Using the 2blOpt Tool for Locality Optimization
of Stencil Codes

Claudia Leopold

Institut fur Informatik
Friedrich-Schiller-Universitat Jena
Germany
claudia@minet.uni-jena.de

Abstract. In previous work, we have suggested instance-based locality
optimization (iblOpt) as a semi-automatic approach to restructure per-
formance-critical code sections for better cache usage. This paper reports
on recent progress in the development of an b/Opt tool and discusses
practical aspects of tool usage. We state general guidelines for setting
up a series of iblOpt experiments and illustrate these guidelines with the
example of Gaufl-Seidel kernels.

1 Introduction

On all current computers, cache misses have a high impact on program per-
formance. Optimizing compilers successfully reduce the cache misses for many
applications. Nevertheless, other applications exist for which the compiler-opti-
mized programs are suboptimal. Examples include stencil codes such as the
Jacobi and Gauf-Seidel iterative solvers [13, 16].

If compiler transformations are not sufficient for a given program, application-
specific transformations can be devised manually, as it was done for stencil codes
[3,13,15,16]. Application-specific transformations often find their way into com-
pilers and libraries later, but the necessity to develop such transformations for
new applications will likely persist in the future.

Manual design of transformations is time-consuming and difficult. It is a
creative process with little automatic support as yet. Instance-based locality
optimization (iblOpt) [4,7] provides a type of support that may or may not be
helpful in a particular case.

We assume to be given a short, performance-critical program section. As its
central idea, iblOpt does not optimize this program section directly, but instead
considers one or several small instances thereof, which are obtained by setting
loop bounds and other variable values to small constants. The blOpt approach
is based on the assumption that these program instances (PIs) have a similar
pattern of cache usage like the original program (for a smaller cache), and thus
the original program profits from the same restructurings as the PIs. Vice versa,
if the PIs can not be profitably restructured, iblOpt concludes that the original
program can not be restructured either.



We consider PIs because they have some favorable properties: 1) due to their
lower complexity, they are more amenable to elaborate optimization procedures
than the original code, 2) cache misses can be determined quickly through simu-
lation (if cache parameters are scaled down in relation to the problem size), and
3) cache behavior can be visualized in detail.

The iblOpt approach has a wider scope than current compiler transformations
insofar as it considers general restructurings as opposed to a fixed set of transfor-
mations. By general restructuring, we mean any re-scheduling of the statements
in the PI (that respects data dependencies) in combination with any re-grouping
of the data into memory blocks. A compiler, in contrast, refers to some pool of
transformations (loop permutation, loop tiling etc.), and combines these trans-
formations in order to improve a given program. The pool of transformations
is large, but limited, and thus #blOpt can find additional restructurings. On the
backside, programs must be relatively regular to profit from bl/Opt because the
program is modeled by PIs.

We have implemented the approach in a tool called iblOpt. The current pro-
totype applies to programs that operate on arrays. Locality is the only goal of
optimization. We consider a two-level memory in a uniprocessor machine, which
consists of cache and main memory. In line with common notation, locality de-
notes the degree of concentration of the accesses to the same data (temporal
locality) or to data from the same memory block (spatial locality). Cache misses
are distinguished into

— cold misses, which correspond to the first access to a memory block and can
not be avoided,

— capacity misses, which are due to limited cache capacity, and

— conflict misses, which are due to limited cache associativity.

The tool increases locality and thus reduces capacity misses. Conflict misses are
out of scope and should be reduced in a postprocessing phase through tile size
selection, array padding, and/or copying [14].

This paper starts with an outline of #bl/Opt in Sect. 2, which summarizes
both previously published work and recent progress. In Sect. 3, we state general
guidelines for iblOpt usage, including rules for defining PIs of a given program.
Furthermore, Sect. 3 discusses a possible integration with other tools. Section 4
uses stencil codes as an example to demonstrate iblOpt usage. Most of the re-
structurings found by iblOpt have already been developed manually in the past.
We state that such transformations can be found more easily with #blOpt. Fur-
thermore, iblOpt provides an estimate of locality potential, and thus an blOpt
user is less likely to overlook relevant transformations. The paper finishes with
a review of related work and conclusions.

2 The #blOpt Tool

The central concept of iblOpt is a program instance (PI). A PIis derived from a
program by setting loop bounds and other control flow-relevant variable values to



small constants, and then unrolling all loops completely. Thus, a PI is a sequence
of statement instances (SIs), which may be elementary assignments or complex
function calls. In either case, SIs are considered as units for scheduling, and each
SI is characterized by the sequence of data elements that it accesses.

The iblOpt approach is based on the assumption that a program with a
relatively regular structure is likely to profit from the same restructurings as a
small instance of the same program. Thus, instead of a given program, iblOpt
considers one or several small instances thereof, and optimizes these PIs by re-
scheduling the SIs and re-grouping the data into memory blocks. The optimized
PIs provide hints for the optimization of the original program.

To state it in more detail, instance-based locality optimization proceeds in
three phases:

— a specification phase, in which the user chooses one or several Pls,

— an optimization phase, in which the PIs are optimized automatically, and

— a generalization phase, in which the user generalizes the restructurings found
for the PIs to the original program.

We have recently implemented a prototype iblOpt tool, which supports the three
phases as follows:

Specification phase: First, the user inputs the program section of interest in
a restricted C-like syntax. Then, a parser analyzes the code and asks for loop
bounds and other variable values that it needs to construct a PI. The user must
also specify cache parameters that are scaled down in relation to the PI size,
and the user must specify the optimization mode in which #blOpt should run
(as explained in Sect. 3). Finally, the tool completely unrolls all loops, and so
generates a PL.

Optimization phase: An optimization algorithm automatically restructures
the PI through

— code transformations, which are re-schedulings of the SIs that respect data
dependencies, and/or
— data transformations, which are re-groupings of the data into memory blocks.

The objective is optimization with respect to locality and, optionally, with re-
spect to regularity. Regularity denotes the simplicity of a PI’s structure and will
be explained later.

An objective function that measures locality has been introduced in [4]. We
have recently modified this function for use in the important special case of pure
code transformations. The modified function eliminates the need for a threshold
parameter and slightly improves solution quality. For data transformations, we
still use the function from [4]. The new function measures the locality of a PI by

Z f(distance(reuse pair)) ,

reuse pairs

where a reuse pair is a pair of successive accesses to the same memory block.
Unlike in the function of [4], we define distance as the number of intervening



accesses to distinct memory blocks. The measure thus corresponds to the well-
known concept of reuse distance [1,18].

For cache capacity C' and line size L, function f is defined by

_ _ [1-1/(C/L+ 2 — distance) distance < C'/L
f(distance) = { 1/+/distance — C/L + 4 distance > C /L

Thus, f is a smooth function with f(C/L) = 0.5, and . lim  f(distance) = 0.

istance—o00
In our context, a smooth function performs better than the crisp measure of

cache misses, as has been shown in [4].

With respect to SI order, a PI has a high degree of regularity if the PI can be
written as a short sequence of nested loops. A corresponding objective function
has been given in [7]. With respect to the grouping of data into memory blocks,
a PI has a high degree of regularity if the data of each memory block correspond
to a simple-shaped portion of a program array (such as a rectangular subblock).

At present, iblOpt supports regularity optimization for the data grouping
in the case that memory blocks have size two. Consider a program array A
and a memory block b that contains array elements d = Alig,%1,...,%,] and d' =

Alig, iy, ... ,i.]. Then, we define the regularity degreeof bas > 1/(|ix—i}|+1),
k=0...r
and we define the regularity degree of a PI as the sum of the regularity degrees

of all memory blocks. This objective function did not receive much tuning, and
thus regularity optimization is less effective for data than it is for Sls.

The optimization algorithm is a local search that repeatedly moves a group
of successive SIs to another position in the schedule, applies loop transforma-
tions, and exchanges data between memory blocks, until the objective functions
for locality and regularity can not be further improved [5]. In recent work, we
have somewhat speeded up the local search algorithm. In particular, the locality
objective function is now updated incrementally, and the search order has been
adapted to this incremental update.

Generalization phase: After optimization, the tool reports the numbers of
simulated cache misses for the original PI and for the optimized PI. These num-
bers suggest whether locality optimization is feasible, and how much gain can
be expected. If there is locality potential, the user will probably want to restruc-
ture the code. This restructuring must be performed manually. Tool support is
provided insofar as the tool outputs the optimized PIs. In particular, it presents
the PIs as an SI sequence and in a structured representation. Furthermore, a
visualization component graphically depicts array accesses on the screen and so
illustrates the execution order of the optimized PIs. This output helps the user
to recognize the transformations that improve the Pls.

In previous work, we have carried out a few experiments with a preliminary
version of iblOpt. For instance, we have improved some two-deep loop nest by a
factor of about two by exploiting non-uniform reuse [6].



3 Guidelines for :blOpt Usage

The optimization of a program with iblOpt typically requires consideration of
several PIs, and of several classes of restructurings (e.g. pure code transfor-
mations). In this section, we state guidelines on how to set up a series of iblOpt
experiments, and on how to choose the parameters that define a PI. In the course
of this section, we also explain different invocation modes of iblOpt, which can
be selected in the specification phase.

As mentioned in Sect. 2, iblOpt can be used to estimate locality potential,
or to support manual program restructuring after potential has been discov-
ered. These two use cases are supported by different invocation modes. Tech-
nically, the modes differ in whether regularity optimization is included in the
local search algorithm or not. At present, restructuring mode is slower than
potential-estimation mode by a factor of order 1000. While the exact value is
implementation-dependent, the fact that there is a difference is inherently due to
a higher problem complexity. In potential-estimation mode, the current iblOpt
prototype processes a PI of 500 SIs within a few seconds (on a 1 GHz AMD
Athlon PC, for the 1D code from Sect. 4).

As a possible usage scenario of potential-estimation mode, we envision the
integration of iblOpt into a performance analysis and optimization tool in the
spirit of FINESSE [12]. Such a tool would invoke potential-estimation mode of
iblOpt automatically after having found a performance-critical code section with
a high number of cache misses. In potential-estimation mode, iblOpt is easy to
use. We think that the corresponding calls can be automated in the near future,
based on the guidelines for parameter selection given below or a refined version
thereof. A tool that incorporates iblOpt should have access to feedback from
previous program runs to select PI parameters. When the tool detects locality
potential, it would report the potential to the user and offer to run blOpt in
restructuring mode. Invoking iblOpt on a regular basis through integration into
a tool would help to discover weaknesses in compiler-optimized programs, and
thus contribute to a steady improvement of the compiler techniques.

In the following, we assume that iblOpt is used as a standalone facility, and
that we are given a program section to be restructured if profitable. We organize
iblOpt experiments into three phases, to minimize the use of the time-consuming
restructuring mode:

1) Determine locality potential, thereby run blOpt in potential-estimation mode,
2) Decide whether restructuring is worthwhile, and
3) Devise a restructuring, thereby run blOpt in restructuring mode.

Orthogonal to potential-estimation and restructuring modes, iblOpt can be
invoked in code-transformation, data-transformation, and mixed code/data-trans-
formation modes. In phase 1, we investigate four types of locality potential in
separate groups of experiments:

a) Potential of temporal locality,



b) Potential of spatial locality that can be used with standard, (e.g. row-major)
storage order,

c) Potential of spatial locality that can be used with another common storage
order, and

d) Potential of spatial locality that can be used with an unconventional storage
order.

Experiments for potential of type d) are run with mixed mode, whereas the
other experiments are run with code-transformation mode (as explained below).
Mixed mode has a larger search space, and thus the optimization takes longer
than in cases a)-c), and the results tend to be farther away from the global
optimum. The division of experiments into four groups gives us a more detailed
picture of locality potential. After phase 1, we know which types of locality are
profitable, and can restrict the experiments in phases 2 and 3 to these types. So
we save both computer time for running less experiments with possibly smaller
PIs, and human time for making restructuring easier. In general, it is easiest to
restructure a program for a)-potential, and hardest to restructure a program for
d)-potential, in the sense that it is easier or harder for the user to recognize the
corresponding transformations.

Experiments for a)-potential use L = 1. Experiments for c¢)-potential are
run with a special invocation mode of blOpt that iterates through all combi-
nations of common orders by which the program arrays can be initialized. At
present, we consider row-major, column-major, and rectangular-subblock orders
for two-dimensional arrays; analogous orders for multi-dimensional arrays; and
block/cyclic orders for one-dimensional arrays. After each initialization, iblOpt
optimizes the given PI by code transformations, and finally outputs the best
overall result.

In each of the four groups of experiments in phase 1, we consider one or
several PIs. Additionally, we run the optimization algorithm repeatedly for each
PI, to improve the chance that local search finds a global optimum. For each
PI, the first run starts from the original SI order, and the others start from
random SI orders. The exact number of experiments depends on the context in
which #blOpt is run, since any particular application calls for a different tradeoff
between optimization expense (number of runs etc.) and locality gain (likelihood
that all relevant transformations are found).

In the following, we list rules for choosing parameters that define a PI and
corresponding cache. The rules reflect our experiences in using the tool. In the
rules, N stands for parameters that influence an array size, and T stands for
parameters that influence the iteration count of a loop. A PI may have several
parameters of types N and T'; the rules are meant to apply to all of them. As
before, C' denotes cache capacity and L denotes cache line size:

— Minimum rule: Start experiments with the smallest values permitted by
the rules and observe optimization time. Later, increase parameters as ap-
propriate. Small instances can be optimized faster, and it is more likely that
local search finds a global optimum.



— L = 2 rule: For potential of types b)—d), use L = 2, since two is the smallest
value that captures spatial locality. Additional experiments with L = 3 may
increase confidence in the final result.

—L-Crule:L|Cand C > L.

— L — N rule: L should evenly divide array dimensions to avoid a special
treatment of borders that complicates an optimized PI’s structure.

— C — SI rule: The cache should be large enough to simultaneously hold all
data that are accessed by two SIs, even if the data belong to different mem-
ory blocks. This rule captures reuse between successive SIs. The requirement,
is pessimistic insofar as the data sets of successive Sls typically overlap, and
optimistic insofar as reuse may involve more than two SIs. The smoothness
in the locality objective function favors reuse pairs that are close even if the
distance is slightly larger than C'. Therefore iblOpt can warn about unfortu-
nate C values. Nevertheless, it is useful to run experiments with a larger C
value, as well, if time permits.

— N - C rule: The total number of data must be larger than C, at least by
factor 2.

— T rule: Parameters of type T should be at least 2, better 4, so that patterns
can be recognized.

— Feedback rule: The relative size of parameters should correspond to the
real case. In particular, the cache should hold an array or a row of an array
if and only if the same holds for typical program runs.

After phase 1, we know whether the given program has locality potential,
and whether the use of this potential requires data transformations. In phase 2,
we only consider the promising locality types, and carry out some further exper-
iments to decide whether it is worthwhile to tackle the restructuring process. In
particular, phase 2 compares the iblOpt output to the corresponding instance of
a compiler-optimized program (if this has not yet been done before), and esti-
mates scalability of the potential. For the latter, we simply compare the locality
potential of PIs with different parameter sizes. The result of phase 2 is a decision
on whether to proceed with phase 3.

Phase 3 aims at finding a restructuring that exploits the potential discovered
before. We start with an inspection of the phase 1 and 2 outputs and observe
for which parameter constellations the gain is highest. Then, we formulate one
or several PIs with these properties. The PIs may be different from the PIs of
phase 1 since the minimum rule is even more pressing now. We make sure that
the PIs have a significant locality potential before invoking restructuring mode.

In restructuring mode, iblOpt is preferably run over night so that multiple
runs of the local search algorithm can be accomplished. Then, we pick the most
interesting optimized PIs in terms of cache misses and number of lines (in a
structured representation) and inspect these PIs with the visualization compo-
nent of iblOpt. Hopefully, patterns can be recognized that are responsible for
the reduction in cache misses. Possibly, additional PIs have to be considered.
Phase 3 requires creative work and is therefore not amenable to automatization.

Finally, the user restructures the program according to the patterns found for
the PIs, and makes sure that data dependencies are respected. Successful locality



optimization is no guarantee for speedup since other performance factors such
as the number of mispredicted branches may have an opposite impact. Hence,
the gain must be examined experimentally, as it is common practice for manual
restructurings.

4 Optimization of Stencil Codes

In this section, we apply the guidelines to 1D, 2D, and 3D Gauf3-Seidel kernels.
As before, C' denotes cache capacity and L denotes cache line size.

Optimization of 1D Gauf3-Seidel Code with Time Loop

We consider the following code:

for (t=0; t<T; t++)
for (i=1; i<N-1; i++)
A[i] += A[i-1] + A[i+1];

Phase 1: For potential of type a), the C—SI rule implies C' > 6, the N—-C rule
implies N > 2C, and the T rule implies N > 6 and T > 4. The feedback rule is
ignored, since this code does not usually need cache optimization in practice. We
start with N = 12, T = 4, C' = 6. Since optimization runs fast, larger parameters
are considered thereafter.

For potential of type b), the C—SI rule implies C' > 8 since each SI accesses
two memory blocks, that is, four data elements. For potential of types ¢), d),
the C—SI rule implies C' > 12 since each SI accesses up to three memory blocks,
that is, six data elements. For better comparability among b)-d), we set C = 12
in most PIs. Table 1 summarizes the PIs and optimization results.

Table 1. Cache misses of 1D Gauf}-Seidel PIs. NV, T are program parameters, C' denotes
cache capacity, and L denotes cache line size. The numbers are simulated cache misses
for the input program, the compiler-optimized program, and @blOpt-optimized PIs,
respectively. The 4blOpt results correspond to the best value that is obtained with
10 initializations per PI.

N | T | C | L|Input | Compiler | iblOpt a) or b) | iblOpt c) | iblOpt d)
1214 | 6 |1 48 18 18 - -
121 8 |6 |1 96 40 36 - -
241419 |1 96 24 24 - -
164 |82 32 8 8 - -
241 5 |12 |2 60 12 12 12 12
24 112112 2| 144 27 24 24 35

Phase 2: We refer to the following compiler-optimized program after skewing
and tiling [17]:



for (ii=1; ii<N-1+T; ii+=s)
for (t=0; t<T; t++)
for (i=max(ii,t+1); i<min(ii+s,N-1+t); i++)
Ali-t] += A[i-t-1] + A[i-t+1];

The values in Tab. 1 are optima for tile sizes s = 1...N. Thus, these values
are somewhat optimistic (compilers select a particular size, which may be sub-
optimal). The locality potential seems to scale since improvements are achieved
for large values of T.

Phase 3: We choose the PIs such that T is large: N =12, T=8,C=6,L =1
and N=16,T=8,C =8, L =2.

N1 2 3 4 5 6 7 8 9 10

0 11 13 15 17

/////

1 12 14 16 18 19

2 120—21 23 26 29 32 35

/////////

3 24 27 30 33 36 39 42 45 47
s Sk &l
4 |25 28 31 37 40

5| 50—51 53 56 59 62 65 68 71 74

S S

6 57 60 63 66 69 72 75 77
/ L S
7 67 70 73 76 78—79

Fig. 1. Optimized PI for 1D Gauf-Seidel code with N =12, T =8, C =6, L =1 after
running blOpt in restructuring mode.

The first instance yields a clearly structured optimized PI that is depicted
in Fig.1. The second PI yields a less clear output, so we repeat the experiment
with another T (not further discussed here). In Fig. 1, numbers are to be read
as that the first SI (number 0) of the optimized PI updates A[l] for ¢t = 0,
the next SI (number 1) updates A[2] for ¢ = 0, and so on. It can be observed
that the optimized PI is blocked along the ¢-axis. Within each horizontal stripe,
the execution order resembles that of the compiler-optimized instance (given in
Fig.2), except that tile width is one. The compiler-optimized instance induces
40 cache misses, and the blOpt instance induces 36 cache misses. The blOpt
order corresponds to the following optimized program:

for (tt=0; tt<T; tt+=s)
for (i=tt+1; i<N-2+min(tt+s,T); i++)
for (t=tt; t<min(tt+s,T); t++)
if (i>=t+1 && i<N-1+t)



N1 2 3 4 5 6 7 8 9 10

0| 012,67 -8/21-22-23"4
1| 3— 4% 10— 11//5#2% 2@/25—46
2 5//1%13— 14/27— 2%29//2/1% 48—49
3 |15 16—17 w 31— 32/5/% 51— 5@,/6/5
4 | 18— 19/”?;% 3#355%54@ 55//’/(/56—67
5 29,//3/,%37— 385% 57— 58//&% 69—70

6 | 39— 4041, 59— 60— 61 71— 72— 73,77

7 | 424362 6364, 747576 . 7879

Fig. 2. Compiler-optimized PI for 1D Gauf3-Seidel code with N =12, T =8, C = 6,
L=1.

A[i-t]+=A[i-t-1]+A[i-t+1];

To understand the difference, we look at where cache misses arise. With blOpt
order, they arise at horizontal stripe boundaries, and with compiler order, they
arise at tile boundaries. The fact that there are no cache misses within the
horizontal stripes depends on tiles being thin. The iblOpt order reuses data of
neighbored tiles within a stripe and thus, in a sense, overlaps tiles.

For analysis, we assume an LRU cache replacement policy and cache line
size 1. Then, the optimal strip width is C'—3 for the iblOpt scheme, and the
optimal tile width is C'—3 for the compiler scheme, as well. Since capacity misses
occur along stripe and tile boundaries, respectively, the iblOpt scheme takes
about 2- N - |T/(C — 3)] capacity misses, and the compiler scheme takes about
2-T-|N/(C—3)]| capacity misses. For N > T, the first value is typically smaller
than the second, especially if |T'/(C'—3)] equals 1 or 2. A similar analysis applies
to L > 1.

We also compared the schemes experimentally on a Linux PC with 1.4 GHz
AMD Athlon(tm) XP 1600+ processor. For a 256 kByte L2 cache, we used
N = 200 000, T = 40 000, and array element type double. After compilation
with gcc -O4, we measured running times 327 sec for the input program, 234
sec for the compiler-optimized program, and 211 sec for the iblOpt-optimized
program (for optimal tile sizes as determined experimentally).

Optimization of 2D Gauf3-Seidel Code without Time Loop

We consider the following code:

for (i=1; i<N-1; i++)



for (j=1; j<N-1; j++)
A1 03] += A[i-13031 + A[i+110[3]1 + A[i1[j-11 + A[iI[j+11;

Phase 1: For potential of type a), the C-SI rule implies C' > 10, and the
N-C rule implies N? > 2C. It has been observed previously [13] that cache
optimization of 2D codes is not an issue unless N > C/2. Therefore we assume
N > C/2, even though many programs do not fulfill this assumption. We start
with N = 6, C = 10 and, since optimization runs fast, then consider N = 10,
C=10and N =14, C = 10.

For potential of type b), the C—SI rule requires C' > 16, so we consider N = &,
C =16, L = 2. For comparability with c), d), we proceed with N =12, C' = 20,
L=2,and N =16, C =20, L = 2. In all cases, iblOpt reduces cache misses by
a factor of about 1.5.
Phase 2: We refer to the following compiler-optimized program after tiling, and
set s to the optimum from s =1...N:

for (jj=1; jj<N-1; jj+=s)
for (i=1; i<N-1; i++)
for (j=jj; j<min(jj+s, N-1); j++)
A[i1[j] += A[i-11[3]1 + A[i+1]1[j] + A[i1[j-11 + A[il1[j+11;

We make the following observations:

— In a)-c), the compiler-optimized PIs take the same number of cache misses
as the iblOpt-optimized PIs, or somewhat less. This outcome suggests that
tiling is optimal. The differences are due to #blOpt running a local search.

— Cache misses are minimized for s = 3 if C' = 10, for s = 4 if C' = 16, and
for s = 5 if C' = 20. Taking into account that a tile’s working set comprises
neighbors to be read in addition to the data that are updated, these values
for s correspond to non-square tiles. Compiler heuristics, in contrast, favor
square tiles in absence of conflict misses. Non-square tiles reflect a difference
from the traditional tiling scheme that loads a block of data into cache, works
with these data, loads the next block, and so on. Non-square tiles exploit
overlap between neighbored tiles, similar as the 1D scheme above. Note that
iblOpt optimization was not required to recognize this modification, but the
approach of considering PIs was helpful as it allowed us to quickly determine
cache misses for all tile sizes.

— In d), the iblOpt- optimized PIs take somewhat less cache misses than their
compiler-optimized counterparts (86 vs. 95 for N =12, C = 20, L = 2 and
170 vs. 180 for N = 16, C = 20, L = 2). We conclude that there is potential
beyond tiling, which can be exploited through data transformations.

Phase 3: Since combined code/data transformations are hard to recognize, we
first investigate whether pure data transformations are sufficient to realize the
reduction in cache misses. We start from the tiled program and get about the
same results as in d): 8 for N = 12, C = 20, L = 2, and 166 for N = 16,
C =20, L = 2. Hence, pure data transformations are sufficient.



Since regularity optimization for the data grouping is not yet mature in our
present prototype, we have to look at several optimized PIs until we recognize
the pattern that is responsible for the reduction in cache misses. It is a mixed
column-row layout that stores data row-wise in the interior of a tile and column-
wise at vertical tile boundaries. Figure 3 depicts an optimized PI from which this
layout can be recognized. We have analyzed the layout in [8], where we show
that it slightly reduces cache misses as compared to both column-major and
row-major layouts.

A

0 1 I 3 4 - g T
] I 20 12 1z 1E 1€ 1z &
3 a0 26 2E o 17 an 30 ia
2 £ IT 27 3 17 2 o 0
] E e b 3 13 13 in 14
4 28 - - 3 11 7 T 14
5 28 1 1 - 11 15 15 o
g 4 n n - 21 = 4 13
7 a 24 4 4 o i 13 £

Fig. 3. Layout for tiled program with N =8, s =3, C =16, L = 2.

Optimization of 3D Gauf3-Seidel Code without Time Loop

We consider the following code:

for (i=1; i<N-1; i++)
for (j=1; j<N-1; j++)
for (k=1; k<N-1; k++)
ATi1[j1 (k] += A[i-11[j1[k] + AC[i+1]1[j]1[k] + A[il[j-11[k]
+ A[i1[j+11 (k] + A[il[j][k-11 + A[i1[j] [k+1];

Phase 1: For potential of type a), the C-SI rule implies C > 14, the N-C
rule implies N3 > 2C, the T rule implies N > 6, and the feedback rule implies
N < C < N? [13]. For potential of types c), d), the C-SI rule implies C' > 28.
This leads us to the PIs in Tab. 2.

Phase 2: The values in Tab. 2 refer to the following compiler-optimized program
after tiling, with sj, sk set to the optima from [1...N]:

for (jj=1; jj<N-1; jj+=sj)
for (kk=1; kk<N-1; kk+=sk)



Table 2. Cache misses of 3D Gauf-Seidel PIs. Notation as in Tab. 1.

N| C | L| Input | Compiler | iblOpt a) or b) | iblOpt ¢) | iblOpt d)
6|15|1| 352 260 239 - -
61201 256 224 226 - -
7114 |1| 675 545 491 - -
8130 |1 792 648 660 - -
6|28|2| 168 168 151 150 102
8128 |2 720 513 470 462 400

for (i=1; i<N-1; i++)
for (j=jj; j<min(jj+sj, N-1); j++)
for (k=kk; k<min(jj+sk, N-1); k++)
ATi1[j1 (k] += A[i-11[051[k] + ...

We make the following observations:

— There is some potential of type a), but it does not seem to scale. For com-
pleteness, we investigate this potential in phase 3, but a typical iblOpt user
would ignore it.

— There is some potential of type b).

— There seems to be some potential of type c), but actually this is not the case:
In b), the local search algorithm is run with 10 initializations per PI, and
in ¢) it is run with 80 initializations per PI (10 for each of the 8 combinations
of storage orders). For the given code, all storage orders are equivalent, and
so the higher number of initializations gives c) an advantage. If we repeat b)
with 80 initializations, we get the same results as in c).

— There is some potential of type d).

Phase 3: Potential of type a): Optimization of N = 6, C = 15 in restructuring
mode yields a tiled PI with 2 x 2 tiles. It differs from the compiler scheme only
in the tile-internal access order, and this order is the same for all tiles. A closer
look at this order reveals that it eliminates long reuse distances within the tile.
This is profitable for very small caches, but makes no difference if the cache
holds the complete working set of a tile. Thus the modification does not scale.
Potential of type b): For N =6, C = 28, L = 2, restructuring mode yields a
PI that is tiled along the i- and j-axes. Along k-axis, the “tiles“ are L-shaped
instead of rectangular such that memory blocks are never cut by tile boundaries.
This observation is actually counterintuitive since a memory block that is cut
incurs one capacity miss, but a pair of memory blocks that are not cut incurs
two capacity misses [9]. A closer look at the sequence of memory accesses reveals
that the advantage of non-cut blocks can be attributed to neighbored blocks that
are read but not updated. For large caches, only few blocks are removed from
cache in-between their read and update (the blocks at the corner of a tile), and
thus this potential does not scale either.

Potential of type d): Again, we start from the tiled program, and find that



pure data transformations are sufficient. The layout for N = 8, C =28, L = 2
and optimal tile size sj = 2, sk = 3 leads to the following observations:

— The boundary and interior elements of A, respectively, are stored in different
sets of memory blocks.

— Elements A[i][j][1] and A[4][j][2] as well as elements A[¢][j][5] and A[:][j][6]
are often stored in the same memory block, but elements A[i][j][3] and
A[i][5][4] (which are updated in different tiles) are not.

— Element A[i][5][3] is often stored in the same memory block as A[i — 1][4][3],
Afi)[5 — 1][3], Ali — 1][j + 1][3], or A[i — 1][j — 1][3] (similarly for A[:][5][4]).

— In general, most memory blocks contain data that are updated in the same
tile.

These observations lead us to the conjecture that a mixed column-row layout
reduces cache misses. In this layout, memory blocks contain elements A[d][j][¥],
A[d][7][k+1], ... in the interior of a tile and at tile boundaries in j-direction, and
memory blocks contain elements A[é][j][k], A[i][j + 1][k],... at tile boundaries
in k-direction.

5 Related Work

The iblOpt restructurings resemble application-specific transformations that have
been devised previously. In particular, Leiserson et al. [3] use blocking along the
t-loop, and Sellappa [15] and Rivera and Tseng [13] use overlapping tiles in a
slightly different context.

In [8,9], we have analyzed tiling transformations for stencil codes. These
papers do not refer to blOpt, but instead discuss the restructurings from an
application-oriented point of view. The main results are lower bound proofs,
which show that tiling gets close to optimum in terms of capacity cache misses.

Compiler optimizations for locality have received much attention in previous
research. Traditionally, code transformations such as loop permutation, distri-
bution, skewing, and tiling have been considered [17]. Especially in recent years,
code transformations have increasingly been combined with data transforma-
tions [2]. Moreover, limitations to unimodular transformations and perfect loop
nests have been overcome [10]. In addition to the formalism-based approaches,
a number of heuristics have been suggested [11].

6 Conclusions

This paper has explained how the iblOpt tool supports manual program restruc-
turing for locality. We have briefly described our current prototype and outlined
some recent improvements. In the main part of the paper, we have stated general
guidelines for iblOpt usage, and applied these guidelines to the optimization of
stencil codes. Future work should investigate other codes and thereby refine the
guidelines, as well as further improve the tool with respect to optimization time
and output quality.



References

[1]

[2]

[11]

[12]

[13]
[14]
[15]

[16]

[17]

(18]

M. Cierniak and W. Li. Unifying data and control transformations for distributed
shared memory machines. In Proc. ACM SIGPLAN Conf. on Programming Lan-
guage Design and Implementation (PLDI), pages 205-217, 1995.

M. T. Kandemir. A compiler technique for improving whole-program locality.
In Proc. ACM Symp. on Principles of Programming Languages, pages 179-192,
2001.

C. E. Leiserson, S. Rao, and S. Toledo. Efficient out-of-core algorithms for lin-
ear relaxation using blocking covers. Journal of Computer and System Sciences,
54(2):332-344, Apr. 1997.

C. Leopold. Arranging statements and data of program instances for locality.
Future Generation Computer Systems, 14:293-311, 1998.

C. Leopold. Generating structured program instances with a high degree of local-
ity. In Proc. Euromicro Workshop on Parallel and Distributed Processing, pages
267-274. IEEE Press, 2000.

C. Leopold. Exploiting non-uniform reuse for cache optimization: A case study.
In Proc. ACM Symp. on Applied Computing, pages 560-564, 2001.

C. Leopold. Structuring statement sequences in instance-based locality optimiza-
tion. Future Generation Computer Systems, 17:425-440, 2001.

C. Leopold. On optimal locality of linear relaxation. In IASTED Int. Conf.
on Applied Informatics, Proc. Parallel and Distributed Computing and Networks,
pages 201-206, 2002.

C. Leopold. Tight bounds on capacity misses for 3D stencil codes, 2002. To
appear in Proc. Int. Conf. on Computational Science.

A. W. Lim, S.-W. Liao, and M. S. Lam. Blocking and array contraction across
arbitrarily nested loops using affine partitioning. In Proc. ACM SIGPLAN Symp.
on Principles and Practices of Parallel Programming (PPoPP), pages 103-112,
2001.

K. S. McKinley, S. Carr, and C.-W. Tseng. Improving data locality with loop
transformations. ACM Transactions on Programming Languages and Systems,
18(4):424-453, July 1996.

N. Mukherjee, G. D. Riley, and J. R. Gurd. FINESSE: A prototype feedback-guided
performance enhancement system. In Proc. Euromicro Workshop on Parallel and
Distributed Processing, pages 101-109. IEEE Press, 2000.

G. Rivera and C.-W. Tseng. Tiling optimizations for 3D scientific computations.
In Proc. SC’2000. Available at http://www.supercomp.org.

G. Rivera and C.-W. Tseng. A comparison of compiler tiling algorithms. In 8th
Int. Conf. on Compiler Construction, pages 168—182. Springer LNCS 1575, 1999.
S. Sellappa. Cache-efficient multigrid algorithms. Master’s thesis, University of
North Carolina at Chapel Hill, Dept. of Computer Science, 2000.

C. Weif}, W. Karl, M. Kowarschik, and U. Riide. Memory characteristics of iter-
ative methods. In Proc. of the Supercomputing Conf. Available in ACM Digital
Library, 1999.

M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. In Proc. ACM
SIGPLAN Conf. on Programming Language Design and Implementation (PLDI),
pages 30-44, 1991.

Y. Zhong, C. Ding, and K. Kennedy. Reuse distance analysis for scientific pro-
grams. In same proceedings.



