Sequencing with Neighbourhood Preferences

Claudia Leopold
Fakultat fiir Mathematik und Informatik
Friedrich-Schiller-Universitat Jena
07740 Jena, Germany
claudia@minet.uni-jena.de

Keywords: sequencing, data locality, iterative improvement, objective function methods

ABSTRACT

We consider the problem of bringing N operati-
ons into sequence, with the aim of realizing neigh-
bourhood preferences. The preferences are given by
a dissimilarity matriz D, where entry D(i,j) is the
smaller the higher the preference of operations 1 and
j for being scheduled close to each other. The result is
a sequencing function T : {1...N} — [L...N] that
should minimze the objective function

NN (n(| () = T() | +1)°
r=2.2

i=1 j=i+1 D(i,7)

and also spread the values T(i) quite evenly over the
real interval [1...N]. We suggest a heuristic algo-
rithm that approximately solves the problem, and re-
port on experiments with the algorithm and sever-
al variants of it. Briefly, the algorithm starts with a
random sequencing, that is iteratively improved by al-
ternatingly moving each T(i) in the direction of the
value that minimizes f for fivred T(j)(j # i), and
spreading the T'(i) over [1...N]. An integer-valued
verston of our algorithm is evaluated against an enu-
meratwe algorithm and against a different heuristic
algorithm. Ezxperimental results indicate that our al-
gorithm 1s efficient and reasonably accurate.

1 Introduction
1.1 Problem Statement

A set of N operations is to be brought into se-
quence, with the aim of realizing neighbourhood pre-
ferences given by an N x N matrix D with

c0< D)< (1<ij<N)

e D(i,j) =D(j,i) (1<4,j<N), and

« Dij)=0 & i=j (1<ij<N)

D is a dissimilarity matrix, i.e., entry D(7, j) is the
smaller the higher the preference of operations i
and j to be arranged close to each other in the se-
quence. The meaning of ’close’ will later be quanti-
fied through an objective function. Further require-
ments on D are not imposed, in particular D need
neither fulfill the triangle inequality nor be euclide-
an (embeddable into euclidean space with distances
D(i, ) between points ¢ and j).

The result is a sequencing function 7T
{1...N} = [L...N] that assigns to each operation
a real time at which it will be approximately car-
ried out. From T, a permutation S : {1...N} —
{1...N} can be easily derived, by ordering the real
numbers. The reason why we focus on T instead of
S will be elaborated in section 1.2. Briefly, T' con-
veys more information than S since it does not only
represent the order of operations but it also reflects
how certain this order is.

Consider as an example the matrix

0 05 0.1 09
05 0 07 03
0.1 07 0 038
09 03 08 0

D=



or, represented as a graph,

A good sequencing function would be T(1) =
1.04, T(2) = 3.85, T(3) = 1.0, T(4) = 4.0, with
derived sequencing S(1) = 2, S(2) = 3, S(3) =
1, S(4) = 4:

1 2 3 4 time

We see that 7' does not only represent the order
of operations, but it also reflects that the order of
e.g. operations 1 and 2 is much more certain than
that of operations 1 and 3. Hence, minor modificati-
ons of D may change the optimal order of operations
1 and 3, but they will not change the optimal order
of operations 1 and 2.

The quality of 7" is evaluated using the objective
function

N
f=222. —
i=1 j=it1 D(i, j)

that should be minimized. In addition, 7" i1s requi-
red to spread the values quite evenly over [1...N].
We have experimented with several quantifications
of this requirement, all requiring | 7'(¢) — S(¢) | to be

less than some bound.

(In(| T(j) = T(i) | +1))

1.2 Motivation of the Problem

The background of the problem is in data locality
optimization for computer programs. Since compu-
ters typically have a memory hierarchy with limited
amount of fast memory, programs run the faster, the
closer they arrange operations accessing the same da-
tum or the same memory block (e.g. cache line). The
reason is that only sufficiently close operations can
reuse data once brought into fast memory, otherwise
they will be overwritten in the meantime.

In [8], an iterative approach to automatic data
locality optimization was suggested, where the assi-
gnment of data to memory blocks and the sequencing
of operations are alternatingly refined. Current assi-
gnments are represented by fuzzy membership va-
lues, to convey more information into the next se-
quencing step than with crisp values, and to pro-
nounce that the assignment is only preliminary and
based on vague knowledge about the operation or-
der. Analogously, using the real-valued sequencing
function T', we can convey more information into the
next data assignment step than by using the integer-
valued sequencing S.

In the problem statement, both the neighbour-
hood preferences and the meaning of closeness ha-
ve been specified fuzzily. For neighbourhood prefe-
rences, the reason is that the preferences are ba-
sed on fuzzy membership values for the data assi-
gnment, they depend on how many data can be reu-
sed, and they depend on the execution frequencies
of the statements. The meaning of closeness is fuzzy,
since we are considering compile time where know-
ledge is limited because of cache effects, input de-
pendent control structures, and maybe machine in-
dependence.

The function f approximately reflects the requi-
rements to a good schedule: Large distances between
operations 7 and j in the schedule increase the ob-
jective function value the more the closer i and j
should be scheduled according to D (reflected by ha-
ving | T(j) — T'(¢) | in the numerator and D(i, j) in
the denominator). Because of the logarithmic scale,
decreases in distance pay out more for reasonably far
away operations than for operations that are in any
case too far away to permit reuse. The exponent 2
improves analytic accessibility. The choice of functi-
on f is still somewhat arbitrary in that other sca-
lings could produce the same qualitative effect like
the logarithmic scaling, and in that additional para-
meters like the base of the logarithm could adapt f
to concrete values of the memory size. From design,
our algorithm should be quite robust towards modi-
fications of the objective function. This expectation
was also confirmed by initial experimental results.
Hence, the objective function f considered in this
paper should be sufficiently representative.

1.3 Overview of the Paper

In section 2, we describe our basic algorithm and
motivate its design. Briefly, the algorithm starts with
a random sequencing, that is iteratively improved,
by alternatingly moving each 7'(7) in the direction of
the value that minimizes f for fixed T'(j) (j # ), and



spreading the T'(7) over [1 ... N]. Implementation de-
tails such as the choice of parameters are discussed
in section 3, where also several variants of the basic
algorithm are introduced. Particularly interesting is
a variant where not only steps that decrease but with
some probability also steps that increase the objec-
tive function value are accepted (similar to simula-
ted annealing). In section 3, we furthermore explain
two reference algorithms we have used in our expe-
riments: an enumerative algorithm and a heuristic
algorithm based on pairwise exchange of operations.
Section 4 lists and discusses our experimental results.
The paper finishes with some remarks about related
work and conclusions in section 5.

2 Our Algorithm

The algorithm is a simple and quite rough descent
method. Tt starts with a random sequencing function
T, where with uniform distribution over [1 ... N],
each operation 7 is independently assigned a random
initial time T(O)(i). In each step k, the algorithm cy-
cles through the variables T*=1)(i), replacing each

T(k_l)(i) by an intermediate value T}EI;l)p (4) such that

T}Efl)p(i) approaches the value that minimizes the ob-

jective function for fixed T(k_l)(j) (7 # 7). After

each cycle, the Té:l)p(i_) are spreaded over [1...N]
to avoid the values of the sequencing function would
move closer and closer together. The spreaded values
are the new T(k)(i).

A necessary condition for the objective functi-

on to take a minimum at some T}Efl)p(z') (for fixed

TH=1(4) (j # 1)) is that its derivative gets zero for
this Téjl)p(i). Unfortunately, equating the derivative
to zero leads, for our objective function, to a difficult
to solve equation. Hence, we will use an approxima-
tion.

Let us first consider a simpler objective function:

Then,
dg d N (T(j) —T(2))
dar() 4T % D(i, )

Hence, g has a local extremum at

o T(G)

™

.7',21, D(laJ)
J#1

T(i) =
N 1
> —
i=1 D(i, j)
J#i

It must be the global minimum, since g(.) obviously
takes smaller values for arguments from inside the in-
terval in {T(7)}... T'(j)}] than for oth

erva [érjﬂan{ ()} 125%\,{ (7)}] than for other

arguments, thus g must possess a global minimum
within this interval. The above given local extremum
is the only candidate.

Coming back to the minimization of f, the abo-
ve calculation is helpful if we consider the following
scaling of the time scale (scaled values are marked
by overlining):

T=1In(|t—T*=V0) | +1) -sign(t — 7¢* =1 (5))

for the currently to be updated T(k_l)(i) and any
time t € R*. (sign(z) = 1 if # < 0 and sign(z) = —1
otherwise). Hence T=1)(i) = 0. With the new sca-
ling, f applied to the values of step k£ — 1 appears
as

(T=10) - T(k—l)(z'_))2

N N
r=2 2. —
i=1 j=it1 D(i, j)
which has the same structure as g, and hence, un-
der the condition of fixed T(k=1)(j) takes a global
minimum if 7(5=1)(3) is replaced by

~ T61()
> —
J#
T, () = (1
JXV: 1
J#i

Though Té:l)p(i_), the value corresponding to T}E:I)p(i)
on the original scale, is in general not the global mi-
nimum of f, it approximates the minimum at least
in so far as that it indicates in which direction from
T(k_l)(i) the new value Téjl)p(ﬂ should be located
and gives a rough estimation on how far away it
should be located. The approximation seems to be
sufficient for the purpose of using it in our iterative
approximation algorithm, as finally indicated by the
experimental results.



We still have to invert the scaling, to locate

Tésl)p@) on the original scale:

TG = (|0 - 746 +1)

sign (T{5) () — T (7))

+1)

sign (TR (1)) = sign (T8, () — T4 (3))

Hence,

implies

(‘ heip (1 TE=1 (i)

‘ help

an

T(k) ()

help

‘Thelp T(k_l)(z) ‘ =
and consequently

T8 () = (

&) ()

help

-
TH=1(i) by
Téjl)p(z) according to (2), the values are spreaded over

[1...N], using a simple proportional spreading sche-
me.

After each cycle of replacing the T

In the simplest case, we fix the two outermost va-
lues at 1 and N, respectively, and proportionally ad-
apt the remaining values. Hence,

(% =1) - (T )~ minrit) (1))
T () = +1
mJaX{Thelp( N}- mln{Thelp( )}

3)
according to the intercept theorem. v

Despite the spreading, it may still happen that
the values tend to cluster in some few points. In this
case, we do not only fix the outermost values but al-
so some symmetrically chosen values between. Their
number will be denoted by Ngy, we have experimen-
ted with several variants of choosing Ngy (see section
3). If e.g. Nax = 4, then we would fix the smallest,
the | N/3]| -largest, the |2N/3| -largest and the lar-

gest T}Eel)p(') values at T) (i) = 1, |[N/3], |2N/3]
and N respectively.

Due to the effects of spreading and the approxima-
tion in the derivation of (2), simply applying (2) and
(3) alternatingly leads to a process that often does
not converge. For this reason, we introduce an addi-
tional parameter B € [0...1], the binding strength
of the old values, and replace (2) by

T (@) = (1= B) - T, (i) + B-TE=D(0) (4)

- 1) sign (T}Ejl)p(z') +TH=1 (),

where T( ib(2) (¢) is the value calculated according to
(2). B is ‘initialized with a small N-dependent va-
lue, and slowly increased in the course of the itera-
tive process. Details on the increasing scheme will
be given in section 3. The effect of B is that at the
beginning of the iterative process, the values of the
sequencing function may vary heavily between itera-
tions. Hence, in a sense, the solution space is scanned
coarsely and the objective function typically quickly
approaches a close to optimum value. This value is
later fine-tuned when a large B permits only minor
adjustments of the sequencing function.

In summary, our algorithm starts with a random
function 7 that is iteratively improved. Each ite-
ration step carries out one cycle through the varia-
bles T*=1)(i), replacing them by T}Ek)p() according
to (4). Then the values are spreaded according to (3)
into T(k‘)( /). Additional parameters, in particular B,
let the process converge. The process stops when B
has reached some threshold. There are several vari-
ants of our algorithm that will be detailed in the next
section.

3 Implementation and Reference Al-
gorithms

3.1 Implementation Details

Random Number Generator:

To initialitize the function 7% as well as for ran-
dom decisions in the increasing scheme for B (see
below), and also to generate test graphs for our ex-
periments, we need a random number generator with
uniform distribution. We used the generator RAN2
from [9] for all purposes, since it avoids sequential
correlations and is quite fast.

Sequential vs. Parallel Update of T(i): In the
basic variant described in section 2, the updating
step (4) (see (1)) refers to the old values T*=1)(j).

This has the advantage that potentially all éel)p( /)

can be determined in parallel, hence we will refer
to this version as parallel update. Alternatively, we

)( j) by T}E)()for tho-

elp

se Tl’Eel) (7) that have already been evaluated before.

This Wl]] be referred to as sequential update.

could in (1) replace k-1

Determining Ngx: Except some few test runs, whe-
re we have omitted the spreading entirely until so-
me bound was violated, we have always started with



Nix = 2, and incremented Ng, by one if the T}Eelp( /)
values clustered too heavily. Referring to the permu-
tation S}(lelp derived from T}Eeljp, we considered three
definitions of what it means to cluster too heavily:

o | help(z) help( i)| > f1-(N/Nsax), for some i,

. |Thelp( i) — Shelp( )| > faN, for some i, and

4 |Thelp( i) — Sy(lelp( )| > f3, for some i,

with parameters fi, fo and fs.

Basic Increasing Scheme for B: Here, B is initia-
lized to 1/N. It is increased in step k iff the objective
function value increased from step k—2 to step k—1,
except if Npx was incremented in step k — 1 and not
in step k — 2. Then, B*) is set to (B#=1) + 1)/2,
otherwise B*) = B =1) The scheme has been deri-
ved from manual experience with the algorithm.
Randomized Increasing Scheme for B: This
Scheme was inspired by simulated annealing (see e.g.
[11]). To make the algorithm more flexible, we accept
not only steps that decrease but with some probabi-
lity also steps that increase the value of the objec-
tive function. B is again initialized to 1/N. If the
objective function value decreases from step k — 2
to step k — 1, we always keep BF) = BU—1) (in-
dependent on Nyy). If the objective function value
increases from step k — 2 to step k — 1, we keep with
some probability B*) = B#=1) and otherwise set
B*) = (B*=1)4£1)/2. Tn accordance with simulated
annealing, the probability is determined as

e_(F(k—l)/Fbest_l)/T

where F*=1) and FP*" denote the objective functi-
on value after step £ —1 and the best so far objective
function value respectively. T' i1s a parameter called
temperature. We are using the ratio instead of the
difference between F(~1) and FPe' since objective
function values may vary heavily between different
input graphs; the ratio gives independence from ab-
solute values without requiring to adapt 7". The pa-
rameter 7" has been determined from manual expe-
rience with the algorithm as 7' = 1.5 - (1 — B)?. We
restrict the maximum number of iterations carried
out with the same B to M = 100.

Real Result vs. Integer Result Though the
algorithm has been designed to determine a sequen-
cing function 7', it can also be used to determine a
permutation S by simply ordering 1”s values. The
objective function value determined from 1" is re-
ferred to as real result, the objective function value
determined from S is referred to as integer result
(even though the objective function value itself will

be real).

Last Value vs. Best Value In particular becau-
se B is updated on the basis of T' even if we wish an
integer result, the objective function value of the fi-
nal S may be worse than that of some intermediate
S. We let the algorithm either return the objective
function value of the final S (referred to as last va-
lue) or the best objective function value encountered
so far (referred to as best value). Even though the
best value can never be worse than the last value,
it may make sense to return the last value, since it
saves the time to evaluate intermediate S and their
corresponding objective function values.

While with the random increasing scheme, after
increasing B, we always reset T*) to the best so far
sequencing function, for the basic increasing sche-
me we have tried both keeping T®*) at the functi-
on determined with the old B, and resetting 7(*)
to the best so far function. We refer to the former
case as last-intermediate and to the later as best-
intermediate variant. The former may have the ad-
vantage of being slightly faster.

3.2 Reference Algorithms

We evaluated our algorithm based on integer re-
sults. Since integer results are derived from real re-
sults, the quality of the integer results is an indicator
of the quality of the real results. In the following, two
reference algorithms are described.

Enumerative Algorithm A trivial algorithm for
the integer-valued version of our problem is to sy-
stematically generate all the N! candidates for S,
determine their objective function values and return
the minimum. The algorithm is guaranteed to yield
the exact optimum, but takes exponential time and
is prohibitively slow already for about N > 12.
Pairwise Exchange Heuristic: This is a simple
heuristic algorithm, similar to the Kernighan-Lin
heuristic for graph partitioning ([6]) or the 2-opt
edge exchange heuristic for the travelling salesman
problem ([7]). The algorithm starts with S being a
random permutation of {1...N}. Then it repeated-
ly picks two indices ¢ and j and exchanges S(7) and
S(j) if the exchange decreases the objective functi-
on value by some minimum amount. The algorithm
stops if there is no exchange possible anymore. The
algorithm has freedom in the choice of the S(i)—S(j)
pair to be exchanged next. Taking solution quality
and computation time into consideration, after so-
me experimentation, we decided for the variant of
choosing the best pair for fixed S(¢) (considering the
S(7) in cyclic order), with exchange for any gain in
objective function value, and used it in the reference
algorithm.



4 Experimental results

We have run several variants of our algorithm and
the reference algorithms on typically 500 randomly
generated matrices 1) and recorded the ratios bet-
ween the objective function values achieved with the
algorithms. The following table lists some characte-
ristic results, referring to statistics on the specified
ratio.

variant; /pairw.exch., with variant; = par.update,
f1 = 0.9, basic scheme, best value, B <= 0.95

N 5 10 20 50 100
avg. ratio 1.14 | 1.09 | 1.09 | 1.10 1.12
max. ratio 37 1 14 | 16 | 1.4 1.4
min. ratio 0.88 1 0.89 | 0.90 | 0.95 1.0

varianty /pairw.exch., with variant; = par.update,
f1 = 0.9, rand.scheme, best value,B <= 0.95

N 5 10 20 50 100
avg. ratio 1.06 | 1.07 | 1.06 | 1.08 1.10
max. ratio 2.1 | 3.3 | 26 | 3.1 1.9

min. ratio | 0.84 | 0.85 | 0.86 | 0.89 0.98
variant; /variants, with variants = par.update,
f1 = 0.9, basic scheme, best value, B < 0.99999
N 5 10 | 20 | 50 100
avg. ratio 1.05( 1.0 | 1.0 | 1.0 1.0
varianty /variant;, with varianty = par.update,
f1 = 0.9, basic scheme,last value, B < 0.95

N 5 10 | 20 | 50 100
avg. ratio 1.00 | 1.02 | 1.01 | 1.00 1.00

pairw.exch./enumerative

N ) 8 10 11 12
avg. ratio 1.01 {1.03 | 1.04 | 1.09 1.05
max. ratio | 1.3 | 1.2 | 1.2 | 1.2 1.07
# test runs | 500 | 500 | 150 | 3 3

Many more results have been omitted for brevity.
To summarize a few, we have run the algorithm on
some application-specific graphs, generated from a
program for multiplying 2 x 2 matrices with sever-
al degrees of fuzziness in the data assignment, and
observed similar results as with the random graphs.
Variants with serial update have been slightly worse
(about 2 %) than variants with parallel update. Best-
intermediate variants have not been better but even
slightly worse (about 2%) than last-intermediate va-
riants. Initializing Ng, with 1 improves the solution
quality for about N = 3...5, but is disadvantageous
for other N. We experimented with fo = 0.2 and
f3 = 2, and observed about the same results as with
fi =0.9 (at least for N > 10).

While for integer results, the recorded ratios have
been relatively constant over different test runs (ra-
rely over 20% deviation for N > 10), the ratios fluc-

tuated more heavily for real results. In average, real
results have been about 60% the amount of integer
results. We compared real results of a combination
where variant; was initialized with the result of the
pairwise exchange algorithm to pure variant;, and
found the later to be superior by about 4%. Com-
paring the real result versions of variants 1 and 2,
variant 1 was up to 10% better which may be due to
current parameter settings.

The following time measurements refer to
straightforward codings of the algorithmsin Modula-
2 on a DECstation 5000. The purpose of the time
measurements was to compare the different algo-
rithms, not to focus on absolute values. Time refers
to CPU time in ms, averaged over 500 (or less, for
the slow programs) test runs.

varianty

N 5 10 20 50 100
time | 14 | 167 | 5.8-10%2[3.0-10% [ 1.1-10%
variants

N 5 10 20 50 100
time | 130 | 368 | 1.3-10% [ 5.6-10% | 2.0-10%
variants

N 5 10 20 50 100

time | 24 | 183 [ 7.1-10%[5.1-10% [ 2.7-10%

pairw. exch.

N 5 10 20 50 100
time | 8 135 [2.7-10% [ 1.2-10° | 2.2 10°
enumerative

N 5 8 9 10 11

time | 0 [9583 [ 1.1-10° [ 1.4-10°|1.8-107

It pays off to run our algorithm with multiple in-
itializations as shown in the following table.

variant; (k initializations) / pairw.exch., N = 50
k 1 2 3 4
avg.ratio | 1.10 | 1.08 | 1.06 | 1.06 1.
variants (k initializations) / pairw.exch., N = 50
k 1 2 3 4
avg.ratio | 1.08 | 1.05 | 1.045 | 1.040 1.

()]

o
ot

Ol o

37

To summarize, the results indicate that the algo-
rithm typically achieves objective function values wi-
thin 10 —20% of the optimum. Though we have done
some experimentation, we expect, that the quality of
the algorithm can be further improved by fine-tuning
the parameters. The algorithm exhibits a tradeoff
between solution quality and computation time that
can be shifted with other settings. The time measu-
rements clearly indicate that our algorithm is faster
than the pairwise exchange heuristic, and is suffi-
ciently efficient for the application we have in mind.



5 Related Work and Conclusions

In this paper, we have defined a sequencing pro-
blem, where operations should be arranged with the
aim of fulfilling neighbourhood preferences. The re-
sult is a sequencing function that assigns to each
operation a real time when 1t will be approximately
carried out. We have introduced and evaluated an
algorithm to approximately solve the problem, and
experimented with several parameter settings. Fu-
ture work will address the issue of including hard
constraints on the operation order (representing da-
ta dependencies) into our algorithm.

The topic of this paper is different from other data
locality optimization research which typically aims
at regular loop structures and considers a restric-
ted set of candidate permutations only (see e.g. [1],
or [8] for a discussion). There is related work from
other areas, though.

Multidimensional scaling ([3]) aims at embedding
a dissimilarity matrix into Euclidean space such that
the distances between data points approximate the
dissimilarities. For a one-dimensional space, it al-
most corresponds to our problem, except that the
objective function favours both related data points
to be placed close to each other and unrelated data
points to be placed far away (our problem is restric-
ted to the former).

Our algorithm closely resembles the centroid and
annealing heuristics developed in the context of vi-
sualizing semantic nets ([5]) in 3-dimensional space.
Differences result mainly from that we require the
algorithm to spread the 7' values evenly, whereas [5]
requires them to be discriminable.

Our algorithm was inspired by Fuzzy Clustering
([2]). The problem of fuzzy clustering resembles our
problem in that a (dis)similarity matrix is given, and
objects are to be arranged with the aim of reali-
zing neighbourhood preferences. Both cases use an
objective function that is minimized in an iterative
process, where, assuming some parameters of the ar-
rangement to be fixed, other parameters are set to
optimum (or close to optimum) values.

The algorithm also shares similarity with the Ela-
stic Net approach to the travelling salesman problem
in that real values are moving under the influence of
several forces (in our case, attractive forces of the
preferred neighbours and the binding force of the
old value), and the relative strengths of the forces
change in course of the optimization process.

Increasing B in the iterative process to first coar-

sely and later finely search for an optimum is similar
in spirit to simulated annealing ([11]) and determini-
stic annealing ([10]). Finally, our problem is related
to the Minimum Bandwidth problem ([4]), except
that we are considering weighted graphs and have a
different objective function.

Literatur

[1] D.F. Bacon, S.L. Graham, O.J. Sharp, “Compi-
ler Transformations for High-Performance Com-
puting”, ACM Computing Surveys, 26(4), pp.
345-420, 1994

[2] J.C. Bezdek, “Pattern Recognition with Fuzzy
Objective Function Algorithms”, Plenum, New
York, 1981

[3] T.F. Cox, M.A.A. Cox, “Multidimensional Sca-
ling”, Chapman & Hall, 1994

[4] P. Crescenzi, V. Kann, “A compendium of NP
optimization problems”, 1995, ftp nada.kth.se:
Theory/Viggo-Kann/compendium.ps.Z, GT37

[5] K.M. Fairchild, S.E. Poltrock, G.W. Furnas:
“SemNet: Three-Dimensional Graphic Repre-
sentations of Large Knowledge Bases”, La-
wrence Erlbaum Associates, 1988

[6] B.W. Kernighan, S. Lin, “An Efficient Heuri-
stic Procedure for Partitioning Graphs”, Bell
Systems Tech. J. 49 (1970), pp. 291-307

[7] E.L. Lawler (ed.), “The Traveling salesman pro-
blem”, Wiley, 1992

[8] C. Leopold, “A Fuzzy Approach to Automa-
tic Data Locality Optimization”, Proc. ACM
Symp. on Applied Computing, pp. 515-518, 1996

[9] W.H. Press, B.P. Flannery, S.A. Teukolsky,
W.T. Vetterling, “Numerical Recipes”, Cam-
bridge University Press, 1986

[10] K. Rose, E. Gurewitz, G.C. Fox, “Constrained
Clustering as an Optimization Method”, IEEE
Trans. on Pattern Analysis and Machine Intel-

ligence, Vol. 15, No. 8, pp. 785-794, 1993

[11] S.C. Shapiro, “Encyclopedia of artificial intelli-
gence”, Wiley, 1992



