
Universität Kassel

Department of Electrical Engineering and Computer Science

Bachelor Thesis

A Local Search Approach for

Scheduling Volunteers in Missions of

the German Red Cross Society

presented to

Research Group Programming Languages/Methodologies

Tobias Klipp

35010081

May 20, 2021

Examiners:

Prof. Dr. Claudia Fohry

Prof. Dr. Gerd Stumme

Contents

Contents

Statutory Declaration iii

List of Figures iv

List of Tables iv

List of Source Code Snippets iv

1. Introduction 1

2. Related Work 4

3. Types 8

3.1. Volunteers . 8

3.2. Jobs . 8

3.3. Qualifications and Requirements . 8

3.4. Assignments . 8

3.5. Timeslots . 9

3.6. Roster . 9

4. Constraints 10

4.1. Hard Constraints . 10

4.1.1. Match Constraints . 10

4.1.2. Assignment Constraints . 11

4.1.3. Roster Constraints . 11

4.2. Soft Constraints . 11

5. Algorithmic Methodology 14

5.1. Construction Algorithm . 14

5.2. Local Search Approach . 15

5.2.1. Local Search . 16

5.2.2. Iterated Local Search . 17

6. Heuristics 18

6.1. Ratings . 18

6.1.1. Timeslot Matches . 18

6.1.2. Rating of Hierarchically Skills . 18

6.1.3. Rating of Technical Skills . 19

6.1.4. Assignment Rating . 19

6.1.5. Roster Rating . 20

i

Contents

6.2. Neighborhood . 21

6.2.1. Operators . 21

6.2.2. Neighborhood Functions . 24

7. Implementation 26

7.1. Parameters . 26

7.2. Modules . 26

8. Experiments 31

8.1. Experimental Setup . 31

8.2. Local Search Configurations . 31

8.2.1. Greedy Local Search . 31

8.2.2. Exploring Local Search . 32

8.2.3. Exploration and Exploitation . 33

8.3. Neighborhood Function Applications . 34

9. Conclusions 37

Bibliography 39

Appendix 40

A. Source Code 40

B. User-Manual 40

B.1. Prerequisites . 40

B.2. Project-Structure . 40

B.3. Build . 41

B.4. Code Execution . 41

B.5. Database . 42

B.6. Experiments . 43

ii

Statutory Declaration

Statutory Declaration

I herewith declare that I have composed the present thesis myself and without use of any

other than the cited sources and aids. Sentences or parts of sentences quoted literally are

marked as such; other references with regard to the statement and scope are indicated by

full details of the publications concerned. The thesis in the same or similar form has not

been submitted to any examination body and has not been published. This thesis was not

yet, even in part, used in another examination or as a course performance. Furthermore I

declare that the submitted written (bound) copies of the present thesis and the versions

submitted per e-mail and disc are consistent with each other in contents.

. .
Tobias Klipp
Hessisch Lichtenau, May 20, 2021

iii

References

List of Figures

8.1. Experiment Results for Exploring Local Search 33

8.2. Experiment Results for Exploring and Exploiting Local Search 34

List of Tables

7.1. Application Parameters . 26

8.1. Test-Case Parameters . 31

8.2. Neighborhood Function Applications . 35

B.1. Contents of Project Files . 40

B.2. Project Directory Contents . 40

B.3. Job Database Table . 42

B.4. Volunteer Database Table . 42

Code Snippets

5.1. Construction Algorithm . 14

5.2. Local Search Algorithm . 16

5.3. Iterated Local Search Algorithm . 17

7.1. Recombine Timeslots Function . 27

7.2. addNewAssignment Operator Implementation 29

7.3. Recombine Timeslots Function . 30

B.1. Initialize Project . 41

B.2. Application Execution . 41

B.3. Experiment Scripts . 43

iv

1 Introduction

1. Introduction

Non-governmental relief organizations, like the German Red Cross Society, represent a

crucial part of the civil protection of Germany[1]. The German Red Cross Society is

among the largest relief organizations in Germany and operates multiple civil protection

units, which are mainly staffed by volunteers [2].

Voluntary management is a complex task[3]. This also applies to the management

of voluntary disaster relief units within emergency scenarios. Emergencies can seldomly

be planned in advance and offer dynamic conditions, regarding the damage situation and

availability of material and volunteers. Due to possible shortages, an efficient and suitable

rostering is critical to both, the welfare of the voluntary workforce and the outcoming of

the disaster scenario.

Despite this fact, few researchers have addressed the problem of volunteer scheduling,

and no research for the rostering of voluntaries in civil protection missions is known to

the author. Nonetheless, the rostering of employees is a wide and active field of research

and many different solution approaches to rostering problems for professional staff were

presented in the past. Notably, the scheduling of medical personal is predominantly

examined within the context of the ’Nurse Rostering Problem’[4].

However, contrary to regular staff members, volunteers of the German Red Cross are

not bound by contracts. Instead, each volunteer enrolls independently for missions and

may not be available at specific times at all. Volunteers are similarly qualified, but only a

few possess advanced skills, which are critical to specific tasks. Volunteer shortage is not

uncommon and jobs must be prioritized. For the reasons mentioned, rostering introduces

great challenges to the planners in charge and is often manually applied due to a lack of

automated solutions for this domain.

To address these shortcomings, this thesis presents a solution approach to automatically

create schedulings for volunteers in disaster relief and civil protection missions of the

German Red Cross Society.

The solution approach consists of two steps. Initially, a construction algorithm is used

to create a valid roster. Then, the result is improved by a local search algorithm, which

tries to optimize the roster in regard to a configurable rating function. While the construc-

tion algorithm creates rosters deterministically, the local search applies random changes to

the roster and traverses the available solution space by the application of multiple neigh-

borhood functions. The local search is executed multiple subsequent times and discovered

improvements of one iteration are being passed on to subsequent iterations. Within the

local search, worse results are accepted but an increasing number of random changes

are applied depending on the number of recursive calls without improvement. By this,

the available search space gets increased and exploration is induced if the local search

is unable to obtain improvements within the neighborhood of the currently best result.

1

1 Introduction

The local search terminates after a specific amount of failures, but the algorithm itself is

executed until a specified number of local search iterations is processed.

Volunteers and Jobs are represented in terms of time slots. Time slots are defined by a

start and end time and can be split into multiple shorter periods. Rosters are created by

assignments of available volunteer and vacant job time slots. Each assignment represents

the scheduling of a volunteer to a job within a defined time duration. Assignments of

volunteers to jobs must not cover an entire period, which is offered by either the job

or the volunteer. Instead, assignments can allocate parts of time durations and new

time slots are created for the remaining time. This way, volunteers can be dynamically

scheduled between one or more job, while a job can be staffed by multiple volunteers.

However, not every volunteer can satisfy the requirements of a job. Instead, a job

demands a specific skillset and only volunteers who satisfy these requirements can be

assigned. Qualifications and requirements are represented by collections of medical, lead-

ership, and technical skills. Medical and leadership skills are hierarchical - higher skill

levels satisfy the needs of lower skill levels - and represent a specific skill level within the

domain. On the contrary, technical skills are not hierarchical but instead are represented

by sets of arbitrary size.

Due to the possible shortage of volunteers, jobs are classified as either mandatory,

important, or optional. Mandatory jobs are mission-critical and represent key tasks,

like the head of operations or leading physician. Important jobs represent specific tasks,

which contribute to the success of a mission, while optional jobs are beneficial, but their

vacancies introduce no shortcomings.

Rosters and assignments are subject to multiple hard constraints, which are mandatory

and must always be fulfilled. Hard constraints are applied before any assignment is

created. Therefore, only valid rosters are created by the algorithm. The quality of rosters

is rated by the satisfaction of soft constraints. Each soft constraint is defined by a function

and represents a specific optimization target. All soft constraints are contained in the

rating function and can be prioritized by weights. Due to this, the results of the algorithm

can be affected by different combinations of the soft constraint weights to meet specific

needs.

The introduced solution approach is implemented within the functional programming

language Haskell[5]. The dependencies of the source code were managed with the Haskell

Tool Stack[6]. Volunteer and job data are read from an SQLite database, which is accessed

by the persistent library of the Yesod framework[7]. The algorithm can be configured by

additional parameters, which are parsed from command-line arguments.

The implementation of the solution approach was tested within different experiments

based on the data of a real-world mission. It was observed, that the algorithm is able

to generate improvements to rosters that are generated by the construction algorithm.

Furthermore a correlation between the number of recursive local search calls and the

2

1 Introduction

extent of improvements could be examined.

This thesis is organized as follows. Section 2 presents an overview of existing research

and describes different concepts which are used within the solution approach. All type

definitions, which are used throughout the paper are introduced in section 3. Section 4

defines the hard and soft constraints. The methodology of both, the construction and

local search algorithm are explained in section 5. Section 6 defines the rating function, by

which rosters are assessed and introduces the neighborhood functions, which are applied

by the local search. The implementation of the solution approach is presented within

section 7. The experiments are documented in section 8. Section 9 concludes the thesis.

A reference to all variables used in this thesis and a user manual for the application source

code can be found within the appendix.

3

2 Related Work

2. Related Work

Staff-Scheduling Personal rostering is the subject of extensive and ongoing research.

Multiple problems from different application areas, e.g. hospitals and transportation com-

panies, have been studied over time. Ernst et al. provide an overview of staff scheduling

problems, their models and solution methods[8].

Hierarchical Skill Levels Some rostering problems introduce hierarchical skill categories,

which consist of multiple qualification levels. E.g. a job may require a certain qual-

ification level, which can be satisfied by a staff member owning the same or a higher

level. Additionally, multiple skill categories from different domains may be introduced,

e.g. technical and medical qualifications. Cordeau et al. examine a multi-skill project

scheduling problem with hierarchical skill levels, within the context of a large telecom-

munication company, where teams of technicians are assigned to tasks[9]. Their solution

uses a large neighborhood search algorithm, which chooses between multiple destroy and

repair methods.

The Nurse Rostering Problem The rostering of medical staff members is often exam-

ined as the ”Nurse Rostering Problem”. Where a set of nurses with varying qualifications

is scheduled to different kinds of shifts, e.g. day or night shifts, over specific time hori-

zons. However, the problem often offers immense complexity because of many and diverse

constraints, including work regulations, personal preferences, and task coverage.

Many different instances of the Nurse Rostering Problem were specified in the past.

An extensive overview of the existing research is provided by Burke, Causmacker, and

Vanden Berghe[4]. That paper provides a collection of literature references and discusses

known models and their respective solution approaches.

Classification of Rostering Problems Causmacker and Vanden Berghe introduce a com-

mon notation for a staff rostering in general and the nurse rostering problem in particu-

lar[10]. The proposed notation is meant to serve a classification framework, which tries

to help researchers by specifying their scheduling problems and therefore making them

comparable to others.

The well-known α | β | γ notation of scheduling problems is used. Category α contains

personal and group constraints, regarding the availability and skills of single nurses and

the fairness between the schedules of different staff members. Workload constraints (β)

define the staff or shift requirements over fixed periods and how many shifts exist and if

they are allowed to overlap. Finally, the optimization objectives are defined by category γ.

A problem may be optimized regarding one or multiple competing objectives. Common

objectives include the minimization of the number of required staff members, the task

4

2 Related Work

coverage within specific periods and the robustness of solutions, this is how widely rosters

may differ from each other.

Local Search Some rostering problems, including the nurse rostering problem, introduce

very large solution spaces, where decent results may not be achievable within sane time

durations with systematic approaches. Instead, heuristic approaches like Local Search,

are used to generate as good as possible results.

Local Search approaches often consist of two phases. First, an initial solution is created

by a construction algorithm. Construction algorithms may try to generate good solutions,

or just generate valid results in a random manner.

This initial solution serves as an entry point to a specific section of the solution space.

The local search alters the initial state by small modifications and the results are valued

by a rating function, which may cover multiple objectives. The set of results which is

obtained by these modifications is called a neighborhood. If a better solution is found

within the neighborhood, it is chosen as a new seed and another iteration of the local

search is started.

The number of changes that are applied to a state determine the result of the algorithm.

Small adjustments may lead to an exploitation of the current section of the solution

space, which may lead to a local optimum. On the contrary, large adjustments lead

to more distant sections of the search space but may not be able to exploit the direct

neighborhood.

In practice, local search algorithms switch between exploration and exploitation of the

solution space. An overview of different local search strategies is provided by Luke [11].

Local Search with Variable Neighborhoods Bilgin et al. define a generic nurse roster-

ing model and provide a solution based on local search with variable neighborhoods[12].

The model offers much flexibility, e.g. shifts can be defined with variable start and end

times, skill categories are not predefined and nurses can own one or more skills. Provided

soft constraints include the assignment of the nurses to tasks regarding their primary

skill, minimum rest times between two subsequent assignments, and preferences of the

staff members. The proposed algorithm consists of two phases and can work with partial

complete schedules, previously defined by the user. The preprocessing phase consists of

two steps. First, the construction algorithm tries to create an initial feasible solution that

fulfills the covering constraints. Second, additional assignments between nurses and shifts

are added to the schedule, to meet the weekly job time of each nurse. The second opti-

mization phase tries to enhance the provided solution through local search in combination

with a tabu-list. While the termination criterion is not met, the algorithm searches for

local optima within one specific neighborhood and changes the strategy as soon as no

improvement can be found in the present environment.

5

2 Related Work

Generalized Local Search A generalized local search for employee timetabling prob-

lems is introduced by Scharf and Meisels[13]. Within the model, employees are assigned

to shifts, which may contain one or more tasks, and are defined with specific start and end

times. The search space is constructed by the application of three transition operators.

Proposed constraints regard the number of required employees with specific skills within

a given shift, the availability of staff members at a specific time, conflicts between shifts,

and the workload, this is the number of tasks or shifts to whom an employee may be

assigned within a given period. Within the cost function, all constraints are multiplicated

with adjustable weights, which are limited by a maximum and minimum value and are

either relaxed or tightened, regarding the number of sequential occurrences of constraint

violations. In addition to the previously mentioned constraints, the cost function contains

a look-ahead factor, which considers the number of conflicting assignments currently pre-

venting the transition to better states. Hill Climbing is used as a local search method

but the algorithm stops after a given number of iterations without any improvement to

prevent a stuck at local optima.

Progress Control for Iterated Local Search Local search can be used to retrieve and

enhance feasible solutions for hard optimization problems. Nonetheless, information about

how good a solution is compared to the global optimum is generally not available. The

termination time of the optimization process - when to stop the search - is therefore

not trivial to decide. Burke et al. try to address the problem by introducing a general

progress control for iterated local search, especially for the nurse rostering problem[14].

By creating a set of varying modifications to a common state, the approach tries to prevent

the search of small neighborhoods to find globally good solutions. Such seed states are

used as input for different executions of a common local search algorithm. The proposed

progress control in return tries to estimate the remaining time, one run of the local search

algorithm has to spend, until a better local optimum generated from another seed state

may be found. Throughout the execution, each optimization step is measured by a cost

function, whose results, in turn, are used to calculate the progress estimation. By this,

the search process starting from bad seed states may be stopped early, while good starting

points are used to find good solutions.

Volunteer Rostering In contrast to regular staff scheduling, few research regarding the

rostering of volunteers exists. Falasca and Zobel provide a model for volunteer scheduling

within humanitarian organizations[3]. They introduce insights into how humanitarian

operations differ from regular work within corporations and which management practices

should be considered, e.g. groups of volunteers wish to work together and the preferences

of volunteers should be considered to great extend in order to retain the available work-

force as long as possible. Furthermore, they describe multiple constraints for task and

6

2 Related Work

time-block assignments, which represent the needs of voluntary workers, e.g. unwanted

assignments to tasks or shifts, but also the constraints of the overall organization, e.g.

the minimum required workforce. Solutions to the described problem are delivered by a

fuzzy logic approach to support management decisions, regarding the tradeoff between a

extensive job coverage and the prevention of undesired assignments.

Own Previous Work The introduced problem was previously examined within another

study project (”Projektarbeit”) by the author of this work. This preliminary work ex-

amined different construction algorithm approaches to generate feasible rosters, which

were meant to serve as input for further optimization methods. As a result, a construc-

tion algorithm relying on the classification of jobs by hard-coded rules, based on expert

knowledge, was introduced. However, the work included only the programming of the

construction algorithm, but was not recorded in a document.

7

3 Types

3. Types

This section introduces the type definitions by whom the introduced problem is modeled.

Time definitions represent UTC day-times, which are encoded as natural numbers.

3.1. Volunteers

The set of volunteers is represented by V . A single volunteer v ∈ V is available within a

given time duration, defined by a start time sv ∈ N and an end time ev ∈ N.

3.2. Jobs

The set of jobs is represented by J . A job j ∈ J begins at a given time sj ∈ N and ends

at a later point in time ej ∈ N.

Three job categories exist. First, mandatory jobs represent mission critical tasks which

must be staffed in any case, e.g. head of operations. Second, important jobs embody key

tasks, which are significant to a missions success, e.g. team leaders, medics, technicians

or drivers. Lastly, optional jobs represent redundant or non important tasks and their

absence does not compromise the missions success.

Each job is placed into one category by the variable pj ∈ {mandatory, important, optional}.

3.3. Qualifications and Requirements

Volunteers own qualifications and jobs demand requirements. Qualifications and require-

ments contain skills from medical, leadership and technical categories.

Medical skills describe the quality of medical training, e.g. ”Sanitäter” or ”Arzt”. Lead-

ership skills express the level of management skills, e.g. ”Gruppenführer” or ”Zugführer”.

Medical and leadership skills are hierarchical. That is, higher skill levels satisfy the

needs of lower skill levels. Technical skills include special trainings and certifications, e.g.

driver-licences and crafting skills.

A qualification qv or requirement rj is defined by a tuple (mx, lx, Tx), consisting of a

medical skill mx ∈ N, a leadership skill lx ∈ N and a set of technical skills Tx ∈ TECH,

where x ∈ V ∪ J and TECH is the set of all technical skills, which is dependent on a

specific instance of the problem

3.4. Assignments

A volunteer v ∈ V is assigned to a job j ∈ J from a start time svj until an end time evj.

Assignments are represented by a tuple avj = (v, j, svj, evj). Note, that svj < evj is always

true, since an assignment cannot start after it has ended.

8

3 Types

The set of all assignments is defined by A ⊂ V ×J ×N×N. Therefore, all assignments

of a specific volunteer v can be derived by equation 1.

Av = {a ∈ A|a = (v, x, s, e), x ∈ J and s, e ∈ N} (1)

The set of all assignments for a particular job can be generated by equation 2.

Aj = {a ∈ A|a = (x, j, s, e), x ∈ V and s, e ∈ N} (2)

Note, that equation 3 holds, because every assignment consists of both, a job and a

volunteer.

A =
⋃
v∈V

Av =
⋃
j∈J

Aj (3)

3.5. Timeslots

A timeslot t ∈ V ∪ J × N× N defined by equation 4

t = (x, st, et) (4)

represents the availability of a volunteer or vacancy of a job x ∈ J ∪ V during a period

defined by a start st ∈ N and an end et ∈ N.

All available timeslots of a volunteer v ∈ V are contained in the set Tv(equation 6),

while all available timeslots of a job j ∈ J are included in Tj(equation 5).

TJ =
⋃
j∈J

Tj (5)

TV =
⋃
v∈V

Tv (6)

3.6. Roster

A roster R is defined by the tuple

R = (V, J,A, TV , TJ) (7)

which includes the set of volunteers V , the set of jobs J , the set of assignments A and

the available time slots of all volunteers TV and all jobs TJ .

9

4 Constraints

4. Constraints

The following section introduces multiple hard and soft constraints. Hard constraints are

applied to ensure the validity of rosters, while soft constraints are used to rate the quality

of rosters in order to make them comparable.

4.1. Hard Constraints

Hard constraints are applied to single matches between volunteer and job time-slots as

well as assignments and entire rosters.

4.1.1. Match Constraints

A volunteer timeslot tv = (v, sv, ev) ∈ TV and a job timeslot tj = (j, sj, ej) ∈ TJ do match,

if they satisfy all match constraints together. If all constraints are fullfilled, tv is called a

candidate for tj. Only candidates can be assigned to job time slots.

Requirement Satisfaction The volunteer v must fullfill all requirements of the job j.

mv >= mj (8)

lv >= lj (9)

Tj \ Tv = ∅ (10)

That is, the medical and leadership skills of v must be at least as great as the require-

ments of j (equation 8 and 9) and the technical skills demanded by j must be included in

Tv (equation 10). Note, that volunteers may posess more technical skills then jobs require.

Time Interval Overlap The time slots tv and tj must share a common time interval.

(sv ≤ sj ∧ sj < ev) ∨ (sj ≤ sv ∧ sv < ej) (11)

Minimum Overlap Time The time slots tv and tj must overlap for a minimal amount

of time (equations 12 and 13)

overlapDuration(x, y) = min{ex, ey} −max{sx, sy} (12)

overlapDuration(tj, tv) >= minDuration (13)

x ∈ TJ ,y ∈ TV

10

4 Constraints

4.1.2. Assignment Constraints

A volunteer v ∈ V and job j ∈ J must not be assigned more then once within the same

time interval (equations 14 and 15).

∀(v, ja, sa, ea), (v, jb, sb, eb) ∈ Av : ja 6= jb =⇒ overlapDuration((v, sa, ea), (v, sb, eb)) = 0

(14)

∀(vc, j, sc, ec), (vd, j, sd, ed) ∈ Av : vc 6= vd =⇒ overlapDuration((v, sc, ec), (v, sd, ed)) = 0

(15)

ja, jb ∈ J,vc, vd ∈ V

Note, that overlapDuration was defined in equation 12.

4.1.3. Roster Constraints

All mandatory jobs must be fully assigned within a roster R = (V, J,A, TV , TJ) (equation

16).

∀(j, s, e) ∈ TJ =⇒ pj 6= mandatory (16)

4.2. Soft Constraints

Soft constraints are defined by functions which measure the satisfaction of specific op-

timization targets. All result values are normalized to values within [0, 1] to provide

comparability.

Compactness A volunteer or a job may be distributed over multiple assignments. Each

time two subsequent assignees alternate, time or material costs for briefings or travelling

can be required. Therefore, few shift changes may be desired to reduce the amount of

expenses to the voluntary workforce.

However, overhead costs may vary between different scenarios and can not be directly

measured or predicted. It is presumed that a low distribution (compactness) of volunteers

over multiple job prevents such costs from emerging. Eqution 17 measures the ratio

between the number of volunteers with at least one assignment |V +| and the overall

number of assignments |A|.

volunteer compactness(A, V) =
|V +|
|A|

(17)

V + = {v ∈ V |Av 6= ∅} (18)

11

4 Constraints

The volunteer compactness is high, if few volunteers are distributed among multiple

jobs. Note however, that a high volunteer compactness does not guarantee few shift

changes, because short assignments of multiple assignees with short time intervals are not

sanctioned.

Therefore, the compactness of assigned jobs - how many volunteers are assigned to

one job - is measured by equation 19 as well. The job compactness measures the ratio

between the number of jobs with at least one assignment |J+| and the overall number of

assignments |A|.

job compactness(A, J) =
|J+|
|A|

(19)

J+ = {j ∈ J |Aj 6= ∅} (20)

The job compactness is high, if few volunteers are assigned to the same job. Note, that

|A| is allways greater or equal then |V +| and |J+|, because every assignment includes a

job and a volunteer, that is |J+| ≤ |A| ≤ |J | and |V +| ≤ |A| ≤ |V |.

Completeness A volunteer v ∈ V or a job j ∈ J are partially assigned, if they are

included in at least one assignment Av, Aj 6= ∅, but offer additional timeslots Tv, Tj 6= ∅,
which are available for further assignments.

Partially assigned jobs represent gaps within the roster, where no volunteer takes care of

the tasks offered by a job This may be unintended, if a continuously service is mandatory,

e.g. wounded patients must be treated without interruptions.

The job completeness function, defined in equation 21 measures the amount of assigned

jobs that are completely staffed.

job completeness(J) =
|J+ \ J−|
|J+|

(21)

J− = {j ∈ J |Tj 6= ∅} (22)

The result value is low, if few complete assigned jobs exist, while the contrary is true,

if jobs are generally completely allocated.

In the same way, the volunteer completeness function, defined in equation 23, measures

the amount of volunteers, which are assigned for their entire available time. This may

be intended, to reduce the number of deployed volunteers in case of limited transport or

supply capacities, or to keep reserves of rested volunteers for shift changeovers.

12

4 Constraints

volunteer completeness(V) =
|V + \ V −|
|V +|

(23)

V − = {v ∈ V |Tv 6= ∅} (24)

The result of the volunteer completeness is high, if many volunteers do work for their

entire available time instead of short periods.

13

5 Algorithmic Methodology

5. Algorithmic Methodology

The following section describes the algorithms of the local search approach, which gen-

erates and optimizes valid rosters according to the constraints from the section 4. The

algorithms are additionally presented by descriptive Haskell code.

5.1. Construction Algorithm

The construction algorithm extends a given roster, such that new assignments are gener-

ated as long as matches between job and volunteer time slots exist. A descriptive version

of the algorithm is shown in code snippet 5.1.

Rosters contain lists of volunteer and job time slots (lines 6,7). While volunteers rep-

resents the list of all available volunteers with their respective start and end times, jobs

contains all job vacancies with their beginnings and ends.

Before the first assignment, volunteers and jobs are not split over multiple time slots.

Instead, each time slot in volunteers, or jobs represents initially a complete-time interval.

Note, that the initial roster may but does not have to be empty and previous assignments

can exist. Therefore, existing rosters can be extended if further jobs or volunteers become

available.

1 type SearchList = [(JobSlot ,[VolunteerSlot])]

2

3 constructRoster :: Roster -> Roster

4 constructRoster roster =

5 let

6 volunteers = volunteerSlots roster

7 jobs = jobSlots roster

8 searchList = createSearchList jobs volunteers

9 assignmentCandidates = findBestMatches searchList

10 bestMatch = maximum assignmentCandidates

11 newRoster = addNewAssignmentToRoster bestMatch roster

12 in

13 if null assignmentCandidates

14 then roster

15 else constructRoster newRoster

Code Snippet 5.1: Construction Algorithm

First, the input is converted (line 8) into a search list (line 1). Each entry is a tuple,

which consists of a job time slot and a list of its candidates - volunteer time slots, which

satisfy the hard constraints together with the job.

After that, the search list is traversed and for each job, the best assignee is evaluated

according to an assignment rating function (line 9). The ratings of all generated pairs

of jobs and volunteers are compared (line 10) and an assignment from the best match is

added to the roster (line 11) .

14

5 Algorithmic Methodology

If the job and candidate time slots do not overlap completely, additional time slots are

created. The new time slots represent the remaining time that is not allocated by the new

assignment. The newly created time slots are added to the lists of available volunteer or

job slots and can be used in further assignments.

When a new assignment is created, the assigned time slots of the job and volunteer

are deleted from the list of available volunteer and job time slots. Then a new search list

is created from the remaining job and volunteer slots and the algorithm executes a new

recursive call. This process is repeated (line 15) until no further assignment candidates -

matching job and volunteer pairs - can be found (line 13).

A different greedy version of the construction algorithm was previously created within

another student project ”Projektarbeit” of the author, which was not recorded in a doc-

ument. It traversed a search list sorted by the length of the candidate lists. The jobs

with the least number of candidates were first assigned to their best match. Then, the

candidate time slot was deleted from the list of available volunteer time slots, before the

best candidate for the next job was evaluated. This way, hard to fill jobs were handled

prioritized, while jobs with many candidates were deferred. However, the construction

algorithm did not create assignments in regard to a rating function. Because of that, the

version introduced in this section was developed for the solution approach presented in

this thesis.

5.2. Local Search Approach

The construction algorithm creates a valid roster according to the rating of single assign-

ments. However, it does not consider the global quality of a roster.

The quality of a roster is measured by a rating function described in section 6.1.5,

which evaluates the satisfaction of the soft constraints defined in 4.2. The local search

approach tries to optimize this rating function according to user defined weights, which

model specific preferences, e.g. few partially assigned jobs.

The approach consists of two nested loops. First, the inner loop, shown in code snippet

5.2.1, represented by the local search itself. Second, an outer loop which, shown in code

snipped 5.3, executes multiple subsequent local search iterations and returns the best

generated roster.

The algorithm can be configured by the maxIterations and maxStagnations parameters.

The maxIterations parameter specifies how many subsequent iterations of the outer loop

are executed.

15

5 Algorithmic Methodology

5.2.1. Local Search

The local-search algorithm can be configured with the maxStagnations parameter. The

maxStagnations parameter defines, how many worse results are tolerated before the local

search stops. and how many random deletions are applied at the beginning of each

recursive call of the local search. At the beginning of each execution of the inner loop

(repitition), a specific amount (stagnations) of random assignments gets deleted from the

roster(line 4).

1 localSearch :: Int -> Int -> Roster -> Roster -> Roster

2 localSearch maxStagnations stagnations bestRoster seed =

3 let

4 randomizedSeed = deleteRandomAssignments stagnations seed

5 neighborhood = applyNeighboorhoodFunctions randomizedSeed

6 bestNeighbor = fillRoster $ getBestNeighbor neighborhood

7 randomNeighbor = getRandomElement neighborhood

8 in

9 if rating bestNeighbor > rating seed

10 then

11 localSearch

12 maxStagnations (max 1 (stagnations -1)) bestNeighbor bestNeighbor

13 else

14 if repWithoutImprovement == maxStagnations

15 then bestRoster

16 else

17 localSearch maxStagnations (stagnations +1) bestRoster randomNeighbor

Code Snippet 5.2: Local Search Algorithm

All neighborhood functions, which are defined in section 6.2, are evaluated(line 5). The

set of rosters that is obtained thereby is called the neighborhood of the seed.

The highest rated roster (bestNeighbor) from the neighborhood (line 6) is compared to

the seed (line 9). If no improvement is found, a counter is incremented and a random

roster from the neighborhood (randomNeighbor) is chosen (line 7) as seed for the next

repetition(line 17). On the contrary, if bestNeighbor introduces an improvement, stag-

nations is decremented and the bestNeighbor is remembered as currently best roster(line

12). By decrementing stagnations, the discovery of improvements is rewarded, such that

further exploration within the promising neighborhood is possible.

Note, that within each repetition only one assignment is added, while multiple assign-

ments are deleted at the beginning. Consequently, every neighbor offers a worse rating

than the seed. To make both rosters comparable, bestNeighbor is filled by another execu-

tion of the construction algorithm, which adds all further possible assignments.

If improvements can be found within maxStagnations (line 14), the bestRoster is re-

turned and the local search terminates (line 15).

16

5 Algorithmic Methodology

Search space exploration is enforced by random deletions of assignments at the begin-

ning of each repetition. The longer no improvements can be found within the neighborhood

of the seed, the larger the neighborhood becomes. This way, subsequent cycles around

the same local optima shall be avoided, while exploration is induced by increasing the

available options.

5.2.2. Iterated Local Search

1 iterateLocalSearch :: Int -> Int -> Int -> Roster -> Roster

2 iterateLocalSearch maxIterations iterations maxRepititions seed =

3 let

4 newRoster = localSearch maxRepititions 0 seed

5 newSeed = if (rating newRoster) > (rating seed)

6 then newRoster

7 else seed

8 in

9 if iterations == maxIterations

10 then seed

11 else iterateLocalSearch maxIterations (iterations +1) newSeed

Code Snippet 5.3: Iterated Local Search Algorithm

The outer loop executes a specific number (maxIterations) of subsequent local search

runs. Throughout all executions, the currently best-discovered roster is remembered as

seed. Initially, this is the result of the construction algorithm.

After each local search iteration, newRoster (line 4) is compared to the seed (line 5).

As soon as a better roster is discovered, it is remembered as newSeed and used as input

for subsequent local search executions (line 11).

Finally, after maxIterations (line 9) the seed is returned and the algorithm terminates.

It is assumed that better rosters can be obtained by small adjustments to already

good rosters. Therefore, the algorithm recursively improves the currently best-discovered

roster, while worse alternatives are ignored.

17

6 Heuristics

6. Heuristics

The following section describes the heuristics which are used by the construction and local

search algorithms. The heuristics are used to rate assignments and rosters and to traverse

the solution space.

6.1. Ratings

The quality of an assignment is determined by the assignment-rating function shown in

equation 29. The assignment rating function is composed of multiple rating functions

which consider the qualifications and requirements provided by a volunteer and a job.

Matches of qualifications and requirements are rated high if they offer equal skill sets.

Therefore, assignments of overqualified volunteers are sanctioned, while close matches are

rewarded. All results of rating functions are normalized to values in the interval [0, 1]

to ensure comparability. The assignment-rating function enables the construction and

local search algorithms to compare different assignments. However, an assignment is only

created by matching volunteer and job time slots. Whether two time slots fit together is

determined by equation 25.

6.1.1. Timeslot Matches

A volunteer time-slot tv = (v, sv, ev) ∈ TV and a job time-slot (tj, sj, ej) ∈ TJ match if

equation 25 holds.

isMatch(tv, tj) =

True, tv and tj satisfy all hard constraints

False, otherwise
(25)

6.1.2. Rating of Hierarchically Skills

The rating of hierarchical skills is evaluated by equation 26. The rating function deter-

mines how good the qualifications of a volunteer v ∈ V match the requirements of a job

j ∈ J .

hierarchical skill rating(a = (v, j, s, e)) =
1

2
∗ (
mj

mv

+
lj
lv

) (26)

Note, that the skill values of the assigned job are always lower or equal then those

possessed by the assigned volunteer, that is mj <= mv and lj <= lv are true because of

equation 25 and division of zero is therefore prohibited.

18

6 Heuristics

6.1.3. Rating of Technical Skills

The matching value of collection skills is calculated by the equation 27.

technical skill rating(avj) = 1− |Tv \ Tj|
|Tv|

(27)

Technical skill matches are rated high, if the offered skill sets of a volunteer v ∈ V and

job j ∈ J contain the same elements. Note, that the technical skill sets of assigned jobs

contain always the same skills as the set of the assigned volunteer because of equation 25

and division of zero is therefore prohibited.

6.1.4. Assignment Rating

The assignment value function, defined in equation 29 consists of equations 26 and 27.

The value of the rating is determined by the priority of the job, such that assignments of

high prioritized jobs are rewarded.

The priority of a job is obtained by equation 28.

priority(pj) =

5, pj = important,mandatory

1, pj = optional
(28)

Note, that mandatory and important jobs provide the same prioritization value. This

is because mandatory jobs are always assigned due to hard constraint 16 and higher

prioritization values offer no further benefit.

assignment value(a = (v, j, s, e) =priority(pj)

∗hierarchical value(avj)

∗collection value(avj)

(29)

Rating of Assignments The quality function defined in equation 30 measures the sum

of assignment ratings for a set of assignments A ⊂ V ∪ J × N× N.

quality(A) =
1

P
∗
∑
a∈A

assignment value(a) (30)

P =
∑

(v,j,s,e)∈A

pj (31)

The result of the function is normalized to values from the interval [0, 1] by division

with the sum of all job prioritization values P, defined in equation 31.

19

6 Heuristics

6.1.5. Roster Rating

A roster R = (V, J,A, TV , TJ) is rated by equation 32.

roster rating(S,Ω) =100 ∗ 1

W

∗ (ω1 ∗ quality(A)

+ ω2 ∗ volunteer compactness(A, V)

+ ω3 ∗ job compactness(A, J)

+ ω4 ∗ volunteer completeness(V)

+ ω5 ∗ job completeness(A, J))

W =
∑
ω∈Ω

ω

(32)

The roster rating function is composed of the soft constraints functions, described in

section 4.2 and the assignment quality function from equation 30. Each part of the

function can be prioritized by the weights ω ∈ Ω with 0 ≤ ω ≤ 10. A component can be

ignored if its respective weight is set to zero. Different combinations of the weights can be

used to model specific optimization targets. E.g. if jobs shall be completely assigned for

as long as possible time durations, ω2 and ω4 are set to high values, while all remaining

weights are either set to lower values or zero.

20

6 Heuristics

6.2. Neighborhood

A roster R = (V, J,A, TV , TJ) is a specific point within the solution space. The local

search uses multiple neighborhood functions to apply specific adjustments to R. The set

N , which contains the results of all neighborhood functions, is called the neighborhood

of R. The elements of N are used by the local search to traverse the solution space.

That is, each time the local search chooses a specific element of N it may discover a new

neighborhood.

6.2.1. Operators

Operators represent basic operations, which are combined by the neighborhood functions

to apply specific changes to R.

Delete Timeslot A volunteer timeslot tv ∈ TV can be deleted from R by the operator

defined in equation 33.

delete volunteer timeslot(tv, R) = (V, J,A, T−V , TJ)

T−V = TV \ {tv}
(33)

A job time slot can be deleted with the operator defined in equation 34.

delete job timeslot(tj, R) = (V, J,A, TV , T−J)

T−J = TJ \ {tj}
(34)

Add Assignment An assignment from a volunteer time slot tv = (v, sv, ev) ∈ TV and a

job time slot tj = (j, sj, ej) ∈ TJ is added to R by the add assignment operator defined

in 39.

However, each time an assignment is created, the time slots of the assigned volunteers

and jobs must be deleted and new time slots for the unallocated periods must be created

if the assignment time slots do not overlap completely. Consider the case where the

volunteer time slot tv gets assigned to the job time slot tj. Both time slots start at the

point in time, but the end time of tv is earlier then the end time of tj, that is ev < ej.

While the available time of tv is completely utilized, the job period is only covered partially

and can be used for further assignments.

Time slots for unallocated periods are created by the operators defined in equations 35

and 36.

21

6 Heuristics

frontSplit(tv, tj, R = (V, J,A, TV , TJ)) =

(V, J,A, TV ∪ (v, sv, sj), TJ) sv < sj,

(V, J,A, TV , TJ ∪ (j, sj, sv)) sj < sv,

R otherwise

(35)

The front split operator defined in equation 35 creates time slots if a time slot starts

earlier than its assignment partner. The assignment interval begins from the start of the

later time slot. Therefore, the period from the start of the earlier time slot until the start

of the later time slot is unallocated by the assignment and must be represented by a new

time slot.

tailSplit(tv, tj, R = (V, J,A, TV , TJ)) =

(V, J,A, TV ∪ (v, ev, ej), TJ) ev < ej,

(V, J,A, TV , TJ ∪ (j, ej, ev)) ej < ev,

R otherwise

(36)

If a time slot ends later then it‘s assignment partner. The assignment interval ends at

the earliest end time offered by both assignment partners. The remaining time interval

from the earlier until the later is created by the tailSplit operator defined in 36.

The results of both split operators are combined with the add unallocated timeslots

operator, defined in 37.

add unallocated timeslots(tv, tj, R) = frontSplit(tv, tj, R)⊕ tailSplit(tv, tj, R) (37)

where the rosters created by tailSplit and frontSplit are combined with the ⊕ operator.

⊕(R1 = (V, J,A1, TV1 , TJ1), R2 = (V, J,A2, TV2 , TJ2)) = (V, J,A1 ∪A2, TV1 ∪ TV2 , TJ1 ∪ TJ2)
(38)

An assignment between matching time slots is added with the add assignment operator

defined in equation 39.

22

6 Heuristics

add assignment(tv = (v, sv, ev), tj = (j, sj, ej), R = (V, J,A, TV , TJ)) = R+ ⊕R−

s = max{sv, sj}

e = min{ev, ej}

R− = delete volunteer timeslot(tv, R)⊕ delete job timeslot(tj, R)

A+ = A ∪ {(v, j, s, e)}

R+ = add unallocated T imeSlots(tv, tj, (V, J,A+, TV , TJ))

(39)

which adds a new assignment a = (v, j, s, e) from job j and volunteer v to the set of all

assignments within the time interval defined from s and e. Note, that every additional

assignment always results in an increased rating of the new roster state. Each new assign-

ment steps further into one specific area of the solution space and decreases the number

of remaining options.

Recombine Time Slots Subsequent time-slots can be recombined. For a time-slot t =

(x, s, e), with x ∈ J ∪ V two surroundings exist. The predecessor pre = (x, spre, epre),

whose end time is equal to s. And the successor succ = (x, ssucc, esucc), whose start time

is equal to the e. Note, that epre = s ≤ e = ssucc holds. These subsequent slots can be

recombined to a new timeslot tnew, with tnew = (v, spre, esucc).

recombine timeslots(R = (V, J,A, TV , TJ)) (40)

recombines all subsequent time slots in the set of all volunteer and job time slots TV

and TJ respectively. The recombination ensures, that no separate subsequent time slots

of the same volunteer or job are contained within the set of volunteer or job timeslots.

This is necessary to avoid the fragmentation of continuous time intervals, which lead to

short assignment periods although longer time periods were available.

Delete Assignments An assignment is deleted from a RosterR with the delete assignment

operator defined in 41.

delete assignment(a = (v, j, s, e), R = (V, J,A, TV , TJ)) = R‘

A− = A \ {a}

T+
V = TV ∪ (v, s, e)

T+
J = TJ ∪ (j, s, e)

R‘ = (V, J,A−, T+
V , T

+
J)

(41)

which removes an assignment a = (v, j, s, e) from the set of all assignments A. Every

23

6 Heuristics

deletion potentially increases the amount of remaining assignment options. Because of

that, assignment deletions can be used to extend the available search space, if a local

optimum is reached by the algorithm.

If an assignment is deleted, new volunteer and job time-slots (v, s, e) and (j, s, e), are

created and added to TV and TJ .

6.2.2. Neighborhood Functions

Neighborhood functions combine one or more of the previous defined operators, to

apply a specific change to a roster R = (V, J,A, TV , TJ).

Exchange Candidates The volunteers v, w ∈ V of two assignments a = (v, j, svj, evj, b =

(w, k, swk, ewk) can be exchanged, if the time durations of the assignments overlap and the

qualifications of the volunteers satisfy the requirements of the two assigned jobs j, k ∈ J .

exchange candidates(a, b, R = (V, J,A, TV , TJ)) =recombine timeslots(R−a ⊕R−b)

Ra =replace candidate(a, tw = (w, swk, ewk), R)

Rb =replace candidate(b, tv = (v, svj, evj), R)

R−a =delete volunteer timeslot((v, svj, evj), Ra)

R−b =delete volunteer timeslot((w, svw, evw), Rb)

(42)

The exchange is applied by two replacements. The assignment a is deleted and a new

assignment during the same time interval is created by the assigned job time slot of a and

the volunteer time slot tw = (w, swk, ewk) from assignment b. A new time slot tv of the

replaced volunteer v is created and added to TV in R. Additionally, further time slots are

created if tw does not completely match the period of the job time slot of a. The second

assignment is applied in the same way. However, as soon as the second replacement is

applied, tv and tw are redundant to the new assignments in Ra and Rb and must be

deleted.

Volunteer Reassignment A volunteer v ∈ V can be distributed over multiple assign-

ments Av. The distribution can be reduced if all assignments of v are deleted, recombined,

and reassigned to a longer job time slot. The reassign volunteer function defined in 43

reassigns a complete volunteer time interval.

24

6 Heuristics

reassign volunteer(v,R = (V, J,A, TV , TJ)) =add assignment(t∗v, t
∗
j , R

∗)

A− =A \ Av

T+
V =TV ∪ {(v, s, e)|(v, j, s, e) ∈ Av}

T+
J =TJ ∪ {(j, s, e)|(v, j, s, e) ∈ Av}

R∗ = (V, J,A−, T ∗V , T ∗J) =recombine timeslots(V, J,A−, T+
V , T

+
J)

t∗v =t∗v ∈ T ∗V , t∗v is the longest time slot in T ∗v

t∗j =t∗j ∈ T ∗J , t∗j is the best match for t∗v in T ∗v
(43)

All matches Av of v are deleted and the new time slots from the periods of the deleted

assignments are added to the set of available volunteer time slots TV and vacant job time

slots TJ . The new time slots are recombined and the new time slot t∗v represents the

complete available time interval of the volunteer v. The time slot T ∗V is assigned to the

best available job time slot t∗j .

Job Reassignment Job reassignments can be applied in the same way as volunteer

reassignments.

Assignment Splitting The number of assignments can be increased if parts of existing

volunteer assignments get deleted and are reassigned to other available volunteers.

The split job function splits an assigned job time slot into two shorter parts. The

function searches for the best candidate among all unassigned volunteers for every assigned

job. The candidate who improves the sum of rating values for both shorter time slots the

most is chosen for the new assignment. The old assignment is deleted and replaced by two

new assignments. One assignment contains the initial combination of job and volunteer,

the other contains the best-found candidate and the job of the initial assignment.

25

7 Implementation

7. Implementation

The previously introduced local search approach was implemented in the functional pro-

gramming language Haskell. This section describes the application parameters and the

contents of the Haskell modules and presents a few selected functions from the source

code. Note, that some parts of the software were created within the previously mentioned

”Projektarbeit” of the author, which implemented another version of the construction

algorithm. However, only the Database module is imported almost completely, while all

other modules were either created from scratch or were adjusted comprehensively within

this work. A user-manual for the software can be found within appendix A.

7.1. Parameters

The application can be configured with additional parameters. A list with all parameters

is presented in table 7.1.

Parameter Name Domain Explanation

dbPath Database Path String Path to the volunteer
and job database

outOpt Output Option Int 0=Debug, 1=NormalRoster,
2=VerboseRoster, 3=VerboseVolunteers

maxIterations Maximum Iterations Int Maximum consecutive iterations
of the local search.

maxStagnations Maximum Stagnations Int Maximum recursive calls of the
local search without improvements

mD Minimum Assignment Int Shortest allowed assignment
Duration duration in seconds

quW Quality Weight Int Weight of the Quality
Soft Constraint

vDW Volunteer Distribution Int Weight of the Volunteer Distribution
Weight Soft Constraint

jDW Job Distribution Int Weight of the Job Distribution
Weight Soft Constraint

vCW Volunteer Completeness Int Weight of the Volunteer Completeness
Weight Soft Constraint

jCW Job Completeness Int Weight of the Job Completeness
Weight Soft Constraint

Table 7.1: Application Parameters

7.2. Modules

Main This module is used to execute the rostering software. All program parameters,

including the values of the hard constraints, the algorithm configuration and the soft

constraint weights are parsed, and saved within an instance of the Configuration data

type. Furthermore, the volunteer and job data are read from a database and stored within

lists. The rostering process is started by an execution of the createRoster function.

26

7 Implementation

Model The Model module contains the implementation of all types defined in section

3. The Roster sub-module implements the Roster and the RosteringStats type, which

contains different metrics of the rostering process, e.g. the parameters, the number of

recursive calls, and the number of fully assigned jobs and volunteers.

The Configuration sub-module implements the The Configuration, Constraints, and

Weights types. Both local search configurations, the maxIterations and maxStagnations

parameter are contained in the Configuration type. All soft constraint weights, e.g. the

qualityWeight and the volunteerDistributionWeight, are included in the Weights type.

The constraints type contains the hard constraint parameters, e.g. the minDuration.

The qualifications and requirements are implemented in the Qualification sub-module.

Note, that the skills types are implemented in the database module.

The Timeslots sub-module contains the definition of the Timeslots type class and

the definitions of its instances, the VolunteerSlot, JobSlot and Assignment types. Ad-

ditionally, all functions regarding the manipulation of timeslots are included within this

module, e.g. the implementation of the recombineVolunteers and recombineJobs func-

tion mentioned in section 6.2.1. The source code of the recombineTimeslots function is

presented in code snippet 7.1.

1 recombineTimeslots :: (Timeslot a, Eq a, Show a) => [a] -> [a] -> [a]

2 recombineTimeslots [] combinations = combinations

3 recombineTimeslots (slot:slots) combinations =

4 recombineTimeslots remainingSlots (combi:newCombinations)

5 where

6 neighborhood = remainingSlots ++ combinations

7 slotStart = start slot

8 slotEnd = end slot

9 number = slotNumber slot

10 pred = find (\s -> number == slotNumber s &&

11 end s == slotStart) slots

12 succ = find (\s -> number == slotNumber s &&

13 start s == slotEnd) slots

14 neighbors = catMaybes [pred , succ]

15 combi =

16 if L.null neighbors

17 then slot

18 else L.foldr (\l r ->

19 if (end l) == (start r) then setStart r (start l)

20 else if end r == start l then setEnd r (end l)

21 else r) slot neighbors

22 remainingSlots = slots L.\\ neighbors

23 newCombinations = combinations L.\\ neighbors

Code Snippet 7.1: Recombine Timeslots Function

In each recursive call of the function, a combination of a time slot and its surroundings

27

7 Implementation

is created. The surrounding of a timeslot consists of a predecessor and a successor (lines

11,13). If a predecessor exists, its start-time is adopted by the combination(line 19).

Likewise, if a successor exists its end time is adopted (line 20). As soon as no timeslots

remain within the possibly fragmented set of time slots, the function terminates and the

list of combinations is returned (line 2).

Database The Database module includes all functions and types which are used for

database operations. The Database module was created within the previously mentioned

”Projektarbeit” of the author and was only slightly adjusted within this work.

The database operations were implemented with the persistent library of the Yesod

framework[7]. The persistent library is able to convert Haskell type definitions into SQL

types and offers type safety within SQL queries. Because of this, instead of raw SQL

queries, the selectList functions from the persistent library are used, which import data

from SQL databases and translate rows of database tables directly into lists of instances

of Haskell types. All IO database operations are defined within the DatabaseIO sub-

module.

However, types that are used within database queries must be defined within a special

environment provided by the persistent library. The type definitions are contained within

the DatabaseModel sub-module. All Haskell types which are included in these database

types must be derived by the derivePersistField function. These types are specified within

the DerivedDatabaseModel sub-module.

CLI The CommandLineIO model includes output functions for different purposes. This

includes debugging information of the algorithm and the output of generated rosters.

Rosters can be printed either grouped by jobs, or by volunteers. Furthermore, rosters

can be printed either in normal, or in verbose mode. In normal mode, simple outputs

are generated, which only include the name of the jobs and volunteers and their start

end times. The verbose mode adds the qualifications and requirements to each job and

volunteer output and prints the lists of unassigned volunteer and job time slots as well

Rostering The Rostering module controls the rostering process and is configurable by

the maxIterations and maxStagnations parameters.

The initial roster is created by the constructRoster function, which uses the lists of

volunteer and job timeslots, which were queried from the database.

The iterateLocalSearch function executes maxIterations local search runs consecutively.

Throughout the iterations, the best-rated roster is remembered and used as input (seed)

for subsequent runs. The rostering process terminates as soon as the last local search

iteration finished.

28

7 Implementation

LocalSearch The LocalSearch module contains the implementations of the construction

and local-search algorithms described in section 5.

The input for the local search algorithm is recursively created by the constructRoster

function from the Construction sub-module, which implements the construction algo-

rithm described in section 5.1. The constructRoster function takes a roster and creates

assignments from the lists of remaining job vacancies and available volunteers. The search-

list used by the construction algorithm is generated by the createSearchList function in

the Preprocessing sub-module.

The Rating module implements the rating-functions defined in section 6. Rosters are

rated by the getRosterValue function, while assignments are rated by the getAssignment-

Value function.

The operator functions which are used by the neighborhood functions of the local search,

are included in the Operators sub-module. E.g. new assignments are added to a roster

with the addNewAssignment function presented in code snippet 7.2.

1 addNewAssignment job vol jobMap conf roster@(Roster jobs vols psas _) =

2 if jobVolDoMatch job vol (constraints conf) roster

3 then addRosterValue conf jobMap newRoster

4 else roster

5 where

6 key = jobNo job

7 slotSplits = splitTimeslots job vol

8 nJob = job { jobSlotStart=slotStart slotSplits ,

9 jobSlotEnd =slotEnd slotSplits }

10 nVol = vol { volunteerSlotStart=slotStart slotSplits ,

11 volunteerSlotEnd =slotEnd slotSplits }

12

13 newAssignments =

14 insertWith (++)(key)

15 [createAssignment nJob nVol (weights conf) jobMap] psas

16 remainingVolunteers = (L.delete vol vols)

17 ++(volunteerSlots slotSplits)

18 remainingJobs = (L.delete job jobs)

19 ++(jobSlots slotSplits)

20 newRoster = roster { volunteers=remainingVolunteers ,

21 vacancies=remainingJobs ,

22 assignments=newAssignments}

Code Snippet 7.2: addNewAssignment Operator Implementation

The function creates and adds a new assignment from a job time slot and one of its

candidates to an existing roster. If the time durations of the input slots do not overlap

completely, new time slots for the unallocated time-periods are created (line 7). The

new assignment is generated by new job and volunteer time slots which represent the

overlap-period (lines 9, 11), and is added to the list of all assignments of the job (line

29

7 Implementation

14). The assigned time slots are deleted from the list of vacancies (line 18) and remaining

volunteers(line 16), while the time slots of the unallocated time-periods are added (lines

17, 19). After all changes are applied (line 22), the rating of the roster is updated and it

is returned (line 3).

The local-search algorithm described in 5.2.1 and all neighborhood functions defined

in 6.2 are implemented in the LocalSearch sub-module. The localSearch function re-

cursively optimizes a roster. Within each recursive call (repetition), all neighborhood

functions are evaluated independently. The seed for the next repetition is chosen depen-

dent on the value of the stagnations counter. Each time no improvement can be found

within the list of results from the neighborhood functions, stagnations gets incremented

and a random result of the neighborhood functions is chosen. As soon as stagnations is

equal to maxStagnations the local search terminates.

The progress of the localSearch function, which includes the number of repetitions and

the value of the best generated roster, is documented within an instance of the Roster-

ingStats type. An example for the evaluation of a neighborhood function is presented in

code snippet 7.3.

1 let jobSplit =

2 (repairRoster $
3 getBestRoster $
4 L.map (\a -> splitPosition a conf posMap newRoster)

5 remainingAssignments ,

6 rosterStats { posSplitCount = (posSplitCount rosterStats)+1})

Code Snippet 7.3: Recombine Timeslots Function

The jobSplit neighborhood function is executed for every remaining assignment, which

was not included in the random deletions (line 5). Among the list of all results, the best

option is chosen (line 3) and further possible assignments are added by an execution of

the construction algorithm (line 2). Additionally the number of executions of the jobSplit

function is incremented in the RosteringStats type instance (line 6).

30

8 Experiments

8. Experiments

The following section examines different aspects of the local search algorithm presented

in sections 5 and 7.

8.1. Experimental Setup

The data are obtained from the documentation of a real mission (”Sanitätsdienst”). All

volunteer names and the dates of the timeslots were changed to provide anonymity. The

data consist of 21 volunteer and 26 job time-slots. The start and end times of the volunteer

timeslots differ, while the job time-slots have equal begins and ends. All job time-slots

demand equal or more time every volunteer from the data set is able to offer. Because

of that, all volunteers can be fully allocated by assignments to jobs, whereas not all jobs

can be allocated by assignments due to the shortage of volunteers.

8.2. Local Search Configurations

The following section examines the results of the local search algorithm for different input

values of the maxStagnations and maxIterations parameters.

The test cases of the following experiments are listed in table 8.1.

Test-Cases / Weights mD quW jCW vCW jDW vDW

Quality 1h 1 0 0 0 0
Job Completeness 1h 0 1 0 0 0

Volunteer Completeness 1h 0 0 1 0 0
Job Distribution 1h 0 0 0 1 0

Volunteer Distribution 1h 0 0 0 0 1

Table 8.1: Test-Case Parameters

In each test case, a single soft-constraint is optimized. That is, one weight is set to one,

while all others are set to zero. The values of maxIterations and maxStagnations vary

between each experiment.

8.2.1. Greedy Local Search

As soon as maxStagnations is set to zero, exclusively improved rosters are accepted by

the local search and the algorithm stops, as soon as worse results are generated. Only

the current neighborhood of the initial roster is exploited and no further search space

exploration is performed by the algorithm. This variant of the algorithm is called greedy

local search.

To assess, if a greedy local search is able to improve the initial roster of the construction

algorithm, ten consecutive executions of the algorithm were measured for each test case.

31

8 Experiments

In each execution, the maxIterations parameter was increased by one, while the maxStag-

nations parameter was constantly set to zero. Therefore no stagnations were tolerated

and no random deletions were applied.

The results of this experiment showed, that the local search algorithm was able to

improve the initial Job Completeness test case rating from 40% to 45% for every value

of maxIterations. Surprisingly, the results did not show any further improvement to all

remaining test cases for every value of maxIterations.

It can thus be suggested, that the initial roster of the construction algorithm represented

a local optima, to whom no improvements could be found in the available neighborhood

by the greedy local search.

8.2.2. Exploring Local Search

An increasing number of random deletions enables the local search to explore different

neighborhoods. It was examined if increasing values for maxStagnations can generate

improvements compared to the results obtained by the greedy local search in experiment

8.2.1.

For every input value of maxStagnations, one iteration of the local search was executed.

In each test, maxIterations was that to one. Therefore, only one subsequent execution of

the local search was examined in each execution of the algorithm.

As shown in figure 8.1, the local search was able to improve every test case multiple

times. Remarkably, most of the enhancements can be recognized for large values of

maxStagnations, especially within the interval [5, 7].

The volunteerCompleteness was already completely satisfied within the initial roster of

the construction algorithm. This is understandable because more jobs than volunteers

exist within the data set and every job is at least as long, as the highest time a volunteer

is able to offer.

Only the initial job completeness rating could be improved for a maxStagnations value

of zero, which happens to be the improvement that could also be examined in the previous

section.

However, the algorithm was not able to enhance the roster in every execution. Instead,

improvements could be found only in a maximum of 50% of all executions for values of

maxStagnations greater than zero.

The data show that the exploring local search algorithm is able to improve the initial

roster. For the available data source, the statement is especially true for higher numbers

of maxStagnations.

32

8 Experiments

0 1 2 3 4 5 6 7 8 9 10
40
45
50
55
60
65
70
75
80
85
90
95

100

maxStagnations

R
at

in
g[

%
]

Quality Volunteer Distribution JobDistribution Job Completeness
Volunteer Completeness

Figure 8.1: Experiment Results for Exploring Local Search

8.2.3. Exploration and Exploitation

The experiment examined if the local search algorithm is able to find improvements, when

both exploration and exploitation of the neighborhood are combined.

In the tests, equal values were set for maxStagnations and maxIterations, while both

were increased for every execution of the algorithm.

Each increase of maxIterations enlarges the amount of local search repetitions. That

is, for each additional iteration, the number of repetitions increases at a minimum of the

value of maxStagnations. Therefore, an increase of maxIterations is comparable to a linear

increase of maxStagnations. Note, that iterations of the local search use the best-found

roster as seed, while independent executions of the local search start from the initial

roster. It is assumed, that the iterated local search approach offers benefits for large data

sets. However, this assumption could not be verified with the available small data set.

Remarkably, the results of the previous experiment from figure 8.1 could be slightly

improved for almost all test cases.

The greatest number of improvements were generated for the quality and the volunteer

distribution test cases. They enhanced from four to six and five to eight improvements

among different executions respectively.

On the contrary, the amount of job completeness enhancements remained the same,

33

8 Experiments

0 1 2 3 4 5 6 7 8 9 10
40
45
50
55
60
65
70
75
80
85
90
95

100

maxStagnations and maxIterations

R
at

in
g[

%
]

Quality Volunteer Distribution JobDistribution Job Completeness
Volunteer Completeness

Figure 8.2: Experiment Results for Exploring and Exploiting Local Search

but the quality of the improvements decreased in three cases.

Despite this, the experiment seems to confirm that larger values of maxStagnations and

maxIterations lead to better roster optimizations.

However, caution must be exercised in the interpretation of the results. While improve-

ments are observable generally for higher values of maxStagnations and maxIterations,

it is not clear that the enhancements were generated by synergy effects between both

parameters. Given that the obtained results are subject to random deletions, it is not

proven, that the improvements were generated by the combination of iterations and stag-

nations. Instead, equal results may be receivable by an increase of only the maxRepetitions

parameter.

8.3. Neighborhood Function Applications

The local search algorithm uses multiple neighborhood functions to improve its input. To

evaluate if and how often the result of each function is chosen as a new seed by the local

search algorithm, the algorithm was executed ten consecutive times, with maxStagnations

and maxIterations set to five.

The total numbers obtained in all executions are shown in table 8.2.

The sum of recursive calls (repetitions) from all executions is represented in the Lo-

calsearch Repetitions column. All other columns represent the neighborhood functions of

34

8 Experiments

the local search algorithm. The test cases are presented in the rows of the table. Each

cell contains the values

The table shows the sum of local search repititions and neighborhood-function appli-

cations, which were measured in ten independent runs of the local search algorithm. It

allows comparisons between the number of times the result of a specific neighborhood

function was chosen as a new seed by the local search algorithm.

Test- LocalSearch Exchange Reassign Reassign Split
Case Repetitions Assignee Volunteer Job Job

Quality 134 39 20 27 31
Job Completeness 218 54 51 46 41

Volunteer Completeness 70 12 10 19 19
Job Distribution 90 16 26 11 25

Volunteer Distribution 88 22 20 16 18∑
600 143 127 119 134

Sum of Function Applications 523

Table 8.2: Neighborhood Function Applications

Remarkably, the results of all neighborhood functions were chosen almost the same

number of times overall. However, the neighborhood functions are applied differently

often for varying test cases. The rosters generated by the exchange assignee function

were applied most of the time, while the results of the reassign job function were chosen

the least.

Most surprisingly, high numbers of splitJob results were applied to optimize the job com-

pactness soft constraint. This was unexpected because the split job function increases the

number of short assignments, which in return decreases the value of the job compactness

soft constraint.

Interestingly, the number of local search repetitions varies strongly between different

test cases. The data show, that the job completeness test case generated by far the most

local search repetitions. It also offered the highest rating improvements in graphic 8.2.

Notably, the volunteer completeness function produced the least amount of repetitions,

while no improvements were generated in graphic 8.2.

The correlation between the number of iterations and the number of improvements

is noteworthy. It seems that the algorithm produces better results if more repetitions

are executed. This is somewhat understandable, because the more the results of sub-

sequent local search repetitions vary, the slower the stagnations counter approaches the

maxStagnations limit and the more recursive calls are performed.

The opposite result is recognizable for the quality test case. It produced the second most

repetitions but offered the least amount of rating increase within the data of graphic 8.2.

Due to this, the observed correlation between the number of recursive calls and the number

35

8 Experiments

of improvements may be specific to the completeness functions, but cannot generally be

observed for all neighborhood functions.

Note, that the sum of local search repetitions does not equal the sum of function ap-

plications. The values differ because the number of function executions is not increased

within the last repetition of the local search, where only the best found roster is returned,

but the repetitions counter is increased nonetheless.

Overall, the local search algorithm seems to prefer different neighborhood functions in

varying scenarios. A correlation between the number of executions and the quality of

the improvements may exist, but can not be verified with the present data. However,

the discoveries of this experiment are based on a limited number of executions. A major

source of uncertainty comes with the random selections of the algorithm, which are able to

bias the observations of this experiment. The acquired insights must therefore be treated

carefully.

36

9 Conclusions

9. Conclusions

This thesis presented a local search approach for the scheduling of volunteers in missions

of the German Red Cross Society.

While many known rostering problems are defined by static shifts, the rostering problem

introduced in this thesis was defined in terms of independent time-slots with variable start

and end times.

The use of time-slots offers great flexibility to the scheduling process but introduces a

large search space and challenges to contain consistency in the roster. Therefore, multiple

operator functions were defined, by whom safe adjustments to rosters are possible.

The validity of single assignments and the roster are determined by multiple hard

constraints, which must always be satisfied. Soft constraints are defined by functions

and measure the satisfaction of a single optimization target. The quality of rosters is

evaluated by a rating function which is composed by soft constraint functions, which can

be prioritized by weights.

The introduced approach consists of a construction algorithm, which fills rosters from

lists of volunteer and job timeslots and a local search algorithm, which optimizes the

roster in regard to the rating function.

The approach was implemented in the functional programming language Haskell. We

found, that Haskell was well suited for this problem and offered many useful features, e.g.

type classes and pattern matching, which were extensively used in the implementation.

Experiments showed, that the implemented local search algorithm is able to improve the

quality of rosters in regard to different optimization targets. However, the available data

set was not sufficient to prove synergy effects between different local search configurations.

Note, that the presented solution method for rostering with variable timeslots is not

limited to the treated problem, but may be applied to other domains as well.

Future work should include the implementation of a more sophisticated user-interface

and further tests with larger data sets. Also, additional features may be added, e.g. the

measurement of distances between subsequent jobs of volunteers, or the scheduling of

groups in addition to independent assignments of every volunteer.

37

Bibliography

Bibliography

[1] B Domres et al. “The German approach to emergency/disaster management”. In:

Medicinski arhiv 54.4 (2000), 201—203. url: http://europepmc.org/abstract/

MED/11117024.

[2] url: https : / / www . drk . de / hilfe - in - deutschland / bevoelkerungsschutz

(visited on 05/19/2021).

[3] Mauro Falasca and Christopher Zobel. “An optimization model for volunteer as-

signments in humanitarian organizations”. In: Socio-Economic Planning Sciences

46.4 (2012). Special Issue: Disaster Planning and Logistics: Part 2, pp. 250–260.

issn: 0038-0121. doi: https://doi.org/10.1016/j.seps.2012.07.003. url:

https://www.sciencedirect.com/science/article/pii/S0038012112000353.

[4] E.K. Burke, P. De Causmaecker, and G.V. et al. Berghe. “The State of the Art

of Nurse Rostering”. In: Journal of Scheduling 7 (2004), pp. 441–499. doi: https:

//doi.org/10.1023/B:JOSH.0000046076.75950.0b.

[5] url: https://www.haskell.org/ (visited on 05/19/2021).

[6] url: https://docs.haskellstack.org/en/stable/README/ (visited on 05/20/2021).

[7] url: https://www.yesodweb.com/book/persistent (visited on 05/19/2021).

[8] A.T Ernst et al. “Staff scheduling and rostering: A review of applications, methods

and models”. In: European Journal of Operational Research 153.1 (2004). Timetabling

and Rostering, pp. 3–27. issn: 0377-2217. doi: https://doi.org/10.1016/S0377-

2217(03)00095-X. url: https://www.sciencedirect.com/science/article/

pii/S037722170300095X.

[9] JF. Cordeau, G. Laporte, and F. et al. Pasin. “Scheduling technicians and tasks in

a telecommunications company”. In: Journal of Scheduling 13 (2010), pp. 393–409.

doi: https://doi.org/10.1057/jors.2010.86.

[10] Patrick De De Causmaecker and Greet Vanden Berghe. “A categorisation of nurse

rostering problems”. In: Journal of Scheduling 14 (2010), pp. 3–16. doi: https:

//doi.org/10.1007/s10951-010-0211-z.

[11] Sean Luke. Essentials of Metaheuristics. second. Lulu, 2013.

[12] Bilgin Bilgin et al. “Local Search Neighbourhoods to Deal with a Novel Nurse

Rostering Model”. In: Annals of Operations Research 194 (2012), pp. 33–57. doi:

https://doi.org/10.1007/s10479-010-0804-0.

[13] Andrea Schaerf and Amnon Meisels. “Solving Employee Timetabling Problems by

Generalized Local Search”. In: AI*IA 99: Advances in Artificial Intelligence. Ed. by

Evelina Lamma and Paola Mello. Berlin, Heidelberg: Springer Berlin Heidelberg,

2000, pp. 380–389. isbn: 978-3-540-46238-5.

38

Bibliography

[14] E. Burke, T. Curtois, and L. et al. van Draat. “Progress control in iterated local

search for nurse rostering”. In: Journal of the Operational Research Society volume

62 (2011), pp. 360–367. doi: https://doi.org/10.1057/jors.2010.86.

39

Appendix

A. Source Code

The source code of the solution approach‘s implementation, the database and the scripts

for the execution of the experiments are included on the attached CD.

B. User-Manual

B.1. Prerequisites

Before the source code can be compiled and build the following software must be installed.

• Glasgow Haskell Compiler, version ≥ 8.6

• Haskell Tool Stack, version ≥ 2.5

• Cabal, version ≥ 2.4

The listed software can be downloaded from

• https://www.haskell.org/downloads/.

• https://www.haskell.org/ghcup/.

B.2. Project-Structure

The project folder contains multiple directories and files. The contents are described in

the tables B.1 and B.2.

Files Contents

backend.cabal Automatically created with the stack build command.
Adjustments should be avoided

package.yaml Dependencies and build configuration
stack.yaml Automatically generated by the stack init command

should not be manually adjusted

Table B.1: Contents of Project Files

Directory Contents

app The Main module, which is used to execute the application
example databases The database with volunteer and job data

experiments The shell scripts for execution of the experiments from section 8
src The modules of the project described in section 7

Table B.2: Project Directory Contents

40

Appendix

B.3. Build

The project must be initialized previously to the first build process. The initialization may

take a while because all dependencies are downloaded. The commands for initialization

and compiling are shown in code snippet B.1.

1 # Initilize the project

2 stack init

3 # Compile and build the application

4 stack build

Code Snippet B.1: Initialize Project

B.4. Code Execution

The application can be executed with the following command. The list of parameters is

presented in table 7.1.

1 stack exec backend -exe dbPath outOpt maxIt maxSt mD quW vDW jDW vCW jCW

Code Snippet B.2: Application Execution

41

Appendix

B.5. Database

The database is contained in the example database directory and can be accessed via an

SQLite browser. The database consists of two tables, volunteer and job, which are shown

in tables B.3 and B.4.

Fields Type Value Constraints Description

id INTEGER - Primary Key, whichmust not
be manually adjusted

name VARCHAR - Name of the job
priority INTEGER [1-10] Priority of the job
min age INTEGER - Minimum required age for this job
start time TIMESTAMP - Start time of the job
end time TIMESTAMP - End time of the job

m q VARCHAR EH, San, RS Require medical
RA, NFS, AZ skill of the job

l q VARCHAR NoLq, TF, GF Required leadership
ZF, VBF skill of the job

t q VARCHAR [”sCBRNE”], [”sB”] Required technical
[”sC1”] skills of the job

Table B.3: Job Database Table

Fields Type Value Constraints Description

id INTEGER - Primary Key, which must not be
be manually adjusted

name VARCHAR - Name of the volunteer
age INTEGER - Age of the volunteer

start time TIMESTAMP - Start time of the volunteer
end time TIMESTAMP - End time of the volunteer

m q VARCHAR EH, San, RS Medical
m q VARCHAR RA, NFS, AZ skill of the volunteer
l q VARCHAR NoLq, TF, GF Leadership

ZF, VBF skill of the volunteer
t q VARCHAR [”sCBRNE”], [”sB”] Technical

[”sC1”] skills of the volunteer

Table B.4: Volunteer Database Table

42

Appendix

B.6. Experiments

All test cases from section 8 are executed with shell scripts. The scripts are included

within the experiments directory and can be executed in the following way:

1 # Executes the first experiment

2 ./ experiments/greedyLocalSearch.sh

3

4 # Executes the second experiment

5 ./ exeriments/exploringLocalSearch.sh

6

7 # Executes the third experiment

8 ./ experiments/explorationAndExploitation.sh

9

10 # Executes the fourth experiment

11 ./ experiments/neighborhoodFunctionApplicationTest.sh

Code Snippet B.3: Experiment Scripts

43

Appendix

Variable Reference
N

a
m

e
V

a
ri

a
b
le

C
o
n
te

n
t

D
e
sc

ri
p

ti
o
n

A
V

ol
u
n
te

er
v

-
A

si
n
gl

e
vo

lu
n
te

er

A
ll

V
ol

u
n
te

er
s

V
{v

1
,.
.,
v n
},
n
∈
N

T
h
e

S
et

of
al

l
vo

lu
n
te

er
s

A
J
ob

j
-

A
si

n
gl

e
jo

b

A
ll

J
ob

s
J

{j
1
,.
.,
j m
},
m
∈
N

T
h
e

se
t

of
al

l
jo

b
s

S
ta

rt
T

im
e

s
s
∈
N

A
st

ar
t

ti
m

e
d
efi

n
it

io
n
,

co
n
ta

in
in

g
a

U
n
ix

ti
m

e
va

lu
e

E
n
d

T
im

e
e

e
∈
N

A
en

d
ti

m
e

d
efi

n
it

io
n
,

co
n
ta

in
in

g
a

U
n
ix

ti
m

e
va

lu
e

A
ss

ig
n
m

en
t

a
(v
,j
,s
,e

)
A

n
as

si
gn

m
en

t
of

vo
lu

n
te

er
v

to
jo

b
j

fr
om

st
ar

t
s

u
n
ti

l
e

V
ol

u
n
te

er
A

ss
ig

n
m

en
ts

A
v

A
v

=
{a
∈
A
|v

is
as

si
gn

ed
to

a}
T

h
e

se
t

of
al

l
as

si
gn

m
en

ts
of

a
vo

lu
n
te

er
v
.

J
ob

A
ss

ig
n
m

en
ts

A
j

A
j

=
{a
∈
A
|j

is
as

si
gn

ed
to

a}
T

h
e

se
t

of
al

l
as

si
gn

m
en

ts
of

a
jo

b
j.

A
ss

ig
n
m

en
ts

A
A
⊆

(V
×
J
×

N
×

N
)

T
h
e

se
t

of
al

l
as

si
gn

m
en

ts
.

V
ol

u
n
te

er
T

im
es

lo
t

t v
(v
,s
,e

)
A

ti
m

es
lo

t
of

vo
lu

n
te

er
v

fr
om

s
u
n
ti

l
e

V
ol

u
n
te

er
T

im
es

lo
ts

T
v

T
v

=
{t
∈
T
V
|t

is
ti

m
es

lo
t

of
v
}

T
h
e

se
t

of
al

l
ti

m
es

lo
ts

of
a

vo
lu

n
te

er
v

A
ll

V
ol

u
n
te

er
T

im
es

lo
ts

T
V

T
V
⊆

(V
×

N
×

N
)

T
h
e

se
t

of
al

l
vo

lu
n
te

er
ti

m
es

lo
ts

J
ob

T
im

es
lo

t
t j

(j
,s
,e

)
A

ti
m

es
lo

t
of

jo
b
j

fr
om

s
u
n
ti

l
e

J
ob

T
im

es
lo

ts
T
j

T
j

=
{t
∈
T
J
|t

is
a

ti
m

es
lo

t
of

j}
T

h
e

se
t

of
al

l
ti

m
es

lo
ts

of
a

jo
b

j

A
ll

J
ob

T
im

es
lo

ts
T
J

T
J
⊆

(J
×

N
×

N
)

T
h
e

se
t

of
al

l
jo

b
ti

m
es

lo
ts

R
os

te
r

R
(V
,J
,T

V
,T

J
,A

)
A

ro
st

er

A
w

ei
gh

t
ω

ω
∈
{1
,.
.,

10
}

T
h
e

se
t

of
w

ei
gh

ts
fo

r
th

e
ro

st
er

ra
ti

n
g

fu
n
ct

io
n

W
ei

gh
ts

Ω
{ω

1
,.
.,
ω

4
}

T
h
e

se
t

of
w

ei
gh

ts
fo

r
th

e
ro

st
er

ra
ti

n
g

fu
n
ct

io
n

44

