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Abstract

Big improvements in the performance of graphics processing units (GPUs) and en-
hancements in the corresponding programming systems turned GPUs into a compelling
platform for high performance computing. In this thesis, we present CuPP, a C++ frame-
work built up on NVIDIAs CUDA. CuPP allows easier development of GPU programs
even as compared to CUDA, by automating frequent programming tasks e.g. memory
management.

The thesis is roughly divided into three parts. We begin with an introduction to
the CUDA programming system and discuss difficulties when integrating it into already
existing C++ applications. Then we describe the CuPP framework and explain how it
solves these difficulties. Afterwards we demonstrate the benefits of CuPP on the example
of OpenSteer, a steering library and a demo application. With only a small amount of
code changes, the performance was increased by a factor of 42 as compared to the CPU
version.
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Chapter 1

Introduction

Over the last five years, general-purpose computation on graphics processing units (known
as GPGPU) has evolved from a rather unknown research area to a technique used in real
world applications [Fol07]. Both memory bandwidth and floating-point performance of
graphics processing units (GPUs) outrange their CPU counterparts roughly by a factor
of 10. In the beginning of GPGPU development, GPUs had to be programmed with pro-
gramming systems not designed for general-purpose computations but 3D graphics. This
has changed in the last years, when multiple specially designed GPGPU programming
systems became available.

Figure 1.1: A comparison between the floating point performance of the CPU and the
GPU [Cor07c].

This thesis is based on a programming system developed by NVIDIA called CUDA.
CUDA exposes the GPU processing power in the familiar C programming language. It
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2 Introduction

has been designed to be used together with C or C++ programs, but the integration into
an already existing C++ program is rather complex.

In this thesis, we describe a novel C++ framework, called CuPP, which eases the
integration of CUDA into C++ programs. CuPP automatizes common operations for
the developer, e.g. GPU memory management. To expose the benefits of our approach,
we have integrated CUDA/CuPP into OpenSteer as an example. OpenSteer is a game-
like application used to simulate and debug some artificial intelligence aspects of games.
We decided to concentrate our approach on a specific scenario – the simulation of birds
in a flock, called Boids.

1.1 Structure of this thesis

This thesis is divided into three parts. The first part discusses the CUDA architecture
(chapter 2) and the CUDA programming environment (chapter 3), including a discussion
on why the integration into C++ programs is problematic. The second part of the thesis
introduces the CuPP framework (chapter 4), which was designed to solve these prob-
lems. The last part demonstrates the benefits of CuPP, by integrating CUDA into the
OpenSteer Boids scenario as example application. At first, the theoretical basics of the
example application and its architecture are discussed (chapter 5), followed by a descrip-
tion of the integration of CUDA/CuPP in OpenSteer and performance measurements
(chapter 6).



The CUDA programming system
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Chapter 2

CUDA

This chapter introduces CUDA version 1.0, which was released by NVIDIA in 2007.
CUDA is one of the first GPGPU programming systems offering high-level access to
the GPU. Previously, GPGPU programming was mostly done, by using OpenGL or
DirectX [OLG+05], which are designed for 3D graphics and not for general computa-
tions. CUDA consists of both a hardware and a software model allowing the execution
of computations on modern NVIDIA GPUs in a data-parallel fashion. We describe both
models. Afterwards we discuss the performance of CUDA, especially performance-critical
parts. We end the CUDA architecture discussion with a comparison between the CPU
concept and CUDA. Chapter 3 introduces the CUDA programming language and the
available libraries. The information we provide in chapters 2 and 3 is based on the
CUDA programming handbook [Cor07c], if not explicitly stated otherwise.

2.1 Hardware model

CUDA requires a GPU that is based on the so-called G80 architecture, which was released
by NVIDIA in 2006. Unlike CPUs, which are designed for high sequential performance,
GPUs are designed to execute a high amount of data-parallel work. This fundamental
difference is reflected in both the memory system and the way instructions are executed,
as discussed next.

GPUs are constructed in a superscalar fashion. A GPU is implemented as an aggre-
gation of multiple so-called multiprocessors, which consist of a number of SIMD ALUs.
A single ALU is called processor. According to the SIMD concept, every processor within
a multiprocessor must execute the same instruction at the same time, only the data may
vary. We call this build-up, which is shown in figure 2.1, execution hierarchy.

Figure 2.1 also shows that each level of the execution hierarchy has a corresponding
memory type in what we call the memory hierarchy. Each processor has access to local
32-bit registers. On multiprocessor level, so-called shared memory is available where all
processors of a multiprocessor have read/write access to. Additional device memory is
available to all processors of the device for read/write access. Furthermore, so-called

5



6 CUDA

Figure 2.1: The CUDA hardware model: A device consists of a number of multiprocessors,
which themselves consist of a number of processors. Correspondingly, there are different types
of memory [Cor07c].

texture and constant caches are available on every multiprocessor.

2.2 Software model

The software model of CUDA offers the GPU as data-parallel coprocessor to the CPU.
In the CUDA context, the GPU is called device, whereas the CPU is called host. The
device can only access the memory located on the device itself.

A function executed on the device is called kernel. Such a kernel is executed in the
single program multiple data (SPMD) model, meaning that an user-configured number
of threads execute the same program.

A user-defined number of threads (≤ 512) are batched together in so-called thread
blocks. All threads within the same block can be synchronized by a barrier-like construct,
called __syncthreads(). The different blocks are organized in a grid. A grid can consist
of up to 232 blocks, resulting in a total of 241 threads. It is not possible to synchronize
blocks within a grid. If synchronization is required between all threads, the work has to
be split into two separate kernels, since multiple kernels are not executed in parallel.

Threads within a thread block can be addressed by 1-, 2 or 3-dimensional indexes.
Thread blocks within a grid can be addressed by 1- or 2-dimensional indexes. A thread
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Figure 2.2: The CUDA execution model: A number of threads are batched together in blocks,
which are again batched together in a grid [Cor07c].

is thereby unambiguously identified by its block-local thread index and its block index.
Figure 2.2 gives a graphical overview of this concept. The addressing scheme used influ-
ences only the addressing itself, not the runtime behavior of an application. Therefore
it is mostly used to simplify the mapping of data elements to threads – e.g. see the
matrix-vector multiplication provided by NVIDIA [Cor07b]. When requiring more than
216 thread blocks, 2-dimensional block-indexes have to be used. During the development
of our example application, only 1-dimensional indexing was used for both threads and
thread blocks.

A grid is executed on the device by scheduling thread blocks onto the multiprocessors.
Thereby, each block is mapped to one multiprocessor. Multiple thread blocks can be
mapped onto the same multiprocessor and are then executed concurrently. If multiple
blocks are mapped onto a multiprocessor, its resources, such as registers and shared
memory are split among the thread blocks. This limits the amount of blocks that can
be mapped onto the same multiprocessor. A block stays on a multiprocessor until it has
completed the execution of its kernel.

Thread blocks are split into SIMD groups called warps when executed on the device.
Every warp contains the same amount of threads. The number of threads within a
warp is defined by a hardware-based constant, called warp size. Warps are executed by
scheduling them on the processors of a multiprocessor, so that a warp is executed in
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software model hardware model access by
(memory address space) (memory type) device host

thread local registers & device read & write no
shared shared read & write no
global device read & write read & write

Table 2.1: An overview of the mapping between the hardware model memory types and the
software model types including accessibility by device and host.

SIMD fashion. On the currently available hardware, the warp size has a value of 32,
whereas 8 processors are available in each multiprocessor. Therefore a warp requires
at least 4 clock cycles to execute an instruction. Why a factor of 4 was chosen is not
known to public known, but it is expected to be used to reduce the required instruction
throughput of the processors, since a new instruction is thereby only required every 4th
clock cycle.

The grid and block sizes are defined for every kernel invocation and can differ even if
the same kernel is executed multiple times. A kernel invocation does not block the host,
so the host and the device can execute code in parallel. Most of the time, the device and
the host are not synchronized explicitly – even though this is possible. Synchronization
is done implicitly when data is read from or written to memory on the device. Device
memory can only be accessed by the host if no kernel is active, so accessing device memory
blocks the host until no kernel is executed.

The memory model of the CUDA software model differs slightly from the memory
hierarchy discussed in section 2.1. Threads on the device have their own local memory
address space to work with. Additional threads within the same block have access to a
block-local shared memory address space. All threads in the grid have access to global
memory address space and read-only access to both constant and texture memory address
spaces.

The different memory address spaces are implemented as shown in table 2.1. Shared
and global memory address space implementation is done by their direct counterpart in
the hardware. Local memory address space is implemented by using both registers and
device memory automatically allocated by the compiler. Device memory is only used
when the number of registers exceeds a threshold.

2.3 Performance

The number of clock cycles required by some instructions, can be seen in table 2.2. To
note some uncommon facts:

• Synchronizing all threads within a thread block has almost the same cost as an
addition.

• Accessing shared memory or registers comes at almost no cost.
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Instruction Cost
(clock cycles per warp)

FADD, FMUL, FMAD, IADD 4
bitwise operations, compare, min, max 4
reciprocal, reciprocal square root 16
accessing registers 0
accessing shared memory ≥ 4
reading from device memory 400 - 600
synchronizing all threads within a block 4 + possible waiting time

Table 2.2: An overview of the instruction costs on the G80 architecture

• Reading from device memory costs an order of magnitude more than any other
instruction.

The hardware tries to hide the cost of reading from device memory by switching
between warps. Nonetheless reading from device memory is expensive and the high
costs can not be hidden completely in most cases. Reading data from global memory
should therefore be minimized, for instance by manually caching device memory in shared
memory. Unlike reading from device memory, writing to device memory requires less
clock cycles and should be considered a fire-and-forget instruction. The processor does
not wait until memory has been written but only forward the instruction to a special
memory writing unit for execution.1

As said in section 2.2, warps are SIMD blocks requiring all threads within the warp to
execute the same instruction. This is problematic when considering any type of control
flow instructions (if, switch, for, do, while), since it would require uniform control
flow across all threads within a warp. CUDA offers two ways of handling this problem
automatically, so the developer is not forced to have uniform control flow across multiple
threads. Branches can be serialized, or executed by predication. Predication is not
discussed here since experiments show it is currently not used – even though stated
differently in the CUDA Programming Guide [Cor07c].

When multiple execution paths are to be executed by one warp – meaning the control
flow diverges – the execution paths are serialized. The different execution paths are then
executed one after another. Therefore serialization increases the number of instructions
executed by the warp, which effectively reduces the performance. Code serialization is
done by the hardware itself in an unspecified but correct way – meaning even though a
processor executed an instruction that should not be executed, the result is correct. How
much branching can affect the performance is almost impossible to predict in a general
case. When the warp does not diverge, only the control flow instruction itself is executed.

1Writing to device memory itself is not discussed in [Cor07c], but this is a widely accepted fact by
the CUDA developer community, see e.g. http://forums.nvidia.com/index.php?showtopic=48687.



10 CUDA

2.4 Why a GPU is no CPU

GPUs are designed for executing a high amount of data-parallel work – NVIDIA suggests
having at least 6,400 threads on the current hardware, whereas 64,000 to 256,000 threads
are expected to run on the upcoming hardware generations. Unfortunately, massive
parallelism comes at the cost of both missing compute capacities and bad performance
at some scenarios.

• Current GPUs are not capable of issuing any function calls in a kernel. This
limitation can be overcome by compilers by inlining all function calls – but only
if no recursions are used. Recursion can be implemented by manually managing
a function stack. But this is only possible if the developer knows the amount of
data required by the function stack, since dynamic memory allocation is also not
possible. Again, this limitation may be weakened by the developer – possibly by
implementing a memory pool2 – but currently no work in this area is available to
public.

• GPUs are not only designed for a high amount of data-parallel work, but also
optimized for work with a high arithmetic intensity. Device memory accesses are
more expensive than most calculations. GPUs perform poorly in scenarios with
low arithmetic intensity or a low level of parallelism.

These two facts show that unlike currently used CPUs, GPUs are specific and may
even be useless at some scenarios. Writing fast GPU program requires

• a high level of arithmetic intensity – meaning much more arithmetic instructions
then memory access instructions.

• a high degree of parallelism – so all processors of the device can be utilized.

• predictable memory accesses, so the complex memory hierarchy can be utilized as
good as possible, e.g. by manually caching memory accesses in shared memory.

The performance of a CPU program is not affected that badly by memory accesses
or by a low degree of parallelism. The cost of memory accesses is rather low due to
the different architecture of modern CPUs and GPUs – e.g. the usage of caches. Since
current multicore CPUs still offer high sequential performance and the number of cores
available is small as compared to the number of processors available on a GPU3, less
independent work is required for good performance.

2Preallocating a high amount of memory and than hand it out at runtime to simulate dynamic
memory allocation.

3The hardware used for this thesis offers 96 processors.



Chapter 3

Progamming with CUDA

Based on the software architecture described in the previous chapter, CUDA offers a
special C dialect to program the device as well as two libraries. The host runtime library
offers functions for device memory management and functions to control the device,
whereas the device runtime library offers functions to ease programming the device. The
following sections first introduce the C dialect used to program the device and the device
runtime library, followed by the host runtime library. The last section discusses the
integration of CUDA into a C++ application.

3.1 Programming the device

The language used to program the device is based on C and extended with

• function type qualifiers,

• variable type qualifiers,

• built-in variables.

We discuss these extensions in the following sections.

3.1.1 Function type qualifiers

Function type qualifiers are used to specify whether the function is callable from the host
or the device. There are three different qualifiers available:

• The __device__ qualifier defines a function that is executed on the device and
callable from the device only. Such functions are always inlined and therefore
neither function pointers are supported nor is it possible to take the address of
such a function. This is a direct result from limitations we discussed in section 2.4.

11
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function type qualifier callable runs on
__host__ host host

__device__ device device
__global__ host device

Table 3.1: An overview of the CUDA function type qualifiers

• __host__ defines a function that is executed and callable from the host only. This
is the default behavior of functions without a qualifier.

• The __global__ qualifier defines a kernel, meaning it is callable by the host only
and executed on the device – so to speak a main function for the program executed
by the device. A __global__ function must have the return value void and may
only be called as described in section 3.2.2.

__device__ and __host__ can be used together, so the function is compiled for both
the host and the device. See listing 3.1 for a small example of how function qualifiers are
used.

Listing 3.1: Function type qualifiers example
1 // callable from both device and host

2 __host__ __device__ int pass(int input) {
3 return input;
4 }
5
6 // callable from the host , but executed on the device

7 __global__ void kernel (int input) {
8 int a = pass(input);
9 }

3.1.2 Variable type qualifiers

Variable type qualifiers are used to define the memory storage class of the variable. Two
of the available qualifiers are discussed next.

• __device__ declares a variable residing on the device. If no additional variable
type qualifier is used, such a variable is stored in global memory, has the lifetime
of the application and can be accessed by all threads in the grid and the host by
using the functions which are described in section 3.2.3. __device__ variables can
only be defined at file scope.

• Variables stored in shared memory are qualified with both the __device__ and the
__shared__ qualifier. These variables are accessible only by the threads within a
thread block and have the lifetime of the block, meaning after the thread block has
finished executing, the memory is no longer accessible.
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Variables defined without a qualifier, but inside a function executing on the device,
are declared in thread local memory. Shared variables may be defined without the
__device__ qualifier in these functions. Pointers to both global and shared memory
are supported, as long as it is possible to identify the memory address space the pointer
belongs to at compile time, otherwise the pointer is expected to point to global memory.
See listing 3.2 for an example.

Listing 3.2: Variable type qualifiers example

1 // an array allocated in global memory

2 __device__ int a[100];
3
4 __global__ void kernel (bool sh_mem) {
5 // an array allocated in shared memory

6 __shared__ int sh_a [100];
7 int *pa;
8
9 if (sh_mem) {

10 pa = sh_a;
11 } else {
12 pa = a;
13 }
14
15 // this is undefined if sh_mem == true

16 pa[50] = 1;
17 }

3.1.3 Built-in variables

There are four built-in variables available. The types of these variables are defined in
the common runtime library1. The built-in variables blockIdx and threadIdx are of
type uint3. uint3 is a 3-dimensional vector type containing three unsigned integer
values, which are stored in fields called x, y and z. The built-in variables gridDim and
blockDim are of the type dim3. dim3 is identical to uint3, except that all components
left unspecified when creating have the value 1. The built-in variables store the following
information:

• gridDim contains the dimensions of the grid. The dimension of the grid can only
be defined in two dimensions (see section 2.2), therefore gridDim.z is always 1.

• blockDim contains the dimensions of the block.

• blockIdx contains the index of the block within the grid.

1The common runtime library defines texture types and vector types. Both are not used in this thesis,
therefore the common runtime library is not discussed any further. The interested reader may find more
information in [Cor07c] on pages 22 - 25.
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• threadIdx contains the index of the thread within the block.

Values are assigned to these variables when invoking a kernel (see section 3.2.2).

3.1.4 Device runtime library

The device runtime library contains:

• mathematical functions,

• synchronization function,

• type conversion functions,

• type casting functions,

• texture functions,

• atomic functions.

Only the synchronization function is discussed here, see [Cor07c] for an overview
of the other functionality. The synchronization function __syncthreads() is used to
coordinate threads within a thread block. __syncthreads() blocks the calling threads
until all other threads of the same thread block have called the function too – similar
to the barrier construct of OpenMP [Ope05]. Using this synchronization function in
conditional code is only well defined, if the condition evaluates identical over all threads
of the same block.

3.2 Controlling the device

The functions to control the device by the host are available through the host runtime
library. This library offers functions to handle

• device management,

• memory management,

• execution control,

• texture reference management,

• interoperability with both OpenGL and Direct3D.

Device management, execution control and memory management are discussed in the
following sections; the other functionality is explained in [Cor07c] pages 28 - 40.
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3.2.1 Device management

The CUDA device management requires that one host thread is bound to at most one
device. Multiple threads can be used to control multiple devices. cudaSetDevice(

int dev ) associates the calling thread with device number dev. Multiple functions
are available to get the device number, e.g. cudaChooseDevice( int* device, const

cudaDeviceProp* prop ) which returns the device number best matching the requested
properties prop. The property may define the size of memory required or the support
for special compute capabilities of the hardware, e.g. atomic operations. If no device has
been selected before the first kernel call, device 0 is automatically selected.

3.2.2 Execution control

Execution control refers to the execution of a kernel on the device. There are two pos-
sibilities of which one is only supported by the NVIDIA nvcc compiler and is therefore
not discussed here. See [Cor07c] section 4.2.3 for details. The other possibility is to use
the host runtime library. This is done in three steps:

1. Call cudaConfigureCall(dim3 gridDim, dim3 blockDim) which configures the
next kernel launch, by defining the size of the grid and the size of the thread
blocks.

2. Push the kernel call parameters on the kernel stack. The kernel stack is similar
to a function stack, but located on the device. The transfer is done by calling
cudaSetupArgument(T arg, size_t offset) for each parameter to be pushed
on the stack. offset defines the position on the stack, where the argument should
be stored.

3. Start the kernel by calling cudaLaunch(T kernel_p). The passed argument must
be a function pointer pointing to the __global__ function to be executed.

3.2.3 Memory management

Device memory can be allocated as two different memory types, but only linear memory
is discussed next, since it is the only memory type used in this thesis. The interested
reader may find more information in [Cor07c]. Linear memory is memory as it is well
known from the general CPU realm, meaning it is allocated in a 32-bit memory address
space and referable by pointers.

Linear memory management is similar to the classical C style memory management
using free() and malloc(). count bytes of linear memory are allocated by calling
cudaMalloc( void** devPtr, size_t count ). The address of the memory allocated
is stored in *devPtr. Memory is freed by calling cudaFree( void* devPrt ). Deferring
a pointer, returned by cudaMalloc on the host side is undefined.

Transferring data between host and device is done by calling cudaMemcpy( void* dest,

const void* source, size_t count, cudaMemcpyKind kind ). count specifies the
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number of bytes to be transferred. dest and source define the destination and the
source address and kind specifies the direction of the copy. Data can be copied in any
possible direction, e.g. from device to host or device to device. The cudaMemcpy() func-
tion blocks the calling thread, if a kernel is currently executing on the device, since device
memory can not be accessed by the host while a kernel is active (see section 2.2).

3.3 CUDA and C++

As stated before, CUDAs design is based on the C programming language, and the
CUDA compiler (called nvcc) only supports C. Therefore the integration of CUDA into
a C++ application results in several problems due to the lack of C++ support by the
CUDA compiler. NVIDIA provides a simple example of how CUDA can be integrated
into a C++ application [Cor07a], but this basic approach has some drawbacks. NVIDIA
suggests issuing the kernel call in a __host__-function, which is then compiled by nvcc;
thereby the function calling the kernel is a pure C function. To execute the kernel, this
function is called from the C++ application and all data passed to the kernel must be
passed to this function as well. The integration of C in a C++ program may sound trivial,
but as it has been discussed by Meyers [Mey95] in item 34 and Cline et al. [CGL98] in
chapter 36, a wide range of problems may occur. The major problem regarding the CUDA
integration approach suggested by NVIDIA is that not all data types or data structures
used in C++ can be used in C. As C does not support classes it is expected that most
user-defined data types or data structures can not be used without code changes. But
as the memory layout rules for both C structures and C++ classes not using virtual
functions are identical, it is possible to write code that allows the access to C++ classes
in C. An example how this code might be written is given in [CGL98] section 36.05,
but this requires adding a C structure with the identical memory layout as the C++
class and two new functions for every member function of the class. The amount of
required code changes may therefore be high. For example when considering the access
of a STL container in C, all required functions must be duplicated and a structure with
the identical memory layout must be defined, which requires STL platform-specific code,
since the memory layout of the STL container is not defined [Mey01].

Even if the general C++/C mixing problems are solved, passing an object to a kernel
can not be done the same way as it is done by passing an object to a function. As
mentioned in section 2.2, the device can not access host memory, so passing any object
using pointers to a kernel results in invalid pointers when using the automatically gener-
ated copy constructor. This derives from the fact that the automatically generated copy
constructor does only copy the value of the pointer (shallow copy) and not the memory
the pointer points at (deep copy). Developers may write their own copy constructor and
use it to copy all required data to the device, but they must know that this copy is used
by the device and not by the host. This information is not provided by the C++ copy
constructor, so additional work is required by the developer to ensure the copy is used
in the correct memory address space.

The CuPP framework, which is discussed in the following chapter, offers a solution
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to the problems outlined above. The framework calls member functions of the objects
passed to the device, which can be used to transfer all required data from the host to
the device and correct the value of used pointers. Additionally it is possible to define
two independent structures, where one is only used by the device and the other by the
host. The structure used by the device must satisfy the C rules and the other structure
can use all C++ functionality, including virtual functions and inheritance. The interface
between both types is a transformation function, which is executed by the host.
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Chapter 4

CuPP

As discussed in section 3.3, CUDAs design is based on the C programming language,
and integrating CUDA into a C++ application results in problems, e.g. when using
classes. The CuPP framework as described in this chapter has been developed to ease
the integration of CUDA into C++ applications. At first, we introduce the CuPP device
and memory management followed by the new C++ compliant kernel call, including the
possibility to pass classes to a kernel or use references. The support for classes allows for a
new approach to reflect the differences between the device and the host on programming
level, which is described in section 4.5. For brevity, a complete overview of all CuPP
functions has been omitted. The interested reader may find a documentation generated
by doxygen [Dox07] at [Bre07]. An overview of the whole CuPP functionality – including
possible additions not implemented during this thesis – can be found in figure 4.1.

4.1 Device management

Device management is no longer done implicitly when associating a thread with a device
as it was done by CUDA. Instead, the developer is forced to create a device handle
(cupp::device), which is passed to all CuPP functions using the device, e.g. kernel calls
and memory allocation. Currently, only one device handle per thread is supported, but
the CuPP framework itself is designed to offer multiple devices to the same host thread
with only minor interface changes. Due to the lack of hardware with multiple devices no
further work was done in this area.

The creation of a device handle can be done by specifying properties (similar to the
original CUDA concept), or without any specification, which uses the default device (see
listing 4.1). The device handle can be queried to get information about the device, e.g.
supported functionality or total amount of memory. When the device handle is destroyed,
all memory allocated on this device is freed as well.

21
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Figure 4.1: CuPP overview

Listing 4.1: CuPP device handle example

1 #include <cupp/device.h>
2
3 int main() {
4 // creates a default device

5 cupp:: device device_hdl ();
6
7 // ...

8 }

4.2 Memory management

The CuPP framework currently only supports linear memory (see section 3.2.3). Two
different memory management concepts are available. One is identical to the one offered
by CUDA, unless that exceptions are thrown when an error occurs instead of returning an
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error code. To ease the development with this basic approach, a boost library-compliant
shared pointer [GBD07] for global memory is supplied. Shared pointers are a variant of
smart pointers. The memory is freed automatically after the last smart pointer pointing
to a specific memory address is destroyed, so resource leaks can hardly occur.

The second type of memory management uses a class called cupp::memory1d. Objects
of this class represent a linear block of global memory. The memory is allocated when
the object is created and freed when the object is destroyed. When the object is copied,
the copy allocates new memory and copies the data from the original memory to the
newly allocated one. Data can be transferred from the host to the device by two kinds
of functions:

• functions using pointers

• functions using C++ iterators

The functions using pointers require a specific memory layout for the data to be
transferred from the host to the device. The data must be stored in a linear memory
block, so the memory to be transferred can be defined by a starting address and the
amount of data. The functions using iterators, in contrast, can be used to transfer
any data structure supporting iterators to or from host memory. As already explained
cupp::memory1d is always a linear memory block on the device, so the transferred data
structure must be linearized in some way. The CuPP framework linearizes the data
structure based on the way it is traversed by its iterators, meaning the value of the
iterator passed to the function is the first value in the memory block, the value the
iterator points to when incrementing is the next value in the memory block and so on.

Both memory management concepts relieve the developer from manually freeing
global memory. The second concept additionally simplifies the usage of global mem-
ory as a member of an object. If cupp::memory1d is used as a member of class and an
object of this class is copied, the memory on the device is copied too. This is useful, when
implementing a data structure like the vector described in section 4.6. When a vector is
copied, the copy is expected to have its own dataset, so if a vector uses global memory,
it must be copied as well. This is done automatically if cupp::memory1d is used.

4.3 A C++ kernel function call

CuPP supports CUDA kernel calls by offering a so called functor called cupp::kernel.
In C++, functors are classes supporting operator() and thereby function-like calls,
e.g. f() can be both a function call, and f.operator(). The call of operator()

of cupp::kernel calls the kernel and issues all instructions described in section 3.2.2.
A cupp::kernel object is created by passing a function pointer pointing to a CUDA
__global__ function to the constructor. Grid and block dimension of the kernel calls
can be passed as an optional parameter to the constructor or may be changed later with
set-methods.
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Calling kernels by using cupp::kernel::operator() mimics a C++ function call
and supports both call-by-reference and call-by-value semantic. The syntax for writing
the CUDA kernel is identical to the C++ syntax, e.g. reference types are postfixed by
an ampersand (&). This syntax is only possible because, when compiling with nvcc,
C++-like references are automatically transformed into automatically derefered point-
ers1. Listings 4.2 and 4.3 offer a simple example of how cupp::kernel can be used,
including the call-by-reference semantic.

Listing 4.2: CuPP kernel example: CUDA file

1 // CUDA kernel

2 __global__ void kernel (int i, int& j) {
3 // ...

4 j = i/2;
5 }
6
7 // typedef of the function pointer type of ’kernel ’ to

kernelT

8 typedef void (* kernelT) (int i, int& j);
9

10 // returns a function pointer pointing to ’kernel ’

11 kernelT get_kernel_ptr () {
12 return kernel;
13 }

Listing 4.3: CuPP kernel example: C++ file

1 #include <cupp/device.h>
2 #include <cupp/kernel.h>
3
4 typedef void (* kernelT) (int i, int& j);
5
6 // prototype , implemented in CUDA file

7 kernelT get_kernel_ptr ();
8
9 int main() {

10 int j = 0;
11
12 // define the dimension of the kernel

13 // 10 * 10 = 100 thread blocks

14 // 8 * 8 = 64 threads per block

15 dim3 grid_dim = make_dim3 (10, 10);
16 dim3 block_dim = make_dim3 ( 8, 8);
17

1This behavior is not officially supported in CUDA 1.0, but by using it, a more C++-like interface
can be offered. Instead of relying on this behavior, a reference-like structure could be implemented using
C macros.
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18 // create the kernel functor

19 cupp:: kernel f( get_kernel_ptr (), grid_dim , block_dim );
20
21 // call the kernel by using operator ()

22 // 1. parameter: the device the kernel runs on

23 // all following parameters are passed to ’kernel ’

24 f (device_hdl , 10, j);
25
26 // j == 5

27 }

The next sections describe the default implementation of call-by-value and call-by-
reference. It can be enhanced for classes using pointers, as described in section 4.4. The
following two sections refer to objects only, but the behavior described is identical for
primitive data types (so called PODs).

4.3.1 Call-by-value

The implementation of call-by-value semantic is almost identical to that of a normal
C++ function. When an object is passed by value to a C++ function:

1. A copy of the object is generated by calling its copy constructor.

2. The copy is passed to the function.

3. The function is executed.

4. After the function call, the copy calls its destructor.

When an object is passed to a kernel using CuPP:

1. A copy of the object is generated by calling its copy constructor on the host.

2. The copy is passed to the kernel, by calling cudaSetupArgument(), which generates
a byte-wise copy of the object on the kernel stack (see section 3.2.2 for details).

3. The kernel is executed.

4. After the kernel has started, the generated host copy calls its destructor.

Both methods differ only in the time the destructor is called. The destructor of the
host side copy is not called after the kernel has finished, but may be called earlier. This
is done to prevent an unnecessary synchronization between host and device. If for some
reason the synchronization is required, it can be done explicitly in the destructor. In
the development done during this thesis, it was never required to synchronize the host
and the device, especially since global memory accesses implicitly synchronize host and
device. So the destructor can not influence the currently running kernel. Even when it
would try to change the memory on the device, these changes would be carried out after
the kernel execution is complete.
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4.3.2 Call-by-reference

The CuPP kernel call-by-reference semantic is again implemented similar to that of C++.
References refer to an object, and if a reference is passed to a function, it directly refers
to an object created outside of the function, and changes done to a reference change
this object. In C++, references are typically implemented as automatically derefered
pointers. So the reference itself is no more than the address of an object. A C++
function call using call-by-reference may be implemented as follows:

1. The reference is created by taking the address of the object to be passed to the
function.

2. This reference is passed to the function.

3. The function is executed.

4. The reference is destroyed after the functions execution.

CuPP call-by-reference is implemented as follows:

1. The object to be passed to a kernel is copied byte-wise to the global memory on
the device.

2. The address of the object in global memory is passed to the kernel.

3. The kernel is executed.

4. The copy in global memory is byte-wise copied back to host memory overwriting
the original object.

Step 4 includes a synchronization, since global memory is accessed. If the device
has not changed the object, there would be no need to copy the data back to the host.
To reduce the amount of unneeded copies, the CuPP framework analyzes the kernel
declaration, and if a reference is defined as constant (using the const keyword), the last
step is skipped. This analysis is done using the boost function traits [ADS+07] and self-
written template metaprogramming code. Template metaprogramming code is carried
out at compile time and therefore can increase the time required for compilation.

4.4 Use of classes

The CuPP framework also supports passing of classes to a kernel. The technique de-
scribed in this section does not support virtual functions. virtual functions are used
as member functions of classes, and can be overwritten in a derived class2. virtual func-
tions change the internal data representation of an object, so using them as a member
function is not possible, since an object is byte-wise copied to global memory.

2There are exceptions to this rule. See e.g. [Str00] for a more complete overview of virtual functions
and inheritance in C++.
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Using the default behavior for both call-by-value and call-by-reference semantics de-
scribed in section 4.3 can work fine for all PODs and even some classes, but it is problem-
atic when pointers or dynamic memory allocation are used by a class. Both call semantics
use a byte-wise copy to transfer the object to the kernel stack or the global memory, so
the problems discussed in section 3.3 have not been solved so far. To solve the problem
regarding the usage of pointers, it is possible to enhance the two calling behaviors by
specifying the following three functions as member functions of a struct3.

Listing 4.4: CuPP kernel call traits definition

1 struct example {
2 #if !defined(NVCC)
3 device_type transform ( const cupp:: device &d ) const;
4
5 cupp:: device_reference < device_type >

get_device_reference ( const cupp:: device &d ) const;
6
7 void dirty ( device_reference <device_type > device_ref );
8 #endif
9 };

device_type is discussed in section 4.5. For now, it should be considered to be of
the same type as the class in which the function is defined (here example). The function
transform() is called by the framework, when an object of this class is passed by value
to a kernel and has to return an object, which can be byte-wise copied to the device.
The function is called on the copy created in step 1 of the call-by-value semantic (see
section 4.3.2). It may be used to copy additional data to the global memory and to set
the pointers to the correct values.

get_device_reference is called by the framework when the object is passed by refer-
ence and has to return an object of the type cupp::device_reference <device_type>.
cupp::device_reference <T> is a reference to an object of type T located on the de-
vice. When created, it automatically copies the object passed to its constructor to global
memory. The member function get() can be used to transfer the object from global
memory back to the host memory.

Objects passed to a kernel as a non-const reference can be changed by the device.
These changes have to be transferred back to the object on the host side; therefore the
object stored in the host memory has to be notified. This notification is done by calling
the dirty() function. A device_reference to the object stored in global memory is
passed to this function, so the changed data on the device can be accessed by calling the
member function get() and can be used to update the old host data.

It is optional to implement any of these three functions. The CuPP framework em-
ploys template metaprogramming to detect whether a function is declared or not. If it
is not declared, the default implementation shown in listing 4.5 is used.

3Note, that defining functions inside a struct is not C compliant, therefore the functions should only
be defined if compiled with the C++ compiler – as done in the example.
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Listing 4.5: Default implementation

1 struct example {
2 device_type transform (const cupp:: device &d) const {
3 // cast *this to device type

4 return static_cast <device_type >(* this);
5 }
6
7 cupp:: device_reference < device_type >

get_device_reference (const cupp:: device &d) const {
8 // copy the ’transformed ’ object to global memory

9 return cupp:: device_reference < device_type > (d,
transform(d));

10 }
11
12 void dirty (device_reference <device_type > device_ref) {
13 // replace *this with updated device data

14 *this = static_cast <host_type > ( device_ref.get() );
15 }
16 };

It is expected, that the transform() and dirty() functions must only be imple-
mented, when pointers or type transformations – as described in the next section – are
used. get_device_reference() must only be implemented if transform() and dirty()

are implemented and the default behavior is not satisfying.

4.5 Type transformation

As described in section 2.4, CPUs and GPUs differ in a lot of details, e.g. the way memory
should be accessed or the missing compute capabilities. Based on these differences,
different approaches to solve a problem may be required to achieve good performance. On
the host side, using a balanced tree may be a good choice to store data, in which searching
is a regular operation. But this concept requires a high amount of rather unpredictable
memory accesses, so the memory hierarchy of the device can not be used effectively. A
simple brute force approach using shared memory as a cache may even perform better; as
long as the factor between accessing global memory and shared memory is not outranged
by the algorithmic benefit of the search done in a tree. But not only the memory access
pattern when using a tree is problematic, also are the used algorithms. As discussed
in section 2.4, using recursion on the device is rather problematic, due to the lack of
function call capabilities and dynamic memory allocation.

The CuPP framework offers a way to reflect the differences between the two archi-
tectures. The developer can define two independent types, which get transformed into
one another when transferred from one memory domain to the other. The type used by
the host is called hosttype, whereas the type used by the device is called devicetype. The
types can be optimized for the architecture they are used on. The matching is defined
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as shown in the following listing.

Listing 4.6: CuPP host/device type definition
1 // prototype

2 struct device_example;
3
4 // host type

5 struct host_example {
6 typedef device_example device_type;
7 typedef host_example host_type;
8 };
9

10 // device type

11 struct dev_example {
12 typedef device_example device_type;
13 typedef host_example host_type;
14 };

The matching between the two types has to be a 1:1 relation. The transformation
of the two types is not only done if the objects are passed by value, as it is done by
C++ function calls, but also if the objects are passed by reference. The transformation
between the two types has to be done by the transform(), get_device_reference()
and dirty() functions described in section 4.4. The next section gives an example of
how the type transformation and these functions can be used.

4.6 CuPP Vector

The class cupp::vector (in the following just called vector) is supplied by the CuPP
framework as a wrapper class of the STL vector [Str00]. It provides for an example
implementation of a feature called lazy memory copying. The C++ STL vector is best
described as an array, which can grow and shrink at runtime and fulfills the STL container
requirements.

The CuPP vector implementation uses the host/device type bindings. The host offers
almost4 the same functionality as the C++ STL vector. The device type suffers from
the problem that it is not possible to allocate memory on the device. Therefore the size
of the vector cannot be changed on the device. The type transformation is not only
done to the vector itself, but also to the type of the values stored by the vector. There-
fore vector<T>::device_type is identical to deviceT::vector<T::device_type>, with
deviceT::vector being the device-type of vector. This kind of transformation makes
it possible to pass e.g. a two dimensional vector (vector< vector<T> >) to a kernel.

4The CuPP vector uses a technique called proxy classes to detect whether a value of the vector is just
read or changed. Due to limitations of the C++ language itself, it is not possible to get this information
without the usage of proxy classes. Proxy classes mimic the classes they are representing, but are not
identical. Therefore they behave differently in some rather rare situations. Scott Meyers discusses this
problem in detail in [Mey95] item 30.
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Vectors are often used to store a large amount of data. Therefore transferring the
data of the vector from or to global memory should be minimized. CuPP vectors use lazy
memory copying to reduce the amount of copies done. The technique is based on some
special behavior of the functions transform(), get_device_reference(), dirty() and
monitors the values on the host side.

• transform() and get_device_reference() copy the vector data to global mem-
ory, if the data is out of date or no data has been copied to the device before.

• dirty() marks the host data of the device to be out of date.

• Any host functions or operators that read or write data, check if the host data is
up to date and if not, copy the data from the device.

• Any host functions or operators changing the state of the vector, marks the data
on the device to be out of date.

Using this concept, the developer may pass a vector directly to one or multiple kernels,
without the need to think about how memory transfers may be minimized, since the
memory is only transferred if it is really needed. The example application described in
chapter 6 uses this technique to improve performance, e.g. see section 6.3.2.



Example application
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Chapter 5

OpenSteer fundamentals

In this part of the thesis we demonstrate the benefits of the CuPP framework by integrat-
ing CUDA into the Boids scenario of OpenSteer. This chapter lays out the foundation
of the simulation. We start with an overview of steering itself, followed by its usage in
the scenario. After that the OpenSteer architecture and the performance of the existing
CPU Boids simulation are discussed.

5.1 Steering

The term steering refers to life-like navigation of autonomous characters. Autonomous
characters are special types of autonomous agents used in games or other interactive me-
dia and computer animations. In the following those autonomous characters are called
agents. In most cases all agents are simulated by executing a so called steering behavior,
which defines the way an agent behaves e.g. flee from another agent. The term behavior
can refer to many different meanings, but throughout this thesis it refers to improvisa-
tional and lifelike actions of agents. Steering behaviors do not define the behavior of a
group of agents, but the behavior of a single agent and are based on its local environment.
The group behavior itself is an emergent phenomenon and results in intelligent behavior
of the group.

The Boids scenario is simulating flocks of bird. One bird is simulated by one agent.
The only action an agent can take in this scenario is moving to a specific direction;
therefore all steering behaviors are represented by a 3-dimensional vector. These vectors
are called steering vectors. A steering vector is interpreted in two different ways. The
direction of the vector defines the direction in which the agent wants to move, whereas
the length of the vector defines the acceleration.

An agent in the Boids simulation is represented by a sphere. The radius of the sphere
is identical for all agents, so the representation of all agents is identical. The simulation
takes place in a spherical world. An agent leaving the world is put back into the world
at the diametric opposite point.
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5.2 Flocking

The Boids scenario uses a steering behavior called flocking. This behavior is not only used
to simulate flocks of birds but also herds or schools. Flocking as it is used here has been
proposed by Reynhold [Rey99] and is built up from three basic behaviors: separation,
cohesion and alignment. The final steering vector is a weighted addition of the steering
vectors which is returned by these basic behaviors, as shown in listing 5.1.

Listing 5.1: Flocking
1 Vec3 flocking () {
2 Vec3 SeparationW = weightA * normalize( separation () );
3 Vec3 AlignmentW = weightB * normalize( alignment () );
4 Vec3 CohesionW = weightC * normalize( cohesion () );
5 Vec3 Flocking = SeperationW + AlignmentW + CohesionW;
6 return Flocking;
7 }

The following sections introduce these three basic steering behaviors, but at first the
neighbor search is explained in detail. Steering behaviors in general are defined on the
local environment of the agent. In the Boids scenario considered during this thesis, the
local environment of an agent is the agents surrounding it – all other aspects of the
world are uniform and never influence the behavior of an agent. Therefore all behaviors
discussed next are using the neighbor search.

5.2.1 Neighbor search

The neighbor search is used to find agents within a given radius. This radius is called
neighbor search radius. The number of agents to be found may be unlimited, but in
most cases the number of agents is limited by a fixed value. The limitation is used as
real individuals are not capable of reacting to an unlimited amount of other individuals
surrounding it. We only consider the 7 nearest neighbors in the simulation, discussed in
the following sections. The following pseudo code demonstrates the used algorithm.

Listing 5.2: Neighbor search
1 Agent [] neighbor_search () {
2 Agent neighbors [7]
3
4 for each (Agent A in World) {
5 dist := distance(Me , A)
6
7 if (dist < search radius) {
8 // already the maximum nb of agents found?

9 if (neighbors found < 7) {
10 // no

11 add A to neighbors
12 } else {
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13 // yes , only store the 7 nearest

14 B := Agent with the biggest distance in
neighbors

15 if (distance (Me, B) > distance (Me, A)) {
16 overwrite B in neighbors with A
17 }
18 }
19 }
20 }
21
22 return neighbors
23 }

The algorithm in listing 5.2 is used to find the 7 nearest agents within a given radius.
As long as there are found less than 7 neighbors, all agents within the neighbor search
radius are added as a neighbor. If there are already 7 neighbors found, the furthest
neighbor is replaced by the new found one, if the new one is closer than the original one.
This algorithm has a complexity of O(n), with n being the number of agents within the
world.

5.2.2 Separation

The separation steering behavior refers to the fact that one character within a flock tries
to keep a certain distance to the other characters in the flock. To calculate this behavior
a neighbor search is done. A repulsive force is calculated based on the distance vector
between the simulated agent and every neighbor. At first the distance between a neighbor
and the simulated agent is calculated. The distance vector is normalized, so the vector
has the length 1. Agents further away should have a lower impact on the separation
behavior, so the distance vector gets divided through its original length a second time.
By this second division, the newly calculated value is smaller if the neighbor is further
away. The value which is calculated for every agent is summed up and returned as the
steering vector. See figure 5.1 for a graphical representation. The red vector is the
steering vector, whereas the green lines show the offset. The following code shows the
algorithm used to calculate this behavior.

Figure 5.1: Graphical representation of the separation steering behavior. The red vector is the
calculated steering vector [Rey99].
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Listing 5.3: Separation steering behavior

1 Vec3 separation () {
2 Agent [] neighborhood = neighbor_search ()
3 Vec3 steering = (0.0, 0.0, 0.0)
4
5 for each (Agent A in neighborhood) {
6 // opposite of the offset direction

7 Vec3 distance = A.position - me.position
8
9 // divided to get 1/d falloff

10 steering -= (distance.normalize ()/distance.length ())
11 }
12
13 return steering
14 }

Figure 5.2: Graphical representation of the Cohesion steering behavior. The red vector is the
calculated steering vector [Rey99].

5.2.3 Cohesion

The cohesion steering behavior tries to steer an agent to the center of other agents nearby,
so multiple agents can start forming groups. This is done by finding all neighbors and
then calculating the center of these agents. The resulting steering force is the difference
between the current position of an agent and the calculated center. See figure 5.2 for a
graphical representation. The red vector in the figure is the returning steering vector.

Listing 5.4: Cohesion steering behavior

1 Vector cohesion () {
2 Agent [] neighborhood = neighbor_search ()
3 Vector3 steering = (0.0, 0.0, 0.0)
4
5 for each (Agent A in neighborhood) {
6 // accumulate sum of distance between neighbor

7 // and local agent position
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8 steering += A.position - Me.position
9 }

10
11 return steering
12 }

Figure 5.3: Graphical representation of the alignment steering behavior. The red vector is the
calculated steering vector [Rey99].

5.2.4 Alignment

Alignment is used to have all agents of a group flying in the same direction. This is done
by finding the neighbors and then averaging the forward vector of these agents. The
forward vector points to the direction an agent is heading. The result is the difference
between the forward vector of the agent and the calculated average forward vector. See
figure 5.3 for a graphical representation. The red vector is the calculated steering vector.

Listing 5.5: Alignment steering behavior

1 Vector cohesion () {
2 Agent [] neighborhood = neighbor_search ()
3 Vector3 steering = (0.0, 0.0, 0.0)
4
5 for each (Agent A in neighborhood) {
6 // accumulate sum of neighbor ’s heading

7 steering += A.forward
8 }
9

10 steering -= neighborhood.size * Me.forward
11 return steering
12 }
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Figure 5.4: An architecture overview of OpenSteerDemo, showing all (sub)stages.

5.3 OpenSteer

Whereas the previous sections discussed the theoretical foundations of the Boids sce-
nario, this section introduces OpenSteer in general and its architecture, followed by a
performance overview of the already existing CPU version.

OpenSteer is an open-source library written in C++ by Reynolds in 2002. It provides
simple steering behaviors and a basic agent implementation. OpenSteerDemo currently
offers different scenarios – among others the Boids scenario.

The design of OpenSteerDemo is similar to the ones of games. It runs a main loop,
which first recalculates all agent states and then draws the new states to the screen.
The recalculation phase is called update stage, followed by the so called graphics stage.
The update stage is again split into two substages. Within the simulation substage all
agents compute their steering vectors, but do not change their state. These changes
are carried out in a second substage called modification substage. See figure 5.4 for a
graphical overview of the architecture.

To effectively port the scenario to the GPU, the performance of the already existing
version must be exposed. The version used for the performance exposure is based on a
version by Knafla and Leopold [KLar] in which only minor modifications were done as
part of this thesis. Given below the hardware for all following measurements:

• CPU: AMD Athlon 64 3700+

• GPU: GeForce 8800 GTS - 640 MB

• RAM: 3 GB

The GPU offers a total number of 12 multiprocessor, each offering 8 processors.
This results in a total of 96 processors. The GPU is running at 500 MHz, whereas the
processors itself are running at 1200 MHz. The CPU is a single core CPU running at
2200 MHz.

Figure 5.5 gives an overview of how CPU cycles are spent when simulating the Boids
scenario. The neighbor search is the performance bottleneck, with about 82% of the
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Figure 5.5: Overview of how much time the different stages require.

used CPU cycles. The neighbor search is done once for every calculation of the resulting
steering vector and not once for every basic steering behavior, as it was described in
section 5.2. The calculation of the steering vector (simulation substage) or any other
work requires less than 20% of the overall performance. The neighbor search for all agents
is a O(n2) problem, since the O(n) neighbor search algorithm described in section 5.2.1
is executed to for all agents.

A technique called think frequency reduces the amount of time required by the all
agents neighbor search, even though it is not necessarily implemented to achieve this.
Frame rates of about 30 to 60 frames per second (fps) are required to produce a smooth
animation, but the steering vector can be recalculated at a slower rate [Rey06]. A think
frequency of 1

10
refers to that the simulation substage of a specific agent is executed every

ten simulation time steps. In one simulation time step only 1
10

th of the agents execute
the simulation substage. Reynolds [Rey06] calls this technique skipThink.

Figure 5.6 shows how the simulation scales with the addition of new agents. The
performance is measured in the number of times the update stage is executed in one
second. With the addition of new agents, the performance without think frequency
suffers greatly due to the O(n2) all agent neighbor search problem. The performance
with think frequency does not suffer that much from the O(n2) nature of the problem,
since the think frequency factor is introduced as a constant reducing the number of times
the neighbor search algorithm is executed. This does not change the complexity of the
simulation substage, but has an obvious impact on the performance.
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Figure 5.6: Performance measurement of the original OpenSteer Boids simulation with and
without think frequency



Chapter 6

GPU Steering

This chapter gives an overview of the development of the GPU based Boids scenario and
its performance. The simulation uses the CuPP framework to integrate CUDA. The code
running on the device is based on the CPU version of OpenSteer, which was introduced
in the previous chapter.

At first we describe how the simulation substages are mapped to different kernels
and how the agents are mapped to the threads. This is followed by an overview of the
development process that led to the simulation itself. At the end different performance
aspects are discussed in detail including if the branching issue discussed in section 2.3 is
a major problem.

6.1 Agent by agent

The first step to be done when parallelizing an application is to identify independent
parts. Considering the concept discussed in section 5.2 and 5.3, this is fairly simple. On
the one side there are the two substages, which depend on one another. The simulation
substage has to be completed before the modification substage can be started, since the
simulation substage requires the current agent state and the modification substage up-
dates this state. But in both substages, the calculation done for one agent is independent
from that of the others. Base on these two facts a fairly simple parallelization approach
arises:

• Synchronization is required between the two substages. Therefore the two sub-
stages have to be implemented as two separated kernels, since it is impossible to
synchronize all threads within a kernel as said in section 2.2.

• The calculation of one agent is independent of the calculations of the other agents,
but the instructions are the same. With mapping one agent to one thread, it is
almost a perfect match to the CUDA programming model.
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Figure 6.1: The mapping of agents to threads/blocks.

Version substage executed by the device
update modification

neighbor search steering vector calculation
1 X
2 X
3 X X
4 X X
5 X X X

Table 6.1: Overview of the different development versions

This approach does not take the shared memory into account, but it still offers a
good possibility to use it. Every agent looks at all other agents to find its neighbors,
so the data requirement for all threads is uniform – at least during the neighbor search.
This uniform data requirement makes the usage of the shared memory both efficient and
easy. Details on shared memory usage are discussed in section 6.2.1. See figure 6.1 for a
graphical overview of this first approach.

6.2 Step by step

The development of the simulation has been divided into three steps. First only the
neighbor search is executed by the device, whereas later the complete simulation substage
and finally the complete update stage are executed by the device. Figure 6.2 gives an
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Figure 6.2: Simulation frames per second at every development step when simulating 4096
agents.

overview of how the performance increased during the development stages.

6.2.1 Neighbor search

Considering the massive amount of runtime required by the neighbor search – 82% –
porting it to CUDA, was the first task to be done. The algorithm itself remains un-
changed. The first program code executed by the device was hardly more than a copy
and paste work of the code running on the CPU. The only thing needed to be done
was extracting the positions of all agents, store them in a cupp::vector and call the
neighbor search kernel. The kernel call is done by using cupp::kernel, so all memory
management happens automatically.

Listing 6.1: Calling the neighbor search kernel

1 cupp:: vector <Vec3 > positions
2 cupp:: vector <int > results;
3
4 // copy the positions of all agents in position_data

5 for (int i=0; i<flock.size(); ++i) {
6 positions.push_back(flock[i]);
7 }
8
9 // allocate memory to store the neighbors

10 result.resize (7 * flock.size());
11
12 find_neighbors_kernel (device_hdl , positions , search_radius ,

results);
13
14 // result now contains the indexes of the neighbors found

15 // ... continue with the old CPU simulation
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positions is passed as a const reference to the kernel, whereas result is passed as a
non-const reference. This results in optimized memory transfer and no copy constructor
calls. positions could be passed by value, but this would create a copy of all its con-
taining elements. result must be passed as a reference, since the kernel modifies it and
uses it to store the indexes of the found neighbors. Changes done by the kernel are only
reflected back, when an argument is passed as a reference.

This simple approach already improved performance by a factor of about 3.9 compared
to the CPU version. This performance improvement is surprising, since the program
does not utilize any other memory than global and local memory. But the performance
improvement is the result of the massive amount of processing power available on the
device. We refer to this version as version 1.

The next step was to improve the usage of the GPU memory hierarchy to reduce
the number of device memory accesses, since accessing device memory is expensive (see
table 2.2). This was done by using shared memory as a cache for position data. The
kernel was modified as shown below; no modifications to the host code were required.

Listing 6.2: Neighbor search with shared memory usage
1 // allocate shared memory to cache positions

2 __shared__ Vec3 s_positions[threads_per_block ];
3
4 // iterator through all agents

5 for (int base =0; base < number_of_agents; base+=
threads_per_block) {

6 // read data from device memory to shared memory

7 // every threads reads one element

8 s_positions[threadIdx.x] = positions[base + threadIdx.x];
9

10 // wait until all reads are completed

11 __syncthreads ();
12
13 for (int i=0; i<threads_per_block; ++i {
14 // execute the neighbor search on

15 // the data stored in s_positions

16 // see listing 6.3

17 }
18
19 // wait until all threads have finished

20 // the neighbor search on s_position

21 __syncthreads ();
22 }

As said in sections 3.1.3 and 3.1.4 threadIdx.x is a block local thread index and
__syncthreads() synchronizes all threads within a block. threads_per_block is the
number of threads per block. The kernel shown in listing 6.2 is executed with one thread
per agent, whereas the number of agents has to be a multiply of threads_per_block.
In line 8 all threads issue a read from global memory to store a position of an agent into
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an array allocated in shared memory, which is used as a cache. This technique reduces
the number of values read from global memory for every block from threads per block ∗
number of agents to number of agents. By that the performance was improved to
almost a factor of 3.3 compared to version 1, which does not use shared memory, and
about 12.9 times the performance of the original CPU solution. We refer to this version
as version 2.

6.2.2 Simulation substage

Reprofiling the modified OpenSteerDemo showed that the neighbor search now occupies
about 2% of the runtime and is therefore no longer the performance bottleneck. As a
next step, the rest of the simulation substage is executed by the device. The code is
again based on the CPU code, but is adapted to the GPU for higher performance. The
additional data, which is required to execute the simulation substage, is extracted and
transferred the same way as described in section 6.2.1.

We present two different versions executing the complete substage at the device.
Version 3 uses thread local memory to cache values calculated during the neighbor search
e.g. the distance of the simulated agent to its neighbors. This version turned out to be
slower compared to the next version. Version 4 does not cache elements in local memory,
but recalculates them when the values are required. The performance improvement
results from the fact that these values have been stored in slow device memory, which
is a valid way of implementing thread local memory (see table 2.1). Version 3 improved
performance by a factor of 27 of the CPU version. Version 4 achieved even factor of 28.8
compared to the CPU version and thereby more than doubled the performance compared
to version 2.

6.2.3 Modification substage

With the modification substage being the last part of the update stage still running on
the host, we decided to move this one to the device as well. Shared memory is used
in this stage, but not as it may have been intended to be, since the calculations of one
thread do not use data required by another thread. Shared memory has been used as
an extension to thread local memory, so local variables are not stored in device memory.
This has to be done manually by the developer, as the variables stored in device memory
can only be identified by reading the compiler generated assembler code (known as PTX
code). Details on how variables stored in device memory are identified can be found in
Parallel Thread Execution ISA [Cor07d] in section 5.

The performance has been further improved to about 42 times of the CPU version.
Parts of this improvement are due to the optimized memory management done by the
CuPP framework, by which only the required information to draw the agents1 is moved
from the device to the host memory. All other data stays on the device. We refer to this
version as version 5.

1A 4x4 matrix containing 16 float values.
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Figure 6.3: Performance of the version 5 at different numbers of simulated agents

6.3 Performance

Figure 6.3 demonstrates the scalability of version 5 with the addition of new agents. The
variant without think frequency shows a similar behavior then the CPU version shown
in figure 5.6, the O(n2) nature of the problem is clearly visible.

On the other side the variant using think frequency scales linear up to 16384 agents
(the performance is less then halved, when the number of agents is doubled) and looses
a high amount of performance when the number of agents is doubled to 32768 (the
performance is reduced by a factor of about 4.8 when the number of agents is doubled).
The linear loss of performance is because the instructions with highest cost – accessing
global memory, which is mostly used at the neighbor search – are not only reduced by
the factor of the think frequency, but also are executed once only per block, as said
in section 6.2.1. Device memory is of course still accessed O(n2) times, but these two
factors are enough to practically prevent a quadrate performance loss when increasing the
number of agents up to 16384. The high performance loss when increasing the number
of agents further is not only based on the complexity of the neighbor search, but also on
the number of times a warp diverges increases, as discussed in the next section.

6.3.1 SIMD branching issue

As described in section 2.3, a branch that does not evaluate equal on all threads within
the same warp reduces the performance. The used code does not have any special op-
timization to reduce this problem, but the performance still looks good – even when
compared with similar work, e.g. the N-body system implemented by NVIDIA [NHP07],
which does not suffer of divergent warps.
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The modification kernel uses no loops and only a small amount of branches – one
used to prevent calculation not needed in the first simulation time step and others to
prevent division through zero – and is therefore not the important factor considering the
SIMD branching issue.

The simulation kernel on the other side uses both loops and branches, which can
roughly be divided into two groups. The one used inside the neighbor search and the
one needed, because the number of neighbors found may vary on a per agent basis.
The second group has no practical relevance, since almost all agents find the maximum
number of neighbors in the simulated scenario. The threads, which found fewer agents,
execute the same amount of instructions as the agents that found the maximum number
of agents.

By contrast the first group may be a real problem. The neighbor search code can
be viewed in listing 6.2 and 6.3. Both loop conditions shown in listing 6.2 are based
on variables that evaluate identically over all threads, so the instruction flow of a warp
cannot diverge.

Listing 6.3: Neighbor search done in shared memory

1 for (int i=0; i<threads_per_block; ++i) {
2 const Vec3 offset = position - s_positions[i];
3 const float d2 = offset.lengthSquared ();
4 const float r2 = search_radius * search_radius;
5 const int global_index = base + i;
6
7 if (d2 < r2 && global_index != my_index) {
8 // neighbor found

9 if (neighbors_found < 7) {
10 // less then 7 neighbors found

11 // just add new found neighbor to neighborhood

12 ++ neighbors_found;
13 } else {
14 // already found 7 neighbors

15 // loop through all 7 neighbors

16 // and find farthes ’old’ neighbor

17 // replace with new if ’new’ found one is closer

18 }
19 }
20 }

As far, as the two if/else statements in listing 6.3 are considered, there is no guar-
antee that they evaluate identical over all threads. There is no order within the way the
agents are stored in the vector positions respectively s_positions, so it is expected
that only a single thread executes a branch most of the time and possible performance is
lost. The lost performance increases with the amount of added agents, since with more
agents the number of agents within the neighbor search radius increases and therefore
the times the warp diverges. How much performance is lost in this case, can only be
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Figure 6.4: Performance improvement by using double buffering

speculated, as no profiling tool is available offering this information. The device handles
divergent warps rather efficient and comparing the performance with NVIDIAs N-body
system, which does not suffer from any SIMD branching issues, therefore the amount of
lost performance is expected not to be a serious issue.

6.3.2 Double buffering

This chapter discusses an optimization, which does not have any impact on the number
of times the update stage is executed in one second, but the overall performance of the
demo. Since the complete update stage is running on the device and kernel calls are
asynchronous function calls (see section 2.2) it is possible to overlap the draw and the
update stage. When the host is executing the draw stage for simulation step n, simulation
step n+1 can already be calculated by the device. We call this technique double buffering.

Using the CuPP framework, the implementation was fairly easy. We only had to add
an additional CuPP vector, so we have two vectors available to store the data required
to draw the agents. At simulation step n the first vector is used to store the results and
the second vector is used to draw step n-1, whereas at step n+1 the second vector is used
to store the results and the first one is used at the draw stage.

The performance improvement is between 12% and 32% compared to the demo not
using double buffering, as it can be seen in figure 6.4. The performance improvement
is at the highest level, when device and host finish their work at the same time, so
the components do not have to wait for each other. Experiments show that this is the
case when simulating 8192 agents without think frequency or 32768 agents with think
frequency. When simulating 4096 agents, the update stage is executed so fast, that is
does not matter if think frequency is used or not – the performance of 4096 agents is
only limited by the draw stage.
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Conclusion

In this thesis, we have developed the CuPP framework to ease the integration of CUDA
into C++ applications and demonstrated its abilities with enhancing the Boids scenario
of OpenSteer. The usability of CUDA in combination with the CuPP framework is su-
perior to solely using CUDA – at least in the scenario considered. The CuPP framework
automatically supports the developer at all memory management operations, e.g. trans-
ferring data from the device to the host or allocating enough device memory. But this
higher level of abstraction also comes at the cost of lost direct control of the tasks done
automatically. The framework obviously cannot outperform an experienced developer,
as the developer may simply have more knowledge of the application, which may lead to
a more efficient memory management or at least to specially designed code, which should
outperform the general code of CuPP.

As far as we experienced at the development of the new OpenSteer plugin, we would
have used exactly the same memory management as it was automatically done by the
CuPP framework. Also, the high abstraction level of the CuPP framework offered an
easy way to implement the double buffering.

But even small mistakes can harm performance badly. Using a non-const reference
instead of a const one harms performance since additional memory transfers are done.
Passing a vector by value results in a high amount of copy constructor calls, because
all elements of the vector must be copied. These problems occur as memory transfers
and copy constructor calls are done implicit with calling the kernel and only small details
define the behavior. But this problem is strongly related to C++, since the same problems
occur there as well. Therefore every C++ developer should be aware of these problems
and should be capable of choosing the correct possibility of passing an object to a kernel.

Another problem of CuPP is based on the high amount of template metaprogramming
usage. Since template metaprogramming is carried out at compile time, the compile time
increases. In the case of the Boids scenario, the compile time was more than double with
the introduction of CuPP – from about 3.1 seconds to 7.3 seconds. Due to restrictions
of the standard C++ language, e.g. missing reflections support, the usage of template
metaprogramming is inevitable to analyze the kernel definitions, so there is currently no
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way to avoid this problem.
Future work on the CuPP framework could refer to currently missing CUDA function-

ality, like support for texture or constant memory. Both memory types could be used to
enhance the CuPP vector, e.g. if it is known that the vector is passed as a const reference
to a kernel, texture of constant memory could automatically be used to offer even better
performance. Also the CuPP framework currently misses support for multiple devices in
one thread.

Regarding the example application, it does not only offer an almost perfect possibility
to use the CuPP vector, but could also benefit from the CuPP type transformations, e.g.
spatial data structures could improve the neighbor search performance. Data structures
must be constructed at the host, due to the low arithmetic intensity of such a process,
and then be transferred to the GPU. With CuPP it would be easy to use two different
data representations, the host data structure could be designed for fast construction,
whereas the device data structure could be designed for fast memory transfer to device
memory and fast neighborhood lookup.
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