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Abstract

Some algorithmic patterns are difficult to express in
OpenMP. In this paper, we use a simple sorting algorithm
to illustrate problems with recursion and the avoidance of
busy waiting. We compare several solution approaches with
respect to programming expense and performance: stacks,
nesting and a workqueue (for recursion), as well as condi-
tion variables and the schedyield–function (for busy wait-
ing). Enhancements of the OpenMP–specification are sug-
gested where we saw the need. Performance measurements
are included to backup our claims.

1. Introduction

Parallel Programming is still a challenging task in our
days. Although there are many powerful parallel program-
ming systems, most of them operate on a relatively low ab-
straction level (e.g.POSIX threads, MPI). The specifica-
tion of OpenMP [2] promised advances in this regard, and
has provided a relatively smooth way to incrementally par-
allelize existing programs as well as to write powerful new
applications on a high abstraction level, since its introduc-
tion in 1997. Its portability and vendor acceptance quickly
helped the system to become a de facto standard for pro-
gramming shared memory parallel machines.

Nevertheless, OpenMP is not without problems and
rough edges, which version 2.0 of the specification was not
able to straighten out fully. This paper uses a simple sort-
ing algorithm to show some of these, as well as a couple
of techniques developed to work around them. All exam-
ples were written in theC++ programming language. Some
suggestions for future enhancements to the specification are
included.

The next section gives a short summary of the used sort-
ing algorithm. Section 3 describes the two problematic ar-
eas that we encountered during the course of our work:re-
cursionandbusy waiting. Figure 1 depicts a diagram that

Figure 1. Revision tree of Sorting Program

illustrates the history of the different program versions we
wrote to solve these problems (some less important versions
are left out in the diagram, causing missing entries in the
numbering scheme). Three different solution strategies are
presented for recursion:

• an iterative approach (sort omp1.0)

• an advanced iterative version using local stacks
(sort omp2.0)

• nested parallelism (sort ompnested1.0)

• aworkqueue(sort omp taskq1.0)

The problem of busy waiting is approached with so-
lutions borrowed fromPOSIX threads: condition vari-
ables (sort pthreadscv 1.0) and theschedyield–function



(sort pthreadsyield 1.0). Ideas for extensions to the
OpenMP–specification presented in section 3 are the ad-
dition of an ompget numall threads–function, condition
variables and anompyield–function. Note that at this point
only data points are given for the inclusion of these exten-
sions into the specification, as this paper merely describes
our experiences with a certain problem area and does not
include a complete proposal. Section 4 discusses the per-
formance of our solutions. In section 5, we sum up our
results and discuss further perspectives.

2. Sorting

Sorting data has always been one of the key problems of
computer science. Many sequential algorithms have been
suggested, of whichQuicksort, invented and described by
Hoare [4], is one of the most popular ones. It works recur-
sively using thedivide and conquerprinciple:

1. choose a pivot element, usually by just picking the last
element out of the sorting area

2. iterate through the elements to be sorted, moving num-
bers smaller than the pivot to a position on its left, and
numbers larger than the pivot to a position on its right,
by swapping elements. After that the sorting area is di-
vided into two subareas: the left one contains all num-
bers smaller than the pivot element and the right one
contains all numbers larger than the pivot element.

3. goto step1 for the left and right subareas (if there is
more than one element left in that area)

The algorithm has an average time complexity ofO(n ·
log(n)) and a worst case time complexity ofO(n2), making
it one of the fastest sequential sorting algorithms available.
Since we do not aim at producing the fastest parallel sort-
ing algorithm ever, but merely try to show some problems
and solutions with OpenMP, we chose this easy and widely
used algorithm as the basis for our experiments, instead of
a more advanced and complex (sequential or parallel) one.
Previous experiments (although with a different focus) with
quicksort and OpenMP have been conducted by Parikh [6].

3. A simple sorting algorithm and its problems

The base version for our tests was the simple quicksort
algorithm described above, combined withinsertion sort
for small sorting areas. This algorithm (sort seq1.5) is
sketched in Figure 2. We tried to speed up the algorithm
through advanced (sequential) sorting techniques, but the
performance gain was not worth the loss in simplicity.

Using this algorithm, we started our experiments with
OpenMP, and soon after were confronted with our first
problem:recursion.

template < typename T >
void myQuickSort(std::vector<T> &myVec, int q, int r)
{

T pivot;
int i, j;

/* only small segment of numbers left -> use insertion sort! */
if (r − q < SWITCH THRESH) {

myInsertSort(myVec, q, r);
return ; 10

}

/* choose pivot, initialize borders */
pivot = myVec[r];
i = q − 1;
j = r;

/* partition step, which moves smaller numbers to the left
and larger numbers to the right of the pivot */

while (true) { 20
while (myVec[++i] < pivot);
while (myVec[−−j] > pivot);
if (i >= j) break;
std::swap(myVec[i], myVec[j]);

}
std::swap(myVec[i], myVec[r]);

/* recursively call yourself with new subsegments,
i is index of pivot */

myQuickSort(myVec, q, i − 1); 30
myQuickSort(myVec, i + 1, r);

}

Figure 2. Base version of the quicksort algo-
rithm

3.1. Problem 1: Recursion

There is no easy and intuitive way to deal with recursion
in OpenMP (yet), as the basic worksharing constructs pro-
vided by the specification (for andsections) do not seem to
be well suited for recursive function calls. Our first solution
to the problem involved getting rid of the recursion, as al-
ready suggested by an Mey [1]. It is a widely known fact
that, by using a stack, every recursion can be changed into
an iteration, and that is exactly what we did insort seq1.6.
This step was one of the most time consuming of all, as it
involved the introduction of a new data structure, specially
tailored to our problem. We called this structureglobalTo-
doStack, it stores the intervals still to be sorted.

This program was later parallelized intosort omp1.0,
making the following changes:

• a parallel region was added inmain, around the first
call of themyQuickSort–function

• a call to ompget threadnum was added, so that
only one thread initially executes themyQuickSort–



function, all others wait until work for them is put on
theglobalTodoStack

• all accesses to shared variables (especially theglob-
alTodoStack) were protected bycritical sections to
prevent multiple threads from accessing the variables
at the same time

The resulting program is sketched in Figure 3.
In sort omp2.0the global stack was complemented with

one local stack per thread. All new segments to be sorted
are put on the local stacks per default. Only when one of
the local stacks is empty, it needs to communicate with the
global stack and poll for new work there. It works the other
way around as well: when the global stack is getting empty,
new work is pushed on it from a local stack. This modi-
fication led to a significant performance gain, because the
need for synchronisation via critical sections dropped con-
siderably. The effect is most visible for high numbers of
working threads, because that is when a lot of work sharing
needs to be done.

Our second solution to the recursion problem
(sort ompnested1.0) involves nested parallelism as
illustrated in Figure 4. There are a few problems with this
approach though. First of all, the OpenMP–specification
allows compilers to serialize nested parallel directives,
and many still do so. With these compilers, the version
will not achieve considerable speedups, performance
portability is not granted. Furthermore, nesting support
in the specification seems to be a little immature. In
particular, theompget numthreads–function is useless
for our example, as it always returns two threads per
parallel region. The value we were really interested in is
the number of all running threads (to limit the creation of
new threads as we dive deeper into the recursion). Since
this number is not available through a simple function call,
we needed to track it ourselves, therefore introducing new
(and performance hindering) critical sections into the code.
Perhaps this could be taken care of by the introduction of
an ompget numall threadsfunction call or some similar
mechanism into the next iteration of the specification.

The third solution to the recursion problem has been first
suggested by Shah et al. [7]. It involves usage of the
workqueuing model(sort omp taskq1.0, depicted in Fig-
ure 5). This model has been proposed as an OpenMP–
extension, but has not been accepted yet. To the authors
knowledge, only two compilers understand the new prag-
mas, and so this solution has the drawback that the code
presented here is not portable. This might change quickly
though, if theworkqueuing–proposal is accepted. Except
for this drawback, the solution is easy and elegant. This
version lacks the ability to addlocal queues(similar to
the local stacks that brought a performance improvement
in sort omp2.0), but a smart compiler might recognize this

template< typename T >
void myQuickSort ( std :: vector <T> &myVec, int q, int r ,

std :: stack <std :: pair <int , int>>&globalTodoStack ,
int &numBusyThreads , const int numThreads )

{
bool idle = true;

/* Skipped: Initialisation */

while ( true) {

/* only small segment of numbers left ->use insertion sort! */
if ( r - q < SWITCHTHRESH) {

myInsertSort ( myVec, q, r );
/* and mark the region as sorted, by setting q to r */
q = r ;

}

while ( q >= r ) { /* Thread needs new work */

/* only one thread at a time should access the
globalTodoStack, numBusyThreads and idle variables */

#pragma omp critical
{

/* something left on the global stack to do? */
if ( false== globalTodoStack . empty ()) {

if ( true == idle ) ++ numBusyThreads ;
idle = false;
/* Skipped: Pop a new segment off the stack */

} else{
if ( false== idle ) -- numBusyThreads ;
idle = true;

}
}

/* if all threads are done, break out of this function.
note, that the value of numBusyThreads is current, as there
is a flush implied at the end of the last critical section */

if ( numBusyThreads == 0) {
return ;

}
}

/* Skipped: choose pivot and do partitioning step */

#pragma omp critical
{

globalTodoStack . push ( pair ( q, i - 1 ));
}

/* iteratively sort elements right of pivot */
q = i + 1;

}
}

int main ( int argc , char * argv [])
{

/* Skipped: Program Initialisation */

#pragma omp parallel shared(myVec,\
globalTodoStack, numThreads, numBusyThreads)

{
/* start sorting with one thread, the others wait for the stack to fill up */
if ( 0 == omp get thread num()) {

myQuickSort ( myVec, 0, myVec. size () - 1,
globalTodoStack , numBusyThreads ,
numThreads );

} else{
myQuickSort ( myVec, 0, 0,

globalTodoStack , numBusyThreads ,
numThreads );

}
}
/* Skipped: Tests and Program output */

}

Figure 3. Parallel part of sort omp 1.0



template< typename T >
void myQuickSort ( std :: vector < T > &myVec, int q,

int r , int &numBusyThreads , const int numThreads )
{

/* Skipped: Initialisation + Partitioning step */

/* do not nest, if there are too many threads already */
if ( numBusyThreads >= numThreads ) {

myQuickSort ( myVec, q, i - 1 , numBusyThreads ,
numThreads );

myQuickSort ( myVec, i + 1, r , numBusyThreads ,
numThreads );

} else{
#pragma omp atomic
numBusyThreads += 2;

#pragma omp parallel shared(myVec, numThreads,\
numBusyThreads, q, i, r)
{

#pragma omp sections nowait
{

#pragma omp section
{

myQuickSort ( myVec, q, i - 1 ,
numBusyThreads , numThreads );

#pragma omp atomic
numBusyThreads --;

}
#pragma omp section
{

myQuickSort ( myVec, i + 1, r ,
numBusyThreads , numThreads );

#pragma omp atomic
numBusyThreads --;

}
}

}
}

}

Figure 4. Parallel part of sort omp nested 1.0

performance potential and insert them automatically.
Having solved the recursion problem, the next one ap-

peared:busy waiting.

3.2. Problem 2: Busy Waiting

When a thread has nothing to do in our sorting applica-
tion (because both its local stack and the global stack are
presently empty, e.g. at the beginning), it does not mean
that it is allowed to quit. New tasks can be put on the global
stack at any time and should of course be processed as soon
as possible. The only way this can be accomplished with
OpenMP isbusy waiting, which means that the thread is
constantly polling for work, wasting processor cycles that
could be better spent in another thread.

For possible solutions, one must only look as far as to
the POSIX threadsstandard. A synchronisation primitive
calledcondition variableis implemented there and solves
the problem in a quite hard to understand way (when one
is looking at it through the eyes of a beginner to parallel
programming), but nevertheless fully. Butenhof describes

template< typename T >
void myQuickSort ( std :: vector <T> &myVec, int q, int r )
{

/* Skipped: Initialisation + Partitioning step */

#pragma omp taskq
{

#pragma omp task
{

myQuickSort ( myVec, q, i - 1 );
}
#pragma omp task
{

myQuickSort ( myVec, i + 1, r );
}

}
}

int main ( int argc , char * argv [])
{

/* Skipped: Program Initialisation */

#pragma omp parallel shared (myVec)
{

#pragma omp taskq
{

#pragma omp task
{

myQuickSort ( myVec, 0, myVec. size () - 1);
}

}
}

/* Skipped: Tests and Program output */
}

Figure 5. Parallel part of sort omp taskq 1.0

condition variables like this:

A condition variable is a “signaling mechanism”
associated with a mutex and by extension is also
associated with the shared data protected by the
mutex. Waiting on a condition variable atomi-
cally releases the associated mutex and waits un-
til another threadsignals(to wake up one waiter)
or broadcasts(to wake all waiters) the condi-
tion variable. The mutex must always be locked
when you wait on a condition variable and, when
a thread wakes up from a condition variable
wait, it always resumes with the mutex locked.

([3, p. 72])

The introduction of this concept into the OpenMP–
specification has already been suggested by Lu et al. [5],
and we would also like to encourage the inclusion of this
or a similar mechanism into the specification. To illus-
trate the savings possible when using condition variables,
we ported our sorting application toPOSIX threads(stay-
ing as close to the original version as possible). The re-
sulting program issort pthreads1.0, which should per-
form about equal tosort omp2.0(see section 4 for details).
Then,sort pthreads1.0was enhanced with condition vari-
ables (sort pthreadscv 1.0). Every time a thread finishes



his work and finds nothing else to do on the stacks, it puts
itself to sleep and is woken up by another thread only when
there is new work to be done. This may lead to a significant
performance gain on a heavily loaded machine.

A second and somewhat easier solution to the problem of
busy waiting can be observed inPOSIX.1b(realtime exten-
sions). This standard defines a functionschedyield, which
puts the calling thread at the end of theready–queueof the
operating system scheduler and selects a new thread to run.
If there is no other thread waiting, the function returns im-
mediately. The same could be done with a new function
ompyield in OpenMP. Whenever a thread runs out of work
in our example program and the stacks are empty, it calls
the suggested function. If other threads are waiting to be
processed (which might not be out of work yet), these get
a chance to run and produce more work for all idle threads.
Though less powerfull than condition variables, our experi-
ments withsort pthreadsyield 1.0(a version incorporating
schedyield) suggest that this function is able to reduce busy
waiting under heavy load for our problem as well (see Table
3).

4. Performance results

Performance tests were carried out on an otherwise un-
loaded node of anAMD Opteron 848class computer with
4 processors at 2.2 GHz, located at the RWTH Aachen.
Programs were compiled with theIntel C++ Compiler 8.1
using the-O3 -openmpcompiler options. Further experi-
ments were carried out on an otherwise unloaded node of a
Sun Fire 6800class computer with a maximum of 8Ul-
tra Sparc III processors at 900MHz, also located at the
RWTH Aachen. Here, theGuide Compilerby Kuck & As-
soc. Inc. (KAI)was used with options:-fast –backend -
xchip=ultra3cu - -backend -xcache=64/32/4:8192/512/2 -
-backend -xarch=v8plusb.

Tables 1 and 2 show wall–clock time in seconds for all
versions of our sorting program, with different numbers of
threads. Only the time needed to actually perform the sort-
ing algorithms was measured. All experiments were re-
peated at least three times, each time sorting 100 million
random integers. For Tables 1 and 2, the best time achieved
in each test was chosen.

Table 1 shows good speedups for all parallel program
versions. The best performing solutions aresort omp2.0
and the programs using Pthreads. Programsort omp2.0
outperformssort omp1.0, which shows the relevance of the
local stacks. The programs with nesting and the workqueue
are slower than the iterative programs, but this might be due
to the relative immaturity of both options in the specifica-
tion. The results forsort ompnested1.0 are to be taken
with a grain of salt, since we were not able to fully con-
trol the number of threads used. Nevertheless, the best re-

Program Wall–clock time (sec.)
1Th. 2Th. 4Th

sort seq1.5 23.8 23.8 23.8
sort seq1.6 23.6 23.6 23.6
sort omp 1.0 24.0 13.7 8.1
sort omp 2.0 24.3 12.6 7.5

sort omp nested1.0 23.9 21.4 12.4
sort omp taskq1.0 29.8 16.3 9.1
sort pthreads1.0 24.0 12.7 7.5

sort pthreadscv 1.0 24.8 12.9 7.6
sort pthreadsyield 1.0 24.5 12.7 7.5

Table 1. Wall–clock time for sorting 100 mil-
lion integers on an AMD Opteron 2200 in sec-
onds

Program Wall–clock time (sec.)
1Th. 2Th. 4Th. 8Th.

sort seq1.5 36.8 36.8 36.8 36.8
sort seq1.6 37.4 37.4 37.4 37.4
sort omp 1.0 38.2 23.9 15.7 11.0
sort omp 2.0 37.9 21.4 13.1 10.0

sort omp nested1.0 43.4 25.2 25.2 25.2
sort omp taskq1.0 n.A. n.A. n.A. n.A.
sort pthreads1.0 37.6 21.2 13.3 10.1

sort pthreadscv 1.0 37.2 20.3 13.3 9.6
sort pthreadsyield 1.0 37.2 22.1 14.2 10.9

Table 2. Wall–clock time for sorting 100 mil-
lion integers on a Sun Fire 6800 in seconds

sult we were able to achieve when running with different
numbers of threads was 11.7 seconds, which is still slower
than the other programs. No difference in speed is notice-
able between the different versions using Pthreads. This
is to be expected, as the advantages of these solutions will
only show on heavily loaded systems or when looking at the
CPU–time.

The results in Table 2 look similar, except for two differ-
ences:

• nested parallel regions are serialized by theGuide
Compiler, therefore no speedup beyond 2 is possible
for sort ompnested1.0

• we were not able to getsort omp taskqto work reli-
ably on this platform (we have no idea if this is a com-
piler problem or a subtle bug in our implementation,
but as soon as more than one thread was employed, it
would either crash or run forever), therefore no results
for this platform are provided

Table 3 demonstrates what happens on a heavily loaded



Program SUN / 96Th. AMD / 16Th.
sort omp 1.0 > 600 20.5
sort omp 2.0 > 600 19.0

sort pthreads1.0 15.9 7.8
sort pthreadscv 1.0 10.6 7.7

sort pthreadsyield 1.0 11.4 7.9

Table 3. Average wall–clock time for sorting
100 million integers on heavily loaded sys-
tems in seconds

system with and withoutbusy waiting. The heavy load was
built up by using four times as many threads as there are
processors available on the machine. It shows average wall–
clock time to reduce the chance of lucky scheduling deci-
sions.

On the SUN platform, the Pthreads solutions show
the results we expected: Programsort pthreads1.0
takes considerably longer thansort pthreadscv and
sort pthreadsyield. There are two relatively big surprises
for us though: First, the OpenMP–versions are slow as com-
pared to thePthreads–versions (in case of the SUN ma-
chine so slow that we decided to cancel the runs after 10
minutes). The reasons for this are not yet clear to us and
still under investigation. Second, on theAMD–machine, no
performance difference is noticeable between the different
Pthreads–versions. A better scheduler might account for
this, but we are still investigating this question as well.

5. Concluding remarks and perspectives

In this paper, we have used several versions of a sim-
ple parallel sorting program to show some weaknesses of
the OpenMP–specification and a couple of ways to address
them. Suggestions for enhancements to the specification
were made whenever it seemed appropriate.

Section 3.1 addressed the problem ofrecursion. Three
solutions to it were presented, only one of which could be
portably implemented with the present state of the specifica-
tion, while the other, more elegant but less performant, two
required additional support for theworkqueueextension, or
for nested parallelism, respectively.

In section 3.2, we have discussed the problem of wasted
processor cycles (busy waiting). As possible solutions we
suggest the introduction ofcondition variablesand a new
function ompyield. Performance measurements showed
that both approaches may provide adequate savings in pro-
cessor time.

In the future, we plan to implement and test some of the
ideas and additions to the specification we have suggested
into an actual compiler, as well as investigate other algorith-
mic problems beyond sorting.
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