
Bachelor’s Thesis

Inexpressibility Results for

Propositional Dynamic Logic over

Context-Free Programs

Eric Alsmann

Research Group

Theoretical Computer Science / Formal Methods

Prof. Dr. Martin Lange

supervised by

Dr. Florian Bruse

July 2021

Eigenständigkeitserklärung

Hiermit bestätige ich, dass ich die vorliegende Arbeit selbständig verfasst und keine

anderen als die angegebenen Hilfsmittel benutzt habe. Die Stellen der Arbeit,

die dem Wortlaut oder dem Sinn nach anderen Werken (dazu zählen auch Inter-

netquellen) entnommen sind, wurden unter Angabe der Quelle kenntlich gemacht.

Ich versichere außerdem, dass die digital abgegebene Version der Arbeit mit den

gedruckten Versionen übereinstimmt.

(Eric Alsmann)

Contents

1 Introduction 2

2 Preliminaries 3

2.1 Words and Languages . 3

2.2 Regular Languages . 3

2.2.1 Transition Profiles . 4

2.3 Pushdown Languages . 4

2.3.1 Visibly Pushdown Languages 5

2.4 Propositional Dynamic Logic . 6

2.4.1 Labelled Transition Systems 6

2.4.2 Syntax . 6

2.4.3 Semantics . 7

3 A Better Pumping Lemma 9

4 Separating PDL[REG] and PDL[CFL] 12

5 Separating vpFLC and PDL[CFL] 15

6 Separating PDL[VPL] and PDL[CFL] 20

7 Conclusion 24

1

Chapter 1

Introduction

Modal logics form the base of many program verification languages. Most of these

logics, for example propositional dynamic logic over regular languages (PDL[REG])

[4] and the modal µ-calculus (Lµ) [6], have their expressibility limits in regular

properties. Pushing the limits to context-free languages generally leads to undecid-

ability of their satisfiability problem like in fixed point logic with chop (FLC) [8]

or propositional dynamic logic over context-free languages (PDL[CFL]) [5]. There

has been work done in order to come as near as possible to the line of decidability

in non-regular properties for example with PDL[VPL], which uses visibly push-

down languages, a fragment of context-free languages where every alphabet symbol

has only one designated function when it comes to altering the stack. Although

PDL[VPL] can express non-regular properties, its satisfiability problem is decidable

[7]. In [3], the authors introduce a decidable non-regular fragment of FLC, vpFLC,

which embeds PDL[VPL] and Lµ. It restricts FLC in a way similar to visibly push-

down languages. It has been non-constructively proven that PDL[VPL] must be

strictly less expressive than vpFLC.

The aim of this thesis is to prove this strict inclusion with the help of the concrete

property 〈a〉n [b]n ff . Intuitively this property expresses that there exists an a-path

of length n such that the path ends in a state from which every b-path of the same

length n ends in a state where no proposition holds. The idea behind this prop-

erty is the hypothesis that PDL[CFL] and PDL[VPL] cannot express non-regular

properties which are spread across multiple modal operators. This means that the

non-regularity of properties expressed in either of these languages is locally restricted

to one modal operator. However, in [3] it was shown that this property is express-

ible in vpFLC. We will show that this property is not expressible in PDL[CFL] and

therefore, also not in PDL[VPL]. By doing this we will also separate the expressive

power of PDL[REG], PDL[VPL] and PDL[CFL].

2

Chapter 2

Preliminaries

2.1 Words and Languages

An alphabet Σ is a finite non-empty set of symbols. A word over the alphabet Σ is

a finite sequence of symbols w1 · · ·wn with wi ∈ Σ. Hence, we define |w| = n as the

length of w and ε as the empty word. Σ∗ is the set of all possible words over Σ.

A set L ⊆ Σ∗ is called a language over Σ. A set of languages C ⊆ P(Σ∗) is called a

language class.

2.2 Regular Languages

A finite automaton A = (Q,Σ, δ, I, F) is a tuple where Q is a non-empty finite set

of states, Σ is the alphabet, δ ⊆ Q× Σ×Q is the transition relation, I ⊆ Q is the

non-empty set of start states and F ⊆ Q is a set of end states. We say w ∈ L(A)

for some w = w1 . . . wn ∈ Σ∗ if and only if there exist q1 . . . , qn−1 ∈ Q, q0 ∈ I and

qe ∈ F such that q0
w1−→ q1

w2−→ q2 . . . qn−1
wn−→ qe. For w = ε, w ∈ L(A) if and only

if q0 ∈ F for some q0 ∈ I. Hence we define δ∗ as a extension of δ to words:

(p, w, q) ∈ δ∗ ⇔ p
w1−→ p1

w1−→ . . .
wn−→ q

for w ∈ Σ∗ and p1, . . . , pn−1 ∈ Q.

We call a language L over an alphabet Σ regular if and only if there exists a finite

automaton A with L(A) = L. The class of all regular languages is called REG.

3

CHAPTER 2. PRELIMINARIES 4

q0 q1

a a, b

b

τ(a)

·

τ(b)

=

τ(ab)

q0

q1 q1

q0 q0

q1 q1

q0 q0

q1 q1

q0

Figure 2.1: Transition profile example.

2.2.1 Transition Profiles

Let A = (Q,Σ, δ, q0, F) be a finite automaton. A transition profile is a relation

τA ⊆ Q × Q. Simply speaking a transition profile shows all possible states which

can be reached by reading a word w in A. The transition profile for a word u ∈ Σ∗ is

defined as τA(u) = {(s, t) | (s, u, t) ∈ δ∗}. There are 2|Q|
2

different transition profiles.

Let TA be the set of all transition profiles. We define a operator · : T 2
A → TA on

transition profiles with τ1 · τ2 = {(s, t) | ∃r ∈ Q : (s, r) ∈ τ1∧ (r, t) ∈ τ2}. Intuitively,

the operator combines two transition profiles such that two states are connected, if

we get from the first state to the second state by reading the word from the first

transition profile first and after that the word from the second transition profile in

A. Another property of the operator · is that it is multiplicative. That means for

some word w = uv ∈ Σ∗, τA(w) = τA(uv) = τA(u) · τA(v). We call a transition

profile τ ∈ TA reachable if there is a word u ∈ L(A) with τA(u) = τ .

Example 1. Consider the finite automaton A from Figure 2.1. We will now look

at the transition profiles of A when reading the word ab. Therefore, we need to

combine the transition profiles for a and b. We now see by looking at τ(ab), that ab

is accepted by A, because there is a connection from q0 to q1 and q0 is a start state

and q1 is an end state.

2.3 Pushdown Languages

A pushdown automaton (PDA) is a tuple A = (Q,Σ,Γ, δ, q0, F) with Q being the

non-empty set of states, Σ the alphabet, Γ the stack alphabet, q0 ∈ Q the start state

and F ⊆ Q the set of end states. Furthermore, ⊥ ∈ Γ is the symbol for the empty

CHAPTER 2. PRELIMINARIES 5

stack. The transition relation δ ist defined as follows:

δ ⊆ Q× Σ× Γ×Q× Γ∗

A configuration of A is a tuple in (Q× Σ∗ × Γ∗). For a configuration (q, w, γ), q is

the current state, w is the remaining word to read and γ is the current stack. The

set of all possible configurations is called C. We now define the relation `A⊆ C × C
as follows:

`A:= {((q, aw, gγ), (q′, w, γ′γ)) | (q, a, g, q′, γ′) ∈ δ}

`∗A is the reflexive and transitive closure of `A. We now say a word w ∈ Σ∗ is

accepted by A if and only if (q0, w,⊥) `∗A (f, ε, γ) for some f ∈ F and γ ∈ Γ∗. The

set of all words accepted by A is called L(A).

We call a language L ⊆ Σ∗ context-free if and only if it exists a PDA A such that

L = L(A). We call the set of all context-free languages CFL.

2.3.1 Visibly Pushdown Languages

Visibly pushdown automata [2] are a restriction to general pushdown automata

introduced earlier. Generally speaking, they restrict the behavior of the stack de-

pending on the alphabet symbol read. Either a symbol is used in transitions which

put a symbol on the stack, pop a symbol of the stack or don’t alter the stack at all.

These tasks have to be determined before constructing the automaton. Therefore

the alphabet is split in three disjunct sets, one for every task. We call this type of

alphabet a visibly pushdown alphabet. Σcall denotes the set of call symbols, Σret the

set of return symbols and Σint the set of internal symbols.

A visibly pushdown automaton VPA is a tuple A = (Q,Σ,Γ, δ, q0, F), where Q is a

non-empty set of states, q0 ∈ Q is a designated start state and F ⊆ Q is a set of end

states. Furthermore, Σ = Σret∪Σcall ∪Σint is the visibly pushdown alphabet. Γ is a

finite set of symbols called the stack alphabet and ⊥ ∈ Γ is the special empty stack

symbol. Respectively the transition function δ = δcall ∪ δret ∪ δint is also partitioned

into three sets:

• δcall ⊆ Q× Σcall ×Q× Γ

• δret ⊆ Q× Σret × Γ×Q

• δint ⊆ Q× Σint ×Q.

CHAPTER 2. PRELIMINARIES 6

We define the acceptance behavior of a VPA analogue to a general PDA:

`A:= {((p, aw, gγ), (q, w, γ)) | (p, a, g, q) ∈ δret}
∪ {((p, aw, γ), (q, w, gγ)) | (p, a, q, g) ∈ δcall}
∪ {((p, aw, γ), (q, w, γ)) | (p, a, q) ∈ δint} .

We call a set of words L over an alphabet Σ a visibly pushdown language if and

only if it exists a visibly pushdown automaton A with L(A) = L. We call the set

of all visibly pushdown languages VPL.

Visibly pushdown automata are a restriction to general pushdown automata, because

a symbol can only be added to the stack if a call symbol was read and a symbol

can only be removed from the stack when a return symbol was read. That means

one alphabet symbol can only contribute as a return symbol or a call symol, but

never as both types at the same time. Hence the language L = {anban | n ∈ N}
is not a visibly pushdown language, but a general pushdown language. Every VPA

can easily be translated into a PDA, but there are languages, which are accepted

by a PDA, but not by an VPA (for example L). This implies the following strict

inclusion: VPL ⊂ CFL.

2.4 Propositional Dynamic Logic

2.4.1 Labelled Transition Systems

Let Σ be an alphabet and AP be a set of atomic propositions. A labelled transition

system (LTS) is a tuple (S,→, q0, L), where S is a non-empty set of states,→⊆ S×
Σ×S is the transition relation and q0 ∈ S is a designated start state. Furthermore,

L : S → P(AP) is a function, which assigns every state a label in the form of atomic

propositions valid at this state. We write s
a−→ t for (s, a, t) ∈→. For simplicity we

extend the operator → to words:

(s, w, t) ∈→ for w ∈ Σ∗ ⇔ s
w1−→ q1

w2−→ q2 · · · qn−1
wn−→ t

for |w| = n and q1, . . . , qn−1 ∈ S. We call this the reflexive and transitive closure of

the relation →. In Figure 2.2 we can see an example for such a LTS.

2.4.2 Syntax

Let Σ and AP be defined as above. Let C ⊆ P(Σ∗) be a language class. We call

PDL[C] the propositional dynamic logic over C. Formulas over PDL[C] are defined

CHAPTER 2. PRELIMINARIES 7

as:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈L〉ϕ | [L]ϕ

where p ∈ AP und L ∈ C. We may use boolean operators →,↔ as well as tt and ff

in the usual way.

The operators 〈L〉 and [L] are called modal operators. Hence, we define the modal

depth md(ϕ) of a formula ϕ as:

• md(ϕ) = 0 for formulas without any modal operators

• md(¬ϕ) = md(ϕ)

• md(ϕ ◦ ψ) = max{md(ϕ),md(ψ)} for ◦ ∈ {∧,∨}

• md(〈L〉ϕ) = md([L]ϕ) = md(ϕ) + 1

2.4.3 Semantics

Let ϕ ∈ PDL[C] be a formula and T = (S,→, q0, L) be a LTS. We define the

satisfiability relation (|=) for some state s ∈ S of T as follows:

• s |= p iff p ∈ L(s)

• s |= ¬ϕ iff not s |= ϕ

• s |= ϕ ∨ ψ iff s |= ϕ or s |= ψ

• s |= ϕ ∧ ψ iff s |= ϕ and s |= ψ

• s |= 〈L〉ϕ iff ∃w ∈ L : ∃s′ ∈ S : s
w−→ s′ and s′ |= ϕ

• s |= [L]ϕ iff ∀w ∈ L : ∀s′ ∈ S : s
w−→ s′ ⇒ s′ |= ϕ

We say T |= ϕ if and only if q0 |= ϕ. Furthermore, [L]ϕ can als be expressed as

¬〈L〉¬ϕ

Simply speaking 〈L〉ϕ can be written as, there exists a path from state s in T such

that the path is labelled with a word w ∈ L and the end state of the path satisfies

the formula ϕ. Hence [L]ϕ can be understood as: there is no path which is labelled

with w ∈ L such that the end state of the path does not satisfy ϕ or all paths

labelled with a word w ∈ L end in a state which satisfies ϕ.

CHAPTER 2. PRELIMINARIES 8

T1 :

p p pa a b b

T2 :

p pa a b b b

Figure 2.2: The example structure for PDL[REG] and PDL[CFL].

Example 2. Over PDL[REG] the formula ϕ = 〈a∗〉 [b∗] p expresses that there exists

an a∗-path such that at all states which are reachable with a b∗-path, p holds. Hence

for the structures in Figure 2.2, T1 |= ϕ, but T2 6|= ϕ

Example 3. Over PDL[CFL] the formula ϕ = 〈L〉p for L = {anbn | n ∈ N}
expresses that there exists a path labelled with a word from L such that on the end

state of the path p holds. Hence in Figure 2.2, T1 |= ϕ, but T2 6|= ϕ.

Chapter 3

A Better Pumping Lemma

In this chapter we will show that, for each finite set of regular languages L1, . . . , Lm
we can find numbers k, l ∈ N for which all those languages behave in the same way

on the word ak and ak+l. The idea for this argument comes from the traditional

pumping lemma for regular languages:

Lemma 4 (Rabin, Scott [10]). For every regular language L ∈ REG exists a n ∈ N
such that for all w ∈ L with |w| ≥ n exist a partition w = xyz with the following

properties:

|xy| ≤ n, |y| ≥ 1, xyiz ∈ L ∀i ∈ N

For each word of a regular language which is long enough, the pumping lemma for

regular languages ensures the existence of a partial word which can be multiplied

any number of times and still be part of the language. We now try to extend this

argument to sets of regular languages. Due to the fact that this is in general not

possible, we will proof a less strongly argument over unary words. We want to find

numbers k, l ∈ N such that for all n ≥ k holds: if one of the regular languages

accepts the word an, it also accepts an+l.

Definition 5 (Synchronous Automaton). Let L1, . . . , Lm be regular languages. For

each language Li exists a finite automaton Ai = (Qi,Σ, δi, Ii, Fi) with L(Ai) = Li.

Without loss of generality we assume that all state sets are pairwise disjoint. We

now define the synchronous automaton of these languages as:

M = (Q1 ∪ · · · ∪Qm,Σ, δ1 ∪ · · · ∪ δm, I1 ∪ · · · ∪ Im, F1 ∪ · · · ∪ Fm)

We define |M| = |Q1 ∪ . . . Qm|.

Although M looks like the union automaton, we are not interested in the accep-

tance behavior of the automaton. We are particularly interested in the different

transition profiles the automaton reaches. The automaton can be interpreted as the

synchronous execution of all separate automata at the same time. There are 2|M|
2

9

CHAPTER 3. A BETTER PUMPING LEMMA 10

different transition profiles of M. If we execute M on a∗, it follows with a pigeon-

hole principle argument, that at some pointM has to go through a transition profile

twice. These arguments are summarized in the following lemma:

Lemma 6. For every finite set of regular languages L1, . . . Lm, there exist numbers

k, l ∈ N with k + l ≤ 2|M|
2

+ 1 such that τM(ak+n) = τM(ak+l+n) for all n ∈ N. M
is the synchronous automaton of these regular languages.

Proof. Let L1, . . . , Lm ∈ REG be regular languages andM the synchronous automa-

ton constructed as in Definition 5. Furthermore let τM(a) be the transition profile of

M when reading a. For p = 2|M|
2

+ 1 we observe the sequence of transition profiles

by synchronous execution of all finite automata in M:

τM(a)→ τM(aa)→ · · · → τM(ap)

It follows that τM(ai) = τM(aj) for i, j ≤ p with a simple pigeon-hole principle

argument. There are only 2|M|
2

many possible transition profiles. Hence, because

p = 2|M|
2

+ 1, at least one transition profile must occur twice. We now set k = i

and l = j − i. It is obvious now that the following argument holds for all n ∈ N:

τM(ak+n) = τM(ak) · τM(an) = τM(ak+l) · τM(an) = τM(ak+l+n)

We will use this argument in later sections in the following form:

Corollary 7. Let L1, . . . Lm be a finite set of regular languages and k, l ∈ N defined

as in Lemma 6 then:

ak+nw ∈ Li ⇔ ak+l+nw ∈ Li

for w ∈ Σ∗, n ∈ N and i ∈ {1, . . . ,m}.

This follows directly from Lemma 6. Because when we are considering the transition

profiles we get:

τM(ak+nw) = τM(ak+n) · τM(w) = τM(ak+l+n) · τM(aw) = τM(ak+l+nw)

Example 8. Consider the two finite automata A and B as in Figure 3.1 over the

unary alphabet Σ = {a}. We now look at the transition profiles of the synchronous

automaton M of A and B, which can also be seen in Figure 3.1.

The first repeating transition profile of M is τM(aaa) = τM(a). This means in this

case we choose k = 1 and l = 2. Hence for every n ∈ N τM(a1+n) = τM(a3+n). It

follows that for example a2 ∈ L(B) and a2+2m ∈ L(B) for every m ∈ N too.

CHAPTER 3. A BETTER PUMPING LEMMA 11

q0

A

q1 q2

B

q3

a

a

a

a

τM(a) τM(aa) τM(aaa) τM(aaaa)

q0

q1

q2

q3

q0

q1

q2

q3

q0

q1

q2

q3

q0

q1

q2

q3

q0

q1

q2

q3

q0

q1

q2

q3

q0

q1

q2

q3

q0

q1

q2

q3

Figure 3.1: The Example for Lemma 6.

Chapter 4

Separating PDL[REG] and

PDL[CFL]

In this chapter we will separate PDL[REG] and PDL[CFL] as well as PDL[REG] and

PDL[VPL]. We start by separating PDL[REG] and PDL[VPL]. Let L = {anban |
n ∈ N} and ϕ = 〈L〉ff . L is obviously context-free. For readability we simply write

〈anban〉ff . We will show that this formula which is obviously in PDL[CFL] cannot

be expressed in PDL[REG]. Note that 〈anban〉ff is not a formula over PDL[REG],

but will be used as an expression for this property.

Lemma 9. Let P be the property 〈anban〉ff for some n ∈ N. There exists no

formula ϕ over PDL[REG], such that for all labelled transition systems T holds:

T |= P ⇔ T |= ϕ

Proof. Assume there is a formula ϕ ∈ PDL[REG] which satisfies the claim. Let

L1, . . . Lm be the languages used in the modal operators of the formula. Furthermore,

let n = md(ϕ) be the modal depth of ϕ and let k, l ∈ N be defined according to

Lemma 6.

Sn :

sp . . . s0 . . .

a a b a a

n · (k + l) n · (k + l)

Tn :

tq . . . t0 . . .

a a b a a

n · (k + l) + l n · (k + l)

with p = n(k + l) and q = n(k + l) + l.

Figure 4.1: The transition systems for separating PDL[REG] and PDL[CFL].

12

CHAPTER 4. SEPARATING PDL[REG] AND PDL[CFL] 13

Let Sn and Tn be defined as in Figure 4.1. Obviously Sn |= P and Tn 6|= P . We

will now show through induction over d that for all ϕ ∈ PDL[L1, . . . , Lm] with

md(ϕ) = d ≤ n and i ≥ d(k + l): si |= ϕ⇔ ti+l |= ϕ with si ∈ Sn and ti ∈ Tn.

Note that for all j, sj and tj satisfy the same formulas, because the structures are

isomorphic beginning from these states.

d = 0: The claim holds trivially because all states do not differ in their propositions.

d > 0: ϕ = 〈Lj〉ϕ′. Then either si |= ϕ and it exist s′ ∈ Sn, w ∈ Lj with si
w−→ s′

and s′ |= ϕ′, or ti+l |= ϕ and it exist t′ ∈ Tn, w ∈ Lj with ti+l
w−→ t′ and

t′ |= ϕ′.

Case 1: si |= ϕ and |w| ≥ k + l. w must be of the form ak+lw′. Then with

Corollary 7, ak+2lw′ ∈ Lj too. That means we can take the following

path in Tn:

ti+l
al−→ ti

w′−→ t′.

As mentioned above si and ti satisfy the same formulas and therefore, s′

and t′ too. Hence, t′ |= ϕ′.

Case 2: ti+l |= ϕ and |w| ≥ k + l. w must be of the form ak+lw′ and

ti+l
al−→ ti

akw′−−→ t′.

Then with Corollary 7, akw′ ∈ Lj too. Because si and ti satisfy the same

formulas and si
akw′−−→ s′, it follows that s′ |= ϕ′.

Case 3: |w| < k + l. w must be of the form a|w|. We can now apply our

induction hypothesis and assume that si−|w| and ti+l−|w| cannot be dis-

tinguished by ϕ′ with md(ϕ′) = d− 1.

Note that if no modal operator has a witness with length greater k + l, ϕ can

only distinguish a LTS in the first d(k + l) nodes. Therefore, Tn |= ϕ holds

trivially.

The cases of ϕ being a boolean combination of subformulas, follow directly

from the induction hypothesis.

For separating PDL[REG] and PDL[VPL] we consider another property. Let L =

{anbn | n ∈ N} and ϕ = 〈L〉ff . L is a well known example for a visibly push-

down language. We will show that there is no formula in PDL[REG] such that this

property could be expressed.

CHAPTER 4. SEPARATING PDL[REG] AND PDL[CFL] 14

Sn :

sp . . . s0 . . .

a a b b

n · (k + l) n · (k + l)

Tn :

tq . . . t0 . . .

a a b b

n · (k + l) + l n · (k + l)

with p = n(k + l) and q = n(k + l) + l.

Figure 4.2: The LTS for Lemma 10.

Lemma 10. Let P be the property 〈anbn〉ff for some n ∈ N. There exists no formula

ϕ over PDL[REG] such that for all linear transition systems T holds: T |= P ⇔
T |= ϕ

Proof. This proof works analogous to Lemma 9. Assume there is a formula ϕ ∈
PDL[REG] which satisfies the claim. Let L1, . . . , Lm be the languages used in the

modal operators of the formula. Furthermore, let n = md(ϕ) be the modal depth

of ϕ and let k, l ∈ N be defined according to Lemma 6.

Let Sn and Tn be defined as in Figure 4.2. Obviously Sn |= P and Tn 6|= P . It

can be shown through induction over d that for all ϕ ∈ PDL[L1, . . . , Lm] with

md(ϕ) = d ≤ n and i ≥ d(k + l): si |= ϕ⇔ ti+l |= ϕ with si ∈ Sn and ti ∈ Tn.

This proof by induction works in the same way as the induction in Lemma 9. Hence

we will omit the full induction proof in this case and refer to Lemma 9.

Theorem 11. PDL[REG] is strictly less expressive than PDL[CFL].

Proof. The inclusion of PDL[REG] in PDL[CFL] is trivial, because it is well known

that REG ⊂ CFL. Hence, every PDL[REG] formula can also be seen as a PDL[CFL]

formula. The strict inclusion follows from Lemma 9.

Theorem 12. PDL[REG] is strictly less expressive than PDL[VPL].

Proof. In this case the inclusion of PDL[REG] in PDL[VPL] is trivial too, because

every regular language can be represented as a finite automaton and every finite

automaton can be seen as a VPA, which only uses internal symbols. Furthermore,

we have shown in Lemma 10 that there is a property which can be expressed in

PDL[VPL], but not in PDL[REG]. It follows that PDL[REG] is strictly less expres-

sive than PDL[VPL].

Chapter 5

Separating vpFLC and PDL[CFL]

As mentioned in the introduction, this chapter will be about separating vpFLC and

PDL[CFL]. Let P be the property 〈a〉n[b]nff . Intuitively P expresses the following

property. For some n ∈ N, there exists a path labelled with an, such that from the

end state of that path all paths labelled with bn end in a state where no proposition

holds. It was shown in [3] that P is expressible in vpFLC. The proof that P is

not expressible in PDL[CFL] will use several arguments introduced in the previous

sections.

We start by proving the indistinguishability of two LTS, which will later appear as

part of a bigger structure.

Lemma 13. For each ϕ ∈ PDL[CFL] with modal depth n ∈ N exist k, l ∈ N such

that ϕ cannot distinguish the two LTS from Figure 5.1:

Proof. Let L1, . . . , Lm be the pushdown languages used in ϕ. Without loss of gen-

erality we assume that for all languages Li must hold that Li ⊆ L(b∗). Due to the

regularity of pushdown languages over unary alphabets [9], we can find numbers

k, l ∈ N for any finite set of pushdown languages used in ϕ defined as in Lemma 6.

We will now show by induction over the modal depth d that for all formulas ϕ ∈
PDL[L1, . . . , Lm] with md(ϕ) = d ≤ n and i ≥ d(k + l): si |= ϕ ⇔ ti+l |= ϕ with

si ∈ Sn and ti+l ∈ Tn.

Note that for all f , sf and tf satisfy the same formulas, because the structures are

isomorphic beginning from these states.

d = 0 : The claim holds trivially because none of the states differ in their proposi-

tions.

d > 1 : ϕ = 〈Lj〉ϕ′ with md(ϕ′) = n−1. Then either si |= ϕ and it exist sf , w ∈ Lj
with si

w−→ sf and sf |= ϕ′, or ti+l |= ϕ and it exist tf , w ∈ Lj with ti+l
w−→ tf

and tf |= ϕ′.

15

CHAPTER 5. SEPARATING VPFLC AND PDL[CFL] 16

sp . . . s0

tq

. . .

. . . tl . . . t0

b b b

n · (k + l)

b

b

b b

b b b b

n · (k + l)
l

Sn

Tn

with p = n(k + l) and q = n(k + l) + l.

Figure 5.1: The LTS used in Lemma 13.

Case 1: si |= ϕ and i = p, i.e., si is the first node in Sn. In this case we take

to isomorphic path in the upper arm of Tn. The end state of this path is

isomorphic to sf .

Case 2: ti+l |= ϕ and i+ l = q. If tf is in the upper arm of Tn, we choose the

equivalent path in Sn. Due to isomorphism of the remaining structures

sf |= ϕ′. If sf is in the lower arm, we apply Case 4.

Case 3: si |= ϕ and |w| ≥ k+l. w must be of the form b|w| and with Corollary

7, b|w|+l ∈ Lj too. We can take the following path in Tn:

ti+l
al−→ ti

w−→ tf

As mentioned above sf and tf satisfy the same formulas and therefore,

tf |= ϕ′.

Case 4: ti+l |= ϕ and |w| ≥ k + l. w must be of the form b|w| and with

Corollary 7, b|w|−l ∈ Lj too. Therefore, we can take the following path in

Sn:

si
b|w|−l

−−−→ sf

As mentioned above sf and tf satisfy the same formulas and therefore,

tf |= ϕ′.

Case 5: |w| < k + l. w must be of the form b|w|. We can now apply our

induction hypothesis and assume that si−|w| and ti+l−|w| cannot be dis-

tinguished by ϕ′ with md(ϕ′) = d− 1.

CHAPTER 5. SEPARATING VPFLC AND PDL[CFL] 17

sp . . . s0 . . .

tp . . . t0

. . .

.

a a a b b b

n · (k + l) n · (k + l)

a a a
b

b

b b

b b

a

b b
n · (k + l)

n · (k + l) l

Sn

Tn

with p = n(k + l).

Figure 5.2: The LTS for Lemma 14.

Note that if no modal operator has a witness with length greater k + l, ϕ can

only distinguish a LTS in the first d(k + l) nodes. Therefore, Tn |= ϕ holds

trivially.

The cases of ϕ being a boolean combination of subformulas, follow directly

from the induction hypothesis.

With the help of this lemma, we can now prove the actual claim.

Lemma 14. Let P be the property 〈a〉n[b]nff for some n ∈ N. There exists no

formula ϕ over PDL[VPL], such that for all labelled transition systems T holds:

T |= P ⇔ T |= ϕ

Proof. Assume there was a formula ϕ ∈ PDL[VPL] which satisfies the claim. Let

L1, . . . Lm be the languages used in the modal operators of the formula. Furthermore,

let n = md(ϕ) be the modal depth of ϕ.

We construct the LTS Sn and Tn as seen in Figure 5.2 by doing an intersection of

all languages L1, . . . , Lm with L(b∗). By doing this we get the languages L̃1, . . . , L̃m,

which are all unary. It is known that unary context-free languages are regular [9].

We now define k, l as in Lemma 6 by considering the languages L̃1, . . . , L̃m.

We will now show by induction over the modal depth d that for all formulas ϕ ∈
PDL[CFL] with md(ϕ) = d and i ≥ d(k + l) holds: si |= ϕ ⇔ ti |= ϕ with si ∈ Sn
and ti ∈ Tn (Figure 5.2).

d = 0: The claim holds trivially, because none of the states differ in their proposi-

tions.

CHAPTER 5. SEPARATING VPFLC AND PDL[CFL] 18

d > 0: ϕ = 〈Lj〉ϕ′. Then either si |= ϕ and it exist s′, w ∈ Lj with si
w−→ s′ and

s′ |= ϕ′, or ti |= ϕ and it exist t′, w ∈ Lj with ti
w−→ t′ and t′ |= ϕ′.

Case 1: si |= ϕ and s′ = s0. In this case ti
w−→ t0 and it follows with Lemma

13 that s0 and t0 cannot by distinguished by ϕ′.

Case 2: ti |= ϕ and t′ = t0. Analogue to Case 1.

Case 3: si |= ϕ and s′ = sf for f > 0. In this case we apply our induction

hypothesis and assume that sf and tf cannot be distinguished by ϕ′.

Case 4: ti |= ϕ and t′ = tf for f > 0. Analogue to Case 2.

Case 5: ti |= ϕ. Because of the connection between s1 and t0, we can also go

from si with w to s′ and s′ = t′.

Case 6: si |= ϕ and s′ is one of the states on the right hand side of the lower

structure. This case is analogue to Case 4, because we can simply take

the same path in Sn and then s′ = t′.

Case 7: si |= ϕ and s′ is one of the state on the right hand side of the

upper structure. We notice that the upper arm of the lower structure is

isomorphic to the arm in the upper structure. That means for every state

in the upper arm, we can find a state in the lower arm which is reachable

with the same path, such that both states satisfy the same formulas. In

this case we choose the equivalent state to s′ in the lower isomorphic arm

t′. Obviously ti
w−→ t′.

The cases of ϕ being a boolean combination of subformulas, follow directly

from the induction hypothesis.

This results in the fact that there is no formula over PDL[CFL] which can distinguish

the LTS Sn and Tn for any model depth n.

Theorem 15. PDL[VPL] is strictly less expressive than vpFLC.

Proof. The inclusion of PDL[VPL] in vpFLC was shown in [3]. Due to Lemma

14 the property P = 〈a〉n[b]nff is not expressible in PDL[CFL] and therefore not

in PDL[VPL] due to the obvious inclusion PDL[VPL] ⊆ PDL[CFL]. However, it

was shown in [3] that P is expressible in vpFLC. Hence PDL[VPL] is strictly less

expressive than vpFLC.

CHAPTER 5. SEPARATING VPFLC AND PDL[CFL] 19

Theorem 16. PDL[CFL] and vpFLC are incomparable in terms of expressive power.

Proof. We showed in Lemma 14 that there is a property which is expressible in

vpFLC, but not in PDL[CFL]. The other direction is presented in [1].

Chapter 6

Separating PDL[VPL] and

PDL[CFL]

This last chapter aims to separate PDL[VPL] and PDL[CFL] by proving that

〈anban〉ff is not expressible in PDL[VPL]. For this proof we will take advantage

of the following property over visibly pushdown languages: Every visibly pushdown

language, which is unary except from constant many other symbols is regular. We

notice that the strategy is the same as for the previous proofs. We will try to reduce

problems involving context-free languages to smaller problems over regular cases.

This property is proven in the following lemma:

Lemma 17. Every visibly pushdown language L ∈ VPL with L ⊆ L(a∗ba∗) is

regular.

Proof. Let L ∈ VPL be a visibly pushdown language with L ⊆ L(a∗ba∗). By

definition there exists a visibly pushdown automaton A = (Q,Σ,Γ, δ, qo, F) with

L(A) = L. The structure of A depends on the choice of the visibly pushdown

alphabet Σ = Σint ∪ Σret ∪ Σcall.

Case 1: a, b ∈ Σint. In this case, by definition of a VPA, δ : Q× Σint → Q. Hence

δ has exactly the same form of the transition function of a finite automaton.

Therefore A can trivially be understood as a finite automaton, ignoring the

stack alphabet.

Case 2: a ∈ Σ \ Σint, b ∈ Σint. In this case an a can alter the stack either by

pushing a symbol to the stack or by popping a symbol from the stack. In both

cases the stack can either never be read from or never be written to, because

b is internal. Hence, this case also collapses to a finite automaton, by simply

ignoring all stack actions.

Case 3: b ∈ Σ \ Σint, a ∈ Σint. Analogue to Case 2.

20

CHAPTER 6. SEPARATING PDL[VPL] AND PDL[CFL] 21

Case 4: a ∈ Σcall, b ∈ Σret. In this case we will build a finite automaton A′ which

accepts the same language as A. The idea behind this construction is that

we take advantage of the stack restrictions of A. Because a is a call symbol

and b is a return symbol, the stack can only be read from once. Therefore

the finite automaton will remember the current top stack symbol. We define

A′ = ((Q× Γ),Σ, δ′, I × {⊥}, F × Γ) with δ′ ⊆ (Q× Γ)× Σ× (Q× Γ) and:

δ′ = {((p, g), a, (q, g′)) | (p, a, q, g′) ∈ δcall}
∪ {((p, g), b, (q,⊥)) | (p, b, g, q) ∈ δret}

We will now show that L(A′) = L(A):

⊆: Let w ∈ L(A′) be a word accepted byA′. Therefore, there exists a sequence

of states such that:

(q0,⊥)
w1−→ (q1, g1)→ . . .

wn−→ (qn, gn)

for |w| = n, q0 ∈ I, qn ∈ F and gi ∈ Γ. By definition of δ′ for every

transition (p, g)
a−→ (q, g′), there exists a equivalent transition in δ with

(p, a, q, g′) ∈ δcall. For (p, g)
b−→ (q,⊥) we use (p, a, g, q) ∈ δret and do

not alter the stack of A. Hence the sequence of configurations:

(q0, w1...wn,⊥) ` (q1, w2...wn, g1⊥) ` · · · ` (qn, ε, gnγ)

is accepted in A.

⊇: Let w ∈ A with |w| = n. We know by definition that w ∈ L(a∗ba∗). Let

i ∈ {1, . . . , n} be the index with wi = b. Note that, because b only occurs

once and is the only return symbol, only one state transition depends on

the current top stack symbol. This state transition happens after reading

wi. Because w is accepted by A, we find a sequence of configurations:

(q0, w,⊥) ` · · · ` (qi−1, bw
′, gi−1...g0⊥) ` · · · ` (qn, ε, gn...gigi−2...⊥)

with q0 ∈ I and qn ∈ F . By definition of δ′, w ∈ L(A′) with:

(q0,⊥)
w1−→ (q1, g1) . . . (qi, gi)

wi−→ (qi+1,⊥) . . . (qn, gn)

Case 5: a ∈ Σret, b ∈ Σcall. In this case, the stack can only be written to once,

because b only occurs once. We will use a similar construction as in Case 4.

We define A′ = ((Q×Γ),Σ, δ′, I×{⊥}, F ×Γ) with δ′ ⊆ (Q×Γ)×Σ× (Q×Γ)

CHAPTER 6. SEPARATING PDL[VPL] AND PDL[CFL] 22

and:

δ′ = {((p, g), a, (q,⊥)) | (p, a, g, q) ∈ δret}
∪ {((p, g), b, (q, g′)) | (p, b, q, g′) ∈ δcall}

Again we will show that L(A′) = L(A)

⊆: This argument works analogous to the argument in Case 4. For every

transition (p, g)
a−→ (q,⊥) in A′, there exists an equivalent transition in

δ with (p, a, g, q) ∈ δret which does not alter the stack of A. For (p, g)
b−→

(q, g′) we use (p, b, q, g′) ∈ δcall. Hence the sequence of configurations:

(q0, w1...wn,⊥) ` (q1, w2...wn, g1⊥) ` · · · ` (qn, ε, gnγ)

is accepted in A.

⊇: Let w ∈ A with |w| = n. We know by definition that w ∈ L(a∗ba∗). Let

i ∈ {1, . . . , n} be the index with wi = b. Again note that because b occurs

only once and is a call symbol this time, the stack will be empty all the

time except from one possible a-transition after having read wi. Because

w is accepted by A we find a sequence of configurations:

(q0, w,⊥) ` · · · ` (qi−1, bw
′,⊥) ` (qi, w

′, gi) ` · · · ` (qn, ε, gn)

with q0 ∈ I and qn ∈ F . Note that gn = ⊥ if w 6= b. If w = b, then

gn = gi. By definition of δ′, w ∈ L(A′) with:

(q0,⊥)
w1−→ (q1,⊥) . . . (qi−1,⊥)

wi−→ (qi, gi) . . . (qn, gn)

With the help of this result, we can now prove the inexpressibility of the mentioned

property in PDL[VPL] by reducing the problem to the regular case.

Lemma 18. Let P be the property 〈anban〉ff for some n ∈ N. There exists no

formula ϕ over PDL[VPL], such that for all labelled transition systems T holds:

T |= P ⇔ T |= ϕ

Proof. Assume there is a formula ϕ ∈ PDL[VPL] which satisfies the claim. Let

L1, . . . , Lm be the visibly pushdown languages used in the formula and n = md(ϕ)

be the modal depth of ϕ. We will now show that ϕ cannot distinguish the two LTS

from Figure 4.1. Without loss of generality, we assume that all Li are either a subset

from L(a∗ba∗), or L(b∗).

CHAPTER 6. SEPARATING PDL[VPL] AND PDL[CFL] 23

Notice that all used languages must be regular, because context-free languages over

unary alphabets are regular and with Lemma 17, all languages which are subset

from L(a∗ba∗), too. Therefore, all languages which could be used in ϕ are regular

and with Lemma 9 follows that there cannot be such a formula ϕ.

Theorem 19. PDL[VPL] is strictly less expressive than PDL[CFL]

Proof. The inclusion of PDL[VPL] in PDL[CFL] is trivial. This is, because visibly

pushdown automata are a special form of general pushdown automata. Hence every

formula over PDL[VPL] is also included in PDL[CFL]. The strict inclusions follows

from Lemma 18.

Chapter 7

Conclusion

An overview on the separation results between modal fixpoint and propositional

dynamic logics can be seen in Figure 7.1. We see that FLC is strictly more expressive

than all mentioned logics. vpFLC is strictly less expressive than FLC as proved in [1].

We showed the strict inclusion of PDL[VPL] in vpFLC in Theorem 15 and even that

vpFLC and PDL[CFL] are incomparable in terms of expressibility. Furthermore, we

showed in Theorem 12 that PDL[REG] is strictly included in PDL[VPL].

As stated in the introduction, we proved that propositional dynamic logic over

context-free programs cannot express non-regular properties which are spread across

multiple modal operators. Intuitively, there is no reason why propositional dynamic

logic over context-sensitive languages PDL[CSL] should be able to express these

properties. However, the techniques used in this thesis cannot be easily adapted

to PDL[CSL]. This is, because we took advantage of the fact that unary languages

over CFL are regular. This allowed us to construct transition systems which were

long enough that we could use a pumping lemma like property of regular languages

to “fool” PDL[CFL] formulas which try to express properties like 〈a〉n [b]n ff . Over

CSL, unary languages are not longer regular. For example L = {a2n | n ∈ N}.
Therefore, the mentioned arguments cannot be used anymore. But even though

the argument with regularity over unary languages does not hold in CSL, there is

no obvious reason why the additional expressiveness of context-sensitive languages

should help in expressing such properties.

24

CHAPTER 7. CONCLUSION 25

FLC

vpFLCPDL[CFL]

PDL[VPL] Lµ

PDL[REG]

[1]

Thm. 15

[3]

Thm. 12 [6]

Thm. 19

[8], [1]

Figure 7.1: Expressiveness of logics mentioned in this thesis. Dashed lines are strict
inclusions. Red lines are inclusions proved in this thesis.

Bibliography

[1] E. Alsmann, F. Bruse, and M. Lange. Separating the Expressive Power of

Propositional Dynamic and Modal Fixpoint Logics, 2021.

[2] R. Alur and P. Madhusudan. Visibly pushdown languages. In Proceedings of

the thirty-sixth annual ACM symposium on Theory of computing - STOC ’04,

page 202, Chicago, IL, USA, 2004. ACM Press.

[3] F. Bruse and M. Lange. A Decidable Non-Regular Modal Fixpoint Logic. In

Proc. 32nd Int. Conf. on Concurrency Theory, CONCUR’21, volume 203 of

LIPIcs, pages ??–?? Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[4] M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular pro-

grams. Journal of Computer and System Sciences, 18(2):194–211, Apr. 1979.

[5] D. Harel, A. Pnueli, and J. Stavi. Propositional dynamic logic of nonregular

programs. Journal of Computer and System Sciences, 26(2):222–243, Apr. 1983.

[6] D. Kozen. Results on the propositional μ-calculus. Theoretical Computer Sci-

ence, 27(3):333–354, 1983.

[7] C. Löding, C. Lutz, and O. Serre. Propositional Dynamic Logic with Recursive

Programs. Journal of Logic and Algebraic Programming, 73:51–69, 2007.

[8] M. Müller-Olm. A Modal Fixpoint Logic with Chop. In C. Meinel and S. Tison,

editors, STACS 99, Lecture Notes in Computer Science, pages 510–520, Berlin,

Heidelberg, 1999. Springer.

[9] G. Pighizzini, J. Shallit, and M.-w. Wang. Unary Context-Free Grammars and

Pushdown Automata, Descriptional Complexity and Auxiliary Space Lower

Bounds. Journal of Computer and System Sciences, 65(2):393–414, Sept. 2002.

[10] M. O. Rabin and D. Scott. Finite Automata and Their Decision Problems.

IBM Journal of Research and Development, 3(2):114–125, 1959.

26

	Introduction
	Preliminaries
	Words and Languages
	Regular Languages
	Transition Profiles

	Pushdown Languages
	Visibly Pushdown Languages

	Propositional Dynamic Logic
	Labelled Transition Systems
	Syntax
	Semantics

	A Better Pumping Lemma
	Separating PDL[REG] and PDL[CFL]
	Separating vpFLC and PDL[CFL]
	Separating PDL[VPL] and PDL[CFL]
	Conclusion

