
A F U Z Z Y A P P R O A C H T O A U T O M A T I C D A T A L O C A L I T Y
O P T I M I Z A T I O N

Claudia Leopold
Fakul t£ t ffir M a t h e m a t i k und In fo rma t ik

Friedrich- Schiller- Univers i t£ t J e n a
07740 Jena , G e r m a n y

c l a u d i a ~ m i n e t . u n i - j e n a . d e

K e y w o r d s : fuzzy relat ions, fuzzy cluster ing, locality, m e m o r y hierarchies , compi la t ion

A B S T R A C T

Many programs, both in sequential and parallel com-
putation, can be significantly speeded up by increasing
their degree of locality, i.e., by storing data that are used
together in the same block, and by ordering the state-
ments to mazimize reuse of local data. Based on the
framework of a two-level memory in sequential computa-
tion, this paper suggests an approach to automatic local-
ity optimization that operates at the level of statement
instances, and can handle irregularity. The approach
combines conservative data dependency constraints with
fuzzy knowledge on the relatedness of individual data
and operations. The optimization is an iterative process,
where data distribution and statement ordering a r e al-
ternatingly refined, and intermediate results are fuzzy.

1 I N T R O D U C T I O N

Due to the increasing gap between processing speeds
on one hand and memory and network speeds on the
other, the running time of large-scale programs is in-
creasingly dominated by data transmission times. This
is a problem of both sequential and parallel computa-
tion, and occurs at several levels of the memory hierar-
chy, in particular

"Permission to make digital/hard copy of all or part of this material without
fee is granted provided that copies are not made or distributed for profit or
commercial advantage, the ACM copyright/server notice, the title of the
publication aud its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery, Iuc.(ACM). To
copy otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee."
© 1996 ACM 0-89791-820-7 96 0002 3.50

* between cache and main memory (in sequential
and parallel computers)

, between main memory and secondary memory like
disks (in sequentiM and parallel computers)

• between local and global memory in shared mem-
ory parMlel computers, and

• between local and remote memory in distributed
memory parallel computers.

In this paper, we restrict considerations to a simple two-
level memory model in the context of sequential compu-
tation. It is expected, however, that similar techniques
should be helpful to reduce the number of data transfers
in the above listed more involved cases, too.

The two-level model divides memory into a fast mod-
ule with limited capacity, and a slow module with po-
tentially infinite capacity. Data are stored in fixed-sized
blocks. Whenever some data element is requested by
the CPU, its block is moved to the fast memory (if it is
not already there). If the fast memory is full, the Least
Recently Used block is replaced (LRU scheme). The
aim of program optimizations in the two-level model is
to minimize the number of block transfers.

Optimizations typically work by increasing the de-
gree of temporal and spatial locality of the programs.
Temporal locality means that accesses to the same data
element should be clustered in time, spatial locality
means that successively accessed data should be stored
in the same block. Locality is a property of accesses
to both data and code, only data locality is considered
here.

Automatic locality optimization is typically done in
a compiler, that has several possibilities:

515 • . • [-

• data transformations change the distribution of
data to blocks

* code transformations change the order of state-
ments, and

modifications of the memory management use
a more knowledgeable replacement scheme than
LRU (and can also improve the overlap between
communication and computation by prefetching)

In this paper, we suggest an approach that combines
data and code transformations; modifications of the
memory management are not yet considered for sim-
plicity. Briefly, the approach operates on the level of
individual statement instances and data elements. Via
profiling, we find out how often particular pairs of data
are used together. The corresponding fuzzy relation is
represented by a graph that is partitioned using fuzzy
clustering methods. The result is a preliminary distri-
bution of data to blocks, represented by fuzzy member-
ship values. It is used to derive an initial ordering of the
statements which in turn is used for refining the data
distribution. The process is iterated.

The current paper is a report about ongoing work.
Many details are still left open, or are given preliminary
answers only, that have to be complemented and refined
in course of further research.

The paper starts with an overview on related work in
section 2. Then our approach is outlined in sections 3
and 4. While section 3 discusses general questions of lo-
cality optimizations at the level of statement instances,
section 4 describes the use of fuzzy methods. Section 5
finishes with conclusions.

2 R E L A T E D W O R K

Code transformations that among other purposes are
useful for locality optimization have received a lot of at-
tention in the literature (for an overview see [1]). A
characteristic feature of this approach is the considera-
tion of nested loop structures, with few statements, that
operate on large arrays, and access the arrays via sim-
ple index expressions. Program optimization is based
on applying a sequence of loop transformations, chosen
from a large but limited set, to the performance-critical
loops of the program. The approach is successful in
practice, but only for loop structures with a high de-
gree of regularity.

Data transformations have mainly been studied in
the context of data-parallel computing, for distributing
arrays among processors (see e.g. [6]). They have also
been investigated in the field of data bases, to minimize

I/o ([7]).

Locality can further be improved via pattern matcl
ing, where program segments are substituted by semal
tically equivalent counterparts.

In the past, data and code transformations have bee
typically investigated in separation, it was advocate
only recently that they should be combined ([4]).

Automatic locality optimization is recognized as
difficult field, hence many practical systems rely on he]
from the programmer. In languages like High Perfo
mance Fortran, e.g., the programmer is engaged to spe
ify a data distribution.

Despite of practical successes, automatic locality ol
timization can not be expected to find programs th~
use the minimum number of block transfers required f¢
a problem, at least not in a foreseeable future. The tel
son is that the transformations accessible by compile:
- - data redistributions and statement reorderings - - a~
alone not sufficient to achieve optimal locality. In [5
examples are given where clever ideas and mathema
ical insight are necessary to find optimized program
that consist not only of reordered but of different stat,
ments, operating possibly on additional data structure
Although consideration of data locality issues in alg,
rithm design and programming ([3]) is important, it
also a burden for programmers. Hence, we think th~
automatic locality optimization is worth further inve
tigation.

3 O U R A P P R O A C H

We operate on an input program that consists
statement instances only, i.e., loops have been con
pletely unrolled and procedures have been inline
While programs with statically determined control flo
can be easily brought into this form, many progran
have variable loop bounds, or the input size is not know
in advance. Here, a conservative transformation into tl
desired form may be possible, if loop bounds and inp~
size can be bounded from above.

But even if the input size is not known (or comput
tional complexity does not allow working with the re
size), our approach might be of help. In these cases,
suggest optimizing the program for several reasonab
small exemplary input sizes, hopefully common cha
acteristic features can be extracted from the solutio:
and generalized. The generalization will surely put lc
of difficult questions, that are not yet tackled with t]
present paper. The idea is inspired by algorithm desig
where it is often useful to start with designing solutio:
for small problem instances.

516

Often, only some few program segments are critical
to performance, and it may suffice to consider them in
separation.

Our optimization algorithm derives data distribu-
tions that may be not regular at all, hence requiring
an involved address translation, that is acceptable only
if the data elements are large. Otherwise, the derived
distributions should be approximated by more regular
ones that make address translation easier. The strive
for regularity can be taken into account in the optimiza-
tion algorithm, by increasing the relatedness values for
structurally neighboured data.

We consider two kinds of information: data depen-
dency constraints, and relatedness preferences. The for-
mer define a dependency graph that restricts the order
of statement execution. It is a directed acyclic graph
(acyclic, as we have unrolled loop structures), and will
be denoted dag. Techniques for deriving the dag from
the program are well-known ([1]), and we will just rely
on them. They assume a dependence whenever it is
possible, even if it is unlikely. We strictly follow the
dag to guarantee correctness. Locality, in contrast, is
an efficiency issue, hence approximate solutions, based
on the processing of fuzzy relatedness preferences, are
appropriate.

4 OPTIMIZATION ALGORITHM

Step 1: Transform the input program into the de-
sired form and fix the input size. Determine the dag.

S tep 2: Execute the program for several exemplary
input suites, thereby record:

(a) the number of times each statement is carried out,
and

(b) for each pair of a statement and a data element, the
number of times the statement accesses the data
element

Afterwards, divide the obtained values by the number
of profile runs carried out, to scale them into range [0,1].
The scaled values are refered to as execution frequencies
(in case (a)), and as relation SD2 (in case (b)). (The
notation SD2 reflects that we have a fuzzy relation be-
tween statements (S) and data (D) established in step
2.)
Comment: The input suites must be provided by the
user, and should be as representative as possible. If it
is not possible to choose reasonable suites for the given
input size, our optimization algorithm can not be ap-
plied.

Step 3: Derive a fuzzy relation DD3 from SD2 that
reflects the preference of data pairs for being stored in
the same block. It is derived via DD3 := SD2 -1 oSD2,
where o is a suitably chosen fuzzy composition operator.
DD3 defines an undirected weighted graph, with data
elements as nodes and edges marked with the member-
ship values of the relation. Distributing data to blocks
now appears as a graph partitioning problem. Graph
partitioning is NP-complete, but lots of approximation
algorithms have been suggested (for an overview see [5]).
In our context, the fuzzy c-means clustering algorithm
FCM ([8], [9] pp. 227ff), may be in a modified form,
seems to be a good choice, since it determines a distri-
bution that is represented by fuzzy membership values.
As the data distribution is an intermediate result, fuzzi-
ness permits transferring more knowledge into the next
step than what would be possible otherwise. The FCM
algorithm divides the graph into c clusters (blocks), by
alternatingly refining the choice of cluster centers and
the assignment of data to clusters. We can choose c
to be the minimal number of blocks required from the
cardinality of the data set, but we can also try larger
values and pad the blocks, which sometimes pays off
([7]). The FCM algorithm was originally invented in an
other context, and does not aim at constructing (ap-
proximately) equal-sized blocks. To include this issue
of our application, adapt the membership values, e.g.
#DBS := (p ik /card~) / (~ i (~ jk /card j)) , where pDB3 is
the adapted membership value of the k-th data element
to the i-th block (defining a fuzzy relation, DB3), ~
is the membership value of the k-th data element to the
i-th block determined by FCM, and cardi = ~ z #" is
the cardinality of the i-th block.

S tep 4: Order the statements using the data distri-
bution from step 3.

S tep 4.1: Compose SD2 and DB3 according to
SD2 o (DB3 o D B 3 - *) o SD2 -1 (where o is a suitably
chosen fuzzy composition operator) into a fuzzy relation
on pairs of statements, SS4, that reflects their degree of
preference for being executed close to each other. The
subcomposition DB3 o D B 3 -1 should yield a relation
that takes value 1 for pairs of identical data.

S tep 4.2: Determine a maximallength path through
the dag, with length defined as the sum of the execution
frequencies. Initialize the statement sequence represent-
ing the program with the statements of this path.

S tep 4.3: Successively add all other statements to
the sequence.
(a) Choose the next statement to be placed heuristically,
e.g. as the one with the strongest dag connection to the
already placed statements. Here, strength can be deter-
mined as the number of (forward and backward) edges
in the dag between the new statement and the already

517

placed statements, taking into account their execution
frequencies.
(b) If the dag dependencies let a choice, decide between
the possible placements for the new statement on the
basis of relation 8S4. Note that a placement may im-
ply both an increase in locality (if the new statement
reuses data of the surrounding statements) and a de-
crease in locality (if the new statement separates sur-
rounding statements such that the fast memory's ca-
pacity does not permit reuse between them anymore).
The decision for a placement should take into account
both aspects.

S tep 5: Now that we have an approximate ordering
of the statements, the data distribution can be refined
to store preferably in the same block not only data that
are accessed in the same but also those that are accessed
in successive statements.
(a) Construct a relation between statements, SS5, re-
flecting their closeness in the statement sequence. The
membership values to the relation should be the higher
the closer the corresponding statements are placed, the
higher their execution frequencies are, and the larger
the capacity of the fast memory is.
(b) Replace relation DD3 by relation DD5, determined
according to DD5 := SD2 -1 o SS5 o SD2, and apply
the FCM algorithm to the graph of DD5.

Step 6: Iterate over steps 4 and 5 until either the
gain in performance between iterations is small, or the
computing time one is willing to spend is exhausted. For
the former criterion, a performance prediction method
is needed. We suggest to simulate the program, thereby
determining the chance of an access to require a block
transfer on the basis of the fuzzy values.

S tep 7: Defuzzify the data distribution, and finish
with a last refinement of the statement ordering.

5 C O N C L U D I N G R E M A R K S

This paper has introduced the idea of an automatic
locality optimization method that uses fuzzy relations
between statement instances and data elements. Work
along this approach has only begun, and there are lots of
issues that have to be addressed by further research. In
particular, many important details have yet to be sup-
plemented, e.g. how to compose the relations and how
to defuzzify the data distribution. Refinements, mod-
ifications and extensions will be necessary to improve
both the quality of the solutions and the time require-
ments of the algorithm. Experiments are needed to find
out if the approach is successful in practice. Compar-
ing the approach to other methods, it seems to be more
general and flexible, but on the backside has a higher
computational complexity. It is not intended as a sub-

stitute for other techniques but rather as a complemel
for cases where other techniques are not applicable (
do not produce sufficient results: indirect accesses, con
plicated index expressions and irregularity that can n(
be covered by predefined transformation patterns.

R e f e r e n c e s

[1] D.F. Bacon, S.L. Graham, O.J. Sharp,"Compib
Transformations for High-Performance Compu
ing", ACM Compuling Surveys, 26(4), pp. 345-42q
1994

[2] S. Carr,"Memory-Hierarchy Management", Ph.I
thesis, Rice University, 1993

[3]

[4]

[5]

[6]

IS]

[9]

Y.-J. Chiang, M.T. Goodrich, E.F. Grove, t
Tamassia, D.E. Vengroff, J.S. Vitter,"Externa
Memory Graph Algorithms", Proc. ACM-SIA~
Symposium on Discrete Algoriihms, pp. 139-14
1995

M. Cierniak, W. Li,"Unifying Data and Contr,
Transformations for Distributed Shared Memol
Machines", Proc. ACM SIGPLAN'95 Conferen~
on Programming Language Design and Impleme~
ration, 1995

G. Karypis, V. Kumar,"A Fast and High Qua
ity Multilevel Scheme for Partitioning Irreguh
Graphs", TR 95-035, University of Minnesot~
1995

U. Kremer, K. Kennedy "Automatic Data Layol
For High Performance Fortran", Workshop on A',
tomatic Data Layout and Performance Predictio
1995 http://www.cs.rice.edu/kremer/AP95

M.M. Tsangaris, J.F. Naughton "A Stochastic AI
proach for Clustering in Object Bases", Proc. 19:
ACM SIGMOD Conference on the Management
Data, pp. 12-21, 1991

J.-T. Yan, P.-Y. Hsiao,"A Fuzzy Clustering Alg,
rithm for Graph Bisection", Information Proces
ing Letters, 52, pp. 259-263, 1994

H.-J. Zimmermann, "Fuzzy Set Theory and its AI
plications", 2nd edition, Kluwer Academic Publis]
ers, 1991

518

