
Parallel Crowd Rendering

Master Thesis

Johannes Spohr

March 26, 2008

Research Group Programming Languages / Methodologies

Dept. of Computer Science and Electrical Engineering

Universität Kassel

Supervisors:

Dipl.-Inform. Björn Knafla

Prof. Dr. Claudia Leopold

Prof. Dr. Ing. Dieter Wloka, M. Eng.

Abstract

Parallel rendering in real-time applications is a challenge that many in the field of com-
puter graphics are currently facing. Especially with large scenes containing tens of thou-
sands of objects - crowds - scalability is important, which makes parallelism a definite
requirement.

This thesis discusses several real-time rendering approaches and subsequently lays out
the architecture of a lightweight parallel rendering toolkit called Pace. The Pace renderer
uses CPU-level and CPU/GPU concurrency to exploit the parallel nature of rendering
hardware with an emphasis on flexibility and scalability. Pace also includes techniques
to accelerate OpenGL applications for real-time crowd rendering.

Declaration of Origin

I hereby declare that current Master of Science Thesis Parallel Crowd Rendering has
been created by myself without the help of anybody and/or anything else, except the
references that I have explicitly mentioned in this thesis.

Johannes Spohr
Kassel, March 2008

3

Contents

Abstract 2

List of Figures 6

1 Introduction 8

2 State of the Art 12

2.1 Rendering Hardware . 13
2.1.1 CPU . 13
2.1.2 GPU . 14
2.1.3 The Graphics Rendering Pipeline 17

2.2 Graphics API . 18
2.2.1 State Management Libraries . 19
2.2.2 Scene Management Libraries . 21
2.2.3 Shader systems . 23
2.2.4 Submission Engines . 23

2.3 Existing Crowd Rendering Engines . 24
2.3.1 Ogre 3D Extensions . 24
2.3.2 Horde3D . 26

3 Concept of a Parallel Crowd Renderer 28

3.1 Case Study . 29
3.2 Requirements and Goals . 30

3.2.1 Performance . 30
3.2.2 Portability . 31
3.2.3 Functionality . 31

3.3 Pace . 31
3.3.1 Overview . 32
3.3.2 Initialization . 34

4

3.3.3 Rendering Loop . 39
3.3.4 Parallelization . 40
3.3.5 Class Structure . 46
3.3.6 Interfaces . 46

Renderable . 47
Renderer . 48
Render Pass . 49
Render Target . 53
Render Queue . 54
Material . 56

3.3.7 Data Structures . 57
Buffer . 57
Render Job . 59
Submission List . 59
Mesh and Submesh . 60
Camera . 62

4 Implementation 63

4.1 Software Libraries . 64
4.1.1 Intel Threading Building Blocks 64

4.2 OpenGL Crowd Rendering . 65
4.2.1 Efficient Drawing . 65
4.2.2 Vertex Buffers . 67
4.2.3 Vertex Buffer Objects (VBO) . 69
4.2.4 Hardware Instancing . 71

4.3 Render Queue . 72
4.3.1 Sorting by Render State . 72
4.3.2 Parallelization . 73

5 Results 75

6 Conclusion 79

Bibliography 81

5

List of Figures

1.1 Screenshots from the game ”Kameo: Elements of Power” 9

2.1 Simplified overview of the GPU pipeline. Dotted lines indicate features
introduced by the programmable pipeline. 14

2.2 The GPU pipeline represented as a stream model [Owe05] 16
2.3 Comparison of different texture mapping methods to improve the appar-

ent detail of a flat polygon [MM05] . 17
2.4 Rendering different levels-of-detail using billboards and impostors 25
2.5 Horde3D screenshots . 27

3.1 The work phases of a rendering application 33
3.2 The scene database and the concept of instances. Arrows indicate refer-

ences between objects. 35
3.3 An example of a scene database . 36
3.4 Example configuration of the Pace renderer. Optional components are

indicated by dashed lines. 37
3.5 A threading model for CPU-level concurrency 43
3.6 A rendering loop with minimal CPU/GPU concurrency (simplified sketch) 44
3.7 A rendering loop with good CPU/GPU concurrency, but increased latency

(simplified sketch) . 45
3.8 The Pace renderable interface class . 47
3.9 The Pace renderer interface class . 48
3.10 The Pace render pass interface class . 49
3.11 Screenshot from the game Powder, which uses one pass for the back-

ground, one for the playfield and the ball, and one to display the score in
the upper right corner. 50

3.12 The Pace render target interface class 53
3.13 The Pace render queue interface class . 54

6

3.14 The Pace material interface class . 56
3.15 The Pace buffer class . 58
3.16 The Pace render job class . 58
3.17 The Pace submission list class . 59
3.18 The Pace mesh and submesh classes . 60
3.19 The Pace camera class . 61

4.1 Model of communication between an application and the graphics hard-
ware through OpenGL . 66

4.2 The Pace vertex buffer, vertex format and vertex attribute classes 68
4.3 An example of a vertex buffer and its vertex format 68
4.4 Performance comparison of hardware instancing and pseudo instancing

[Tha]. The x-axis displays the number of instances, while the y-axis shows
the frame rate in Hz. Measured on an Nvidia Geforce 8800 GTX. 72

4.5 Structure of a material sort key . 73

5.1 Pacemark scales well with the number of instances, as the throughput of
instances per second stays almost constant. 78

7

1 Introduction

In the development of video games and similar real-time graphics applications, the rapid
display of densely populated scenery is a common requirement. Examples include urban
environments, forests, or complex, artificially created compounds of objects for simula-
tion purposes. The term crowd rendering describes the process of creating computer-
generated images of scenes composed of large numbers of spatially close objects. While
crowds are usually thought of as assemblies of people, crowd rendering is content agnos-
tic. In many applications, human characters are the main digital content, but there are
also cases where models of flora or more abstract entities are subject to crowd rendering.
Figure 1.1 shows two scenes from a video game, which contains large fantasy landscapes,
abundantly covered with vegetation, and populated by crowds of enemy creatures. The
user can freely move his character and the virtual camera around in the game, while the
rendered image is updated in real time.

In this context, the term real-time refers to an application which displays interactive
graphics. The interactivity eliminates some possibilities for optimization which can
be exploited in offline rendering, like high frame to frame coherency and precomputed
lighting and visibility information. The images shown in figure 1.1 were generated by a
video game system in less than 1

60th of a second to give the player the smooth impression
of real motion.

Massive real-time crowd rendering is a very demanding discipline of computer graphics.
It puts an enormous strain on the rendering hardware, and also provides a challenge for
digital content artists, as they are required to put out an immensely huge and varied
collection of detailed and possibly animated models which satisfy the increasing demand
for visual realism.

A typical 3D video game made for current PCs and game consoles spends most of the

8

Figure 1.1: Screenshots from the game ”Kameo: Elements of Power”

9

available processing power on rendering. Graphics rendering hardware is usually a hy-
brid system consisting of a central processing unit (CPU) and a graphics processing unit
(GPU), which communicate via a system bus. To be able to give graphics in games more
and more detail, the performance of these components has been and will be steadily im-
proved by hardware vendors. Judging from graphics hardware currently available to
consumers, it is apparent that all vendors share the insight that building faster proces-
sors is less cost-efficient than employing parallel architectures with multiple processing
cores. Although these platforms offer immense processing power, a disadvantage of par-
allelism as of now is that many developers have not yet grasped the implications of
these architectures. Most of the libraries and tools developed for single-threaded graph-
ics programming are not capable of exploiting the full potential of parallel hardware.
Furthermore, it is hard to write applications which run equally well on different kinds
of parallel platforms.

Thus, graphics application developers are looking for a rendering solution which hides the
complexity of parallel hardware while providing scalability. This means that by adding
additional processing cores, an application should be able to render proportionally more
3D content at the same speed. Unfortunately, it is currently impossible to achieve high
scalability without optimizing a specific application to its target hardware architecture.
A generic rendering solution might be able to scale well in many cases, but not for all
applications on each platform. This problem is caused by the fact that a renderer is a
pipelined system whose performance is limited by its bottleneck, which is the slowest part
- or stage - of the pipeline. The location of the bottleneck depends both on the application
and on the rendering hardware. Thus, careful balancing is required between the pipeline
stages to efficiently utilize the hardware. For example, to reduce the load on the geometry
processing stage, the application could choose to employ a more sophisticated culling
method, which is responsible for rejecting invisible geometry, so it does not have to be
processed by the remaining pipeline stages. However, this would probably increase the
load on the culling stage.

While GPUs have received a tremendous performance increase over the last decade, their
CPU counterparts have not been able to keep up [Owe05]. The GPU is usually used
for rendering only, but the CPU is additionally tasked with updating animation state,
capturing user input, driving potentially artificially intelligent agents and a plethora of
other functions inherent in games or simulation applications. Shifting the load from the
CPU to the GPU is not trivial, as the GPU is not a general purpose processor. GPUs

10

also vary in their computational abilities and rendering features, which makes it difficult
to implement the same techniques for different models of graphics cards.

This thesis addresses these problems by analyzing popular approaches to real-time ren-
dering and their feasibility for displaying crowd-level scenes on modern graphics hard-
ware. The results are devised into a concept of a parallel renderer, Pace (Parallel Ar-
chitecture for rendering Crowded Environments). Its focus lies on flexibility to account
for the wide range of graphics applications and hardware architectures. Pace does not
force a certain rendering strategy upon the application, but is designed to be extensible
and customizable, and very lightweight. Its purpose is to serve as an architecture for re-
search on parallel rendering and for applications requiring a very customizable rendering
solution.

Chapter 2 starts with an overview of rendering concepts, introduces rendering hardware
and presents a selection of approaches to real-time rendering and their inherent limita-
tions. This leads to the description of the design of Pace in chapter 3. It is supplemented
by chapter 4, which addresses notable implementation details. Chapter 5 shows the re-
sults obtained and compares them to the initial expectations. The conclusion of the
thesis follows in chapter 6, which also mentions possibilities of further work and research
on the subject.

11

2 State of the Art

This chapter presents currently used methods for rendering large, detailed scenes in real
time. It contains an overview of rendering hardware and software, but tries to place
more emphasis on the general concepts than describing specific techniques. Its purpose
is to show why real-time computer graphics is such a complex, yet interesting field of
software development. It also motivates some of the design decisions which are the topic
of the next chapter.

After an introduction to graphics hardware and the rendering pipeline, different program-
ming interfaces are presented and compared. At the end of the chapter, two existing
crowd rendering solutions are briefly introduced.

12

2.1 Rendering Hardware

It is obvious that when discussing rendering hardware, the current state of the art will
already be obsolete in a matter of months. Thus, the following sections will not mention
any details of specific hardware. Instead, they provide an overview of the currently
common rendering hardware architecture in consumer PCs.

When comparing graphics hardware of the last generation with the current one, there is
always a steady increase in rendering performance. These improvements are currently
accompanied by a shift in design principles. As power consumption and chip complexity
were reaching a critical mass, hardware vendors looked for alternatives to higher clock
speeds and transistor counts. Splitting the workload into chunks to be processed in
parallel by multiple processors effectively increases the overall performance. It also
increases efficiency in terms of cost and energy usage, which is important to the hardware
manufacturer.

These changes occurred in the designs of both CPU (central processing unit, the main
processor) and GPU (graphics processing unit, the processor on the graphics card).
These are detailed in the following two sections.

2.1.1 CPU

The common CPU is a general purpose microprocessor, which is used to execute all
kinds of program code, which makes its design very complex. Up to today, the majority
of software which runs on it is still inherently sequential, and makes extensive use of
branching. This means it does not employ data parallelism and contains highly non-
linear and unpredictable execution paths.

To be used to full capacity, multicore CPUs require explicit parallel design during initial
development, or redesign of existing applications. A graphics application which fully
utilizes a single core has the potential to reach a multiple of its rendering speed by
splitting the computation into more than one thread of execution. Such an application
is said to scale well, or possess high scalability, if it can make use of all available cores
on a system to increase performance proportionally.

13

Geometry

Geometry Processing

Fragment Processing

Frame Buffer

Rasterization

Textures

Vertices

Fragments
(Pixels)

Vertex Programs

Fragment Programs

Figure 2.1: Simplified overview of the GPU pipeline. Dotted lines indicate features in-
troduced by the programmable pipeline.

What is still seen as potential today, may become a requirement soon, as the roadmaps
of CPU manufacturers predict [Int, HKO07]. The amount of cores per CPU is expected
to increase, which will lead to a transition from multicore to manycore. Using only one of
those many cores is simply a waste of resources. Worse yet, a single-threaded application
might actually run slower on future CPUs, as manufacturers might reduce the clock
speed of the cores to improve efficiency and reduce costs. In contrast, multithreading
can improve performance even on single core computers.

2.1.2 GPU

Figure 2.1 shows the general structure of the pipeline contained in a typical GPU. Its
operation can be divided into vertex - and fragment-processing.

A vertex is the basic primitive of geometry in computer graphics. It represents a point in

14

space and forms primitives such as lines or polygons when connected to other vertices1.
A collection of vertices and primitives is called a mesh.

The term fragment is used to describe the single elements of images generated on the
graphics card. The more general term pixel (short for picture element) can also be used,
but while pixels only describe color, a fragment may have further attributes such as
depth.

Geometry processing includes the transformation of vertices according to the viewer’s
position and the direction she is facing, which when combined are referred to as camera
space (see [AMH02], section 2.3.1). It is followed by culling and clipping of the triangles
formed by the vertices, and their projection into two dimensional screen coordinates for
rasterization.

Culling is the process of rejecting parts of the geometry which are not visible to the
viewer. Clipping checks visible triangles for intersections with the screen boundaries.
The parts outside these boundaries are cut off before the triangles are sent further down
the pipeline. Rasterization transforms vertex data into fragments, which are stored in a
fragment buffer. The frame buffer is the main fragment buffer which will be presented
to the user at the end of the rendering period, which is generally referred to as a frame.
The faster a frame can be rendered, the more often the image of the scene is updated per
second. This is important for real-time graphics to give an impression of fluid animation
and to reduce the time - or latency - from receiving user input until the results are
displayed on screen. The terms frame rate or frames per second (FPS) are often used
to describe the performance of a graphics application.

Compared to a CPU, the GPU is a very specialized processor [Owe05]. It is not de-
signed to run general purpose programs, instead it offers a stream programming model
[KRD+03], which is shown in figure 2.2. It consists of streams of data (shown as ar-
rows) and kernels which process the data (shown as boxes). A stream is defined as an
ordered set of data of the same type, e.g. vertex data or fragment data. Kernels perform
relatively simple operations on the data elements of the stream, but carry them out
very fast. They are also usually massively parallel, which means that they can process

1The preferred primitive type is the triangle, which is the simplest form of a polygon. Thus, most
GPUs only handle triangles and their hardware drivers have to subdivide polygons into triangles on
the fly before they enter the geometry stage. Therefore, it is recommended for graphics applications
to exclusively work with triangles.

15

Vertex
Program

Triangle
Assembly

Clip/Cull/
Viewport

Rasterization

Fragment
Program

Composite
Frame
Buffer

Vertex Stream
Transformed
Vertex Stream

Triangle
Stream

Screen Space
Triangle Stream

Texture

Unprocessed
Fragment Stream

Fragment
Stream

Pixel
Stream

Image

Figure 2.2: The GPU pipeline represented as a stream model [Owe05]

many elements of a stream simultaneously. They cannot, however, just operate on sin-
gle elements, but only on entire streams. Thus, stream processing provides very high
throughput for large data sets, but also has very high latency, which is the time taken
by a single stream element from the beginning of the GPU pipeline to the end.

The first hardware iterations had hardwired geometry and fragment processors, which
were later replaced by programmable units. These two different architectures are called
the fixed pipeline and the programmable pipeline, respectively. A fixed pipeline has a
configurable state, which means that parts of it can be (de-)activated or slightly altered.
The possibilities are very limited, though, and changing the pipeline’s state may cause
it to be flushed, which means that no further rendering is done until the state change is
applied. The programmable pipeline, while inheriting the structure of the fixed pipeline,
introduced programmable shader units (or shaders), to give more flexibility to certain
rendering stages. These units are able to execute shader programs, which are short, spe-
cial purpose programs for either vertex-, fragment-, or unified shading [Ros06]. Shading
is a general term for the modifications to graphics primitives, which usually includes
computing color and position, as well as user defined properties (see [AMH02], sections
2.3.2 and 4.3).

Shader programs are still quite restricted compared to general purpose programs running
on a CPU. The number of instructions per program is limited, and control structures
such as branches and loops are expensive. Memory access is also restricted, and using
data structures like lists which require pointers are not supported directly. However, due
to these restrictions, shader programs lend themselves very well to parallel execution.
As each program works on separate vertices or fragments, there are no synchronization

16

Figure 2.3: Comparison of different texture mapping methods to improve the apparent
detail of a flat polygon [MM05]

issues and a very high scalability can be achieved.

Additional input to the GPU pipeline are texture maps (or textures), which are applied
to polygons to give the impression of more detailed geometry (figure 2.3). There are
different kinds of texture maps which contain colors, normal vectors, or height values.
Combined with shader programs, the visual appearance of almost any material can be
simulated in a graphics application.

The combination of texture maps, shader programs, and shading parameters is called a
material. This term is often used in digital content creation tools, shading frameworks
such as RenderMonkey, as well as in the specification of COLLADAFX [Col].

2.1.3 The Graphics Rendering Pipeline

Möller and Haines describe the graphics rendering pipeline in [AMH02], chapter 2. It is
divided into 3 stages:

1. The application stage

2. The geometry stage

3. The rasterizer stage

17

Each stage can be a pipeline in itself. In the majority of cases, the application stage is
executed on the CPU, and contains coarse culling and sorting, as well as other object
level updates. The geometry and rasterizer stages are usually implemented on the GPU,
as illustrated in figure 2.1. The rasterizer stage includes rasterization and fragment
processing as substages.

On the transition from the application to the geometry stage, the CPU and the GPU need
to communicate. This is made possible by an interface called the graphics application
programming interface (API), which is the topic of the next section.

2.2 Graphics API

There are several approaches of interfacing CPU and GPU, which differ in their level
of abstraction from the hardware and the functionality they offer. They also focus on
different types of applications (also called the clients of the API).

The suffixes library, API, and engine are often used when describing a rendering sys-
tem. They are added to label it as a piece of reusable software and hint at its purpose,
scope, and complexity. As these are very general terms, they are not to be taken lit-
erally, and often they are used to describe the same thing. A software developer most
probably has a good grasp of the terms library (a reusable implementation of a certain
functionality) and API (an interface to a library). A generally accepted definition of the
term engine is a functionally exhaustive framework, which attempts to take away most
of the implementation complexity from an application and put the functionality into a
library to be reused. Generally, a library is usually much smaller in scope as well as in
functionality compared to an engine. Engines are very large software packages which
can be composed of multiple libraries which depend on each other. A game engine most
probably has libraries for graphics, audio, input devices, management of digital content
files (assets) and more.

Porcino [Por] distinguishes between four approaches to real-time rendering:

• State management libraries

• Scene management libraries

18

• Shader systems

• Submission engines

The following sections explain the differences of these systems and which application
types they support best.

2.2.1 State Management Libraries

In real-time rendering, state management libraries (or APIs) are usually the basis on
which a rendering system is built, since they provide the lowest interface level to the
hardware driver, which in turn is the interface to the hardware itself. The state manage-
ment API and the hardware driver are closely coupled, and the implementation of the
API is usually provided by the driver vendor. The API can be used directly by a graphics
application, but this is usually only done for prototyping scenarios. Properly engineered
applications benefit from additional levels of abstraction from the rendering hardware,
which are offered by the systems described in the next 3 sections. They provide platform
independence, robustness and usually an API which is easier to use.

There are two common APIs in the consumer PC graphics market which can be used
as interfaces to the GPU: Direct3D and OpenGL. Direct3D was designed to be used in
games and is a component of the game programming API DirectX. It is not officially
supported on any other platform than Microsoft Windows and Microsoft’s game consoles
Xbox and Xbox 360. OpenGL, however, represents a mature industry standard and is
available on all common PC operating systems, as well as embedded devices in the form of
OpenGL ES. There are ways to emulate the Direct3D API on non-Microsoft platforms
by layering it on top of OpenGL, but they are not yet ready for use in mainstream
applications. Thus, Direct3D is only cited here for reference, and the focus of this thesis
and the accompanying implementation lies solely on OpenGL.

Both of these interfaces represent the underlying hardware as a state machine. A set
of states, called the render states, determine how the GPU will transform and rasterize
geometry. Render states are addressed using identifiers which are defined by the API.
They contain a value which can be of various data types, such as:

19

• Flags: either true or false, toggling certain functionality of the rendering pipeline,
such as lighting or texture mapping

• Enumerations: similar to flags, but with more alternative values, such as culling
front-facing primitives, or back-facing ones, or none at all

• Numerical values: usually to be specified in a given range, like translucency, which
ranges from 0 to 1

Usually multiple render states control different aspects of the same GPU functionality.
Translucent rendering (also called alpha blending, see [AMH02], section 4.5) is configured
by a flag to enable or disable it, enumeration states which control the type of blending
between two pixels, and the numerical alpha value, which determines the amount of
translucency.

An application usually associates a mesh with a set of states to be set before it is
rendered, which define its material and other rendering attributes. However, changing
states is prone to being expensive, although redundant changes to the same state may
be caught and ignored by the API. There are states which are cheaper to modify than
others, however, this depends both on the hardware and the optimization strategies
employed inside the API. Usually, states which are represented by numerical values,
such as the colors used for shading, inflict less of a performance penalty than switching
a flag- or enumeration state [For]. Such states toggle the operation of fundamental parts
of the hardware. Changing them means bringing the graphics processor to a full stop,
flushing its pipelines and reconfiguring the internal data flow.

The reason for this difference in cost of state change is that numerical values are more
like factors in an equation, while flags are similar to branches in a program. Altering a
factor in an equation does not change the way the result is computed, unlike following a
different branch in a program. However, setting a numerical state to zero can have the
same effect as clearing a flag.

This leads to the conclusion that avoiding costly state changes is a way to improve
application performance. In newer iterations of the mentioned APIs, render states can
be grouped to state blocks to reduce the number of function calls to the API by setting
multiple states at once. This reduces function call overhead and allows the API to
internally optimize the blocks for the layout of the GPU pipeline.

20

After setting the appropriate render states, the application issues a draw call, which is
a call to an API function which takes a list of geometric primitives to render. The API
sends them to the GPU, which then transforms, shades and rasterizes them according
to the render states. Similar to state changes, it is advisable to keep the amount of
draw calls to a minimum to avoid overhead caused by communication between CPU and
GPU. However, the separation of CPU and GPU can be an advantage here, as they
are able to run concurrently most of the time. This means that the state management
library may return from the draw call as soon as possible, so the CPU can continue to
run asynchronously. To avoid synchronization to the GPU, the application should not
query render states between draw calls.

To reduce the number of draw calls, clients should attempt to send as much geometry for
each call as possible. A technique called instancing also helps keeping the overhead of
draw calls low by passing transformation data for meshes as parameters to the shading
units. Instancing can also be performed completely on the GPU (hardware instancing,
see section 4.2.4). A separate list of vertices needs to be specified for this, in which each
vertex contains the position of a mesh instance. The draw call then instructs the GPU
to draw one instance per vertex in this auxiliary list. Hardware instancing is a relatively
new technique, though, and is not widely supported yet.

2.2.2 Scene Management Libraries

Scene management libraries such as OpenSceneGraph [OSG] or Ogre 3D [Ogrb] provide
another layer of abstraction on top of the state management API. They implement a tree
structure where objects can be stored and grouped to express hierarchical relationships.
This structure is called a scene graph, and is one of the most popular data structures in
computer graphics ([AMH02], section 9.1.4).

Besides geometrical objects, scene graphs can store transforms, render states, levels-of-
detail, bounding volumes, light sources, audio sources, and other data which is relevant
to a scene. For example, a racing game would use a scene management library to manage
the models of all cars participating in a race. Each car would be represented by a node
just below the root of the tree structure. A car’s geometry, shaders, engine sounds, and
particle effects, as well as the model of the car’s driver would be attached as children of

21

the car’s node. The hierarchy becomes deeper as the node of the driver model in turn
contains child nodes for shaders and geometry.

To render the scene, the scene graph is traversed in depth-first order, while handling each
visited node depending on its run-time type. Geometry nodes are tested for visibility
and eventually rendered, and render states and light sources are applied using the state
management API before rendering the geometry contained in their child nodes.

Scene graphs are a very flexible concept which can be used to model the contents of a
scene at a very abstract level. However, it is easy to abuse the tree structure to store
application data which completely unrelated to rendering. Scene management libraries
often encourage this by design, as they contain large hierarchies of node classes, advo-
cating the mental theme that everything should inherit the node interface, so it can be
managed by the library. The graph slowly converges into a catch-all data structure, with
no clear separation of model and view representations [GHJV94]. Thus, encapsulation
and modularity of the system suffer and the maintenance of an application becomes
harder. To prevent this from happening, an application developer must take care that
a separate model data structure is created for the application to work with, while the
scene graph is built and updated to reflect it in a one-way relationship. Ideally, the
application would not even know that there is a scene graph at all, it should only be
aware of a view component it has to inform of changes to the data model.

While scene graphs are a great tool for expressing hierarchical relationships, they are not
optimal for storing large amounts of varied kinds of objects, which might have different
relationships depending on context. It is impossible to design a graph which expresses
relationship of spatial location, visibility, render state modifications and lighting equally
well. This leads to duplicated information or dependencies which are not modelled by the
scene graph, making it a lot more complex to manage and traverse than initially intended.
This can result in decreased performance and maintainability. Forsyth [For] advocates
the use of specialized, explicitly synchronized trees to express different concepts and
relationships.

22

2.2.3 Shader systems

Shader based systems are common in the domain of offline, non-real-time rendering.
Their strengths lie in sophisticated lighting systems and superior levels of visual quality
for non-interactive scenes. Their usage of shaders must not be confused with the shader
programs executed in the real-time shading units of graphics hardware. They provide
more control and are less restricted in terms of shading instructions, while trading speed
for quality of the rendering output.

Applications which use shader systems include modelling tools and renderers for com-
puter generated images or movies which require photo-realistic results. Thus, shader
systems are only mentioned here for reference, and have no relevance for the purpose of
this thesis.

2.2.4 Submission Engines

Porcino [Por] describes submission engines as the best way to achieve high performance
rendering on current graphics hardware. Unfortunately, at the time of writing no publicly
available submission engines exist, and there is no circumstantial literature available on
the subject. Information on submission-based rendering was collected from internet
resources such as blog entries and mailing lists.

A submission-based renderer is a wrapper around the state management API. Objects
are rendered by passing (submitting) them to the engine each frame. The application is
responsible for the way it organizes these objects, and may choose a structure as complex
as a scene graph or as simple as a list. Additionally, it specifies composite operations,
which trigger modifications of the frame buffer as a whole during the rendering process.
Such modifications include activating, clearing, or compositing of frame buffers. As an
example, an application could separate rendering into two layers: the first contains a box
with a sky texture as the background, and the second represents the 3D environment
surrounding the camera as the foreground. The depth buffer, which is associated with
the frame buffer and stores the depth value of each fragment, needs to be cleared after
the background was rendered. Otherwise, back- and foreground layers might conflict
as they are rendered at different distances from the viewer, resulting in different ranges

23

of depth values. To achieve this, the application submits a composite operation which
clears the depth buffer in between the two layers.

Internally, the renderer will sort submitted objects to minimize state changes, especially
expensive ones. Certain state changes will cause the GPU pipeline to be flushed, which
has to be avoided as often as possible. Furthermore, to keep the pipeline filled, the GPU
has to be continuously fed with draw calls. This ensures the highest possible utilization
of the graphics hardware.

As mentioned in section 2.2.1, the cost of state changes is hardware-dependent. However,
the client can give hints in form of sorting preferences to the renderer. If the client
specifies a composite operation after submitting a sequence of objects, the renderer
can only sort objects within the boundaries between this composite operation and the
previous one.

Besides these constraints, the submission engine has full control over the render states
and the order of draw calls and can give an application a great deal of improved per-
formance over managing state by itself. It also gives the client the most freedom in
choosing its scene representation.

2.3 Existing Crowd Rendering Engines

The following selection of existing engines with support for crowd rendering is not meant
to be exhaustive. There are many proprietary implementations in use by video game
developers which the general public has no access to. Besides, every real-time rendering
engine can be used to draw crowds, but many of them are not optimized to do so and
will usually not scale very well with large numbers of objects.

2.3.1 Ogre 3D Extensions

The Ogre 3D [Ogrb] rendering engine is a very popular open source engine. It covers
a wide range of functionality and is by no means a dedicated crowd renderer. During

24

Figure 2.4: Rendering different levels-of-detail using billboards and impostors

Google’s Summer of Code 2006, an extension was developed which implements so called
shader-based instancing (see section 4.2.4). It was integrated into the Ogre distribution
as of version 1.4. Judging from the technical details discussed by the developers [Ogra],
the design of the extension is quite involved. It supports calculation of character anima-
tions on the GPU, including independent animations for each character. Shadows are
also mentioned, which gives the impression that the extension is not really encapsulated,
but has some dependency on the shader system used in Ogre. Instancing may thus not
be easily integrated into existing applications which feature complex shaders.

Guerrero [Gue06] approaches the problem of rendering forests by using impostors and
billboards and implements them using the Ogre framework. The impostor technique
works by rendering a mesh into a texture, which is mapped on a rectangle and drawn
instead of the actual mesh. If the orientation of the mesh towards the viewer changes
more than a given threshold, the impostor is regenerated. This reduces the load of the
GPU’s geometry stage, but at the same time often reduces visual quality. Guerrero’s
billboarding technique works in a similar way, but use different views of the same object
and puts them on rectangles which intersect in their vertical center. Blending these
rectangles over each other gives more depth to the impostor. Figure 2.4 shows how the
approach selects different rendering techniques at varying distances. This solution can
be made to scale for larger scenes by trading in worse quality of rendering, but it does

25

not make use of parallel hardware.

2.3.2 Horde3D

Horde3D [Hor] is an open source rendering system developed at the University of Augs-
burg. It is titled a ”next-generation graphics engine”. Figure 2.5 shows some visually
impressive screenshots of the engine in action, using crowd rendering to display particle
effects and to populate a scene with animated characters.

The engine is purely shader based and does not contain support for the legacy fixed
pipeline. It uses a technique called deferred lighting, which performs lighting as a sep-
arate render pass to simplify shader development and to reduce the number of draw
calls per light source. To speed up rendering, dynamic level-of-detail and vertex data
optimization are employed.

A scene graph API is used to build applications. This may impose unnecessary restric-
tions upon the user, who has to adopt this kind of scene representation. While it has
advantages in rapid prototyping scenarios, it might require some effort to wrap the data
structures to combine the engine with other middleware, or when trying to use it with
an existing code base which has its own methods of scene management. Section 2.2.2
contains a short discussion of scene graphs.

However, Horde3D’s implementation is very lightweight and seems to offer good perfor-
mance. It is not able to make use of multiple processing cores or GPUs, though.

26

Figure 2.5: Horde3D screenshots

27

3 Concept of a Parallel Crowd Renderer

This chapter contains the design of Pace, a lightweight, flexible, parallel rendering archi-
tecture targeting crowd rendering applications. From the discussion of several rendering
interfaces in chapter 2, the submission-based concept was chosen as the initial design,
because of its flexibility and its focus on performance.

The opening section of this chapter analyzes which demands a hypothetical application
might make on a renderer. The results are used to motivate the requirements and goals
of Pace, which are followed by a section discussing its design. It specifies and motivates
the most important classes and data structures.

28

3.1 Case Study

Video games are a common field of application for real-time rendering. Consider a car
racing game as an example, which faces very high demand for visual realism from the
player. There are highly detailed car models to be rendered, alongside rich scenery
which surrounds the racing tracks. These are supplemented by graphics effects such as
reflections on cars, shadows cast from cars onto the scenery and vice versa, and particle
effects for car exhaust smoke and dust stirred up from the road.

While all of this is being rendered, the player is moving through the track at high speed,
which means that the virtual camera is always rapidly changing position. This makes it
difficult to adjust the level of detail without the player noticing it. It also means that
a very high frame rate is required to ensure that the player feels immediate response to
the car’s controls, and that he can react quickly to upcoming obstacles or road bends,
which requires minimum input latency.

Besides rendering, the game has various tasks to carry out during frame time to up-
date the game’s state according to user input, simulated physics, opponent’s artificial
intelligence (AI) and collision response.

To summarize, the tasks of a renderer in this kind of application are as follows:

• Manage a scene database containing models of cars, tracks and environment objects

• Render highly detailed, dynamic, close-up meshes of cars

• Render large amounts of low to medium detail, static roadside objects such as
signs, buildings, and trees

• Render special effects, like shadows and reflections

• Distribute CPU load between rendering and updating game state

These requirements are generalized in the following sections.

29

3.2 Requirements and Goals

The main design requirements were already mentioned in the introduction in chapter 1.
This section will recapitulate and refine these requirements.

3.2.1 Performance

The performance of a real-time graphics renderer is not easy to measure objectively,
as it depends very much on the content and purpose of the application. There are two
values, however, which provide an estimate of a renderer’s performance: throughput and
scalability.

The throughput (or capacity) of a pipelined system is the amount of data it can process in
a given finite time unit. The scalability of such a system is determined by the increase in
throughput it can achieve when more processing cores are added to stages of the graphics
pipeline. Cores can be added in form of CPUs or GPUs. Although the maximum number
of additional processors and graphics cards on current PCs is limited, these limitations
will be lifted more and more in the future. Throughput is always limited by the pipeline’s
slowest stage, the bottleneck. Thus, it is important that the bottleneck benefits most
from added processing power, because it defines the scalability of the whole system.
Unfortunately, the location of the bottleneck is application-dependent.

Good performance is obviously a goal of a real-time renderer, but it is impossible to
specify it exactly as a requirement. In terms of scalability, however, it is expected
from a parallel renderer to improve performance when adding more cores. This still
depends on the application’s content, because if the added hardware is not working on
the bottleneck of the rendering pipeline, there is nothing the renderer can do to improve
performance. In this case, the application must balance the pipeline to decrease the load
of the bottleneck.

30

3.2.2 Portability

Pace is implemented in C++ and is required to compile and run on the PC operating
systems Windows, Linux, and MacOS (Intel). An implementation of the OpenGL API
must be available on the target system to be able to run it.

Other software libraries which Pace depends on are listed in section 4.1. They are written
in C or C++ and are tested to work on all platforms mentioned above. In part, they
enable Pace to run on multiple platforms as they provide abstractions from hardware
and operating-system-specific APIs.

3.2.3 Functionality

The design presented in this chapter will have to account for a broad range of popular
techniques which exist in real-time rendering today.

The renderer must be able to manage a scene database composed of triangular geometry,
which is the standard form of geometrical primitives that all modern rendering hardware
is able to process. To build a scene, it must be possible to instantiate the models stored in
the scene database with a minimum memory footprint, so that high numbers of instances
of the same model are possible. These instances must be able to be moved independently
and use different materials than the original model. It should also be possible to give the
instances different sequences of animation, although this may require separate models
for each sequence.

Special effects such as shadows and reflections, as well as post-processing effects must
be possible, which require multiple frame buffers and composite operations.

3.3 Pace

Pace was developed to create a prototyping environment for parallel rendering. As
graphics applications use different scene representations with varying degrees of size

31

and complexity, it was designed to be easily adaptable. Unlike a large, monolithic
graphics library, which tries to be as feature-complete as possible, Pace was planned
to be extended to accommodate to the application’s needs, not the other way around.
Thus, it was not of high importance to provide an API which hides the complexity of
the rendering process from the application. It was of high importance, though, that all
major parts of the library are loosely coupled, so that the application can pick certain
functionality it needs, but discard the parts it does not. Being a research project, its goal
is to be a rendering toolkit, not a fully functional engine. Nevertheless, throughout this
chapter, Pace will often be referred to as a library instead of a toolkit, simply because
it comes as a library in the software development sense of the term.

3.3.1 Overview

An application using Pace, like any real-time application, can be separated into two
phases: initialization and rendering loop. Figure 3.1 shows these phases and the sub-
phases they contain.

In the initialization phase, the scene to be rendered is put together. This phase occurs
each time the application fills a scene with content, and before rendering the first frame.
In the racing game example, this phase is entered once the player has selected a racing
track, and it includes loading the models of all cars, the track, and the environment, as
well as audio clips and other necessary data.

The rendering loop is the real-time phase of the application. Each iteration of the loop
displays a complete frame and computes the state of the scene at the current time. Time
is measured using a real-time clock provided by the system. This means that the longer
a frame takes to render, the further the game state will progress during one iteration
of the loop. The application has to take care of parametrizing the movement of objects
with the amount of time passed since the last iteration.

The reason for separating the two main phases is the performance-critical nature of the
rendering loop. Since one iteration of the loop has to complete in a time span of 20
milliseconds or less, many applications try to do as much processing as possible before
entering the loop. However, initialization and rendering loop might overlap in certain

32

Preprocessing Scene setup

Display

Input

Logic

Application
specific

Rendering loopInitialization

Figure 3.1: The work phases of a rendering application

cases. If the game is about to load a racing track which does not fit into available
memory, it may choose to dynamically load content into the scene simultaneously to the
rendering loop, a process called streaming. There are many games which deliberately
choose to stream all data to be able to create large, seamless environments. This avoids
the interruptions which players have to wait through in conventional games, which con-
tain multiple levels with separate loading and gameplay phases. Although streaming is
possible using Pace, the examples in this chapter will focus on the simpler scenario of
separate initialization.

The following two sections describe the two phases in more detail and show how appli-
cations implement them using Pace.

33

3.3.2 Initialization

Crowd rendering is a challenge to the graphics hardware, because it requires large,
partially dynamic data sets to be processed by the GPU which is connected to the main
processor through a bus with relatively high latency. When designing a 3D application,
this leads to the motivation of preparing all static data at loading time. Static data is
not modified after initialization, while dynamic data is the remaining set of values which
change frequently. Dynamic data is submitted to the renderer during the real-time
rendering loop.

This separation is achieved by partitioning source data into a scene database, which
contains static data, and a dynamic data structure which references the database and is
traversed each frame, referred to as the scene (figure 3.2). The scene database is built
from the content the application wants to display, which are meshes, materials and other
assets.

In this context, an instance is a lightweight object which contains a reference to a mesh
in the database, and represents something that is going to be rendered. The additional
data an instance contains is dynamic and may change each frame, such as location and
orientation in the scene, relative to the origin. Instances can also override the material a
mesh uses. This is depicted in figure 3.2, where a material is referenced both by a mesh
stored in the database and an instance referring to another mesh. When this instance is
rendered, the geometry of the mesh will be drawn using the material referenced by the
instance instead of the one referenced by the mesh.

The initialization phase contains two subphases:

1. Preprocessing: source data (geometry, textures, shader programs) is generated
or loaded from disk to build the scene database. Appropriate data is uploaded
to the graphics hardware’s memory, while optionally being compressed to reduce
memory and bandwidth consumption. If source assets are not conforming to the
graphics hardware’s criteria, they have to be converted. For applications requiring
a database which is too large to fit into available memory, the engine can delay
loading parts of the data until they are referenced by an instance.

2. Scene setup: the application builds the scene it is about to draw by placing in-

34

Figure 3.2: The scene database and the concept of instances. Arrows indicate references
between objects.

stances in the virtual world. Placement of light sources is also part of this phase.
This phase is often hardcoded in smaller applications, but usually a level editor or
a similar tool is used to create a scene description which is read by the application.

To illustrate the preprocessing phase, the following example describes a simple, but
applicable workflow for transporting content from a modelling tool into an application.
Note that actual professional content workflows are more complex than this, and involve
additional tools between the modelling tool and the target application.

After the 3D model of an object is finished, its data must be stored in a file format which
is understood by the application. This process is called export and is separated from
the save function in the 3D modelling tool, which most often results in a proprietary,
undocumented file format.

During preprocessing, the exported file is parsed by the application, which is a process
called import. The result is a data structure which consists of various buffers for geometry
and textures, which are referenced by meshes and materials. Shader programs which are
used to implement materials are also parsed and compiled in the process.

35

Scene Database

Mesh

Vertex Buffer

Submesh

Index Buffer

Material

Shader
Program

Texture
Mesh

...

...

Figure 3.3: An example of a scene database

The Pace library provides an importer for Wavefront OBJ files [Bur], which can be
exported by most modelling tools available. The importer class obj importer parses
an input file and returns the extracted data in a mesh object. An OBJ file can con-
tain material definitions, which are also parsed, and the resulting materials are added
to the mesh. The application can freely choose where to store the mesh object, and
will probably use a standard container to do so. In fact, it could be as simple as a
std::vector<pace::mesh>, which creates an array of mesh instances. This container is
the scene database, while the mesh is one of its entries which will later be referenced by
the scene to be rendered. Figure 3.3 attempts to convey the links of this data structure
visually.

The way the scene elements are stored during scene setup depends on the application.
Simulations usually operate on a set of entities and their state, which form the simulated
world. Each entity has a visual representation which is parametrized to convey the
entity’s state. An instance of it is placed in the scene according to the entity’s position.
This is a model-view-controller system, where the set of entities are the model, the scene
and the renderer displaying it are the view, and the simulation combined with user input
represents the controller. Smaller applications often simplify this approach by combining
model and view into a single data structure, usually a scene graph. By decoupling model
and view from each other, maintainability and extensibility are improved, which usually
makes up for the additional effort required to create a clean separation of the data
structures involved.

36

OpenGL

Culling

Renderable Renderable RenderableRenderable

Application

Submission List Render Jobs

Render Pass #1 Render Pass #2

Render Queue

Renderer

Render Target

Figure 3.4: Example configuration of the Pace renderer. Optional components are indi-
cated by dashed lines.

37

At some point during initialization, the application has to create a Pace renderer ob-
ject. This is the main interface through which the contents of the scene are submitted.
An advantage of the renderer architecture in Pace is that a renderer object can be con-
figured to adapt to the scene the application wants to draw. This happens completely
dynamically, so the renderer can be reconfigured or replaced at run-time to be used for
a scene with different requirements, for example a special post-processing effect. See fig-
ure 3.4 for a simple example of such a renderer configuration. It contains the following
components, which are explained in detail in the sections 3.3.6 ff.:

• Renderable: an abstract interface to a renderable object, for example a mesh
instance. A scene is built from objects which implement this interface.

• Renderer: the origin of the rendering process, and the main interface where ren-
derable objects are submitted.

• Submission List: part of the renderer which collects renderables and transforms
them into render jobs. These are usually cached so the transformation can be done
during initialization.

• Render Job: a passive data object which contains all information required to
execute a draw call (see section 2.2.1). There can be multiple render jobs per
renderable object. Render jobs are stored independently of the renderable objects
in a read-only container inside the submission list, to be able to provide efficient,
parallel access to them.

• Render Pass: parts of the renderer which represent its configuration. A render pass
usually iterates over a list of render jobs and inserts them into a render queue. How-
ever, render passes can also implement composite operations (see section 2.2.4).

• Render Target: optional component which represents a frame buffer other than
the default one. Using a render target, the output of a render pass can be directed
into a texture, which can then be used by another render pass.

• Render Queue: as the final part of the rendering process, the render queue is
responsible for collecting render jobs from one or more render passes, sorting and
actually rendering them using the state management API.

The following section goes into more detail on how the renderer works.

38

3.3.3 Rendering Loop

During initialization, an application creates a scene which is now about to be rendered.
The rendering loop is the real-time phase of an application. It contains the following
subphases:

• Display: the contents of the scene are displayed.

• Input: user input is queried and processed.

• Logic: the application logic is executed.

• Application-specific: tasks which fit none of the other categories (see below)

The example renderer in figure 3.4 leaves the task of visibility culling to the application.
During the display subphase, the exemplary racing game iterates over its scene repre-
sentation and determines which cars, which parts of the track and which environment
objects are visible. To do this, it could use different data structures for each of these
categories, as they have unique characteristics in terms of mobility, size and geometric
complexity. Choosing appropriate data structures will accelerate the culling process,
especially with the large amounts of objects expected. Each visible scene element is
submitted to the renderer as an object which implements the renderable interface.

As part of the input phase, the game queries the state of input devices and optionally
returns collision feedback effects to them if they support it. In the logic phase, opponent
AI and car physics are updated, operating on a model of the game world which is separate
from the visual scene representation. At the end of the logic phase, the updates to the
model need to be reflected in the location or visual appearance of objects in the scene.
Application-specific tasks might include audio output and network communication, if
multiple players compete in the game via remote connections.

Listing 3.1 gives an overview how the rendering loop of the game might look like1.
For simplicity, this loop is completely sequential, and does not make use of the par-
allel architecture of Pace. It also omits the application-specific phase and the culling
implementation. A parallel version is discussed in section 3.3.4.

1The operating system namespace contains wrappers for functions which are platform-dependent.

39

Listing 3.1: Rendering loop example
bool done = fa l se ;
do {

// Logic phase : g e t wa l l c l o c k time and update game s t a t e
pace : : t imer : : t ime type time = pace : : ge t t ime () ;
update game state (time) ;

// Disp lay phase : submit a l l i n s t ance s to the renderer and draw them
std : : f o r e a ch (scene . begin () , scene . end () , s u b m i t i f v i s i b l e (r endere r)) ;
renderer−>render () ;
renderer−>c l e a r s u b m i s s i o n l i s t () ;

// Input phase : check i f the p l aye r q u i t the game
i f (operat ing sys tem : : p o l l e v e n t () == qu i t ev en t) done = true ;

} while (! done) ;

Inside the loop, the std::for each function [SGI] iterates over a sequence of elements
from the container scene, which stores the application’s scene as a list of renderable
objects. For each element, the submit if visible functor is called which submits the
element to the given renderer after determining that it is visible. The renderer is sub-
sequently instructed to draw the submitted objects and remove them after this is done,
to be ready for the next frame.

Figure 3.4 shows two sections of the display phase which potentially lend themselves
to parallelization: the culling operations in the application part, and the render passes
processing the render jobs. Culling is a prime candidate for parallel treatment, as the
visibility determination for the renderable objects is completely independent of each
other. If the renderer uses multiple render passes, only those working independently can
run in parallel. This is discussed in more detail in the following section.

3.3.4 Parallelization

The layout of the subphases of the rendering loop in figure 3.1 indicates that they might
run in parallel. This section gives a few examples of how this can be achieved using
Pace.

Due to the separation of CPU and GPU, there are three kinds of concurrency a graphics

40

application can benefit from2:

• CPU-level concurrency

• Multi-GPU concurrency

• CPU/GPU concurrency

CPU-level concurrency strives to exploit the processing power of multicore CPUs or
even multiple CPUs containing one or more cores each by using multithreaded execu-
tion. When writing applications that use OpenGL, it is important to only call OpenGL
functions from the thread which owns the corresponding OpenGL context. Such a con-
text wraps the complete set of render states and platform-specific information. Accessing
a context from other threads than the one which made it the current context is unsafe
and deemed undefined behavior. A thread may give up ownership of the context so it
can be made the current context of another thread (context switch). This of course has
to happen in a synchronized way and will not leverage parallelism. A context switch will
also cause the GPU pipelines to be flushed. An application can create multiple contexts,
which may share resources such as textures and shader programs. However, this is only
useful when rendering to separate render targets and it is unclear as to how much of a
performance gain it has to offer for crowd rendering. It is possible to split the viewport
up into smaller rectangular sections, which are rendered in parallel on multiple contexts,
and combined to form the final image. If only a single GPU is available, the OpenGL
driver has to schedule the thread’s contexts to a single hardware resource, causing per-
manent context switching. Thus, it depends on the implementation of the driver and its
interface to the hardware how well this technique performs.

A simpler, more lightweight approach is to create a dedicated OpenGL drawing thread,
and several worker threads which execute the high level rendering code of Pace (figure
3.5). As already mentioned, the context of the OpenGL thread must not be accessed
from the worker threads. To notify the drawing thread of new render jobs, these threads
either perform explicit synchronization through an implementation of locks provided by
the operating system (mutexes, semaphores), or use lock free containers where render
jobs are stored and retrieved in a producer-consumer fashion. The latter option is usually
faster, since locks cause a more significant overhead.

2Concurrency of the processors inside a single GPU is controlled mainly by the hardware and its driver
and lies beyond the influence of a normal application.

41

Listing 3.2: Excerpt of the main function of a game using Pace with multiple threads
// I n i t i a l i z a t i o n code which c r ea t e s the OpenGL con t ex t
. . .

// Create a mu l t i t h readed render queue
pace : : render queue ∗ render queue = new pace : : mul t i threaded render queue () ;

// Create the renderer thread
operat ing sys tem : : c r e a t e th r e ad (&render thread) ;

// Rendering loop o f the OpenGL thread
bool done = fa l se ;
while (! done) {

// Clear frame b u f f e r
g lC l ea r (c l e a r b i t s) ;

// Draw render j o b s
render queue−>draw jobs () ;

// Present the frame b u f f e r to the p l aye r
operat ing sys tem : : swap bu f f e r s () ;

// Synchronize wi th render ing thread us ing a semaphore
operat ing sys tem : : incremenent semaphore (next frame) ;

// Check i f the p l aye r q u i t the game
i f (operat ing sys tem : : p o l l e v e n t () == qu i t ev en t) done = true ;

}

Listing 3.3: Rendering thread example
void r ender thread () {

// Loop f o r e v e r
for (; ;) {

// Get wa l l c l o c k time and update game s t a t e
pace : : t imer : : t ime type time = pace : : g e t t ime () ;
update game state (time) ;

// Submit a l l i n s t ance s to the renderer and draw them
std : : f o r e a ch (scene . begin () , scene . end () , s u b m i t i f v i s i b l e (r ende re r)) ;
renderer−>render () ;
renderer−>c l e a r s u b m i s s i o n l i s t () ;

// Wait u n t i l the OpenGL thread i s done wi th the current frame
operat ing sys tem : : wait semaphore (next frame) ;

}
}

42

Thread owning OpenGL context (render queue)

Main Pace renderer thread

Worker threads
...

Render
jobs

Synchronisation
once frame is

completed ...

Figure 3.5: A threading model for CPU-level concurrency

To give an example, listings 3.2 and 3.3 illustrate how an application can benefit from
CPU-level concurrency. The rendering thread in listing 3.3 bears obvious resemblance
to the rendering loop in listing 3.1. For simplicity, unlike suggested in figure 3.5, there
are no worker threads used in this example. The std::for each could be replaced by
a concurrent algorithm like one of those provided by the Threading Building Blocks
library [TBB] (see section 4.1.1). This example only contains two threads, which form
a producer-consumer queue (see section 4.3.2). Thus, scalability is very limited, and an
application whose bottleneck is the CPU should make sure to parallelize the logic phase
implemented in update game state. As the display phase depends on the results of the
logic phase, they cannot run in parallel on the CPU-level. However, there are ways to
exploit parallelism through CPU/GPU concurrency.

As already described in section 2.2.1, CPU and GPU are able to work concurrently, if
there are no events which cause synchronization between them, such as context switches
or state queries. The above scenario is not able to make good use of this potential, as
figure 3.6 outlines. Most of the time, either the GPU or the CPU is idle waiting for the
other to complete its tasks. To increase the length of the concurrent period, Pace will
attempt to issue draw calls to OpenGL as soon into the frame as possible. While the
application is submitting objects, it periodically flushes the render queue when the size

43

of the submission list reaches a certain threshold.

CPU

Time

update_game_state()

submit_if_visible()
 submit()
submit_if_visible()
submit_if_visible()
 submit()
...

render()
 draw_job()
 draw_job()
 draw_job()

clear()

GPU

Idle

Rendering

Idle

Idle

update_game_state()

submit_if_visible()
 submit()
...

Frame 1
begins

Frame 2
begins

Draw calls

Synchronize

Concurrent period

Frame 1 displayed

Figure 3.6: A rendering loop with minimal CPU/GPU concurrency (simplified sketch)

By restructuring the rendering loop, it is possible to leverage CPU/GPU concurrency at
the expense of increased latency. Figure 3.7 shows the modified rendering loop, in which
the logic phase of the application is executed while the GPU is busy drawing the previous
frame. This means that the moment of time represented by the rendered image that the
player sees, has already passed. Especially for games where reaction time is crucial, this
could be a severe disadvantage. However, if the performance gain is big enough and the
frame rate improves considerably, the difference in latency might be unnoticeable. The
application should make sure to run the logic phase and other CPU-intensive code while
the GPU is busy, which happens just after the submission of the scene to the renderer
is completed.

Furthermore, events causing synchronization of CPU and GPU are an issue which has

44

Figure 3.7: A rendering loop with good CPU/GPU concurrency, but increased latency
(simplified sketch)

an influence on performance. To achieve high throughput, synchronization should only
occur when necessary. This means that during the processing of a scene, only state
changes and draw calls should be sent to the GPU, but state queries must be avoided.
In particular, calls to OpenGL’s glGet* family of functions during rendering will stall
the GPU pipelines and cause synchronization.

On a system with more than one GPU available, one context per GPU could be used
without the need to switch contexts, achieving concurrency between the different GPUs.
By dedicating a CPU-level worker thread to each GPU, and using the synchronization
model outlined above, this could improve scalability on a system whose bottleneck is the
GPU. This would require one render queue per GPU, though.

45

3.3.5 Class Structure

As Pace is written in C++, its design follows object-oriented principles. All classes
belong to one of the following categories:

• Interface: abstract classes which provide the high-level interface to the rendering
pipeline

• Implementation: classes implementing actual functionality by inheriting one or
more interfaces

• Data: classes which carry data, have no functionality, and are not meant to be
subclassed

This separation cannot always be strict, there will be implementation classes which
carry data, and there might be interfaces which provide functionality. It was introduced
because it helps in the design of the class structure during the modeling process. It
also gives the client a better grasp of which classes might be necessary to extend when
adapting Pace to an application.

The following sections will describe the interfaces and data structures of the Pace library.
Chapter 4 focuses on the implementation of Pace and contains more detail on some of
the classes described here.

3.3.6 Interfaces

The interfaces listed in this section provide the user of the library, referred to as the
client, with access to the rendering functionality. Figure 3.4 shows an example of how
some if these interfaces collaborate from a high level point of view. At the highest
level, the application communicates with the renderer, which operates on a list of render
passes. These are pushing render jobs into a queue, which sorts them and in the end
calls OpenGL functions to render them.

For rapid prototyping needs, there are default implementations for all abstract interfaces.
For example, the render pass interface (detailed in section 3.3.6) is accompanied by the

46

renderable

+first_job(): render_job

+next_job(): render_job

Figure 3.8: The Pace renderable interface class

default render pass implementation. It performs drawing of all geometry by using the
render queue interface. Special rendering techniques like the ones suggested in the car
racing game example require more sophisticated render pass implementations, but for
simple rendering, this default implementation is fully sufficient and eliminates the need
to bother with the lower-level interfaces involved.

Renderable

Figure 3.8 shows the renderable class. It represents the concept of an object which
can be rendered. Being rendered is equivalent to being transformed into a list of render
jobs, which are subsequently executed. A render job is a data structure which contains
links to all the data required to render a piece of geometry (see section 3.3.7). It has no
functionality and is designed to be as lightweight as possible. A renderable object may
end up as multiple render jobs, because it may contain surfaces of different materials.

Imagine a usual 6-sided dice, which is be created by the 3D artist using separate textures
for each side. Its geometry is stored as a single mesh, which contains 8 vertices, and 6
polygons, which come in pairs of two triangles each. Each polygon is associated with
a different texture and thus a different material. This means the dice mesh produces 6
render jobs, containing two triangles each3.

The interface through which the transformation into render jobs is exposed, consists of
the abstract methods first job and next job. first job returns the first render job of
the renderable or NULL if there are no jobs, which is an error state and is not guaranteed

3Although just a theoretical example, this would be an inefficient way to render a dice, as there is at
least one draw call per render job during rendering. A way to reduce the number of render jobs is
to cut down on the number of distinct materials. This can be done by putting multiple images into
one big conglomerate texture, while adapting the texture coordinates of the mesh’s vertices. In a
similar way, lighting properties such as surface detail, reflectiveness and transparency can be stored
in separate maps which current hardware can apply in one drawing pass to an entire mesh.

47

renderer

+submit(renderable): void

+render(): void

submission_list

1

Figure 3.9: The Pace renderer interface class

to be expected and handled correctly. The next job method returns the next render job
of the renderable, or NULL if there are no more jobs, at which point the code using the
interface must not call next job again. The next job method must also not be called
before first job.

The implementation of the renderable interface is free to choose if it holds the render
jobs permanently, or if it generates them on demand. It is intentional that the interface
specifies no container class where the render jobs are stored. This gives both the imple-
mentation and the client the choice of which container to use. There is also no indexed
access which would allow the interface to consist of just one method. The reason for
this is that there will be implementations of renderable which are itself composed of
renderables, and thus will have problems performing direct indexed access into their
render jobs.

Renderer

The renderer class (figure 3.9) represents the interface to the rendering strategy, which
describes the way in which a scene is drawn to the frame buffer at the highest level.
It contains a submission list which stores incoming renderable objects and their render
jobs (see section 3.3.7). A client can submit objects to be rendered by using the submit

method.

Once the client is finished submitting renderables, it calls the render method, which
is the abstract part of the interface. Its implementation decides how the contents of

48

render_pass

+enabled: bool

+draw(jobs:job_list,queue:render_queue &): void

render_target

+update_contents(jobs:job_list,queue:render_queue &): void

0..n

Figure 3.10: The Pace render pass interface class

the submission list are processed. A default implementation is provided, which uses
the concept of render passes to describe the rendering process in a dynamic way. Its
render method simply delegates the rendering to a list of these render passes. During
the following sections, the usage of the term renderer usually refers to this default
implementation of the interface. The render pass interface is the topic of the next
section.

Render Pass

Through the render pass interface, a renderer implementation can perform multi-pass
rendering. This is a process during which a scene may be drawn multiple times, either
completely or partially, to one or more render targets. Render targets are objects which
direct the results of rendering to a buffer which is not the frame buffer, like a texture.
The frame buffer is always the default render target, so if a render pass is not given a
render target, its jobs will be drawn to the frame buffer. As shown in figure 3.10, these
render targets are associated with the render pass during setup time. The render passes
are then added to a multi-pass implementation of the renderer interface, such as the
one shown in figure 3.4 on page 37.

During rendering, the render passes are executed in the order in which they were added
to the renderer, by calling the draw method. It receives the render jobs stored in the
renderer’s submission list. A render pass can choose to use this list or manage its own,
so it can be used to render only parts of the scene. The jobs a pass wants to render are
pushed into a render queue, which is also passed to the draw method and usually is the

49

Figure 3.11: Screenshot from the game Powder, which uses one pass for the background,
one for the playfield and the ball, and one to display the score in the upper
right corner.

same object for all passes. Note that this is the way the default renderer implementation
uses the render passes. This process is entirely customizable, which means that render
passes could be executed in parallel, and they could use dedicated render queues per
pass which work on different GPUs.

A small application which just needs to draw a scene probably needs only a single render
pass. A typical game scene however, as the one shown in figure 3.11, usually requires at
least 3 passes, which draw different parts:

1. A backdrop image, such as a sky or landscape, usually called sky dome or sky box

2. The geometry related to gameplay, the player model, and the local environment

3. A 2D overlay image displaying game status and parts of the user interface, usually
called the head-up display (HUD)

These passes require different drawing strategies, and have to be rendered in the given
order. It would be possible to push all these elements through a single render pass, and
have the render queue figure out the correct order in which to draw them. However,

50

the separation leads to less cost for sorting, and individual passes can be toggled during
run time by changing the enabled flag of the render pass class. This is useful during
development, and in case of the HUD, even to the end user.

The car racing game is another example for an application which uses such a render pass
setup. Its scene contains only the cars and environment geometry, not the sky box or
the HUD. To configure the renderer, it creates two implementations of the render pass

interface. For pass 1, a sky box pass is implemented, which is given a submission list
containing the instance of the sky box mesh. Instead of processing the list of render jobs it
gets from the default renderer, it only puts the contents of its own submission list into the
render queue and flushes it. Furthermore, the pass uses only the orientation of the view,
not the location, so the sky box seems to always have the same distance from the viewer.
Pass 2 is rendered using a default render pass, which simply draws the contents of
the scene. In pass 3, a hud render pass is used, which draws its own submission list,
similar to the first pass. The list contains HUD elements like a speedometer, and the
place of the player as well as his lap time. It uses an orthogonal projection which ignores
depth. This means that no perspective view is used and all objects appear flat and at
the same distance to the viewer. The game must make sure that the passes are added
to the renderer in the correct order.

This is just a simple example, and current games use much more complex rendering
phases. The application programmer has to decide how he creates a set of render passes
which are capable of rendering the scene the way he wishes. This can be seen as the ren-
derer’s configuration. It can be modified or completely exchanged at run time, allowing
various different rendering scenarios in a single application. It can also be implemented
in a fully data driven way, which means that a content creator can write a file which
contains the configuration of the renderer, which is loaded and processed together with
the rest of the scene data.

The draw method of the render pass class is responsible for drawing a list of render jobs.
This list is treated as read-only, so there is no synchronization required if it is accessed
from multiple threads. How the jobs are drawn is completely up the implementation,
and can be done in manifold ways. To name a few:

• Direct rendering: the simplest way, where the list of jobs is drawn directly as they
come using the state management API. This bypasses the render queue and should

51

only be used in exceptional cases.

• Queue insertion: a reasonable default implementation, where jobs are inserted into
the render queue, which can sort and send them in batches to the state management
API.

• Debug drawing: instead of drawing the render jobs, extract their bounding volumes
and draw a visual representation of them to aid in the debugging of culling or
collision detection. By using wireframe rendering, which only draws the outlines
of polygons, this kind of debug information can be drawn over the existing scene
as the final render pass, to make sure that bounding objects are placed correctly.

• Post-processing: draw a subset of the jobs with special shaders to achieve some
kind of post-processing effect by blending it over the rendered frame, like glowing
or blurring of objects. The jobs might also be drawn to a texture render target,
to be used in a fragment shader which uses that texture to achieve the effect in a
succeeding pass.

• Shadowing: project the shadows of the rendered geometry into the scene and
darken the parts which receive no light from a given light source position

• Reflections: draw a reflected image of the scene, or multiple images in the case of
cube mapping ([AMH02], pp. 156-158)

This list is an indication of what can be achieved using the render pass interface. Some
of the graphics effects mentioned above are very hard, if not impossible to implement in
a single pass, due to limitations of the common GPU pipeline. Rendering shadows with
the shadow mapping method (see [AMH02], section 6.12.4) requires one additional pass
per light source: first, the scene is drawn from the view point of the light source into a
depth buffer, which stores the distance from the light source to each pixel. Second, while
rendering the actual scene, this depth buffer is projected as a texture into the scene in
such a way that it matches the direction of the light. Each pixel is tested against the
stored depth value and determined if it is visible from the light source. If not, the pixel
receives no light from it. For GPUs which do not support shadowing in hardware, this
obviously cannot be done in a single pass.

Similar restrictions apply to the rendering of reflections, where there is an extra pass
required to draw the scene from the view point of the reflecting surface into a texture
render target. This texture is then applied to the surface in the primary render pass.

52

render_target

+update_contents(jobs:job_list,queue:render_queue &): void

Figure 3.12: The Pace render target interface class

With the explanations of these techniques, it becomes evident that there are often de-
pendencies between the passes. To keep the implementation simple, this is not explicitly
modeled in the current design. Instead, the client is expected to add the render pass
instances to the renderer in the correct order.

An additional usage for render passes are what Porcino [Por] describes as the composite
operations of a submission engine (see section 2.2.4). A render pass implementation may
not render anything at all, but instead combine the results of passes which are already
completed into one render target. This, again, can happen in different ways:

• Combine the colors of the pixels using a compositing operator, such as addition or
modulo

• Combine separate tiles of the final image which have been rendered in parallel on
multiple GPUs

• Combine separately rendered sets of objects, using the depth buffer to select the
visible pixels

The way the render passes interact with the render targets is detailed in the next sec-
tion.

Render Target

An implementation of the render target interface (figure 3.12) directs a list of render
jobs to a render buffer which differs from the default render target (most probably the
frame buffer of the OpenGL context). Such a buffer might be a texture, which can be
used in other passes to implement reflections, or show a different view of the scene on a
virtual monitor screen.

53

render_queue

+insert_job(job:render_job): void

+flush(cam:camera): void

Figure 3.13: The Pace render queue interface class

The racing game example could use a render pass with a texture render target to add
a rear view mirror. The render pass is associated with a different view, and draws it
into a texture, which has a lower resolution than the frame buffer. In the main render
pass which draws the game view, the texture is mapped onto the frontal geometry of
the mirror.

As mentioned in the previous section, render targets collaborate with render passes
during the drawing of a pass. The method update contents is called from the render
pass, receiving the same arguments (render jobs and a target render queue) as the draw

method of the pass. The task of the implementation is to bind an appropriate target
render buffer if necessary, and then to proceed putting render jobs into the supplied
queue, either by itself, or by using the render pass implementation.

Render Queue

The render queue interface (figure 3.13) buffers render jobs which are ready to be drawn
by the underlying state management API. In most cases, its implementation is the only
part of the renderer which communicates directly with the API4. Therefore, it is the
place where most API-specific optimizations will be applied.

The render queue sorts the incoming render jobs in a way which makes best use of the
graphics pipeline by minimizing the amount of expensive state changes. The differences
in cost of various state changes have been mentioned in section 2.2.1, while section 4.3.1
delves into the methods which can be used to implement state sorting. Although sorting
is inevitable to efficiently utilize the GPU, the prioritization of state changes depends
very much on the actual hardware and may change from one generation of graphics

4Implementations of the material interface, which is covered in the next section, are also managing
render states, but their interface is used only by the render queue, as it binds materials before
executing render jobs.

54

accelerators to the next. Therefore, the render queue is designed as an interface, whose
implementation can be exchanged at run-time. An application can supply different
render queue implementations for various system configurations and select the most
appropriate one during initialization.

Additionally, the sorting scheme has to consider the coarse distance of objects from
the viewer. This is motivated by two distinct problems: translucent rendering and
minimizing overdraw. Both problems are connected to depth buffering, which is the
process of performing depth comparisons for each fragment before it is written to the
frame buffer (see [AMH02], section 15.1.3).

If translucent geometry is rendered in an arbitrary order, depth buffering may lead to
artifacts in the final image. Assume two distinct, translucent objects at different distance
from the viewer, but on the same line of sight, so they overlap when drawn to the frame
buffer. If the object further away is rendered after the nearer one, it will not appear in
the image at all, as it is cancelled out by the depth comparison, although it should be
partially visible through the other object. The most obvious solution to this problem is
to render in two passes:

1. Draw opaque objects

2. Draw translucent objects, in back-to-front order as seen from the camera5

By using a rendering technique called depth peeling, the sorting can be avoided (see
[AMH02], section 4.5). It is implemented using fragment shaders which operate on
several layers of depth, using multi-pass rendering. Each pass peels away the next depth
layer and tests fragments against the new depth, which results in a rough back-to-front
order. The drawback of this method is that it offers reduced depth sorting precision,
which depends on the number of passes. Using more passes increases the amount of
fragment shader overhead.

5This doesn’t solve the problem at sub-object level. The renderer cannot easily influence the order of
trianglesdrawn during a draw call. This means that during the rendering of an object, its triangles
may exhibit the same problem and cause visibility artifacts if they are not drawn in back-to-front
order. For convex, single color meshes, this can be solved by culling triangles which face away from
the viewer (back face culling [AMH02], section 9.3.1), so that no overdraw occurs during the draw
call. Meshes that do not fall in this category, and exhibit highly visible artifacts, have to be rendered
twice. Once with front facing triangles culled, and a second time with back facing triangles culled.

55

material

+pass_count: int

+bind(pass:int): void

+unbind(): void

+get_key(): unsigned int

Figure 3.14: The Pace material interface class

The second problem which sorting is able to resolve, is the reduction of overdraw. On
current GPUs, depth tests are very fast, so using them to effectively cull hidden pixels
reduces the load on the fragment shading unit. In the first drawing step sketched above,
the opaque objects may be sorted in front-to-back order. Thus, when objects overlap,
only the objects in front will be actually rendered, and those visited afterwards are
rejected by depth tests.

Besides sorting, the render queue has the task to synchronize parallel rendering with
the OpenGL API. Potentially, there are many threads which produce render jobs, which
the render queue has to store and pass on to OpenGL sequentially. Thus, a parallel
implementation of the render queue interface has to use thread-safe containers or locks
to provide synchronization.

A render passes uses the insert job method to put render jobs into the queue. When
finished, it calls the flush method, which sorts the jobs and executes a draw call for
each one. Parallel implementations might use a concurrent sort algorithm to improve
scalability of this process. The draw calls must be executed sequentially, though. See
section 4.3.2 for more details on the parallel render queue implementation.

Material

As mentioned in section 2.1.2, a material is an abstract definition of the visual properties
of a surface. The most important part of the material interface (figure 3.14) is the
abstract bind method. Its implementation is responsible for setting up render states
and binding textures and shader programs to the corresponding shading units. The
unbind method will undo any changes made to render states during the bind process.

56

Shader based applications require only one material implementation for the shading
language in use, e.g. GLSL [Ros06], to represent almost any material by employing the
programmable pipeline.

Section 3.3.2 stated that materials are created during the preprocessing stage and are
stored as a part of the scene database. Most often, they are referenced by the meshes
which make up the database. Once an instance which references such a mesh enters the
renderer, the reference to the materials of the mesh are stored in its render jobs.

To support the render queue when sorting jobs to reduce state changes, materials gen-
erate sort keys. The method get key returns an integer value which is similar to a hash
value for the material and can be used to sort render jobs by material (see section 4.3.1).
A render job caches this value so it does not need to be calculated each frame.

The pass count attribute can be set to a value greater than 1 to express that the
material has to be rendered in multiple passes. This is required in the rare case of a
material which the GPU is incapable of shading pixels with in a single pass. Most of the
time, this happens if there are not enough texture units available. However, this case
has to be accounted for by the material implementation. Generic implementations like
glsl material will deliberately ignore this value, and binding the material will fail if
the hardware is ill-equipped. In case of a pass count value greater than one, the default
implementation of the render queue will call the bind method repeatedly, passing the
number of the current pass, followed by a draw call, which renders the geometry.

3.3.7 Data Structures

This section discusses classes which manage the data passed between the interfaces
presented previously.

Buffer

Buffers are container classes which encapsulate the storage of data which is potentially
located in the memory of the graphics card, also called video memory or VRAM. As

57

buffer

+size: size_t

+stride: size_t

+usage: usage_t

+count(): size_t

+lock(): void *

+unlock(): void

vertex_buffer index_buffer pixel_buffer

Figure 3.15: The Pace buffer class

render_job

+key: unsigned int

+distance: float

vertex_buffer

index_buffer

material

matrix

Figure 3.16: The Pace render job class

there are several kinds of data types eligible for VRAM storage, as well as different
methods for VRAM allocation and access, the buffer class (figure 3.15) also contains
an abstract interface part.

The data types stored in buffers are vertices, indices, and texture map contents (mostly
pixels). These are handled by the vertex buffer, index buffer, and pixel buffer

classes, respectively. Each of these adds information about the specific format of the
stored data to the buffer interface. See section 4.2.2 for a more detailed discussion of
buffer formats.

58

submission_list

+add(renderable): void

+clear(): void

renderable

render_job
0..n

0..n

Figure 3.17: The Pace submission list class

Render Job

As mentioned previously, a render job is usually part of a renderable object. The
render job class (figure 3.16) references all objects involved in a draw call:

• Vertex buffer

• Index buffer

• Material

• Transformation matrix

The steps involved in executing a render job are presented in section 4.3.

Introducing the render job class instead of only working with the renderable interface
throughout the rendering pipeline is motivated by two related arguments: being a very
lightweight class, render jobs can be stored as an array of structures, which can be
processed in a linear, cache-friendly fashion. Furthermore, because the submission list
manages the render jobs, they are guaranteed to be read-only during the rendering
process, which makes them suitable for fast, unsynchronized parallel access.

Submission List

The submission list class (figure 3.17) is a container for instances of renderable

objects, as well as their render jobs. As displayed in the figure, it is a renderable itself.

59

mesh

+center: point

+radius: float

submesh
0..n

vertex_buffer

1

index_buffer

material

1

1

Figure 3.18: The Pace mesh and submesh classes

This means that submission lists may contain other submission lists. This can be used
to build rendering sequences which are optimized and sorted during the preprocessing
phase. If a given set of renderable objects is known not to change state during rendering,
the application can put them into a precompiled submission list. It will generate sort
keys and store them in the render jobs, so this does not need to be done during rendering.
The jobs are also sorted prior to rendering, which reduces the effort to sort during the
real-time phase. The list can be submitted to the renderer like any other renderable
object.

The render jobs cached in the submission list can be directly read by the renderer.
However, if one of the contained renderables changes its contents and this results in a
different set of render jobs, the submission list has to be cleared and all renderables must
be resubmitted.

Mesh and Submesh

The mesh class (figure 3.18) is a data structure which is part of the scene database (see
section 2.2.4). It is composed of a vertex buffer and a list of submeshes. Additionally,
it carries information about its bounding volume, in form of the attributes center and
radius, which describe the smallest enclosing sphere of the mesh’s geometry. This
information is used for visibility culling and collision detection. See the next section on
how culling can be implemented.

Splitting up the mesh into submeshes is motivated by the dice example given in section
3.3.6. The dice mesh has 6 unique materials assigned to its sides. To represent this, the

60

camera

+projection_matrix: matrix

+view_matrix: matrix

+look_at(eye:point,target:point,up:vector): void

+observe(center:point,radius:float): void

Figure 3.19: The Pace camera class

mesh object has 6 submesh objects, each with its own material and index buffer. Each
index buffer is used to index into the mesh’s vertex buffer to build the triangles of the
respective side of the dice. For example, the index list (0, 1, 2) describes a triangle which
consists of the first 3 vertices in the vertex buffer. There are several different types of
index lists, which are explained in [AMH02], section 11.4.5. An index buffer is simply an
array containing a sequence of indices, and has a primitive type, which tells how these
indices have to be interpreted to form triangles or lines.

It is important to note that the submeshes are fixed and can only index the vertex buffer
of the mesh. This means that a single mesh cannot represent a 3D model of an object
whose parts can move relative to each other, like a car and its wheels. Though they are
connected, separate meshes have to be used to render the car’s body and each wheel. To
model such a relationship of connected meshes, an application usually uses some form
of parent/child relationship. A scene graph (see section 2.2) is an example for such a
structure. It ensures that when the body of the car is moved, the wheels are moved
along with it.

Character animation may state an exception to the above rule, as there are techniques
like skinning and morphing, which allow to animate the parts of a single mesh inde-
pendent of each other. These are special cases however, and the degrees of freedom for
movement are limited. Also note that breaking down an object into multiple meshes may
increase visibility culling accuracy, while the amount of draw calls necessary to render
the object is usually similar.

61

Camera

Cameras in computer graphics are a representation of the user’s viewpoint and the di-
rection at which he is looking into the scene. The camera class (figure 3.19) features
the minimum requirements to represent such a model. By specifying two transformation
matrices, OpenGL calculates the resulting view direction and projection of 3D coordi-
nates on the screen. Thus, those matrices are called the view matrix and the projection
matrix, respectively.

The default render pass implementation has an associated camera instance, which is used
to set the view- and projection matrices before flushing the render queue. Alternatively,
if only a single camera is used, these matrices can be set by the application prior to
rendering.

The camera can also be represented as a capped pyramid, called frustum. It has 6 planar
sides, which can be used to test if an object is visible by the camera (see [AMH02], section
13.13). The frustum can be extracted from the view- and projection matrices, which
is done at the beginning of a new frame, after the position and direction of the viewer
are known. Then, for each object in the scene, the bounding volume of its geometry
is tested for visibility against the frustum planes. Invisible objects do not need to be
submitted to the renderer for the current frame. Depending on the camera position,
its field-of-view, and the distribution of objects, this can reject more than half of the
contents of a scene.

62

4 Implementation

The rendering architecture outlined in the last chapter already hinted at how most of the
functionality would be implemented. This chapter supplements the concept by giving
details on solutions to problems which were encountered during the implementation
phase.

It opens with the description of the libraries which were used to support the parallel
renderer in areas which are outside the scope of this thesis.

The remaining sections cover various parts of the rendering library which were non-
trivial to develop, motivate implementation-specific decisions, and explain some technical
details which were only briefly mentioned in the previous chapters.

63

4.1 Software Libraries

Pace uses some excellent open source libraries to support it in areas which are either
platform-specific, or too broad to be covered by a lightweight framework.

These libraries are, in no particular order:

• Intel Threading Building Blocks: task-based threading interface, parallel algo-
rithms and thread-safe containers. The next section explains the motivation for
choosing TBB for parallelizing Pace.

• VectorMathLibrary: part of the open source Bullet physics engine [Bul]. It provides
vector arithmetic functions for C and C++ applications. It contains optimizations
for several hardware platforms, including PowerPC, PlayStation 3, and x86 PC
with SSE.

• Simple Direct-Media Layer (SDL): used for portable graphics and input manage-
ment, as well as portable access to threading functionality.

4.1.1 Intel Threading Building Blocks

The Intel Threading Building Blocks (TBB) library [Rei07, TBB] provides a C++ inter-
face to task-based parallelism. Tasks in TBB are objects which carry out small pieces of
work independently of each other. A scheduler distributes tasks among worker threads
provided by the operating system. By working with tasks instead of threads, parallel
programming becomes more intuitive. It is easier to divide an algorithm into separate
tasks than to attempt to create a threaded model of execution.

Because task-based parallelism works at a higher level than threads, it is easier to make
it scalable. If enough tasks are available, TBB can map them onto as many worker
threads as possible, usually equal to the number of cores in the system. The number of
worker threads is decided at run-time, so the application does not have to be recompiled
to run faster on a different system with more cores available.

Pace uses TBB’s lock-free containers to create a producer-consumer queue for the parallel

64

implementation of the render queue (see section 4.3.2). It also uses its parallel algorithm
parallel for to parallelize visibility culling. It is a parallel version of std::for each

which creates tasks for ranges of elements within the iterated sequence and executes
them concurrently. The size of these ranges can be adjusted to balance parallelism and
cache usage, as it is very efficient to work on elements of a range that fit into the cache
at once.

4.2 OpenGL Crowd Rendering

To get the best performance out of the graphics hardware, one has to look behind the
abstract view of the rendering pipeline provided by the state management API. Figure
4.1 shows how an application communicates with the underlying hardware. There are
several points which are critical to rendering performance.

4.2.1 Efficient Drawing

The number and cost of draw calls depend on the OpenGL commands used. There are
several ways of issuing draw calls:

• Immediate mode: The least efficient way to draw is immediate mode. It uses one
or more calls per vertex and requires the driver to create a copy of the data each
time. While it is the easiest method to use, immediate mode does not scale well
for large data sets and is not recommended for crowd rendering applications.

• Display lists: For static geometry with vertex data that does not change frequently,
display lists can be used to accelerate drawing. A display list records immediate
mode draw calls and compiles them into an atomic unit, which can be issued to
OpenGL for rendering in a single call. The driver is allowed to reorder the calls
inside the list to achieve better performance. It will also most probably transfer
the vertex data it has collected to the local memory of the GPU (video memory,
or VRAM), which it can access much faster than standard system memory.

• Vertex buffer objects (VBO): To give the application more control over the storage
of vertex data, the vertex buffer objects extension was added to OpenGL. They

65

Driver

OpenGL

Hardware

Application

State changes Draw calls State queries

DMA transfers

Figure 4.1: Model of communication between an application and the graphics hardware
through OpenGL

combine the speed improvements of display lists with an efficient way to manage
dynamic geometry data. Section 4.2.3 contains a detailed discussion of VBOs.

The large number of draw calls required to draw a crowd scene can be countered by the
usage of hardware instancing techniques (see section 4.2.4), which accelerate the drawing
of large numbers of instances using vertex programs on the GPU. Hardware instancing
can be combined with each of the options above.

66

4.2.2 Vertex Buffers

The usage of vertex- and index buffers follows the paradigm of retained mode rendering,
as opposed to immediate mode1. In this context, retained mode means that vertices
passed to OpenGL are not drawn immediately. Instead, after submitting vertex data in
a buffer, the application enters its rendering loop and sends a request for parts of the
buffer to be drawn. The time span in between can be used by the graphics driver to
optimize the data in any ways it sees fit. Additionally, it can store it in VRAM, which
the GPU has fast access to. Both techniques should generally increase rendering speed.
However, retained mode is significantly more involved from an application programmer’s
point of view, when compared to the simple immediate mode API. Furthermore, it is
difficult to provide methods to render dynamic vertex data. This is a disadvantage for
applications which modify their meshes on the vertex or triangle level. The data in
the buffers has to be updated each frame, which gets in conflict with the optimizations
just mentioned. Buffer contents which are regularly changing should not be optimized
between rendering calls, as this would lead to more computation cost than the results are
actually worth. There is also a cost for transferring the data to VRAM which happens
over a comparatively slow system bus.

Vertices can contain several types of information about the geometry, called attributes.
Attributes are attached to vertices to influence the way the geometry is to be rendered.
Some attributes are very common, such as position, normal vector, and texture coor-
dinates (see [SWND05], chapters 2 and 9), so they are part of the OpenGL standard.
There are other standard attributes, but they have little significance when using the
programmable pipeline. Shader programs have lead to the inclusion of generic vertex at-
tributes. They can be used to store arbitrary data accessible by a vertex shader program
to compute lighting or influence rendering in user defined ways.

To account for these possibilities, the Pace vertex buffer interface lets the client specify
a vertex format (figure 4.2) object, which contains the description of the attributes used
by the stored vertices. The vertex buffer is just a continuous block of memory, in which
vertices are stored one after the other. Each vertex is subdivided into one or more
attributes, which most often contain a set of float values. Figure 4.3 shows the contents
of an exemplary vertex buffer.

1Scene management libraries are often called retained mode APIs, which makes it an ambiguous term.
It is used here strictly in relation to buffer objects.

67

vertex_format

+stride: size_t

+get_attribute(identifier:string): vertex_attribute

vertex_attribute

+identifier: string

+type: type_t

+offset: size_t

+stride(): size_t

0..n

vertex_buffer

+draw_elements(index_buffer,start:size_t,
 count:size_t): void

1

Figure 4.2: The Pace vertex buffer, vertex format and vertex attribute classes

Position

1.0

x

4.2

y

0.0

z

Vertex 0

Normal vector

0.0

x

1.0

y

0.0

z

Position

Vertex 1

Normal vector

0.0

x

1.0

y

0.0

z ...
7.5

x

3.3

y

1.1

z

identifier = "normal"
type = type_float
offset = 12

_____________________normal_attribute

identifier = "position"
type = type_float
offset = 0

_____________________position_attribute

stride = 24
(2 * 3 * sizeof(float))

_____________________: vertex_format

Figure 4.3: An example of a vertex buffer and its vertex format

68

To store and retrieve values from a vertex buffer during preprocessing, an instance of
the vertex attribute class provides an attribute’s offset, which is its location relative
to the start of the vertex in bytes, and its stride, which stores the number of bytes the
attribute occupies. The location of an attribute of the vertex n, given the vertex stride
s and the attribute offset o, can thus be calculated as n× s + o.

4.2.3 Vertex Buffer Objects (VBO)

Vertex buffer objects [VBO03] are a variety of OpenGL’s buffer objects. The purpose of
buffer objects is to encapsulate data to increase transfer speed and give the hardware
more control over it. A well known kind of buffer object is the texture. After the creation
of a buffer object, the client receives its identifier, which is an integer value. Using this
identifier, the client can bind the buffer to the OpenGL context, and modify the data
stored inside it. During rendering, the buffer must also be bound when used, so the
GPU can use the identifier to access the buffer data.

To access a VBO, its contents can be mapped into system memory. The client receives
a pointer to the memory location, and can then write to it. This happens as described
in the previous section. Afterwards, it is unmapped and the pointer to the memory
becomes invalid. The driver transfers the data to VRAM and the vertex buffer is ready
to be used for rendering. If the buffer contents are not modified after the initial transfer,
this results in a much better rendering speed than client side vertex buffers in system
memory allow. However, if the contents are dynamic, and need to be updated at least
every few frames, there is less performance to be gained. Furthermore, VRAM is a
limited resource, so if all of it is already allocated for texture and vertex data, the VBO
will remain in system memory. The OpenGL driver has control over the allocation, so
it will try to keep frequently used VBOs in VRAM, while swapping out data which was
not referenced for a longer period of time.

The usage attribute of the buffer class (see section 3.3.7) is an enumeration type which
defines how the buffer will be used, which is important when creating a VBO. There are
several usage scenarios represented by the enumeration, which differ in the way the data
is accessed by the CPU:

69

Enumeration value Written Read Storage

static Once Frequently System memory or AGP
dynamic Frequently Frequently AGP
static write only Once Never VRAM
dynamic write only Frequently Never AGP
dynamic discardable Each frame Never VRAM

AGP (Accelerated Graphics Port [Mac01]) is a high speed bus which connects the graph-
ics card to the PC motherboard. It offers higher bandwidth than older busses, but has
been surpassed by the PCI Express bus. The term AGP memory for 3D graphics still
remains in use, though. AGP memory is sort of a compromise between system memory
and VRAM storage, and is especially useful for data which has to be read by the CPU
during rendering. Using AGP means that while the data remains in system memory, it
is stored in a way that allows the graphics card faster access to it. Note that if a buffer
is stored in VRAM, it can still be read by the CPU, but this will trigger a very slow bus
transfer. Thus, it is important to specify the appropriate usage option when creating a
buffer.

Usually, static write only will be the most frequently used option, as it guarantees fast
rendering, and most vertex data in a game will not be modified after it was loaded. For
dynamic vertex buffers, dynamic write only is the best option regarding performance.
If the client needs to read back vertex data from a buffer, it might consider to keep an
extra copy of it in system memory for this purpose.

Despite their name, VBOs can also be used to store index data. To access the contents
of an index buffer, it is mapped into system memory exactly like a vertex buffer. The
application now only needs to know the size of an index (usually either 2 or 4 bytes),
which it can retrieve from the stride attribute of the buffer.

Binding a VBO for rendering is an expensive state change. To reduce the number of
times the VBO needs to be switched, multiple vertex buffers can be stored in a single
VBO, which requires adding an offset value to the buffer address during rendering so it
points to the start of the actual buffer. During the initialization phase, an application
may not know the size of all vertex buffers combined when allocating memory for a VBO.
To address this problem, Pace offers the opengl memory manager class, which manages

70

VRAM using a first-fit memory allocation scheme.

4.2.4 Hardware Instancing

Hardware instancing (also called shader-based instancing) is used to decrease the number
of draw calls required to render large crowds. As stated in section 2.2.1, draw calls cause
overhead as they require the CPU and the GPU to communicate. The overhead can
be reduced by ensuring that as little data as possible has to be transferred from system
memory to the GPU. Still, when drawing large sets of instances with no state changes
in between, a draw call per object wastes precious CPU time.

Usually, there is little data which differs from one draw call to the next. This data
usually contains the position and orientation of the instances. By submitting this data
up-front, which is similar to buffering vertices, hardware instancing makes draw calls
very cheap. Pure hardware instancing uses a buffer object to store these values, which
is then transferred to VRAM. To draw the instances, a single draw call is sufficient.
Instead of the function glDrawElements, which is used to draw regular vertex buffers, the
extension function glDrawElementsInstancedEXT must be used. The function receives
the number of instances to be drawn. Internally, the GPU then executes the draw calls
while incrementing an instance identifier value, which starts at 0. This value can be
read by the vertex program from a special parameter. Using this value as an index,
the program can read the per-instance values from the corresponding buffer object.
Using the extension, the maximum number of instances in one draw call is 1024. The
application should make sure that most of these instances are actually visible from the
current view.

The extension is only available on graphics cards supporting OpenGL 2.0, which is
currently not yet wide-spread. A hardware instancing technique which works on older
graphics cards uses shader parameters to store per-instance information. This technique
is also called pseudo-instancing [Zel04]. Figure 4.4 shows the difference in performance
between the techniques, which is impressive, especially when compared to using no
instancing at all.

71

Figure 4.4: Performance comparison of hardware instancing and pseudo instancing
[Tha]. The x-axis displays the number of instances, while the y-axis shows
the frame rate in Hz. Measured on an Nvidia Geforce 8800 GTX.

4.3 Render Queue

The render queue is the most low-level part of the Pace rendering pipeline. As discussed
in section 3.3.6, it directly works with the state management API and is thus responsible
for utilizing the GPU the best way possible. The following two sections explain concepts
which are used to achieve this, which are render state sorting and parallelization.

4.3.1 Sorting by Render State

Section 2.2.1 already explained that it is advisable to minimize the amount of render
state changes when using a state management API. In Pace, render states are hidden
behind the abstract material interface. To know the best order of execution for the
incoming render jobs, the render queue can use their sort key, which is stored as a 32
bit integer value. This sort key is generated by the material’s implementation of the
get key method.

As an example, the GLSL material implementation uses the identifier of its shader
program as the lower 8 bit part of the sort key. This way, all render jobs with the same

72

1 0 1 1 1 0 1 0 1 1 0 1 1 0 1 0 0 0 2 1 0 1 0 0 0 0 0 0 0 0 0 1

D i s t a n c e t o c a m e r aB a c k - t o - f r o n t o r d e r f l a g S h a d e r p r o g r a m i d e n t i f i e r

:)

Mos t s i gn i f i can t b i t s l eas t s ign i f can t b i t s

Figure 4.5: Structure of a material sort key

shader program are rendered in succession. The other 24 bits of the key are used for
depth sorting. If a client of the GLSL material uses translucent rendering, he must set
the requires back to front order attribute of the material to true. This will raise
the most significant bit of the sort key, and cause the translucent render jobs to be
drawn last2. The remaining bits in between are used to store the most significant bits of
the render job’s distance attribute, which contains the distance of the instance to the
camera for the current frame. A combined sort key is illustrated in figure 4.5.

Using a sort algorithm such as std::sort, the job queue can be sorted like this:

std : : s o r t (j obs . begin () , j obs . end () , &compare job by key) ;

The compare job by key function is defined by the header file of the render job class.
TBB provides a parallel version which is called parallel sort and has the same sig-
nature as above. This algorithm is used in the TBB implementation of render queue,
which is detailed in the next section.

4.3.2 Parallelization

The parallel implementation of the render queue uses TBB and its lock-free contain-
ers (see section 4.1.1). Their usage was decided based on the argument that locking
techniques such as mutexes or semaphores are slower than lock-free methods ([Rei07],
chapter 5). The tbb render queue uses a concurrent queue, which is a lock-free con-
tainer offering a first-in-first-out queue interface.

2Note that this does not work correctly with intermediary submission (see section 3.3.4). If the client
requires this feature, it needs to use a separate render pass for translucent objects.

73

The queue contains job buckets, which are little else than ordinary lists of jobs. The rea-
son to avoid storing render jobs directly in a concurrent queue is that the render queue
can operate on the buckets’ lists without synchronization. The only time synchronized
access is required is when pushing/popping buckets from the queue3.

During rendering, the render passes send jobs to the render queue, which stores them in
a bucket. When the render pass flushes the render queue, it pushes the bucket into the
bucket queue. Meanwhile, the OpenGL thread has called the draw jobs method of the
render queue, as shown in listing 3.2 on page 42. The task of this method is to sleep until
buckets arrive. On such an event it pops the bucket from the bucket queue to process
it. This is a standard producer-consumer queue, with the render passes representing the
producers and the render queue being the consumer.

3Note that this optimization is only feasible if render passes are not executed in parallel. Future versions
of Pace might thus have to use synchronization on each queue access or several queues which feed a
central queue (divide-and-conquer).

74

5 Results

In this chapter, the goals of Pace are examined in terms of performance and flexibility,
while it is discussed how close Pace has come to achieve them.

Regarding the performance of Pace, an artificial test application called Pacemark was
constructed and measured. For each test, the raw throughput was determined in in-
stances per second as well as triangles per second. Using a run-time profiler implemented
for use in Pace applications, an application profile was generated and analyzed. The pro-
filer is used to measure the time spent in certain areas of an application, and outputs
how much these areas consume of the frame time. This results in a clear indication of
the location of an application’s bottleneck, and was used to give an estimation of the
scalability of Pace.

Pacemark loads a mesh from a file and generates a regular, three-dimensional grid of
instances from this mesh. The default mesh, which was used to compare the application
on different machines, is a box which contains 8 vertices and 6 submeshes. This mesh
requires 6 draw calls to render, of which each one draws only 2 triangles. The intention of
using this particularly simple kind of mesh was to shift the bottleneck of the application
to the CPU, to be able to measure scalability when using a multicore CPU.

The following table shows the throughput of the default scene of Pacemark on different
hardware and operating systems. The default scene consists of 8,000 instances of the
box mesh. Instances per second means actually rendered instances, about 78% of the
scene is removed by visibility culling. Note that the values for frames per second (FPS)
and instances per second are not comparable to a real application, because geometry and
scene structure are constructed in a very unusual way. The comparison was performed
to see which factors influence the frame rate the most.

75

CPU GPU OS FPS Instances/sec.

1 2x 2.2 GHz Geforce 8600 GT Windows XP 67 118,000
2 2x 2.2 GHz Geforce 8600 GT Ubuntu Linux 43 75,000
3 2x 2.0 GHz Mobility FireGL 5200 Windows XP 42 74,000
4 1x 3.0 GHz Geforce FX 5500 Ubuntu Linux 26 46,000
5 4x 2.0 GHz Geforce 7800 GTX Ubuntu Linux 56 99,000

Performance in this test seems to primarily depend on the GPU and its driver, and the
profiler confirms this. On system 1, the largest part of the frame time is consumed in the
SDL function SDL GL SwapBuffers. This call is responsible for displaying the contents
of the frame buffer on screen. During most of the time spent in the function, the CPU
is waiting for the GPU to finish rendering.

With the graphics card in this system, it is not possible to process enough instances to
make the CPU the bottleneck. Even with a scene consisting of 1,000,000 instances, one
third of the frame time is spent waiting for the GPU. Obviously, the GPU is overwhelmed
by such a large scene, and it needs about 2 seconds to render a single frame. Yet, the
CPU has lots of time to spare, and the operating system shows that both cores are at
about 70% of their capacity. This makes it hard to determine scalability on the CPU
level.

By replacing the VBO implementation of the vertex buffer, which contains the Open-
GL draw call, with a dummy implementation which doesn’t draw anything, the bot-
tleneck is shifted to the render queue. The most time is spent sorting render jobs and
binding materials before drawing a job. The latter task must be executed serially, but
the sorting is parallelized by using TBB’s parallel sort algorithm, which uses a par-
allel quicksort. This improves CPU-level scalability and leads to a performance increase
of 15% for a scene of 64,000 instances on a machine with 4 cores. Besides the remaining
serial part of the render queue, the rendering loop now scales quite well and keeps 4
cores running at almost 90% capacity, which leads to an overall 200% frame rate in-
crease compared to single-threaded execution. However, consider that this is a very
contrived example and as soon as the GPU bottleneck factors into the equation, the
gains of multithreading are diminished.

Nevertheless, this demonstrates that once GPUs are fast enough to shift the bottleneck
to the CPU part of the graphics pipeline, Pace will be able to accelerate applications on

76

multicore CPUs by using task-based parallelism for collecting and sorting render jobs, as
well as visibility culling. These parallelization efforts are also of use for current real-world
applications which use the CPU extensively. Such applications gain more CPU time to
spend by using multiple cores in certain periods of the display phase. For CPU-limited
applications, it is also important to exploit CPU/GPU concurrency by performing their
calculations when the GPU is busy (see section 3.3.4). If the GPU starves because the
renderer is not able to execute draw calls at the right time, the overall frame rate will
suffer.

However, profiling of Pacemark uncovers that not all OpenGL drivers actually give the
application the opportunity to benefit from CPU/GPU concurrency. In fact, only system
1 actually executes draw calls asynchronously on Windows XP. The same system running
Ubuntu Linux using recent drivers does not exhibit this behavior, and this might be a
reason why the frame rate is lower. As mentioned in section 3.3.4, Pace is able to issue
draw calls from a separate thread, so the other parts of the display phase as well as the
update phase can run concurrently, regardless of this shortcoming. It is recommended
to install the latest version of the OpenGL drivers available for the target machine, as
driver-level concurrency is still able to improve performance by a small margin.

Figure 5.1 shows that the throughput of instances per second is only marginally influ-
enced by the actual number of instances rendered. This proves that Pace is able to cope
with very high numbers of instances internally. Again, this is very application-specific,
and it is impossible to make an absolute statement whether Pace is fast or slow compared
to existing rendering engines. It depends on many aspects of the application, e.g. how
it provides its geometry, the data structures used for culling, as well as the amount of
GPU load caused by shader programs. But as Pace is very flexible and configurable, it
can be used to balance the graphics rendering pipeline. Hardware instancing could be
used by implementing a render queue which supports it, but the application still has to
adapt its vertex shaders to use it. Thus, hardware instancing is not a feature of Pace,
but it can be easily implemented and used for a given application. This is an advantage
over the ”black box” principle of other renderers, which try to get good performance out
of a generic scene description, without the option to benefit from the knowledge of the
application designer.

Creating applications using Pace is certainly more involved than using a high level scene
management library or game engine, but they benefit from the lightweight structure as

77

Figure 5.1: Pacemark scales well with the number of instances, as the throughput of
instances per second stays almost constant.

well as the customizable implementation and the possibility to make use of almost any
rendering concept possible.

Additionally, Pace offers a few interfaces which abstract OpenGL features such as VBOs,
including video memory management, and GLSL shader programs, and handles OpenGL
error states transparently. It also simplifies the usage of vertex and index buffers and
contains all necessary data structures for scene database management. Furthermore, it
contains utility classes to provide debug logging and code profiling, which are required
for most graphics applications.

Pace compiles on Windows using the MSVC and MinGW compilers, and on Linux and
MacOS X using the gcc compiler. On all compilers, the code is completely free of
compiler warnings, even on the highest possible warning levels.

78

6 Conclusion

In this thesis, a flexible parallel rendering toolkit, Pace, was introduced to approach the
problem of rendering scenes containing large amounts of objects (crowds). Motivated by
a description of the current state of the art in graphics rendering hardware and software,
a concept was developed for a submission-based renderer. Such a renderer is able to
drive an underlying state management API, such as OpenGL, to utilize the available
graphics hardware to maximum capacity.

To feed the renderer, the usage of a scene database was advocated, which contains the
applications 3D content, including meshes and materials. It was also stated that it is
important to manage separate data structures for the scene database, the scene itself,
and the model of the application. The scene contains instances of the contents of the
scene database and is submitted to the renderer. The model is used to represent the
internal state of the application, and is synchronized with the scene to be displayed by
the renderer.

On the basis of a case study, the integration of the rendering loop into the application
was demonstrated. In this context, several kinds of concurrency for parallel rendering
were discussed. It was shown how to leverage CPU-level concurrency and CPU/GPU
concurrency using Pace. CPU-level concurrency turned out to have no effect on the
rendering itself, as most of the work is currently done on the GPU. Most CPU-limited
applications use the CPU for many things besides rendering, so separate parallelization
effort is required to make them scalable. Applications which are GPU-limited, however,
will not benefit from additional CPU cores at all, although they can still use Pace to
achieve CPU/GPU concurrency and possibly more potential for GPU pipeline balancing
using its flexible renderer.

The design of Pace can be considered stable. Parts of the implementation are still lacking,

79

but will most probably be improved when being used more extensively. The interface
is expected to be flexible enough even for very demanding applications, and the run-
time configurable renderer allows very fast testing turnaround times and provides useful
debugging features.

It is important to note that most of the flexibility of Pace lies in its design, not its
implementation. Most of the code which implements a certain functionality is very en-
capsulated, simple, and often even trivial. There are few dependencies between these
implementations, and on their own, they provide almost no options for customization.
But through the combination of these small blocks of code, a very flexible system is pos-
sible. During the development of Pace, modularity was always preferred over versatility.
Sections 3.3.6 and 3.3.7 show that most classes have a very simple interface and few
dependencies on other classes.

Future improvements could include spatial data structures to accelerate visibility culling.
Flat, linear data structures like grids can be traversed in parallel very well and should also
be able to speed up collision detection and other spatial queries required for games.

Multi-GPU concurrency is considered possible using Pace, but was not yet implemented.
For applications which make extensive use of independent render passes, this should
improve scalability considerably. In combination with spatial data structures, it could
be possible to subdivide a scene to be rendered simultaneously on multiple cores using
separate GPUs, while compositing the results into a single frame.

Pace was not yet used in a real-world application. It will become the replacement for
an existing, serial rendering backend of the game engine which was used to create the
game Powder (see figure 3.11). It is also planned to be used as a testbed for research on
parallel rendering.

80

Bibliography

[AMH02] Tomas Akenine-Möller and Eric Haines. Real-time Rendering. AK Peters,
second edition, 2002.

[Bul] Bullet physics library. Website. http://www.bulletphysics.com, last vis-
ited March 23, 2008.

[Bur] John Burkardt. Wavefront object files (.obj) reference. http://people.

scs.fsu.edu/~burkardt/txt/obj_format.txt.

[Col] COLLADA. Website. http://www.khronos.org/collada, last visited
March 14, 2008.

[For] Tom Forsyth. Blog of Tom Forsyth. Website. http://www.eelpi.gotdns.
org/blog.wiki.html, last visited March 19, 2008.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, 1994.

[Gue06] Paul Guerrero. Rendering of forest scenes. Report, 2006. http://www.cg.

tuwien.ac.at/research/publications/2006/G_P_06_RFS.

[HKO07] Mark Hummel, Mike Krause, and Douglas O’Flaherty. Protocol enhance-
ments for tightly coupled accelerators. Technical report, AMD, Inc., 2007.

[Hor] Horde3D. Website. http://www.nextgen-engine.net, last visited Feb. 23,
2008.

[Int] Intel Tera-scale computing research program. Website. http://www.intel.
com/go/terascale, last visited March 17, 2008.

[KRD+03] Ujval J. Kapasi, Scott Rixner, William J. Dally, Brucek Khailany, Jung Ho
Ahn, Peter Mattson, and John D. Owens. Programmable stream processors.
IEEE Computer, pages 54–62, 2003.

81

[Mac01] Dean Macri. Fast agp writes for dynamic vertex data. Game Developer,
pages 36–42, May 2001.

[MM05] Morgan McGuire and Max McGuire. Steep parallax mapping. I3D
2005 Poster, April 2005. http://www.cs.brown.edu/research/graphics/
games/SteepParallax/index.html.

[Ogra] Ogre 3D Instancing, Crowd Rendering. Website. http://www.ogre3d.org/
wiki/index.php/SoC2006_Instancing, last visited Feb. 26, 2008.

[Ogrb] Ogre 3D. Website. http://www.ogre3d.org, last visited Feb. 14, 2008.

[OSG] OpenSceneGraph. Website. http://www.openscenegraph.org, last visited
Feb. 14, 2008.

[Owe05] John Owens. Streaming architectures and technology trends. In GPU Gems
2. Addison-Wesley Professional, 2005.

[Por] Nick Porcino. The Four S’s of Realtime Rendering. Website. http://

meshula.net/wordpress/?p=42, last visited Feb. 14, 2008.

[Rei07] James Reinders. Intel Threading Building Blocks. O’Reilly Media, 2007.

[Ros06] R. J. Rost. OpenGL Shading Language. Addison-Wesley Professional, 2nd
edition, 2006.

[SGI] std::for each reference. Website. http://www.sgi.com/tech/stl/for_

each.html, last visited March 23, 2008.

[SWND05] Dave Shreiner, Mason Woo, Jackie Neider, and Tom Davis. OpenGL Pro-
gramming Guide. Addison-Wesley Professional, 5th edition, 2005.

[TBB] Intel Threading Building Blocks (Intel TBB). Website. http://www.

threadingbuildingblocks.org, last visited March 23, 2008.

[Tha] Benjamin Thaut. OpenGL instancing (english translation). Website. http:
//blog.benjamin-thaut.de/?p=29#more-29, last visited March 23, 2008.

[VBO03] Using vertex buffer objects. Whitepaper, 2003. http://developer.nvidia.
com/object/using_VBOs.html.

[Zel04] Jeremy Zelsnack. GLSL pseudo-instancing. Technical Report, 2004. http:

//developer.download.nvidia.com/SDK/9.5/Samples/samples.html.

82

