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A B S T R A C T  

Many programs, both in sequential and parallel com- 
putation, can be significantly speeded up by increasing 
their degree of locality, i.e., by storing data that are used 
together in the same block, and by ordering the state- 
ments to mazimize reuse of local data. Based on the 
framework of a two-level memory in sequential computa- 
tion, this paper suggests an approach to automatic local- 
ity optimization that operates at the level of statement 
instances, and can handle irregularity. The approach 
combines conservative data dependency constraints with 
fuzzy knowledge on the relatedness of individual data 
and operations. The optimization is an iterative process, 
where data distribution and statement ordering a r e  al- 
ternatingly refined, and intermediate results are fuzzy. 

1 I N T R O D U C T I O N  

Due to the increasing gap between processing speeds 
on one hand and memory and network speeds on the 
other, the running time of large-scale programs is in- 
creasingly dominated by data transmission times. This 
is a problem of both sequential and parallel computa- 
tion, and occurs at several levels of the memory hierar- 
chy, in particular 
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* between cache and main memory (in sequential 
and parallel computers) 

, between main memory and secondary memory like 
disks (in sequentiM and parallel computers) 

• between local and global memory in shared mem- 
ory parMlel computers, and 

• between local and remote memory in distributed 
memory parallel computers. 

In this paper, we restrict considerations to a simple two- 
level memory model in the context of sequential compu- 
tation. It is expected, however, that similar techniques 
should be helpful to reduce the number of data transfers 
in the above listed more involved cases, too. 

The two-level model divides memory into a fast mod- 
ule with limited capacity, and a slow module with po- 
tentially infinite capacity. Data are stored in fixed-sized 
blocks. Whenever some data element is requested by 
the CPU, its block is moved to the fast memory (if it is 
not already there). If the fast memory is full, the Least 
Recently Used block is replaced (LRU scheme). The 
aim of program optimizations in the two-level model is 
to minimize the number of block transfers. 

Optimizations typically work by increasing the de- 
gree of temporal and spatial locality of the programs. 
Temporal locality means that accesses to the same data 
element should be clustered in time, spatial locality 
means that successively accessed data should be stored 
in the same block. Locality is a property of accesses 
to both data and code, only data locality is considered 
here. 

Automatic locality optimization is typically done in 
a compiler, that has several possibilities: 
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• data transformations change the distribution of 
data to blocks 

* code transformations change the order of state- 
ments, and 

modifications of the memory management use 
a more knowledgeable replacement scheme than 
LRU (and can also improve the overlap between 
communication and computation by prefetching) 

In this paper, we suggest an approach that combines 
data and code transformations; modifications of the 
memory management are not yet considered for sim- 
plicity. Briefly, the approach operates on the level of 
individual statement instances and data elements. Via 
profiling, we find out how often particular pairs of data 
are used together. The corresponding fuzzy relation is 
represented by a graph that is partitioned using fuzzy 
clustering methods. The result is a preliminary distri- 
bution of data to blocks, represented by fuzzy member- 
ship values. It is used to derive an initial ordering of the 
statements which in turn is used for refining the data 
distribution. The process is iterated. 

The current paper is a report about ongoing work. 
Many details are still left open, or are given preliminary 
answers only, that have to be complemented and refined 
in course of further research. 

The paper starts with an overview on related work in 
section 2. Then our approach is outlined in sections 3 
and 4. While section 3 discusses general questions of lo- 
cality optimizations at the level of statement instances, 
section 4 describes the use of fuzzy methods. Section 5 
finishes with conclusions. 

2 R E L A T E D  W O R K  

Code transformations that among other purposes are 
useful for locality optimization have received a lot of at- 
tention in the literature (for an overview see [1]). A 
characteristic feature of this approach is the considera- 
tion of nested loop structures, with few statements, that 
operate on large arrays, and access the arrays via sim- 
ple index expressions. Program optimization is based 
on applying a sequence of loop transformations, chosen 
from a large but limited set, to the performance-critical 
loops of the program. The approach is successful in 
practice, but only for loop structures with a high de- 
gree of regularity. 

Data transformations have mainly been studied in 
the context of data-parallel computing, for distributing 
arrays among processors (see e.g. [6]). They have also 
been investigated in the field of data bases, to minimize 

I/o ([7]). 

Locality can further be improved via pattern matcl 
ing, where program segments are substituted by semal 
tically equivalent counterparts. 

In the past, data and code transformations have bee 
typically investigated in separation, it was advocate 
only recently that they should be combined ([4]). 

Automatic locality optimization is recognized as 
difficult field, hence many practical systems rely on he] 
from the programmer. In languages like High Perfo 
mance Fortran, e.g., the programmer is engaged to spe 
ify a data distribution. 

Despite of practical successes, automatic locality ol 
timization can not be expected to find programs th~ 
use the minimum number of block transfers required f¢ 
a problem, at least not in a foreseeable future. The tel 
son is that the transformations accessible by compile: 
- -  data redistributions and statement reorderings - -  a~ 
alone not sufficient to achieve optimal locality. In [5 
examples are given where clever ideas and mathema 
ical insight are necessary to find optimized program 
that consist not only of reordered but of different stat, 
ments, operating possibly on additional data structure 
Although consideration of data locality issues in alg, 
rithm design and programming ([3]) is important, it 
also a burden for programmers. Hence, we think th~ 
automatic locality optimization is worth further inve 
tigation. 

3 O U R  A P P R O A C H  

We operate on an input program that consists 
statement instances only, i.e., loops have been con 
pletely unrolled and procedures have been inline 
While programs with statically determined control flo 
can be easily brought into this form, many progran 
have variable loop bounds, or the input size is not know 
in advance. Here, a conservative transformation into tl 
desired form may be possible, if loop bounds and inp~ 
size can be bounded from above. 

But even if the input size is not known (or comput 
tional complexity does not allow working with the re 
size), our approach might be of help. In these cases, 
suggest optimizing the program for several reasonab 
small exemplary input sizes, hopefully common cha 
acteristic features can be extracted from the solutio: 
and generalized. The generalization will surely put lc 
of difficult questions, that are not yet tackled with t] 
present paper. The idea is inspired by algorithm desig 
where it is often useful to start with designing solutio: 
for small problem instances. 
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Often, only some few program segments are critical 
to performance, and it may suffice to consider them in 
separation. 

Our optimization algorithm derives data distribu- 
tions that may be not regular at all, hence requiring 
an involved address translation, that is acceptable only 
if the data elements are large. Otherwise, the derived 
distributions should be approximated by more regular 
ones that make address translation easier. The strive 
for regularity can be taken into account in the optimiza- 
tion algorithm, by increasing the relatedness values for 
structurally neighboured data. 

We consider two kinds of information: data depen- 
dency constraints, and relatedness preferences. The for- 
mer define a dependency graph that restricts the order 
of statement execution. It is a directed acyclic graph 
(acyclic, as we have unrolled loop structures), and will 
be denoted dag. Techniques for deriving the dag from 
the program are well-known ([1]), and we will just rely 
on them. They assume a dependence whenever it is 
possible, even if it is unlikely. We strictly follow the 
dag to guarantee correctness. Locality, in contrast, is 
an efficiency issue, hence approximate solutions, based 
on the processing of fuzzy relatedness preferences, are 
appropriate. 

4 OPTIMIZATION ALGORITHM 

Step  1: Transform the input program into the de- 
sired form and fix the input size. Determine the dag. 

S tep  2: Execute the program for several exemplary 
input suites, thereby record: 

(a) the number of times each statement is carried out, 
and 

(b) for each pair of a statement and a data element, the 
number of times the statement accesses the data 
element 

Afterwards, divide the obtained values by the number 
of profile runs carried out, to scale them into range [0,1]. 
The scaled values are refered to as execution frequencies 
(in case (a)), and as relation SD2 (in case (b)). (The 
notation SD2 reflects that we have a fuzzy relation be- 
tween statements (S) and data (D) established in step 
2.) 
Comment: The input suites must be provided by the 
user, and should be as representative as possible. If it 
is not possible to choose reasonable suites for the given 
input size, our  optimization algorithm can not be ap- 
plied. 

Step 3: Derive a fuzzy relation DD3 from SD2  that 
reflects the preference of data pairs for being stored in 
the same block. It is derived via DD3 := SD2 -1 oSD2,  
where o is a suitably chosen fuzzy composition operator. 
DD3 defines an undirected weighted graph, with data 
elements as nodes and edges marked with the member- 
ship values of the relation. Distributing data to blocks 
now appears as a graph partitioning problem. Graph 
partitioning is NP-complete, but lots of approximation 
algorithms have been suggested (for an overview see [5]). 
In our context, the fuzzy c-means clustering algorithm 
FCM ([8], [9] pp. 227ff), may be in a modified form, 
seems to be a good choice, since it determines a distri- 
bution that is represented by fuzzy membership values. 
As the data distribution is an intermediate result, fuzzi- 
ness permits transferring more knowledge into the next 
step than what would be possible otherwise. The FCM 
algorithm divides the graph into c clusters (blocks), by 
alternatingly refining the choice of cluster centers and 
the assignment of data to clusters. We can choose c 
to be the minimal number of blocks required from the 
cardinality of the data set, but we can also try larger 
values and pad the blocks, which sometimes pays off 
([7]). The FCM algorithm was originally invented in an 
other context, and does not aim at constructing (ap- 
proximately) equal-sized blocks. To include this issue 
of our application, adapt the membership values, e.g. 
#DBS := (p ik /card~) / (~ i (~ jk /card j ) ) ,  where pDB3 is 
the adapted membership value of the k-th data element 
to the i-th block (defining a fuzzy relation, DB3), ~ 
is the membership value of the k-th data element to the 
i-th block determined by FCM, and cardi = ~ z  #"  is 
the cardinality of the i-th block. 

S tep  4: Order the statements using the data distri- 
bution from step 3. 

S tep  4.1: Compose SD2 and DB3 according to 
SD2 o (DB3 o D B 3 - * )  o SD2 -1 (where o is a suitably 
chosen fuzzy composition operator) into a fuzzy relation 
on pairs of statements, SS4, that reflects their degree of 
preference for being executed close to each other. The 
subcomposition DB3 o D B 3  -1 should yield a relation 
that takes value 1 for pairs of identical data. 

S tep  4.2: Determine a maximallength path through 
the dag, with length defined as the sum of the execution 
frequencies. Initialize the statement sequence represent- 
ing the program with the statements of this path. 

S tep  4.3: Successively add all other statements to 
the sequence. 
(a) Choose the next statement to be placed heuristically, 
e.g. as the one with the strongest dag connection to the 
already placed statements. Here, strength can be deter- 
mined as the number of (forward and backward) edges 
in the dag between the new statement and the already 
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placed statements, taking into account their execution 
frequencies. 
(b) If the dag dependencies let a choice, decide between 
the possible placements for the new statement on the 
basis of relation 8S4. Note that a placement may im- 
ply both an increase in locality (if the new statement 
reuses data of the surrounding statements) and a de- 
crease in locality (if the new statement separates sur- 
rounding statements such that the fast memory's ca- 
pacity does not permit reuse between them anymore). 
The decision for a placement should take into account 
both aspects. 

S tep  5: Now that we have an approximate ordering 
of the statements, the data distribution can be refined 
to store preferably in the same block not only data that 
are accessed in the same but also those that are accessed 
in successive statements. 
(a) Construct a relation between statements, SS5, re- 
flecting their closeness in the statement sequence. The 
membership values to the relation should be the higher 
the closer the corresponding statements are placed, the 
higher their execution frequencies are, and the larger 
the capacity of the fast memory is. 
(b) Replace relation DD3 by relation DD5, determined 
according to DD5 := SD2 -1 o SS5 o SD2, and apply 
the FCM algorithm to the graph of DD5. 

Step  6: Iterate over steps 4 and 5 until either the 
gain in performance between iterations is small, or the 
computing time one is willing to spend is exhausted. For 
the former criterion, a performance prediction method 
is needed. We suggest to simulate the program, thereby 
determining the chance of an access to require a block 
transfer on the basis of the fuzzy values. 

S tep  7: Defuzzify the data distribution, and finish 
with a last refinement of the statement ordering. 

5 C O N C L U D I N G  R E M A R K S  

This paper has introduced the idea of an automatic 
locality optimization method that uses fuzzy relations 
between statement instances and data elements. Work 
along this approach has only begun, and there are lots of 
issues that have to be addressed by further research. In 
particular, many important details have yet to be sup- 
plemented, e.g. how to compose the relations and how 
to defuzzify the data distribution. Refinements, mod- 
ifications and extensions will be necessary to improve 
both the quality of the solutions and the time require- 
ments of the algorithm. Experiments are needed to find 
out if the approach is successful in practice. Compar- 
ing the approach to other methods, it seems to be more 
general and flexible, but on the backside has a higher 
computational complexity. It is not intended as a sub- 

stitute for other techniques but rather as a complemel 
for cases where other techniques are not applicable ( 
do not produce sufficient results: indirect accesses, con 
plicated index expressions and irregularity that can n( 
be covered by predefined transformation patterns. 

R e f e r e n c e s  

[1] D.F. Bacon, S.L. Graham, O.J. Sharp,"Compib 
Transformations for High-Performance Compu 
ing", ACM Compuling Surveys, 26(4), pp. 345-42q 
1994 

[2] S. Carr,"Memory-Hierarchy Management", Ph.I 
thesis, Rice University, 1993 

[3] 

[4] 

[5] 

[6] 

IS] 

[9] 

Y.-J. Chiang, M.T. Goodrich, E.F. Grove, t 
Tamassia, D.E. Vengroff, J.S. Vitter,"Externa 
Memory Graph Algorithms", Proc. ACM-SIA~ 
Symposium on Discrete Algoriihms, pp. 139-14 
1995 

M. Cierniak, W. Li,"Unifying Data and Contr, 
Transformations for Distributed Shared Memol 
Machines", Proc. ACM SIGPLAN'95 Conferen~ 
on Programming Language Design and Impleme~ 
ration, 1995 

G. Karypis, V. Kumar,"A Fast and High Qua 
ity Multilevel Scheme for Partitioning Irreguh 
Graphs", TR 95-035, University of Minnesot~ 
1995 

U. Kremer, K. Kennedy "Automatic Data Layol 
For High Performance Fortran", Workshop on A', 
tomatic Data Layout and Performance Predictio 
1995 http://www.cs.rice.edu/kremer/AP95 

M.M. Tsangaris, J.F. Naughton "A Stochastic AI 
proach for Clustering in Object Bases", Proc. 19: 
ACM SIGMOD Conference on the Management 
Data, pp. 12-21, 1991 

J.-T. Yan, P.-Y. Hsiao,"A Fuzzy Clustering Alg, 
rithm for Graph Bisection", Information Proces 
ing Letters, 52, pp. 259-263, 1994 

H.-J. Zimmermann, "Fuzzy Set Theory and its AI 
plications", 2nd edition, Kluwer Academic Publis] 
ers, 1991 

518 


