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1. Introduction

Parallel programming is becoming more and more important in software

development. When using multiple processors, an initial problem should be

split into several smaller ones, called tasks, to accelerate the execution. These

are then distributed to multiple inter-connected computing units, which can be

cores, processors or cluster nodes. In this way, large problems can be solved

cooperatively, which can reduce the execution time significantly compared to a

serial solution.

Unfortunately, parallel programming entails along difficulties for the

programmer. For example, shared variables have to be synchronized to guarantee

data integrity. Furthermore, programming errors can cause deadlocks, so that

the program will never terminate. Because of this complexity, development and

maintainability of parallel programs is demanding.

There are two fundamentally different classes of parallel architectures: systems

with shared memory, such as multi-core systems, and systems with distributed

memory, such as clusters. In case of shared memory, every processor has access to

the same memory, so that data can be exchanged easily. Open Multi-Processing

(OpenMP) is an established parallel programming system whose aim is to realize

this approach. OpenMP enables parallelization through compiler directives and

some library functions, and is available for C, C++ and Fortran.

In architectures with distributed memory, in contrast, the nodes have to

communicate across a network to exchange their data because a node cannot

gain access to remote memories. A frequently used programming system in this

class is the Message Passing Interface (MPI). MPI is a standardized application

programming interface and is provided for C, C++ and Fortran, as well.
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The Partitioned Global Address Space (PGAS) model unifies the two

approaches and tries to reduce complexity. A place in PGAS represents a local

computation unit. Every place can access every part of memory, but local

accesses are faster than remote one. This way, PGAS hides the complexities

of network communication from the programmer. An asynchronous variant of

PGAS introduces an activity which is comparable with a thread in Java, and can

be started at runtime. The relatively young parallel programming language X10

is based on this asynchronous variant of PGAS.

In June 2015, a member of the X10 development team released Version 1.0 of a

framework called APGAS [27], which is written in Java 8. This framework tries

to bring as many parallelization features of X10 to Java as possible. Since Java is

an established language, the APGAS framework provides access to X10’s parallel

features for a much wider audience.

A big challenge for the efficient use of parallel systems is load balancing, i.e.

distributing tasks fairly among the available processors. An interesting technique,

called lifeline-based global load balancing, has quite recently been introduced by

Saraswat et al. [21]. The technique has been implemented in X10 in the form

of a framework, called GLB [30]. The framework is part of the standard library

of X10. It has good performance and scalability, but also a significant restriction:

only one activity per place can be executed.

This thesis had two goals. First, the GLB framework was ported from X10

to Java, using the APGAS framework. Second, a data structure, called split

queue [6], was incorporated, which allows a limited form of concurrent access.

Thus, multiple actives per place can be executed concurrently.

In experiments, we ran the two APGAS GLB variants at the Lichtenberg high

performance computer at TU Darmstadt [24]. We referred to two benchmarks:

Unbalanced Tree Search (UTS) and Between Centrality (BC). Both are available

in the official X10 project. We used an implementation variant with explicit

storage of individual tasks [8], and ported them to APGAS. Moreover, we ran



1. Introduction 3

the benchmarks in X10, utilizing the original GLB framework, and compared

them to the new APGAS variants with respect to performance and scalability.

The results of the experiments show no noticeable performance difference between

both APGAS variants. A comparison between the APGAS variants and the X10

variant shows that neither X10 nor APGAS is superior overall.

This thesis starts with the programming background in Chapter 2. First,

Chapter 2 describes the asynchronous variant of PGAS. Then the realizations

of this programming model in X10 and APGAS are explained and compared.

After that, Chapter 3 describes the concept and the existing X10 implementation

of lifeline-based global load balancing. In Chapter 4, the new APGAS

implementation of GLB is presented, and differences to the GLB implementation

in X10 are explained. The split queue concept and some details of its

implementation are explained in Chapter 5. After this, Chapter 6 describes the

experiments and discusses their results. The conclusion in Chapter 7 summarizes

the thesis and gives an outlook to possible future work.
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2. Programming Background

This chapter provides the programming background that is required for the

understanding of the rest of this thesis. It starts with principles of the used

parallel programming model in Section 2.1. Next, Sections 2.2 and 2.3 give an

overview of the programming language X10, and the APGAS framework for Java,

respectively. Afterwards, their common constructs are explained in Section 2.4.

Finally, Section 2.5 outlines several runtime options.

2.1. X10 Programming Model

Both the programming language X10 and the Java framework APGAS are based

on the Asynchronous Partitioned Global Address Space parallel programming

model [22]. Usually, this term is abbreviated APGAS. Since the Java framework is

also called APGAS, we instead use the term X10 programming model throughout

the thesis, whereas APGAS always denotes the APGAS framework for Java.

The X10 programming model assumes a global partitioned address space as

mentioned in Chapter 1. Every place has its own part of memory, but can directly

access every other part of memory, as well. Thereby it is not necessary to send

messages to other places as in MPI. Local access is faster than remote access,

but occasionally remote access is necessary. The programmer controls how the

program data is mapped to the places, and thus how often remote access arises.

The X10 programming model expands the older and much better known PGAS

programming model with activity-asynchronism. It was developed specifically for

the programming language X10. PGAS is also used by other parallel languages,

such as Fortress and UPC. In addition to features of the original PGAS model,

the X10 variant offers the opportunity to create new activities at runtime
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asynchronously. Therefore, programmers are able to design parallel algorithms

quite flexibly.

2.2. Programming Language X10

X10 is a parallel programming language, which is object-oriented and class-based.

It offers single inheritance and a garbage collector. The basic syntax of X10 is

very similar to that of Java. The X10 programming model forms the basis for

asynchronous parallel programming. X10 was designed with the goal to boost the

programmer’s effectiveness in parallel programming by a factor of 10, as compared

to conventional parallel languages, hence the name X10 has arisen.

X10 is being developed by IBM since 2004. It was sponsored by the High

Productivity Computing Systems (HPCS) project from the Defense Advanced

Research Projects Agency (DARPA). It is open source and licensed under the

Eclipse Public License 1.01. While working on this thesis, the latest official Version

was 2.5.3, but the language is still under active development. Therefore, new

features are added occasionally and older versions may no longer be maintained.

The complete code, including recent updates outside an official release, is

accessible to everyone from the official git repository [14].

X10 offers two compilers. One compiler uses C++ (called Native X10 ), and

the other uses Java (called Managed X10 ). An X10 program is compiled in two

steps, first to C++ or Java, and then to byte code.

2.3. APGAS Framework for Java

The APGAS framework is written in Java 8 and brings the main functionalities

and features of the X10 programming model to Java. The framework “supports

resilient, elastic, parallel, distributed programming on clusters of JVMs” [26]. It is

provided as a library in a compiled jar-file for Java, and can also be used with the
1http://opensource.org/licenses/EPL-1.0

http://opensource.org/licenses/EPL-1.0
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functional programming language Scala [23]. One main motivation for developing

the framework was to make the X10 programming model accessible to a wider

audience, whereas X10 is so far primarily used for research. Since the APGAS

framework requires lambdas, Java Version 8 is necessary.

APGAS is developed by the X10 team and is part of the X10 project. Just

like X10, it is open source and licensed under the Eclipse Public License 1.0.

In June 2015, Version 1.0 was released. Like X10, APGAS is still under active

development and the current unreleased version is available in the official X10 git

repository [14]. The master thesis at hand uses the commit status in the official

X10 git repository from December 15, 2015. It was necessary to use a recent

unofficial release because Version 1.0 has some starting issues on clusters, which

were fixed after our bug report [28].

APGAS utilizes three third-party libraries. The first is the open source

framework Hazelcast [11] in Version 3.5.2. Hazelcast is based on Java and realizes

an in-memory data grid. APGAS uses Hazelcast for cross-JVM communication

and shared storage, on an elastic, resilient and distributed collection of JVMs.

Since October 2015, APGAS uses Kryo [7] in Version 3.0.3, which is an open

source framework for optimized serialization. With that, Java objects can be

copied more efficiently from place to place than with the conventional Java

serialization. Using Kryo is optional and has to be enabled with a program

argument. The support for Kyro is currently experimental and was not used for

this thesis.

A third library is Objenesis in Version 1.0, which is required by Kryo. It is a

small open source Java library to dynamically instantiate new objects by various

reflection species, which Java does not support. For example, Objenesis can

instantiate objects from classes which do not have a public constructor.

The APGAS framework has some ambitious goals for the future, which may

increase popularity and practical applicability. In the short term, a new launcher

should allow starting programs with Apache Hadoop Yarn [1]. Yarn stands for
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Yet Another Resource Negotiator and is an application management framework

for Apache Hadoop, which is an open source project for scalable distributed

computing in clusters. Hadoop uses the established MapReduce-algorithm [5]

and is specialized in big data, especially in the petabyte range. Yarn allows other

engines, such as APGAS, to run on a cluster. A first experimental Yarn launcher

implementation for APGAS is available.

A long term goal of APGAS is its integration into Apache Spark [2]. Spark

is a modern open source framework for cluster computing. It can be used with

different programming languages and file systems. Programs that utilize Spark

can be executed in memory, and thus 100× faster than with Hadoop MapReduce.

Another long-term goal is an improvement of resiliency and elasticity

of APGAS. Currently, these features rely on Hazelcast, which has some

disadvantages. For example, a crash of two or more places at the same time

cannot be handled. X10 does not have these disadvantages.

A last goal is a deeper integration into the Eclipse IDE. There is already a plugin

available for Eclipse called APGAS Development Tools for Eclipse. It includes the

APGAS Runtime, APGAS Compiler Warnings and APGAS Development Tools.

After installing the plugin, programmers can instantly use APGAS in Java and

do not have to worry about dependencies. Additionally, warnings and suggestions

for improvements are shown live in the written code. This increases significantly

the comfort during development. These features will be further improved, to show

even more and better warnings and suggestions. However, the tools are currently

available for APGAS Version 1.0 only.
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2.4. Constructs and Keywords

This section describes some key constructs of X10 and APGAS and compares

them with each other. The descriptions refer to the commit status in the official

X10 git repository from December 15, 2015. Java is used in official Version 8 with

Update 66.

The syntax of APGAS is similar to the syntax of X10 because the APGAS

constructs have been inspired by the X10 constructs, and the basic syntax of

X10 has been inspired by Java. However, APGAS uses lambdas for realizing

parallel constructs, whereas X10 uses language constructs. Other differences

will be presented as needed in the following paragraphs. Finally, a parallel

HelloWorld-program is presented in both systems.

Place

Places exist in X10 and in APGAS. A place is typically a set of local computational

units, such as a multicore processor or cluster node, together with a finite

amount of shared memory. Alternatively, multiple places can be simulated on

a single machine, to simplify program development. Programmers may switch

between places by using the keyword at. On the operating system level, a place

corresponds to a system process.

In X10, the number of places can be configured by setting an

environment variable, named X10_NPLACES. APGAS provides the JVM option

-Dapgas.places, which can be set when starting an APGAS program.

In order to transmit objects over the network to other places, they have to be

serializable. In X10, all objects are automatically serializable. APGAS is based

on Java, and Java objects are not automatically serializable. Therefore, APGAS

programmers have to implement Java’s interface java.io.Serializable in the

corresponding classes. The APGAS Development Tools support them in doing so.
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Activity

In both X10 and APGAS, a place can run several activities. Activities can be

described as lightweight threads. They have no names, in contrast to Java threads,

and execute a specified block of code. Each program has at least one activity,

called root activity, which starts executing the main method. When the root

activity terminates, the whole program finishes.

On the operating system level, an activity is mapped to a system thread,

which belongs to the process of the respective place. A minimum number of

concurrently running system threads can be set in X10 with the environment

variable X10_NTHREADS, and in APGAS with the JVM option -Dapgas.threads.

By default, the number is initialized with the number of available processor cores.

The X10 Runtime starts the corresponding number of threads at its invocation

and holds them in a pool.

The thread count on operating system level can differ from the value of

X10_NTHREADS or -Dapgas.threads. Atomic constructs in X10 can suspend

activities. In such situations, the X10 Runtime spawns a new thread, which

can execute an activity. Moreover, an APGAS program starts many threads

for administration, e.g. for the garbage collector or for destroying the JVM.

This is not a characteristic of APGAS, is but done automatically by Java. An

X10 program starts significantly fewer administrative threads, but, for example,

resiliency requires one.

async

The keyword async, followed by a code block, starts an activity. If there is

an idle system thread available in the pool, the block is executed instantly,

otherwise it has to wait until the local scheduler assigns it to a thread. The async

construct is available in both systems. In X10, activities can be interrupted with
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Runtime.probe(), so that the calling thread can execute all pending activities.

APGAS does not provide a similar function to Runtime.probe().

finish

The finish construct can be used in X10 and APGAS to wait for all activities,

spawned in a block. Only when all activities, including recursively spawned

activities, have been terminated, the code after the finish block will be executed.

Uncounted

The uncounted parameter can be combined with an async. It indicates that

a surrounding finish should ignore the corresponding activity, including any

exceptions that the activity may raise. Both X10 and APGAS, provide this

parameter.

Array

X10 supports the rail construct, which corresponds to an array in Java, except

that the index type is long in X10, and int in Java.

Exceptions

X10 exceptions work the same way as Java exceptions, for the purpose of this

thesis. X10 and APGAS implement some new exception types, for example a

DeadPlaceException, which is raised after a place crash.
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Variables

Listing 2.1 and Listing 2.2 show examples of variable declarations.

1 var j : Long = 1 ;

2 val i = 2 ;

Listing 2.1: X10: variables

1 long j = 1 ;

2 f i n a l int i = 2 ;

Listing 2.2: APGAS: variables

A var-variable in X10 resembles a usual variable in Java. A type of this variable

must always be provided.

Besides syntax, X10’s val differs by type inference from Java’s final, i.e. the

type may be omitted if clear from context. In place changes, a deep copy is

automatically generated for val-variables. This copying is called autoboxing. It

implies that if the variable is used at the new place, changes are not visible at the

original place. This feature is helpful and often used. In contrast, var-variables

are not copied. An APGAS programmer has to box a variable manually using an

array, to make deep copying work. Examples are shown in Listings 2.3 and 2.4.

1 val i : int = 5 ;

2 f in ish {

3 at (p) {

4 async Console .OUT. p r i n t l n ( i ) ;

5 }

6 }

Listing 2.3: X10: deep copy

1 int [ ] i = new int [ ] { 5 } ;

2 f i n i s h ( ( ) −> {

3 asyncAt (p , ( ) −> {

4 System . out . p r i n t l n ( i [ 0 ] ) ;

5 }) ;

6 }) ;

Listing 2.4: APGAS: deep copy

Concurrency control

An atomic-block in X10 creates a critical section, i.e. the code is executed

atomically and exclusively. APGAS does not provide an atomic construct

and relies on the concurrency constructs of Java instead. Java provides

several options to realize critical sections. This thesis uses the Java keyword
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synchronized to protect code blocks and the Java classes AtomicBooolean and

ConcurrentLinkedQueue as data types for variables.

For locking, the Java keyword synchronized works with an object, see

line 1 in Listing 2.5. The Java class Object provides the methods wait()

and notifyAll(), which enable communication between Java threads in locking

situations. With the help of an application sample with two Java threads, this

communication is described below. Listing 2.5 shows a Java thread that waits

until condition becomes true. Listing 2.6 shows another Java thread, which

sets the condition to true and wakes up the Java thread from Listing 2.5. Both

listings use the shared variable condition.

Let the left Java thread start first. Then it takes the lock of the object

lockObject in line 1 and enters the critical section. Thus, while the variable

condition in line 2 has the value false, the method wait() is called on the

object lockObject. This method releases the lock, and thus another thread can

access a critical section, which is marked by lockObject. We assumes that the

Java thread in Listing 2.6 takes the lock of lockObject and accesses the critical

section in line 1. Then, in line 2 the variable condition is set to true and the

method notifyAll() is called on lockObject. This method wakes up all the

threads that called wait() on the same object. When the thread from Listing 2.5

wakes up, the while loop in line 2 finishes.

1 synchronized ( lockObject ) {

2 while ( cond i t i on == fa l se ) {

3 l ockObject . wait ( ) ;

4 }

5 }

Listing 2.5: APGAS: wait()

1 synchronized ( lockObject ) {

2 cond i t i on = true ;

3 l ockObject . n o t i f yA l l ( ) ;

4 }

Listing 2.6: APGAS: notifyAll()

The Java class AtomicBooolean provides a thread-safe boolean variable. This

variable can be set with the method set(), and read with the method get().

In addition, the method compareAndSet() sets the value to a passed value if the



2. Programming Background 13

current value equals another passed value. Furthermore, the method getAndSet()

sets the passed value and returns the old value.

The Java class ConcurrentLinkedQueue is a thread-safe collection of a generic

type. It stores its elements in FIFO order (first-in-first-out). The method add()

inserts an element, whereas the method poll() removes the last element and

returns it. These method calls are thread-safe and guarantee data integrity.

Global Heaps

X10 and APGAS support global heap references in different forms. In X10, the

classes GlobalRef[T] and PlaceLocalHandle[T] exist, where T represents the

type of the object being referred to. A GlobalRef[T] is a global reference to a

single object. Remote places can access this object by moving to its home place

and modifying its value there. A PlaceLocalHandle[T] is an abstract reference

to place-local information of type T. For this, an object of type T has to be created

for each place. It can be resolved by different activities to obtain access to local

information stored in different places.

In APGAS, the class GlobalRef<T> exists, which is a union of X10’s GlobalRef

and PlaceLocalHandle. APGAS provides other global heap constructs, for

example, GlobalID and PlaceLocalObject, but only GlobalRef<T> is used in

this thesis.
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Hello World

Listings 2.7 and 2.8 depict two analogous parallel HelloWorld-programs, written

in X10 and in APGAS, respectively. The programs iterate over all available

places, starting an asynchronous activity at each place. The activities write out

a message including their place number.

1 class HelloWholeWorld {

2 public stat ic de f main ( args : Ra i l [ S t r ing ] ) : void {

3 f in ish for (p in Place . p l a c e s ( ) ) {

4 at (p) async Console .OUT. p r i n t l n ( " He l lo ␣ from␣ " + here ) ;

5 }

6 }

7 }

Listing 2.7: X10: Hello whole world

1 class HelloWholeWorld {

2 public stat ic void main ( St r ing [ ] a rgs ) {

3 f i n i s h ( ( ) −> {

4 for ( f i n a l Place p lace : p l a c e s ( ) ) {

5 asyncAt ( place , ( ) −> System . out . p r i n t l n ( " He l lo ␣ from␣ " + here ( ) ) ) ;

6 }

7 }) ;

8 }

9 }

Listing 2.8: APGAS: Hello whole world
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2.5. Execution

X10 and APGAS programs can be executed with different options for the

communication between places and remote starting. In X10, these options have

to be already set when the compiler is built. Moreover, they also have to be set

again when compiling the user program. In APGAS, the options have to be set

when starting the user program, using the JVM options.

X10 uses a runtime library, called X10RT, which is responsible for the

communication between places. X10RT offers four options: sockets, standalone,

MPI and PAMI. When compiling a user program, an option can be selected with

the parameter -x10rt <sockets | standalone | mpi | pami>. Sockets is the

default value. It uses TCP/IP sockets for communication between places and

the communication protocol SSH for processing the startup. The environment

variable X10_HOSTLIST contains a list of hosts for the places. The host list is

cyclically repeated up to the value of the environment variable X10_NPLACES.

Standalone starts all places on the local machine. The number of places

is taken from X10_NPLACES. With MPI, X10 utilizes MPI functionalities for

communicating and distribution. In addition to the compiling option, the X10

compiler has to be built with -DX10RT_MPI=true to enable MPI. After compiling

the program, it can be executed with the command mpirun. MPI has to be

installed on the system. This option is recommended for execution in a cluster.

The last option PAMI is a communication API from IBM. The X10 compiler has

to be built with -DX10RT_PAMI=true. PAMI supports high-end networks and has

to be installed on the system.

APGAS provides different launchers to start a program in various ways.

The launcher has to be set with the JVM option -Dapgas.launcher.

Valid values refer to an available launcher class in APGAS. Current

options are apgas.impl.LocalLauncher, apgas.impl.NoLauncher and

apgas.impl.SshLauncher. The LocalLauncher is set as default and spawns
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places only on the localhost. In contrast, the NoLauncher starts the program with

only one place. Additional places have to be started and connected manually.

The SSHLauncher requires a host file, which contains all available hosts. It

has to be set with the JVM option -Dapgas.hostfile. At first, the program

is started with one place on localhost, called master. Then the other places are

launched on all other hosts using SSH. After all places have connected, the parallel

part in the user program starts.
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3. Global Load Balancing

In order to use parallel systems effectively, tasks have to be mapped fairly to

all places. This is particularly important for irregular applications, for which

the number and size of tasks is not known at the start. This chapter handles

global load balancing [21], which enables automatic inter-place load balancing.

The X10 project includes an implementation of global load balancing in its GLB

framework [30].

Section 3.1 describes GLB, referring to the X10 implementation, and illustrates

its workflow with a flow chart. Afterwards, Section 3.2 presents two well-known

benchmarks for parallel systems, and their implementations in X10.

3.1. Concept of GLB and Implementation in X10

Many parallel algorithms split an initial problem into multiple smaller tasks. If

the tasks do not depend on each other, they can be processed concurrently at

different places. Especially in recursive algorithms, the calculation of a task may

give rise to several new tasks, which have to be distributed at runtime. Often,

the final result is calculated from partial results of the tasks. The aggregation

of these partial results to one result is called reducing. If the reduce operator is

commutative and associative, the tasks can be processed in any order.

If places are running out of work at runtime, tasks have to be distributed

dynamically. There are two established techniques for dynamic task distribution:

work sharing and work stealing [4]. Both techniques utilize workers for processing

tasks. In the GLB implementation of X10, a worker corresponds to a place. Each

worker holds its tasks in a data structure, called task pool. Workers process off

their tasks and calculate, after each processed task, their partial local results.
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When all workers have finished, the partial results are reduced to one final result.

Afterwards, the program finishes.

In a variant of work sharing, each time a worker generates new tasks, the

scheduler sends some of them to other workers. The current workload of the other

workers is not considered, assuming that the work has been uniformly distributed.

In work stealing, in contrast, a worker with an empty task pool, called thief, tries

to steal tasks from other workers, called victims. If a victim has too few tasks,

nothing can be stolen and the steal request fails.

In parallel systems with distributed memory, non-successful work-stealing

requests cause a lot of network traffic, resulting in a significant decrease in

performance. This happens particularly in the final phase, when only a few tasks

are left. Termination detection, i.e. recognizing when all workers have finished

their tasks, is another difficulty in work stealing and in work sharing programs.

The GLB implementation from the X10 project [30] employs a cooperative

variant of work stealing [21], in combination with a lifeline scheme. This variant

was designed for parallel systems with distributed memory. Here, thieves send

steal requests to selected victims. A victim occasionally interrupts processing

tasks and works off these requests. Requests are answered by sending tasks

or a reject message. In the X10 implementation, this cooperative variant was

accomplished with a significant restriction: only one running activity per place is

allowed. Thus, there is no synchronization necessary within a place.

The lifeline scheme is a central part of the GLB concept and is based on a

lifeline graph. The graph is typically a w-dimensional hyper-cube, which is used

for victim selection and termination detection. A hyper-cube is a directed graph.

if w equals to 2, the hyper-cube is an analogue of a square, if w equals 3 the

hyper-cube is an analogue of a cube and so on. Nodes represent workers, and

edges are called lifelines. Each worker is connected by lifelines to other workers,

called lifeline buddies. In GLB, if a lifeline is used, it is enabled, otherwise it is

disabled.
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If a thief has no more tasks in its task pool, it sends steal requests to random

victims. If all of these requests are rejected, the thief gradually activates its

lifelines. After an activation, the thief sends a steal request to the corresponding

lifeline buddy. The lifeline buddy either sends tasks back, or rejects the request.

When rejecting the request, the requesting worker is saved if it is a lifeline thief.

A thief always waits for an answer. If a steal request was successful, the thief

disables the lifeline again and continuous working on its tasks. If a steal request

was unsuccessful, it activates the next lifeline and sends a corresponding steal

request. Only if all lifeline buddies of a thief have rejected the steal requests, the

worker activity ends. In case of a lifeline buddy getting new tasks and having

queued lifeline requests, it shares tasks with the corresponding workers. However,

if they have already finished, the lifeline buddy restarts the workers by invoking

a new activity on their place.

The overall computation is completed when all worker activities have ended.

This is noted by an surrounding finish. In that case, the root activity computes

the final result by collecting and reducing all worker results.

GLB is implemented as a framework, which hides from a GLB user the dynamic

load balancing between places, termination detection and result collection. The

framework deploys tasks and their results as generic types. Programmers can use

it easily because they only have to implement some required classes, interfaces

and their methods.

Flow Chart

Figure 3.1 illustrates a simplified workflow of GLB from the perspective of a

worker (adapted from Perez [19]). Position ∗1 is triggered by a lifeline buddy,

not by the original worker. Position ∗2 is managed by the root activity of the

framework.
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Figure 3.1.: Simplified flow chart of a GLB workflow
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3.2. Benchmarks

Two well known benchmarks for parallel systems are Unbalanced Tree

Search (UTS) and Betweenness Centrality (BC). The X10 project provides

implementations for both in X10. Two of the implementations utilize GLB and

demonstrate the usage of GLB from a programmer’s perspective. Moreover, they

can be used for benchmarking parallel systems with respect to performance and

scalability.

We did not deploy the official implementations, but slightly modified variants of

them [8]. These variants store tasks explicitly instead of using multiple arrays as

in the official version. The modified variants are well suited for our adjustments,

as explained in Chapter 5.

The following Sections 3.2.1 and 3.2.2 describe the benchmarks and their

implementations in X10.

3.2.1. Unbalanced Tree Search

The UTS benchmark was introduced in 2006 by Olivier et al. [17]. It calculates

all nodes in an unbalanced tree, starting from a root value. Tree properties can

be configured with program arguments, which include the branching factor b, the

root node s and the tree depth d. These values strongly affect the execution time.

The final result of a program execution is the number of nodes in the tree. The

calculation utilizes the secure hash algorithm (SHA1), which is deterministic. This

means, if the initial values and parameters are the same, the generated tree and,

thus, the result is always the same. A calculation of a node generates new nodes

recursively. Therefore, at the start of the program, the total number of nodes is

unknown, and every node has to be calculated to obtain the final result. A tree

node is represented by a task. UTS is well-suited to simulate load imbalance and

evaluate dynamic load balancers such as GLB.
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3.2.2. Betweenness Centrality

The BC benchmark was first described by Freeman in 1977 [9]. It calculates a

BC score for each node in a graph, which rates the centrality of the corresponding

node. A high BC score indicates that the corresponding node is part of many

shortest paths.

The official X10 variant implements a variant from Bader et al. [3]. It provides

some graph configuration opportunities, for example an initial seed s and an

exponent n for generating a graph with 2n nodes. Since, all graph nodes are

known in advance, GLB is statically initialized and each worker is assigned about

the same number of graph nodes. Each worker calculates the BC score for its

graph nodes.
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4. Implementation of GLB in APGAS

This chapter deals with our implementation of GLB in APGAS. From now on, it

will be called APGAS_GLB and the official X10 implementation will be called

X10_GLB.

The design of APGAS_GLB was adopted from X10_GLB. We tried to

implement APGAS_GLB as similarly to X10_GLB as possible. However, one

essential implementation detail had to be adjusted: X10_GLB allows only one

thread per place and interrupts cyclically a running activity so that pending

activities can be executed. Since APGAS does not provide a corresponding

functionality (see Section 2.4), we allowed multiple threads per place, and

synchronize access to shared variables via synchronized blocks which are described

in Section 2.4. Thus, multiple activities are executed, but only one can be in a

synchronized code block. Other activities have to pend until this activity leaves

and releases the lock.

This Chapter starts with an overview of APGAS_GLB’s basic structure, which

is the same as the of X10_GLB, in Section 4.1. Afterwards, Section 4.2 explains

the workflow of a worker. Section 4.3 specifies some essential implementation

details of APGAS_GLB on the basis of selected code blocks. In Sections 4.2

and 4.3, differences to X10_GLB will be pointed out. Afterwards, Section 4.4

describes two newly added components. One component extends the original

class Logger with collecting and evaluating execution times of fundamental GLB

sections. The other prints optional outputs for finding bugs during development.

Finally, Section 4.5 explains the porting of two benchmarks from X10 to APGAS.
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4.1. Overview

The structure of APGAS_GLB is the same as that of X10_GLB. Figure 4.1

illustrates this structure in a simplified class diagram. Methods and fields that are

not important for understanding this thesis have been omitted. Major classes are

GLB and Worker. The class GLB is the entry point into the framework, and the class

Worker represents a worker as introduced in Section 3.1. Hence, the class Worker

contains all methods for processing and stealing tasks. The following paragraphs

describe all individual classes and interfaces of APGAS_GLB. Changes to

X10_GLB are explained when necessary.

GLBParameters

The class GLBParameters stores parameters for the framework:

• n: number of tasks in an execution batch,

• w: number of random steal requests,

• l: dimension of the lifeline hypercube,

• z: maximum count of lifeline buddies per worker,

• m: maximum count of random victims per worker,

• v: verbose level,

• timestamps: fineness of logging component, described in Section 4.4.1.

TaskBag

TaskBag is an interface, and a GLB user has to implement it in an individual class.

Objects of this class are used for transferring stolen tasks between places. The

interface TaskBag only contains the abstract method getSize(), which returns

the number of tasks in TaskBag.
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booleanprocess(int)

TaskBagsplit()

voidmerge(TaskBag)

longcount()

GLBResult<T>getResult()

voidprintLog()

voidmergeResult(TaskQueue<Queue, T>)

intsize()

TaskQueue

Queuequeue

FixedSizeStack<Integer>lifelineThieves

FixedSizeStack<Integer>thieves

int[]lifelines

boolean[]lifelinesActivated

int[]victims

AtomicBooleanactive

AtomicBooleanempty

AtomicBooleanwaiting

voidgive(GlobalRef<Worker<Queue, T>>, TaskBag)

voiddistribute(GlobalRef<Worker<Queue, T>>)

voidreject(GlobalRef<Worker<Queue, T>>)

booleansteal(GlobalRef<Worker<Queue, T>>)

voidrequest(GlobalRef<Worker<Queue, T>>, int, boolean)

voidprocessLoot(TaskBag, boolean)

voidprocessStack(GlobalRef<Worker<Queue, T>>)

voidmain(GlobalRef<Worker<Queue, T>>, Runnable)

voidmain(GlobalRef<Worker<Queue, T>>)

Worker

GLBResult<T>glbResult

GLBParametersglbPara

GlobalRef<Worker<Queue, T>>globalRef

QueuegetTaskQueue()

T[]run(Runnable)

T[]runParallel()

T[]collectResults(long)

GLB

intgetSize()

TaskBag

intn

intw

intl

intz

intm

intv

inttimestamps

intcomputeZ(long, int)

GLBParameters

T[]result

T[]getResult()

voidsetResult(T[])

voiddisplay(T[])

GLBResult

T[]data

Tpop()

Tpush(T)

intgetSize()

FixedSizeStack

11

1

1

11

1

1

Figure 4.1.: Simplified class diagram of GLB
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GLBResult

GLBResult is an abstract class of a generic type. It has a field result, which

is an array of the generic type. Often the result contains only one element,

but the benchmark BC, for example, has multiple final results. It is imaginable

that results could have different types, but neither X10_GLB nor APGAS_GLB

support that. A GLB user has to implement an individual class, which extends

GLBResult, and instantiates the generic type with a concrete data type.

TaskQueue

A GLB user needs to extend the interface TaskQueue with an individual class,

which is utilized as a type for the local task pool. This design decision was fully

taken from X10_GLB and brings with it advantages and disadvantages for GLB

users. On the one hand, they can design their task pools according to their own

vision. On the other hand, they are obliged to implement the task pool without

support from the framework.

The interface TaskQueue has two generic types. The first generic type

instantiates the type of the data structure for storing tasks and the second

instantiates the type of GLBResult. As we will see below, each worker will

maintain one object of type TaskQueue. The interface contains essential abstract

methods, for example, process(), which works off n tasks. Moreover, the result

can be queried by calling the method getResult(), which returns an object of

type GLBResult. Each worker has one result, which is updated after processing

n tasks. The method merge() merges stolen tasks in the local task pool.

FixedSizeStack

A worker provides two fields of type FixedSizeStack, which contain thieves and

lifeline thieves. At a steal requests, a thief saves itself in one of these fields.

The class FixedSizeStack represents a primitive data structure and stores a
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fixed number of objects of a generic type in an array. APGAS_GLB initializes

the generic type always with Integer, but the class FixedSizeStack could also

be used for other purposes. The size of elements does not need to be resized

because the number of thieves and lifeline thieves are known at program start

and does not change in runtime. The class FixedSizeStack simply provides

the methods pop(), push() and getSize() with their expected functionalities.

Possible exceptions do not get caught.

GLB

This class is the entry point to the framework, and a GLB user has to initialize

an object of this class. The corresponding constructor instantiates and initializes

one object of the class Worker on each place. A constructor call requires an object

of GLBParameters and an object of SerializableCallable. The second one is

responsible for initializing an instance of TaskQueue on each Worker object. The

class Worker is described below. Details about starting these workers are given

in Section 4.3.

In X10_GLB, the class GLB contains a field plh of type PlaceLocalHandle

which is responsible for saving one worker on each place. As explained in

Section 2.4, APGAS does not provide the class PlaceLocalHandle. Instead, we

renamed the field plh in the class GLB to globalRef and changed the type of it

to GlobaRef. As stated in Section 2.4, GlobalRef is a union of X10’s GlobalRef

and PlaceLocalHandle.

Moreover, the parallel calculation can be started with the method

run(Runnable) or runParallel(). If only a few tasks are known at program

start and the remaining tasks can only be generated at runtime, the method

run(Runnable) should be used. Otherwise, runParallel() should be used.

The method run(Runnable) dereferences globaRef to get the initialized Worker

object. Then, it calls the method main(Runnable) on this object. The method
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main(Runnable) only starts the worker on the first place. The other workers on

the other places are started via the lifeline scheme. For details see below.

In contrast, the method runParallel() starts a worker on each place because

the tasks have already been distributed. Starting a worker is realized with a call

of the method processStack() on a Worker object. Details of this method are

explained in Section 4.3.

Furthermore, the class GLB provides methods for collecting and reducing the

partial results and statistics. The reduce operator for the partial results has to be

specified from the GLB user in the method mergeResult() from the class which

implements the interface TaskQueue. Depending on the verbose level, statistics

are printed out. These methods are called automatically after the calculation has

finished.

Worker

An instance of the class Worker represents a worker according to the description

in Section 3.1. At program start, on each place starts only one activity, which

executes the worker. This activity is also called worker activity. The class Worker

provides all methods for processing and stealing tasks.

A worker has three statuses, which are represented by the fields active,

empty and waiting in the class Worker. Each of these fields has the type

AtomicBoolean, see Section 2.4. In contrast, X10_GLB uses boolean as type for

them. The reason for this adjustment will be explained below.

The field active indicates whether the worker is running. It is initialized with

false. The field empty is true if there are no tasks left in the local task pool and

otherwise false. It is initialized with true. If the worker waits for an answer to

its steal request, the field waiting is true, otherwise false. It is initialized with

false.
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We adjusted the type of the field empty to AtomicBoolean because we allow

multiple activities per places. The field empty is accessed in the method

processStack() and also when one or more lifeline buddies send tasks. Since it

is possible that a lifeline thief executes its worker activity while it gets tasks from

one or more lifeline buddies, the field empty can be accessed concurrently.

Moreover, X10_GLB adds X10’s keyword volatile to the fields active, empty

and waiting. In this way, wrong compiler optimizations can be prevented. An

object of the class AtomicBoolean is automatically volatile.

Furthermore, the field waiting needs to be an object because we used it as a

lock object for synchronized blocks, as explained in Section 2.4.

The class Worker contains fields to save incoming steal requests, its own random

victims and lifelines to the corresponding lifeline buddies. The field thieves

has the type FixedSizeStack and saves thieves that send stealing requests. If

a lifeline thief is rejected, it will be saved in the field lifelineThieves. The

field lifelineThieves has the type FixedSizeStack and contains lifeline thieves

which may have already finished. The constructor of the class Worker calculates

its random victims and lifeline buddies and stores them in the corresponding fields

victims and lifelines.

If tasks are only generated at runtime from an initial task, the first generated

tasks have to be distributed to all workers. To realize this initial task mapping,

the constructor of the class Worker generates lifeline steal requests. Each started

worker answers these requests by sending tasks to the requesting worker and starts

it, if necessary. Thus, one worker after another is started at the beginning of the

program.

In X10_GLB, the constructor of the class Worker creates for each worker

only three lifeline steals for the initial task mapping. With a high number of

places, some places could never get tasks because the recursive task stealing stops

when the count of tasks becomes too low. To prevent this, we modified this in

APGAS_GLB, and generate the maximum count of lifeline steal requests.
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The methods run() and run(Runnable) are the entry points to the class

Worker. They call processStack(), which controls the workflow of a worker.

This workflow is described below in the Section 4.2. Implementation details are

given in Section 4.3.

4.2. Workflow of a Worker

A typical workflow of a worker is illustrated in Figure 3.1 in Section 3.1 on page

20. This section describes the workflow on the base of the implemented methods

from APGAS_GLB. In this process, differences to X10_GLB are shown when

necessary. Implementation details of these methods are given in Section 4.3.

The method processStack() is responsible for the workflow of a worker. Each

worker is started with a new activity, which calls the method processStack().

These activities are started with an asyncAt. All activities which start a

new worker, are surrounded by one finish. The surrounding finish belongs

to the first started place and detects if all workers have finished. After all

workers have finished, the partial results are merged to one final result. During

steal processes, activities are started with an uncountedAsyncAt, except for

one essential situation, which uses an asyncAt. By starting activities with

uncountedAsyncAt, the surrounding finish from above does not wait for those

uncounted activities because they are not relevant for detecting if all workers

have finished. The aforementioned async is located in the method give() and is

explained below. Moreover, Listing 4.7 on page 41 shows its implementation.

The fields active, empty and waiting are essential for the workflow. When

the workflow starts, active has the value true, empty has the value false and

waiting has the value false.

First, n tasks are processed by calling the method process() repeatedly as

long as there are tasks left in the local task pool. A GLB user has to implement
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the method process() in its task pool class, which will be called Queue from now

on. Between each call of the method process(), stealing requests are answered.

In X10_GLB, the method Runtime.probe() is called to execute pending

activities. Several of these pending activities want to send steal requests.

APGAS_GLB uses synchronized blocks instead of Runtime.probe(). Thereby,

pending activities are executed automatically as soon as the corresponding lock

object is available. The synchronized code blocks are shown in the listings in

Section 4.3.

Then the method distribute() is called. This method is responsible for

successively sending tasks to all saved steal requests, until all of these requests are

answered or there are no tasks left to be sent. Afterwards, the method reject()

is called to reject any leftover requests. Details of both methods distribute()

and reject() are explained below.

If there are no tasks left for processing, the repeated calls of process() end.

In APGAS_GLB, the field empty is set to true. In contrast, in X10_GLB this

is done by the method steal(). The reasons for this adjustment are given in

Section 4.3.

Afterwards, the method steal() is called. The method steal() repeatedly

sends steal requests to victims, first to random victims and, when all of these

fail, to lifeline buddies. Before each sending, the field waiting is set to true.

The sending is realized by starting a new activity on the victim, which then calls

the method request(). Thereafter, the thief waits until the victim sets the field

waiting to false.

If the whole method steal() has no success at stealing, the field active is set

to false. Afterwards, the worker activity ends.

The method request() checks first if the victim is empty or waiting. If at

least one is true, a new activity on the thief is started, which sets waiting to

false. In this way, the thief continues with sending steal requests. Moreover,

lifeline thieves are saved, so eventual tasks can be sent to them later. If the victim
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has tasks left and is not waiting, the request is saved. Those saved requests are

answered later by the method distribute(), details are described below.

The method reject() rejects one saved steal request after the other. A

rejection starts a new activity on a thief. This activity sets the field waiting

to false. Thereby, the thief continues with sending steal requests.

The method distribute() repeatedly calls the method split() from the class

Queue as long as there are saved steal requests. The method split() has to be

implemented from the GLB user in its class Queue. The method split() extracts

an object of TaskBag from the task pool if there are tasks left, and returns them.

Those tasks are sent to the victim and are called loot. If the splitting was successful

the method give() is called, passing the loot.

The method give() starts a new activity on the thief and then calls the

user-defined method deal(), also passing the loot. If the thief is a lifeline thief,

the activity is started with an asyncAt and not with an uncountedAsyncAt, see

essential situation above. This asyncAt is necessary because a lifeline thief could

have already finished. Then the corresponding worker has to be restarted and in

the surrounding finish, see above.

The method deal() sets the field active to true and calls the method

processLoot(), also passing the loot. In turn, the method processLoot() calls

the method merge() from the class Queue, also passing the loot. The GLB user

has to implement the method merge(), which adds the loot to the local task

pool. Afterwards, the method processLoot() sets the field empty to false and

returns. After calling the method processLoot(), the method deal() calls the

method processStack() if the worker has already finished. Thus, lifeline buddies

can restart lifeline thieves when they send tasks to them.
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4.3. Specific Details

This section explains some specific details of the APGAS_GLB implementation.

For a better understanding some code blocks are shown in the listings.

Adjustments to the X10_GLB implementation are pointed out, when necessary.

As mentioned in Section 2.4, in X10, all objects are automatically serializable.

In APGAS, in contrast, respective classes have to implement the official Java

interface Serializable. Each class/interface from APGAS_GLB implements

this interface, see Section 4.1. Therefore, objects of these classes can be written

to the file system, but also copied over the network and between places. An

implementation of Serializable requires an implementation of the constant field

serialVersionUID. We declared this constant in each class and initialized each

with the default value 1L.

X10_GLB allows only one thread per place and therefore only one activity can

be executed per place at a time. As a positive result, there is no place internal

synchronization necessary. However, to realize the cooperative work stealing

technique, sometimes a worker has to write values into fields at other places,

for example when sending a steal request. This kind of actions are executed by

starting new activities at remote places. Those activities have to pend until the

worker activity calls X10’s method Runtime.probe(), see Section 2.4. This call is

performed periodically. The method interrupts its calling activity (in X10_GLB,

it is always the worker activity) and executes all pending activities successively.

Afterwards, the worker activity continues.

APGAS does not provide a similar method as Runtime.probe(), but realizes

activities with Java threads. Java offers the method yield(), which gives the

scheduler the hint to pause the calling Java thread. However, APGAS does not

support an interruption of an activity with yield().

Therefore, we decided to allow multiple threads and activities per place.

However, we synchronized code blocks via a lock to control the access to shared
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variables. Therefore, the outcome remains the same as in X10_GLB. Likewise,

only the worker activity processes tasks.

For locking the accesses to the local task pool, the implementation utilizes the

Java keyword synchronized, see Section 2.4. All code blocks which need access

to the local task pool are marked with synchronized and use the field waiting

for locking. The field waiting is predestined for being the lock object because it

specifies if a worker is waiting. Thereby, the local task pool cannot be accessed

concurrently. The synchronized blocks are described in the following paragraphs.

Moreover, they are shown in the corresponding listings below.

processStack()

Listing 4.2 shows the method processStack() from APGAS_GLB in a simplified

form. For comparison, Listing 4.1 shows the original method processStack()

from X10_GLB. It is a major method of the framework because it controls the

complete flow of processing and sharing tasks. Our implementation of the method

differs significantly from X10_GLB because we use synchronized blocks instead

of a thread interruption like X10’s Runtime.probe().

In X10_GLB, the method processStack() starts with a do-while loop, see

line 2 in Listing 4.1. Line 9 contains the condition for the loop: it continues

while the method steal() returns true. When the method processStack()

ends, its method called main() sets the field active to false. In contrast,

in APGAS_GLB, the similar loop continues while the field active has the

value true, see line 18 in Listing 4.2. This condition is logically similar to the

condition in X10_GLB. However, this adjustment was necessary because the

method steal() needs access to the task pool and therefore a call of it had to be

synchronized, see lines 15-17 in Listing 4.2. This implies the disadvantage that

the method reject() has be to called again in line 18 in Listing 4.2 because since

the last call, some new steal requests could have been queued.
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In X10_GLB, a while loop starts in line 3 in Listing 4.1. The loop head

contains a call of the method process() and thus it runs while there are tasks

left for processing. In APGAS_GLB, the loop had to be adjusted because the

method process() needs access to the local task pool and thereby, a call of it has

to be synchronized. The method process() cannot synchronize its code by itself,

because it has to be implemented in a class of a GLB user. Thus, it cannot access

the field waiting, which is always used as lock object. So, line 6 in Listing 4.2

shows our solution: The return value of the method process() reflects still the

condition for the loop, but is used via the additional variable process. Moreover,

the method distribute() could synchronize its containing code itself, but if the

synchronization is done in line 7 in Listing 4.2 it is similar to X10_GLB and it

improves the comprehensibility.

After this loop ends, the APGAS_GLB variant sets the field empty to true,

see line 12 in Listing 4.2. In contrast, in X10_GLB, this is done with the method

steal(), which is called in line 9 in Listing 4.1. This had to be adjusted by

setting the field directly in the method processStack() because other activities

can send tasks during the call of reject() in line 13 in Listing 4.2.

1 f i n a l de f proce s sStack ( s t : PlaceLocalHandle [ Worker [ Queue , R ] ] ) {

2 do {

3 while ( queue . p roce s s (n , context ) ) {

4 Runtime . probe ( ) ;

5 d i s t r i b u t e ( s t ) ;

6 r e j e c t ( s t ) ;

7 }

8 r e j e c t ( s t ) ;

9 } while ( s t e a l ( s t ) ) ;

10 }

Listing 4.1: X10_GLB: Method processStack() from the class Worker
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1 public void proces sStack ( GlobalRef<Worker<Queue , T>> globa lRe f ) {

2 do {

3 boolean proce s s ;

4 do {

5 synchronized ( wa i t ing ) {

6 proce s s = queue . p roce s s (n) ;

7 d i s t r i b u t e ( g l oba lRe f ) ;

8 }

9 r e j e c t ( g l oba lRe f ) ;

10 } while ( p roce s s ) ;

11
12 empty . s e t ( true ) ;

13 r e j e c t ( g l oba lRe f ) ;

14 synchronized ( wa i t ing ) {

15 this . a c t i v e . s e t ( s t e a l ( g l oba lRe f ) | | 0 < queue . s i z e ( ) ) ;

16 }

17 } while ( this . a c t i v e . get ( ) ) ;

18 r e j e c t ( g l oba lRe f ) ;

19 }

Listing 4.2: APGAS_GLB: Method processStack() from the class Worker

steal()

A simplified variant of the method steal() is shown in Listing 4.3. In line 2, a

for loop iterates over all random victims, unless the field empty gets the value

true. Before sending a steal request, the field waiting is set to true in line 3.

Then a new activity is started on a chosen victim in line 5. This activity calls

the method request() in line 6. Afterwards, the origin activity from the method

steal() waits until the field waiting is set to true, see lines 8-12. This shown

approach is always applied when an activity waits for an answer. In contrast,

X10_GLB utilizes the method Runtime.probe instead of the synchronized block.

If all random steal requests fail, a comparable for loop starts afterwards. It has

the same functionalities as the first loop, but sends requests to the lifeline buddies.
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After this loop, the method returns true if the local task pool is not empty,

otherwise false.

1 public boolean s t e a l ( GlobalRef<Worker<Queue , T>> globa lRe f ) {

2 for ( int i = 0 ; i < w && empty . get ( ) ; ++i ) {

3 wait ing . s e t ( true ) ;

4 int v = v i c t ims [ random . next Int (m) ] ;

5 uncountedAsyncAt ( p l a c e s ( ) . get ( v ) , ( ) −> {

6 g loba lRe f . get ( ) . r eque s t ( g loba lRef , p , fa l se ) ;

7 }) ;

8 synchronized ( wa i t ing ) {

9 while ( wa i t ing . get ( ) ) {

10 wait ing . wait ( ) ;

11 }

12 }

13 }

14 // l i f e l i n e ~ s t e a l s

15 return ! empty . get ( ) ;

16 }

Listing 4.3: APGAS_GLB: Method steal() from the class Worker

request()

Listing 4.4 shows the method request() in a simplified form. An if statement

in line 2 checks if at least one of the fields empty or waiting has the value true.

If this is fulfilled, the incoming request is rejected with starting an activity on the

thief, see line 4. This activity sets the field waiting to false and calls the method

notifyAll() on the field waiting, see line 6 and 7. With these two operations,

the waiting thief can continue (the synchronized block in line 8 in Listing 4.3

finishes). This shown approach is always applied for waking up a waiting activity,

which is using waiting.wait().

However, if the request is a lifeline steal, the thief is saved in the field

lifelineThieves, see line 3. This allows the lifeline thief to get tasks later
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on. In this way, the lifeline thief can be restarted. Additionally, if the condition

in line 2 is false, the thief is saved in the field thieves, see lines 11 and 12. A

random thief is saved as a negative value, see line 12. That way it is possible to

distinguished between random and lifeline thieves, if they are rejected later in the

method reject(). The method reject() checks the thief before the rejection.

If the thief is a lifeline thief, it is saved to the field lifelineThieves in order to

send tasks to it later, see method reject().

1 public void r eque s t ( GlobalRef<Worker<Queue , T>> globa lRef , int t h i e f ,
boolean l i f e l i n e ) {

2 i f ( empty . get ( ) | | wa i t ing . get ( ) ) {

3 i f ( l i f e l i n e ) l i f e l i n eT h i e v e s . push ( t h i e f ) ;

4 uncountedAsyncAt ( p l a c e s ( ) . get ( t h i e f ) , ( ) −> {

5 synchronized ( g l oba lRe f . get ( ) . wa i t ing ) {

6 g loba lRe f . get ( ) . wa i t ing . s e t ( fa l se ) ;

7 g loba lRe f . get ( ) . wa i t ing . n o t i f yA l l ( ) ;

8 }

9 }) ;

10 } else {

11 i f ( l i f e l i n e ) t h i e v e s . push ( t h i e f ) ;

12 else t h i e v e s . push(− t h i e f − 1) ;

13 }

14 }

Listing 4.4: APGAS_GLB: Method request() from the class Worker

reject()

Listing 4.5 shows the method reject() in a simplified form. In line 2, a while

loop runs while there are saved thieves left. If the thief is a lifeline thief, it is

saved in the field lifelineThieves, see line 3. Thus, this thief can be restarted

later, when necessary. On each of these thieves an activity is started, see line 5.

This activity sets the field waiting to false and calls notifyAll() on the field

waiting for waking up a waiting activity.
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1 public void r e j e c t ( GlobalRef<Worker<Queue , T>> globa lRe f ) {

2 while ( t h i e v e s . g e tS i z e ( ) > 0) {

3 f i n a l int t h i e f = th i e v e s . pop ( ) ;

4 i f ( t h i e f >= 0) l i f e l i n eT h i e v e s . push ( t h i e f ) ;

5 uncountedAsyncAt ( p l a c e s ( ) . get ( t h i e f ) , ( ) −> {

6 synchronized ( g l oba lRe f . get ( ) . wa i t ing ) {

7 g loba lRe f . get ( ) . wa i t ing . s e t ( fa l se ) ;

8 g loba lRe f . get ( ) . wa i t ing . n o t i f yA l l ( ) ;

9 }

10 }

11 }

12 }

Listing 4.5: APGAS_GLB: Method reject() from the class Worker

distribute()

The method distribute() is shown simplified in Listing 4.6. In line 3, a while

loop starts. It runs while there are queued steal requests and the method split()

returns an object of type TaskBag. The method split() has to be implemented

from the GLB user in its task pool class. It takes tasks from the task pool, if

there are tasks left, stores them in an object of TaskBag and returns this object.

If there are no tasks left, it returns null. The returned object is assigned to

loot from line 2. The body of the loop contains only one method call of give(),

passing loot, see line 4.

1 public void d i s t r i b u t e ( GlobalRef<Worker<Queue , T>> globa lRe f ) {

2 TaskBag l o o t ;

3 while ( ( ( t h i e v e s . g e tS i z e ( ) > 0) | | ( l i f e l i n eT h i e v e s . g e tS i z e ( ) > 0) ) &&
( l o o t = queue . s p l i t ( ) ) != null ) {

4 g ive ( g loba lRef , l o o t ) ;

5 }

6 }

Listing 4.6: APGAS_GLB: Method distribute() from the class Worker
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give()

Listing 4.7 shows the method give() in a simplified form. It gets past an object

loot of type Taskbag, which contains stolen tasks. The method starts a new

activity on the thief in line 5. This activity enters a critical section in line 6, and

calls therein the method deal() with passing the variable loot, see line 7. The

method deal() is responsible for merging the loot tasks into the local task pool.

Afterwards, the field waiting is set to false and notifyAll() is called on it in

lines 8 and 9 for waking up a waiting activity.

If the worker is a lifeline buddy, the else-case in line 13 is executed. During

stealing, this is the only case in which an asyncAt is needed. The corresponding

worker has to be restarted if the lifeline thief has already finished. Because of

the asyncAt, it is handled by the surrounding finish, which is responsible for

termination detection, see Section 4.2.Moreover, the started activity does not

need to set the field waiting to false because it has already been set in the

method reject().

deal()

Listing 4.8 shows the method deal() in a simplified form. In line 3, an eventual

lifeline is disabled. Afterwards, in line 5, a synchronized block starts. It is

a block because both included operations belong together and line 6 is only

executed due to the fact that line 7 is executed. Moreover, the call of the method

processLoot() has to be synchronized because it needs to access the task pool.

The method processLoot() calls the method merge() from the GLB user’s task

pool class, which in turn adds the passed loot tasks to the task pool.

If the field thief was not active, it is restarted with calling the method

processStack(), see line 11.
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1 public void g ive ( GlobalRef<Worker<Queue , T>> globa lRef , TaskBag l o o t ) {

2 int v ict im = here ( ) . id ;

3 i f ( t h i e v e s . g e tS i z e ( ) > 0) {

4 f i n a l int t h i e f = th i e v e s . pop ( ) ;

5 uncountedAsyncAt ( p l a c e s ( ) . get ( t h i e f ) , ( ) −> {

6 synchronized ( g l oba lRe f . get ( ) . wa i t ing ) {

7 g loba lRe f . get ( ) . dea l ( g loba lRef , l oot , v i c t im ) ;

8 g loba lRe f . get ( ) . wa i t ing . s e t ( fa l se ) ;

9 g loba lRe f . get ( ) . wa i t ing . n o t i f yA l l ( ) ;

10 }

11 }) ;

12 } else {

13 int t h i e f = l i f e l i n eT h i e v e s . pop ( ) ;

14 asyncAt ( p l a c e s ( ) . get ( t h i e f ) , ( ) −> {

15 g loba lRe f . get ( ) . dea l ( g loba lRef , l oot , v i c t im ) ;

16 }) ;

17 }

18 }

Listing 4.7: APGAS_GLB: Method give() from the class Worker

1 private void dea l ( GlobalRef<Worker<Queue , T>> st , TaskBag loot , int source ) {

2 boolean l i f e l i n e ~= source >= 0 ;

3 i f ( l i f e l i n e ) l i f e l i n e sA c t i v a t e d [ source ] = fa l se ;

4 boolean o ldAct ive ;

5 synchronized ( wa i t ing ) {

6 o ldAct ive = this . a c t i v e . getAndSet ( true ) ;

7 processLoot ( loot , l i f e l i n e ) ;

8 }

9
10 i f ( ! o ldAct ive ) {

11 proces sStack ( s t ) ;

12 }

13 }

Listing 4.8: APGAS_GLB: Method deal() from the class Worker
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4.4. Additional new Components

We added two additional new components to GLB. They are described in the

following Sections 4.4.1 and 4.4.2.

4.4.1. Logger

The original class Logger in X10_GLB logs for each place statistics at runtime.

Depending on the configured verbose level, the output contains the following data

for each worker:

• number of calculated tasks,

• number of given and received tasks,

• number of sent steal requests to random victims,

• number of sent steal requests to lifeline buddies,

• number of received random steal requests,

• number of received lifeline steal requests.

Moreover, the following data about the whole program are printed out:

• wall-clock time for the setup,

• wall-clock time for processing, inclusive stealing and waiting,

• wall-clock time to combine the partial results to one final result,

• number of stolen tasks grouped into random and lifeline,

• number of successful random steal requests.

Additionally, we added a new feature to log the execution time of relevant

worker states in detail. In this way, we can determine which state consumes how

much time. This information is useful to find possible causes of poor performance.



4. Implementation of GLB in APGAS 43

This feature is disabled by default. In our benchmark implementations, it can

be enabled with the program argument -timestamps number_of_timestamps .

The number of timestamps has to be over zero and defines the levels of fineness

in the output data.

The four relevant states in GLB are stealing, computing, distributing and dead.

At any given time, a worker is located in one of these states. It was necessary to

add some method calls in the classes GLB and Worker. They are responsible for

starting and stopping the execution time for the sections. Each worker logs its

own states.

When a state begins, the method startStoppingTimeWithAutomaticEnd()

has to be called, passing a state. The states are defined as int constants in the

class Logger. First, the method checks its last logged state. If the new state

equals to the last state, an incorrect call is assumed and the method returns

immediately. Otherwise, the last logged state will be stopped and a new logged

state is started.

If a new state is started in an uncountedAsyncAt, it has to be stopped

manually. An uncounted activity is ignored by a surrounded finish. Thereby, it

can happen, that the worker activity has already finished, but an uncounted

activity is still active. In this case, the state in the uncountedAsyncAt

can not be finished automatically. Hence, in an uncountedAsyncAt the

method startStoppingTime() has to be called, passing a state. The method

startStoppingTime() creates a new logged state and returns a specified

generated ID of the new logged state. This kind of logged state has no

direct following logged state and can only be stopped with the method

endStoppingTime(), passing the corresponding generated ID. So the last

statement in such an uncountedAsync has to be a call to stop the logged stated.

After all tasks have been worked off, each worker has a different number

of logged states. Therefore, the execution time of the program is divided

into the specified count of timestamps, which are set by a program
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argument, see above. The period of a timestamp is calculated with

execution time/count of timestamps. Each logged state is organized in its

respective timestamp. Afterwards, for each timestamp four values are calculated.

Each value represents the percentaged proportion of a state in this timestamp.

Then, the individual worker statistics are reduced to one program statistic.

This program statistic is written to the text file data.csv, which is saved in the

folder gnuplot. The folder also contains a script, called diagram.gp. This script

can be executed by the tool gnuplot [10] and generates a histogram of the program

life cycle. A generated histogram illustrates how much time the program spends

in each section. Thereby, the effectiveness and the weakness of the used algorithm

can be analyzed. Section 6.4 provides a generated histogram and an explanation.

4.4.2. Debugging Support

During development, programming errors occurred. This is usually expressed

by an uncaught exception, a wrong final result at the end of the program, or the

program hangs in a deadlock. Some of these bugs are based on serial errors. These

kinds of bugs can be found by starting the program with one place and debugging

it with a Java debugger. However, a couple of bugs only occur when using multiple

places. These bugs are caused by parallel problems, for example race conditions.

They arise only sometimes in special situation and not in every execution. To

find these bugs, the developed programs were executed in a loop with hundreds

of full runs. Sometimes a bug appeared only after hours of execution. This made

it difficult to analyze the problem with a debugger.

To simplify troubleshooting, we implemented a simple singleton class

ConsolePrinter. It has a boolean constant PRINT and a method print(String).

PRINT represents whether the program is in debug mode or not. If it has the value

true, the method prints out the passed text.
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The programmer has to set the constant before compiling the project. Thus, if

it is set to false, the compiler can optimize the code and the execution time is

not affected negatively.

The constructors of the classes Logger, GLB and Worker initialize an object of

ConsolePrinter. At every critical position, the print()-method is called with an

appropriate text which contains the executing place. The texts are printed out and

can be saved as a file. Thus, a transparent log can be generated. This facilitates

the bug finding substantially. ConsolePrinter and all associated usages stay in

the code to help possible future advancements.

4.5. Benchmarks

We ported the benchmarks UTS and BC from X10 to APGAS, keeping them as

close to the X10 variants as possible.

Both benchmarks can be parameterized to configure their properties. The

program arguments are parsed with the open source library Apache Commons

CLI [29]. It was used in Version 1.3.1 and as compiled jar-file. Its functionalities

are only used in the main classes of the benchmarks.

Sections 4.5.1 and 4.5.2 describe some implementation details of both

benchmarks.

4.5.1. Unbalanced Tree Search

We implemented this benchmark with an exclusive storage for the tasks, as noted

in Section 3.2. X10_GLB has a class RingBuffer, which is used as data structure

for the local task pool. Java provides the class ArrayDeque, which has similar

characteristics. However, some specified methods are lacking. We added these

methods and used it as data structure for the local task pools. In a steal request,

the victim pops tasks from the back, whereas the thief merges them to the front.
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MyArrayDeque is designed serially because APGAS_GLB allows no concurrent

access to it.

The class UTS extends the class MyArrayDeque and implements a serial variant

of the benchmark. It can be started autonomously running on one place. In

turn, the class Queue extends UTS and implements the APGAS_GLB interface

TaskQueue. Additionally, it contains the inner class UTSResult, which extends

the APGAS_GLB class GLBResult and instantiates its generic type as Long. The

class Bag extends the APGAS_GLB class TaskBag and specifies a data structure

for saving tasks. Objects of the class Bag are transferred between places.

The main method for starting the benchmark with the APGAS_GLB

framework is implemented in the class UTSG. This class initializes an object of

the class GLB and calls the method run(Runnable) on the object because the

tasks are generated at runtime. When the run has ended, it prints out the result

and the benchmark finishes.

4.5.2. Betweenness Centrality

The basic structure of the BC benchmark is similar to the structure of the UTS

benchmark. However, the class BC stores the tasks in an array instead of using the

class MyArrayDeque for that. An array can be used because all tasks are known

at program start. When starting the benchmark, it will generate a graph from

a seed. This is done with the help of generating random numbers. X10_GLB

generates the number with the help of the official X10 class Random. We ported

this class to APGAS to guarantee the same results with the same input values.

The benchmark can be started with the class BCG. It initializes an object of GLB

and calls runParallel() on it because all tasks are known at program start.
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5. Intra-Node Synchronization

X10_GLB introduces a significant restriction: only one activity per place

can be executed. In APGAS_GLB, multiple activities per place can be

executed. However, critical sections are synchronized via a lock, therefore the

outcome remains the same as in X10_GLB. For this section, we implemented

a data structure for the local task pools, called split queue [6] which allows

a limited form of concurrent access. The split queue has to be used in a

user application, not directly in the framework. Additionally, we modified

the APGAS_GLB implementation to support the split queue. This achieves

intra-node synchronization and, thus, random steal requests no longer need to be

queued. The modified implementation is called APGAS_Split_GLB.

APGAS_Split_GLB is an independent framework. GLB users has to decide

whether they will employ APGAS_GLB or APGAS_Split_GLB. If they employ

APGAS_Split_GLB, they have to utilize the class SplitQueue in their own class

that implements the task pool. Integrating the class SplitQueue directly into

APGAS_Split_GLB would have required more radical changes to GLB than our

variant did.

In the following, Section 5.1 describes the concept and our implementation of

a split queue. Then Section 5.2 explains the differences between APGAS_GLB

and APGAS_Split_GLB, including corresponding benchmarks.
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5.1. Split Queue

First, Section 5.1.1 explains the concept of the split queue. Then Section 5.1.2

gives some details about its implementation.

5.1.1. Concept

The concept of the split queue was taken from Dinan et al. [6]. Figure 5.1

illustrates the structure. The split queue is based on the concept of a serial

double-ended queue, called deque, and enables a limited form of concurrent access.

A deque provides the fields tail and head. The field tail indicates the position

of the first element, and the end of the deque. The field head indicates the first

free position, and the front of the deque. The content of the deque is located in

between. Additionally, a deque provides the following operations:

• push: adds one element to the front of the deque,

• pop: removes one element from the front of the deque and returns it,

• put: adds one element to the end of the deque,

• get: removes one element from the end of the deque and returns it.

Of course, these operations can also be executed with several elements at once.

The split queue splits a deque into a private portion and a public portion. Hence,

the field split was added. Only the worker activity is allowed to access the

private portion. Therefore, the private portion is not locked. The field split

indicates the first element in the private portion, and head indicates the first free

position in the split queue. Any activity is allowed to access the public portion, in

contrast to the private portion. Hence, accesses to the public portion are locked.

However, nobody is allowed to add elements to the public portion. Therefore, the

split queue does not provide a method for this. The field tail indicates the first



5. Intra-Node Synchronization 49

element in the public portion, and split - 1 indicates the last element in the

public portion.

Figure 5.1.: Structure of the split queue

If the private portion is empty after removing an element from it, split has

to be shifted into the direction of tail. This process is called reacquire, and only

the worker activity is allowed to execute it. Reacquire needs access to the public

portion and therefore the worker activity needs to take the lock.

Additionally, the worker activity has to check periodically if the public portion

still contains enough tasks. If not, split has to be shifted into the direction of

head. This process is called release and is lockless because it needs no access to

the public portion. Our implemented split queue does not perform this periodic

check itself, it has to be performed in the application. APGAS_Split_GLB

realizes the periodic check in the method processStack(), after processing n

tasks. Implementation details are shown in Section 5.2.

5.1.2. Implementation Details

The class SplitQueue realizes the concept of the split queue. The class is

utilized as data structure for a local task pool. The concept of GLB contains no

concrete task pool and thereby, a GLB user has to implement it, see paragraph

TaskQueue in Section 4.1 on page 26. Therefore, we integrated SplitQueue into

the benchmarks, see Section 5.2.1. Additionally, we created APGAS_Split_GLB

which is a modified variant of APGAS_GLB. In APGAS_Split_GLB, random

steals can be performed directly and without waiting. This is made possible

by the split queue. APGAS_Split_GLB only works correctly if a GLB user
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utilizes the class SplitQueue as type for the task pool. Implementation details

of APGAS_Split_GLB are given in Section 5.2.

The following paragraphs describe implementation details of the new class

SplitQueue.

Fields

The class SplitQueue has a field named elements which is an array of a generic

type. It represents a circular queue for storing the tasks. Moreover, there are the

essential fields head, tail and split of type int with the functionalities described

in the concept, see above. Furthermore, there is the static field maxSplitPercent

of type double which is initialized with the value 0.5. The value specifies how

the tasks should be distributed to the private and public portions, with default

value 0.5 it is 50:50. After performing reacquire or release, the specified ratio is

reestablished. It is conceivable that another ratio enables a better performance

in the benchmarks. However, this could not be tested in the limited time.

pushPrivate()

The method pushPrivate() pushes a passed element into the private portion of

elements and recalculates the field head. Only the worker activity is allowed to

push elements to the private portion. If elements has reached its capacity after

a push, the method doubleCapacity() is called.

popPrivate()

The method popPrivate() pops one element of the private portion and returns

it. Afterwards the field head is recalculated. Only the worker activity is allowed

to call this method. If the private portion is empty after popping, the method

reacquire() is called.
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getPublic()

The method getPublic() pops a passed number of elements of the public portion

and returns them in an array. In APGAS_Split_GLB, the returned array is

stored in an object of TaskBag. Afterwards the field tail is recalculated. Any

activity is allowed to call this method. Hence, the method is marked with

synchronized.

reacquire()

The method reacquire() shifts the field split towards the field tail. Only

the worker activity can call it. However, this method is synchronized because

it needs access to the public portion. After calling the method, the size of the

private portion equals the size of the public portion, see above.

release()

The method release() shifts the field split towards the field head. Only the

worker activity is allowed to call it. In contrast to the method reacquire(),

this method does not need access to the public portion. The method release()

changes the value of the field split and the field split can be read by other

stealing activities at the same moment.

At worst, the stealing activities would read a value that is too small because

the field split can only be increased. In this case, a stealing activity steals fewer

tasks than with the correct value of split. However, no failures would occur.

Moreover, in Java memory accesses to a variable of type int are atomic [18].

Therefore, no mixed values can occur.

Furthermore, contrary to expectations the field split does not need the Java

keyword volatile to eliminate the risk of memory consistency errors. This kind

of error only occurs if a variable is cached and not refreshed before reading.

However, each access from a foreign place to the field split is realized with a
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new activity. Therefore, the field split will not be cached at foreign places and

the Java keyword volatile is not necessary for the field split. Because of these

facts, the method release() is not synchronized.

After calling the method, the size of the private portion equals the size of the

public portion, see above.

doubleCapacity()

The method doubleCapacity() doubles the length of the array elements. As a

result the field tail has the value 0. This method is marked with synchronized

because both portions needs to be accessed.

privateSize()

The method privateSize() calculates the size of the private portion with

head - split and returns the result of the calculation. The method

privateSize() is not synchronized because only the worker activity calls.

publicSize()

The method publicSize() calculates the size of the public portion with

split - tail and returns the result of the calculation. Although the method

publicSize() is accessed concurrently, it is not synchronized. At worth, it

returns a size which is too small. But this does not lead to errors, see above.

5.1.3. Testing

Before we integrated the class SplitQueue into the benchmarks, it had to pass

some tests. In Java, tests are typically handled with unit testing. One well-known

unit testing framework is JUnit [16]. It is open source and simple to use, but it

does not provide concurrency testing. In a first step, the data structure was

serial tested successfully with a unit test utilizing JUnit 4.7. Afterwards, the
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data structure was tested with MultithreadedTC 1.01 [20]. This is an open source

framework which enables concurrency testing. So, any number of threads can

work concurrently on one instance of a data structure. Additionally, a test can be

configured easily to run multiple times. Only after the class SplitQueue passed

these tests was it integrated into the benchmark implementations as type for the

task pool.

5.2. Changes in the GLB Implementation

This section explains some implementation details of APGAS_Split_GLB to

enable intra-node synchronization. Along the way, differences to APGAS_GLB

are pointed out.

The interface TaskQueue got two additional abstract methods: release()

and publicSize(). They are called in the class Worker; details are described

below. The essential adjustments were performed in the class Worker. Especially

the method steal() has been adjusted extensively and is shown in Listing 5.1

in a simplified form. Instead of sending requests to random victims as in

APGAS_GLB (see lines 2-13 in Listing 4.3 on page 37), an activity on a victim

calls the method split() directly. Thus, a steal can be performed instantly.

The implementation of split() had to be adjusted and was marked with the

synchronized keyword because it calculates a number of tasks and pops them

from the public area. The popped tasks are returned and the victim merges them

to its local task pool. If all random steals fail, the lifeline steal requests are sent

like in APGAS_GLB.

Furthermore, the lifeline task distributions are adjusted in

APGAS_Split_GLB. If a lifeline buddy sends a loot to a thief, it starts a

new activity on the thief place. In contrast to APGAS_GLB, the received

loot cannot be merged directly into the thief’s local task pool though. The

reason is that the loot is merged into the private portion and only the worker
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activity is allowed to access the private portion. Thus, we added the new

field lootMerges of type ConcurrentLinkedQueue. It caches all received loots

from lifeline buddies. Each worker activity calls the method processLoot()

periodically in the method processStack(), see line 5 in Listing 5.2. The

method processLoot() merges the cached loots from lootMerges into the

private portion of the split queue.

The method processStack() also includes more adjustments. These are shown

in Listing 5.2. The calls of the methods process() and distribute() no longer

need to be synchronized (see line 3 and 10). Thereby, the method process()

is called again in the loop head. The method distribute() accesses the public

portion with a call of the method split(), see line 3 in Listing 4.6 on page 39,

but the method split() is marked with synchronized, see above. Furthermore,

if after processing the public portion is empty, the method release() is called

in line 8. This realizes the required periodical check of the split queue concept

which was introduced in Section 5.1.1. The method release() moves tasks from

the private portion into the public portion.

In line 16, the method steal() is called. In contrast to APGAS_GLB, it

changes the value of the field empty, see line 11 in Listing 5.1 which is made

possible by direct stealing. Thus, the field active can be set with the value

of the field empty instead of the return value of the method steal() like in

APGAS_GLB, see line 16 in Listing 4.2 on page 36.

In line 16, the method processLoot() is called again to merge possible newly

received loot into the local task pool. Afterwards, if the field empty has the value

false and the public portion is empty, the method release() is called again to

shift tasks from the private to the public portion.
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1 public boolean s t e a l ( GlobalRef<WorkerSplit<Queue , T>> globa lRe f ) {

2 for ( int i = 0 ; i < w && empty . get ( ) ; ++i ) {

3 int v = v i c t ims [ random . next Int (m) ] ;

4 f i n a l TaskBag [ ] taskBag = new TaskBag [ 1 ] ;

5 taskBag [ 0 ] = at ( p lace (v ) , ( ) −> {

6 f i n a l TaskBag s p l i t = g loba lRe f . get ( ) . queue . s p l i t ( ) ;

7 return s p l i t ;

8 }) ;

9 i f ( taskBag [ 0 ] != null ) {

10 this . queue . merge ( taskBag [ 0 ] ) ;

11 empty . s e t ( fa l se ) ;

12 }

13 }

14 // l i f e l i n e ~ r eque s t s

15 return ! empty . get ( ) ;

16 }

Listing 5.1: APGAS_Split_GLB: Method steal() from the class Worker
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1 public void proces sStack ( GlobalRef<WorkerSplit<Queue , T>> globa lRe f ) {

2 do {

3 while ( queue . p roce s s (n) ) {

4 synchronized ( wa i t ing ) {

5 processLoot ( ) ;

6 }

7 i f ( this . queue . pub l i c S i z e ( ) == 0) {

8 this . queue . r e l e a s e ( ) ;

9 }

10 d i s t r i b u t e ( g l oba lRe f ) ;

11 }

12 empty . s e t ( true ) ;

13 r e j e c t ( g l oba lRe f ) ;

14 synchronized ( wa i t ing ) {

15 s t e a l ( g l oba lRe f ) ;

16 processLoot ( ) ;

17 i f ( ! empty . get ( ) && this . queue . pub l i c S i z e ( ) == 0) {

18 this . queue . r e l e a s e ( ) ;

19 }

20 this . a c t i v e . s e t ( ! empty . get ( ) ) ;

21 }

22 } while ( this . a c t i v e . get ( ) ) ;

23 r e j e c t ( g l oba lRe f ) ;

24 }

Listing 5.2: APGAS_Split_GLB: Method processStack() from the class

Worker
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5.2.1. Benchmarks

Both benchmark implementations from Section 4.5 had to be adjusted slightly

to utilize the class SplitQueue as type for the local task pools: The class UTS

extends the class SplitQueue instead of the class MyArrayDeque. Moreover, the

class BC also extends the class SplitQueue instead of using an array of type int.

Therefore, some method calls had to be adjusted. The respective class

Queue still extends UTS, respectively BC, and implements the adjusted interface

TaskQueue, see Section 5.2. However, one essential adjustment had to be made

in the class Queue: the method split() is now marked with the synchronized

keyword because it calls the methods publicSize() for calculating a number of

tasks and pops this number from the public portion. The method split() could

be moved directly into the class SplitQueue. However, the method split()

remains in the class Queue because it contains the logic concerning how many

tasks are supposed to be stolen. A GLB user has to be able to adjust this. Our

benchmark implementations steal all available tasks from the public portion. It

is conceivable that another logic enables a better performance in the benchmarks.

Especially, the logic has to be compatible with the field maxSplitPercent, see

paragraph Fields on page 50. However, this could not be tested in the limited

time.
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6. Experiments

We employed the UTS and BC benchmarks for the experiments with the GLB

framework. They have already been discussed in Section 3.2 for the X10

implementations and in Sections 4.5 and 5.2.1 for the APGAS implementations.

Both benchmarks were executed with the three GLB variants, introduced in

Chapters 4 and 5:

• X10_GLB: official X10 implementation.

• APGAS_GLB: adopted variant of X10_GLB in APGAS.

• APGAS_Split_GLB: APGAS_GLB with intra-place synchronization.

Section 6.1 will provide information about the used cluster and the software

versions. Afterwards, Section 6.2 documents our ways of execution. Section 6.3

explains the configurations of the benchmarks. Then the results of the

experiments are illustrated and described in Section 6.4. Moreover, a life cycle of

a benchmark execution is shown. Finally, the results are discussed with regards

to performance and scalability.

6.1. Setup

The experiments were conducted on the Lichtenberg high performance computer

at TU Darmstadt [24]. This cluster is free to use for scientific work and

has currently over 800 nodes. The nodes are connected with each other via

infiniband. We used nodes with two 8-core Intel Xeon E5-2760 CPUs and 32

GB main memory. The cluster provides a batch system and is thereby suitable

for benchmarking parallel programs.
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We deployed X10 and APGAS from the official git repository (status on

December 15, 2015) [14]. X10 was used with gcc in Version 5.2.0 and Open MPI

in Version 1.8.8. Moreover, we used the Native X10 compiler, which is based on

C++, see Section 2.2. APGAS was compiled with Java in Version 8 with Update

66.

6.2. Execution

As mentioned in Section 2.5, X10 and APGAS offer different ways of starting

places and for the communication between them. This section describes our ways

to commit the benchmarks to the provided batch system. The X10 programs

were executed with Open MPI. Therefore, after allocating nodes, they have to be

written into a hostfile. After compiling an X10 program with matching parameters

for using Open MPI, it can be started with:

mpirun –npernode PlacesPerNode –host file program

For PlacesPerNode the user has to insert the number of places which shall run

on one node, for file the path to the hostfile, and for program the name of the

application.

APGAS provides some launcher classes to start programs in different ways. It is

recommended to use the Hadoop Yarn launcher in distributed systems. However,

the Lichtenberg high performance computer currently does not support Yarn.

Therefore, we had to select a different launcher.

The SSH-launcher starts the main program on the current host and launches

the remaining places on the other hosts via the network protocol SSH. During

first tests with this launcher, problems occurred and places could not connect

with each other. After we wrote the problems to the official X10-mailinglist [28],

they were fixed by an X10 developer. Since then, the SSH-launcher worked well

fine and we could continue working with it.
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To start an APGAS program with the SSH-launcher on a cluster with batch

system, the allocated nodes have to be written into a text file, one per line. Then

an APGAS program can be started with:

java -Dapgas.launcher=apgas.impl.SshLauncher

-Dapgas.places=places -Dapgas.hostfile=file program

For places the user has to insert the number of places, for file the path to the

hostfile and for program the name of the application.

6.3. Configuration

Both benchmarks were executed with two configurations: small and large. The

configurations were set with program arguments, which are displayed in Table 6.1.

Benchmark Configuration Parameters

UTS
small d = 13, b = 4

large d = 17, b = 4

BC
small N = 214, s = 2

large N = 216, s = 2

Table 6.1.: Benchmark configurations

We modified the GLB starting routine and changed the initial task mapping, see

Section 4.1. Thereby, a better load balancing can be achieved, but the dimension

of the lifeline hypercube has to be set properly via the program argument l. The

variable z specifies the maximum number of lifeline buddies and is calculated

automatically with lz, whereby the result has to be greater or equal than the

number of places. Table 6.2 shows our values for l.



6. Experiments 61

Number of places Parameter l

1 1

2 2

4 2

8 3

16 3

32 3

64 4

128 5

256 4

Table 6.2.: Matching parameter l for the corresponding number of places

During our experimental period, the Lichtenberg high performance computer

had many other jobs queued in its batch system and worked at full capacity.

Thus, our jobs had to wait a long time till they were processed. The waiting

time increased with the rising number of allocated nodes. To perform all planned

experiments in the limited time, we had to compromise. Ideally, we would start

with one place on each node. However, to reduce the waiting time, we started

with a rising number of place several places per node. Thus, we reduced the

number of allocated nodes and hence the waiting time. Table 6.3 presents our

configurations. The maximum count of places per node is 16 because each node

has 16 processor cores. The compromise makes it possible to increase the number

of places by the powers of 2 up to 256 places, which are distributed cyclically to

the allocated nodes.

Each experiment was executed five times because the execution times varied

slightly. An average value was formed from these five executions and represents

the result of one experimental construct.
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Places overall Places per Node

1 1

2 1

4 1

8 1

16 2

32 4

64 8

128 16

256 16

Table 6.3.: Number of places overall and their allocation to the nodes

6.4. Results

This section presents the experimental results in diagrams. They are discussed in

Section 6.5.

Each diagram depicts a configured benchmark (UTS small, UTS large, BC

small or BC large), and contains three curves. Each curve represents a

GLB variant of X10_GLB, APGAS_GLB and APGAS_Split_GLB. The x-axis

represents the number of places and the y-axis represents the execution time in

seconds. Note that the x-axis is divided logarithmically.

Unbalanced Tree Search

Figures 6.1 and 6.2 illustrate the results of the UTS benchmark. With the small

UTS configuration all GLB variants scale up to 16 places. Up to 32 places the

execution times of the APGAS programs improve slightly, but stagnate with 64

places. With more places, the execution time increases in all variants. The X10

variant is faster than the APGAS programs when using up to 64 places. Using
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16 places, it is 94% faster. Moreover, the execution times of the APGAS variants

differ very little from each other at any number of places.

The large UTS configuration is depicted in Figure 6.2. In contrast to the

small UTS configuration, all GLB variants scale up to 256 places. Moreover,

X10 is faster than APGAS, and both APGAS variants have similar execution

times. Using 256 places, the X10 variant is 25% faster than the APGAS variants.

This is significantly less than the small configuration. Compared to X10, longer

execution times seem to work in favor of APGAS.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1  2  4  8  16  32  64  128  256

T
im

e 
(s

ec
on

ds
)

Places

X10 UTSG
APGAS UTSG

APGAS Split UTSG

Figure 6.1.: Experimental results for the small UTS configuration
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Figure 6.2.: Experimental results for the large UTS configuration

Betweenness-Centrality

The experimental results of the BC benchmarks are illustrated in Figures 6.3

and 6.4. With the small configuration, the X10 variant has in parts slightly

higher execution times than the APGAS variants. The higher execution times

have a surprisingly high peak at two places, but is overall small. Apart from that,

the small configuration scales well up to 64 places and the large configuration

scales well up to 256 places. Both APGAS variants have similar execution times.
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Life Cycle

Figure 6.5 shows a program life cycle in the form of a histogram. Its data

originate from the added functionalities in the class Logger, see Section 4.4.1. We

executed the small configuration of the UTS benchmark with the APGAS_GLB

framework, four places and 500 timestamps. The histogram shows how much

processor time is used by each of the states computing, stealing, distributing and

dead at runtime

At the beginning, there is a remarkable percentage of dead caused by the

initial task distribution. Each worker gets its first tasks successively and starts

processing tasks. In the essential operation time, every worker is located mostly

in computing, and sometimes tasks are shared with stealing and distributing.

Shortly before the program finishes, stealing increases because the count of tasks

drops. Altogether, the program uses comparatively little time for organization

and computes most of the time. Therefore, the framework works effectively.
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6.5. Performance and Discussion

This section discusses the results shown in Section 6.4. First, we can say that

APGAS_GLB and APGAS_Split_GLB have similar execution times. Their

performance differs in both directions, but is mostly minimal. Altogether,

APGAS_GLB is a little faster, but APGAS_Split_GLB might be more

appropriate for further developments.

A comparison between APGAS and X10 is more interesting. The following

comparison refers to APGAS_GLB only. According to Tardieu [27] the

“performance delta between APGAS and X10 is less than 0.5% at scale”.

Unfortunately, the used compiler of X10 is not stated. As introduced in

Section 2.2, X10 provides two compilers: Native X10, which uses C++, and

Managed X10, which uses Java. For compiling the X10 benchmarks, we used

Native X10 because the benchmark implementations are not compatible with

Managed X10.

Our results somewhat differ from Tardieu’s observations. In the UTS

benchmark with small configuration, X10 was up to 94% faster than APGAS,

when using 16 places. One possible explanation is that the synchronized blocks

in APGAS_GLB do not work as effectively as Runtime.probe() in X10_GLB.

Another reason could be seen in the fact that X10 is using C++, whereas APGAS

is using Java. Moreover, in the small UTS configuration, the execution time of

all GLB variants increases, when using more than 64 places. This is caused by a

lot of communication between the places, which there is little work.

The results of the large UTS configuration also show a large performance

difference, when using a small number of places. However, this difference decreases

with an increasing number of places. With our maximum count of places, 256, the

difference is only 22%, i.e. much smaller than in the small UTS configuration. In

the large configuration, more work is caused and thereby the entire communication

costs descends.
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The BC benchmark with the small configuration has performance differences

with variations in both directions. Most of the time, APGAS is faster, with a high

peak of 24% when using 16 places. In contrast, X10 is 28% faster when using 128

places. When using 64 or more places, the execution times are under one second,

therefore, inaccuracies in measurement are possible and the differences should not

be overrated. The large configuration has a varying execution time differences in

both directions, as well. When using 64 or more places, APGAS is mostly faster,

with a high peak in 128 places and a difference of 69%.

All in all, neither X10 nor APGAS is superior. The performance difference

between them may be smaller with more places and larger configurations.

However, we could not validate this with the available resources and the limited

time.
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7. Conclusion

The most important result of this thesis is the implementation of two frameworks

for global load balancing in APGAS. The first framework reimplements the

lifeline-based global load balancing concept of Saraswat et al. [21] and

the corresponding official implementation in X10 [30]. Only one significant

adjustment had to be made: The official implementation in X10 allows only

one running activity per place and interrupts it occasionally, if necessary. Due to

this restriction, no place internal synchronizations are required. In contrast, our

implementation allowed multiple activities per place because APGAS provides no

similar interrupting functionality. However, with the help of synchronized code

blocks the outcome remains the same as in X10_GLB.

The second framework modified the cooperative stealing technique of the first

framework by enabling direct random stealing of tasks instead of queuing these

requests first. For this purpose, a split queue [6] was implemented. It should

be utilized as type for the local task pool and therefore, it has to be integrated

in a user application. Thus, multiple activities can access the local task pool

concurrently in a limited form.

Two benchmarks were run on the Lichtenberg high performance computer at

TU Darmstadt [24]. Results demonstrate that the implemented frameworks have

good scalability, and achieve similar performance. A comparison to the original

GLB framework in X10 showed some differences in execution times, without a

clear winner.

The utilized APGAS framework for Java was released shortly before starting

this thesis. It is still sparsely documented and rarely used. Thus, this thesis

evaluated as an aside the functionalities and usability of APGAS. In this process

some starting problems were discovered, which were fixed after a bug report [28].
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Altogether, it can be said that APGAS works as expected and can mostly be used

intuitively. Especially with previous experience in Java and X10, the training

period is short. Compared to X10, APGAS offers distinct advantages for the

programmer, for example, an intuitive auto completion and a debugger. From

our experience, it is a promising candidate for a parallel programming system to

be used outside of science.

In future research, it would be interesting to allow multiple workers per place.

Thus, one place could utilize a multi core system to its capacity. Our class

SplitQueue could be a base for those further developments.

Moreover, an extension for fault tolerance would be attractive. Currently, if a

place crashes, its results and tasks are lost. This problem could be solved with

cyclic backups of data. Then, if a place crashes, its data can be restored. An

implementation of this approach already exists in X10 [8].
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