
Universität Kassel

Bachelor Thesis

An Asynchronous Backup Scheme
Tracking Work-Stealing for
Reduction-Based Task Pools

presented to
Department of Electrical Engineering and Computer Science
Research Group Programming Languages/Methodologies

Lukas Reitz
33211934

Kassel, September 7, 2018

Examiners:
Prof. Dr. Claudia Fohry
Prof. Dr. Gerd Stumme

Contents ii

Contents
List of Abbreviations iii

Statutory Declaration iv

1 Introduction 1

2 Background 4
2.1 APGAS Library . 4
2.2 Hazelcast Library . 5
2.3 APGAS_GLB . 6
2.4 FTGLB . 8
2.5 IncFTGLB . 9

3 Algorithm 10
3.1 Overview . 10
3.2 Steal Backups . 14
3.3 Regular Backups . 14
3.4 Asynchronism . 14
3.5 Recovery . 15
3.6 Comparison . 16

4 Implementation 18
4.1 Steal Backups . 18
4.2 Asynchronism . 19

5 Experiments 20
5.1 Setup . 20
5.2 Unbalanced Tree Search . 20
5.3 Betweenness Centrality . 21
5.4 Synthetic Benchmarks . 21
5.5 Configuration . 21
5.6 Results . 23
5.7 Discussion . 27
5.8 Correctness . 28

6 Conclusions 29

Bibliography 30

Appendix 33

List of Abbreviations iii

List of Abbreviations
MTBF Mean Time Between Failures

GLB Global Load Balancing framework [24]

FTGLB Fault tolerant GLB framework [15]

IncFTGLB Incremental FTGLB framework [4]

LocalFTGLB New framework from this thesis

PGAS Partitioned Global Address Space model

APGAS Asynchronous Partitioned Global Address Space library [22]

APGAS_GLB “APGAS for Java” variant of GLB [16]

UTS Unbalanced Tree Search benchmark [13]

BC Betweenness Centrality benchmark [5]

DynamicSyn Synthetic benchmark resembling UTS [4]

StaticSyn Synthetic benchmark resembling BC [4]

Statutory Declaration iv

Statutory Declaration

I declare on oath that I completed this work on my own and that information which
has been directly or indirectly taken from other sources has been noted as such.
Neither this nor a similar work has been published or presented to an examination
committee.

Kassel, September 7, 2018
Lukas Reitz

1 Introduction 1

1 Introduction

Fault-tolerance is becoming more important as the size of parallel systems grows.
Assuming a Mean Time Between Failures (MTBF) of 100 years per processing unit,
a system consisting of 100,000 processing units will experience three failures per day
on average [3].
A common approach to fault-tolerance is checkpointing [7]. It regularly saves a

working state of the computation in memory or on disc. System-level checkpointing
saves all process data, and thus imposes no additional burden on programmers to
achieve fault-tolerance. In contrast, application-level checkpointing saves selected
data only, and thus reduces the backup volume. On the backside, application-level
checkpointing causes burden on the application programmer, which can be reduced
by implementing it in a reusable library [15].
Checkpointing can be either coordinated or uncoordinated. In coordinated check-

pointing, all computation units must agree on a time to write a backup. In un-
coordinated checkpointing, the units write their backups individually at different
times.
Parallel computations are often divided into subcomputations, called tasks, and

implemented with a task pool. A task pool is a pattern of parallel computing,
in which the tasks are processed by several computational units, called workers.
Each worker has its own local pool, from which it takes out tasks, and into which
it inserts newly generated tasks. Two established techniques for load balancing
with task pools are work-sharing and work-stealing [1]. In work-sharing, overloaded
workers give tasks to others. In work-stealing, workers with empty pools steal tasks
from others.
The task pool pattern is well-suited for application-level checkpointing, because

tasks are appropriate units for restoring a computation. We will later save in our
backups the local pool contents, and a partial result, which reflects the results of
previous computation.
An example for a library utilizing the task pool pattern is the Global Load Bal-

ancing (GLB) framework. GLB realizes a reduction-based task pool, i.e., each task
has a result, and the overall result is computed by reduction from task results. GLB
is based on the lifeline scheme, which was developed for the parallel programming
language X10 [18]. X10 and the lifeline scheme operate in a Partitioned Global

1 Introduction 2

Address Space (PGAS) setting. The PGAS model describes a cluster as a number
of places. A place is a part of system memory together with some computational
resources. Usually one place corresponds to one node. Each place can access the
memory of all other places, but local accesses are faster.
The Asynchronous Partitioned Global Address Space (APGAS) model adds

asynchronism to PGAS by incorporating tasks, called activities. Activities can
be spawned locally or remotely, and in a synchronous or asynchronous way. In
APGAS, execution starts at place 0. Later, the computation spreads to other places
by spawning remote activities.
GLB was ported in two variants to the “APGAS for Java” parallel programming

library [16], which implements the APGAS model. The variant used in this thesis
deploys cooperative work-stealing, i.e., a thief sends out steal requests and waits for
an answer. The answer can contain tasks, but can also be a reject message indicating
that the victim has no tasks to share. It is called APGAS_GLB in this thesis.
APGAS_GLB provides locality-flexible tasks. They are spawned by one worker on
its place, and may later be moved around to achieve load balancing.
Recent papers describe two fault-tolerance schemes for APGAS_GLB [4, 15].

Both deploy uncoordinated application-level checkpointing. Backups are written
before the computation starts, in regular time intervals, in the event of work-stealing,
during recovery, and when the computation ends. The first scheme [15] is called
FTGLB in this thesis. It updates checkpoints by replacing them with the new
state.
The second scheme [4] is called IncFTGLB in this thesis. In contrast to FTGLB,

IncFTGLB updates checkpoints incrementally by sending differences since the last
checkpoint only. IncFTGLB restricts the selection of data structures for the local
pool by requiring that work-stealing and task processing must operate at opposite
ends. Further, IncFTGLB only saves so-called stable tasks. A task is called stable,
if it remained in the pool since the last backup. Results from [4] showed an increase
of fault-tolerance overhead for some benchmarks, but also a decrease of overhead
for benchmarks with large task descriptors. Both schemes are further described in
Chapter 2.
This thesis describes a third, new backup scheme for APGAS_GLB called

LocalFTGLB. A difference to FTGLB and IncFTGLB is that checkpoints don’t
contain the task pool data structures, but subsets of tasks with the accumulated re-
sults of finished tasks, and lists of logged work-stealing events. Saving work-stealing
events avoids the need to write the remaining tasks at the victim, which are poten-
tially large, to the checkpoint.

1 Introduction 3

Another property of LocalFTGLB is asynchronous backup writing. Most back-
ups written during failure-free execution are non-blocking, i.e., they are written in
parallel to the task processing.
Further, LocalFTGLB tries to select the backup time in such a way, that the

checkpoint size does not increase. Instead of writing the backup after a fixed number
of computation steps, an interval is used which provides a lower and upper bound
for the number of computation steps until a backup is written.
While asynchronous writing of backups reduces overhead in benchmarks with task

descriptors of any size, logging work-stealing events and variation of the backup time
mainly reduce overhead in benchmarks with large task descriptors.
The execution time was measured for APGAS_GLB, FTGLB, IncFTGLB and

LocalFTGLB in experiments with the same benchmarks as in [4]. Overhead was
calculated as the percentage of execution time difference to APGAS_GLB. In
two benchmarks, Unbalanced Tree Search (UTS [13]) and Betweenness Central-
ity (BC [5]), almost all configurations showed a lower overhead for LocalFTGLB
than for FTGLB and IncFTGLB. In two synthetic benchmarks with a varying task
descriptor size [4], the overhead of LocalFTGLB was at most about the same as in
FTGLB and above that of IncFTGLB.
This thesis is organized as follows: Chapter 2 describes APGAS_GLB and the two

previous schemes and libraries in greater detail. Then, Chapter 3 explains the new
backup scheme and compares it informally to FTGLB and IncFTGLB. Thereafter,
Chapter 4 provides implementation details. Next, Chapter 5 describes experiments
and discusses results. The thesis finishes with conclusions in Chapter 6.

2 Background 4

2 Background

2.1 APGAS Library
The “APGAS for Java” library provides the Asynchronous Partitioned Global Ad-
dress Space (APGAS) parallel programming model for the Java programming lan-
guage [19, 22]. It is available online as an open source repository [9]. In this thesis,
APGAS will denote the library instead of the model. As noted in the introduc-
tion, the PGAS model partitions memory and computational resources into places.
APGAS adds asynchronism by organizing the computation into asynchronous tasks
called activities. Activities can be spawned locally or remotely. When spawning
a remote activity, final and quasi-final variables used inside the activity are copied
and sent to the target place. The programmer has full control over data placement.
Remote data can be accessed through global references.
A place in APGAS corresponds to a JVM. All places are interconnected with

the Hazelcast library [6] at the network layer. Places are identified by integer ids,
counted from 0. For intra-place parallelization, APGAS utilizes Java’s Fork/Join-
Pool [11], which offers dynamic load balancing using work-stealing.
The most important constructs of APGAS are:

• async(): Spawns a local activity.

• asyncAt(): Spawns a remote activity.

• at(): Spawns a remote activity and waits for its completion.

• finish(): Spawns a local activity, which waits for all activities spawned by
it. Exceptions are collected at the innermost enclosing finish().

• uncountedAsyncAt(): Same as asyncAt(), but is not waited for by an en-
closing finish().

• GlobalRef: Global heap reference encapsulating an object contained in the
local heap, thus making it globally accessable. Accesses to GlobalRefs are
conducted in a remote activity on the place where the object is residing.

2 Background 5

1 import stat ic apgas . Constructs . ∗ ;
2 import apgas . Place ;
3
4 class HelloWorld {
5 public stat ic void main (St r ing [] a rgs) {
6 f i n i s h (() −> {
7 for (Place p lace : p l a c e s ()) {
8 asyncAt (place , () −> {
9 System . out . p r i n t l n (" He l lo ␣World␣ from␣ " + here ()) ;

10 }) ;
11 }
12 }) ;
13 }
14 }

Listing 2.1: Distributed Hello World implementation in APGAS

Apart from finish() and at() for inter-place synchronization, APGAS does not
provide any synchronization constructs. Instead, Java’s constructs for intra-place
synchronization, e.g., synchronized with wait()/notify() and atomic variables
from the Atomic classes can be used.
Listing 2.1 shows the structure of a typical APGAS program. All APGAS con-

structs are imported statically to make it easier to use them. The main-method
contains one finish() to prevent premature termination. It waits for the comple-
tion of all asynchronous activities spawned with asyncAt().
APGAS provides functionality for fault-tolerant cluster-computing. For instance,

it supports distributed, fault-tolerant termination detection with the finish() con-
struct, by utilizing Hazelcast’s IMap, see Section 2.2. User-level fault-tolerance is
supported, e.g., through exceptions thrown on place failure and a failure handler
method, called placeFailureHandler. The placeFailureHandler can be regis-
tered on each place and is called eventually after a place failure is detected. Fault-
tolerance in APGAS is subject to two limitations:

• Failure of the origin place of a finish (e.g. place 0) can not be recovered
from, because APGAS is not able to migrate the finish to another place.

• Loss of an IMap entry due to too many simultaneous place failures leads to
shutdown of the runtime system with an error message.

2.2 Hazelcast Library
Hazelcast is a Java framework providing resilient, distributed data structures [6].
Hazelcast’s data structures can tolerate multiple simultaneous place failures, be-
cause data is replicated up to a maximum of six times. The parameter specifying

2 Background 6

the number of replications is called backupCount. When too many places fail si-
multaneously, data is lost, in which case a handler method is called. Inside it, the ap-
plication programmer can implement a way to, e.g., safely terminate the application.
The handler method can be registered by calling addPartitionLostListener() on
the IMap.
Internally, an IMap is divided into partitions, which are evenly distributed across

all places. A hash function assigns each entry to a partition. An even distribution
is ensured by redistributing partitions when a place leaves or joins the cluster.
If a user program needs to modify multiple entries and partial updates would lead

to an inconsistent state, Hazelcast’s transactions can be used. Transactions ensure
an atomical update of multiple entries. If one or more updates fail, no entry is
updated. All entries get locked during a transaction and get automatically unlocked
after the transaction is completed.
To save network traffic, an EntryProcessor can be used to update IMap entries.

EntryProcessors are operations on IMap entries, which get executed directly on the
places where the entry resides. They retain the order of operations and implicitly
lock and unlock the entry. EntryProcessors can be executed synchronously, by call-
ing the executeOnKey() method, or asynchronously, by calling the submitToKey()
method. The submitToKey() method returns a Future object. Calling the get()
method on this object blocks the current thread until the operation is executed on
all places the entry resides.

2.3 APGAS_GLB
APGAS_GLB is a framework that implements a reduction-based variant of the
task pool pattern. It provides dynamic load balancing by work-stealing. The
APGAS_GLB framework deploys the following task model (cited from [15]):

• Tasks have no side-effects.

• Processing a task can generate new tasks.

• Processing a task produces a result.

• All task results have the same type.

• Each worker accumulates task results into a partial result.

• The final result is computed from partial results by reduction, using a com-
mutative and associative operator.

2 Background 7

In APGAS_GLB, a place employs exactly one worker, so multiple places must be
used on a single machine with multiple cores to make use of the available resources.
Every computation begins with at least one task at one place from which new tasks
can be generated. If a worker has no tasks, it sends out steal requests to w random
victims. After sending out a random steal request, the worker waits for an answer,
which can either be a reject message or a message containing tasks. If these attempts
were unsuccessful, steal requests are sent to z so-called lifeline buddies. Such
lifeline steal requests are answered with a message containing tasks, if the victim
has tasks to share. Otherwise, it is recorded on the victim and answered with a
message indicating the recording of the request. Recorded requests are answered
with a message containing tasks when the victim has tasks to share. Lifelines are
calculated before the beginning of the task processing, such that the relations form a
z-dimensional hypercube [18]. When stealing failed for all w+z requests, the worker
goes into an inactive state, from which it can only be reactivated by receiving tasks
from a lifeline buddy. A finish() is used on place 0, which terminates when all
workers are inactive. After that, the reduction phase starts. Here, the partial
results from all workers are collected at place 0 and the final result is calculated by
reduction.
The main loop of APGAS_GLB is shown in Listing 2.2 (adapted from [16]).

When it is exited, the worker enters the inactive state. Accesses to the local pool
are protected by Java’s synchronized keyword used in conjunction with an object.

1 whi l e (ta sk s are a v a i l a b l e) {
2 whi l e (l o c a l pool i s not empty) {
3 synchron ized (worker l ock ob j e c t) {
4 proce s s up to n ta sk s ;
5 send ta sk s to recorded th i e v e s ;
6 }
7 }
8 synchron ized (worker l ock ob j e c t) {
9 try to s t e a l from up to w + z v i c t ims ;

10 }
11 }

Listing 2.2: Main loop of APGAS_GLB

APGAS_GLB requires the application programmer to implement the local pool
class with the following methods:

• process(n): This method processes n tasks and returns a boolean value
which indicates if the local pool still contains tasks. It returns true if the pool
is not empty, otherwise false.

• merge(tasks): This method merges tasks into the local pool.

2 Background 8

• split(): This method splits the local pool to extract loot for the thief in
work-stealing.

The programmer must also implement the data structure for transferring tasks,
called TaskBag. It is an interface with only a method size(), which returns the
number of tasks contained.

2.4 FTGLB
This section only outlines FTGLB. Further information can be found
in [15]. FTGLB implements uncoordinated application-level checkpointing for
APGAS_GLB. It consists of two components: checkpointing and recovery.
Checkpointing regularly writes backups of the whole pool data structure to a

dedicated IMap called iMapBackup. Backups are written after k · n computation
steps. They are also written during work-stealing, as well as when a worker enters
inactive state, and in recovery. To save tasks which are sent by the victim but not
yet received by the thief, an additional IMap called iMapOpenLoot is used.
When a place fails, its recovery is conducted by an alive place, called recovery

place. When places are arranged in a ring, wrapping around at the lowest and
highest place id, it is the closest alive predecessor of the failed place.
First, the checkpoint of the failed place is recovered by merging the saved tasks

into the pool of the recovery place. Also, the recovered tasks are removed from the
checkpoint. After recovery, the checkpoint only contains the partial result of the
tasks which the failed place processed.
Next, tasks stolen from the failed place that are saved in iMapOpenLoot get re-

stored. If the thief is still alive, the tasks are sent again to the thief. Otherwise,
they get merged into the local pool and into the checkpoint of the recovery place.
After recovery, the checkpoint is marked as recovered by setting a boolean variable
done of the saved pool data structure to true. This is done to prevent late backups
from overwriting the already recovered checkpoint. At every writing of a backup,
this variable is checked and the checkpoint is only modified if the variable is set to
false.
Furthermore, each alive place checks if it sent tasks to the failed place, which were

not fully received, by inspecting iMapOpenLoot. These tasks get re-merged into the
victim’s pool.
FTGLB requires the following methods to be implemented for the local pool data

structure:

2 Background 9

• getAllTasks(): Returns all tasks currently contained in the local pool.

• clearTasks(): Removes all tasks from the local pool.

2.5 IncFTGLB
The IncFTGLB fault-tolerance scheme uses a different checkpointing component
than FTGLB, but the same recovery component. It reduces the backup volume in
two ways:

• The backup sent contains only the changes to the last checkpoint. Tasks
already contained in the checkpoint are not sent again.

• Only stable tasks are saved. The checkpoint still contains an actual state of
the pool that existed at some point in time.

Use of IncFTGLB requires that processing of tasks and work-stealing operate on
opposite ends of the task queue. Also, after each processed task, control must be
returned to the framework.
Stable tasks are determined by monitoring the pool between processing of single

tasks. The monitoring consists of taking snapshots, which contain the task at the
top of the queue, the size of the queue and the current partial result. Each time the
pool size becomes lower than the size recorded in the last snapshot, a new snapshot
is taken. Snapshots are also taken at the beginning of a backup interval. A working
state of the pool can be reconstructed from the last snapshot.
IncFTGLB requires a lot more methods to be implemented by the application

programmer than FTGLB, increasing the burden. The main differences in the ap-
plication programming interface are:

• The process() method processes only the uppermost task.

• Various new methods for adding, removing, and reading a number of tasks from
the bottom and the top of the task queue are required. These methods are
used for generating the snapshots and the backups, and applying the backups
to the checkpoints in an incremental way.

Recovery is done as in FTGLB. Also, the initial, final, and recovery backups are
the same as in FTGLB.

3 Algorithm 10

3 Algorithm

The following sections describe the new algorithm. First, Section 3.1 outlines the
general ideas. Next, in Section 3.2 and Section 3.3, backup types are described.
The asynchronous writing of the backups is described in Section 3.4. Further, in
Section 3.5, the recovery of lost tasks is explained. The chapter finishes with an
informal comparison to FTGLB and IncFTGLB in Section 3.6.

3.1 Overview
The main objective for designing LocalFTGLB was to reduce the overhead for check-
pointing in comparison to FTGLB and IncFTGLB.
Reasons for the overhead in FTGLB and IncFTGLB are:

• Saving tasks, which are already contained in the checkpoint

• Monitoring of the local pool between the backups

• Waiting for network communication during the writing of the backups

LocalFTGLB is based on a different approach to fault-tolerant task pools, which
originates from [10], and was adapted to reduction-based task pools in [2]. Refer-
ence [10] presents a fault-tolerant algorithm for nested fork-join programs, where
tasks are distributed by work-stealing. When a worker steals a task, the steal re-
lation is saved on the victim. These steal relations form a global steal tree [12].
When a worker fails, the lost node in the steal tree gets restored by recomputing a
subset of the tasks of that node. Not all tasks necessarily need recovery, because
their children might have been stolen by another worker. To determine the tasks
to be recomputed, the steal relations from all workers are collected at the worker
of the parent node of the lost node. From these relations, a so-called replay tree
is formed, which is a subtree of the steal tree with additional information needed
for recovery. The replay tree is eventually sent to another worker by work-stealing.
Recovery is conducted at the thief of the replay tree by recomputing the lost tasks
of the replay tree and reconnecting the tasks of the children of the lost node. Recon-
necting includes saving steal relations to the children and informing the workers of

3 Algorithm 11

the children about the changed parent node. Tasks of children, that finished before
the worker failed, are recomputed, since their result was already returned to the
failed worker and thus went lost.
Reference [2] adapted the scheme from [10] to reduction-based task pools. In

reduction-based task pools, tasks don’t return their result to their parent task, be-
cause the final result is calculated by reduction. LocalFTGLB adapts the technique
to track work-stealing from [2], which is also based on APGAS_GLB, and com-
bines it with backups. In [2], steal relations are sent along the tasks in work-stealing,
whereas in LocalFTGLB, steal relations are saved in a distributed data structure.
In APGAS_GLB, if tasks are stolen from a place, the local pool of the victim is

split. The split is executed by a call to the split() method. Unlike as in FTGLB, in
LocalFTGLB, the remaining tasks of the local pool are not written to the checkpoint.
Instead, the number of tasks that have been processed at the time of the split is
written to the checkpoint. On recovery, the stolen tasks are removed from the pool
by calling split() at the corresponding computation steps. This technique leads
to smaller steal backups and thus reduces the overhead.
Every place saves the state of the local pool at specific times. The saved state is

called checkpoint. As in FTGLB and IncFTGLB, the frequency of updating the
checkpoints can be set by the application programmer to adjust it to the MTBF of
the system used. In contrast to FTGLB and IncFTGLB, the application program-
mer does not provide a fixed number of computation steps after which a checkpoint
is updated, but an interval, in which the checkpoint has to be updated. The frame-
work guarantees that the writing of the backup begins earliest after n · klower, and
latest after n · kupper computation steps. This allows the framework to choose a
state of the pool which contains less tasks than the last checkpoint to be included
in the backup. For this technique, the local pool must be monitored to inspect the
pool size. In contrast to the monitoring used in IncFTGLB, where the pool size is
inspected after the processing of each task, in LocalFTGLB, the pool size is only
inspected regularly every n computation steps and only within the allowed interval
as described above. This technique is further described in Section 3.3. Within the
interval, each place updates its checkpoint when the pool size is lower or equal to
the checkpoint’s pool size. This reduces the chance of an increase of the checkpoint’s
size. If the pool size does not become lower or equal to the checkpoint’s size until
the last computation step of the interval, a regular backup is written, regardless of
the actual pool size.
To hide the waiting for network communication when backups are written, asyn-

chronous checkpointing is used. Here, a local copy of the tasks and the partial

3 Algorithm 12

result is created, and the computation is continued thereafter. The backup is writ-
ten in parallel to the ongoing computation. In LocalFTGLB, the guarantees of the
checkpointing interval as described above are preserved by waiting for the backups to
complete at certain points of the execution. The asynchronism is further described
in Section 3.4. In a different context, a comparison of synchronous and asynchronous
checkpointing was conducted in [21], where a 10-20 times lower overhead was found
by deploying asynchronous checkpointing instead of synchronous checkpointing.
LocalFTGLB makes use of Hazelcast’s IMap. Instead of saving objects of the

task pool data structure of each place as in FTGLB and IncFTGLB, only TaskBag
objects are saved. A TaskBag object contains the following data:

• A set of tasks.

• A unique integer identifying the TaskBag object.

• The number of regular backups of this TaskBag written, including the current
one. This number is called backupId.

• A partial result which is formed from the results of finished tasks of this
TaskBag.

• A boolean value indicating if this TaskBag object was already recovered (see
below).

The IMap containing the TaskBag objects is called bagMap. It holds one entry per
place with the place id as key.
At the beginning of the computation, each place saves a TaskBag object to the

bagMap, containing the initial tasks. This backup writing is called initial backup.
Another IMap, called splitMap, is used for saving the steal answers by con-

taining a list of TaskBagSplit objects for each TaskBag object. The unique integer
of the corresponding TaskBag object is used as the key. Because every answered steal
request splits the pool, splitMap contains lists of logged pool splits, that occured at
certain computation steps. Each TaskBagSplit object describes an answered steal
request by containing the following information:

• The number of computation steps since the beginning of the processing of the
TaskBag’s tasks till the answer of the steal request.

• The backupId of the corresponding regular backup. In recovery, the split is
only executed if the regular backup contains the same pool state as the pool
state the split occured on. A regular backup which is written after the steal

3 Algorithm 13

backup implicitly contains the split by not having the stolen tasks in the
checkpoint’s pool.

The checkpoint of a place consists of the corresponding entry in bagMap and the
entry in splitMap.
After the computation, all TaskBags, which then only contain a result, are col-

lected at place 0 and the final result is calculated by reduction. A crash of any place
other than place 0 does not affect the reduction because the final checkpoints saved
in bagMap contains the final results of each place. The reduction does not access
any places directly with APGAS, but fetches the results from bagMap.
As in FTGLB and IncFTGLB, the application programmer needs to implement

some methods. The number of methods to be implemented is the same as in FTGLB.
Disregarding methods needed by GLB, the following methods for the pool data
structure need to be implemented:

• getAllTasks(): Returns all tasks currently contained in the local pool.

• clearResult(): Removes all finished tasks by resetting the partial result to
the same state as it was before the beginning of the computation.

The data structure representing a result requires the following method to be imple-
mented:

• mergeResult(result): Merges another result.

The algorithm expects at all times, that all tasks of the local pool originated
from one place. In GLB, tasks from multiple lifeline buddies can arrive at one
place, even when the pool is not empty. In LocalFTGLB, this is changed. Before
splitting the local pool, a lifeline buddy asks the thief if the thief’s local pool is
not empty by spawning an asynchronous activity at the thief’s place. This is called
lifeline delivery request. If the thief does not need tasks or another lifeline buddy is
already giving tasks, the activity ends. If a random steal request is in progress, the
activity waits until it is finished. If the random steal was successful, the activity ends.
Otherwise, an asynchronous activity gets spawned on the victim’s place, initiating
the split of the pool and the sending of the tasks in the same way as GLB does.
If at this time, the victim’s pool has become empty, the request gets recorded and
is answered again later, by asking if the thief needs tasks. From the time a lifeline
delivery request is accepted to the time the tasks arrive and get merged into the
local pool, no random steal requests are sent and other lifeline delivery requests are

3 Algorithm 14

declined. All of the activities spawned during a lifeline delivery request are waited
for by the finish() on place 0.
As in FTGLB, a counter is used for deciding when to write a regular backup. The

counter is incremented every n computation steps. When initiating the writing of
a backup, the counter is reset. Also, a regular backup is written and the counter is
reset when the pool becomes empty.

3.2 Steal Backups
Steal backups are written in the event of work-stealing on the victim side. This is
the only type of backup where the checkpoint of another alive place is modified.
It consists of two parts, because it modifies two checkpoints at once: The steal
backup modifying the victim’s checkpoint is called backupvictim and the steal backup
modifying the thief’s checkpoint is called backupthief .
backupvictim contains a TaskBagSplit object with all information as described

before. No tasks are read or written when writing this backup. backupthief contains
a TaskBag object with the stolen tasks.
Changes to both checkpoints need to be visible at the same time and partial

changes are not allowed, because tasks can then either get lost or get duplicated.
Thus, the steal backup uses a transaction to modify both checkpoints at the same
time.

3.3 Regular Backups
The regular backup contains a TaskBag object with the current tasks of the local
pool and the current partial result. Before each writing of a regular backup, the
backupId is incremented.

3.4 Asynchronism
The regular and the steal backups are written in parallel to the task processing.
Starting the asynchronous writing of a backup is called starting a backup. Waiting
for a backup to be completely written is called waiting for a backup.
Because most of the time of backup writing is spent waiting for network com-

munication, asynchronous backup writing can help to maximize resource usage by

3 Algorithm 15

processing tasks while waiting for network communication. The longer the writing
of a backup takes, the more time is saved.
The algorithm has one main constraint for the asynchronism:

• The maximum number of tasks to be recomputed in recovery may not exceed
2n · kupper.

Since the number of tasks processed between the starting of backups is at most
n · kupper, the algorithm waits for the last backup before starting another one.
During work-stealing, no backups may be written by the thief, because the victim

writes the backup for the thief. This implies that the thief waits for all backups
before sending out random steal requests or accepts lifeline delivery requests. It
also guarantees that all regular backups written by the thief are complete. This
prevents the victim from overwriting the stolen tasks in the checkpoint.

3.5 Recovery
LocalFTGLB registers a placeFailureHandler on each place. The recovery is
conducted within this handler. The handler is executed at each place some time
after the failure is detected. Because a placeFailureHandler can not be added to
the scope of a finish(), the restartDaemon from [15] is used. The restartDaemon
is an activity inside the scope of the finish(), which terminates when all workers
are inactive and all placeFailureHandlers for all failed places have been executed.
Recovery of a place’s checkpoint is executed by the recovery place, which is de-

termined the same way as in FTGLB. The recovery place’s checkpoint is denoted as
checkpointrecover and the failed place’s checkpoint is denoted as checkpointfailed. Re-
call that a checkpoint corresponds to a saved entry in bagMap and the corresponding
entry in splitMap.
During recovery, the recovery place does not answer steal requests, because the

local pool is used for processing the recovered tasks and is thus locked. All tasks
to be recovered are always processed in the placeFailureHandler at the recovery
place. The first step in recovering a failed place is to process all tasks in the recovery
place’s pool. When the pool is empty, checkpointrecover is updated, because a backup
is always written when the local pool becomes empty. The failed place’s entry in
bagMap is locked before reading the tasks from checkpointfailed, to prevent any
late update during recovery. Then, the failed place’s TaskBag object from bagMap
is merged into the recovery place’s pool. Next, for the TaskBagSplit objects in
checkpointfailed, the pseudocode in Listing 3.1 is executed.

3 Algorithm 16

1 bag = bagMap [f a i l e dP l a c e] ;
2 currentStep = 0 ;
3 f o r each (s p l i t in spl itMap [bag . id]) {
4 i f (s p l i t . backupId == bag . backupId) {
5 pool . p roc e s s (s p l i t . s t ep − currentStep) ;
6 pool . s p l i t () and d i s ca rd the ext rac t ed ta sk s ;
7 currentStep = s p l i t . s t ep ;
8 }
9 }

Listing 3.1: Pseudocode of the recovery of work-stealing events

Since the logged splits are inserted in the order the steals were answered, no sorting is
needed. After all splits have been executed, the pool will still contain tasks. These
tasks are then processed and the bag’s attribute recovered will be set to true.
Finally, checkpointfailed is updated by writing the TaskBag object back to bagMap
and the failed place’s entry is unlocked. Because every backup checks the attribute
recovered and only updates the checkpoint if the attribute is set to false, no late
update can occur. A late update would lead to multiple recoveries of the same tasks.
When a victim fails after writing the steal backup, but before the thief received

the stolen tasks, the tasks need to be restored. Since stolen tasks get written to the
thief’s checkpoint in backupthief , it is sufficient, that the placeFailureHandler at
each place waiting for tasks, checks if its checkpoint contains tasks which have not
yet been received. If such tasks are found, they are merged into the pool and are
processed as if they were received normally. To prevent the loot from arriving at a
later time, each place keeps track of the unique ids of all received TaskBag objects.
If a TaskBag object with the same id was already received, the message containing
the tasks is ignored.
When a thief fails between the split of the victim’s pool and writing the steal

backup, the tasks get re-merged into the local pool of the victim and a regular
backup is written. The regular backup is necessary, because merging the tasks does
not guarantee them to be inserted at the same position they were removed from.
In the placeFailureHandler on each place, all outstanding steal requests to the

failed place are treated as if they were rejected. Also, recorded steal requests from
the failed place are discarded and no lifeline steal requests will be sent to it anymore.

3.6 Comparison
This section informally compares LocalFTGLB to FTGLB and IncFTGLB.
A difference to FTGLB is that the steal backup for the victim’s checkpoint does

not contain the remaining tasks of the pool. This is similiar to the incremental

3 Algorithm 17

update of the checkpoint as in IncFTGLB, where only the number of tasks stolen
is contained in the backup. The number of tasks is removed from the bottom of
the checkpoint’s pool. In LocalFTGLB, the computation step and backupId are
contained in the backup, so that the tasks can be removed later during recovery.
Like IncFTGLB, LocalFTGLB tries to reduce the number of tasks in the check-

points. IncFTGLB uses snapshots to determine the state of the pool that contains
the smallest number of tasks since the last backup. LocalFTGLB writes backups
when the pool size is lower or equal than the pool size of the last checkpoint. The
technique used in IncFTGLB saves the lowest number of tasks, at the price of a high
monitoring cost. The technique used in LocalFTGLB does not necessarily save less
tasks if the pool size stays above the pool size saved in the checkpoint, but requires
only low monitoring cost.
As another difference to both other schemes, backups are written in parallel to the

task processing. FTGLB and IncFTGLB wait for the backup to complete, before
continuing to process tasks.
While FTGLB and IncFTGLB store the task pool data structure in IMap entries,

LocalFTGLB stores TaskBag objects. The task pool data structure can contain
variables that are not needed for restoring the tasks. For optimal performance, the
programmer needs to mark them transient, to exclude them from the backups.
Since TaskBag objects are only used for transferring tasks, they implicitly contain
no such variables.
A major difference to FTGLB and IncFTGLB is that recovered tasks are not

locality-flexible. During processing of these tasks, no steal requests are answered.
In the worst-case, all tasks were stored at the recovery place and/or the failed place,
and all other places did not have any tasks. The recovery place would process
all tasks, which would lead to a processing time almost equal to the sequential
processing time.

4 Implementation 18

4 Implementation

The following sections describe some implementation details.

4.1 Steal Backups

1 abstract class TaskBag implements S e r i a l i z a b l e {
2 stat ic f ina l AtomicInteger LAST_ID = new AtomicInteger (1) ;
3
4 long bagId = ((long) (here () . id) << 32) + LAST_ID. incrementAndGet () ;
5 int parentPlace = here () . id ;
6 LocalFTGLBResult ownerResult ;
7 boolean r ecovered = fa l se ;
8 long backupId = 0L ;
9

10 abstract public int s i z e () ;
11 }

Listing 4.1: TaskBag class of LocalFTGLB

Recall that the application programmer must implement the TaskBag data struc-
ture used for transferring tasks. While in APGAS_GLB, TaskBag is an interface,
in LocalFTGLB, TaskBag is an abstract class. This change was necessary, because
the algorithm requires some variables inside the data structure. Listing 4.1 shows
the implementation of the TaskBag class.
As described in Chapter 3, each TaskBag object has a unique id. The id is

implemented as a 64 bit long value. The 32 highest order bits are set to the place
id, and the remaining bits are set to the value of a counter, which is incremented
with every TaskBag object created. The incorporation of both place id and local
counter guarantees global uniqueness. The backupId is counted from 0 upwards.
The TaskBag class contains a variable ownerResult that is used for storing a

partial result. The variable is only assigned an object representing the current result
of the local pool when writing a backup. TaskBag objects sent in work-stealing do
not have a result object assigned, because the thief’s pool already contains the result.
The class TaskBagSplit is shown in Listing 4.2. It contains only two long vari-

ables. Thus, the size of each logged work-stealing event is small.

4 Implementation 19

1 class TaskBagSplit implements S e r i a l i z a b l e {
2 long s tep ;
3 long backupId ;
4 }

Listing 4.2: TaskBagSplit class of LocalFTGLB

4.2 Asynchronism
Regular backups are written by using an EntryProcessor, which is executed
within a thread managed by Hazelcast. The Future object returned from the
submitToKey() method of the EntryProcessor is inserted into a LinkedList, called
runningBackups. To wait for all backups running, the get() method is called on
all elements of runningBackups. If the get() method returns, the corresponding
element is removed from runningBackups. Access to runningBackups is protected
by a synchronized block, which uses runningBackups as the lock object. Since
LocalFTGLB allows only one running backup, runningBackups contains at most
one Future object.
Steal backups are written by using a transaction, because multiple IMaps are

modified. Because Hazelcast’s transactions offer no methods for asynchronous ex-
ecution, the writing of the steal backup is done within an asynchronous activity.
For random steals, the activity is spawned with uncountedAsyncAt(here(), ...),
otherwise with asyncAt(here(), ...). The task delivery is also conducted in this
activity after the steal backup has been written. Because lifeline task deliveries use
asyncAt(), it is important that the activity does not use uncountedAsyncAt() for
lifeline steals. Using uncountedAsyncAt() would prevent the asyncAt() from being
waited for by the finish() on place 0.
Because activities do not inherit the locks of surrounding synchronized blocks,

an AtomicBoolean, called blockBackups, is introduced. This variable is set to
true, before the activity is spawned, and is set to false, when the steal backup
has been written. Backups are only started if blockBackups is false. The wait-
ing is implemented by calling wait() on runningBackups in a loop with the con-
dition blockBackups.get() == true. When another activity sets it to false,
notifyAll() is called on runningBackups, waking up any activities waiting for
the value of blockBackups to change.

5 Experiments 20

5 Experiments

This chapter describes the experiments conducted. First, in Section 5.1, the hard-
ware and software setup is described. Next, the benchmarks used in the experiments
are described in Section 5.2–5.4. Section 5.5 lists the used parameters for the ex-
periments. Thereafter, Section 5.6 shows results and Section 5.7 discusses them.
The chapter finishes with a description of conducted experiments, which tested the
correctness.

5.1 Setup
Experiments were conducted on the FB16 partition of the High Performance Com-
puting cluster of University of Kassel. The partition consists of 12 homogenous
nodes connected using InfiniBand. Each node of the cluster comprises two 6-core
Intel Xeon E5-2643 v4 CPUs and 256 GB main memory [23]. This results in a
total of 144 cores. Benchmarks were scheduled with the installed job scheduler
Slurm [20] which guaranteed exclusive usage of the cluster during the execution. All
experiments were conducted with Hazelcast in version 3.10.2 and Java in version
10.0.1.

5.2 Unbalanced Tree Search
Unbalanced Tree Search (UTS) calculates the size of a highly irregular tree generated
from node descriptors [13]. It starts with one task corresponding to the root of the
tree. Each task corresponds to one node of the tree. Processing a task may generate
a number of new tasks, which are the children of the processed task’s node. The
number is calculated using the deterministic SHA1 function until a certain depth d
is reached. Both the branching factor b and the depth d can be set as arguments
to the benchmark. Additionally, an initial seed r for the random number generator
can be passed.

5 Experiments 21

5.3 Betweenness Centrality
Betweenness Centrality (BC) is a centrality measure for a vertex. It was first de-
scribed in [5]. The benchmark calculates the betweenness centrality for each vertex
in a graph generated by the parameters N , a, b, c, d and s, where N is the number
of vertices in the graph, the parameters a, b, c, d determine the graph shape, and s
is a seed for the random number generator.

5.4 Synthetic Benchmarks
The synthetic benchmarks were introduced in [4] for examining IncFTGLB when
task descriptors are large. They are called DynamicSyn and StaticSyn.
In DynamicSyn, which resembles UTS, the computation starts with one task at

one place, and tasks are generated dynamically until a specified maximum depth d
is reached. Each task with a depth smaller than d generates at least 1 and at most
c new tasks.
In StaticSyn, which resembles BC, the computation starts with an equal number

of tasks at each place and no tasks are generated dynamically. The parameter t
controls the total number of tasks.
Each task contains a variable ballast which can be set by parameter b in byte. The

ballast is realized as a byte array, resulting in synthetically enlarged task descriptors.
Additionally, a task granularity g can be set, which specifies the computational cost
of each task by controlling the number of iterations of a loop calculating π.

5.5 Configuration

Benchmark Parameters
UTS d = 17, b = 4, s = 19, n = 511,

k = 2048, klower = 1450, kupper = 4096
BC N = 217, s = 2, a = 0.55, b = c = 0.1,

d = 0.25, g = 511, k = klower = kupper = 32768
StaticSyn t = 100000, g = 300, n = 12,

k = klower = kupper = 8
DynamicSyn c = 27, d = 7, g = 1, n = 128,

k = 64, klower = 48, kupper = 96

Table 5.1: Benchmark and system configurations

5 Experiments 22

Table 5.1 shows the used parameters for the benchmarks. The parameters are mostly
the same as used in [4]. The length of the interval [klower, kupper] was not optimized
for shortest execution time, but chosen by an educated guess for each benchmark.
The klower and kupper values were experimentally adjusted to approximately match
the number of backups written in LocalFTGLB to the number of backups written
in FTGLB. Each benchmark was executed with a backupCount of the used IMaps
of 1 and 6.
As in GLB, with P being the number of places at the start, the parameter w is

calculated by the formula

w =

P − 1, if P ≤ 6

6, otherwise

and the parameter l is calculated by the formula

l = min{x ∈ N>0|xx ≥ P}

The parameter z is calculated such that lz is greater or equal to P .
For UTS and BC, the places were distributed to use the least number of nodes,

but with a maximum of 12 places per node, which corresponds to the number of
cores per node. For example, in experiments with up to 12 places, only one node
was used. In experiments with 24 places, 2 nodes were used with 12 places on each
node, and so on.
For the synthetic benchmarks, all 12 nodes were used, and the 144 places were

equally distributed over all nodes. Instead of conducting experiments with a varying
number of places, the ballast of the task descriptors was varied.
Each experiment was executed five times. The average of the execution times of

each experiment is reported.
Two versions of APGAS were used. For UTS and BC, a fork was used, which con-

tains bug fixes and additional features. It is available as an online repository [14].
The version of May 31, 2018 was used. For the synthetic benchmarks, the APGAS
version from [4] was used. With the version from [14], with growing ballast, the ex-
ecution time grew about 5 times faster than with the version from [4]. Because this
might be a bug, no experiments with large task descriptors were carried out with
it. The experiments with small task descriptors were conducted before noticing this
behaviour. Due to time constraints, they could not be repeated with the APGAS
version from [4]. In a group of experiments conducted with randomly picked con-

5 Experiments 23

figurations, the execution times with small task descriptors did not differ in both
versions.
Because [4] already showed that IncFTGLB has a higher overhead than FTGLB

for UTS and BC, LocalFTGLB is only compared to FTGLB for these benchmarks.
Also, all runtime measurements were conducted without simulated failures.

5.6 Results
The fault-tolerance overhead was calculated by the formula timesystem/timeGLB−1,
where system ∈ {FTGLB, IncFTGLB,LocalFTGLB}. The result is expressed as
a percentage. All results show a higher overhead when backupCount is set to 6,
instead of 1.
For UTS, the overhead of both LocalFTGLB and FTGLB increases almost linearly

with the number of places. Beginning from 12 places, the overhead difference of
LocalFTGLB to FTGLB is almost constant at about 2% with LocalFTGLB having
the lower overhead. For BC, LocalFTGLB shows a lower overhead than FTGLB for
all, but two configurations. With a backupCount of 1 and 96 places, the overhead is
about the same as in FTGLB. With a backupCount of 6 and 12 places, the overhead
of LocalFTGLB is 25.18% and the overhead of FTGLB is 14.21%. The overhead
increases almost linearly until 96 places, and then stays almost constant. For a
backupCount of 1, the overhead remains at about 22% for LocalFTGLB, and at
about 24% for FTGLB. For a backupCount of 6, the overhead remains at about
37% for LocalFTGLB, and at about 46% for FTGLB.
For StaticSyn, LocalFTGLB has about the same overhead as FTGLB for all

configurations. IncFTGLB shows only a small linear increase of overhead with at
most an overhead of 5.14% for a backupCount of 1, and 11.25% for a backupCount
of 6. With a backupCount of 6, LocalFTGLB has an overhead of at most 102.58%
and FTGLB has an overhead of at most 110.45%.
For DynamicSyn, the overhead of FTGLB increases almost logarithmic. FTGLB

shows at most an overhead of 88.58% with a backupCount of 1 and an overhead of
at most 185.29% with a backupCount of 6. The overhead of LocalFTGLB oscillates
around the overhead of IncFTGLB. Both, IncFTGLB and LocalFTGLB show a
slower increase of overhead than FTGLB. In most configurations, IncFTGLB and
LocalFTGLB stay below the overhead of FTGLB.

5 Experiments 24

-2

 0

 2

 4

 6

 8

 10

 12

1 2 4 8 12 24 36 48 60 72 84 96 108 120 132 144

O
v
e
rh

e
a
d
 (

in
 %

)

Places

FTGLB
LocalFTGLB

Figure 5.1: UTS with backupCount=1

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 2 4 8 12 24 36 48 60 72 84 96 108 120 132 144

O
v
e
rh

e
a
d
 (

in
 %

)

Places

FTGLB
LocalFTGLB

Figure 5.2: UTS with backupCount=6

5 Experiments 25

 0

 5

 10

 15

 20

 25

 30

1 2 4 8 12 24 36 48 60 72 84 96 108 120 132 144

O
v
e
rh

e
a
d
 (

in
 %

)

Places

FTGLB
LocalFTGLB

Figure 5.3: BC with backupCount=1

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

1 2 4 8 12 24 36 48 60 72 84 96 108 120 132 144

O
v
e
rh

e
a
d
 (

in
 %

)

Places

FTGLB
LocalFTGLB

Figure 5.4: BC with backupCount=6

5 Experiments 26

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

O
v
e
rh

e
a
d
 (

in
 %

)

Ballast in MB

FTGLB
IncFTGLB

LocalFTGLB

Figure 5.5: StaticSyn with 144 places and backupCount=1

-20

 0

 20

 40

 60

 80

 100

 120

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

O
v
e
rh

e
a
d
 (

in
 %

)

Ballast in MB

FTGLB
IncFTGLB

LocalFTGLB

Figure 5.6: StaticSyn with 144 places and backupCount=6

5 Experiments 27

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

O
v
e
rh

e
a
d
 (

in
 %

)

Ballast in MB

FTGLB
IncFTGLB

LocalFTGLB

Figure 5.7: DynamicSyn with 144 places and backupCount=1

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

O
v
e
rh

e
a
d
 (

in
 %

)

Ballast in MB

FTGLB
IncFTGLB

LocalFTGLB

Figure 5.8: DynamicSyn with 144 places and backupCount=6

5.7 Discussion
LocalFTGLB reduced the overhead compared to FTGLB and IncFTGLB in three
of four benchmarks. This confirms our observation, that the overheads incurred
by saving already saved tasks, monitoring of the pool, and waiting for network
communication, which were noted in Section 3.1, could be reduced by the design of
LocalFTGLB.

5 Experiments 28

For UTS, the curve of LocalFTGLB is smoother than the curve of FTGLB with
4 and 8 places. One possible explanation is that the asynchronism hides the longer
time needed for that configuration to write the backups.
For DynamicSyn and a backupCount of 1, the result of LocalFTGLB with no

ballast is more than five times higher than the overhead with the highest tested
ballast. The cause of this behaviour is still under investigation.
During the experiments, it was found that the number of steal backups increased

with a rising number of places. At the same time, the number of regular backups de-
creased. This behaviour was to be expected. Because steal backups in LocalFTGLB
should have a lower overhead than steal backups in FTGLB, the difference in over-
head should become more visible as the number of places increases. The expected
effect was not confirmed by the results.
As a side effect of our experiments, the results from [4] for the synthetic bench-

marks were confirmed with the latest Hazelcast and Java versions.

5.8 Correctness
The same correctness definition as in [15] is used (cited from [15]): “The algorithm
is correct in the sense that the computed result is the same as in non-failure case,
or the program aborts with an error message”.
The correctness of the implementation was tested by simulating crashes of single

and multiple places, and inspecting the resulting log files. The simulation of a crash
was realized by a call to System.exit() at specific points of execution. A list of
these points can be found in the appendix.

6 Conclusions 29

6 Conclusions

This thesis presented a new scheme for uncoordinated application-level checkpoint-
ing for task pools and compared it to previous schemes. The new scheme reduces
the overhead for fault-tolerance in failure-free execution. It tracks work-stealing to
reduce the backup volume and writes the backups in parallel to the task processing.
It also introduces a technique to keep the checkpoint’s size low by variation of the
backup time.
Results showed a decrease of overhead in most benchmarks. The highest overheads

measured were about the same as in FTGLB. In benchmarks with large task descrip-
tors, IncFTGLB still had the lowest overheads of all three implementations. The the-
sis also showed new benchmark results for APGAS_GLB, FTGLB and IncFTGLB
with the latest versions of Java and Hazelcast, which confirmed previous results.
Future work should carry out further performance analysis of the individual com-

ponents of the algorithm. Also, the recovery component of the algorithm should be
improved.

Bibliography 30

Bibliography

[1] R. D. Blumofe and C. E. Leiserson. “Scheduling multithreaded computations
by work stealing.” In: Proc. Symp. on Foundations of Computer Science. 1994,
pages 356–368.

[2] M. Dratwa. “Übertragung eines fehlertoleranten Algorithmus für Fork/Join-
Programme auf reduktionsbasierte Taskpools.” Masterthesis. University of Kas-
sel, 2018.

[3] Fault Tolerance Research Hub. SC’17 tutorial. http://fault-tolerance.
org/2017/11/11/sc17-tutorial/. 2017.

[4] C. Fohry, J. Posner, and L. Reitz. “A Selective and Incremental Backup
Scheme for Task Pools.” In: Int. Conf. on High Performance Computing &
Simulation (HPCS). To appear. 2018.

[5] L. C. Freeman. “A Set of Measures of Centrality Based on Betweenness.” In:
Sociometry 40.1 (1977), pages 35–41.

[6] Hazelcast, Inc. The Leading Open Source In-Memory Data Grid. http://
hazelcast.org. 2018.

[7] T. Herault and Y. Robert, editors. Fault-Tolerance Techniques for High-Per-
formance Computing. Springer, 2015.

[8] IBM Corp. Core implementation of X10 programming language including com-
piler, runtime, class libraries, sample programs and test suite. https : / /
github.com/x10-lang/x10. 2018.

[9] IBM Corp. The APGAS library for fault-tolerant distributed programming in
Java 8. https://github.com/x10-lang/apgas.

[10] G. Kestor, S. Krishnamoorthy, and W. Ma. “Localized Fault Recovery for
Nested Fork-Join Programs.” In: IEEE Int. Parallel and Distributed Processing
Symp. (IPDPS). 2017, pages 397–408.

[11] D. Lea. “A Java Fork/Join Framework.” In: Proc. ACM Conference on Java
Grande. ACM, 2000, pages 36–43.

http://fault-tolerance.org/2017/11/11/sc17-tutorial/
http://fault-tolerance.org/2017/11/11/sc17-tutorial/
http://hazelcast.org
http://hazelcast.org
https://github.com/x10-lang/x10
https://github.com/x10-lang/x10
https://github.com/x10-lang/apgas

Bibliography 31

[12] J. Lifflander, S. Krishnamoorthy, and L. V. Kale. “Steal Tree: Low-overhead
Tracing of Work Stealing Schedulers.” In: Proc. ACM SIGPLAN Conference on
Programming Language Design and Implementation. ACM, 2013, pages 507–
518.

[13] S. Olivier, J. Huan, J. Liu, et al. “UTS: An Unbalanced Tree Search Bench-
mark.” In: Languages and Compilers for Parallel Computing. Springer LNCS
4382, 2006, pages 235–250.

[14] J. Posner. Extended APGAS library repository. https://github.com/posnerj/
PLM-APGAS. 2018.

[15] J. Posner and C. Fohry. “A Java Task Pool Framework providing Fault-
Tolerant Global Load Balancing.” In: Int. Journal of Networking and Com-
puting (IJNC) 8.1 (2018), pages 2–31.

[16] J. Posner and C. Fohry. “Cooperation vs. Coordination for Lifeline-based
Global Load Balancing in APGAS.” In: Proc. ACM SIGPLAN Workshop on
X10. ACM, 2016, pages 13–17.

[17] J. Posner and C. Fohry. “Fault Tolerance for Cooperative Lifeline-Based Global
Load Balancing in Java with APGAS and Hazelcast.” In: IEEE Int. Parallel
and Distributed Processing Symp. Workshops (IPDPSW). 2017, pages 854–
863.

[18] V. A. Saraswat, P. Kambadur, S. Kodali, et al. “Lifeline-based Global Load
Balancing.” In: Proc. ACM Symp. on Principles and Practice of Parallel Pro-
gramming. ACM, 2011, pages 201–212.

[19] V. Saraswat, G. Almasi, G. Bikshandi, et al. “The asynchronous partitioned
global address space model.” In: The First Workshop on Advances in Message
Passing (2010), pages 1–8.

[20] SchedMD. Slurm Workload Manager. https://slurm.schedmd.com. 2018.

[21] F. Shahzad, M. Wittmann, M. Kreutzer, et al. “A survey of checkpoint/restart
techniques on distributed memory systems.” In: Parallel Processing Letters 23
(2013), pages 1340011–1340030.

[22] O. Tardieu. “The APGAS library: resilient parallel and distributed program-
ming in Java 8.” In: Proc. ACM SIGPLAN Workshop on X10 (2015).

[23] University of Kassel. Scientific data processing. https://www.uni-kassel.
de/its-handbuch/en/daten-dienste/wissenschaftliche-datenverarbeitung.
html. 2018.

https://github.com/posnerj/PLM-APGAS
https://github.com/posnerj/PLM-APGAS
https://slurm.schedmd.com
https://www.uni-kassel.de/its-handbuch/en/daten-dienste/wissenschaftliche-datenverarbeitung.html
https://www.uni-kassel.de/its-handbuch/en/daten-dienste/wissenschaftliche-datenverarbeitung.html
https://www.uni-kassel.de/its-handbuch/en/daten-dienste/wissenschaftliche-datenverarbeitung.html

Bibliography 32

[24] W. Zhang, O. Tardieu, D. Grove, et al. “GLB: Lifeline-based Global Load
Balancing Library in x10.” In: Proc. First Workshop on Parallel Programming
for Analytics Applications. ACM, 2014, pages 31–40.

Appendix 33

Appendix

Source code on CD
The source code of the algorithm’s implementation and the source code used in the
experiments is included on the attached CD.

Execution times

Places GLB FTGLB LocalFTGLB
1 7019.79 7072.02 6917.95
2 3723.56 3754.59 3792.47
4 1899.14 2047.62 1922.09
8 1002.20 1066.71 1005.97
12 652.88 664.37 663.16
24 328.32 341.57 336.84
36 220.57 230.24 228.05
48 166.28 175.64 174.48
60 133.96 142.74 141.69
72 112.05 120.85 119.88
84 97.10 105.12 104.20
96 85.67 93.28 92.85
108 76.90 84.16 83.98
120 69.90 76.97 76.63
132 64.17 70.46 70.26
144 58.85 65.70 65.55

Table 1: UTS with backupCount=1: Execution time in seconds

Appendix 34

Places GLB FTGLB LocalFTGLB
1 7019.79 7125.68 6961.32
2 3723.56 3767.82 3778.10
4 1899.14 2073.77 1934.50
8 1002.20 1093.43 1023.18
12 652.88 677.80 668.92
24 328.32 350.04 342.38
36 220.57 238.37 233.43
48 166.28 181.97 178.82
60 133.96 148.19 145.39
72 112.05 126.11 123.34
84 97.10 110.08 107.60
96 85.67 98.10 96.00
108 76.90 88.93 86.91
120 69.90 81.01 79.65
132 64.17 75.37 73.73
144 58.85 69.40 68.17

Table 2: UTS with backupCount=6: Execution time in seconds

Appendix 35

Places GLB FTGLB LocalFTGLB
1 1475.49 1556.32 1519.20
2 741.50 810.79 767.06
4 488.91 522.34 501.94
8 382.55 410.23 395.97
12 333.24 373.06 351.48
24 168.03 185.74 178.63
36 112.90 128.65 123.53
48 85.60 99.17 96.22
60 69.02 81.54 78.53
72 57.98 69.64 67.13
84 50.25 61.64 58.88
96 44.49 53.79 53.92
108 40.11 49.71 48.57
120 36.67 46.36 44.94
132 33.52 42.37 41.18
144 31.91 38.35 38.20

Table 3: BC with backupCount=1: Execution time in seconds

Appendix 36

Places GLB FTGLB LocalFTGLB
1 1475.49 1530.30 1513.53
2 741.50 821.53 767.04
4 488.91 530.39 513.45
8 382.55 423.02 410.72
12 333.24 380.59 417.16
24 168.03 194.91 190.26
36 112.90 142.69 133.36
48 85.60 113.67 104.75
60 69.02 91.52 86.72
72 57.98 79.09 73.40
84 50.25 71.98 66.29
96 44.49 65.08 61.19
108 40.11 60.52 55.18
120 36.67 53.84 50.34
132 33.52 49.67 46.23
144 31.91 45.40 43.85

Table 4: BC with backupCount=6: Execution time in seconds

Ballast in MB GLB FTGLB IncFTGLB LocalFTGLB
0.0 60.57 60.61 59.47 60.71
0.05 59.83 63.30 59.50 64.05
0.1 59.52 65.14 59.64 68.12
0.15 60.34 68.66 60.17 68.49
0.2 59.50 71.85 60.46 71.30
0.25 59.58 74.18 61.39 73.75
0.3 60.08 78.10 61.59 76.14
0.35 59.26 81.51 62.31 77.22
0.4 60.10 82.42 62.84 79.80

Table 5: StaticSyn with backupCount=1: Execution time in seconds

Appendix 37

Ballast in MB GLB FTGLB IncFTGLB LocalFTGLB
0.0 60.57 61.63 59.70 60.88
0.05 59.83 68.06 60.32 70.85
0.1 59.52 76.17 61.17 78.23
0.15 60.34 86.24 61.06 84.96
0.2 59.50 92.70 62.99 92.56
0.25 59.58 100.68 63.57 98.71
0.3 60.08 114.00 65.08 106.83
0.35 59.26 117.39 65.93 113.87
0.4 60.10 126.49 65.32 121.76

Table 6: StaticSyn with backupCount=6: Execution time in seconds

Ballast in MB GLB FTGLB IncFTGLB LocalFTGLB
0.0 97.30 101.43 101.81 260.22
0.5 113.68 141.54 133.50 161.35
1.0 129.47 177.88 159.28 215.32
1.5 148.91 223.95 191.39 218.81
2.0 164.43 254.53 217.40 222.38
2.5 200.94 329.77 269.57 309.61
3.0 219.07 353.84 309.02 280.31
3.5 235.48 401.66 324.99 362.15
4.0 252.07 430.31 361.91 362.81
4.5 290.50 547.86 406.50 432.03
5.0 305.88 541.54 454.32 528.22
5.5 325.14 606.92 497.26 588.15
6.0 340.92 637.52 508.48 489.96
6.5 358.13 652.06 533.44 468.02

Table 7: DynamicSyn with backupCount=1: Execution time in seconds

Appendix 38

Ballast in MB GLB FTGLB IncFTGLB LocalFTGLB
0.0 97.30 101.70 102.79 118.09
0.5 113.68 164.72 151.44 154.96
1.0 129.47 234.47 190.93 246.58
1.5 148.91 293.30 239.12 266.35
2.0 164.43 373.97 277.94 237.66
2.5 200.94 470.28 327.97 383.62
3.0 219.07 517.69 380.69 313.62
3.5 235.48 570.86 400.58 341.61
4.0 252.07 682.03 434.68 531.30
4.5 290.50 719.40 529.14 386.46
5.0 305.88 806.68 589.23 616.30
5.5 325.14 875.71 631.86 604.03
6.0 340.92 932.54 612.46 506.33
6.5 358.13 1021.73 676.01 793.86

Table 8: DynamicSyn with backupCount=6: Execution time in seconds

Correctness test cases
1. Crash of place 2 in the processStack() method after n computation steps.

2. Crash of place 2 in the processStack() method and crash of place 1 at the
beginning of the recoverPlace() method.

3. Crash of place 2 in the processStack() method and crash of place 1 at the
end of the recoverPlace() method.

4. Crash of place 2 in the processStack() method and delayed execution of the
placeFailureHandler() method by 120 seconds.

5. Crash of place 2 at the end of the processLoot() method.

6. Crash of place 2 after the backup written when the pool becomes empty.

7. Crash of all places except place 0.

8. Crash of place 2 between the writing of the steal backup and the sending of
the tasks.

Appendix 39

9. Crash of place 2 before the steal backup with place 2 as thief is written. The
steal backup is delayed by 120 seconds. This tests the prevention of late steal
backups to a checkpoint which is already recovered.

10. Crash of place 2 after the regular backup is written. The program waits until
the regular backup is written and then simulates the crash.

11. Crash of place 2 after an answered lifeline steal request. The thief waits
for 3 seconds until processing the answer to make it highly likely for the
placeFailureHandler() to be already executed.

12. Crash of place 2 after an answered random steal request. The thief waits
for 3 seconds until processing the answer to make it highly likely for the
placeFailureHandler() to be already executed.

	Titlepage
	Contents
	List of Abbreviations
	Statutory Declaration
	Introduction
	Background
	APGAS Library
	Hazelcast Library
	APGAS_GLB
	FTGLB
	IncFTGLB

	Algorithm
	Overview
	Steal Backups
	Regular Backups
	Asynchronism
	Recovery
	Comparison

	Implementation
	Steal Backups
	Asynchronism

	Experiments
	Setup
	Unbalanced Tree Search
	Betweenness Centrality
	Synthetic Benchmarks
	Configuration
	Results
	Discussion
	Correctness

	Conclusions
	Bibliography
	Appendix

