@informatik.uni-jena.de

Abstract. The degree of locality of a program reflects the level of tem-
poral and spatial concentration of related data and computations. Local-
ity optimization can speed up programs by reducing the communication
costs. A possible human approach to locality optimization is to con-
sider several small program instances of a given program, find optimal
or close to optimal mappings of data and computations for the program
instances, and generalize them to the program.

This paper suggests the use of this approach in a semi-automatic locality
optimization method. Emphasis is given to the phase of optimizing the
program instances. We introduce a fuzzy objective function that reflects
the degree of locality of a program instance, and show its advantages over
a crisp function such as communication costs. We provide a framework for
applying several optimization techniques and describe an implementation
that uses local search. The paper refers to a two-level memory hierarchy.

1 Introduction

The communication costs of programs largely depend on the temporal and spa-
tial mapping of data and computations to processors and memory blocks. Local-
ity is a property of programs that reflects the level of concentration of accesses
to the same datum or to data that are stored together, e.g. in the same cache
line.

Locality optimization can speed up programs significantly. This holds true
for both shared and distributed memory parallel computers, and also for se-
quential computers or nodes of parallel computers with respect to their local
memory hierarchy. The most basic case is a sequential memory hierarchy, where
a temporal mapping of computations and a spatial mapping of data to memory
blocks (e.g. cache lines) are to be found.

This paper refers to the basic case and considers a two-level model, where
memory is divided into a fast module with limited capacity M and a slow mod-
ule with potentially infinite capacity. Data is stored in blocks of fixed size B.
Whenever some datum is accessed, its block is moved to the fast memory (if it
is not already there). If the fast memory is full, the least recently used block is
replaced. The communication cost of a program is the number of block transfers

between the memory levels. We optimize the locality of programs by reorder-
ing the program statements (code transformations) and reassigning the data to
memory blocks (data transformations).

The paper is organized as follows. In Section 2, a semi-automatic method for
locality optimization is motivated and described. It is based on the automatic
optimization of program instances, followed by a manual generalization of the
solutions. Section 3 deals with the optimization problem for program instances.
It starts with a formalization of the problem, in Section 3.1. Next, in Section 3.2,
we introduce two possible objective functions for locality: a crisp function that is
based on communication costs and a fuzzy function that is based on the intuitive
notion of locality. We argue for the superiority of the fuzzy function. Section 3.3
outlines how we strive at finding regular solutions to support the generalization
phase, and Section 3.4 gives some details on the implementation. Finally, Section
4 is devoted to experimental results, concerning both the optimization algorithm
for program instances and the semi-automatic method.

2 The Semi-Automatic Method

Locality optimization resembles well-investigated combinatorial optimization
problems. The code and data transformation aspects can be compared with the
travelling salesman problem and with graph partitioning, respectively. There
exist many powerful optimization techniques for these problems, including bi-
ologically inspired techniques such as genetic algorithms and neural networks.
Unfortunately, the direct application of these techniques to locality optimization
is often impeded by the fact that the sets of operations and data are not given
explicitly. Typically, the same program may be run with different input sizes im-
plying different sets of operations and data. Even if the input size is known, the
sets of operations and data are often so large that the optimization techniques
would be too prohibitively slow.

A possible human approach to locality optimization is to consider several
small program instances of a given program, find optimal or close to optimal
mappings of data and computations for the program instances, and generalize
them to the program. We suggest using this approach in a locality optimization
method that is currently semi-automatic.

The user has to specify one or several program instances, by fixing param-
eters of the input program. A program instance appears as a set of statement
instances (SI), where a SI is an elementary or complex instantiated statement.
Each ST must be carried out exactly once. An example of a program instance is
given in Figure 3a. The user also has to decide on the granularity of the SIs. Se-
quences of operations with heavy internal control dependencies should be taken
as complex SIs. For efficiency reasons, the input size of the program instances
must be fixed at a small value. The user also has to specify memory hierarchy
parameters M and B that are appropriate to the size of the program instance,
i.e., that reflect the proportions of the real case correctly. In fact, a relatively
wide range of parameters will work well. Additionally, the input must comprise

a data dependence graph. Since we have unrolled loops, it is a directed acyclic
graph, referred to as dag. It can be easily and automatically constructed.

Now, we have an optimization problem that is accessible for the various
optimization techniques. Since the program instances are small, the complexity
is manageable. A computation and data mapping for the program instance is
derived fully-automatically. In this paper, we refer to the technique of local
search, but other techniques could be adapted as well.

Finally, the mapping found for the program instance has to be generalized
into a mapping for the program; in particular, it is the structure of the mapping
that is generalized. The generalization is done manually, with some automatic
support that consists in preferring simple, regular mappings in the output of the
optimization.

The semi-automatic method can handle those programs where structurally
identical mappings perform well for all program instances. Independent of its
use in the semi-automatic method, an optimization technique for program in-
stances can predict the quality of given mappings: A mapping performs well for
a program, if, applied to program instances, it is as comparatively good as a
mapping found by an optimization technique for program instances.

3 The Optimization Problem for Program Instances

3.1 Formal Statement of the Problem
Input:

— Sets of statements and data S = {s;...s/5} and D = {d; ...dp}
For readability, we use the notion statement as an equivalent for SI.

— dag (directed acyclic graph with nodes marked by s; ...ss))

— M,BeNwith M,B>2, B| M, B||D|

— For each s € S, a sequence of data d(s) ...d,(s) (di(s) € D)
The sequence comprises the data that is accessed by s in this order. The
information is used for locality optimization purposes.

— For each s € S, a characterization of the operation carried out and a sequence
21(8) ... zr(s) of indices appearing in the name of s. The information is used
for regularity optimization purposes.

Output:

— Statement ordering, i.e., permutation Sched with Sched(i) = s iff statement
s is placed at the i-th position in the statement sequence (s € S, i =1...|S|)

— Data assignment, i.e., function DB with DB(d) = b iff datum d is assigned
to memory block b (d=d; ...dp|, b€ {1...M/B})

Constraints:

— Sched(i1) = s1 and Sched(iz) = s (i1 < i2) is permitted only if there is no
path from sy to s; in the dag
— {de D|DB(d) =b}| =B, forallbe {1...M/B}

An objective function will be added in the following sections.

3.2 Objective Functions for Locality

Since locality optimization aims at reducing communication costs, an obvious
objective function is the number of block transfers required for the simulated
execution of the program instance in the two-level memory model. For simplicity,
only loads are counted, and we do not distinguish between reads and writes. The
corresponding function is denoted by OF L,..

We favour another objective function, OF L;,., that is based on the rather
fuzzy definition for the degree of locality given in the introduction. Applied to
the two-level model, the definition of the degree of locality is connected to the
level of concentration of accesses to the same memory block during program
execution. A higher level of concentration of the accesses implies a higher degree
of locality. In the following, we introduce a quantitative measure for the degree
of locality based on this definition.

Let reuse-tuple denote a pair of accesses such that the memory block brought
into the fast memory by the first access may be reused by the second access if
it still resides in the fast memory. Formally, it is a tuple ((s,d), (s',d')) with
s,s' € S, d,d € D, (s,d) # (s',d') and DB(d) = DB(d'). Furthermore, the
access of s to d must precede the access of s’ to d', and there must not be
another access to DB(d) between. Let dist((s,d), (s',d')) denote the number of
accesses between the access of s to d and the access of s’ to d'.

From the intuitive meaning of the notion, a quantitative measure for the
degree of locality must satisfy the following requirements:

— the degree of locality is higher the more reuse tuples are scheduled closer
together.

— the contribution of a particular reuse tuple to the degree of locality takes
the existence of a threshold into account with

dist((s,d), (s',d")) < threshold — block DB(d') is still in fast memory
at access (s',d')

dist((s,d), (s',d")) > threshold — block DB(d') must be loaded anew
for access (s',d")

— the function eval that determines the contribution of a particular reuse tuple
to the degree of locality must have about the following shape

eval ‘

|
[
threshold ~ dist((s,d),(s",d"))

We did extensive experiments in which the locality of two statement sequences
was compared intuitively on one hand, and with a candidate objective function

on the other. Thereafter, we decided to define OF L;,. by

Z eval(dist((s,d), (s',d")))
reuse tuples

((s,d), (s',d"))

with
1 —1/(threshold + 2 — dist) dist < threshold
1/V/dist — threshold+4 dist > threshold

eval(dist) = {

The same threshold is used for all reuse tuples. The threshold must be estimated,
e.g. from an optimized program suggested by compiler optimizations. The opti-
mization procedure can also be repeated with different thresholds. The function
OF Ly, has several advantages over OF L,:

— The range of OF Ly, is continuous. Hence, it can better differentiate between
statement sequences of about the same quality. This is advantageous for
optimization methods that are based on stepwise refinement.

— The function OF Lj,. can be evaluated faster. In particular, it can be quickly
estimated by considering only those reuse tuples that are placed closely.

— The function OF Lj,. can tolerate inaccuracies in the specification of the
optimization problem. The objective function value obtained with the fuzzy
?the-closer-the-better”-principle of OF L;,. depends much less on the con-
crete value of M than the value obtained with the crisp ”either-close-enough-
or-not”-principle of OFL... The same holds true for other inaccuracies in
the problem specification, including arbitration in the specification of the or-
der of accesses within a statement, as well as limited associativity of caches.
These inaccuracies may falsify the communication costs predicted by OF L....
Since inaccuracies cannot be avoided in the semi-automatic method, the abil-
ity to tolerate them is an important argument for OF Lj,..

3.3 Combination with an Objective Function for Regularity

To support the generalization phase of the semi-automatic method, we strive
at finding regularly structured solutions. In the current implementation, locality
has absolute priority over regularity. The program instance is first optimized
for locality, exclusively. Afterwards, the output statement sequence is improved
w.r.t. regularity. A modification is said to improve the sequence if it improves
the regularity and does not decrease the degree of locality (referring to either
OFL,. or OFLy,.). Le., in the last phase of the optimization, we combine the
objective function for locality with an objective function for regularity. Details
on this function are omitted. Briefly, it identifies loops in the statement sequence,
and determines a degree of regularity as the sum of valuations of the identified
loops.

3.4 Local Search and Implementation Details

Our implementation uses local search to solve the above stated problem. Local
search is a well-known general heuristic solution approach to combinatorial op-
timization problems [3]. The algorithm starts with a random statement ordering
and data assignment not violating constraints. Then, it repeatedly improves the
current solution w.r.t. the objective function, via simple transformations such
as moving statement groups or swapping the block assignment of two data. The
algorithm stops when the transformations under consideration cannot further
improve the solution anymore.

In the implementation, we decided to modify OF Lj,.. Recall that in the
definition of reuse tuples, the statements are required to access the same block.
Alternatively, we could require them to access the same datum. In the imple-
mentation, the objective function value is determined as the weighted sum of the
objective function values obtained with these differing definitions. The weight
for the datum-based function value is high at the beginning, and it is reduced
as the search goes on.

4 Experimental Results

We applied the optimization procedure to several instances of matrix multi-
plication, matrix transpose and mergesort programs, as well as of nested loop
programs taken from [6] and [9]. We obtained the following results.

Result 1: With respect to finding computation mappings for small program in-
stances (assuming the data assignment to be fized), the optimization method
improves on the optimization method of [9] (which is a typical compiler opti-
mization method).

Some measurements are given in Table 1. In Table 1, N is the input size, i.e., we
consider e.g. N x N matrix multiplication. Data distribution k x I denotes that
a memory block is formed by k x [subblocks of the matrices under considera-
tion. The columns "OF L;,.”, ”OF L..” and ”reference” give the communication
costs of the optimized program instance, when the optimization was done with
OF Ly, with OF L., or with the reference optimization method from [9], respec-
tively. The values refer to the minimum achieved over five random runs of our
algorithm, with a reasonable value for the threshold. The column ”time” gives
the processor time in seconds, referring to a C implementation on a 200MHz
Pentium PC, for OF L;,..

Result 2: With respect to finding both data and computation mappings for small
program instances, the optimization method improves on the compiler optimiza-
tion method of [6].

Some typical measurements are given in Table 2. Column "OFL},.” refers to

OFLy,. as described in Section 3.2, 7OFL? 7 refers to the modified objective

loc
function, as explained in Section 3.4. The time measurements refer to the mod-

ified objective function.

|program | N|M[B|data distr.]OF Lioc|OF Le. |reference|time]

9] Fig. 3 8| 4|2 1x2 7 7 15 0.4
9] Fig. 3 12| 6|2| 1 x2 11 16 33 418
transpose 8|32|4| 2 x2 32 32 32 9.2
transpose 8|12(2] 1 x2 64 67 64 7.0
multiplication| 4({12|2| 1 x2 36 36 40 16
multiplication| 4|12 4| 2 x2 17 17 20 13.0
mergesort 64|20 4 1x4 120 122 - 11.2

Table 1. Measurements concerning Result 1.

|prog. | N|M|B|OFL;, |OF L}, |OF L. |reference[time]
[9] Fig. 3 8| 4|2| 7 6 7 15 5.2
[6] Fig. 2A 20 6|2 7 7 7 10 0.02
[6] Fig. 2F N1,Na2,N3 =6,6,2|10{ 2| 39 38 40 38 94
transpose 4/16(2| 16 16 16 16 0.2
multiplication 4|12 2| 52 37 62 40 114
mergesort 32| 62| 144 144 144 - 17.0

Table 2. Measurements concerning Result 2.

Result 3: The semi-automatic method can speed up programs significantly, even
in comparison with compiler optimizations. It can also speed up programs where
current compiler optimizations are not applicable. The inclusion of regularity as-
pects supports the generalization phase.

The semi-automatic method is illustrated with the example of mergesort, in
Figure 3. We refer to a simple non-recursive program for mergesort that alter-
natingly uses two arrays and assume a fixed block-wise data distribution. The
programmer has to fix the input size and the granularity of the operations, as
well as M and B. Observing that, in real cases, the fast memory can hold only
part of the data, he may e.g. decide for N = 8, M = 8 and B = 2. Because of
heavy internal control dependencies, he will decide to equate statements to the
complex operations of merging two runs. The corresponding program instance
is given in Figure 3a. Now, the optimization method for program instances is
applied. It starts with a random feasible solution, e.g. with that in Figure 3b.
Optimizing for locality only, the optimization method may e.g. come up with
the statement sequence given in Figure 3c. Appending a regularity optimization
phase, the statement sequence may be improved into the statement sequence
given in Figure 3d. In Figure 3d, it is easier to identify the structure of the solu-
tion. The programmer will probably repeat the optimization for more program
instances. Then, it is his task to generalize the solutions found for the program
instances into a solution for the program. In the case of mergesort, he would
come up with a recursive program.

a) Merge [0..0] with [1..1] b) Merge [4..4] with [5..5]
Merge [2..2] with [3..3] Merge [2..2] with [3..3]
Merge [4..4] with [5..5] Merge [0..0] with [1..1]
Merge [6..6] with [7..7] Merge [0..1] with [2..3]
Merge [0..1] with [2..3] Merge [6..6] with [7..7]
Merge [4..5] with [6..7] Merge [4..5] with [6..7]
Merge [0..3] with [4..7] Merge [0..3] with [4..7]

c) Merge [6..6] with [7..7] d) Merge [0..0] with [1..1]
Merge [4..4] with [5..5] Merge [2..2] with [3..3]
Merge [4..5] with [6..7] Merge [0..1] with [2..3]
Merge [0..0] with [1..1] Merge [4..4] with [5..5]
Merge [2..2] with [3..3] Merge [6..6] with [7..7]
Merge [0..1] with [2..3] Merge [4..5] with [6..7]
Merge [0..3] with [4..7] Merge [0..3] with [4..7]

Fig. 3. The semi-automatic method on the example of mergesort.

We have run the input and optimized programs for mergesort with several
realistic input sizes (up to 106) on a DEC 3000 model 600 and observed that the
optimized program improves on the input program by about 40% w.r.t. primary
data cache misses (measured with pfm), and by about 18% w.r.t. user time. For a
simple nested loop program ([9] Fig. 3), the semi-automatic method improved on
the compiler optimized program given in [9] by about 18% w.r.t. cache misses
and by about 15% w.r.t. user time (for input sizes up to 10* and several tile
sizes). In both cases, the programs were coded in C and compiled with gcc.
Mergesort is an example of a program where current compiler optimizations are
not applicable.

Result 4: OFL,,. is superior to OFL..

The superiority with respect to solution quality can be seen in Tables 1 and
2. We also observed that OFL;,. is more tolerant towards inaccuracies in the
input.

5 Related Work

A lot of work has been done on compiler optimizations for locality, referring to
both two-level sequential memory hierarchies [6] [9] and shared or distributed
memory parallel architectures [1] [2]. In the past, data and code transformations
were typically considered in separation but since recently there is a tendency to
combine them. All compiler optimizations we are aware of have in common,

— they aim at regular computations characterized by nested for-loops with
simple loop bounds that access arrays via affine index expressions, as they
are typically found in scientific computing.

— they consider a restricted set of transformations.

— they use heuristics that are tied to the particular set of transformations.

— the transformations are applied to the program, assuming that the same
transformations will perform well for all program instances.

In contrast to current compiler optimizations, the semi-automatic method sug-
gested in this paper may find non-standard transformations, since it does not
restrict the set of transformations but searches the complete space of permitted
mappings. Furthermore, its applicability is not restricted to nested loop pro-
grams with affine index expressions.

Other related work is the consideration of locality issues in algorithm/pro-
gram design [7], [8]. Experience shows that locality considerations in algo-
rithm /program design are time-consuming and complicated. The semi-automatic
method may save human work, since the programmer does not have to find the
mapping anymore, he only needs to recognize it. Still, locality optimization by
the programmer is more general.

Locality issues are also considered in connection with task scheduling [4],
[5]. Task scheduling typically concentrates on applications where the number of
tasks is rather small such that the real set of tasks can be handled by heuristic
techniques.

References

1. J.M. Anderson, S.P. Amarasinghe, M.S. Lam: Data and Computation Transforma-
tions for Multiprocessors. Proc. ACM SIGPLAN Symp. on Principles and Practice
of Parallel Programming, pp. 166-178, 1995

2. M. Cierniak, W. Li: Unifying Data and Control Transformations for Distributed
Shared Memory Machines. Proc. ACM SIGPLAN’95 Conf. on Programming Lan-
guage Design and Implementation, pp.205-217, 1995

3. Y. Crama, A.W.J. Kolen, E.J. Pesch: Local Search in Combinatorial Optimization.
Artificial Neural Networks, LNCS 931, pp. 157-174, 1991

4. K. Dussa-Zieger: Configuration, Mapping and Sequencing by Genetic Algorithms.
Proc. Int. Workshop on Approzimate Reasoning in Scheduling, ICSC Press, pp.
11-17, 1997

5. H. El-Rewini, T.G. Lewis, H.H. Ali: Task Scheduling in Parallel and Distributed
Systems. Prentice Hall, 1994

6. M. Kandemir, J. Ramanujam, A. Choudhary: A Compiler Algorithm for Optimiz-
ing Locality in Loop Nests. Proc. ACM Int. Conf. on Supercomputing, pp. 269-276,
1997

7. A. LaMarca, R.E. Ladner: The Influence of Caches on the Performance of Sorting.
Proc. ACM SIGPLAN Symp. on Discrete Algorithms, pp. 370-379, 1997

8. J.S. Vitter, E.A.M. Shriver: Algorithms for Parallel Memory I: Two-Level Memo-
ries. Algorithmica, Vol. 12, No. 2/3, pp. 110-147, 1994

9. M.E. Wolf, M.S. Lam: A Data Locality Optimizing Algorithm. Proc. ACM SIG-
PLAN’91 Conf. on Programming Language Design and Implementation, pp. 30-44,
1991

