
Observations on MPI-2 Support for
Hybrid Master/Slave Applications in

Dynamic and Heterogeneous Environments

Claudia Leopold and Michael Süß

University of Kassel, Research Group Programming Languages/Methodologies
Wilhelmshöher Allee 73, D-34121 Kassel, Germany

{leopold, msuess}@uni-kassel.de

Abstract. Large-scale MPI programs must work with dynamic and het-
erogeneous resources. While many of the involved issues can be handled
by the MPI implementation, some must be dealt with by the applica-
tion program. This paper considers a master/slave application, in which
MPI processes internally use a different number of threads created by
OpenMP. We modify the standard master/slave pattern to allow for dy-
namic addition and withdrawal of slaves. Moreover, the application dy-
namically adapts to use processors for either processes or threads. The
paper evaluates the support that MPI-2 provides for implementing the
scheme, partly referring to experiments with the MPICH2 implementa-
tion. We found that most requirements can be met if optional parts of
the standard are used, but slave crashes require additional functionality.
Keywords: dynamic process management, malleability, adaptivity, hy-
brid MPI/OpenMP, master/slave pattern

1 Introduction

Traditionally, MPI programs have used a fixed number of homogeneous pro-
cesses. Modern architectures and especially grids, in contrast, are characterized
by dynamic and heterogeneous resources: Nodes can crash, be withdrawn by
the scheduler in favor of higher-priority jobs, or join a running computation af-
ter having finished a previous task. Moreover, different nodes may comprise a
different number of processors.

The ability of applications to dynamically adapt to a changing number of
processors is often denoted as malleability. This term goes back to Feitelson and
Rudolph [1], who classify jobs as rigid, moldable, evolving, or malleable. Both
evolving and malleable jobs change the number of processors during execution,
evolving jobs for internal reasons such as requesting additional processors for a
complicated subcomputation, and malleable jobs in reaction to changes caused
by the environment.

Many architectures combine shared-memory within the nodes and distributed-
memory in-between the nodes. They can be programmed in a hybrid style, using
MPI processes that are composed of threads. Whether or not the processors of



a node are more profitably used for processes or threads, depends on the ap-
plication. It may be useful to change this assignment dynamically. We call this
feature process-thread adaptivity.

This paper evaluates the support for malleability and process-thread adaptiv-
ity that is provided in MPI-2, mainly through the dynamic process management
functions. We base our discussion on a hybrid MPI/OpenMP application from
the simulation domain, which is described in Sect. 2. The application uses a mas-
ter/slave scheme, in which slaves correspond to MPI processes that internally
deploy a different number of OpenMP-threads.

Previous work by the same authors has shown that additional processes can
be dynamically incorporated into this application [2]. The present paper adds
the aspect of process-thread adaptivity, and discusses the case of slaves leaving
the computation prematurely. We show that MPI-2 provides sufficient support
for process-thread adaptivity if the implementation covers some optional parts
of the standard. Evolving programs are supported as well, but the case of a
slave leaving the computation abruptly can not be handled appropriately, and
we discuss possible workarounds.

Sect. 2 of the paper starts with an outline of the application, including par-
allelization and deployment of hybrid processes. Then, Sect. 3 explains at an
algorithmic level our modifications of the master/slave scheme to handle dy-
namic and heterogeneous resources. The realization of this scheme in hybrid
MPI-2/OpenMP is the topic of Sects. 4–6: Sect. 4 recalls the program structure
for incorporating additional processes, Sect. 5 discusses process-thread adaptiv-
ity, and Sect. 6 is devoted to node withdrawals. Related work is reviewed in
Sect. 7, and the paper finishes with conclusions in Sect. 8.

2 Application and Experimental Setting

The example program, called WaterGAP, computes current and future water
availability worldwide [2]. WaterGAP partitions the surface area of continents
into equally-sized grid cells. Based on input data for climate, vegetation etc.,
it simulates the flow of water, both vertically (precipitation, transpiration) and
horizontally (routing through river networks), over a period of several years. The
program has been written in C++.

WaterGAP uses two levels of parallelism: a master/slave scheme implemented
with MPI at the outer level, and data parallelism implemented with OpenMP-
threads at the inner level [2]. The master/slave scheme relies on the observation
that the set of grid cells is naturally partitioned into basins that do not exchange
water with other basins. Thus, the overall computation is divided into indepen-
dent tasks that correspond to one basin each. Task sizes are known in advance,
but range from a few very large tasks to many small ones.

Scalability of the master/slave scheme is limited, since the program can not
run faster than the time needed to compute the largest basin. Therefore, data
parallelism is used to speed up the computation of large basins internally. Data
parallelism yields lower speedups than master/slave parallelism [2], i.e., if a



multi-processor node is assigned one large basin, it finishes earliest when us-
ing a multi-threaded process. If the same node is assigned several small basins,
it finishes earlier when using several single-threaded processes. Therefore, we use
a different number of threads for different processes.

Experiments were carried out on the compute cluster of the University of
Kassel, a Linux cluster that comprises a large number of double-processor nodes,
and one eight-processor node. On this architecture, a maximum speedup of 22
was achieved with 32 processors [2]. Here, the largest basin was computed by
a multi-threaded process, other large basins were computed by double-threaded
processes, and the small basins were computed by single-threaded processes.

In all experiments, we used the Portland Compiler, and the MPICH2 [3]
implementation of MPI-2 (release 1.0.3, process manager mpd, compiled with
Portland compiler). Experiments were carried out both interactively and through
the batch system. We experimented with both C and C++ bindings of the MPI
functions.

3 Dynamic and Heterogeneous Master/Slave Scheme

The standard master/slave scheme uses one master and several slaves. The mas-
ter starts computation by sending a task to each slave. Whenever a slave has
finished its task, it reports the result back to the master and gets the next task,
until all tasks have been processed. We modify the scheme to incorporate:

– dynamic arrival of slaves,
– arrival of more powerful slaves that can take over expensive tasks, and
– sudden or announced withdrawal of slaves.

The first case is easy to handle at an algorithmic level: the master adds the
slave to its pool of communication partners, and sends a task. The other two
cases require task reassignment. While one can think of very sophisticated and
efficient schemes, we restrict our considerations to a simple scheme here that is
sufficient to identify and study essential requirements for MPI support:

After creation, a new process connects to the master and requests work. The
master assigns the tasks by size, starting with the largest task. To keep track of
the state of computation, it stores for each process: task currently assigned to,
size of this task (in grid cells), and number of processors. The latter is sent to
the master with the slave’s work request.

Although tasks are assigned strictly in order of decreasing size, an assignment
may be a better or worse fit. A good fit maps a large basin to a process with many
processors, or a small basin to a process with a single processor. Architecture-
specific thresholds specify the meaning of terms large etc. In our setting, basins
are classified as large, medium, or small, depending on the number of grid cells;
slaves are classified as powerful (8 processors), normal (2 processors), or weak
(1 processor). We speak of a good fit for combinations large-powerful, medium-
normal, and small-weak.



One case of a bad fit assigns a large basin to a weak slave (combinations
large-weak, large-normal, and medium-weak). Here, the slave starts computing,
but when a more powerful slave arrives later on, the master reassigns the basin.
As MPI-2 provides no means for the master to signal this event to the first slave,
the slave occasionally asks whether there was a reassignment. If so, it abandons
its work and requests a next task from the master.

The reverse case that a small or medium basin is assigned to a powerful slave
(combinations small-powerful, small-normal, and medium-powerful), occurs only
when all larger basins have already been assigned before. Hence, after receiving
the basin, the slave splits itself up into multiple processes. One process computes
the basin, and the others request more work from the master, i.e., become sepa-
rate slaves. The splitting generates weak processes when the assigned basin is
small, and normal processes when it is medium.

Moreover, tasks are reassigned when the master learns that a slave has died,
and will therefore not finish its task, or when the task pool is empty, but some
results have not been received yet. When several slaves are computing the same
basin and one has found the result, the others are abandoned as soon as they
report back.

One case needs particular consideration: reassignment of a large basin (from
a dead slave) after powerful slaves have been split up into groups of weak ones.
The master stores the grouping of processes, keeping the original process as a
leader. To assign a task to the group, it requests all processes except the leader
to exit (when they report having finished their present task). Then, it assigns
the task to the leader, who spawns new threads.

4 Dynamic Integration of Processes

A program version that allows for dynamic integration of slaves has been de-
scribed by us [2]. It uses an additional process, called server, that invokes the
accept function and helps in communicator construction. All communication
is accomplished through intracommunicators that connect two processes each:
master and slave, or master and server. The construction of a single communica-
tor for all processes proved difficult, since communicator constructor functions
are blocking and collective. Busy slaves can not call these functions, except in
a separate thread, which would interfere, however, with the internal OpenMP
structure for data parallelism.

All occurrences of MPI::COMM_WORLD had to be replaced by pairwise commu-
nicators. Since there is no MPI::ANY_COMM, the master waits for a message from
any communicator with loop

while (!isMessage) {
rank = (rank + 1) % total;
isMessage = comms[rank].Iprobe(...);

}

where comms is an array of all intracommunicators.



5 Process-Thread Adaptivity

The modified master/slave scheme poses two requirements:

– A slave that runs on a multi-processor node must be able to dynamically
spawn either processes or threads on the same node.

– A slave must be able to exit computation after receiving a termination re-
quest from the master.

For the first requirement, a slave must know how many processors it owns. Al-
though the OpenMP function omp_get_num_procs yields the number of physical
processors, it is possible that only part of them are available to the application.
Thus, information must be passed from the resource manager (e.g. batch sys-
tem) to the MPI application. MPI-2 defines a constant MPI::UNIVERSE_SIZE for
that purpose, but leaves it to the implementation to set its value or not. The
MPICH2 implementation sets the value to parameter usize of mpiexec. We use
this parameter to provide to each slave the number of processors it owns.

Spawning the corresponding number of threads is a simple call to the OpenMP
function omp_set_num_threads. Processes are spawned with MPI::Comm::Spawn.
The new processes can not rely on MPI::UNIVERSE_SIZE, but get the number of
processors from their parent, through an argument of the spawn function. These
processes also differ from the processes started with mpiexec in that they are
connected to their parent with a communicator. We close this communicator
immediately, and then handle all processes the same way.

Threads are always spawned on the same node. Processes, in contrast, may be
spawned on any node that is available to the MPI system. This placement may be
inappropriate as the system can not take the existence of threads into account
(especially if they have not been created yet). To keep track of the available
resources, we always spawn processes on the same node as their parent. MPI-2
supports that with the reserved info key host, which is an optional part of the
standard again.

The second issue (slaves exit computation) is easy to resolve. As will be
further discussed in the next section, the slave first disconnects from the rest
of the program, by closing the master-slave intracommunicator, and then calls
Finalize. Since this function is collective over the set of connected processes only,
the slave returns immediately.

6 Termination of Processes

For evolving processes, i.e., program-initiated termination, the exit of slaves is
easy. The principle has already been explained in the last paragraph. It relies
on the fact that a slave is connected to the rest of the program through a sin-
gle communicator between master and slave only. All other communicators are
closed immediately after their creation. Thus, the slave can disconnect, without
enforcing any other process to participate in this blocking and collective opera-
tion. Note that a process is connected to all processes in MPI::COMM_WORLD, but



we start each process with a separate call to mpiexec, and so MPI::COMM_WORLD
is a singleton.

After termination, the master must exclude the slave from its pool of commu-
nication partners, since Iprobe does not work with a null communicator. Also,
the basin must be reassigned to another slave. With this scheme, a slave may
leave computation at any time, either in reaction to a termination request by
the master, or on request of the resource manager (provided that the resource
manager can pass the request to the slave).

Implementation of malleability, in contrast, is problematic. When a slave
suddenly dies, it is not able to call Disconnect nor Finalize. The MPI standard
states that ”‘if a process terminates without calling Finalize, ... the effect on
connected processes is not defined”’. Thus, it may happen that a single faulty
process brings the whole application down.

According to our experiments, the MPICH2 implementation is more robust.
When a slave dies, the master’s message-waiting loop (see Sect. 4) continues
without any problem, just not receiving messages from the dead slave anymore.
We tested this feature by running each process in a separate window, killing
one with Ctrl-C (during a computation phase), and observing the output. The
behavior was the same in the batch system, with an exit call in one slave’s code.

Using the reassignment scheme described in Sect. 3, the program manages
to compute all tasks and generate the complete output. Nevertheless, we did
not find a correct way to finish the program. The MPI standard requires that
each process calls Finalize, which is a collective and blocking operation over
connected processes. While a slave can disconnect from the rest of the program
and terminate as described above, the master can not disconnect from a dead
slave. Consequently, its call to Finalize does not return. The standard defines
the function MPI::Abort to kill processes, but the behavior of this function is
not specified in detail. In our experiments, this function did not return either.
The only way we found to let the program return, was to omit the Finalize call
from the master. Then termination works fine, except for an error message, but
this workaround of course conflicts with the standard.

The termination problem can probably be solved by clarifying the behavior
of MPI::Abort. An alternative solution relies on a communicator clean function
that eliminates all dead processes from the communicator, i.e., live processes are
disconnected from dead ones, and dead processes do not need to take part in any
future collective operation. Such a function may either be provided by the MPI
API, or be invoked implicitly by the MPI implementation. The implicit variant
is already provided by Fault Tolerant MPI or FT-MPI [4]. It comfortably solves
our termination problem since after cleaning, the master can call Finalize. In
FT-MPI, communication functions return an error code after a communication
partner has crashed. This mechanism solves a second problem: notification of the
master in the event of slave death. As the master regularly contacts all slaves
in the message-waiting loop, it learns about the crash soon and can reassign the
basin immediately. Unfortunately, FT-MPI supports only part of MPI-2.



7 Related Work

The process termination aspect of malleability has been discussed under the
heading of fault tolerance, e.g. in a survey paper by Gropp and Lusk [5], and in
FT-MPI [4].

Much work on malleability was carried out in the scheduling community,
where it was shown that malleability significantly improves system throughput in
both supercomputers and grids [6, 7]. Two approaches for making MPI programs
malleable have been followed: 1) checkpointing, i.e., interrupting the program,
saving its state, and later restarting it with a different number of processes [7],
and 2) folding, i.e., using a fixed number of processes, and coping with changes
in the number of processors by varying the number of processes per processor [8].
We are not aware of other experience reports on making an application malleable
with the MPI-2 dynamic process management routines.

Outside MPI, research on handling node crashes with the master/slave scheme
has been done with PVM [9] and Java [10]. The more general divide-and-conquer
pattern is considered by Wrzesińska et al., in a Java-based framework [11]. They
suggest a scheme to avoid redoing work that another process already did before
crashing. None of this work considers multi-threaded processes or process-thread
adaptivity.

Except for malleability, hybrid MPI/OpenMP programming is well under-
stood [12, 13], including dynamic variations in the number of threads per process
for better load balancing [14].

8 Conclusions

This paper has discussed MPI-2 support for dynamic and heterogeneous pro-
cesses, on the basis of a hybrid master/slave application. The master/slave
scheme was modified to dynamically add processes, and reassign tasks when
powerful slaves arrive or slaves exit. We observed that MPI-2 supports integra-
tion of slaves and process-thread adaptivity, provided that the implementation
covers optional parts of the standard: the constant MPI::UNIVERSE_SIZE and
the info key host. Termination, in contrast, requires active participation of a
slave, or functionality beyond the MPI standard to eliminate dead slaves from a
communicator, and to notify the master after slave crashes.

In experiments, the malleable program performed better than the original
one, mainly because it started before all desired resources were available. Mal-
leability and process-thread adaptivity come at the price of higher programming
overhead and a performance penalty. For the master/slave example, the program-
ming overhead was reasonably low, but this may be different for applications
that require algorithmic changes such as data redistribution. The performance
penalty is due to the overhead for additions and withdrawals of nodes, the need
to use pairwise communicators instead of MPI_COMM_WORLD, the bookkeeping
overhead at the master, and task reassignment costs. Our application has a high
computation-to-communication ratio, and thus the overhead was not an issue.



Future research may address improvements of the simple master/slave scheme
referred to in this paper. For instance, the master may restrict use of multi-
threaded slaves to basins that would otherwise delay the overall computation. It
may also cooperate with the resource manager to get a forecast of resources. No-
tification of slaves after reassignment may use one-sided communication instead
of pairwise communication-based polling. Furthermore, checkpointing may be
integrated. Finally, the scheme may be refined to handle the case that the mas-
ter dies. Sophisticated master/slave patterns may be implemented in a skeleton
library, which may extend to other malleable patterns.

References

1. Feitelson, D.G., Rudolph, L.: Toward convergence in job schedulers for parallel
supercomputers. In: Job Scheduling Strategies for Parallel Processing, Springer
LNCS 1162 (1996) 1–26

2. Leopold, C., Süß, M., Breitbart, J.: Programming for malleability with hybrid MPI-
2 and OpenMP: Experiences with a simulation program for global water prognosis.
In: High Performance Computing & Simulation Conference. (2006) 665–670.

3. Gropp, W., et al.: MPICH2 User’s Guide, Version 1.0.3. (November 2005) Available
at http://www-unix.mcs.anl.gov/mpi/mpich2.

4. Fagg, G.E., et al.: Process fault-tolerance: Semantics, design and applications
for high performance computing. Int. Journal of High Performance Computing
Applications 19(4) (2005) 465–478

5. Gropp, W., Lusk, E.: Fault tolerance in message passing interface programs. Int.
Journal of High Performance Computing Applications 18(3) (2004) 363–372

6. Kalé, L.V., Kumar, S., DeSouza, J.: A malleable-job system for timeshared parallel
machines. In: IEEE/ACM Int. Symp. on Cluster Computing and the Grid. (2002)
230–237

7. Vadhiyar, S.S., Dongarra, J.J.: SRS: A framework for developing malleable and
migratable parallel applications for distributed systems. Parallel Processing Letters
13(2) (2003) 291–312

8. Utrera, G., Corbalán, J., Labarta, J.: Implementing malleability on MPI jobs. In:
Proc. Parallel Architectures and Compilation Techniques. (2004) 215–224

9. Goux, J.P., et al.: An enabling framework for master-worker applications on the
computational grid. In: IEEE Int. Symp. on High Performance Distributed Com-
puting. (2000) 43–50

10. Baratloo, A., et al.: Charlotte: Metacomputing on the web. In: Int. Conf. on
Parallel and Distributed Computing Systems. (1996) 181–188

11. Wrzesińska, G., et al.: Fault-tolerance, malleability and migration for divide-and-
conquer applications on the grid. In: IEEE Int. Parallel and Distributed Processing
Symposium. (2005)

12. Smith, L., Bull, M.: Development of mixed mode MPI/OpenMP applications.
Scientific Programming 9(2–3) (2001) 83–98

13. Rabenseifner, R.: Hybrid parallel programming on HPC platforms. In: European
Workshop on OpenMP. (2003) 185–194

14. Spiegel, A., an Mey, D.: Hybrid parallelization with dynamic thread balancing on
a ccNUMA system. In: European Workshop on OpenMP. (2004) 77–82


