
Generating Structured Program Instances
with a High Degree of Locality

Claudia Leopold
Fakultät für Mathematik und Informatik

Friedrich-Schiller-Universität Jena
07740 Jena, Germany

claudia@informatik.uni-jena.de

Abstract

Memory hierarchy-consciousness is an important re-
quirement for the design of high-performance programs. We
describe a tool that supports the programmer in restructur-
ing performance-critical code sections. The tool works with
small program instances, which are obtained by fixing pro-
gram parameters such as loop bounds, and rewriting the
program as an operation sequence. The tool automatically
reorders the operations for better locality, and respects data
dependencies. It outputs the optimized program instance in
a structured form. The user finally recognizes the locality-
relevant structure and generalizes it to the program.

The paper focuses on recent advances in the develop-
ment of our method. In particular, we introduce a hierar-
chical clustering scheme that highlights operation subse-
quences with much data reuse. The scheme is applied to
the generation of structured optimized program instances
in which the locality-relevant structure is easy to recognize.
Experimental results are included.

1. Introduction

Due to the large and growing gap between processor
speeds and memory speeds, the design of high-performance
programs requires to be conscious of the memory hierar-
chy. In particular, one should avoid frequent access to the
main memory, and instead try to reuse cached data as of-
ten as possible. Memory hierarchy-consciousness is a re-
quirement for sequential and even more for parallel com-
putation. Compiler optimizations can help, but the scope
of most compiler optimizations is limited to nested loops
and to a few transformations under consideration. Hence,
memory hierarchy-conscious program restructuring is often
a task for the programmer or algorithm designer, a task that
can be time-consuming and difficult.

This paper suggests a tool that helps the programmer.
The tool automatizes one of the human activities in al-
gorithm/program design: developing solution ideas for a
given problem by looking at small-input-size instances of
the problem and thinking about efficient solutions for these
instances. We believe the automatization of human activi-
ties to be crucial for closing the still large gap between the
kind of optimizations that can be applied automatically and
those that have to be applied manually. The work described
here is a step in this direction.

Our work deals specifically with locality optimization in
memory hierarchies. The distribution of data and computa-
tion in shared- and distributed memory parallel computers
raises similar questions ([1] vs. [2]). We restrict ourselves
to the simple case of sequential memory hierarchies here,
but think that our approach can be generalized to the more
involved case of interprocessor communication.

Locality is a gradual property of programs that reflects
the level of concentration of the accesses to the same mem-
ory block, during program execution. A higher level of con-
centration corresponds to a higher degree of locality, and in
tendency causes fewer cache misses, page faults etc.

The major component of our tool is an algorithm for the
optimization of program instances (PIs). A PI is derived
from a program, or typically from a performance-critical
section of code, by fixing the input size and possibly more
parameters. We fix those parameters that are required to
unroll loops and resolve recursions in a way that the PI
becomes a sequence of elementary or complex operations.
This operation sequence is the starting point for the opti-
mization algorithm, which reorders the operations and reas-
signs the data to memory blocks with the objective of maxi-
mizing locality. The rearrangement process is detailed later.
Although the final arrangement found refers to a particular
program instance, it gives hints for a restructuring of the
program in general. It is the user’s task to accomplish the
generalization step from the instance to a program. Tool

support for this step is provided in the form of a structured
representation of the output operation sequence. We call our
method Instance-Based Locality Optimization (IBLOpt).

This paper reflects the current state of the development
of IBLOpt, with focus on recent advances. In particular, we
introduce a hierarchical clustering scheme that highlights
operation subsequences with much data reuse. We use the
clustering scheme to establish a locality-aware structured
representation.

The paper starts with an overview of related work in
Sect. 2. Next, previously published work on IBLOpt [4, 5]
is summarized in Sect. 3, to lay the groundwork for the rest
of the paper. Sections 4 and 5 describe our recent advances,
where Sect. 4 introduces the hierarchical clustering scheme,
and Sect. 5 uses the scheme to improve the structured out-
put. Section 6 gives experimental results for four example
programs: a two-deep perfect loop nest, matrix transpose,
matrix multiplication and mergesort. Section 7 finishes with
conclusions.

2. Related work

There are two major areas of related work: compiler op-
timizations for locality, and memory hierarchy-conscious
algorithm design.

Compiler optimizations for locality are an important re-
search subject. A survey is, for instance, given in [6]. Most
compiler optimizations use heuristics that reduce the num-
ber of cache misses via transformations such as loop permu-
tation, loop distribution and loop tiling. The techniques for
sequential memory hierarchies do in general resemble those
suggested for symmetric multiprocessors and distributed-
memory parallel computers (e.g. [2]). While earlier work
has focused on code restructurings (e.g. [11]), more recent
work also considers data reassignments, that is, storing ar-
rays row-wise vs. column-wise, etc. (e.g. [1]). Most of the
work is restricted to loop nests, where arrays are accessed
via affine index expressions. It is a characteristic feature of
the compiler optimization approach that program restruc-
turings are based on a small set of transformations under
consideration. If a program needs other techniques for im-
provement, the improvement will not be found. It is a pre-
requisite that compiler optimizations can be executed auto-
matically and fast.

Memory hierarchy-conscious algorithm design has de-
veloped into an active research area during the last years.
Its focus is on external memory algorithms (see [10] for a
recent survey), and there is also some work on caches (e.g.
[3]). The scope of this work is wider than the scope of our
method, since locality optimization is combined with other
tasks, particularly with the establishment of an algorithm’s
basic structure (choice of the operations to be carried out)
and with the choreography of the data movement. The merit

of our method is the provision of automatic support to the
otherwise manual process of developing algorithmic ideas.

3. Instance–based locality optimization

3.1. Overview and tool

IBLOpt is an intermediate approach between algorithm
design and compiler optimizations. It is neither restricted
to a finite set of transformations nor to loop programs, and
hence it has a broader applicability than current compiler
optimizations. On the other hand, the scope of IBLOpt is
narrower than the scope of algorithm design. IBLOpt has a
higher time consumption than compiler optimizations, but
can save human time during algorithm design.

The central concept of IBLOpt is that of a program in-
stance (PI). A PI comprises a sequence of elementary or
complex operations called statement instances (SIs). Each
SI operates on a sequence of instantiated data (DIs). For
data, instantiated means that the location is non-variable,
e.g.

�������
is a DI whereas A[i] is not. For simplicity, we

assume all DIs to be the same size. Examples of SIs
are ”

�������
+=1“ and ”Merge sorted run at

�	��
��������� ���
with

sorted run at
������������	�����

“. The SIs are taken as undivis-
ible. We assume that there are no control dependencies
between SIs, i.e., each SI is carried out exactly once, and
branching is restricted to occurring within SIs. In addition
to the SI sequence, a PI comprises an assignment of DIs to
memory blocks. The assignment specifies which data are
stored together in a memory block, it does neither specify
the order within the block nor the identity of the block.

Our tool works in three phases: an instantiation, an op-
timization, and a generalization phase. In the instantiation
phase, the user specifies the PI. Therefore, the user inputs
the code section to be optimized, fixes the control flow-
relevant parameters, and chooses the granularity of the SIs.
Then, the system rewrites the PI as a sequence of SIs, by un-
rolling loops and resolving recursions. A data dependence
graph [6] is derived automatically, too. In IBLOpt it is a
directed acyclic graph, referred to as dag.

Next, in the optimization phase, the SIs are automatically
reordered and the DIs are reassigned to memory blocks so
that the PI is improved with respect to locality. The re-
arrangement is controlled by a local search algorithm that
strictly obeys the data dependencies. To support the gen-
eralization phase, a second objective is regularity. Striv-
ing for regularity means that we favour operation sequences
that can be written in a compact and intuitively appealing
form using loops. The local search algorithm is detailed in
Sect. 3.2. Its output is a locally optimal SI ordering for the
PI, together with a structured representation thereof. In the
structured representation, we allow for-loops with constant
bounds.

Finally, in the generalization phase, the user inspects
the SI ordering, to recognize the structural differences that
make the suggested ordering superior to the initial order-
ing. After having found these differences, the user gener-
alizes them to the program and writes down the improved
program. The user can assess the quality of the new pro-
gram by running the optimization algorithm on a different
instance thereof.

Along with the PI, the user must also specify memory
hierarchy parameters � , � . They denote the capacity and
line size of a small hypothetical cache, which is assumed
to be fully-associative and LRU. The parameters are used in
the optimization process, and they are used to quantitatively
assess the locality of our output PIs.

3.2. The optimization algorithm for program in-
stances

The input of the optimization phase consists of a set �
of SIs, a set � of DIs, a data dependence graph dag, and
the memory hierarchy parameters � , � . The SIs are char-
acterized by functions SD : ������� , op : �	��
 and � :
������ . Here, SD assigns to � the sequence of DIs that are
accessed by � . Further, op(�) characterizes the operation
carried out by � , and ������� is a sequence of numbers that
appear explicitly in the notation for � . That is, op and � do
together encode the textual string that denotes the operation
in the PI. A more detailed explanation can be found in [4, 5].
The function SD is used for locality optimization, while op
and � are needed for producing a structured output.

The output of the optimization phase comprises a sched-
ule, which is an SI sequence where each ����� appears
once, and a data assignment function DB, where DB ����� is
the number of the memory block to which ����� is as-
signed. The schedule is output in two forms: as an opera-
tion listing, and in a structured representation consisting of
nested and consecutive for-loops with constant bounds. The
optimization problem is constrained by the dag.

There are two objective functions: one for locality and
one for regularity. The functions are combined in a way
that is described later.

The locality function was introduced in [4], where two
candidate functions were compared: OFL � �! and OFL " .
The function OFL " measures the number of simulated
cache misses, referring to the hypothetical parameters � , � .
The function OFL � �! quantifies the intuitive notion of local-
ity from Sect. 1. OFL � �! was established empirically and
has quite a complex definition [4], omitted here. Briefly,
OFL � �# is a sum where each summand assesses the access
distance of a reuse tuple, which is a pair of successive ac-
cesses to the same memory block. The assessments follow
the principle the-closer-the-better, which is in contrast to
the either-close-enough-or-not–principle of OFL " . In [4],

it was shown that OFL � �# outperforms OFL " with respect
to the solution quality in local search, and that OFL � �! leads
to more natural results. Hence, we use OFL � �! , and refer to
OFL " chiefly for a clearer presentation of results. OFL � �#
is to be maximized, while OFL " is to be minimized.

The objective function for regularity OFR was intro-
duced in [5]. Regularity optimization aims at producing a
schedule that can be written in a structured and intuitively
simple form. Hence, the SIs should be arranged so that
the sequence of values op ����� and ������� exhibits regular pat-
terns. OFR is a complex function omitted for brevity [5].
Briefly, it is based on the identification of loop structures
in the schedule under consideration. To each recognized
loop, some gain is assigned, and the gains are summed up.
The summation takes only part of the loops into account,
namely a maximal conflict-free subset. A subset of loops
is called conflict-free if all the loops can be simultaneously
realized in a single structured representation. The assign-
ment of gains follows an empirically established formula; a
greedy heuristic is used to select the maximal conflict-free
subset of loops. The evaluation of OFR is more costly (in
terms of computing time) than the evaluation of OFL � �! .

In the present implementation, regularity optimization is
restricted to the SI sequencing aspect. Hence, we will usu-
ally assume DB to be fixed as standard row-wise storage
order.

We have implemented a local search algorithm to ap-
proximately solve the optimization problem. The algorithm
starts from a random schedule and repeatedly considers
some neighbourhood of the current schedule. If a neigh-
bour with a higher objective function value is encountered,
the current schedule is replaced by that neighbour (at least
the new neighbour is a candidate for replacement, see be-
low). The neighbourhood comprises moves of consecutive
SI groups as well as loop transformations (permutation, re-
versal, distribution, and a novel transformation called loop
extension [5]). All intermediate schedules must respect the
dag.

Locality and regularity are typically conflicting goals
that must be traded off. [5] combines them in a two-step
algorithm. In Step 1, locality has priority. Regularity comes
in by choosing the next schedule from $ locality-improving
neighbours according to a weighted sum of OFL � �! and
OFR. The weight is a parameter to be specified by the user.
In Step 2, a neighbour must improve OFR and must not de-
grade OFL � �# too much (controlled by another parameter).

Step 2 of the algorithm is costly since OFR must be eval-
uated for many neighbours. This is one shortcoming of the
algorithm. Another shortcoming is the algorithm’s tendency
to produce distracting structured representations. A struc-
tured representation is called distracting if it highlights an-
other than the locality-relevant structure, and is hence mis-
leading. An example is given in Sect. 4. This paper ad-

dresses the shortcomings.

3.3. Previous results and relevance for this paper

Reference [4] gives experimental results for about 15 ex-
ample programs, mostly taken from the compiler research
literature. The experiments referred to both the case that
DB was fixed and to the case that DB had to be found. Reg-
ularity optimization was not covered. The results show that
the local search algorithm compares well with compiler op-
timizations. The OFL " values achieved for example PIs
were always the same or better than those of compiler opti-
mized reference PIs. Due to the choice of the example pro-
grams, the improvements were often small. In two cases,
the restructuring found for the PI was generalized into a re-
structuring of the program with a performance gain of about
20–30% over the compiler-optimized version. This perfor-
mance gain was measured for realistic input sizes on a real
machine.

Reference [5] gives some examples of PIs that were op-
timized for both locality and regularity. Due to the short-
comings mentioned above, the experiments were restricted
to PIs with a very small input size. The examples show
trade-offs between locality and regularity.

In particular the experimental results of [4] are still rel-
evant for the modified algorithm suggested in the present
paper. The suggested modification makes it easier for the
user to recognize the differences between the original and
the optimized PI in the generalization phase, the modifica-
tion does not change the program that is found by the user.
That is, if the user inputs the same PI to the different variants
of the algorithm suggested in [4], [5] and the present paper,
he or she will normally find the same optimized program.
It is, however, much harder for the user to find the program
on the basis of the [4] output than it is now. Since the local-
ity optimization potential of the algorithm has already been
assessed in [4], we do not repeat the experiments here, and
instead concentrate on the quality of the output representa-
tion.

4. Hierarchical clustering

Figure 1 shows an output schedule that distracts the user
from the locality-relevant structure. It refers to the exam-
ple of

��� �
matrix transpose. For clearness, only half of

the program is printed. Assuming row-wise storage order
and a cache line size of two, the following pairs of data
are stored in the same cache line:

�����������
–
�	������
��

,
�	��
������

–����
���
��
, � ���������

– � ������
��
, � ��
������

– � ��
���
��
, and so on.

In the example, locality is supported best by a program
in which the matrix is divided into 	 � 	 sub-matrices that
are transposed one after another. Although the operation

B[0,0] = A[0,0];
B[0,1] = A[1,0];
B[1,0] = A[0,1];
B[1,1] = A[1,1];
B[1,2] = A[2,1];
B[1,3] = A[3,1];
B[0,2] = A[2,0];
B[0,3] = A[3,0];

...

or, in structured representation:

FOR i:=0 TO 1 DO
B[0,i] = A[i,0];

FOR i:=0 TO 3 DO
B[1,i] = A[i,1];

FOR i:=0 TO 1 DO
B[0,i+2] = A[i+2,0];

...

Figure 1. A distracting output for matrix trans-
pose.

listing on the top exhibits this structure, the second for-loop
in the structured representation distracts from it. To be of
more help, a structured representation should put the first
and the next four operations, respectively, into a separate
loop nest. In other words, the locality-relevant structure of
the example reads that the first four operations belong to-
gether, and the next four operations belong together. The
operations belong together since their accesses concentrate
on a small number of memory blocks, so that there is much
data reuse.

In this section, a hierarchical clustering scheme is in-
troduced that makes the locality-relevant structure explicit.
Based on this scheme, distracting loops can be eliminated.
Moreover, the clustering scheme on its own is a help in the
generalization phase, and supplements the structured repre-
sentation.

The clustering scheme is based on a locality-optimized
schedule, and highlights groups of successive SIs with a
high degree of data reuse. The groups, called clusters, are
further agglomerated into larger clusters with a still rela-
tively high degree of data reuse. The agglomeration pro-
ceeds hierarchically, producing a tree.

Our task resembles hierarchical clustering as studied in
pattern recognition [7, 9]. Since only successive SIs are
agglomerated, we are particularly dealing with contiguity-
constrained hierarchical clustering [8]. There are important
differences: In pattern recognition, a set of objects is given
where each object is characterized by some feature vector.
The features belong to the individual object, i.e., they do

not depend on other objects (not even for relational input
data). In our case, data reuse is a property that only exists in
the interplay of successive SIs. Additionally, our contigu-
ity constraint is one-dimensional, whereas [8] handles two-
dimensional constraints. Also, we agglomerate more than
two objects/clusters per step if this is more natural. Hence,
our clustering algorithm, although inspired by algorithms
from pattern recognition, is quite different from these algo-
rithms. Since our objective is stated vaguely (to find natural
clusters that are helpful in the generalization phase), we as-
sess our results empirically (in Sect. 6).

In the following, the clustering algorithm is outlined. Ex-
planations are given below.

�
:= set of SIs;

for all � �� do
Determine the reuse factor � ��� � succ ���!� �

repeat
� � := ct � max ���	��
�� �� � succ ���!� ���
while �����	� ��� � succ ��!� ����� � do

new := FormCluster ��� � � �!� ;� � ��� � �� � succ ��!� ��� �������
:= UpdateClustersAndReuseFactors(new)

end
until � � �!

The reuse factor � �� � ��" � characterizes the amount of data
reuse between SI groups � and ��" . Its definition considers all
pairs of accesses to the same memory block with one access
belonging to � and the other belonging to �#" . The access in
� must be the last access to that memory block in � , and the
access in ��" must be the first access to that memory block
in ��" . For each such pair, an access distance is determined
as the sum of the number of accesses following the access
in � , and the number of accesses preceding the access in � " .
The access distance is assessed using the same the-closer-
the-better function as in OFL � �! [4], and the assessments
are summed up over all pairs. The resulting value is finally
scaled with respect to the size of � and ��" .

The scaling function is based on the intuition that the
following combinations of � and ��" should have the same
reuse factor. (We describe each cluster by a list of memory
block numbers. The list contains those memory blocks that
are accessed within the cluster, in access order.)

$ �% �
 � , ��"& �
 � ,
$ �% �
 � 	 � , ��"& � 	 ��
 � ,
$ �% �
 � 	 � � � , ��"' � ��� 	 ��
 � ,
$ �% �
 ��
 � , � " �
���
 � , etc.

The combination �(�
�� 	 ��� � , ��") � � � should have a
slightly lower reuse factor than the other combinations. The

scaling function was empirically defined so that these intu-
itions are met.

The function FormCluster �� � � � � forms a cluster new
from two or more successive clusters around � (see be-
low). UpdateClustersAndReuseFactors removes these clus-
ters from

�
and replaces them by new. It also updates

� � new, succ(new) � and � � pred(new),new � , where pred and
succ denote the predecessor and successor clusters in the
schedule.

The function FormCluster starts combining � with its
successor. Then it repeatedly extends the current cluster by
a neighboured cluster, as long as an appropriate neighbour
exists. Let us w.l.o.g. consider a neighbour ��* that precedes
the cluster, and let us denote the current cluster by +� . ��* is
added to +� iff either � ���#* � +�!�,�-� � , or if there is a direct
sub-cluster ++� of +� with � ���#* � ++� �.��� � .

The algorithm outputs a tree consisting of the clusters
found in intermediate steps (returned by FormCluster). The
parameter ct � ��� ��
 �

(called cluster tolerance) is supplied
by the user and controls the average cluster size. Clusters
tend to be larger if ct is small.

5. The three–step optimization algorithm

The following three-step optimization algorithm avoids
the shortcomings of the two-step algorithm from Sect. 3.2,
and is used in the experiments of Sect. 6.

Step 1 of the algorithm corresponds to Step 1 of the al-
gorithm from Sect. 3.2, that is, we reorder the schedule
with locality as a primary and regularity as a secondary
goal. In Step 2, the clustering is established as described
in Sect. 4. The novel part is Step 3. It uses a modified func-
tion OFR’ that assigns a gain to a loop only if the loop is
non-distracting. A loop is non-distracting if for each cluster
� and each loop iteration $, one of the following conditions
holds: ��/ $, $102� , or $43,�% 65 (taking $ and � as sets of
SIs).

In addition, Step 3 restricts the neighbourhood of the lo-
cal search algorithm to cluster-conform neighbours, i.e., to
neighbours in which the SIs of each cluster are kept consec-
utive (the order may change). For the case that the neigh-
bour is obtained by moving a group of consecutive SIs, it
is easy to see that the neighbour is cluster-conform if and
only if it can be produced by a reordering of the direct sub-
clusters of some cluster. For the case of loop transforma-
tions, several clusters may have to be reordered in parallel.
In any case, all cluster-conform neighbours can be gener-
ated in a systematic way. The number of cluster-conform
neighbours tends to be much smaller than the original num-
ber of neighbours, at least if the cluster size is low. Since
less neighbours need to be assessed in Step 3, the modifica-
tion speeds up the algorithm. For the examples considered
in this paper, the algorithm is speeded up to the extent that

Step 3 runs faster than Step 1.
As usual, Step 3 searches the neighbourhood in some

deterministic, cyclic order. We replace the current schedule
whenever a neighbour is found that fulfills the following
three requirements:

$ The neighbour improves OFR’.

$ The OFL " value of the neighbour is at most t3 � OFL � " ,
where OFL � " is the OFL " value of the schedule pro-
duced in Step 1, and t3 is a user-supplied parameter
(called tolerance for Step 3).

$ Comparing the neighbour to the current schedule, the
relation between the regularity gain and the OFL " loss
(if any) is acceptable. The acceptance threshold is con-
trolled by a user-supplied parameter w3. Expressed as
a formula, we require

OFR "����� � OFR "� � �	�
�

w3 � � OFL

� � �� �! � OFL
�����
� �# ��
 �

where old refers to the current schedule and new refers
to the neighbour under consideration. w3 is permitted
to take any nonnegative real value.

Notwithstanding cluster-conformity, the neighbour may
give rise to a different clustering if the new order permits
the agglomeration of previously non-consecutive clusters.
Larger clusters in tendency imply higher OFR’ values. For
a fair comparison between schedules, the clustering is not
updated after a replacement of the current schedule. All we
do is keeping the cluster coordinates up-to-date when the
SIs have moved.

6. Experiments

This section gives experimental results for the following
input PIs:

$ � � �
matrix transpose with �6 �

and � 	
(Trapo),

$ ��� �
matrix multiplication with �
 	 and � 	

(Mult),

$ Loop program in Fig. 2 with �� , � �
and � 	

(Loop),

$ Mergesort of � 	 data with � �
and � 	

(Merge).

The mergesort input program is iterative, i.e., it makes��������� �� passes over the data where the � -th pass merges
runs of length 	���� � into runs of length 	�� (as in base merge-
sort from [3]). The program alternatingly writes to two ar-
rays. Each SI is a merge of two runs, with some likely in-
ternal access order supposed.

FOR i:=0 TO N DO
FOR j:=0 TO N DO

f(A[i],A[j]);

Figure 2. Loop program taken from [11]
.

Figure 3 summarizes our results and shows the influence
of the parameters t3 and ct. Some exemplary outputs are
depicted in Fig. 4–7. Each entry in Figure 3 stands for
five runs with a different random initialization. The en-
tries give OFL " /NoOfLines for the best of the five runs,
and a symbol that characterizes the general impression from
all the five runs. For clearness, identical entries are writ-
ten only once. In the cases marked by ’ � ’, the five out-
comes were, in our intuitive judgement, about as good as
the example outputs given in Fig. 4–7. In the cases marked
by ’(+)’, the structuring was improvable but the clustering
was helpful. The symbol ’–’ marks cases where the cluster-
ing/structuringwas of little help in the generalization phase.

For brevity, the influence of the parameter w3 is not illus-
trated in Fig. 3. We found that the influence of w3 is minor,
provided that w3 is set to a small value such as

����
or

 ��
. If

w3 is set to a large value such as

 � ����

, then Step 3 let the
operation sequence unchanged. All experiments were car-
ried out with w3
 ��

. Appropriate values were also used
for the parameters introduced in [4, 5] .

The figures show that the clustering scheme does suc-
cessfully highlight the locality-relevant structure and avoids
distracting loops, provided that ct is set to an appropriate
value. The trade-off between locality and regularity can be
controlled by the parameter t3. For t3
 ��

, outputs with a
very high degree of locality were produced. Slightly larger
values of t3 led to simpler solutions that may perform bet-
ter in practice. The given Mult output with OFL " � �
and the Trapo output correspond to compiler optimized pro-
grams. The Loop and Merge outputs generalize to programs
that improve on compiler-optimized programs by about 20-
30%, as shown in [4].

7 Conclusions

This paper has reported on recent progress in the devel-
opment of the IBLOpt method. First, we have introduced a
hierarchical clustering scheme that highlights the locality-
relevant structure in an SI sequence. Second, we have ap-
plied the clustering scheme to produce a more meaningful
structured representation of the final schedule, in which dis-
tracting loops are avoided. The new results are helpful in the
generalization phase of our tool. The user finds the same op-
timized programs as with the [4, 5] version of IBLOpt, but
the amount of human work needed for the generalization is
reduced.

(+) (+) (+) (+) + +

(+) (+) (+) (+) + +

(+) (+) (+) (+) + +

1.0 0.9 0.8 0.7 0.6 0.5

1.0

1.2

1.1

120/31 120/31 124/18 124/15 124/9 124/9

120/31 120/31 120/23 120/15 120/9 120/9

120/31 120/31 124/18 124/15 124/9 124/9

d) Merge

ct

t3

1.0 0.9 0.85 ct

4/15 4/14

1.4

1.2

1.0

c) Loop

t3

1.0 0.9 0.8 0.7

1.0

1.2

1.4

1.0 0.9 0.8 0.7

1.0

1.2

1.4

37/9

ct

t3

a) Trapo

ct

t3

b) Mult

40/6

16/4

Figure 3. Results for various parameter set-
tings.

f(A[0],A[4]); f(A[0],A[5]);
f(A[1],A[4]); f(A[1],A[5]);
f(A[4],A[0]); f(A[4],A[1]);
f(A[5],A[0]); f(A[5],A[1]);
f(A[0],A[2]); f(A[0],A[3]);
f(A[1],A[2]); f(A[1],A[3]);
f(A[2],A[0]); f(A[2],A[1]);
f(A[3],A[0]); f(A[3],A[1]);
f(A[0],A[0]); f(A[0],A[1]);
f(A[1],A[0]); f(A[1],A[1]);
f(A[2],A[2]); f(A[2],A[3]);
f(A[3],A[2]); f(A[3],A[3]);
f(A[4],A[4]); f(A[4],A[5]);
f(A[5],A[4]); f(A[5],A[5]);
f(A[4],A[2]); f(A[4],A[3]);
f(A[5],A[2]); f(A[5],A[3]);
f(A[2],A[4]); f(A[2],A[5]);
f(A[3],A[4]); f(A[3],A[5]);

OFL = 4 NoOfLines = 15cc

FOR i0:=0 TO 1 DO

FOR i0:=0 TO 1 DO

FOR i2:=0 TO 1 DO
FOR i1:=0 TO 1 DO

f(A[i1],A[4+i0-2*i2]);
FOR i1:=0 TO 1 DO

FOR i0:=0 TO 1 DO
f(A[4+i1-2*i2],A[i0]);

FOR i2:=0 TO 2 DO
FOR i1:=0 TO 1 DO

f(A[i1+2*i2],A[i0+2*i2]);
FOR i2:=0 TO 1 DO

FOR i1:=0 TO 1 DO
FOR i0:=0 TO 1 DO

f(A[4+i1-2*i2],A[2+i0+2*i2]);

Figure 4. Example output for Loop: operation
listing with clustering, and structured repre-
sentation.

FOR i2:=0 TO 1 DO
FOR i1:=0 TO 3 DO

FOR i0:=0 TO 1 DO
A[i1,i0+2*i2]=B[i0+2*i2,i1]

Figure 5. Example output for Trapo (struc-
tured representation only).

FOR i3:=0 TO 1 DO
FOR i2:=0 TO 3 DO
FOR i1:=0 TO 1 DO

FOR i0:=0 TO 1 DO
C[i2,i0+2*i3]+=
A[i2,i1+2*i3]
*B[i1+2*i3,i0+2*i3]

FOR i2:=0 TO 3 DO
FOR i1:=0 TO 1 DO

FOR i0:=0 TO 1 DO
C[3-i2,i0+2*i3]+=
A[3-i2,2+i1-2*i3]
*B[2+i1-2*i3,i0+2*i3]

OFL " : 37

FOR i4:=0 TO 1 DO
FOR i3:=0 TO 1 DO
FOR i2:=0 TO 3 DO

FOR i1:=0 TO 1 DO
FOR i0:=0 TO 1 DO

C[i2,i0+2*i3]+=
A[i2,i1+2*i4]
*B[i1+2*i4,i0+2*i3]

OFL " : 40

Figure 6. Example outputs for Mult.

FOR i3:=0 TO 1 DO
FOR i2:=0 TO 1 DO
FOR i1:=0 TO 1 DO

FOR i0:=0 TO 1 DO
Merge two runs of length 1,
first run starts at
2*i0+4*i1+8*i2+16*i3

END;
Merge two runs of length 2,
first run starts at
4*i1+8*i2+16*i3

END;
Merge two runs of length 4,
first run starts at 8*i2+16*i3

END;
Merge two runs of length 8,
first run starts at 16*i3..16*i3+7

END;
Merge two runs of length 16, namely
0..15 and 16..31

OFL " : 120

Figure 7. Example output for Merge.

References

[1] M. Kandemir, J. Ramanujam, and A. Choudhary. A com-
piler algorithm for optimizing locality in loop nests. In Proc.
11th Int. Conf. on Supercomputing, pages 269–276. ACM
Press, July 1997.

[2] M. Kandemir, J. Ramanujam, and A. Choudhary. Com-
piler algorithms for optimizing locality and parallelism on
shared and distributed memory machines. In Proceedings of
the 1997 International Conference on Parallel Architectures
and Compilation Techniques, pages 236–247. IEEE Com-
puter Society Press, 1997.

[3] A. LaMarca and R. E. Ladner. The influence of caches on
the performance of sorting. In Proc. 8th ACM-SIAM Symp.
on Discrete Algorithms, pages 370–379, Jan. 1997.

[4] C. Leopold. Arranging statements and data of program in-
stances for locality. Future Generation Computer Systems,
Elsevier, 14:293–311, 1998.

[5] C. Leopold. Regularity considerations in instance-based lo-
cality optimization. In Workshop Proceedings Int. Paral-
lel Processing Symp. and Symp. on Parallel and Distributed
Processing, LNCS 1586, pages 230–238, 1999.

[6] S. S. Muchnick. Advanced compiler design and implemen-
tation. Morgan Kaufmann Publishers, 1997.

[7] F. D. Murtagh. Multidimensional Clustering Algorithms.
Physica-Verlag, Vienna, 1985.

[8] F. D. Murtagh. Contiguity-constrained hierarchical cluster-
ing. DIMACS Series in Discrete Mathematics and Theoreti-
cal Computer Science, 19:143–152, 1995.

[9] C. F. Olson. Parallel algorithms for hierarchical clustering.
Parallel Computing, 21(8):1313–1325, Aug. 1995.

[10] J. S. Vitter. External memory algorithms and data struc-
tures. In J. Abello and J. S. Vitter, editors, External Memory
Algorithms and Visualization. DIMACS Series on Discrete
Mathematics and Theoretical Computer Science, American
Mathematical Society, 1999.

[11] M. E. Wolf and M. S. Lam. A data locality optimizing algo-
rithm. SIGPLAN Notices, 26(6):30–44, June 1991.

