
Universität Kassel

Master Thesis

Design and Evaluation of a
Work Stealing-Based Fault Tolerance

Scheme for Task Pools

presented to
Department of Electrical Engineering and Computer Science

Research Group Programming Languages/Methodologies

Lukas Reitz
33211934

Kassel, November 12, 2019

Examiners:
Prof. Dr. Claudia Fohry
Prof. Dr. Albert Zündorf

Contents ii

Contents
Statutory Declaration iv

List of Figures v

List of Tables vi

List of Listings vii

List of Abbreviations viii

1 Introduction 1

2 Original Fault-Tolerance Scheme 5
2.1 Idea . 5
2.2 Extension to Distributed Fork-Join Programs 6
2.3 Recovery . 7

3 Adapted Fault-Tolerance Scheme 9
3.1 Task Pool Constraints . 9
3.2 Changes to GLB . 10
3.3 Tracking of Work Stealing . 12
3.4 Recovery . 12
3.5 Special Cases . 13

3.5.1 Failure of a Single Task Bag 14
3.5.2 Simultaneous Failure of Two Task Bags 15
3.5.3 Failure During Recovery . 16
3.5.4 Task Arrival from a Failed Worker 16
3.5.5 Only Few Steals . 16

4 Implementation 17
4.1 Background . 17

4.1.1 APGAS . 17
4.1.2 GLB . 18
4.1.3 AllFTGLB . 19

4.2 DistLogFTGLB . 19

5 Experiments 25
5.1 Overview . 25
5.2 Benchmarks . 26

5.2.1 UTS . 26

Contents iii

5.2.2 N-Queens . 27
5.3 Setup . 27
5.4 Results . 29
5.5 Discussion . 32
5.6 Correctness . 33

6 Related Work 34

7 Conclusions 36

Bibliography 37

Appendix 41

Statutory Declaration iv

Statutory Declaration

I declare on oath that I completed this work on my own and that information which
has been directly or indirectly taken from other sources has been noted as such.
Neither this nor a similar work has been published or presented to an examination
committee.

Kassel, November 12, 2019
Lukas Reitz

List of Figures v

List of Figures

2.1 Computation tree of FIB(4) . 5

3.1 Lifeline steal protocol . 11
3.2 Steal tree before failure . 14
3.3 Steal tree after patching . 15
3.4 Steal tree after scenario . 15

5.1 UTS on Kassel . 29
5.2 UTS on Goethe . 30
5.3 N-Queens on Kassel . 30
5.4 N-Queens on Goethe . 31

List of Tables vi

List of Tables

5.1 Parameters used for the weak scaling experiments 29
5.2 Execution times in seconds for UTS 31

1 UTS on Kassel: Execution time in seconds 42
2 UTS on Goethe: Execution time in seconds 42
3 N-Queens on Kassel: Execution time in seconds 43
4 N-Queens on Goethe: Execution time in seconds 43

List of Listings vii

List of Listings

2.1 Naive recursive Fibonacci program 5

4.1 Typical APGAS program . 18
4.2 Main loop of GLB . 19
4.3 HistoryEntry class . 23
4.4 TaskBag class . 23
4.5 ReplayUnit class . 23
4.6 Tree class . 24

List of Abbreviations viii

List of Abbreviations

ABFT Application-based fault-tolerance

MTBF Mean Time Between Failures

GLB Global Load Balancing framework [38]

AllFT Application-level fault-tolerance scheme using
checkpointing [28]

AllFTGLB The implementation of AllFT for GLB [25]

DistLogFT The new scheme introduced in this thesis

DistLogFTGLB The implementation of DistLogFT for GLB

PGAS Partitioned Global Address Space model

APGAS Asynchronous Partitioned Global Address Space library [34]

UTS Unbalanced Tree Search benchmark [23]

N-Queens N-Queens benchmark [12]

MSB Most Significant Bit

1 Introduction 1

1 Introduction

Computations on parallel systems can experience failures. If non-fault-tolerant com-
putations take significantly longer than the Mean Time Between Failures (MTBF)
of the parallel system, they will most likely not complete. This wastes energy and
makes such computations unviable. With the increasing size of parallel systems, the
necessity of fault-tolerance is becoming more apparent.
In this thesis only fail-stop failures are considered, i.e., a failed process quits

the computation completely. We assume that communication to a failed process
returns an error and all processes are eventually notified of all failures. Also, we
assume a shrinking recovery, where no new processes are started after failures. The
computation continues with fewer processes than initially started.
The most common approach to fault-tolerance is checkpoint/restart, where a valid

state of the computation is saved periodically in memory or on disc [10]. Then,
upon failure, the computation is restarted from the saved checkpoint. There are
two major variants of checkpointing. In system-level checkpointing, the check-
point contains all data of the respective process. Thus, the application is restarted
by loading this last saved state. The application usually does not need to know
about the checkpointing, thus making this an easy way of adding fault-tolerance to
existing programs. In application-level checkpointing, the checkpoint contains
only selected data, which are sufficient to restore the computation [16]. This vari-
ant has a smaller backup volume and a potentially lower fault-tolerance overhead
than system-level checkpointing, because less data has to be written and read. The
downside is an increased burden on the application programmer.
Another distinction on checkpointing can be made between coordinated and unco-

ordinated checkpointing. In coordinated checkpointing, processes write the check-
point in a coordinated way. This requires communication between the processes
to organize the writing of the checkpoint. In uncoordinated checkpointing, every
process writes its own checkpoint independently from other processes.
A popular approach to parallelization is to divide a computation into subcompu-

tations, called tasks, which are processed by workers. This is called the task pool
pattern. Each worker maintains a local pool, which contains tasks to be processed.
The load-balancing of the local pools is realized by utilizing either work sharing or
work stealing [5]. In work sharing, workers with full pools send tasks to workers

1 Introduction 2

with empty pools. In work stealing, workers with empty pools steal tasks from
other workers. This thesis focuses on cooperative work stealing, where a worker,
called thief, asks a co-worker, called victim, for tasks. The victim can either reject
the request or answer with tasks.
Task pool variants can be divided by the way the final result is calculated. In this

thesis, we focus on reduction-based task pools. Here, the final result is calculated
by an associative and commutative operator, called the reduction operator. Each
task has a result and the overall result of the computation is calculated by reduction
from all task results.
One implementation of a reduction-based task pool is the Global Load Bal-

ancing (GLB) framework [38]. GLB operates in a Partitioned Global Address
Space (PGAS) setting. In PGAS, the parallel system is divided into units, called
places. Each place consists of a part of system memory and processing units. Usu-
ally a place corresponds to one cluster node. In all GLB variants considered in this
thesis one worker is executed on each place.
The original GLB framework is implemented in the parallel programming language

X10 [17]. Later work ported the GLB framework to Java by using the “APGAS for
Java” parallel programming library (APGAS) [26, 34]. This library implements
the Asynchronous Partitioned Global Address Space model [31]. The model extends
the PGAS model by introducing tasks, called activities. Activities can be spawned
locally or remotely and in a synchronous or asynchronous way. The execution of
an APGAS program begins on place 0 from which new activities can be spawned
on other places to spread the computation across the parallel system. For the
experiments a fork of the APGAS library was used. It contains bug fixes and
additional features. The fork is available as an online repository [24]. GLB was
ported in two variants. The variants differ from each other by their load-balancing
mechanism. In this thesis, GLB refers to the variant utilizing cooperative work
stealing as the load-balancing mechanism.
GLB deploys the lifeline scheme [30] for termination detection. Workers with

empty pools contact up to w random victims. If the random victims do not have
tasks to share, the worker contacts up to z lifeline buddies. Lifeline buddies are
neighbours of the worker in a connected graph. If neither of them have tasks to
share, the worker becomes inactive. If all workers are inactive, the final result is
computed from all worker results by reduction and the computation is completed.
An application-level fault-tolerance scheme for GLB was introduced in Refer-

ence [25], and is called AllFT. Each worker periodically saves the local pool contents
with the current worker result in a resilient store. A backup is also written in the

1 Introduction 3

event of work stealing on the thief’s side and the victim’s side, during recovery, and
before and after the computation. The current pool contents and the worker result
are sufficient to save the state of the computation. The saved state has to include
past tasks, current tasks and future tasks. The current tasks are the tasks in the
local pool. Past tasks are reflected in the worker result. Future tasks will be gener-
ated from the current tasks. Upon failure of a worker, a specified recovery worker
combines its own current result with the failed worker’s result using the reduction
operator. The recovery worker also inserts the tasks of the most recent backup into
its local pool. The scheme was first described as a fault-tolerance scheme for GLB,
but was later refined to be task pool variant-independent in Reference [28]. The
implementation of AllFT from this refined variant is called AllFTGLB and is used
in the experiments of this thesis.
Another popular parallelization pattern is fork-join. In this pattern, the compu-

tation is split into subcomputations recursively (fork). The parent computations
wait for their children (join), which return their results to their parent.
Several fault-tolerance schemes for fork-join programs were proposed [6, 19, 37].

In particular, Reference [19] presents a scheme which adds fault-tolerance to work
stealing based programs and does not involve checkpoint/restart. GLB programs
differ from fork-join programs in the following aspects. In fork-join, task results
influence results of other tasks due to the nature of fork-join. In GLB, task results
do not influence results of other tasks and the final result is calculated by reduction.
Also, in fork-join, tasks usually follow the work-first policy. When a worker executes
the fork operation, the current task is pushed to the task queue and can be stolen.
The worker proceeds to process the newly forked child task. In GLB, in contrast,
tasks follow the help-first policy. Newly generated tasks are pushed to the task
queue, from which they can be stolen [14]. Furthermore, in distributed fork-join
programs with work stealing, a worker usually steals the oldest task of another
worker, as it is likely to fork a high number of child tasks. This is different to GLB,
where a block of tasks is stolen.
This thesis presents the design and evaluation of an adaption of a fault-tolerance

scheme from Reference [19]. The original scheme, called ForkJoinFT, adds fault-
tolerance to distributed fork-join based programs. The adaption, called DistLogFT,
applies the idea of ForkJoinFT to GLB. ForkJoinFT does not send any additional
messages during failure-free execution, which is a major advantage over schemes
based on in-memory checkpointing. Upon a failure, only tasks stolen by the failed
worker are restored. Tasks of alive workers which were stolen from the failed worker
are not reprocessed, avoiding unnecessary work. ForkJoinFT tracks work stealing

1 Introduction 4

to decide which tasks have to be restored. In-memory checkpoint/restart algorithms
can typically only tolerate up to a certain number of simultaneous crashes due to a
limited number of backup replications. In contrast, DistLogFT and ForkJoinFT can
recover from simultaneous failure of all workers except one. The implementation of
DistLogFT for GLB is called DistLogFTGLB.
We compare two techniques for achieving fault-tolerance. The first technique,

application-level checkpointing, benefits of the simplicity of checkpointing and a fast
recovery. On the backside, the writing of checkpoints costs time and involves slow
communication. The second technique, tracking of work stealing, has the upside of
not needing additional communication during failure-free execution. A downside is
the complicated recovery. For the comparison, execution times of two benchmarks
were measured for GLB, AllFTGLB and DistLogFTGLB, and the relative runtime
increase to GLB was denoted as the fault-tolerance overhead.
The experiments confirmed fault-tolerance overheads of AllFTGLB from earlier

experiments of Reference [28]. The fault-tolerance and recovery overhead of AllFT-
GLB is small. DistLogFTGLB showed an even lower fault-tolerance overhead on
average than AllFTGLB, but at the cost of a higher recovery overhead.
This thesis is organized as follows. Chapter 2 describes the idea of the original

scheme. Then, Chapter 3 explains the adaption. Next, Chapter 4 provides imple-
mentation details. Then, Chapter 5 describes the experiments and discusses results.
In Chapter 6, related work is presented. The thesis finishes with conclusions in
Chapter 7.

2 Original Fault-Tolerance Scheme 5

2 Original Fault-Tolerance Scheme

This chapter outlines the idea of ForkJoinFT from Reference [19]. First, Section 2.1
presents the general idea of the scheme. Then, Section 2.2 shows the application of
the idea to distributed fork-join programs. Finally, Section 2.3 sketches the recovery
of failures.

2.1 Idea
This section presents the basic idea of ForkJoinFT from a computation tree per-
spective. A simple fork-join program for illustration purposes is the recursive com-
putation of Fibonacci numbers as shown in Figure 2.1.

1 func t i on FIB(n)
2 i f n < 2
3 RETURN n
4 a = fo rk FIB(n − 1)
5 b = fo rk FIB(n − 2)
6 j o i n
7 RETURN a + b

Listing 2.1: Naive recursive Fibonacci program (adopted from Reference [19])

FIB(4)

FIB(3) FIB(2)

FIB(2) FIB(1) FIB(1) FIB(0)

FIB(1) FIB(0)

(a) Normal execution

FIB(4)

FIB(3) FIB(2)

FIB(2) FIB(1) FIB(1) FIB(0)

FIB(1) FIB(0)

FIB(3)

(b) Execution with a lost subcomputation

Figure 2.1: Computation tree of FIB(4)

At each fork statement, a new subcomputation is created. When a subcompu-
tation is finished, its result is returned to the parent subcomputation. Thus, a call

2 Original Fault-Tolerance Scheme 6

to FIB(4) creates two subcomputations, which calculate FIB(3) and FIB(2), respec-
tively. Subcomputations can be visualized by the computation tree in Figure 2.1a.
Each vertex in the tree corresponds to one subcomputation and edges denote parent-
child relations. Each subcomputation returns its result upwards in the tree. The
result of the root subcomputation is the final result.
Each subcomputation has a location, e.g., it is saved as a task in the main memory

of a computer or it is temporarily saved on a disc. The location of a subcomputation
can be found out at any time. A subcomputation whose location is not accessible
anymore will be called lost subcomputation.
Figure 2.1b shows the same tree as Figure 2.1a but the red subcomputation is lost.

To complete the overall computation, a subcomputation identical to the lost sub-
computation is created on another location. At first, this results in an unconnected
graph. The direct children of the lost subcomputation have to be located and edges
in the computation tree have to be added to connect the new subcomputation to
the children of the lost subcomputation. The parent of the lost subcomputation has
to be connected to the new subcomputation, too. Old edges have to be removed.
Figure 2.1b shows the new edges.
A naive fault-tolerance scheme could just reprocess the red subcomputation in-

cluding the green subtrees. Such a scheme would be correct, but it would not be
efficient, as the green subtrees would be processed twice. ForkJoinFT only repro-
cesses lost subcomputations and reconnects alive subcomputations (yellow edges).
The lost subcomputation is reprocessed (yellow subcomputation), but the green
subtrees are not. The basic idea of the scheme is to only reprocess the lost subcom-
putations and to not reprocess alive child subcomputations.

2.2 Extension to Distributed Fork-Join Programs
The above idea was applied to distributed fork-join programs using work stealing
for load balancing in Reference [19]. We will call such programs ForkJoin. In
ForkJoin, program executions are divided into steal and work phases. A steal phase
begins for a worker when its local pool becomes empty. A work phase begins after
a successful steal. Instead of a computation tree perspective, the scheme is based
on a steal tree perspective. A steal-tree is a tree with subcomputations as vertices
and steal relations as edges [22]. In the steal phase, the worker steals the oldest
subcomputation from a random victim. In the work phase, the worker processes
subcomputations until its local pool becomes empty.
Each time a subcomputation is stolen, the subcomputation is assigned a unique

2 Original Fault-Tolerance Scheme 7

identifier, called ID. The ID contains the level and number of preceding children in
the computation tree. If the computation is repeated, the ID corresponds to the
same subcomputation.
Each stolen subcomputation has a history of steals of parent subcomputations.

The history is a path in the corresponding steal-tree. The path is used in recovery
to determine if the subcomputation belongs to the subtree below the failed sub-
computation. This history is saved for each stolen subcomputation and is used
during recovery to identify which parts of the subcomputation need or need not be
reprocessed. Recovery is described in Section 2.3.
In order to identify the steals that preceded a steal from the same victim in the

same work phase, a list is maintained by each worker which contains the stolen steps
of all preceding steals from the same parent. From this list it is possible to identify
for the i-th child that there were i−1 other children who stole from the same parent
even though only the i-th child is alive. This list is used to reconstruct missing parts
of the steal tree (see the last step of Recovery in Section 2.3).
Additionally, each worker maintains a datastructure which contains stolen sub-

computations whose results were not received yet. The datastructure is used to
determine which subcomputations are lost due to the failure.

2.3 Recovery
The recovery of the scheme can be sketched as follows:

1. Determine the lost subcomputations.

Each worker searches the lost subcomputations in the aforementioned data-
structure containing the subcomputations which were stolen by other workers.

2. Determine the subtree of the lost subcomputation.

The subtrees are collected by a distributed binary-tree-based reduction. Since
they all contain the lost subcomputation, they can be merged to a so-called
replay tree using the lost subcomputation as the root.

3. Determine a new worker to process the lost subcomputation.

Each worker who has a stolen subcomputation which is lost due to the fail-
ure, constructs a replay unit containing the replay tree, the frame of the lost
subcomputation and the subcomputation’s history.

4. Distribute the replay unit.

2 Original Fault-Tolerance Scheme 8

The replay units will be sent to the next thieves in work stealing.

5. Reconnect the new worker to the parent of the lost subcomputation.

The thief of the replay unit sends a message to the parent worker which informs
the parent about the changed child.

6. Reconnect the subtree to the new worker.

The thief of the replay unit sends a message to each direct child to inform it
about the changed parent.

7. Reprocess the lost subcomputation.

The thief reprocesses the lost subcomputation. The live parts of the subcom-
putation are omitted, if corresponding steals exist in the replay tree.

If a child of the subcomputation was stolen by a worker, but the steal does
not exist in the replay tree, a new replay unit is constructed to start another
recovery for this child. This makes sure that several lost subcomputations
that are directly connected get recovered, too. Steals that are not existing in
the replay tree are still known, because of the aforementioned list of preceding
steals. Since every worker, who stole a subcomputation from the same parent,
knows about preceding steals of parts of the same parent subcomputation,
missing parts of the steal tree can be constructed from the longest list of the
worker who stole the last child subcomputation.

If a child was stolen by a worker and is found in the replay tree, the child
subcomputation can be discarded, as it is still available on another worker.

During recovery, the lost subcomputation can not be stolen by any worker,
even if the recovering worker processes a forked subcomputation of the lost
subcomputation.

This results in a recovery of lost subcomputations.

3 Adapted Fault-Tolerance Scheme 9

3 Adapted Fault-Tolerance Scheme

This chapter explains the adapted scheme in detail. Chapter 2 described the fault-
tolerance scheme for distributed fork-join programs. In this chapter, the scheme is
first described in a generic way for task pools. Then, in Section 3.2, the necessary
changes to apply the scheme to GLB are discussed. Thereafter, in Section 3.3,
further details about the scheme’s tracking of work stealing events are provided.
Next, Section 3.4 describes the recovery. The chapter finishes with a discussion of
special cases in Section 3.5.

3.1 Task Pool Constraints
DistLogFT imposes the following constraints on the task pool variant:

(C1) Workers periodically enter a communication phase after processing a fixed
number of tasks. Communication is prohibited while not in this phase. No
tasks are processed during the communication phase.

(C2) For each worker, all tasks in its local pool must originate from the same task
bag, which is loot with additional information (see Chapter 3.3).

(C3) All operations that modifiy the local pool contents must be deterministic.
This includes the order of tasks processed and inserted into the task queue.
Repeated execution of a sequence of operations on a local pool must always
yield the same resulting pool.

Constraint C1 can be fulfilled by a restriction of the work stealing variant. Any task
pool variant that uses cooperative work stealing can fulfill this restriction, because
the time when to answer steal requests is flexible. Constraint C2 is easily fulfilled by
a steal protocol, where a steal request is only sent if the local pool is empty, and the
next steal request is only sent, if the preceding request was rejected. Constraint C3
can be fulfilled by any task pool variant, but can lower efficiency. We focus on a task
model, where tasks do not have side effects. Tasks are always taken for processing
from the end of the task queue and tasks are inserted at the end. If a task generates
several new tasks, the tasks are always inserted in the same order.

3 Adapted Fault-Tolerance Scheme 10

3.2 Changes to GLB
The GLB variant considered in this thesis already uses cooperative work stealing
and only communicates before and after task processing. Therefore, constraint C1
is already fulfilled. Also, the order of task insertions and task processing is already
defined in GLB, such that it does not collide with constraint C3. Tasks do not have
side effects and the insertion of new tasks always happens in the same order.
To fulfill C2, a worker must only steal tasks when the local pool is empty. Since

lifeline steals can be answered at any point in time, tasks can arrive in GLB even
though the pool is not empty. For DistLogFT, the lifeline steal protocol was changed
to prevent such task arrivals. The new protocol (depicted in Figure 3.1) is as follows:

1. The thief sends a lifeline steal request to the victim.

2. Eventually, the victim answers the steal request with a lifeline steal delivery
request if the victim has tasks to share.

3. If the thief still has an empty pool, the thief will decline any other lifeline steal
delivery requests until the tasks are received. The thief answers the request,
after waiting for any ongoing random steals, with a message indicating that
the thief is ready to receive the tasks, called lifeline delivery request answer.

4. The victim sends the tasks to the thief, called lifeline steal answer.

3 Adapted Fault-Tolerance Scheme 11

Thief Victim

Lifeline Steal Request

Lifeline Steal Delivery Request

Lifeline Steal Delivery Request Answer

Lifeline Steal Answer

Figure 3.1: Lifeline steal protocol

DistLogFT is based on a task bag perspective. Every computation can be struc-
tured as a tree of task bags. Each edge is a steal relation from the source vertex to
the target vertex. The root is an implicit task bag, called master bag, which contains
all of the initial tasks of the computation. In the next layer, there is one task bag for
each worker containing the initial tasks of that worker. These task bags have steal
relations to the root. The next layers are filled with task bags which are created
due to work stealing. Constraint C2 allows the creation of a tree of task bags with
each task bag having exactly one parent task bag (except the master bag). Due to
the tree structure, the task results of each task bag are propagated upwards, i.e.,
until the results reach the master bag, which will contain the final result. At each
step of the propagation, the results are combined by reduction. When the result
of the master bag is available, the computation is finished. This replaces the final
reduction of GLB and is the main change to GLB. Without the change in the re-
duction, progress made by failed workers would get lost, since results would stay on
the failed workers.
The change from a final reduction to a steal-tree based reduction changes the

complexity of the reduction operation. A distributed binary-tree reduction results
in O(log w) steps and O(w) applications of the binary reduction operator (with

3 Adapted Fault-Tolerance Scheme 12

w being the number of workers). Assuming a balanced steal tree, the changes in
DistLogFT then result in O(log s) steps and O(s) applications of the operator (with
s being the number of successful steals).

3.3 Tracking of Work Stealing
As in ForkJoinFT, for each steal, the task bag gets assigned a unique identifier (ID).
Each task bag T contains the path in the steal tree from the master bag to T. Vertices
in the path are annotated with the number of tasks processed until the loot was
extracted. Since steals in GLB always steal a constant percentage of the available
tasks, the number of tasks stolen (loot size) does not need to be saved. Alternative
task pool variants might need to include the loot size in the annotations to be able
to deterministically extract the same sized loot during recovery. A difference to
ForkJoinFT is, that in DistLogFT more than one steal request can be answered at
once. To distinguish between steals that happen during the same communication
phase, the number of past steals from the parent bag has to be included in the
annotations. The history can be generated on each steal, by copying the parent
bag’s history and adding the annotated vertex of the newly generated task bag.
Similar to ForkJoinFT, a list containing the number of processed tasks for each

child task bag of the same parent generated in the past. The list is used to perform
the loot extractions for lost child task bags with no children of a lost task bag, as
they will not be contained in the history of another task bag. The list is necessary
for keeping the pool state the same as it was when the original loot was extracted.
We will call the ID, annotations and the aforementioned list of preceding steals of

the same parent steal information of a task bag. If tasks are removed from a task
bag, only steal information remain. The steal information will be used in recovery.

3.4 Recovery
Recovery is realized similar to ForkJoinFT. We refer to task bags that were owned
by a failed worker as failed task bags. Each failed task bag is recovered separately.
After a failure of a worker, all workers eventually detect the failure and begin to
search for failed task bags that they have sent to the failed worker and are still
waiting for their results. For each failed task bag, a replay tree is constructed by a
global reduction over all workers. We recall, that the history of a task bag is a path
in the steal tree. The reduction retrieves the histories of the task bags and merges
them to a replay tree. The replay tree contains the steal information of the failed

3 Adapted Fault-Tolerance Scheme 13

task bag as the root, from which the corresponding parts of the histories descend.
Task bags with the same ID in different histories collapse to one vertex in the tree.
The replay tree and the failed task bag are combined into a replay unit. The replay
unit is either given to another worker by work stealing or is processed by the worker
who created the replay unit, if the worker has an empty pool.
Patching is the act of notifying the workers owning the child task bags of the

failed task bag of the new worker for result propagation. The worker processing the
replay unit initiates patching on place 0. Different patchings can not overlap. Also,
patching is canceled if the initiating worker failed. Because we initally assumed
that communication to a failed worker returns an error, this can easily be tested by
sending a message to the initiating worker right before commencing patching. This
prevents partial patchings and makes sure that no subtree of the steal tree becomes
disconnected from the tree due to a failure during recovery and a late patching. The
parent task bag and the direct child task bags of the failed task bag are reconnected
to the recovered task bag. The worker then begins to process the tasks of the
recovered task bag. For each direct child in the replay tree, loot is extracted from
the task queue to simulate the occured steal. The extractions happen directly after
the annotated number of tasks has been processed. The loot is discarded if the owner
of the child task bag is still alive. Otherwise a new replay unit is created for the
child task bag and is distributed by work stealing or is processed by the recovering
worker. Answering of steal requests is not allowed during recovery, because loot
extractions modify the pool state. The pool state must remain the same as it was
when the failed worker processed the tasks, as recovery depends on it. Recovery
ends after all child task bags of the failed task bag have been extracted from the
pool. After recovery, the worker returns to normal operation.

3.5 Special Cases
Since the scheme is based on a task-bag perspective, failure scenarios can be de-
scribed as failed task bags.

3 Adapted Fault-Tolerance Scheme 14

3.5.1 Failure of a Single Task Bag

M

P

F

A B

Figure 3.2: Steal tree before failure

In this scenario a single task bag F fails. Figure 3.2 shows the steal tree right before
failure. M denotes the master bag. A and B are the direct children of the failed
task bag. The worker, who owns the parent task bag of F eventually detects the
failure and begins recovery. The worker constructs the steal tree and saves a replay
unit. For this scenario, we assume the unit to be stolen by another worker, even
though the unit could be immediately processed if the local pool is empty. The thief
initiates patching from place 0. During and after patching, results from child task
bags arrive at the thief. After patching, the steal tree looks as in Figure 3.3. The
failed task bag is denoted as F and the recovered task bag is denoted as F’.

3 Adapted Fault-Tolerance Scheme 15

M

P

F

A B

F'

Figure 3.3: Steal tree after patching

The thief begins to reprocess the lost parts of the task bag. The thief is done but
is still waiting for a result from a child task bag. After a while, the result is received
and the thief sends the result of F to the parent task bag’s worker. The steal tree
after result propagation of the failed task bag is shown in Figure 3.4.

M

P

Figure 3.4: Steal tree after scenario

3.5.2 Simultaneous Failure of Two Task Bags

The failure of task bags with non-overlapping steal paths is handled as two separate
failures of a single task bag. We assume that the failure of the workers happens
at the same time, i.e., the workers fail before any other worker detects any of the
failures.
The failure of task bags with overlapping steal paths is essentially handled the

same as two separate failures of single task bags. If a failed task bag B is a direct

3 Adapted Fault-Tolerance Scheme 16

child of a failed task bag A, recovery is begun after recovery of task A as a failure
of a single task bag. During recovery of task bag B a replay unit for task bag A
is created and given to another worker by work stealing. If the task bags are not
direct neighbours in the steal path, they are recovered at the same time, but they are
non-overlapping, so they are handled as multiple separate single task bag failures.

3.5.3 Failure During Recovery

This scenario is handled in the same way as a simultaneous failure of two task bags.
When the replay unit is stolen by a worker W, the victim, who assembled the replay
unit, updates the steal information for the failed task bag on the victim side. This
scenario is handled as simultaneous failure of two task bags, because the victim is
still the owner of the parent task bag and gives the replay unit to another worker.
The recovery of the thief is handled in the same way as a failure of a single task bag.

3.5.4 Task Arrival from a Failed Worker

Task bags from failed workers are declined, because construction of the steal tree
might have already happened and this steal might have happened too late to be
included. The declined task bag is not included in the history of any other task bag,
resulting in no change to any part of recovery due to declining.
If a worker receives a task bag from a worker whose failure was not detected yet,

the loot is inserted into the pool when the worker does not participate in a recovery,
such as the collection of the steal tree. If the task bag is received before the steal tree
is collected, the task bag is included in the steal tree. Thus, the tasks of this task
bag are not reprocessed. If the task bag is received after the steal tree collection, the
task bag will be declined, because the failure of the victim is known at this point.

3.5.5 Only Few Steals

In an application with only few steals, only few result propagations occur. For
every vertex in the steal tree, one result is propagated upwards. Each time a result
is propagated, the task bags of the whole subtree are finished. If there are only
few result propagations, progress is only made in long time intervals. A failure
would cause long reprocessing. In such applications additional checkpointing can be
applied to further reduce the number of tasks to be reprocessed after a failure.

4 Implementation 17

4 Implementation

This chapter discusses implementation details. First, some implementation back-
ground of APGAS, GLB and AllFTGLB is given. Then details of DistLogFTGLB
are discussed.

4.1 Background

4.1.1 APGAS

APGAS programs follow an async-finish structure with the following constructs:

• async(SerializableJob f)

Spawns an activity locally. SerializableJob is a functional interface, containing
the activity’s code.

• asyncAt(Place p, SerializableJob f)

Spawns an activity on place p.

• finish(Callable<T> f)

Waits for all spawned activities in f and their successors.

• uncountedAsyncAt(Place p, SerializableJob f)

Spawns an uncounted activity on place p. Uncounted means, that a surround-
ing finish construct does not wait for this activity.

Moreover, places() returns a list of all alive places.
The structure of a typical APGAS program is shown in Listing 4.1. An activity

printing a text is spawned on each place by using asyncAt. The outer finish waits
for all activities. The program ends when the finish returns.
The APGAS library implements a place as a single JVM. The places are con-

nected by using the Hazelcast Library [15] for the network layer. Local activities,
meaning activities spawned on the same place, are scheduled by using the Java
ForkJoinPool [20]. The ForkJoinPool provides intra-place parallelization by keep-
ing a number of threads and load-balancing the work between them by using work
stealing.

4 Implementation 18

1 import stat ic apgas . Constructs . ∗ ;
2 import apgas . Place ;
3
4 class HelloWorld {
5 public stat ic void main (St r ing [] a rgs) {
6 f i n i s h (() −> {
7 for (Place p : p l a c e s ()) {
8 asyncAt (p , () −> {
9 System . out . p r i n t l n (" He l lo ␣World␣ from␣ p lace ␣ " + p . id) ;

10 }) ;
11 }
12 }) ;
13 }
14 }

Listing 4.1: Typical APGAS program

APGAS supports resilience by throwing exceptions when calling methods that
interact with failed places. The runtime system also calls a callback method, called
placeFailureHandler, eventually after a place fails. The finish construct does
not wait for activities that were spawned on failed places.

4.1.2 GLB

GLB employs the following task model (cited from [25]):

• Tasks have no side-effects.

• Processing a task can generate new tasks.

• Processing a task produces a result.

• All task results have the same type.

• Each worker accumulates task results into a partial result.

• The final result is computed from partial results by reduction, using a com-
mutative and associative operator.

The computation in GLB uses a typical async-finish structure. When the outer
finish of the computation returns, the computation is over. The main loop of GLB
is shown in Listing 4.2. When a worker exits the main loop, it enters the inactive
state. When all workers are inactive, the finish returns, as there are no activities
running anymore. The final result is calculated by reduction over all workers. The
reduction also uses an async-finish structure.

4 Implementation 19

1 while (ta sk s are a v a i l a b l e) {
2 while (l o c a l pool i s not empty) {
3 synchronized (worker l ock ob j e c t) {
4 proce s s up to n ta sk s ;
5 send ta sk s to recorded th i e v e s ;
6 }
7 }
8 synchronized (worker l ock ob j e c t) {
9 try to s t e a l from up to w+z v i c t ims ;

10 }
11 }

Listing 4.2: Main loop of GLB [26]

In GLB, each place executes one worker. When using GLB on a single multi-core
machine, multiple places have to be executed to utilize all available resources. The
outer finish and the final reduction is initiated by place 0.
Application programmers have to implement the task queue interface TaskQueue

and the task bag interface TaskBag. The loot extraction during work stealing is
realized by a call to the split method on the task queue. The method returns a
task bag containing the extracted tasks.

4.1.3 AllFTGLB

AllFTGLB’s fault-tolerance is based on Hazelcast’s data structures. Hazelcast pro-
vides resilient and distributed data structures. The IMap datastructure of Hazelcast
is a distributed resilient key-value store. It is used to store the checkpoints of the
workers. Since AllFTGLB writes a backup after a worker becomes idle, the check-
points contain the results of the workers after the computation is done. The final
result is then calculated by reduction over all IMap entries. The number of repli-
cations of IMap contents is given as a parameter called backupCount. The highest
possible number of replications is six.

4.2 DistLogFTGLB
As discussed in Chapter 3, DistLogFT propagates the task bag results towards the
master bag. For this, a counter, called remainingResults, was added to each task
bag. The counter keeps track of how many results of children a task bag has to wait
for, before the result can be sent to the parent bag. Whenever a result is received
from a child, the counter is decremented and if the counter reaches zero, the result
is sent to the parent bag. The computation is completed when the master bag’s
result is available, i.e., when remainingResults is zero. As mentioned above, GLB
and AllFTGLB use an async-finish structure for termination detection. When all

4 Implementation 20

tracked activites are done, the computation is completed. In DistLogFTGLB, such a
structure is not necessary, because it is sufficient to observe the master bag’s counter
on place 0. By realizing the termination detection this way, no additional messages
for termination detection are sent, thus reducing the communication volume.
DistLogFTGLB requires the split method to always extract the same loot on the

same pool state. For the benchmarks, the code from Reference [28] was adapted,
which already fulfilled this requirement, see Chapter 5 for further details on the
benchmarks.
The implementation of the lifeline steal handshake, as shown in Section 3.2, is as

follows:

1. The thief spawns an activity on the victim. The activity adds the request to
a thread-safe queue. This message is the lifeline steal request.

2. In the gaps between task processing, the communication phase begins. In this
phase workers take out requests from their queues and answer each request by
spawning an activity at the thief. This message is the lifeline steal delivery
request.

3. The activity ends if there is already another handshake ongoing. If there is
no other handshake going on, a flag is set atomically using a compare and set
operation to indicate an ongoing handshake.

4. The activity and the handshake ends if the queue is not empty because of a
prior lifeline task delivery.

5. Next, an activity is spawned on the victim which adds the thief to another
thread-safe queue. This queue is used for keeping track of ongoing lifeline
handshake partners who expect task deliveries. This message is the lifeline
steal delivery request answer.

6. Since the lifeline handshake is executed asynchronously next to the processing
of tasks, the victim might be processing tasks. Again, in the gap between
task processing, the victim sends out lifeline deliveries to the lifeline thiefs by
spawning activites on them. This message is the lifeline steal answer.

7. The activity inserts the tasks into the thief’s pool and ends the ongoing hand-
shake.

The TaskQueue interface is extended by the following methods:

4 Implementation 21

• clearResult()

Resets the current worker result to the same value as it was before the com-
putation began. By resetting the worker result after a task bag has been
processed, the worker result of GLB can be used as the task bag result.

• getInitialTasks(int p, int numPlaces)

Returns an object of the TaskBag implementation containing the initial tasks
of the worker p. Parameter numPlaces specifies the total number of initial
places. The total number is required for calculating the task distribution for
static workloads.

• getEmptyResultAsTaskBag()

Returns an empty task bag containing the initial result of the current worker.
This method exists for simplicity of the implementation as we can use it instead
of null values. Merging the tasks and the result of the task bag returned by
this method does not result in any changes to the merging worker.

The TaskBag interface is changed to an abstract class (see Listing 4.4). Each
object is assigned a unique identifier of type long. For the 64 bit size of the long
value, we write the number of the creating worker to the first 32 bit, beginning from
the Most Significant Bit (MSB) and write the value of a counter to the remaining
bits. Each worker has its own upcounting counter, that increments whenever a
TaskBag object is created.
Also, each TaskBag object contains a variable remainingResults, containing the

number of results to wait for, before sending the current result to the former victim.
The result is saved in a variable result.

TaskBag objects also contain the history of the task bag. We remember that the
history is a path in the steal tree, which is typically not very long. For the history
a LinkedList<HistoryEntry> was used for simplicity of usage. HistoryEntry is
a new class in DistLogFTGLB (see Listing 4.3). The application programmer does
not have to implement this class. Each entry in the LinkedList represents a node
in the steal path. A HistoryEntry object has the following attributes:

• int ownerPlace

Contains the number of the thief.

• int splitStep

Contains the number of tasks processed before the loot was extracted on the
victim.

4 Implementation 22

• int splitAtStep

Contains the number of prior loot extractions that occured after the same
number of tasks processed, incremented by one.

• long bagId Contains the identifier of the corresponding task bag.

Finally, TaskBag objects contain a list of earlier child task bags of the same parent
bag, called sameLevelSplits.
A class ReplayUnit (Listing 4.5) was added to represent replay units. A Replay-

Unit object contains a task bag bag and the corresponding replay tree replayTree.
The replayTree variable is an object of type Tree. The Tree class was added for
DistLogFTGLB and each object represents a tree node of the replay tree. A Tree
object contains a list of its children in a variable children of type LinkedList
and an attached value of a generic type (see Listing 4.6). For the attached value,
the type HistoryEntry is used. Trees can be recursively merged with the method
merge(Tree<T> other) if they have the same root value. The merging of trees is
used during recovery (see below).
The tracking of the work stealing is realized by a HashMap called sentLoot, which

maps bag ids to TaskBag objects. Whenever a task bag is stolen, the task bag is put
into this map. When the result is received from the thief, the task bag is removed
from this map. Another HashMap, called currentBags, contains currently owned
task bags, whose results were not sent to the former victim yet. It maps bag ids to
task bags. When a task bag is received from a victim, it is added to this map.
When a failure of a place is detected by the APGAS runtime system, the place-

FailureHandler method is called for every worker. First, all steal requests and
anticipated steal answers from the failed worker are deleted. Pending lifeline hand-
shakes with the failed worker are canceled by setting waitingForLifelinePlace
to −1 if waitingForLifelinePlace is set to the id of the failed worker. Also,
each worker removes the failed worker from their lifeline graph. Next, each worker
searches for task bags sent out to the failed worker by linearly searching through
the values of the sentLoot map. The next part is executed for each found task
bag. As mentioned in Chapter 3, these task bags are called failed task bags. If
the failed task bag is an initial task bag, the tasks are retrieved by a call of
getInitialTasks(failedWorkerId, P) on the task queue. Otherwise, the tasks
are already contained in the task bag from sentLoot. The next step is retrieving
the histories of all orphan task bags. The global reduction is implemented by using
a typical async-finish structure. Within an outer finish block, a loop iterates over
all places and spawns an asynchronous activity on each of them by using asyncAt.

4 Implementation 23

Within this activity, the places check the histories of their task bags contained in
currentBags for occurences of the failed task bag. The found histories are cropped,
such that they only contain the path from the orphan task bag to the failed task
bag. The cropped path is then sent back by another asyncAt activity. A synchro-
nized list is used to save all collected paths. From the collected paths, Trees are
created and afterwards merged to a replayTree. The replayTree and the failed
task bag are then combined into a ReplayUnit object and added to a worker global
list replayUnits. In work stealing, this list is checked first for any replay units.

1 public class HistoryEntry implements S e r i a l i z a b l e {
2 public int ownerPlace ;
3 public int s p l i t S t e p ;
4 public int sp l i tAtSt ep ;
5 public long bagId ;
6
7 // cons t ruc t o r omit ted
8
9 @Override

10 public boolean equa l s (Object o) {
11 i f (o instanceof HistoryEntry) {
12 HistoryEntry other = (HistoryEntry) o ;
13 return other . bagId == this . bagId ;
14 }
15 return fa l se ;
16 }
17 }

Listing 4.3: HistoryEntry class

1 public abstract class TaskBag implements S e r i a l i z a b l e {
2 public stat ic int l a s t I d = 1 ;
3 public long id = ((long) (here () . id) << 32) + l a s t I d++;
4
5 public int remain ingResu l t s = 1 ;
6 public DistLogFTGLBResult r e s u l t ;
7 public LinkedList<HistoryEntry> h i s t o r y ;
8 public ArrayList<Integer> sameLeve lSp l i t s ;
9

10 public abstract int s i z e () ;
11 }

Listing 4.4: TaskBag class

1 public class ReplayUnit implements S e r i a l i z a b l e {
2 public Tree<HistoryEntry> replayTree ;
3 public TaskBag bag ;
4
5 // cons t ruc t o r omit ted
6 }

Listing 4.5: ReplayUnit class

4 Implementation 24

1 public class Tree<T> implements S e r i a l i z a b l e {
2 private f ina l T value ;
3 public LinkedList<Tree<T>> ch i l d r en ;
4
5 // cons t ruc t o r omit ted
6
7 // merges another Tree wi th the same root r e c u r s i v e l y
8 public void merge (Tree<T> other) {
9 for (Tree<T> ch i l d : other . c h i l d r en) {

10 f ina l int idx = this . c h i l d r en . indexOf (ch i l d) ;
11 i f (idx < 0) {
12 this . c h i l d r en . add (ch i l d) ;
13 } else {
14 f ina l Tree<T> th i sCh i l d = this . c h i l d r en . get (idx) ;
15 th i sCh i l d . merge (ch i l d) ;
16 }
17 }
18 }
19
20 public T getValue () {
21 return this . va lue ;
22 }
23
24 @Override
25 public boolean equa l s (Object other) {
26 f ina l Tree otherTree = (Tree) other ;
27 return this . va lue . equa l s (otherTree . va lue) ;
28 }
29 }

Listing 4.6: Tree class

5 Experiments 25

5 Experiments

This chapter describes the experiments conducted. First, Section 5.1 introduces
the different groups of experiments. Next, Section 5.2 explains the benchmark ap-
plications. Thereafter, Section 5.3 shows used software and hardware as well as
the program arguments. Then, Section 5.4 presents the results. Next, Section 5.5
discusses the results. Finally, Section 5.6 describes how the correctness of the im-
plementation was tested.

5.1 Overview
Two groups of experiments were conducted. The first group measured the execution
time for varying numbers of places and parameters. We call this group weak scaling
experiments. The second group measured the execution time of runs with places
failing at certain points of the execution for AllFTGLB and DistLogFTGLB. This
group will be called recovery overhead experiments.
In the weak scaling experiments, execution times of GLB, AllFTGLB and Dist-

LogFTGLB were recorded and a fault-tolerance overhead is calculated from them.
The overhead is calculated by the formula tsystem

tGLB
− 1, with tsystem standing for the

measured execution time of AllFTGLB and DistLogFTGLB, respectively. The over-
head is presented as a percentage.
The recovery overhead experiments measure the execution times for three different

configurations:

1. Failure-free execution with 144 places

2. Failure-free execution with 132 places

3. Execution with 144 places initially and crashes of 24 places at about half of
the time measured for configuration 1. Execution continues with 120 places
after the crashes.

All executions of these three configurations use a backupCount of 6 for the APGAS
runtime system and AllFTGLB. This backupCount is necessary, because the crashes
occur almost simultaneously. A smaller value for backupCount was found to lead to

5 Experiments 26

an unrecoverable failure of the APGAS runtime system. We denote the measured
times of the above three configurations as t144, t132 and t144−24. Since for t144−24

the computation used 12 places more than t132 for the first half of the computation
and 12 places less than t132 for the second half of the computation, we expected
t132 + trecovery ≈ t144−24, with trecovery being the time recovery from all 24 place
failures took. trecovery is calculated from the measured times by reformulating the
above equation to trecovery ≈ t144−24− t132. The recovery overhead is then calculated
by the formula trecovery

t132
− 1 and is presented as a percentage. This is only a rough

approximation of the recovery overhead, because the second half of the computation
has more idle workers than the first half, resulting in less idle workers for the remain-
ing computation after recovery is completed. As we will see, the measured recovery
overheads are small, so a high number of place crashes had to be selected for this
group of experiments in order to obtain measurable results. t144 was measured for
reference, but was not used for the recovery overhead calculation.
For the experiments, the Unbalanced Tree Search (UTS) and the N-Queens

benchmarks from Reference [28] were selected. The source code was adapted for
DistLogFTGLB with only minimal changes, such as the implementation of the new
methods of the TaskQueue interface. The actual benchmark algorithms were not
changed. The benchmarks are described in Section 5.2.
To evaluate the importance of the changed termination detection, we extended the

weak scaling experiments by a third system, called DistLogFinishFTGLB. We recall
from Section 4, that AllFTGLB uses an outer finish for termination detection and
DistLogFTGLB does not use an outer finish. No extra mechanism for termination
detection is implemented in DistLogFTGLB, because place 0 notices the end of the
computation as a side effect of the result propagation. DistLogFinishFTGLB ex-
tends DistLogFTGLB by an outer finish. The difference between DistLogFTGLB
and DistLogFinishFTGLB is the additional overhead caused by the finish.
Additionally, correctness tests are described in Section 5.6.

5.2 Benchmarks

5.2.1 UTS

The UTS benchmark calculates the number of nodes of an unbalanced tree. The
tree is generated during the execution, so the number of nodes is unknown at the
beginning. A task corresponds to exactly one tree node. The computation begins
with the root node as a task on worker 0. For each node, a cryptographic hash

5 Experiments 27

function determines the number of children. The maximum tree depth is given as
a parameter d and the width of the tree can be influenced by the branching factor
parameter b. An initial seed for the cryptographic function can be set by parameter
r. The result is a single value of type long resembling the total number of nodes
in the tree. The partial results are combined by the sum operator as the reduction
operator.

5.2.2 N-Queens

The N-Queens [12] benchmark calculates the number of possible positionings of N
queens on an N × N chessboard, in a way, that queens can not attack each other.
The number of queens is given as parameter q. The computation begins with a task
on worker 0 trying to place a queen on an empty chessboard. Each time a queen can
be placed on a free field on the chessboard, a new task is created. The new task tries
to place another queen on this new chessboard. This is repeated until N queens are
placed. A parameter t controls the number of remaining queens, at which a task
does not push new tasks to the work queue, but processes the remaining subtree of
the computation tree sequentially. The result is a single value of type long. The
reduction operation is the sum.

5.3 Setup
Experiments were conducted on two different clusters. The clusters differ greatly in
size:

• Cluster of University of Kassel (denoted as Kassel):

The partition FB16 consists of 12 nodes. Each node is equipped with two
6-core Intel Xeon E5-2643 v4 CPUs and 256 GB main memory [35].

• Cluster of Goethe University Frankfurt (denoted as Goethe):

The partition general1 consists of 472 nodes. Each node is equipped with
two 20-core Intel Xeon Skylake Gold 6148 CPUs and a minimum of 192 GB
main memory [13].

Both clusters have the Slurm workload manager [32] installed. All runs of the
experiments were scheduled using Slurm. The workload manager helps to reserve
nodes exclusively for a given time interval. On Goethe, Slurm also counted the used
number of core hours, which were limited. For experiments with 440 places, a usage

5 Experiments 28

of about 2 hours equals about 1,000 core hours. All experiments were conducted
with Java in version 12.0.2 and Hazelcast in version 3.10.6.
For every configuration, five runs were scheduled and the average of these runs is

taken as the result of the configuration. Because of the non-deterministic nature of
GLB’s work stealing, the execution times in the five runs fluctuates. This results in
a certain variance in the presented execution times. Increasing the number of runs
would solve this issue, but was not possible due to time and resource constraints.
For every used node, the number of started places is equal to the number of cores

available on this node. For example, on FB16, we started 12 places on each node,
because each node is equipped with 12 physical cores.
Table 5.1 shows the parameters used in the weak scaling experiments for each

benchmark and cluster. GLB parameter n is set to 511 in all runs, as it was used in
the experiments of past papers, e.g., in Reference [11, 28]. With P being the number
of initial places, the GLB parameters w, l and z are calculated as in Reference [29]:

w =

P − 1, if P ≤ 6

6, otherwise

l = min{x ∈ N>0|xx ≥ P}

and z is set such that lz is greater or equal P .
For the backup interval in AllFTGLB, Daly’s formula was used to estimate an

appropriate interval for a chosen MTBF. For a long MTBF, Daly’s formula is as
follows:

Topt =
√

2δM

withM being the MTBF and δ being the duration of checkpoint writing [8]. Assum-
ing δ = 0.01s and an MTBF of one week, Topt results in about 350 seconds. Since
this value is too large for our experiments, we chose a smaller value of 10 seconds.
Most runs did not take longer than 15 minutes, so choosing a short interval made
measuring the fault-tolerance overhead more easy. Also, DistLogFT does not use
this interval, but sends additional information appended to work stealing messages
about every 10 seconds. This made 10 seconds a natural choice as a fitting interval
for the experiments. Using 10 seconds for Topt and solving the equation for the
corresponding MTBF results in an MTBF of about 1.5 hours.

5 Experiments 29

Benchmark Cluster Places Parameters
UTS Kassel 12,24 d = 17, b = 4, r = 19
UTS Kassel 36,48,60,72 d = 18, b = 4, r = 19
UTS Kassel 84,96,108,120,132,144 d = 19, b = 4, r = 19
UTS Goethe 40 d = 17, b = 4, r = 19
UTS Goethe 120,200,280,360 d = 18, b = 4, r = 19
UTS Goethe 440 d = 19, b = 4, r = 19

N-Queens Kassel 12 q = 16, t = 10
N-Queens Kassel 24,36,48,60,72 q = 17, t = 11
N-Queens Kassel 84,96,108,120,132,144 q = 18, t = 12
N-Queens Goethe 40,120,200 q = 17, t = 11
N-Queens Goethe 280,360,440 q = 18, t = 12

Table 5.1: Parameters used for the weak scaling experiments

5.4 Results

 0.5

 1

 1.5

 2

 2.5

 3

12 24 36 48 60 72 84 96 108 120 132 144

O
v
e
rh

e
a
d
 (

in
 %

)

Places

FTGLB
DistLogFTGLB

Figure 5.1: UTS on Kassel

5 Experiments 30

-2

 0

 2

 4

 6

 8

 10

 12

40 120 200 280 360 440

O
v
e
rh

e
a
d
 (

in
 %

)

Places

FTGLB
DistLogFTGLB

DistLogFinishFTGLB

Figure 5.2: UTS on Goethe

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

12 24 36 48 60 72 84 96 108 120 132 144

O
v
e
rh

e
a
d
 (

in
 %

)

Places

FTGLB
DistLogFTGLB

Figure 5.3: N-Queens on Kassel

5 Experiments 31

-5

 0

 5

 10

 15

 20

40 120 200 280 360 440

O
v
e
rh

e
a
d
 (

in
 %

)

Places

FTGLB
DistLogFTGLB

DistLogFinishFTGLB

Figure 5.4: N-Queens on Goethe

Places AllFTGLB DistLogFTGLB
144 908.68 889.51
132 991.59 967.74
144 - 24 1017.52 1058.10

Table 5.2: Execution times in seconds for UTS with d = 19 and backup count = 6
on kassel cluster

Figures 5.1 and 5.2 show the fault-tolerance overheads for UTS on Kassel and
Goethe, respectively. In all but one configuration, the overhead of DistLogFTGLB
is lower than the overhead of AllFTGLB. For 120 places on Goethe, AllFTGLB has
a lower overhead than DistLogFTGLB. On both clusters, UTS showed an almost
linear increase of overhead for AllFTGLB.
For 12 places on Kassel, the overhead of UTS on AllFTGLB is at 1.63%, which

peaks at 2.65% for 48 places and ends with 1.97% for 144 places. UTS on Dist-
LogFTGLB begins at 1.32% on Kassel with 12 places, peaks at 1.34% for 84 places
and ends with 0.83% for 144 places. On Goethe, UTS on AllFTGLB begins with its
lowest overhead of 2.09% for 40 places and ends with a peak overhead of 3.68% for
440 places. UTS on DistLogFTGLB shows an overall decrease of overhead propor-
tional to the number of places. It begins with 0.48% for 40 places, peaks at 6.53%
for 120 places and ends with an overhead of −1.99% for 440 places.

5 Experiments 32

The N-Queens benchmark’s results are depicted in Figures 5.3 and 5.4. The
results show an almost linear decrease of overhead for both benchmarks. On Kassel,
AllFTGLB begins at the highest overhead of 1.71% for 12 places and ends at 0.74%
for 144 places. DistLogFTGLB begins at 0.79% for 12 places and ends at 0.45% for
144 places. The results on Goethe for N-Queens on AllFTGLB show an overhead
of 3.60% for 40 places. They show a peak of 5.35% at 200 places and end with an
overhead of −1.52% for 440 places. DistLogFTGLB begins at −1.21% for 40 places,
peaks at 1.37% for 200 places and ends with an overhead of −2.03% for 440 places.
For the runs of DistLogFinishFTGLB, the overhead was almost always higher

than the overhead of the other systems. The overhead of DistLogFinishFTGLB
for N-Queens on Goethe in Figure 5.4 has a similar curve than the overhead of
AllFTGLB, but is shifted upwards by a about 2% up to 10%.
The recovery overheads are calculated from Table 5.2 as stated in Section 5.1. For

AllFTGLB, the recovery overhead is 2.6%. The recovery overhead of DistLogFT-
GLB is 3.58 times as high as the recovery overhead of AllFTGLB.

5.5 Discussion
DistLogFTGLB does not send more messages than GLB during failure-free execu-
tion, but increases the volume of messages containing loot, which is sent during
GLB’s work stealing. Most results show a lower overhead for DistLogFTGLB than
for AllFTGLB. One reason could be the lower message number of DistLogFTGLB.
Another reason can be the different termination detection. Compared to AllFT-
GLB and the non-fault-tolerant GLB, DistLogFTGLB also uses less messages for
termination detection.
The higher recovery overhead of DistLogFTGLB, compared to AllFTGLB, can

be explained by the higher number of messages during recovery and the necessity
of reproducing the occured loot extractions from work stealing. Also, more tasks
have to be reprocessed in DistLogFTGLB than in AllFTGLB, because of the result
propagation. When a worker fails which already received a lot of child results but
couldn’t send the result to its parent worker, all of the child results are lost. The
number of tasks to be reprocessed in such a situation can be very high and can
exceed the number of tasks to be reprocessed from a checkpoint in AllFTGLB. The
periodic checkpointing in AllFTGLB provides an upper bound for the duration of
reprocessing. No such upper bound exists in DistLogFTGLB. In the worst case, it
is possible that almost the whole computation has to be repeated.
In Figure 5.2, unexpectedly high fault-tolerance overheads are shown for 120 places

5 Experiments 33

and 360 places. The value for DistLogFTGLB and 120 places does not seem plau-
sible since it is higher than the overhead of DistLogFinishFTGLB, which differs to
DistLogFTGLB only in sending more messages. We assume both of these unex-
pectedly high overheads to be errors in measurement caused by external factors.
Repeating these experiments was not possible due to time constraints.
DistLogFinishFTGLB showed a significantly higher overhead compared to Dist-

LogFTGLB. Also, even though we observe a decrease of overhead for DistLogFT-
GLB when increasing the number of places, we can not observe any decrease for
DistLogFinishFTGLB. From this, we conclude that the finish construct does intro-
duce a significant overhead. With an increasing number of places, the fault-tolerance
overhead of DistLogFTGLB decreased below 0%. The reason for the negative over-
heads can be the different termination detection.
Since some experiments are identical to experiments conducted in Reference [28],

we also confirmed their results of the same experiments.

5.6 Correctness
We use the same correctness definition as in Reference [25]: “The algorithm is
correct in the sense that the computed result is the same as in non-failure case, or
the program aborts with an error message”.
We simulated crashes at certain points during the execution to test the correctness.

The crashes were simulated by calls to System.exit(). System.exit() causes the
Java Virtual Machine (JVM) to terminate. During the tests, each worker ran on its
own place and each place used its own JVM. A simulated crash on one JVM thus
terminates exactly one worker.
Crashes were simulated at certain points in the execution. Single place failure as

well as failure of multiple places was simulated. The exact points in the execution
are listed in the appendix in Section 7.
We inspected the log files to compare the results and error messages. The tests

did not show any wrong results or missing error messages.

6 Related Work 34

6 Related Work

Fault-tolerance for task pools is an active research field. System-level fault-tolerance
is the most common way of recovering from permanent node failures. Many libraries
which provide it have been published, such as DMTCP [2] and FTI [3].
References [11, 25] propose application-level checkpointing schemes for task pools

which save tasks and results in a resilient store. A similar scheme to DistLogFT
writes steal relations to a resilient store instead of sending them along with steal
answers [28]. Many parallel programming systems support application-level fault-
tolerance, e.g., Charm++ [18], Resilient X10 [7] and ULFM for MPI [4].
A different approach to fault-tolerance is algorithm-based fault-tolerance (ABFT).

This approach uses properties of the computation to restore lost work without the
help of the runtime system, apart from failure notifications. For example, Refer-
ence [1] presents an ABFT for matrix computations, which exploits redundancy in
matrix computations.
Concurrent checkpointing writes backups next to the computation and can be

applied to reduce the fault-tolerance overhead [21]. Reference [33] reports a 10
to 20 times lower fault-tolerance overhead when applying concurrent checkpointing
compared to writing the checkpoints inbetween the computation. Our group applied
concurrent writing of checkpoints in a scheme of Reference [28].
Reference [36] presents a fault-tolerance scheme for fork-join applications. The

scheme broadcasts the location of results that could not get returned to the parent
worker. When a worker encounters a task whose location is known, the result is
retrieved from the saved location. Later, the scheme was extended by checkpointing
in Reference [37]. The later scheme determines a processor, who waits for results of
workers and writes them to a checkpoint file on a stable storage. Upon a failure,
this processor reads the results of the failed worker and distributes them to the
remaining workers.
The parallel runtime system Cilk-NOW [6] employs two fault-tolerance techniques.

First, applications can be restarted from periodically written checkpoints. Second,
lost work of a failed worker and the work stolen from this worker will be repro-
cessed by another worker, including finished work. ForkJoinFT improves the second
technique by avoiding re-execution of stolen children of failed tasks [19]. A similar
fault-tolerance scheme for GLB was presented in Reference [9].

6 Related Work 35

APGAS is under active development. For example, Reference [27] recently ex-
tended the APGAS library by locality-flexible tasks similar to tasks in GLB. Ad-
ditionally, they added cancelable tasks and showed linear speedups for the locality-
flexible tasks and overheads for cancelable tasks below 7%.

7 Conclusions 36

7 Conclusions

This thesis presented an adaption of a fault-tolerance scheme, which tracks work
stealing, and compared it to a scheme, which uses application-level checkpointing.
The original scheme from Reference [19] is designed for distributed fork-join pro-
grams. We applied the scheme to a reduction-based task pool implementation and
provided a description, which specifies the requirements on the task pool variant.
We evaluated the adapted scheme by measuring execution times for two popular

benchmark applications and calculated overhead values. The results showed a lower
fault-tolerance overhead during failure-free execution for the adaption than for the
scheme based on checkpointing. On the backside, the overhead induced by the
recovery is higher for the adaption. As a side effect of the experiments, some previous
results for AllFTGLB were confirmed with the latest versions of Java and APGAS.
We concluded, that sending less messages for fault-tolerance can reduce the fault-

tolerance overhead. Slightly increasing the volume of messages sent during work
stealing did not seem to have a significant effect on the execution times. Even
though checkpoint/restart is an established technique for achieving fault-tolerance,
tracking of work stealing is a viable alternative to it.
The scheme can be extended by checkpointing to reduce the recovery overhead.

Workers periodically save their current task bags to a stable storage. Since the saved
task bags represent a past state, where stolen tasks are already removed, recovery
can skip some reprocessing. Future work should evaluate if such an extension can
reduce the recovery overhead and if the checkpointing causes a siginificant increase
of the fault-tolerance overhead during failure-free execution. Also, the adaption
should be compared to a GLB variant, which uses the same termination detection.

Bibliography 37

Bibliography

[1] N. Ali, S. Krishnamoorthy, M. Halappanavar, et al. “Multi-Fault Tolerance
for Cartesian Data Distributions.” In: Int. Journal of Parallel Programming
41.3 (2012), pages 469–493.

[2] J. Ansel, K. Arya, and G. Cooperman. “DMTCP: Transparent checkpoint-
ing for cluster computations and the desktop.” In: Int. Symp. on Parallel &
Distributed Processing. IEEE, 2009, pages 1–12.

[3] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, et al. “FTI: High performance
Fault Tolerance Interface for hybrid systems.” In: Proc. of Int. Conf. for High
Performance Computing, Networking, Storage and Analysis. ACM Press, 2011,
pages 1–32.

[4] W. Bland, A. Bouteiller, T. Herault, et al. “Post-failure recovery of MPI com-
munication capability.” In: The Int. Journal of High Performance Computing
Applications 27.3 (2013), pages 244–254.

[5] R. D. Blumofe and C. E. Leiserson. “Scheduling multithreaded computations
by work stealing.” In: Proc. Symp. on Foundations of Computer Science. 1994,
pages 356–368.

[6] R. D. Blumofe and P. A. Lisiecki. “Adaptive and Reliable Parallel Computing
on Networks of Workstations.” In: Proc. USENIX Annual Technical Symp.
1997.

[7] S. Crafa, D. Cunningham, V. Saraswat, et al. “Semantics of (Resilient) X10.”
In: ECOOP – Object-Oriented Programming. 2014, pages 670–696.

[8] J. T. Daly. “A higher order estimate of the optimum checkpoint interval
for restart dumps.” In: Future Generation Computer Systems 22.3 (2006),
pages 303–312.

[9] M. Dratwa. “Übertragung eines fehlertoleranten Algorithmus für Fork/Join-
Programme auf reduktionsbasierte Taskpools.” Masterthesis. University of Kas-
sel, 2018.

[10] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, et al. “A Survey of Rollback-recovery
Protocols in Message-passing Systems.” In: ACM Comput. Surv. 34.3 (Sept.
2002), pages 375–408.

Bibliography 38

[11] C. Fohry, J. Posner, and L. Reitz. “A Selective and Incremental Backup
Scheme for Task Pools.” In: Int. Conf. on High Performance Computing &
Simulation (HPCS). 2018, pages 621–628.

[12] E. J. Gik. Schach und Mathematik. 1st edition. Thun, 1987.

[13] Goethe University Frankfurt. Goethe-HLR Cluster Usage. https://csc.uni-
frankfurt.de/wiki/doku.php?id=public:usage:goethe-hlr. 2019.

[14] Y. Guo, R. Barik, R. Raman, et al. “Work-first and help-first scheduling poli-
cies for async-finish task parallelism.” In: 2009 IEEE Int. Symp. on Parallel
Distributed Processing. May 2009, pages 1–12.

[15] Hazelcast, Inc. The Leading Open Source In-Memory Data Grid. http://
hazelcast.org. 2018.

[16] T. Herault and Y. Robert, editors. Fault-Tolerance Techniques for High-Per-
formance Computing. Springer, 2015.

[17] IBM Corp. Core implementation of X10 programming language including com-
piler, runtime, class libraries, sample programs and test suite. https : / /
github.com/x10-lang/x10. 2018.

[18] L. V. Kale and S. Krishnan. “CHARM++: A Portable Concurrent Object
Oriented System Based on C++.” In: SIGPLAN. Volume 28. ACM, 1993,
pages 91–108.

[19] G. Kestor, S. Krishnamoorthy, and W. Ma. “Localized Fault Recovery for
Nested Fork-Join Programs.” In: IEEE Int. Parallel and Distributed Processing
Symp. (IPDPS). 2017, pages 397–408.

[20] D. Lea. “A Java Fork/Join Framework.” In: Proc. ACM Conf. on Java Grande.
ACM, 2000, pages 36–43.

[21] K. Li, J. F. Naughton, and J. S. Plank. “Real-time, Concurrent Checkpoint for
Parallel Programs.” In: Proceedings of the Second ACM SIGPLAN Symp. on
Principles & Practice of Parallel Programming. PPOPP ’90. Seattle, Wash-
ington, USA: ACM, 1990, pages 79–88.

[22] J. Lifflander, S. Krishnamoorthy, and L. V. Kale. “Steal Tree: Low-overhead
Tracing of Work Stealing Schedulers.” In: Proc. ACM SIGPLAN Conf. on
Programming Language Design and Implementation. ACM, 2013, pages 507–
518.

https://csc.uni-frankfurt.de/wiki/doku.php?id=public:usage:goethe-hlr
https://csc.uni-frankfurt.de/wiki/doku.php?id=public:usage:goethe-hlr
http://hazelcast.org
http://hazelcast.org
https://github.com/x10-lang/x10
https://github.com/x10-lang/x10

Bibliography 39

[23] S. Olivier, J. Huan, J. Liu, et al. “UTS: An Unbalanced Tree Search Bench-
mark.” In: Languages and Compilers for Parallel Computing. Springer LNCS
4382, 2006, pages 235–250.

[24] J. Posner. Extended APGAS library repository. https://github.com/posnerj/
PLM-APGAS. 2018.

[25] J. Posner and C. Fohry. “A Java Task Pool Framework providing Fault-
Tolerant Global Load Balancing.” In: Int. Journal of Networking and Com-
puting (IJNC) 8.1 (2018), pages 2–31.

[26] J. Posner and C. Fohry. “Cooperation vs. Coordination for Lifeline-based
Global Load Balancing in APGAS.” In: Proc. ACM SIGPLAN Workshop on
X10. ACM, 2016, pages 13–17.

[27] J. Posner and C. Fohry. “Hybrid Work Stealing of Locality-Flexible and Can-
celable Task for the APGAS Library.” In: The Journal of Supercomputing 74.4
(2018), pages 1435–1448.

[28] J. Posner, L. Reitz, and C. Fohry. “A Comparison of Application-Level Fault
Tolerance Schemes for Task Pools.” In: Future Generation Computer Systems
(Submitted).

[29] L. Reitz. “An Asynchronous Backup Scheme Tracking Work-Stealing for Re-
duction-Based Task Pools.” Bachelorthesis. University of Kassel, 2018.

[30] V. A. Saraswat, P. Kambadur, S. Kodali, et al. “Lifeline-based Global Load
Balancing.” In: Proc. ACM Symp. on Principles and Practice of Parallel Pro-
gramming. ACM, 2011, pages 201–212.

[31] V. Saraswat, G. Almasi, G. Bikshandi, et al. “The asynchronous partitioned
global address space model.” In: The First Workshop on Advances in Message
Passing (2010), pages 1–8.

[32] SchedMD. Slurm Workload Manager. https://slurm.schedmd.com. 2019.

[33] F. Shahzad, M. Wittmann, M. Kreutzer, et al. “A survey of checkpoint/restart
techniques on distributed memory systems.” In: Parallel Processing Letters 23
(2013), pages 1340011–1340030.

[34] O. Tardieu. “The APGAS library: resilient parallel and distributed program-
ming in Java 8.” In: Proc. ACM SIGPLAN Workshop on X10 (2015).

[35] University of Kassel. Scientific data processing. https://www.uni-kassel.de/
its-handbuch/en/daten-dienste/wissenschaftliche-datenverarbeitung
.html. 2019.

https://github.com/posnerj/PLM-APGAS
https://github.com/posnerj/PLM-APGAS
https://slurm.schedmd.com

Bibliography 40

[36] G. Wrzesińska, R. V. Nieuwpoort, J. Maassen, et al. “Fault-Tolerance, Mal-
leability and Migration for Divide-and-Conquer Applications on the Grid.” In:
Proc. Int. Parallel and Distributed Processing Symp. 2005.

[37] G. Wrzesińska, A. Oprescu, T. Kielmann, et al. “Persistent Fault-Tolerance for
Divide-and-Conquer Applications on the Grid.” In: Proc. Euro-Par. Springer
LNCS 4641, 2007, pages 425–436.

[38] W. Zhang, O. Tardieu, D. Grove, et al. “GLB: Lifeline-based Global Load
Balancing Library in X10.” In: Proc. First Workshop on Parallel Programming
for Analytics Applications. ACM, 2014, pages 31–40.

Appendix 41

Appendix

Source code on CD
The source code of the algorithm’s implementation and the source code used in the
experiments is included on the attached CD.

Correctness test cases
1. Crash of place 2 after processing at least one task, but before answering steal

requests. This case simulates the failure of a task bag with no children in the
steal tree.

2. Crash of place 2 after sending tasks to another place. This case simulates the
failure of a task bag with at least one children in the steal tree.

3. Crash of place 2 after sending tasks to another place. In addition, the place
receiving the tasks crashes too. This simulates simultaneous failure of two
directly connected task bags in the steal tree.

4. Crash of place 2 after processing some tasks. Places who create replay units
due to this crash, crash before the units are assembled.

5. Crash of place 2 after processing some tasks. The place who stole the replay
unit crashes before the processing of the replay unit begins.

6. Crash of place 2 and place 3 after about half of the expected execution time.
This case does not cover any specific failure situation, but helped to test that
no situation was left unconsidered.

7. Crash of all places except place 0.

Appendix 42

Execution times

Places GLBCoopOneSteal FTGLB DistLogFTGLB
12 647.67 658.25 656.18
24 327.02 333.78 329.52
36 870.12 884.03 877.51
48 654.21 671.56 660.88
60 523.03 534.74 529.19
72 436.84 445.87 441.15
84 1492.28 1516.21 1512.23
96 1307.88 1330.02 1316.04
108 1161.99 1183.11 1173.16
120 1048.40 1067.35 1057.13
132 954.94 974.95 961.92
144 874.37 891.62 881.61

Table 1: UTS on Kassel: Execution time in seconds

Places GLBCoopOneSteal FTGLB DistLogFTGLB DistLogFinishFTGLB
40 280.36 286.23 281.71 295.95
120 374.76 383.73 399.22 395.74
200 230.49 238.77 235.35 241.49
280 169.45 174.72 168.44 179.03
360 133.55 137.31 132.72 148.29
440 435.47 451.51 426.78 461.37

Table 2: UTS on Goethe: Execution time in seconds

Appendix 43

Places GLBCoopOneSteal FTGLB DistLogFTGLB
12 96.92 98.58 97.68
24 397.97 402.26 398.45
36 265.60 269.06 266.76
48 199.84 203.05 200.39
60 160.37 162.33 161.29
72 133.94 135.82 134.45
84 981.87 989.22 984.75
96 861.79 867.68 862.57
108 767.11 770.39 767.04
120 689.50 693.68 690.09
132 627.40 631.07 629.69
144 575.24 579.47 577.83

Table 3: N-Queens on Kassel: Execution time in seconds

Places GLBCoopOneSteal FTGLB DistLogFTGLB DistLogFinishFTGLB
40 325.43 337.15 321.48 345.60
120 118.06 114.68 119.30 122.90
200 70.83 74.62 71.80 82.24
280 436.88 435.84 437.36 455.36
360 357.94 341.36 350.46 369.38
440 292.89 288.43 286.94 307.56

Table 4: N-Queens on Goethe: Execution time in seconds

	Titlepage
	Contents
	Statutory Declaration
	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	Introduction
	Original Fault-Tolerance Scheme
	Idea
	Extension to Distributed Fork-Join Programs
	Recovery

	Adapted Fault-Tolerance Scheme
	Task Pool Constraints
	Changes to GLB
	Tracking of Work Stealing
	Recovery
	Special Cases
	Failure of a Single Task Bag
	Simultaneous Failure of Two Task Bags
	Failure During Recovery
	Task Arrival from a Failed Worker
	Only Few Steals

	Implementation
	Background
	APGAS
	GLB
	AllFTGLB

	DistLogFTGLB

	Experiments
	Overview
	Benchmarks
	UTS
	N-Queens

	Setup
	Results
	Discussion
	Correctness

	Related Work
	Conclusions
	Bibliography
	Appendix

