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ABSTRACT
Tiling is well-known to reduce the number of cache misses
in linear relaxation codes. This paper investigates analyti-
cally how close to optimum the improvement gets. We con-
sider one time step of the Jacobi and Gauss-Seidel methods
on a two-dimensional array of size (N +2) × (N +2). For
cache capacity C and line size L, we prove that at least
0.6N2/(LC) capacity misses are taken, independent on
the schedule of operations in the program. Furthermore,
we show that tiled codes are off this bound by a factor of
4L. Finally, we reduce the factor to 7 with a sophisticated
data layout scheme.
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1. Introduction

Linear relaxation codes such as the Jacobi and Gauss-
Seidel kernels are among the most time-consuming rou-
tines in many scientific and engineering applications. The
kernels form the core of classical iterative solvers for par-
tial differential equations, and are used as building blocks
in modern efficient schemes such as multigrid.

Linear relaxation kernels are frequently denoted as
stencil codes because they update array elements according
to some fixed pattern, called stencil. Stencil codes perform
a sequence of sweeps through a large array, in each sweep
updating all array elements except the boundary. This pa-
per considers a two-dimensional array with five-point sten-
cil, which updates the array elements on the basis of their
own values and the values of the four immediate neighbors.
The codes are given in Fig. 1.

As has been observed by, for instance, Douglas et
al. [1], the performance of stencil codes lags far behind
peak performance, chiefly because cache usage is poor.
Nevertheless, stencil codes have a significant locality po-
tential since successive accesses refer to neighbored array
elements. In our 2D codes, four types of data reuse can be
distinguished:

(1) Assuming column-major storage order, the cache line
that holds A(I, J), A(I+1, J), A(I+2, J) . . . is reused
in the I-loop.

(2) A(I, J) is reused in the I-loop, in the updates of A(I−
1, J), A(I, J), and A(I+1, J).

(3) A(I, J) is reused in the J-loop, in the updates of
A(I, J−1), A(I, J), and A(I, J+1).

(4) A(I, J) is reused in the time loop.

Reuse types 2–4 correspond to temporal locality since the
same data element is accessed; reuse type 1 corresponds
to spatial locality since data from the same cache line are
accessed. Reuse types 1 and 2 are exploited by the input
codes, but reuse type 3 is not exploited if the array size
N exceeds the cache capacity C. Then, A(I, J) must be
loaded anew for the updates of A(I, J) and A(I, J +1),
despite having been loaded for the update of A(I, J −1).
We do not consider reuse type 4. This paper investigates
reuse type 3 on the assumption that N < C. This assump-
tion may hold for L1 caches. Moreover, the problem can
be considered a simpler version of the cache optimization
problem for stencil codes on 3D arrays with N2 < C.

The technique for exploiting type 3 reuse is well-
known: tiling. Closest related to ours is work by Rivera
and Tseng who study tiling experimentally. Figure 2 de-
picts the tiled Gauss-Seidel code for the input of Fig. 1.
The tiled Jacobi code is analogous, but has been omitted
for brevity. Whereas previous research has experimentally
shown that tiling improves performance, we investigate an-
alytically how close to optimum tiling gets in terms of
cache misses.

In particular, we prove a lower bound on the number
of capacity misses for one sweep through the array in the
2D Gauss-Seidel and Jacobi kernels. Note that, in the Ja-
cobi kernel, a sweep is different from a time step. Without
loss of generality, we consider the first sweep, in which ar-
ray A is read, and array B is written to.

In line with common notation, cache misses are clas-
sified as cold misses (the first access to an element), capac-
ity misses (misses due to limited cache capacity), and con-
flict misses (misses due to cache thrashing). Obviously, the
Gauss-Seidel and Jacobi kernels take about (N +2)2 cold
misses since all elements of A (except the corners) must be
read. We do not consider conflict misses, but assume that
padding [6] is applied after our optimizations to eliminate
conflict misses.

We prove a lower bound of Ω(N2/(LC)), in which
L denotes cache line size. For C ≤ N/10, the constant



a) do T = 1, time ! or repeat until convergence
do J = 1, N

do I = 1, N
A(I, J) = W1 ∗ A(I, J) + W2 ∗ A(I − 1, J)

+W3 ∗ A(I + 1, J) + W4 ∗ A(I, J − 1)
+W5 ∗ A(I, J + 1) (*)

end do
end do

end do

b) do T = 1, time ! or repeat until convergence
do J = 1, N

do I = 1, N
B(I, J) = W1 ∗ A(I, J) + W2 ∗ A(I − 1, J)

+W3 ∗ A(I + 1, J) + W4 ∗ A(I, J − 1)
+W5 ∗ A(I, J + 1) (*)

end do
end do
do J = 1, N

do I = 1, N
A(I, J) = W1 ∗ B(I, J) + W2 ∗ B(I − 1, J)

+W3 ∗ B(I + 1, J) + W4 ∗ B(I, J − 1)
+W5 ∗ B(I, J + 1) (*)

end do
end do

end do

Figure 1. a) Gauss-Seidel and b) Jacobi kernel. A and B
are supposed to be [0 . . . N +1] × [0 . . . N +1] arrays

do T = 1, time
do II = 1, N , S

do J = 1, N
do I = II , min(II+S-1, N )

A(I, J) = W1 ∗ A(I, J) + W2 ∗ A(I − 1, J)
+W3 ∗ A(I + 1, J) + W4 ∗ A(I, J − 1)
+W5 ∗ A(I, J + 1) (*)

end do
end do

end do
end do

Figure 2. Tiled Gauss-Seidel code

factor is estimated by 0.6. Furthermore, we analyze tiling
and show that the tiled codes take 2N2/C capacity misses.
Thus the bounds are off by a factor of at most 4L. In light
of the (N +2)2 >> 2N2/C cold misses that any Gauss-
Seidel or Jacobi code takes, this result indicates very close-
to-optimum cache performance for tiling.

In the second part of the paper, we improve the up-
per bound to 4N2/(LC), using a sophisticated data layout
scheme instead of column-major. The scheme’s drawback
is a high addressing expense. We also compare column-
major and row-major storage order and observe that these
are equivalent for tiled codes.

The rest of this paper is organized as follows. Sec-
tion 2 proves the lower bound and estimates the constant
factor. Section 3 analyzes tiling and discusses the improve-
ment by L through data layout. Section 4 finishes with
related work and conclusions.

2. Lower bound

We consider one sweep through the array, in either the
Gauss-Seidel or Jacobi scheme. In a sweep, N2 operations
are carried out, which correspond to instances of statement
(*) for I = 1 . . . N , J = 1 . . . N . We allow for redundancy,
that is, operations may be repeated, but we do not allow to
split statement (*) into subcomputations.

In the Gauss-Seidel scheme, data dependencies exist
from iterations (I−1, J) and (I, J−1) to iteration (I, J).
The proof ignores these dependencies, which is correct be-
cause a lower bound to an unconstrained problem is always
a lower bound to a constrained problem, too. Similarly, no
particular cache replacement scheme is relied upon. The
lower bound refers to user-controlled data placement but,
consequently, also holds for any common scheme such as
LRU.

Theorem 1 On the conditions stated above, any schedule
of the N2 operations takes Ω(N2/(LC)) capacity misses.

Proof: Let Sched be any schedule. We partition Sched into
subsequences S1, S2, . . . SK of successive operations such
that S1, S2, . . . SK−1 consist of exactly C2 operations, and
SK consists of up to 2C2 − 1 operations. Then,

K ≥ bN2/C2c ,

where inequality holds in case of redundancy.
Disregarding redundancy, each interior array element

is accessed five times inSched , and each boundary element
is accessed one time. The following definition captures ar-
ray elements that are accessed by multiple Si.

Definition 2 An array element e is touched-only by Si

(1 ≤ i ≤ K) if the number of accesses to e in Si is at
least one, but less than the total number of accesses to e in
Sched .
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Figure 3. Geometric model of a subsequence

The rest of this proof uses geometric argumentation.
We model A by a large square that is composed of small
squares for the A(I, J). Just think of A as being drawn on
squared paper such that A(I, J) corresponds to the printed
square in the I-th row and J-th column of A.

In the following, we consider any particular Si. Let
F = F (Si) denote the geometric figure (also called ar-
rangement) that is composed of those small squares whose
array elements are updated in Si. Furthermore, let R de-
note the smallest axes-parallel rectangle that completely
holds F , and let rx, ry be the side lengths of R in x- and
y-direction, respectively (see Fig. 3).

We next interpret the definition of ’touched-only’ in
our geometric model. We say that a (small) square is x-
touched by F if

• the square belongs to F , but its left or right neighbor
does not, or

• the square does not belong to F , but its left or right
neighbor does.

The definition ofy-touched is analogous, but refers to the
neighbors above and below the square. We say that an array
element is touched if it is x-touched or y-touched. Since an
array element has four neighbours, it can be touched up to
fourfold. To give an example, the x-touched squares in the
bottom row of Fig. 3 have been marked by x. Most of these
squares are y-touched, as well.

The update operation (*) refers to geometric neigh-
bors. Consequently, if the square that corresponds to an
array element e is touched by F , then at least one of the
following conditions hold (see Fig. 4):

a) e is touched-only by Si, or

b) e belongs to the boundary of A, or

c) e has a neighbor that belongs to the boundary of A.

Lemma 3 below shows that for any arrangement of C2

squares, at least 4C squares are x-touched, or at least 4C
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Figure 4. Correspondence between touched and touched-
only. At the left boundary, touched squares are marked ac-
cording to cases a), b) and c)

squares are y-touched. Consequently, the whole schedule
comprises at least

Z ≥ 4KC

pairs (Si, e) for which the square that corresponds to e is
touched by the figure that corresponds toSi. We distin-
guish these pairs into five types:

(1) e is touched-only by Si, and one of the accesses to e
in Si is the first access toe in Sched

(2) e is touched-only by Si, and one of the accesses to e
in Si is the last access to e in Sched

(3) e is touched-only by Si, and none of the accesses to e
in Si is the first or last access toe in Sched

(4) e is not touched-only by Si, and e belongs to the
boundary of A

(5) e is not touched-only by Si, and a neighbor of e be-
longs to the boundary of A

Altogether, Sched comprises at most 8N pairs of types 4
and 5. We denote the total number of type 1, 2, and 3 pairs
by Zin, Zout, and ZinOut, respectively. From

Zin + Zout + ZinOut = Z − 8N

and Zin = Zout follows

Zout + ZinOut ≥ Z/2 − 4N .

At most C data are kept in cache in-between successive
Si’s, summing up to W ≤ (K − 1) · C elements for the
whole schedule. Consequently, at least

Zout + ZinOut − W ≥ 2KC − 4N − kC + C

≥ bN2/C2c · C − 4N + C

elements must be reloaded after having been replaced from
cache. Since at most L elements are loaded per memory
access, there are at least

(1/L) ·
(

bN2/C2c · C − 4N + C
)

= Ω(N2/(LC))



capacity misses.
For C ≤ N/10, the bound can more accurately be

estimated by:

(1/L) ·
(

bN2/C2cC − 4N + C
)

≥ (1/L) · (N2/C − 4N) ≥ 0.6N2/(LC)

The proof of Lemma 3 is still open:

Lemma 3 For any arrangement of Q squares, at least
4
√

Q squares are x-touched, or at least 4
√

Q squares are
y-touched.

Proof: The proof is by contradiction. Assume that F0 ar-
ranges Q squares such that

#x-touched(F0) < 4
√

Q and

#y-touched(F0) < 4
√

Q. (P1)

Then, an arrangement F1 can be constructed that fulfills
(P1) and has no empty rows between the lowermost and
uppermost rows that contain squares. F1 is constructed by
removing all empty rows from F0, which implies

#x-touched(F1) = #x-touched(F0)

and

#y-touched(F1) ≤ #y-touched(F0) .

Analogously, an arrangement F2 can be constructed that
fulfills (P1) and has neither empty rows nor empty
columns. We call such an arrangement compact.

Rotating F2 if needed, we obtain a compact arrange-
ment F3 that fulfills (P1) andrx(F3) ≤ ry(F3). Simplify-
ing (P1), we finally get an arrangementF with

• F is compact and consists of Q squares, and (P2)

• rx(F ) ≤ ry(F ), and (P3)

• #x-touched(F ) < 4
√

Q, and (P4)

• among the arrangements that fulfill (P2)–(P4),
F minimizes #x-touched (P5)

From now on, we refer to F , except where otherwise men-
tioned. Let wi denote the number of squares in row i. Then,
the number of squares in row i that are x-touched is at least

#x-touched(i) ≥
{

3 wi = 1
4 wi ≥ 2

(Q1)

Let rs denote the number of rows that contain only a single
square, rf the number of rows that contain ry squares, and
rh the number of rows that contain more than one but less
than ry squares. Since rx ≤ ry , the rf -rows are ’full’, and
the rh-rows are ’half-full’.

In the following, we distinguish seven cases, and
derive a contradiction in each of them. For brevity, only
three cases are presented in full, the rest is similar.
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Figure 5. Rearrangement in Case 2

Case 1: rs = 0. Since r2
y ≥ rxry ≥ Q, observation

(Q1) implies

#x-touched ≥ 4ry ≥ 4
√

Q ,

in contradiction to (P4).

Case 2: rh > 0, rs ≥ 2. We construct an arrangement F ′

by combining two rs-rows into an rh-row, and moving one
square from each rf -row to that row as well (see Fig. 5).
The rearrangement must not insert any new gaps. Then,
F ′ fulfills (P2)–(P4). For (P3), observe that the formerrf -
rows fulfill

rx(F ′) = rx(F ) − 1 ≤ ry(F ) − 1 = ry(F ′)

by construction, and the filled-up row contains at most

rf (F ) + 2 = ry(F ) − rh(F ) − rs(F ) + 2 ≤ ry(F ) − 1

squares. On the other hand,

#x-touched(F ′) = 4(rf (F ) + rh(F ) + 1) + 3(rs(F ) − 2)

= #x-touched(F ) − 2

< #x-touched(F ) ,

in contradiction to (P5).

Case 3: rh = 0, rs ≥ 3. Similar to case 2.

Case 4: rh = 0, rs = 1. This case is depicted in
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Figure 6. Shape of figure in Case 4

Fig. 6. Since

Q = rf (rf + 1) + 1

= r2
f + rf + 1

= (rf + 1)2 − rf ,

the value
√

Q is about in the middle between rf and rf+1.
For rf ≥ 2, a more accurate calculation yields

√
Q ≤ rf +

0.7. Thus,

#x-touched ≥ 4rf + 3 ≥ 4
√

Q − 2.8 + 3 > 4
√

Q ,

in contradiction to (P4).

Case 5: rh = 0, rs = 2. Similar to case 4.

Case 6: rh > 0, rs = 1, and

rh(ry − 1) −
∑

rh-rows

wi ≥ rf + 1 .

The last inequality can be interpreted as that there are
enough gaps in the rh-rows to absorb a square from each
of the rf rows and from the rs row. Similar to case 2.

Case 7: rh > 0, rs = 1, and

rh(ry − 1) −
∑

rh-rows

wi < rf + 1 .

Similar to case 4.

3. Upper bound

Figure 7 illustrates the execution order of the tiled code.
Each horizontal stripe of S rows is called a tile. For ex-
ploitation of type 3 reuse, the cache must hold two columns
plus one element of a tile. Hence, we choose S = C/2 (ig-
noring the one element for simplicity of analysis).

The tiled code exploits all cases of type 3 reuse, but it
does not exploit type 1 reuse nor type 2 reuse at tile bound-
aries. Cache lines that are cut by tile boundaries must be

S

N

Figure 7. Execution order of tiled code

loaded twice; of the two loads, one is a cold miss, and the
other is a capacity miss. It is of no help to let cache lines
end at tile boundaries; in contrary, this induces four misses.
If cache lines are cut, the total number of capacity misses
equals the total length of tile boundaries, which can be es-
timated by

N · (N/S) ≤ 2N2/C .

Note that this bound holds for both Jacobi (since the tiled
code respects data dependencies) and Gauss-Seidel (as-
suming a write-around cache).

Hence, the upper and lower bounds differ by a factor
of less than 4L. As noted in the introduction, this differ-
ence is very low as compared to the number of cold misses.
Moreover, it is partly due to simplifications in the lower
bound proof. Thus, from a practical point of view, tiling is
almost optimal.

Nevertheless, the L factor hurts if we think of possible
future caches with a large line size. The factor can be elim-
inated by using a mixed column-row layout as sketched in
Fig. 8. In this layout, data are stored column-wise except
at tile boundaries, where two rows of data are stored row-
wise. If line size does not evenly divide tile size, lines con-
tinue from the bottom of a tile’s column J to the top of the
same tile’s column J + 1.

In mixed column-row layout, the cache must hold two
columns of a tile plus four horizontal blocks, that is C ≥
2S + 4L. A sophisticated padding scheme can guarantee
that the data that are stored row-wise do not interfere with
the data that are stored column-wise. Unfortunately, such
a scheme has a high addressing expense which is likely to
outweigh any gain in locality. Ignoring this problem for
now, the layout incurs about

(N/S) · N · (2/L) = 4N2/(LC)

capacity misses because, at tile boundaries, we have two
cold misses and two capacity misses every L columns.



....
Figure 8. Mixed column-row layout

Hence, the layout reduces the distinction between upper
and lower bounds to a factor of less than 7. Again, this
is very low as cold misses have not been accounted for.

The advantage of row-wise layout at tile boundaries
may suggest that a pure row-major order outperforms stan-
dard column-major order as well. However, this is not the
case. With row-major order, the cache must hold at least
C ≥ SL elements, and thus the number of capacity misses
is (N/S) ·N · (2/L) = 2N2/C. Consequently, row-major
order and column-major order are about equivalent.

4. Related work

The compiler optimization community has conducted
much research on tiling [5, 9]. Nevertheless, Douglas et
al. [1] observe that current production compilers are not
able to tile even elementary stencil codes. Part of the rea-
son may be differences in the way tiling works for stencil
codes as opposed to dense linear algebra codes (the focus
of compiler research). There, the data of a tile are moved
into cache together, and then stay until the processing of
the tile is complete. Tiled stencil codes, in contrast, keep
only a few columns in cache to be efficient.

Several papers deal with tiling specifically for stencil
codes. Rivera and Tseng [6] present tiled 3D codes that are
analogous to our 2D codes. They also discuss data place-
ment schemes that avoid conflict misses. Like us, they refer
to a single sweep and consider updates as a unit. The use-
fulness of tiling is shown experimentally, lower bounds are
not given. In other papers, tiling is used to exploit type 4
reuse [1–3, 7, 8].

The present paper extends our previous work [4], in
which we have analyzed cache misses on the assumption
L = 1. In [4], modifications of tiling were studied, such
as a snake-like order of tile execution. These modifica-
tions can be applied to L 6= 1, as well. The present paper
has given emphasis to data layout. Moreover, we have im-
proved the constant factor in the lower bound. In particular,
Lemma 3 replaces the weaker estimation of 3

√
Q touched

squares that has been used in [4].

5. Conclusions

In summary, this paper has shown that tiled codes achieve
close-to-optimal cache performance. Our results comple-
ment previous experimental studies, in which tiling was
shown to speed up programs, but no comparison with op-
timal performance was given. We have proven upper and
lower bounds that are off by a factor of 4L, which is very
low since the bounds refer to capacity misses, but cold
misses dominate the overall missrate. For the case of large
L, we have also suggested a mixed column-row data layout
that reduces the factor to 7. In ongoing work, we are gen-
eralizing our results to 3D codes and tiling schemes for the
time loop.
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