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Abstract. Instance-based locality optimization [6] is a semi—automatic
program restructuring method that reduces the number of cache misses.
The method imitates the human approach of considering several small
program instances, optimizing the instances, and generalizing the struc-
ture of the solutions to the program under consideration. A program
instance appears as a sequence of statement instances that are reordered
for better locality. In [6], a local search algorithm was introduced that
reorders the statement instances automatically.

This paper supplements [6] by introducing a second objective into the
optimization algorithm for program instances: regularity. A sequence of
statement instances is called regular if it can be written compactly using
loops. We quantify the intuitive notion of regularity in an objective func-
tion, and incorporate this function into the local search algorithm. The
functionality of the compound algorithm is demonstrated with examples,
that also show trade—offs between locality and regularity.

1 Introduction

In memory hierarchies, (data) locality is a gradual property of programs that
reflects the level of concentration of the accesses to the same memory block,
during program execution. Locality optimization increases the degree of locality,
and hence reduces the number of cache misses (or memory accesses in general).
A major technique for locality optimization is program restructuring, i.e., re-
ordering the statements of a given program.

In Ref. [6], a semi—automatic locality optimization method was introduced
that is based on the optimization of program instances (PI). A PI is obtained
from a program by fixing the input size and possibly more parameters. After
unrolling loops and resolving recursions, the PI can be written as a sequence
of statement instances (SIs) each of which is carried out once. An SI can be an
elementary statement instance or a complex operation. In both cases, variables
are instantiated, i.e., replaced by constant values.

The instance-based method follows a human approach to program optimiza-
tion in which one first selects some small program instances, then optimizes the
instances, and finally generalizes the structure of the optimized instances to the



program. Correspondingly, the instance—based method consists of three phases:
an instantiation, an optimization and a generalization phase.

In the instantiation phase, the user fixes a sufficient number of parameters.
The user must also choose the granularity of the Sls, i.e., decide if elementary
or complex operations (such as function calls) should be considered as SIs. The
parameters, particularly the input size, must be fixed at small values so that the
ST sequence is of manageable length. When the parameters are known, the PT is
automatically transformed into the required representation, and a data depen-
dence graph is extracted.

Next, in the optimization phase, the SIs are reordered! such that the PI is
improved with respect to locality. During the reordering, data dependencies are
strictly obeyed. The reordering is controlled by a local search algorithm that is
outlined in Sect. 2.1. The output of the optimization phase is a locally optimal
SI ordering for the PI.

Finally, in the generalization phase, the user inspects the SI orderings pro-
duced for one or several Pls of the program. He or she has to recognize the
structural differences that make the suggested orderings superior to the initial
orderings, and generalizes them to the program. The user writes down the mod-
ified program and makes sure that data dependencies are not violated in the
general case.

To facilitate the generalization phase, the output ST sequences of the opti-
mization phase should preferably be structured, i.e., the indices attached to the
names of the SIs should follow some regular patterns, as much as possible. This
brings up a second objective in the optimization phase: regularity. Although [6]
briefly mentions the implementation of a regularity—improving postprocessing
phase, that implementation was preliminary and could only achieve few im-
provements.

This paper concentrates on the issue of regularity optimization, and supple-
ments [6] in this respect. The paper makes two contributions: First, it derives a
quite involved objective function that covers the intuitive notion of regularity,
for a class of programs. Second, it incorporates the function into the local search
algorithm of [6], such that the new algorithm optimizes PIs with respect to both
locality and regularity. We report on experiments with nested loop programs
and show trade—offs between locality and regularity. Extending the method of
[6], our output is represented in a structured form, as a sequence of nested for—
loops with constant bounds.

The paper is organized as follows. First, Sect. 2 recalls the formal statement
of the optimization problem from Ref. [6], and states the regularity optimiza-
tion problem. Section 3 defines the new objective function for regularity. Next,
Sect. 4 explains how the function is integrated into the local search algorithm. In
particular, the neighbourhood of the local search algorithm is extended by vari-
ous loop transformations, and the two objective functions are combined. Sect. b
demonstrates the functionality of the algorithm by examples. The paper finishes
with an overview of related work in Sect. 6.

! [6] additionally reassigns data to memory blocks, but this is out of our scope.



2 The Problem

2.1 The Local Search Algorithm of Ref. [6]

According to Ref. [6], the input of the optimization phase consists of a set S of
SIs, a data dependence graph dag, a set D of data instances (DIs), a function
SD : S — D*, and memory hierarchy parameters C', L. The dag (a directed
acyclic graph) contains precendence constraints between the SIs. A DI is a con-
crete location in memory, e.g. A[5] is a DI while A or A[i] are not. The function
SD assigns to each SI s the sequence of DIs that are accessed by s. The param-
eters C' and I are the capacity and line size of a hypothetical cache. They are
chosen in relation to the size of the PI.

The output of the optimization algorithm is an SI sequence where each s € S
appears once. It is called schedule. Ref. [6] optimizes the PIs with respect to
an objective function OFL),. that quantifies the intuitive notion of locality. The
function is quite involved, and omitted here.

The optimization problem stated above is solved with a local search algo-
rithm. Although we restrict ourselves to local search, an interesting consequence
of this work is the provision of a framework that makes locality optimization ac-
cessible for various optimization techniques (including bio-inspired approaches
such as genetic algorithms).

Local search is a well-known general heuristic solution approach to combi-
natorial optimization problems [1]. For each schedule Sched that agrees with the
dag, a neighbourhood NB(Sched) is defined. In Ref. [6], NB(Sched) consists of
all dag-compatible schedules that are obtained from Sched by moving a group of
consecutive Sls as a whole from one position in Sched to another. Starting with
a random schedule, the neighbours of the current schedule Sched are considered
in some fixed order. If a neighbour with a higher objective function value is en-
countered, Sched is replaced by that neighbour immediately. The search stops
when no improving neighbour exists.

2.2 The Regularity Optimization Problem

For regularity optimization, we need additional information about the Sls. In
a structured representation, two or several SIs can be represented by a single
loop statement only if they carry out the same operation. The operation may
be modified by parameters that explicitly appear in the name of the statement.
These parameters may but need not coincide with the indices of data that are
accessed by the STs.

Hence, our input additionally comprises functions op: S — N and V
S — Z*. Here, op(s) characterizes the operation carried out by s, and V(s) =
(vo(s),v1(s),...vr—1(s)) are the parameters that may modify the operation. If
op(s1) =op(sz), then s; and sy have the same number of parameters (written
r(s1) = r(s2)).

The regularity optimization problem consists in reordering the Sls such that
the final schedule can be written in a structured and intuitively simple form.



Currently, we restrict the set of permitted control structures to for-loops with
constant bounds. We consider array accesses with index expressions that are
affine functions of the loop variables. The final PI is represented by a sequence
of possibly nested for-loops, using a PASCAL-like notation and synthetic loop
variables.

3 An Objective Function for Regularity

The objective function is based on our intuitive notion of regularity, according
to which the degree of regularity is higher,

— the more compact the schedule can be written with possibly consecutive and
nested for—loops,

— the more common the step sizes in the loops are, and

— the simpler the index expressions are.

Thus, to measure the degree of regularity, we must identify loops (i.e., for-loops)
in the schedule under consideration (denoted by Sched).
In Sched, a (non—nested) loop appears as a SI subsequence of the form

G = (80,0,50,1,~~~,80,w—1,51,0,51,1,~~~,S1,w—1, ;Sl—]70;5l—]7];~~~5l—1,w—])

with s;; € S, L,bw € N, 1> 2and w > 1. s;; and s; 41, as well as s; ,,_1 and
s;41,0 are consecutive in Sched. G can alternatively be written as

G=ApoA1o0---0A_y with A; = (si0,si1,. . Siw=1)

The A;’s are called aggregates. Let V(s; ;) = (v j.0,%i 41, -, vi7j7,(si’j)_1). G is
denoted as group if it fulfills the following compatibility conditions:

1. op(si, ;) = op(si, ;) , for all iy, i3, and
. DG ,
2. Uik — Vie1 k= V1jk — V04 k 5 Dy (or Djg, for short).

Each group can be written as a loop, where A; corresponds to one iteration
of the loop, I is the number of iterations, and w 1s the number of statements in
the loop body. The correspondence between loops and groups is not one—to—one,
since inner loops of the program text stand for several groups. G corresponds to
the following loop:

FOR::=0TO!—-1DO
op(s0,0)((fo,0(2), fo,1(9), - fo,r(se,0)=1(7))
op(sa,1)((f1,0(2), f1,1(8), - fi,r(s0.0)=1(3))

5p(80,w—1)((fw—1,0(i), Ju=11(2), fw1,r(s0,m_1)=1(2))

where f; 1 (1) = vo,; x+1-D;j x. We always represent loops in the above normalized
form, where the step size is one and the loop starts from zero. Normalization



converts the requirement of common step sizes into the requirement of simple
index expressions (manifested by common D; j values).

We will see below that the groups within Sched can be easily identified.
Unfortunately, groups may conflict, i.e., it may be impossible to realize them
simultaneously in a structured formulation of the program. Fig. 1 shows three
typical cases of conflicts that may occur. The conflict in Fig. 1c) arises since a
proper nesting of the groups sg...s11 and sg...s5 is not possible, as sg...s5
and sg . ..sy1 are structured differently.

a) A[0]++; (so) b) A[O]++; (so) c) C[0,1]1+=A[0,0]1*B[0,1]; (s0)

A[1]++; (s1) A[1]++;  (s1) C[0,1]+=A[0,1]%B[1,1]; (s1)
A[2]++; (s2) A[2]++; (s2) C[0,1]+=A[0,2]%B[2,1]; (s2)
A[1]++; (s3) A[3]++;  (sa) C[0,2]+=A[0,0]1%B[0,2]; (s2)
ALOT++; (s4) Al41++;  (s4) C[0,2]+=A[0,1]1*B[1,2]; (s4)
A[2]++; (s5) C[0,2]+=A[0,2]1*B[2,2]; (s5)
A[3]++;  (se) C[0,0]+=A[0,0]*B[0,0]; (s¢)
AL4]++;  (s7) Cc[0,0]+=A[0,1]1*B[1,0]; (s7)
A[2]++;  (sg) Cc[0,0]+=A[0,2]*B[2,0]; (sg)
A[3]++; (s9) C[1,0]+=A[1,0]%B[0,0]; (s9)
A[4]++;  (s10) C[1,0]+=A[1,11%B[1,0]; (s10)

C[1,0]+=A[1,2]1%B[2,0]; (s11)

Fig. 1. Examples of conflicts

If there are no conflicts, groups can be nested. A nesting is permitted if all
aggregates of the outer group have the same internal organization. Let G =
Ago---0A;_1 be the outer group, and let A; = g; go---0g; ,,, Where g; ; stands
for either a subgroup or a single SI. Then, A;, and A;, have the same internal
organization iff

- My, =My,

— ¢i,,4 and g;, 4 are either both groups or both Sls.

If they are groups, gi, 4 agrees with g;, 4 in [, w, and ng.;é’d = Dg.;lj’d.

— If they are groups, the aggregates of g;, 4 and g;, 4« have the same internal
organization.

— If they are SIs, op(gi, 4) =0p(gi,,q)-

The definition of the objective function for regularity (OFR) refers to a max-
imal set of conflict—free groups that can be identified in Sched. We define

OFR: v}
mgax Z Eval(G)
Geg

where G stands for any set of mutually conflict—free groups, and Eval is defined
below.

Let G be a group characterized by I, w, and by the sequence (D; 1) of essential
D;  values. A value Dj y is essential if the corresponding SI sq ; is either not



contained in a subgroup of G, or if sq ; recursively belongs to the first aggregates
of all subgroups it is contained in. We define

Eval(G) = Dual'*2/7 1+po

Here, po is a parameter (default 0.5), and Dval evaluates the (D; ) sequence
according to our intuitive feeling of how a loop should preferably look like. We
use the function

1 Djr=0
0.7 D;x # 0 and
Dval(Djx) = Wi - Djk = Djs s for some (5, k') <iex (7, %)

1/(Djr+1) Djr>0
L/(|Dj k| +2) Djx <0

where

-1

-1
Wir=09+0.1- ( 7’(507(1)—{—/{'—{—1)

2,
I

0

and where

1
Dval = — - | avg Dval(D; ) + max Dval(D; x)
2 Jk .k ‘

Both Eval and Dval were designed empirically. We started with some initial
functions that roughly corresponded to our intuition. Then, we repeatedly con-
sidered two groups. If the relation of the values assigned by the current functions
did not agree with that which we had intuitively expected to see, the functions
were adjusted appropriately. Additionally, the functions were fine—tuned during
their use in the local search algorithm.

For a given SI sequence and width w, it is easy to decide if the sequence
forms a group of width w, by a simple test of the compatibility conditions. If
we systematically consider all ST subsequences and widths, we find all groups
contained in Sched. The selection of a conflict—free set of groups G with maxi-

mum Y Eval(G) value is, however, computationally expensive. Hence, we have
Geg
implemented a greedy algorithm that finds a conflict—free subset G with a high

value of Y Eval(G), but not necessarily with a maximum value. The algorithm
Geg
is omitted for brevity.

4 Incorporating Regularity Optimization in the Local
Search Algorithm

Since it 1s difficult to repair regularity deficiencies after the locality optimiza-
tion process has finished, we combine locality and regularity optimization. Our



algorithm consists of two phases. In the first phase, emphasis is given to locality
optimization, but regularity is considered as a secondary goal. The second phase
optimizes the output schedule of the first phase with respect to regularity.

More detailed, the algorithm for the first phase differs from the algorithm of
Ref. [6] in that the current schedule is no longer replaced by the first locality—
improving neighbour encountered. Instead, several locality—improving neighbours
are recorded. Whenever some number of candidates was found, the one that per-
forms best is selected with respect to the combined objective function

p1- OFLioc 4+ (1 —p1) - OFR  (for some parameter p; € [0...1]).

In phase 2, the user can influence the trade—off between locality and regularity
via a parameter ps > 1. The current schedule Sched is replaced by a neigh-
bour Sched’ if OFR(Sched’)> OFR(Sched), and if additionally OFL,.(Sched’)
< p2- OFL..(Schedy). Here, Sched; is the schedule after phase 1, and OFL.
measures the number of simulated cache misses.

In experiments, the algorithm described so far was typically stuck with a
local optimum. We analyzed the particular local optima, and could overcome
the problem by extending the neighbourhood of the local search algorithm. In
particular, the following transformations were added:

— Move with Reversal: This transformation corresponds to the neighbourhood
of Ref. [6], except that the order of the moved SI subsequence is additionally
reversed.

— Loop Reversal, Permutation and Distribution: These transformations are
well-known compiler transformations [7].

— Loop Extension: This transformation simultaneously adds one or more new
aggregates to all groups represented by a loop. It is based on the observation
that the old aggregates Ag ... A;_; uniquely imply how possible new aggre-
gates (e.g. A_; or A;) must look like. In particular, they imply the op and
V values of SIs that may form the new aggregate. If all the desired Sls are
available somewhere in Sched (outside the loop under consideration), they
are moved to their new positions, forming an extended loop.

The new neighbourhood consists of all SI sequences that are produced by the
above transformations, and that additionally agree with the DAG.

After the second phase, the schedule is output in a structured representation.
This representation is a by—product of the calculation of OFR, where the index
expressions of the program statements are composed of the v; ;1 values of the
first SI represented by the statement, together with the corresponding essential
D; i, values of all surrounding loops.

As regularity optimization aims at supporting the generalization phase, reg-
ularity optimization should highlight the locality-relevant structure. Many opti-
mized PlIs have a tiled structure, where most reuse of cached data occurs within
tiles. OFR is modified to prefer groups that are located within a tile, by scaling
down Eval(G) for groups G that cross a tile boundary. The experiments in Sect.
5 are based on a straightforward tile recognition scheme.



5 Examples

Figures 2—4 give the outputs of our algorithm for some example PIs. They show
that the algorithm is able to produce structured outputs with a high degree
of locality. They also show that the algorithm can make several reasonable
suggestions that represent different trade—offs between locality and regularity.
Currently, such trade—offs can not be found with other automatic locality op-
timization methods. Compiler transformations find one of the solutions, e.g. b)
for Fig. 3, and c) for Fig. 4.

a) FOR i2:=0 TO 1 DO
FOR i1:=0 TO 3 DO OFLc. = 16
FOR i0:=0 TO 1 DO (vs. 24 for input PT)
A[i1,i042%i2]=B[i0+2%i2,i1]

Fig. 2. optimized PI for 4 X 4 matrix transpose with C' =8 and L = 2.

a) FOR i1:=0 TO 1 DO b) FOR i2:=0 TO 1 DO
FOR i0:=0 TO 1 DO FOR i1:=0 TO 1 DO
C[0,i0]+=A[0,11]1*B[i1,i0] FOR i0:=0 TO 1 DO
FOR i1:=0 TO 1 DO C[i2,i0]+=A[i2,i1]*B[i1,10]
FOR i0:=0 TO 1 DO
C[1,i0]+=A[1,1-11]1*B[1-i1,i0] OFLcc: 8
OFL¢e: 7

Fig. 3. optimized PI for 2 x 2 matrix multiplication with C' =6 and L = 2. a) p, = 1.0,
b) p» =1.2.

6 Related Work

The instance—based approach to locality optimization differs significantly from
other approaches to locality optimization [4,7, 8], as discussed in [6]. Since the
instance—based method is new, the regularity optimization problem posed in this
paper has not been investigated before. Some rather loosely related work exists
in the areas of decompilers, software metrics, and genetic programming.

Decompilers [2] identify structures in a statement sequence. The structure
already exists and the task is to make it explicit. The design of an objective
function is not an issue.

Software metrics, particularly metrics for structural complexity [3], resemble
our objective function in that they assess the structure of programs. However,
software metrics do not consider the assignment of a meaningful value to an
unstructured program, and are less sensitive to minor differences between pro-
grams.



a) FOR i1:=0 TO 2 DO b) FOR i2:=0 TO 1 DO

FOR i0:=0 TO 2 DO FOR 11:=0 TO 2 DO
C[0,10]+=A[0,i1]*B[i1,10] FOR i0:=0 TO 2 DO

FOR i1:=0 TO 2 DO C[2%i2,10]+=A[2%12,11]*B[i1,10]

FOR i0:=0 TO 2 DO FOR i1:=0 TO 2 DO
C[1,10]+=A[1,2-11]%B[2-i1,1i0] FOR i0:=0 TO 2 DO

FOR i1:=0 TO 2 DO C[1,i0]+=A[1,2-11]%B[2-1i1,1i0]

FOR i0:=0 TO 2 DO
C[2,i0]+=A[2,i1]1*B[i1,10] OFlLc.: 14

OFLc:: 13 (vs. 33 for input PI) c) FOR i2:=0 TO 2 DO

FOR i1:=0 TO 2 DO
FOR i0:=0 TO 2 DO
C[i2,i0]+=A[i2,i1]1*B[i1,i0]

OFLcc: 15

Fig. 4. optimized PI for 3 x 3 matrix multiplication with C' =9 and L = 3. a) p» = 1.0,
b) po=1.1,¢c) p» =1.2

Genetic Programming also uses fitness measures that assess structural com-
plexity. In Ref. [5], p. 91, structural complexity is defined as the number of ele-
mentary operations that appear in a structured representation of the program.
This function is too rough, for our purposes, since we must compare Pls that are
very similar to each other. The ability to react sensitively to minor differences is
particularly important in local search, where it helps to escape from local optima.
Furthermore, OFR is more detailed in that it reflects desirable properties such
as the intuitive preference of upwards—counting over downwards—counting loops.
In genetic programming, programs are in a structured form by construction, i.e.,
the recovery of the structure is not an issue.
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