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Abstract

This bachelor thesis discusses two different aspects related to realtime strategy games.
The first presented aspect is the application of behavior trees for controlling agents.
This includes a comparison to the currently used technologies, hierarchical finite state
machines and script engines. The second aspect is the parallelization of the simulation
for massive multiplayer online realtime strategy games. Therefore different approaches
for parallelizing of the simulation are explained. Some of these approaches were im-
plemented in Java and are compared to each other, showing the different problems of
the parallelization. As a result of these comparisons, a distributed architecture for a
simulation is introduced.
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1 Introduction

Non-realtime games, like chess or round-based strategy games, can stop their visualiza-
tion and other processor-consuming tasks to allow complex calculations for their strat-
egy without disappointing the player. Realtime games on the other hand cannot stop
or pause their visualization without disturbing the gameplay. But with the broad avail-
ability of multi-core CPUs, more spare time is available for using more sophisticated
artificial intelligence routines and models.

This thesis examines different topics which are relevant to a massive multiplayer online
realtime strategy game. Of particular interest are the application of artificial intelligence
in realtime strategy games and the application of parallel computing techniques to the
simulation of such a game. The ideas and implementation were realized within the
ongoing research project jMMORTS [jMMORTS], which aims to implement a complete
massive multiplayer online strategy game in the Java programming language. At the
same time, this project serves as a research platform for various technologies related to
realtime strategy games.

In chapter 2 the relevant background and the basic structure of a realtime strategy game
are presented. Chapter 3 gives an overview of the currently applied techniques for artifi-
cial intelligence in realtime strategy games and compares them to a new approach which
has not yet been realized in such a game. Chapter 4 introduces the requirements for a
data model, capable of simulating a large number of entities assigned to many individual
players. Different parallelized implementations in the Java programming language are
discussed and compared to each other. The presented results are discussed and another
solution, which uses a distributed data model, is outlined. Chapter 5 summarizes the
results of chapters 3 and 4 and discusses possible further uses of the presented artificial
intelligence techniques.
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2 Overview of Realtime Strategy Games

This chapter defines the basic terms of this work and gives an overview over the game
mechanics used in realtime strategy games, starting with the general idea of this genre.
Based upon this, a general model for agents is presented, followed by an overview of how
a simulated world for such a game can be modeled.

2.1 Realtime strategy games

The genre of realtime strategy games, commonly abbreviated as RTS, is relatively new
compared to other genres, like round-based strategy games or adventure games. One
of the first RTS games was Dune II by Westwood Studios, published in 1992 [Dune2k].
Another important example is the game Warcraft by Blizzard Entertainment[Blizzard],
published in 1994.

As presented in [Troy2005, GameSpot, IGN06] common to all RTS games are two or
more factions in war with each other. A typical RTS game supports two different types
of gameplay. One type is the so-called single player game where the player chooses on
which side to battle against computer player(s) and works through a number of missions
until success. Each mission is usually played on a map of fixed size with a given entry
point. The second type of gameplay is the so-called multiplayer game where typically
two to sixteen players, accompanied by computer-controlled players, play on one map.
The goal of a multiplayer is usually to eliminate all other participating players.

During the game, the player usually has a bird’s eye view on the scenery and controls
units like soldiers or tanks with the mouse. Different unit types are distinguishable by
their graphical representation. Units of the same type have the same representation,
except for the visualization of their health conditions.

Common for most RTS games is an abstract view on processes like obtaining new soldiers.
Instead of recruiting and training a soldier, the process is described as a manufacturing
process. The player uses a build button, which starts a countdown. When the countdown
is finished, a new soldier appears in front of the associated building. Buildings are
usually placed on the map by the player and appear without further micromanaging
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after a certain amount of time.

Most games concentrate on the different types of moveable units. Typically there are
three functional types of units available for creation:

Basic units

Mostly a moveable unit that can transform to a headquarter. This building is
usually a precondition to build other units or buildings.

Support units

Support units are used for constructing new buildings, repairing other units, or
collecting resources.

Battle units

Battle units are the core of the gameplay, usually there are a lot of different units,
e.g. various types of tanks, soldiers, ships, aircrafts, and so on.

In most cases, a mission can be divided into different stages:

Orientation

In this first stage of a mission the player is unaware of the map’s details, oftentimes
a large portion of the map is unrevealed. The player needs to find a suitable loca-
tion for the base and also needs to discover where required resources are located.

Base building

Most games require that certain buildings have to be built in order to be able to
produce more units. The production of units and buildings is limited through a
shortage of required resources, like for example gold, lumber, or minerals, which
the player has to find, collect, and transfer to the base. Therefore this phase
usually starts with setting up the needed infrastructure, gathering resources and
exploring the area surrounding the base. Defending the base against enemy units,
with the given units or already produced units, is often part of this stage.

Exploring and producing

After the required infrastructure is ready and more units get produced, the player
starts to explore more areas of the map and simultaneously accumulates battle
units in and around the base. In many cases this phase includes defending the
base against waves of hostile units and also the discovery of one or more enemy
bases.

Assault

When the player has accumulated enough units for the main assault, the mission
is often solved through a massive final battle between the accumulated armies,
involving a lot of micromanagement of the battling units.
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Often the different missions are connected with the narration of the game’s background
story. Possible variations from the mission prototype presented above are for example
the protection of an existent base, the survival of special units, surviving on a map
without a base, or fulfilling certain specific mission goals. With further progression in
the game, more unit types are available for production, and the complexity and intensity
of the battles increase.

In multiplayer games the players start at the same time at different locations on the
map. The stages of gameplay are essentially the same, but the options - like the amount
of resources on start - are often freely configurable.

Noteworthy exceptions are games like Age of Empires by Ensemble Studios [Ensemble Studios]
or Empire Earth by Sierra Entertainment [Sierra], which do not have missions. Instead
the game starts at one point of time in history, like Stone Age. In these games, the
player is in need of long-term planning, upgrading, and expansion through the different
ages of mankind including future settings. Typically the number of parties is higher
in this type of game and additionally there are possibilities for diplomatic relationships
between the opponents.

2.2 Agents

Everything in a game that is of interest to a player is referred to as an entity. The subset
of entities, directly controllable by players, is called agents. Fundamental differences
between agents, like the differences between soldier types and aircraft types, can be
expressed by a class hierarchy for the agents.

Each agent class shares the same functions, like a function for moving or ballistic flight.
Different agent types within an agent class are expressed through different basic at-
tributes. These attributes include information like maximum speed, turn rate, or fire-
power. Usually all instances of one agent type are share these attributes. All tanks for
example are share the same drive function, but use agent type specific values for their
maximum speed. An exception are games where agents are rewarded for each survived
mission or enemy, and some of the attributes are increased for a specific agent.

Another type of information are the instance-specific attributes, like current angle of
view, current location, or direction of movement. These attributes are unique for every
instance of an agent class.

The third type of information are the context-specific information of an agent. This
type of information usually needs the class- and instance-specific attributes of an agent,
like current position and angle of view. These attributes are used by context-specific
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functions, which calculate the context-specific information. A typical function is for
example the field of vision. In this function the current position and angle of view are
combined with the range of view attribute and these combined attributes are applied to
the actual map for retrieval of the current visible entities for the given agent.

In terms of CPU usage the class attributes are the cheapest ones to retrieve, closely
followed by the instance specific attributes. The context-specific information, also often
called context functions or sensors, are the most expensive information to retrieve, as
often costly calculations are involved. Additionally, other entities and their attributes
might be involved in the calculations, which increases the complexity of the calculations.

2.3 Actions

For the modification of the agent’s attributes, so-called actions are used. An action is
an abstract view of the actual change and contains the changed attribute and the new
value for that attribute. How the concept of actions is realized within a game is very
game-specific. Usually the action is either some sort of data structure, applied during
the simulation of the agent, or a simple function call to a specific function of an agent.

Based on the used attributes it is possible to define the actions for an agent and to
classify the action as a basic or advanced action in terms of CPU usage:

Basic actions:

Basic actions use mostly class- and instance-specific information for their calcula-
tions. Examples for such actions are “move left”, “turn right”, or “turn field of
view clockwise”. The needed CPU usage is mostly low, as the involved information
are usually only class- or instance-specific. The basic actions are mostly used by
advanced actions and completely hidden from the player. This is a major difference
to other game genres like first-person shooters, where the player has total control
over one agent’s basic actions.

Advanced actions:

In a typical RTS game, the advanced actions are exposed to the players. Examples
for advanced actions are “destroy the given target”, “move to a specified locatio”,
or “follow another entity”. Most of that functionality is accomplished by using
several basic actions and additional information of context-specific attributes. The
advanced actions can be used by an artificial intelligence as well as by a player.
Within the user interface of an RTS game, the player usually selects one or more
of the owned agents and selects which advanced actions to use.

Within the RTS game genre, a typical abbreviation for assigning actions to an agent
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and the execution of these actions is commanding an agent. As the RTS genre uses in
most cases a third-person view, an action is usually called a command.

2.4 Terrain model

A typical map is subdivided into cells. Depending on the game a cell can be occu-
pied by one or more agents. Most RTS games use 2.5D maps. This technique applies
height values to a regular grid. Additionally, information about the type of ground and
visualization-specific details can be added to each point in the grid.

Another widely used technique is the utilization of height layers. Each layer is repre-
sented by a grid of values, indicating if a particular cell can be occupied by an agent.
Ramps are used for moving between the layers.

The most important advantage of height layers over the employment of height values is
the ability to simply represent structures like bridges, where one agent can be located
under and another agent on the bridge simultaneously. With height values the use of
special constructs within the simulation is needed to achieve this feature. The disad-
vantage of height layers over the application of height values is a reduced level of detail
for the simulated game physics, because of the fixed height layers and the defined ramps
between the layers. The addition of more height layers can reduce that drawback, but
simultaneously increases the memory and disk usage for a map.

6



3 Behavior concepts

Since the first RTS games, some sort of AI (AI is the common abbreviation for artificial
intelligence) has been used to simulate opponents for the player. Although it is commonly
called AI, the games use some sort of software component for decision-making, not a
real AI as defined in [Russel02].

For the different AI techniques used in RTS games, two rules or requirements can be
stated:

Believable gameplay

The AI has to obey the same rules as the player. Therefore the agents of the
computer-controlled player are required to have the same attribute values as if the
player would own them.

Continuous gameplay

The computer-controlled player should react and act in a continuous way. A chosen
tactic of the computer-controlled player should for example not be changed too
frequently.

An opponent who acts believably and continuously increases the ability of a human
player to adapt to the strategies used. Additionally, the replay value of a game can be
enhanced, as a human player can experiment with different strategies in a well-defined
environment.

To achieve such an AI behavior, different technologies have been used and mixed to-
gether. The following sections describe these technologies and explain the RTS-game-
specific integration and use within an RTS game. The first two sections will introduce the
script-based AI and the hierarchical finite state machine approach. The third presented
technology is the behavior tree, which has not yet been used within an RTS game.

The AI technologies using scripts or hierarchical finite state machines have been sufficient
for the past years in terms of reacting mostly predictably to the player’s actions. But the
ability to adapt to the strategy chosen by the player is still limited today. This challenge
can be overcome by an increased complexity within the AI scripts or hierarchical finite
state machines. At the same time the process of development, testing, and fine-tuning
may become more complex, too. This further leads to more risks in the development
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process and may increase costs at the same time.

As a continuos example, a simple behavior for a fictional soldier is used. Like most
agents, the fictional soldier has independent subparts, like the body and head. The
body can walk at the same time as the head can turn. In a typical situation this
soldier is ordered to defend a certain target position. This requires that the soldier
moves to this position while constantly looking around for enemies. If an enemy is
spotted, this enemy should be attacked, which may require moving towards the enemy.
A possible implementation of this behavior is shown for each AI-approach. Based on
these examples, the advantages of the behavior trees over the other two approaches are
explained afterwards. The chapter concludes with the presentation of further additions
to the behavior trees and how behavior trees can be used in the context of realtime
strategy games.

3.1 Scripted AI

The scripted AI usually consists of a textual description how to act in the mission, like
a screenplay. In the script, commands are used to direct the controlled entities. These
commands invoke the advanced functions of the controlled entities. Within the script, the
execution is typically controlled with well-known constructs, like loops and conditions.
So-called triggers are often employed for implementing the conditions. A trigger is a
context-sensitive condition, usually bound to a specific location of the map. An example
for such a trigger might be: When a tank of the human player is at the entrance area
to the computer-controlled base, start building more close-combat anti-tank units and
order these to attack the tank.

With the application of a script, the computer-controlled player has only the hard-coded
options within the script to react to the human player. This fully satisfies the second
rule of continuous acting, but might result in a boring gameplay for the human player,
especially if the more or less same base script is used for every mission in the game.
A famous example for that is the AI in Command and Conquer [C&C]. A player can
block every command of the AI by building a wall into the AI-controlled base. Once
the entrance to the base is sealed, the AI stops to function in a meaningful way and
makes overtaking the AI-controlled base very easy. This sort of gameplay is considered
cheating although the human player has obeyed all rules of the game, because the AI is
not able to react properly to the situation.

A script, realizing the desired behavior for the soldier example, might look like this:

state = IDLE
targetPosition = ( get my current body position )
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while(true)
{

switch(state)
{

case IDLE:
if ( targetPosition not equals ( get my current body position ) )
do ( walk towards targetPosition )

do ( turn my head )
if ( i see an enemy )

state = ATTACK
else

do ( turn my head )
break

case ATTACK
if ( i see an enemy )

do ( look straight at enemy )
if ( enemy in weapon range )

do ( attack enemy )
else

state = WALK
else

state = IDLE
break

case WALK
if ( i see an enemy )

if ( enemy in weapon range )
state = ATTACK

else
do ( walk towards enemy )

else
state = IDLE

break
}

}
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3.2 (Hierarchical) Finite State Machines

To overcome the limitations of the static scripted AI, the concept of finite state machines
was introduced to RTS games. A finite state machine consists of connected states. A
state is usually a simple script or a single command. The connections are directional.
Each connection can include checks. A check is a function which returns to which
percentage this connection is currently valid to be chosen. An example check is a function
which returns zero percent if no enemy entities are visible and otherwise one hundred
percent. At the start of a mission, a defined state is entered. When all commands within
a state have finished their execution, or a command was not applicable, one outgoing
connection is chosen. Therefore the checks of all outgoing connections are executed and
the best matching connection is followed.

An AI built with a finite state machine has considerably more options to adapt to the
player’s strategy and react to unforeseen situations. Additionally the AI conforms to
the requirement of strategy games to react continuously, as the same connections are
chosen again, if the relevant parts of the context match.

Building and describing a large AI with states and connections can result in large and
complex constructs. Therefore an extension to finite state machines was introduced.
The HFSM (HFSM is the common abbreviation for hierarchical finite state machines)
is a layered finite state machine.

Figure 3.1: Example picture of an HFSM [AiGameDev]

In HFSMs multiple levels of finite state machines exists. As the figure 3.1 shows, states
can have sub-states. A group of sub-states is represented as one state in the upper layer
of the state machine. This is the hierarchical component of a HFSM. The connections
can now start and end at a state or a group of states. Additionally sub-states can be
connected to their surrounding state. With this technique the behavior can be grouped
into related blocks like idling or attacking, and the amount of connections can be reduced
drastically. Depending on the whole architecture, it may be possible to reuse some levels
of one HFSM for other agents’ HFSMs.

The current state in the industry, as reports on [Gamasutra] indicate, is the combination
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of scripts and HFSMs. Usually scripts are employed for the story-narration and overall
progress in the game. For the management of entity groups and single entities, HFSMs
are used.

The mixture of both techniques allows for continuous gameplay for the player and a high
replay value, because of the possibility for adaption within the AI. Further, development
and integration of such techniques into RTS games is easy today. Many commercial
game engines already offer implementations and editors for one or both AI techniques.

Figure 3.2: Example HFSM for the soldier example
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An example HFSM for the soldier example might look like figure 3.2.

3.3 Behavior Trees

This introduction to behavior trees is based on the explanations of the game program-
ming freelancer Alex J. Champandard’s writings on AiGameDev.com [AiGameDev] and
publications from the Damián Isla [Isla, Isla05]. An early form of a behavior tree has
been mentioned by Chris Butcher and Jaime Griesemer of Bungie in [GDC02-halo] for
their first-person shooter game Halo, announced in 2001. Today, the first-person shooter
Halo 2 is widely used as a reference for behavior trees [Isla05, GDC07]. Various recent
first-person shooter games seem to use the Halo 2 approach.

3.3.1 Basic structure

As figure 3.3 shows, a behavior tree consists of connected nodes. It has many charac-
teristics in common with a hierarchical finite state machine. Whereas in HFSMs cyclic
connections between state-nodes are possible and widely used, the nodes of a behavior
tree are organized hierarchically. No cycles are allowed.

Figure 3.3: Simple behavior tree.

The origin of a behavior tree is called the root. Every other node is, either directly or
indirectly, a child of this root. Nodes with the same distance from the root, measured by
the number of intermediate nodes, are called a layer. A node without children is called
a leaf node or in short a leaf. The leaves in a behavior tree contain the commands to be
executed. The nodes located directly between the root and a certain leaf constitute the
so-called path, which is important for structuring and decision-making, e.g. to decide
on which leaf is to be executed next.

The nodes on a path to a leaf do not contain commands. Those intermediate nodes hold
the so-called rules, with each node containing one or more rules.The components of a
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rule are: an attribute or sensor input of the agent, evaluated in the current context (see
chapter 2.2), an operator like equals, lesser, or greater and the defined comparison value.
Therefore a rule can be expressed as a mathematical function, either returning simply a
boolean value which indicates if the rule is fulfilled, or a numerical value which indicates
to which percentage the rule is fulfilled.

For the structuring of subtrees, Champandard suggests four patterns for behavior tree
nodes [AiGameDev]:

Parallel execution

The parallel execution pattern executes all subtrees whose rules are fulfilled. In
general, parallel execution does not mean a real parallel execution, but further
evaluation of all fitting subtrees sequentially.

Choice

The choice pattern recommends the choice of the best-matching or first matching
subtree, depending on the details of the implementation.

Sequence

On completion of one subtree, the sequence pattern proposes the choice of the next
defined subtree which allows the ordered execution of commands.

Random

The random pattern randomly selects one subtree for execution.

The most frequently used is the choice pattern, as it functions like an if or switch
statement within the tree.

An exception is the root node, which contains no rule and is realized as a choice node.
During the decision-making, one or more branches of the tree are selected, based on the
evaluations of the encountered rules and the node types.

An example behavior tree for the soldier example is shown in figure 3.4.

3.3.2 Advantages over script or HFSM-based systems

Generally, the functionality of a script, HFSM, or behavior tree can be expressed by
or added to each other. However, the design of the particular engine type has to be
extended to support all features of the other types. Such an extension usually introduces
additional complexity within the engine and can therefore increase the development time
and costs. At the same time, as the complexity of the engine is increased, the complexity
for the use of the engine increases, too.
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Figure 3.4: Example behavior tree for the soldier example

A comparison of the features and ease of use of each engine may look like this:

Script engine

The Script engine is easy to extend by adding new commands or language con-
structs. An extension is unlikely to break existing code. However, writing scripts
is the least abstract way to define behavior. It can be compared to writing source
code. Therefore, AI designers need to have at least basic programming knowledge.
Changes to existing code can be challenging, too, as the understandability of the
script depends on how well it is written.

HFSM engine

HFSMs are generally more abstract than scripts, especially when they are repre-
sented in a graphical way. During an extension of a HFSM engine it might be
necessary to check all old scripts, because of the abstract representation. Exten-
sions have to modify exiting nodes or connections or introduce new types of nodes
or connections. Therefore the design of a behavior can become more challenging,
depending on the provided editor, as the designer has to choose between different
node types or connection types or has to set specific options on nodes or connec-
tions to achieve the desired behavior. Large behavior graphs can be challenging to
edit, due to the number of needed nodes and connections.

Behavior tree engine

With a behavior tree the most structured representation is possible. Both repre-
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sentation forms, either textually or graphically, can be easily read without pro-
gramming knowledge. Understanding of a complex behavior is generally easier
than understanding a HFSM, as no cyclic connections are allowed and everything
is strictly hierarchically ordered. Generally no extensions are needed, as most of
the time all behavior can be expressed with the four types of nodes, presented in
3.3.1. The challenge for the AI designer thus lies in grouping relevant commands
into subgraphs and defining the connection rules between the nodes. In the case of
an extension, old behaviors should work without further change, as an extension
introduces either a new node type, a new connection type, or a new rule.

One distinct advantage of a behavior tree engine over a HFSM engine lies, for example,
in the parallel execution node. With this node it is possible to execute multiple subtrees
at the same time, which is not a commonly available feature in a HFSM. This helps to
reduce the minimal number of nodes and connections as the following example shows:

As figure 3.2 shows, every if-statement of the scripts translates into a substate within
the HFSM. The substates and states are connected, guarded by the condition of the
if-statements. Since a basic HFSM-implementation executes all commands within a
node, optional commands result in additional substates. For example the “walk to
targetPosition” in the IDLE-state results in the need for additional substates. One
substate is needed for each combination of the two if-statements.

This complex HFSM-graph can be expressed as a much simpler behavior tree as figure
3.4 shows. With the selector and parallel nodes, every construct seen in the script is
possible again. However, the designer is now required to make sure that not two opposing
commands are using the same body-resource of the agent at the same time, like “walk
towards initial position” and “walk towards enemy” due to a missed rule.

3.4 Further extensions to behavior trees

As various authors discuss [Isla05, Lent99, Guy99], the presented behavior trees might
be too static, in terms of response time to rapid changes in the context of an agent.
Their common solution introduces the use of stimuli.

Like the human body reacts to stimuli, this solution gives the agents’ sensorial input
the possibility to trigger a stimulus. Such stimuli influence the selection probability of
rules or parts of rules in the agents’ behavior tree and therefore are able to change the
result of the decision-making dynamically, hiding normally chosen nodes or prioritizing
previously unsuccessfully checked nodes even if the current context normally would not
allow their selection. After a defined time the stimuli are either simply removed or their
influences are reduced to zero over a period of time.
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This technique cannot only be applied to individual agents, but also to groups of agents.
One problem in group control remains the assignment of a task or command to a specific,
e.g. best fitting, agent. The classical solution is to manually activate commands on the
target agent. However, this approach introduces some problems within a behavior tree.
In particular, how does a manual command activation influence the decision-making
process of this agent? Existing answers to this question, like the use of a bypass to the
AI to execute the command or risking abortion of the command execution within the
next decision-making, are not satisfactory. A fitting solution is the use of blackboards
[Orkin05, AiGameDev]. A blackboard is an information store, shared by all members
of a group. The grouped agents can access the storage as part of their context during
the decision-making. The stimuli of the agents and the group AI can write directly
to the blackboard, thus enabling each agent within the group to react within a short
time, but with consideration of the agent’s current context to the task the group has
to execute. Additionally, the selection of the executing agent is done automatically, as
each agent decides if the tasks fits the current context. To ensure that only one agent
at a time executes a given task, additional information might have to be integrated into
the blackboard.

Another extension to further refine the concept of behavior trees is the possibility, men-
tioned in [AiGameDev], to combine a behavior tree with any other form of AI code like
HFSMs or scripts. This extension is simply done through the introduction of specialized
leaf-nodes, containing the necessary information for the underlying AI-engine to execute
properly. For an AI designer, the use of these specialized nodes is transparent within
the behavior tree.

3.5 Behavior trees in RTS games

In a complete RTS game, different layers of decision-making exist. Typically there are
four layers of decisions necessary:

• Story

If the game supports a dynamic story, based on the results of the different missions,
this component is responsible for storytelling and mission selection or generation.

• Mission

Within a mission, the computer-controlled player(s) have to decide which general
actions to perform, like building a base, scouting the map, or attacking the player.

• Entity group

In most cases, every player has to group the controlled entities for the different
tasks within a mission. For example different attack and defense groups, which
have to be controlled independently from other groups or single entities. The AI
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for an AI-controlled player therefore has to decide which entities have to group
together, which entities should be built, and which tasks a group has to fulfill.

• Entity

Every single entity needs individual commands, even if the entity belongs to a
group. This so-called micromanagement has to be done often and is influenced by
the task of the group if the entity is grouped.

From the top to the bottom the decisions within that layer have to be made more
frequently and in a more detailed way. This results in more complex scripts or HFSMs
for each layer. At the same time the process of decision-making has to be less resource-
intensive in terms of CPU utilization. Additionally the resource demand should be
lower on each layer, as the game has one AI-instance for the story, one AI-instance for
a mission, one AI-instance for each group and maybe one instance for each individual
entity.

Currently, articles on [Gamasutra, AiGameDev] indicate that for the story and mission
scripts are used. HFSMs are commonly used for the group and entity AIs. As shown in
section 3.3.2, behavior trees can replace all the currently used techniques on all layers.
However, the last two layers are of particular interest, as their complexity is higher.

For the group control the application of a behavior tree engine can solve the continuous
gameplay problem, mentioned in 3, as well as the adaption problem. The group AI
writes tasks or information which lead to tasks to the blackboard. The agents within
the group execute the tasks or react to the information on the blackboard as far as it
fits the individual context. At the same time, both group and agent AI have the ability
to react to rapid changes within the game.

As shown in 3.3.2, the process of designing and fine-tuning a behavior tree can be much
easier for an AI designer than it would be with scripts or HFSMs.
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4 Parallel simulation models

This chapter introduces the basic concepts of the simulation for an RTS game. Based on
this presentation different possible approaches for parallelizing the simulation and the
data model of such a simulation are shown. The second section of this chapter explains
the challenges encountered while implementing various approaches with the Java pro-
gramming language. Afterwards, the results obtained from the different implementations
are compared and some conclusions mostly specific to Java are drawn.

Basically, the most interesting parts for parallelization within an RTS game are the
simulation and the visualization. As this thesis is about technologies for an MMORTS
game, a server application is used for the simulation. The clients are connected to this
server and send their actions/commands to the server, while receiving updates on the
currently running simulation. There are at least two methods to achieve parallelization
in the simulation. The first method, parallelizing the calculations of the simulation,
is discussed in the next sections. Another method is the distribution of the different
simulation aspects to different, communicating applications, not necessarily located on
one server system. A possible implementation for such a distributed approach is outlined
at the end of this chapter. The aspects of parallelizing the visualization is not part of
this thesis.

4.1 Basic concepts

An RTS game can be broken down into different components, such as simulation, graph-
ics and sound. Each component interacts with other components and can further be
broken down. In a typical RTS game all of the components are included in the game
application. In a massive multiplayer RTS game the components are usually distributed
to different applications running on different systems, like the game client, which runs
on the player’s system, or the server application, which manages the whole simulation
and typically is located at the game provider’s location.

The fundamental component of an RTS game is the simulation. Every entity within the
game is part of the simulation. Generally the simulation is in one of the three states:
initialize, run, or shutdown. Initialization and shutdown are left out in this thesis, as
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they contain mostly only the creation and cleanup of other necessary components. The
run state, also known as the main loop, drives the whole game. In a classical setup, with
all components running locally, an iteration of the main loop consists of three steps:

• Input

During the input step all input sources are polled for new events. Input sources are
usually mouse and keyboard, but also the network, if the game supports multiplayer
game modes. Generally the input is not presented as raw mouse clicks or key hits,
but rather in the form of an event. The events are applied to the simulation which
might result in changes, or the creation or deletion of entities.

• Process

After the input handling the entities of the simulation have to be updated. This
updating of an entity may include decision-making, pathfinding, moving on the
map, interactions with the surroundings, moving, or even firing bullets. Most of
the actions have to be done individually for each entity, some, like pathfinding,
might be done for groups of entities. Collision detection must be done for all
entities, as this involves all of them.

• Output

When the process step has finished, the changes, like movements, destructions, or
creations of entities have to be visualized to the player. In a multiplayer game,
changes must be shared with other players, too.

This main loop has to be run at a certain rate, often 10 to 30 times per second, to
achieve an immediate feedback to the player. For multiplayer games the problem of
synchronization can be solved either directly through a defined master system which
holds the valid state of the world, or indirectly through an agreement of the participating
applications about the valid world state.

In both solutions, the amount of calculations might be too high to be performed by each
participating system, especially if the game is a massive multiplayer game which implies
large armies for each player and many players on a map. Most current games impose
many restrictions, like the amount of controllable entities per player and the maximum
number of allowed players on a map. Further, most of those maps are designed to
confront all players with constant action, thus further limiting the amount of entities.
Moreover, the maps are generally optimized for pathfinding, as pathfinding is one of the
most resource-consumptive tasks in such a game.

One approach to the problem of simulating a lot of entities is the use of a central server.
This server accomplishes the required calculations and communicates with the clients,
receiving their events and sending them updates for their visualization. This approach
reduces a lot of the overhead, but still is limited to one CPU executing the main loop
which takes care of the whole simulation. Therefore, the next step is the parallelization
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of this main loop. To discuss the possible approaches for parallelization, the parts of the
simulation which might be parallelized have to be determined.

In chapter 2.2, the concept of entities and their specialization, the agents, was introduced.
Based on this, the entities and agents are revisited and are now described as a hierarchical
construct of components:

Sensors

A sensor is a component which reads from the context of an entity and makes the
information available internally. This may include the construction of the necessary
data which form the context, or the evaluation of previously unused data, or simply
the returning of an already present value.

Actuators

Actuators are functional components of an entity which change externally relevant
attributes, like the position of the entity, or generate new simulation entities, like
a gun releases a bullet upon firing.

Advanced functions

Advanced functions aggregate functionality of actuators and sensors to higher level
functionality. An example for such functionality may be a “shootAt” function of a
tank agent, which takes care of being in firing range of the target, turning the gun
towards the target, and the actual firing, including the ballistic calculations for the
shot. An example for an expensive planner, in terms of CPU use, is a “moveTo”
function, involving a pathfinder.

AI

The AI is the highest level component of an entity, usually only found in an agent.
Regardless of the actual AI implementation, the AI uses the functions of the other
components for decision-making and commanding the entity.

Mostly a simulation in an RTS game can be seen as a composition of two elements:

Agents and entities

Most entities, especially the subset of the agents, need to update frequently. Within
this update, the entity executes its current commands. Usually, if the entity is con-
trolled by an AI, the AI’s decision-making process is executed during the update,
too.

Physical simulation

The physical simulation in RTS games is mostly about collision detection. Each
entity in the simulation possesses attributes like the position or the bounding
volume of the entity. During an update, entities are moved in the simulated world
and therefore must be checked for collisions, including the impact calculations
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in the event of a collision and the resulting changes within the collided entities.
The collision detection needs to compare all the entities’ positions and bounding
volumes after each change to reliably detect collisions. As this would result in
a search problem with the computational costs of O(n2), many techniques for
optimizations exists [Bobic00].

The shown breakdowns of the internal structure of an entity and the simulation lead to
different strategies for parallelizing.

• Parallelizing the entity updates within a simulation turn:

During a turn, all entities are updated in parallel. The physical simulation can
then be done either after all entities have updated, or concurrently whenever an
entity changes its physically relevant attributes.

If the physical simulation is executed after all entities are updated, an additional
step for all entities, affected by the physical simulation, is needed for incorporating
of these changes.

If the physical simulation is executed after the update of every entity, the order
in which the entities are updated may change the results of the simulation. For
example, during one simulation turn, a bullet will hit a tank critically, at the same
time the tank shoots one of its bullet. If, on the one hand, the bullet is simulated
first, the tank will not be able to perform the shot, because of its destruction. On
the other hand, if the tank is simulated prior to the bullet, it can perform its shot
before being destroyed by the bullet. This sounds like a critical problem, but in
the context of games this behavior might be tolerable in opposition to a scientific
simulation.

• Parallelizing the different entity components:

This approach is based on the idea of data locality. The data locality is achieved
with the concept of distributed entities. Instead of a single structure, containing
all information about an entity, the entity exists within the different simulation
components. Each simulation component contains thereby only the relevant data
for each contained entity.

For example, each entity consists at least of a colliding component, which takes
care of the physical interaction between entities. Therefore, the physics simulation
component owns the bounding volume and location for each entity within the
simulation, but shares this data with other components, like a move component
which influences the position.

A simulation turn then consists of executing first the move component, which
internally calculates the movement for all entities in parallel, before executing the
colliding component, which then calculates the resulting collisions for all entities
in parallel.
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The ease of use of the different approaches is determined by the used programming
language and libraries for achieving parallel execution.

4.2 Implementations in Java

As this thesis is based on practical work, done in the Java programming language,
different prototypes for the approaches presented above were implemented:

1. Sequential reference implementation

This implementation was the easiest one, from the programmer’s point of view. All
entities were simulated sequentially, afterwards the physical simulation was applied
and the resulting changes sequentially applied to the entities. As an optimization a
hierarchical tree was used for spatial sorting of the entities and obtaining collision
information. During the update of each entity the attached behavior was executed,
resulting in new events for the entity. Then those events were applied to simulation.
Sensorial data, like visible enemy entities, was retrieved from the hierarchical tree,
used for spatial sorting. The overall speed of this implementation depended on
the used data model for spatial sorting. After conduction several experiments, the
fastest data model was the so-called quad-tree. This hierarchical data structure has
one node, which overlaps the whole map. This node is automatically subdivided
into four child nodes, as soon as the amount of entities contained in this node
reaches a fixed upper limit. This procedure is repeated until a hierarchy of nodes
exists, each containing at most the fixed amount of entities. The procedure is
reverted as soon as the subnodes of one node contain less than a lower limit of
entities. The advantage is the fast access to nearby entities, but the disadvantage
the costs of the insertion, moving, and removal of an entity, as these can trigger
many changes to the tree structure. However, the conducted experiments have
shown that the fast access to nearby entities compensates for the disadvantages.

2. Parallel execution of all entities, followed by the physical simulation

Based on the first implementation, the difference was the encapsulation of each en-
tity as a single Java runnable. The distribution to the available threads was done
through Java’s built-in thread pools. Many changes to the collision detection im-
plementation were necessary to support parallel access. The hierarchical tree could
not be satisfyingly modified to support parallel access. Therefore, it was replaced
by a regular grid, dividing the map into cells which allowed individual locking for
write access. The sensorial functions were successfully modified for this new spatial
sorting structure. Different experiments with the diverse implementations of Java’s
thread pools showed that a thread pool with a fixed number of available threads
had the best results in terms of time needed to complete a test. Other alternatives
to this fixed thread pool are the single thread pool and the cached thread pool,
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which generates new threads on demand, but reuses previously created threads.

3. Parallel execution of grouped entities, followed by the physical simulation

This implementation is mostly based on the previous one, but instead of submit-
ting each single entity to the thread pool, this implementation grouped entities by
their location on the map. This grouping allowed some simplifications in the col-
lision detection implementation, while introducing new complexities in the group
management of the entities. Different strategies for grouping were tested, the best
results were achieved while dividing the map into the number of available threads
stripes along the x-axis and dividing these stripes into the number of groups per
thread rectangles along the y-axis. The basic idea for this approach was a result
from the previous locking of the cells. The main problems were to resolve collisions
across cell borders and moving of entities between cells. Other tried implementa-
tions used mainly different strategies for forming the entity groups. These included
dynamic grouping, based on the entity density on the map, and different static im-
plementations, like dividing the map into a double number of stripes as threads are
available. In this implementation first all odd numbered stripes were executed by
the threads, then the even numbered stripes, which should remove the necessity
to synchronize the different stripes. However, the experiments showed that the
distribution of threads to the thread pool has a larger impact on the runtime than
the synchronization between the threads.

4. Parallel execution of grouped entities with concurrent physical simulation

The implementation tried to further simplify the collision detection. Therefore
collision detection was done in the local group. The intended simplification was not
possible, due to the further increased complexity for the handling of the borders
of a group and the resulting interactions with other groups. Additionally, the
above-mentioned side effects of non-deterministic execution order occurred more
frequently than in the other implementations.

4.3 Experiments

All different approaches were examined for their ease of implementation, overall per-
formance, and scalability. To measure the ease of implementation the overall time to
complete the data model and the complexity and amount of interactions between the
different model elements was used. The used settings for the comparisons consist of a
flat map. The map is filled with tank agents, each with the same behavior. All tanks
are placed with equal distance to each other, forming a grid on the map. The behavior
consisted of only two sub-behaviors:

• If another tank is in my field of vision, shoot at this tank.
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• If no other tank is in my field of vision, move to the origin of the map and turn
the field of vision clockwise.

The different implementations were tested with an increasing initial count of tanks and
increased number of used threads. The main focus of the examination lay on the maxi-
mum usable count of threads. Therefore the test was run with different numbers of tanks
and threads. For each number of threads the maximum count of tanks was determined at
which the implementation was able to achieve at least 10 updates of all entities per sec-
ond. As a maximum the number of used threads were declared, beyond which additional
threads did not further increase or even decrease the number of tanks the simulation
was able to handle with the same speed. All tests were performed on different systems,
including different Java versions and vendors. For comparison, the numbers below are
from measurements on a quad CPU with each dual core AMD Opteron system, running
Linux and a Sun Microsystems reference Java implementation.

The obtained results were:

1. Sequential reference implementation

As intended, this implementation was limited by the available power of the used
CPU core.

2. Parallel execution of all entities, followed by the physical simulation

This approach limits the maximum useable amount of threads through the sequen-
tial overhead of distributing the agents to the available threads. This distribution
uses a lot the synchronization features of the Java language. The costs of this
synchronization, in terms of used time, is considerably high in comparison to the
actual executed behavior and necessary calculations for a single entity. The max-
imum number of usable threads were, with little difference over one thread, two
threads.

3. Parallel execution of grouped entities, followed by the physical simulation

The use of groups of entities reduced the overhead of the distribution. However,
the synchronous access to the physical simulation, for updating the position of an
entity, emerged as a new limit for the usable number of threads. The maximum
number of usable threads was three. This might be a result of the applied spa-
tial sorting, however, profiling results showed that most time was still used for
synchronizing between the different threads.

4. Parallel execution of grouped entities with concurrent physical simulation

The further reduction of needed synchronization resulted in a maximum usable
number of up to four threads for parallel processing. But the resulting simulation
results are not fully comparable to the other implementations due to the side effects
of the concurrent physical simulation.
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Due to the complexity of the implementation, no prototype using a fully component-
based approach was implemented. The obtained results indicates that any form of using
numerous, at least partially synchronized threads is not the best way for building a
parallely executed simulation in Java.

Figure 4.1: Speed measurements with different numbers of threads and workers for the
third prototype.

As an example for this conclusion a result of a test run is shown in figure 4.1. This result
is from the third implementation and the setup contains 110,889 tanks, forming a grid of
333 times 333 tanks. Each line represents a number of used threads. The measured values
are the amount of used entity groups per thread versus the needed time in milliseconds
until one or zero tanks survived which approximately occurred after 10,000,000 frames.
Thus a lower time is a better result. More than eight threads were not tested, because
of the expected overhead of the needed context switches due to the availability of eight
cores. The figure refers to worker groups which are groups of entity groups. As the map
is divided into cells, each cells can contain a group of entities. The cells are of fixed
size. To achieve an overall fair distribution of these groups to the available threads, the
distribution is done randomly every single run of the simulation during the creation.
Therefore, all setups have been automatically tested several hundred times. One worker
group is assigned to one thread. The results of one to four threads are of particular
interest.
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The red line, showing the results of using one thread, shows a slightly higher execution
time while using one group than the sequential implementation. The even worse result,
while using two groups, can be explained with the additionally necessary maintenance
overhead for regrouping of the moving tanks. With the use of three threads the overhead
of regrouping contributes even more to the execution time, but the resulting time is lower
due to the simpler collision detection over the much smaller groups.

The blue line, showing the results of using two threads, illustrates the influence on the
execution time of regrouping the entities with one group per thread and the overhead in-
troduced due to the needed time for synchronization for each regrouping. This overhead
is drastically reduced while using two or more groups per thread. With two groups per
thread, the probability that an entity changes into the other group of the same thread,
thus needing no synchronization, is one third.

The yellow line, showing the results of using three threads, is the optimal setting for this
implementation, if at least three groups per thread are used. With one group per thread,
the results are much better than using one or two threads as the needed regrouping, and
therefore synchronization, is considerably lower. With three groups per thread, nine
groups exist overall. If an entity needs to be regrouped, one of eight groups are possible
with two 2 of 8 in the same thread. This results in overall similar times for thread
synchronization and collision detection.

The brown line shows that with four threads the overhead of the synchronization between
the threads increases if more than two groups per thread are used. The contribution
of the synchronization to the total execution time is constant, even if more groups per
thread or more threads are used.

The results can be slightly shifted towards more threads, if more tanks are used, but at
the same time, the influence of the Java memory handling on the total execution time
increases, too.

4.4 Distributed computing approach

As this thesis aims to show an approach, useable in a massive multiplayer online RTS
game, the use of a central server system for the simulation of a game world is necessary.
The aim to support a massive amount of players leads to the need to simulate a huge
number of entities in realtime. The presented approaches in 4.2 are not able to scale
with an increasing amount of simulated entities due to the limits of the synchronization
and memory handling within Java.

To avoid the drawback of thread synchronization and reduce the overhead of the memory
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handling of Java, an approach using distributed computing can be used. Within this
approach, most of the time intensive calculations are done in another application besides
the simulation server. The simulation needs only the position and bounding volume of
each entity. Another application, the so-called proxy, manages the entities. When an
entity is created, the proxy notifies the simulation and the other proxies of the new
entity. As an owner of the entity, the proxy calculates in a separate simulation loop
the commands for each self-created entity and sends relevant updates to the simulation
server, when a change has occurred. The changes the server receives can be limited to:

• A create notification for a new entity.

• A move vector for an entity, which is applied in each update to the entity’s position.

• A remove notification for a deleted entity.

At each simulation turn, the move vectors are applied to the entities and collision no-
tifications are sent to the proxies. Additionally, the create and remove notifications are
forwarded to all proxies.

This may sound like a much slower approach than the above presented ones, but the
implemented prototypes did not include the necessary communication between simula-
tion and participating clients for the players. As this communication is crucial for a
real game, the overhead of communicating the changes of the simulation to the clients
has to be considered. In this approach, the proxies are able to calculate the necessary
changes for the client. There is no need for a communication between the clients and
the simulation server in this approach. The load of calculating the behavior for each
individual entity can therefore be distributed from the simulation to the proxies. At
the same time, the structures of the simulation can be more optimized, as every entity
has only a position, bounding volume, and in the case of movement a movement vector.
Additionally, the restriction of using only one simulation thread allows the application
of highly optimized collision detection algorithms without consideration of synchronous
access problems.

One problem in this approach, which might need more considerations, is the synchro-
nization between the clients. It might happen, for example due to a slower reacting
proxy application, that one client falls behind other clients, therefore seeing only the
past of the simulation and giving commands based on past information. However, an
implementation of this approach was not possible within this thesis. Therefore, no real
experiences regarding this or any other problem are available.
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5 Conclusion

This thesis has presented two aspects of realtime strategy games. Chapter 3 has shown
the currently applied technologies of script-based and hierarchical finite state machine
based decision making systems, the so-called artificial intelligence for realtime strategy
games. This chapter furthermore defined the two rules of continuous and adaptive
gameplay and introduced behavior trees as another technology for decision making. All
three technologies were compared to each other and the ease of use and extensibility of
behavior trees were explained. Additionally some extensions, mainly the stimulus for
faster reaction to changes and the blackboard for group coordination, were introduced.
The chapter concluded with an overview of how the technology of behavior trees fits into
the genre of realtime strategy games.

Chapter 4 started with a summary of different possible parallelization approaches for a
realtime strategy game’s simulation. Some of the outlined approaches were implemented
as part of this thesis and the employed technologies and ideas were explained. These
implementations eventually led to the conclusion that implementing a parallel simulation
in Java is not the preferable approach. This conclusion is drawn from the obtained
results from the different implementations. As an alternative, another approach, using
a distributed computing approach, was presented and the possible improvements were
discussed.

The conducted experiments with the integration of behavior trees were, in opposition to
the parallel simulation approach, a full success. The implementation for the experimen-
tal prototypes, as described in chapter 4.2, was considerably easier to use and implement,
than an alternatively implemented HFSM engine, while providing the same set of func-
tional features. Based on the gained knowledge and good results while using behavior
trees, the integration within the current research project jMMORTS is planned in the
near future. In addition, the planning for the development of a tool for behavior design
has also been started. As a vision for the jMMORTS project, computer-aided gameplay
is currently under investigation. With an extended utilization of behavior trees it might
be possible to give normal users of the game an easily useable tool for creating their own
behaviors for their entities. The goal is to provide a system, freely configurable by the
player, which is able to continue a certain level of player-specific gameplay, even when
the player is not currently using the game and therefore making the game more realistic,
as the entities of a player do not vanish, when the player leaves the game.
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