
Capturing Bisimulation-Invariant
Complexity Classes by Polyadic
Higher-Order Fixpoint Logic

by

David Kronenberger

Dipl.-Math. Florian Bruse, Advisor

Prof. Dr. Martin Lange, Reviewer

Prof. Dr. Stefan Göller, Reviewer

A thesis submitted in partial fulfillment
of the requirements for the
Degree of Master of Science

in Computer Science

UNIVERSITY OF KASSEL
Hesse, Germany

December 21, 2018

I declare that I have developed and written the enclosed thesis entirely
by myself, and have not used sources or means without declaration in the text.

Kassel, December 21, 2018

. .

(David Kronenberger)

Contents

1 Introduction 1

2 Preliminaries 5

2.1 Bisimulation Invariance . 5

2.2 Fixpoints . 7

2.3 Polyadic Higher Order Fixpoint Logic 9

2.3.1 Types of PHFL . 9

2.3.2 Syntax of PHFL . 10

2.3.3 Semantics of PHFL . 13

2.3.4 Tail-Recursive PHFL 15

2.4 Descriptive Complexity . 15

2.5 Higher Order Logic . 20

2.5.1 Syntax of HO . 20

2.5.2 Semantics of HO . 20

2.5.3 HO + LFP . 21

2.5.4 HO + PFP . 23

3 Upper Bounds 25

3.1 Upper Bound of PHFLk . 25

3.1.1 Correctness Proof . 29

3.2 Upper Bound of PHFLk+1
tail . 34

4 Lower Bounds 37

4.1 Preparation . 37

4.2 Existential Quantifiers in PHFL 38

4.2.1 First-Order and Second-Order Quantification 39

4.2.2 Higher-Order Quantification 44

4.3 Lower Bound of PHFLk . 48

4.3.1 Variables . 49

4.3.2 Correctness Proof . 50

4.4 Lower Bound of PHFLk+1
tail . 57

4.4.1 k-EXPSPACE and HO(PFP)k+1 57

4.4.2 Encoding of Bisimulation Invariant HO(PFP)k+1 in PHFLk+1
tail 60

5 Conclusion 65

Chapter 1

Introduction

Descriptive complexity theory describes the complexity classes known from
computational complexity theory with logics. The key advantage is that
complexity classes are characterized by logical resources instead of referring
to automaton models or space and time bounds. The first known result in
the area of descriptive complexity is due to R. Fagin. In 1974 he showed
that the well-known complexity class NP coincides with ∃SO, the existential
fragment of second-order logic [1].

The complexity classes that are of interest in this thesis are those compris-
ing the problems that can be solved in k-fold exponential time or using k-fold
exponential space. These prominent classes are called k-EXPTIME and k-
EXPSPACE, respectively. The logic we will use to capture the bisimulation-
invariant k-EXPTIME, abbreviated by k-EXPTIME/∼, is called Polyadic
Higher-Order Fixpoint Logic and was introduced by M. Lange and E. Lozes
in [2] abbreviated by PHFL.

PHFL is a modal fixpoint logic that extends Higher-Order Fixpoint Logic,
abbreviated by HFL, due to M. Viswanathan and R. Viswanathan [3] with
the Polyadic µ-Calculus from M. Otto [4]. HFL extends the modal µ-calculus
by a simply typed λ-calculus which allows to define higher-order functions
on predicates.

In this thesis, we show that the logic PHFL that uses formulas with
order at most k, abbreviated with PHFLk, captures k-EXPTIME/∼ where
k > 1. Due to the fact that the above statement is also true for k = 0 [4]
and k = 1 [2] we were able to verify that PHFLk captures k-EXPTIME/∼
for any k ≥ 0 on finite labelled transition systems. Furthermore, we will
show that a restriction of PHFL called tail-recursive HFL that uses formulas
with order at most k+ 1, abbreviated with PHFLk+1

tail , captures bisimulation-
invariant k-EXPSPACE, abbreviated k-EXPSPACE/∼ where k > 1. In anal-
ogy to the exponential time classes, we will prove that PHFLk+1

tail captures

1

2 CHAPTER 1. INTRODUCTION

k-EXPSPACE/∼ for any k ≥ 0.
The results presented in this paper are divided in two parts. In the first

part (Chapter 3) it is shown that the upper bounds of the expressive power
of PHFLk and PHFLk+1

tail are k-EXPTIME and k-EXSPACE, repectively.
This is shown by a reduction from the model-checking problem of PHFLk

and PHFLk+1
tail to the model-checking problem of HFLk and HFLk+1

tail , respec-
tively. Because it is known that the model checking problems of HFLk and
HFLk+1

tail are in k-EXPTIME and k-EXPSPACE, the same holds for PHFLk

and PHFLk+1
tail , respectively.

In the second part (Chapter 4), we show that the logics PHFLk and
PHFLk+1

tail are as least as expressible as k-EXPTIME/∼ and k-EXPSPACE/∼.
This can be proven by encoding the run of a Turing Machine as query. As an-
other possibility higher-order logic extended with least fixpoints, abbreviated
HO(LFP)k+1, and higher-order logic extended with partial fixpoints, abbrevi-
ated HO(PFP)k+1 can be used. Higher-Order logic, in contrast to first-order
logic, allows quantification over sets, sets of sets and so on. Therefore, the
proofs of the lower bounds are divided into two steps each.

In the first step it is shown that the lower bound of the expressive power
of HO(LFP)k+1 and HO(PFP)k+1 are k-EXPTIME/∼ and k-EXPSPACE/∼
respectively. C. Freire and A. Martins showed in [5] that HO(LFP)k+1 is at
least as expressive as k-EXPTIME/∼. The logic HO(PFP)k+1 being as least
as expressible as k-EXPSPACE/∼ will be shown in this thesis by encoding
the run of a Turing Machine as query.

In the second step we show that the bisimulation-invariant fragments
of HO(LFP)k+1 and HO(PFP)k+1, respectively, can be encoded by PHFLk

and PHFLk+1
tail , respectively. This required a lot of effort since there are no

unrestricted quantifiers in PHFL and since PHFL and HO have different sets
of types. Quantifiers can be simulated via the use of orders for each type of
the bound variable. These orders make it possible to define successors and
these are helpful to iterate over the scope of the bound variable. Note that
the base type of PHFL denotes sets of elements whereas the base type of HO
denotes elements. This problem is non-trivial but can be solved by using the
polyadicity of PHFL.

Structure of the Thesis

The structure of the thesis is as follows. In Section 2.1 we review queries and
all necessary definitions for the term bisimulation-invariance. Section 2.2
explains the term fixpoints and some variants of them. In Section 2.3 we
use fixpoints to define PHFL and the tail-recursive fragment of it. The

3

following section explains descriptive complexity in more detail and defines
k-EXPTIME/∼ and k-EXPSPACE/∼. In the last section of Chapter 2 we de-
fine the intermediate logics HO(LFP)k+1 and HO(PFP)k+1. In Chapter 3 we
show that the upper bounds of the expressive power of PHFLk and PHFLk+1

tail

are k-EXPTIME and k-EXSPACE, repectively. In the last chapter we show
that the lower bounds of the expressive power of PHFLk and PHFLk+1

tail are k-
EXPTIME/∼ and k-EXPSPACE/∼, respectively. In Section 4.1 we identify
an order on the base type of HO and explain that the proof can be simplified
to using so called reduced labelled transition systems. In Section 4.2 we show
how the quantification of any type can be encoded by PHFL formulas. In the
next section we define the encoding for any bisimulation-invariant HO(LFP)k

formula in PHFLk and verifies its correctness. As a consequence the lower
bound of the expressive power of PHFLk is k-EXPTIME/∼. In the last sec-
tion we define the encoding of the partial fixpoint operator of HO(PFP)k+1

in PHFLk+1
tail in a similar manner as the previous section. Finally, the cor-

rectness of this encoding is shown and similarly to PHFLk this means that
the lower bound of the expressive power of PHFLk+1

tail is k-EXPSPACE/∼.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

This chapter introduces all necessary definitions to prove that PHFLk = k-
EXPTIME/∼ and PHFLk+1

tail = k-EXPSPACE/∼. The notions are mainly
from [6], [7], [4], [5] and [2].

We assume that the reader is already familiar with basic notions of first
order logic and computational complexity. In the first section we define a
graph called labelled transition systems and a relation on it called bisimula-
tion. Additionally, we define queries and a characterization of queries called
bisimulation invariant. In the next section we give some information on fix-
points that are used in the section that follows. There the logic PHFL is
defined. In Section 2.4 we present the descriptive complexity and the com-
plexity classes k-EXPTIME/∼ and k-EXPSPACE/∼. In the last section we
define the higher-order logic and combinations with LFP and PFP.

2.1 Bisimulation Invariance

First of all, we need the definition of labelled transition systems. A labelled
transition system is a graph with labelled vertices and edges. Formally, it is
the following.

Definition 2.1. A labelled transition system (LTS) is a quintuple T =
(Q,Σ, P,∆, v), where

• Q is a set of states,
• Σ is a finite set of actions,
• P is a finite set of propositions,
• ∆ ⊆ Q× Σ×Q is the labelled transition relation and
• v : Q→ 2P is a function that maps each state to a set of propositions.

For all q1, q2 ∈ Q and all a ∈ Σ we write q1
a→ q2 for (q1, a, q2) ∈ ∆. From

5

6 CHAPTER 2. PRELIMINARIES

now on, we assume that every LTS is a finite LTS. Finite LTS are those
where the set of states is finite.

Example 2.2. As mentioned above, an LTS can be seen as a graph with la-
belled vertices and edges. For example, an LTS is T = ({q1, q2, q3, q4, q5}, {a,
b}, {p1, p2},∆, v), where ∆ = {(q1, a, q2), (q2, a, q3), (q2, b, q3), (q2, b, q5), (q5, a,
q4), (q4, a, q3), (q4, b, q3), (q4, b, q1)}, v(q1) = v(q2) = v(q4) = v(q5) = {p1}
and v(q3) = ∅. T can be visualized as follows.

q1

p1

T :

q3

q5

p1

q2p2

a

b

b

a

q4 p2b

a

a

b

On these systems or rather on the states of the systems it is possible to de-
fine relations. The following relation describes states that have a sufficiently
similar behaviour.

Definition 2.3. Let be T1 = (Q1,Σ, P,∆1, v1) and T2 = (Q2,Σ, P,∆2, v2)
two LTS. A bisimulation is a binary relation R ⊆ Q1×Q2 that satisfies for
all (q1, q2) ∈ R:

• v1(q1) = v2(q2),
• for all a ∈ Σ and all q′1 ∈ Q1, if q1

a→ q′1, then there is a state q′2 ∈ Q2,
such that q2

a→ q′2 and (q′1, q
′
2) ∈ R and

• for all a ∈ Σ and all q′2 ∈ Q2, if q2
a→ q′2, then there is a state q′1 ∈ Q1,

such that q1
a→ q′1 and (q′1, q

′
2) ∈ R.

We call two states q1 ∈ Q1, q2 ∈ Q2 bisimilar, noted as (T1, q1) ∼ (T2, q2), if
there is a bisimulation R such that (q1, q2) ∈ R.

It is easy to prove that ∼ is an equivalence relation.

Example 2.4. Let T be like in Example 2.2. In this example, we com-
pare states of the same LTS. It holds that (T , q1) ∼ (T , q5) and (T , q2) ∼
(T , q4) because R = {(q1, q5), (q2, q4), (q3, q3)} is a bisimulation relationand
includes (q1, q5) and (q2, q4). Furthermore, it holds that (T , q5) ∼ (T , q1)
and (T , q4) ∼ (T , q2). Moreover, all reflexive pairs are bisimilar. Note that
(T , q1) 6∼ (T , q3) because v(q1) 6= v(q3) and (T , q1) 6∼ (T , q2) because q2 has
an outgoing b-transition but q1 has no b-transitions.

2.2. FIXPOINTS 7

Because ∼ is an equivalence relation that is compatible with the propo-
sitions and actions of LTS it can be used to build a factor structure over an
LTS.

Definition 2.5. Let T = (Q,Σ, P,∆, v) be an LTS and (q1, . . . , qn) ∈ Qn

an n-tuple then we call (T , q1, . . . , qn) reduced with respect to q1, . . . , qn
iff all states of T are reachable by at least one qi and ∼ coincides with
equality, where i ∈ {1, . . . , n}. For all LTS T = (Q,Σ, P,∆, v) and all tuples
of states (q1, . . . , qn) ∈ Qn we associate to (T , q1, . . . , qn) the reduced tuple
RED(T , q1, . . . , qn) by factoring T with respect to ∼, named as T∼, and
pruning all states of T∼ that cannot be reached from at least one qi. We call
the resulting graph the reduced LTS of T with respect to (q1, . . . , qn).

Furthermore, we can describe properties of LTS. Queries are one way to
describe these.

Definition 2.6. [4] An r-adic query Q is a mapping that associates to
each LTS T = (Q,Σ, P,∆, v) a subset QT of Qr such that any isomorphism
f : T → T ′ between T and another LTS T ′ maps tuples not in QT to tuples
not in QT ′ and vice versa.

One characterization of queries is called bisimulation invariant. This char-
acterization describes those queries that cannot distinguish bisimilar states.
In [4] this property is defined over so called Kripke structures. A Kripke
structure is an LTS with only one type of actions.

Definition 2.7. Let T , T ′ be two LTS with T = (Q,Σ, P,∆, v) and T ′ =
(Q′,Σ, P, ∆′, v′). Moreover, let be (q1, . . . , qr) ∈ Qr and (q1

′, . . . , qr
′) ∈ Qr ′.

A query Q is called bisimulation invariant if (T , qi) ∼ (T ′, q′i) for all
1 ≤ i ≤ r implies that (q1, . . . , qr) ∈ QT iff (q1

′, . . . , qr
′) ∈ QT ′ .

Example 2.8. [2] Let Q be a 2-adic query that maps a LTS to the set of pairs
of states that are bisimilar. As example let T the LTS from Example 2.2.
The query Q maps T to the following set of pairs:

QT = {(q1, q1), . . . , (q5, q5), (q1, q5), (q5, q1), (q2, q4), (q4, q2)}

As mentioned in Example 2.4, ∼ is an equivalence relation. It follows that
Q is bisimulation invariant.

2.2 Fixpoints

To define the polyadic higher-order fixpoint logic and the higher-order logic
with least and partial fixpoints, we examine fixpoints in general in this sec-
tion. The first fixpoint we consider is the least fixpoint.

8 CHAPTER 2. PRELIMINARIES

Definition 2.9. Let F : A→ A be an operator on a finite set A, then x ∈ A
is called a fixpoint of F if F (x) = x. Let x be a fixpoint of F and v an
partial order on A, then x is called the least fixpoint of F , abbreviated
as LFP(F), if for all other fixpoints y of F the condition x v y holds. A
fixpoint x is called the greatest fixpoint if y v x for all fixpoints y of F .

From the Knaster-Tarski Theorem [8] we know that if an operator F : A→
A is monotone and A is a complete lattice regarding to v then the least and
greatest fixpoints of F exists. F is monotone if for all x, y ∈ A if x v y then
F (x) v F (y) holds.

Example 2.10. Let T = (Q,Σ, P,∆, v) be an LTS and F : Q2 → Q2 an
operator on Q2 defined as

F (X) = {(q, p) ∈ Q2 | v(q) 6= v(p)}∪
{(q, p) ∈ Q2 | there exists a ∈ Σ with q

a→ q′ such that for all p′ ∈ Q
it holds that p

a→ p′ implies (q′, p′) ∈ X}∪
{(q, p) ∈ Q2 | there exists a ∈ Σ with p

a→ p′ such that for all q′ ∈ Q
it holds that q

a→ q′ implies (q′, p′) ∈ X}

Then LFP (F) represents all those pairs of states (q, p) such that q 6∼ p.

The following theorem shows a possibility to calculate the least fixpoint
of a monotone operator if the operating set is a complete lattice with respect
to its order.

Theorem 2.11 (Kleene Fixed-Point Theorem [9]). Let F : A → A be a
monotone operator on A and A regarding to v a complete lattice, then there
exists a finite sequence X0, . . . , Xm such that the first part X0 is the smallest
element in A with respect to v, the (i+ 1)-th part Xi+1 is F (Xi) and Xm =
Xm+1.

Next, we define the partial fixpoint. Since the LFP restricts the operator
to be monotone, the partial fixpoint need no restriction on the operator.

Definition 2.12. Let F : A→ A be an operator on a finite set A, then the
partial fixpoint of F , abbreviated as PFP(F), is defined as follows:

PFP(F) :=

{
F i+1(∅) = F i(∅), if such i ∈ {0, . . . , |A|} exists

∅, otherwise,

where F 0(∅) = ∅, F 1(∅) = F (∅), F 2(∅) = F (F (∅)), and so on.

2.3. POLYADIC HIGHER ORDER FIXPOINT LOGIC 9

Note that for monotone F holds PFP(F) equals LFP(F).

Example 2.13. Let F : P({1, . . . , n}) → P({1, . . . , n}) be an operator on
P({1, . . . , n}) defined as

F (X) = {x ∈ {1, . . . , n} | x ∈ X and there exists y ∈ {1, . . . , n} such that

y < x and y 6∈ X or

x 6∈ X and for all y ∈ {1, . . . , n} holds if

y < x then y ∈ X}.

If we see X ∈ P({1, . . . , n}) as a binary string b, where a 1 at the i-th position
means that i is in X, then F (X) returns the set Y such that the binary string
b′ of Y is b′ = b+ 1 mod n. Then PFP (F) returns ∅ because for every i it
holds that F i(∅) 6= F i+1(∅).

2.3 Polyadic Higher Order Fixpoint Logic

In this section, we present a logic with name Polyadic Higher Order Fix-
point Logic, abbreviated with PHFL, that was introduced by M. Lange and
E. Lozes in [2]. It is defined over LTS (see Definition 2.1) and extends
the polyadic modal µ-calculus [4] by higher-order fixpoints analogue to M.
Viswanathan and R. Viswanathan who extended the modal µ-calculus [10]
with higher-order fixpoints [3] and λ-calculus. The logic of M. Viswanathan
and R .Viswanathan with name higher order fixed point logic is a combina-
tion of propositional logic, modal operators and a simply typed λ-calculus
with fixed point operators.

2.3.1 Types of PHFL

Before defining formulas of PHFL we need to introduce the PHFL types.
These definitions are guided by [3] and [2].

Definition 2.14. PHFL types are given by the grammar

σ, τ ::= • | σv → τ,

where v is called variance. The variances of PHFL are defined by the
grammar

v ::= + | − | 0.

10 CHAPTER 2. PRELIMINARIES

All types will be interpreted as a partially ordered sets. Keep in mind that
partial orders are relations that are reflexive, transitive and antisymmetric.
Let A = (A,≤A) and B = (B,≤B) be two partial orders. Then A → B is
the partial order of monotone functions ordered pointwise, i.e.

A → B = {f : A→ B | for all x, y ∈ A. x ≤A y implies f(x) ≤B f(y)}

and the ordering relation is given by

f ≤A→B g iff for all x ∈ A. f(x) ≤B g(x).

Definition 2.15. Let T = (Q,Σ, P,∆, v) be an LTS and d ∈ N with d > 0,
then JτKT denotes the semantics of type τ which is defined as follows:

JτKT =

{
(P(Qd),⊆), if τ = •
((Jσ1KT)v → Jσ2KT ,≤(Jσ1KT)v→Jσ2KT), if τ = σv1 → σ2,

where for any partial order A = (A,≤A), Av = (A,≤vA) is a partial order
with ≤+

A=≤A, ≤−A= {(a, b) | (b, a) ∈≤A} and ≤0
A=≤+

A ∩ ≤
−
A.

The partial orders JτKT for any PHFL type τ are complete lattices. That
means that we have meets and joins, denoted by uJτKT and tJτKT respectively,
and least and greatest elements, denoted by ⊥JτKT and >JτKT respectively for
any subset of JτKT . This ensures that the least and greatest fixpoint over
all monotone PHFL types exist [8]. See Section 2.2 for further information
about fixpoints.

Definition 2.16. The maximal arity ma(τ) and the order ord(τ) of a
PHFL type τ are defined inductively on τ as follows:

ma(τ) =

{
1, if τ = •
max({n} ∪ {ma(τi) | 1, . . . , n}), if τ = τ1 → · · · → τn → •

ord(τ) =

{
0, if τ = •
max({1 + ord(σ1), ord(σ2)}), if τ = σ1 → σ2

2.3.2 Syntax of PHFL

Next, we want to define the syntax of PHFL formulas.

2.3. POLYADIC HIGHER ORDER FIXPOINT LOGIC 11

Definition 2.17. Let P be a set of propositions, Σ a set of actions, V =
{X1, X2, . . . } be a countably infinite set of variables and d ∈ N with d > 0,
then d-adic PHFL formulas Φ,Ψ, . . . are defined by the grammar

Φ,Ψ ::=> | pi | Φ ∨Ψ | ¬Φ | 〈a〉iΦ | {j }Φ | X |
λ(Xv : τ).Φ | Φ Ψ | µ(X : τ).Φ

where
• j = (e(1), . . . , e(d)) and e : {1, . . . , d} → {1, . . . , d},
• i ∈ {1, . . . , d}
• v is a variance,
• τ is a type,
• p ∈ P ,
• a ∈ Σ and
• X ∈ V .

For convenience, we use some other further standard connectives and op-
erators like Φ∧Ψ, [a]iΦ, νX : τ.Φ or Φ⇔ Ψ. The formulas can be thought of
as a game played by two players moving d many pebbles along the transitions
of an LTS. The two players are called Prover and Refuter. That means pi
reflects, whether the position of the i-th pebble satisfies property p. 〈a〉iΦ
means the Prover has to move the i-th pebble along an a-transition and
check whether Φ holds there. The formula {j }Φ describes that all pebbles

Figure 2.1: Derivation Rules for PHFL formulas.

Γ ` > : • Γ ` pi : •
Γ ` Φ: •

Γ ` 〈a〉iΦ: •
Γ ` Φ: •

Γ ` {j}Φ: •
Γ− ` Φ: •
Γ ` ¬Φ: •

Γ ` Φ: • Γ ` Ψ: •
Γ ` Φ ∨Ψ: •

v ∈ {+, 0}
Γ, Xv : τ ` X : τ

Γ, Xv : σ ` Φ: τ

Γ ` λ(Xv : τ).Φ: σv → τ

Γ ` Φ: σ+ → τ Γ ` Ψ: σ

Γ ` Φ Ψ: τ

Γ ` Φ: σ− → τ Γ− ` Ψ: σ

Γ ` Φ Ψ: τ

Γ ` Φ: σ0 → τ Γ ` Ψ: σ Γ− ` Ψ: σ

Γ ` Φ Ψ: τ

Γ, X+ : τ ` Φ: τ

Γ ` µ(X : τ).Φ: τ

12 CHAPTER 2. PRELIMINARIES

are moved from their current position to the position indicated by tuple j
and after that Φ has to be satisfied. The player who needs to move the
pebbles changes on negations. λ(Xv : τ).Φ is interpreted as a function that
expects arguments from (JτKT)v. We see that the formulas also have types.
Therefore, we have ensure that a formula is well-typed.

Definition 2.18. Let X1, . . . , Xn variables, Φ a PHFL formula, v1, . . . , vn
variances and τ, τ1, . . . , τn types, then Γ = Xv1

1 : τ1, . . . X
vn
n : τn is called a

type environment and Γ ` Φ: τ is called a type judgement. Let Γ− =

X
v−1
1 : τ1, . . . X

v−n
n : τn be a type environment then Γ− = X

v−1
1 : τ1, . . . X

v−n
n : τn,

where −− = +, +− = − and 0− = 0.

A type judgment is called derivable if it generates a derivation tree ac-
cording to the rules of Figure 2.1. This type system makes sure that we
do not create senseless formulas like 〈a〉ipjpk. Furthermore, it controls the
occurrences of negations and therefore guarantees monotonicity. A formula

Figure 2.2: Semantics of PHFL formulas.

JΓ ` > : •KηT =Qd

JΓ ` pi : •KηT = {(q1, . . . , qd) ∈ Qd | p ∈ v(qi)}
JΓ ` 〈a〉iΦ: •KηT = {(q1, . . . , qd) ∈ Qd | there exists

(q′1, . . . , q
′
d) ∈ JΓ ` Φ: •KηT such that

qi
a→ q′i and for all j 6= i holds qj = q′j}

JΓ ` Φ ∨Ψ: •KηT = JΓ ` Φ: •KηT t• JΓ ` Ψ: •KηT
JΓ ` ¬Φ: •KηT =Qd \ JΓ− ` Φ: •KηT

JΓ ` {j}Φ: •KηT = {(q1, . . . , qd) ∈ Qd |
(qj1 , . . . , qjd) ∈ JΓ ` Φ: •KηT }

JΓ, X : τ ` X : τKηT = η(X)

JΓ ` µ(X : τ).Φ: τKηT =
l

JτKT {X ∈ JτKT |

JΓ, X+ : τ ` Φ: τKη[X 7→X]
T ≤JτKT X}

JΓ ` λ(Xv : σ).Φ: σv → τKηT =F ∈ Jσv → τKT such that for all X ∈ JσKT .

F (X) = JΓ, Xv : σ ` Φ: τKη[X 7→X]
T

JΓ ` Φ Ψ: τKηT = JΓ ` Φ: σv → τKηT (JΓ ` Ψ: σKηT)

2.3. POLYADIC HIGHER ORDER FIXPOINT LOGIC 13

Φ is called well-typed if the type judgement ∅ ` Φ : τ is derivable for some
type τ . Note that we are only interested in well-typed formulas in this thesis.
For those formulas where the variable types are clear from context, we omit
the type of the variables.

2.3.3 Semantics of PHFL

To define the semantics of PHFL formulas we need a mapping η that asso-
ciates to each variable occurring in a formula an element of its type semantics,
i.e. η(X) ∈ JτKT for X of type τ . Let Φ be a well-typed formula of type
τ , T an LTS and η a variable mapping, then the semantics JΓ ` Φ: τKηT
are defined inductively on Φ as explained in Figure 2.2. The semantics of
JΓ ` Φ: τKηT returns an element of JτKT . Note that η[X 7→ X] is a mapping
η′ that is equal to η but η′(X) = X .

In this thesis we are interested in PHFL formulas that have a specific
order. Thus, a formula Φ has order k if k = max({ord(τ) | Ψ: τ is a subfor-
mula of Φ}). The type of a well-typed formula follows from the derivation
tree. The set of formulas that have at most order k is denoted by PHFLk.

Example 2.19. [2] The following 2-adic PHFL0 formula Φ∼ describes bisim-
ilarity i.e. it denotes those pairs (q1, q2) such that q1 ∼ q2 and vice versa.

Φ∼ = ν(X : •).
∧
a∈Σ

[a]1〈a〉2X ∧ [a]2〈a〉1X ∧
∧
p∈P

p1 ⇔ p2

Example 2.20. [2] The following 2-adic PHFL1 formula Φ describes trace
equivalence of two states in a LTS i.e. it denotes those pairs (q1, q2) for which
q1 has the same traces as q2 and vice versa.

Φ =
(
ν(F : •0 → (•0 → •)). λ(X : •). λ(Y : •).

(X ⇔ Y) ∧
∧
a∈Σ

F 〈a〉1X〈a〉2Y
)
>>

Definition 2.21. Let T be an LTS, s a state tuple, η a variable mapping,
Γ a type environment and ϕ a PHFLk formula of type • then we call T with
s a model of ϕ, written as T , s |= ϕ iff s ∈ JΓ ` ϕ : •KηT .

Remark 2.22. To simplify PHFL formulas with fixpoint and λ operators we
will use the fixpoint unfolding principle and β-reduction. As an example
for β-reduction, suppose we apply the function λ(X : •). X ∨ p1 to the value
>. To calculate the result, we substitute > for every occurrence of >, and so
the application of the function (λ(X : •). X ∨ p1)> is reduced to the result

14 CHAPTER 2. PRELIMINARIES

>∨ p1. As an example for fixpoint unfolding principle, suppose we have the
formula Φ := µ(F : • → •). λ(X : •). X ∨ F 〈a〉1X . By using the fixpoint
unfolding principle on Φ this results into X ∨ 〈a〉1X ∨ 〈a〉1〈a〉1X ∨ . . . which
can an be simplified to

∨
i≥0〈a〉1

iX. Because we work on finite structures
and the semantics of PHFL are invariant under β- reduction we can use
those procedures without loss of generality.

Finally, we take a look at r-adic queries that are associated to a closed d-
adic formula Φ. A PHFL formula Φ is closed if the type judgement ∅ ` Φ: •
is derivable.

Definition 2.23. Given d ∈ N with d > 0, a type environment Γ, a variable
assignment η and a closed d-adic PHFL formula Φ we callQrΦ the r-adic query
defined by Φ if for all LTS T , all variable mappings η and all (q1, . . . , qr) ∈
QrΦT there is a (s1, . . . , sd) ∈ JΓ ` Φ: •KηT such that qi = si for all i ∈
{1, . . . ,min({r, d})}.

For example Q2
Φ∼ is the same query as in Example 2.8, where Φ∼ is the

formula from Example 2.19.

Figure 2.3: Derivation Rules for PHFL formulas that are tail-recursive.

Ȳ ` tail(pi, X̄)

X ∈ X̄ ∪ Ȳ
Ȳ ` tail(X, X̄)

Ȳ ` tail(Φ,∅)

Ȳ ` tail(¬Φ, X̄)

Ȳ ` tail(Φ, X̄)

Ȳ ` tail({j}Φ, X̄)

Ȳ ` tail(Φ, X̄) Ȳ ` tail(Ψ, X̄)

Ȳ ` tail(Φ ∨Ψ, X̄)

Ȳ ` tail(Φ, X̄)

Ȳ ` tail(〈a〉iΦ, X̄)

Ȳ ` tail(Φ,∅)

Ȳ ` tail([a]iΦ, X̄)

Ȳ ∪ {Z} ` tail(Φ, X̄)

Ȳ ` tail(λZv : τ.Φ, X̄)

Ȳ ` tail(Φ,∅) Ȳ ` tail(Ψ, X̄)

Ȳ ` tail(Φ ∧Ψ, X̄)

Ȳ ` tail(Φ, X̄) Ȳ ` tail(Ψ,∅)

Ȳ ` tail(Φ Ψ, X̄)

Ȳ ` tail(Φ, X̄ ∪ {Z})
Ȳ ` tail(µZ : τ.Φ, X̄)

Ȳ ` tail(Φ, X̄ ∪ {Z})
Ȳ ` tail(νZ : τ.Φ, X̄)

2.4. DESCRIPTIVE COMPLEXITY 15

2.3.4 Tail-Recursive PHFL

Next, we want to define a fragment of PHFL formulas. This fragment is
called tail-recursive and ensures that some combinations of subformulas do
not appear in a PHFL formula. Therefore, let the logical connective ∧,
the modality operators [a]i and the greatest fixpoint operator ν be further
primitives of PHFL formula syntax. Intuitively, tail-recursive PHFL formulas
are PHFL formulas where all fixpoint variables neither occur freely under the
operators ¬ and [a]i nor in Ψ of formulas of the type Φ Ψ or Ψ ∧ Φ.

Definition 2.24. A closed PHFL formula Φ is called tail-recursive if ∅ `
tail(Φ,∅) is derivable from the rules of Figure 2.3.

The set of all tail-recursive PHFL formulas that have at most order k is
denoted by PHFLktail.

Example 2.25. [2] Looking at Figure 2.3, we can see that Φ1 = µX.[a]1X is
not tail recursive, because X occurs under [a]1. Moreover, Φ2 = µF.λX.(FX)
∧ (F (FX)) is not tail-recursive because F occurs on the left side of the logical
operator ∧. The second reason why Φ2 is not tail-recursive is because F also
occurs in FX of subformula F (FX). Note that all formulas that do not use
fixpoints are obviously tail-recursive. An example of a formula that uses a
fixpoint and is also tail-recursive is given by

Φ3 =
(
µF. λG.G p1

∨
a∈Σ

F (λZ. 〈a〉1GZ)
)
λX.X

and denotes those states that can reach a state where property p holds.

2.4 Descriptive Complexity

The main aim of descriptive complexity is to describe the complexity
classes known from computational complexity theory with logics. While com-
putational complexity theory distinguishes time and space classes, descrip-
tive complexity theory characterizes classes with logical resources instead of
a reference to automaton models or space and time bounds.

The first known result in the area of descriptive complexity comes from
Fagin. In 1974 he showed that the complexity class NP coincides with
∃SO [1], the existential fragment of second-order logic.

To describe complexity classes with logics we have to explain what com-
plexity classes are from the viewpoint of computational complexity theory.
One way to describe complexity classes is with the help of Turing Ma-
chines [11]. A Turing Machine is a theoretical model of a machine with

16 CHAPTER 2. PRELIMINARIES

a reading head moving over a tape with symbols. The reading head of those
machines is positioned always over one cell of this tape and scans the symbol
of the current cell. After scanning the symbol, the machine is able to over-
ride the symbol and move the reading head one cell left, right or stand still.
Formally, a Turing Machine is the following.

Definition 2.26. A Deterministic Turing Machine(DTM) is a seven-
tuple M = (Q,Σ,Γ, δ, q0,�, F, R) , where

• Q is the finite set of states,
• Σ is the input alphabet,
• Γ is the working alphabet with Σ ⊂ Γ,
• δ : (Q \ (F ∪R))× Γ→ Q× Γ× {L,R,N} is the transition function,
• q0 ∈ Q is the initial state,
• � ∈ Γ \ Σ is the blank symbol,
• F ⊆ Q is the set of accepting states and
• R ⊆ Q,F ∩R = ∅ is the set of rejecting states.

Example 2.27. As an example for a DTM let

M = ({q0, qf , qr}, {a, b}, {a, b,�}, δ, q0,�, {qf}, {qr})

where δ(q0, a) = (q0,�, R), δ(q0, b) = (qr, b, L), δ(q0,�) = (qf ,�, N). M is
a DTM that accepts all input words that contain no symbol b, i.e. L(M) =
{a}∗.

Configurations are snapshots of DTM s working on an input word. This
includes the working tape, the current state and the current position of the
reading head. Formally, CM = (q, h, t) is called a configuration of a DTM
M = (Q,Σ,Γ, δ, q0,�, F) of the computation on some input word, where
q ∈ Q is the current state, h ∈ N is the reading head position and t : N→ Γ
represents the full tape content. In addition, t(i) represents the content of
tape cell i.

Definition 2.28. Let CM
i = (qi, hi, ti), C

M
j = (qj, hj, tj) be two configura-

tions of a DTM M = (Q,Σ,Γ, δ, q0,�, F, R) with i 6= j. CM
j is the next

configuration of CM
i written as CM

i →M CM
j iff

• j = i+ 1,
• hj = hi + d,
• tj(hi) = a, tj(k) = ti(k), k 6= hi,
• δ(qi, ti(hi)) = (qj, a,D)

where D ∈ {L,R,N} and d is −1, 1 or 0 if D is L, R or N , respectively.
CM
i →M CM

j is called a transition of M .

2.4. DESCRIPTIVE COMPLEXITY 17

The start configuration for an input word w = a1 . . . an of a DTM M is
(q0, 0, h0), where q0 is the initial state of M and h0(k) = ak for 1 ≤ k ≤ n
and h0(l) = � for l 6= k. A run of DTM M on input word w is a sequence
of transitions, CM

0 →M CM
1 →M CM

2 →M A run of DTM M on input
word w is terminating, if there is a configuration CM such that the state of
CM is either an accepting or rejecting state of M . A run is accepting if the
state of CM is an accepting state of M .

Example 2.29. Let M be the DTM from Example 2.27 and w1 = aaba,
w2 = aaaa two input words. For better readability we illustrate tape content
functions as infinite words. The run of M on w1 is

CM
0 = (q0, 0, aaba� · · ·)→M (q0, 1,�aba� · · ·)→M (q0, 2,��ba� · · ·)

→M (qr, 1,��ba� · · ·) = CM
3

and the run of M on w2 is

CM
0 = (q0, 0, aaaa� · · ·)→M (q0, 1,�aaa� · · ·)→M (q0, 2,��aa� · · ·)

→M (q0, 3,���a� · · ·)→M (q0, 4,����� · · ·)
→M (qf , 4,����� · · ·) = CM

5

Note that both runs are terminating. The run on input word w2 is an accept-
ing run whereas the run on input word w1 is a rejecting one.

Note that it is possible to define DTM s that do not accept or reject any
input words. For example, let M = ({q0}, {a}, {a,�}, δ, q0,∅,∅), where
δ(q0, x) = (q0, x,N) with x ∈ {a,�}. M is a DTM where any calculation
of an input word w looks as follows q0w →M q0w →M It never reaches
an accepting or rejecting state. In this thesis, we are only interested in
DTM s that reach an accepting or rejecting state in finite time on any input
word. Those DTM s we are calling terminating DTM s. Any terminating
DTM = {Q,Σ,Γ, δ, q0, F, R} decides a problem, where a problem is a subset
of Σ∗.

Known from computational complexity theory [7], the time and space
classes can be defined by functions. These functions take as input a natural
number that represents the length of an input word of a terminating DTM .
In case of time classes the output of the functions depends on the number
of configuration steps. In case of space classes the output is based on the
longest transition.

Definition 2.30. Let M be a terminating DTM . TIME (n) := max(STEPS
(w) | |w| = n), where STEPS (w) is the number of transitions of M run-
ning on input word w. SPACE (n) := max(STORAGE (w) | |w| = n),

18 CHAPTER 2. PRELIMINARIES

where STORAGE (w) := max(hi | i ∈ {1, . . .m} and CM
i = (qi, hi, ti))

is the rightmost head position of M while M runs on input word w and
CM

0 →M CM
1 →M · · · →M CM

m is this run of M on w.

Example 2.31. Let w1 and w2 be the two words from Example 2.29 and M
the terminating DTM of Example 2.27. It is easy to see that STEPS (w1) =
3, STEPS (w2) = 5, STORAGE (w1) = 2 and STORAGE (w1) = 4 for M
running on w1 and w2. Because the maximal number of steps for an input
word of length 4 occurs if the input word consists only of symbol a, it holds
that TIME (4) = 5 or more general that TIME (n) = n + 1. SPACE (n) = n
holds, because the length of the input word will only shrink and we do not
move to the right side of the word.

It is possible to group the DTM s by functions. These groups are the com-
putational complexity classes. In this thesis we are interested in exponential
time classes and exponential space classes.

Definition 2.32. Let f : N → N be a polynomial function, then exp :
N× N→ N is a function defined inductive as follows:

• exp(0, f(n)) = f(n),
• exp(i, f(n)) = 2exp(i−1,f(n)) for i ≥ 1.

With the help of the function exp, we are able to define the complexity
classes k-EXPTIME and k-EXPSPACE for all k ≥ 1.

Definition 2.33. k-EXPTIME is the set of all those problems P where a
DTM M and a polynomial function f : N→ N exist such that M can decide
P in TIME (exp(k, f(n))). k-EXPSPACE is the set of all those problems Q
where a DTM M and a polynomial function f : N → N exist such that M
can decide Q in SPACE (exp(k, f(n))).

Keep in mind that TIME is the maximal number of transitions and
SPACE the longest configuration of a DTM when running on an input word.

An example for a problem that is in 1-EXPSPACE is the problem to
recognize if two regular expressions represent different languages [12]. To
check if a DTM holds in at most k steps is a problem that lies in 1-EXPTIME.
In [13] it was proven that the model checking problem for HFLk+1

tail is in k-
EXPSPACE. HFLk+1

tail is the class of all tail-recursive 1-adic PHFL formulas
with order at most k + 1. See Section 2.3 for further information about
PHFL.

As mentioned in Section 2.1 the queries defined in Definition 2.6 can be
categorized. The first category is defined in Definition 2.7. Here we define
a second category that describes which complexity class a query belongs to.

2.4. DESCRIPTIVE COMPLEXITY 19

Because the queries are defined over LTS and the DTMs in this definition
have to work on LTS, a standardized encoding of these LTS has to be used
as input word. This standardized encoding transforms a given LTS with a
tupel of states to a readable string.

Definition 2.34. Let T be an LTS with T = (Q,Σ, P,∆, v) and (q1, . . . , qr) ∈
Qr. A query Q belongs to complexity class C if there is a DTM (see Defini-
tion 2.26) in C for deciding on the standardized encoding of (T , (q1, . . . , qr))
as input whether (q1, . . . , qr) ∈ QT .

Example 2.35. [2] Let Q be the query and T the LTS of Example 2.8.
Because bisimilarity can be decided in P1, there is an algorithm in P for
deciding on input (T , (q1, q2)) whether (q1, q2) ∈ QT that means Q belongs to
complexity class P.

From Definition 2.7, Definition 2.34 and the complexity classes k-EXP-
TIME and k-EXPSPACE of Definition 2.33 the queries we want to investigate
can be desired.

Definition 2.36. k-EXPTIME/∼ are the bisimulation invariant queries that
belong to complexity class k-EXPTIME and k-EXPSPACE/∼ are the bisim-
ulation invariant queries that belong to complexity class k-EXSPACE, where
k ≥ 0.

In the introduction of this section, we mentioned that the main aim of
descriptive complexity is to describe complexity classes with logics. The next
definition defines how a complexity class is captured by a logic.

Definition 2.37. A complexity class C is captured by a logic L if for all
queries Q that belongs to C there is a formula Φ of L such that for all
LTS T = (Q,Σ, P,∆, v) there is a variable mapping η and it holds that
(q1, . . . , qr) ∈ QT iff (q1, . . . , qr) ∈ JΦKηT , where q1, . . . , qr ∈ Q and JΦKηT is
the semantics of Φ under T and η.

1Bisimilarity between two states can be checked by a special kind of breadth-first search.
We assume that all states are bisimilar and removing all those pairs where the states have
not the same properties. The resulting set is called R. On each step we check any pair of
R. Any pair (q, p) has to satisfy the following. If looking at q all possible actions leading
to any state q′ can also be duplicated from p with same action leading to a state p′ and
(q′, p′) is in R. The same will be checked looking at the right state first. If the pair (q, p)
does not satisfy these conditions it will be removed from R. This iteration proceeds as
long as at least one pair is removed from R. Note that the state set of an LTS is finite.
Those cardinality let be denoted with n. Since on each iteration process at least one tuple
will be removed this process terminates after a finite amount of steps. In more detail the
algorithm checks in the first step n2 tuples, in the second n2 − 1 and so on. In worst case
that is a total of (n4 + n2)/2 checks.

20 CHAPTER 2. PRELIMINARIES

2.5 Higher Order Logic

For comparing the complexity classes with PHFL, we use combinations of
extensions of FO as intermediate logics. The first well known extension is
called Higher Order Logic [14], abbreviated with HO. In HO we increase the
expressive power of FO by allowing quantification over relations of any order.
Therefore, we have to define the types of higher order variables.

2.5.1 Syntax of HO

Definition 2.38. An HO type τ is defined inductively as follows

τ ::= � or τ := (τ ′, . . . , τ ′),

where τ ′ is also an HO type.

The HO type of individuals is τ = �. These objects have order 1. The
HO type τ = (τ ′, . . . , τ ′) is that of relations between objects of HO type τ ′

and has order 1+order(τ ′). For each HO type we have a countable infinite set
of variables. Furthermore, let σ be a signature over a relational vocabulary
i.e. σ only contains relation symbols.

Definition 2.39. Let V = {X1, X2, . . . } a countable infinite set of variables,
P a set of propositions and Σ a set of actions, then HO formulas over P
and Σ are defined by the grammar

Φ,Ψ ::= p(X1) | a(Y1, Y2) | Y (Z1, . . . , Zn) | ¬Φ | Φ ∨Ψ | ∃(X : τ).Φ

where
• p ∈ P and X1 ∈ V of HO type �,
• a ∈ Σ and Y1, Y2 ∈ V of HO type �,
• Y ∈ V of HO type (τ ′, . . . , τ ′) and Z1, . . . , Zn ∈ V of HO type τ ′ and
• X ∈ V of HO type τ .

2.5.2 Semantics of HO

At first, we define the universes of the different HO types.

Definition 2.40. Let T = (Q,Σ, P,∆, v) be an LTS then the universes of
the HO types are defined inductively as follows:

• D�(Q) = Q,
• D(τ,...,τ)(Q) = P(Dτ (Q)n),

where (τ, . . . , τ) is a n-tuple of type τ .

2.5. HIGHER ORDER LOGIC 21

Moreover, η is a variable mapping that assigns every variable to an ele-
ment of the appropriate universe, i.e. if variable X is of HO type τ , then
η(X) ∈ Dτ (Q). With η[X → X], where X ∈ Dτ (Q) and X of HO type τ ,
we mean the variable assignment η′, where η′(X) = X and η′(Y) = η(Y) for
all Y 6= X.

Definition 2.41. Let T = (Q,Σ, P,∆, v) be an LTS and η a variable map-
ping over universe Q. The semantics of an HO formula is defined inductively
as follows:

• T , η |= p(X1) iff p ∈ v(η(X1)),
• T , η |= a(Y1, Y2) iff (η(Y1), a, η(Y2)) ∈ ∆,
• T , η |= Y (Z1, . . . Zn) iff (η(Z1), . . . η(Zn)) ∈ η(Y),
• T , η |= ¬Φ iff T , η 6|= Φ,
• T , η |= Φ ∨Ψ iff T , η |= Φ or T , η |= Ψ,
• T , η |= ∃(X : τ).Φ iff there exists X ∈ Dτ (Q) with T , η[X → X] |= Φ

We can categorize the formulas by the order of all occurring variables.
With HOk we mean the set of all those formulas whose variables have order
less or equal k. Similar to Definition 2.23 we define r-adic queries that are
defined by HO formulas with f free first-order variables.

Definition 2.42. Given a set of propositions P , a set of actions a and a
closed HO formula Φ with free first-order variables X1, . . . , Xf we call QrΦ
a r-adic query defined by Φ if for all LTS T , all variable mappings η and
all (q1, . . . , qr) ∈ QrΦT there is a T , η |= Φ such that qi = η(xi) for all
i ∈ {1, . . . ,min({r, f})}.

Finally, we define bisimulation-invariant HO formulas.

Definition 2.43. Given an HO formula Φ with f free first-order variables
and the f -adic query QfΦ defined by Φ then we call Φ bisimulation-invariant
if QrΦ is bisimulation-invariant.

2.5.3 HO + LFP

Another possibility to extend FO is to add operators that are not expressible
in FO. Here, we are interested in two of them, the least fixpoint and the
partial fixpoint operator. Instead of defining the operators for FO we want to
define these operators for HO. At first, we regard the least fixpoint operator.
Like in [5] we want to define special operators that are working on HO type
universes.

22 CHAPTER 2. PRELIMINARIES

Definition 2.44. Let P be an set of propositions, Σ a set of actions, X
a relation variable of HO type τ = (τ ′, . . . , τ ′), τ ′ an arbitrary HO type,
X1, . . . Xn variables of HO type τ ′ and ϕ(X,X1, . . . , Xk) a formula over P
and Σ with free variables X,X1, . . . , Xk. For each LTS T with state set
Q and each variable mapping η, the formula ϕ(X,X1, . . . , Xk) induces the
operator

F T ,ηΦ : P(Dτ (Q)) −→P(Dτ (Q))

A 7−→ F TΦ (A) := {(A1, . . . , An) | T , η |= ϕ(A,A1, . . . , An)}

where A1 . . . , An ∈ Dτ ′(Q).

To make F T ,ηΦ monotone we have to restrict ϕ(X,X1, . . . , Xk) in a way
that variable X occurs under an even number of negations within of Φ [5].
Those formulas are called positive in X. Therefore, we are able to define the
least fixpoint operator for HO formulas, denoted by HO(LFP).

Definition 2.45. Let P be a set of propositions and Σ a set of actions.
The set of HO(LFP) formulas enhances the set of HO formulas with the
following formation rule:

• [LFP Φ(X,X1, . . . , Xn)](V1, . . . , Vn) is an HO (LFP) formula over P
and Σ with free variables V1, . . . , Vn iff Φ(X,X1, . . . , Xn) is an HO(LFP)
formula with free variables X,X1, . . . , Xn, if Φ is positive in X, variable
X has HO type τ = (τ ′, . . . , τ ′) and X1, V1, . . . , Xn, Vn have HO type
τ ′.

Similar to HOk, the set HO(LFP)k denotes all those HO(LFP) formulas
whose variables have types of order less or equal k with one exception: The
variable X occurring in formulas of kind [LFP ϕ(X, x1, . . . , xn)](v1, . . . , vn)
is the only one that can have a type of an order k + 1.

Definition 2.46. Let T be an LTS and η a variable mapping over universe Q.
The semantics of an HO formula are extended to the semantics of HO(LFP)
via the following definition:

• T , η |= [LFP ϕ(X,X1, . . . , Xn)](V1, . . . , Vn) iff (η(V1), . . . , η(Vn)) ∈
LFP (F T ,ηϕ).

Example 2.47. Let T = (Q,Σ, P,∆, v) be an LTS. Furthermore, let

Φ(X,X1, X2) =
∨
p∈P

(
p(X1) 6= p(X2)

)
∨
∨
a∈Σ

(
∃(Y1 : �). a(X1, Y1) ∧ ∀(Y2 : �). a(X2, Y2)⇒ X(Y1, Y2)

)
∨
∨
a∈Σ

(
∃(Y2 : �). a(X2, Y2) ∧ ∀(Y1 : �). a(X1, Y1)⇒ X(Y1, Y2)

)

2.5. HIGHER ORDER LOGIC 23

be an HO2 formula with free first-order variables x1 and x2 and free second-
order variable X. Then LFP (F T ,ηΦ) describes the same set as in Exam-
ple 2.10, the set of all those pairs of states (q, p) in T such that q 6∼ p holds.
With [LFP Φ(X,X1, X2)](q, p) we can check if q 6∼ p, where q, p ∈ Q.

2.5.4 HO + PFP

Next, we define the partial fixpoint operator for HO formulas [15]. While
the LFP operator restricts formulas to be positive in a variable, the partial
fixpoint operator does not have any restriction. Therefore, we can define and
add the partial fixpoint operator to HO formulas, denoted as HO(PFP).

Definition 2.48. Let P be a set of propositions and Σ a set of actions.
The set of HO(PFP) formulas enhances the set of HO formulas with the
following formation rule:

• [PFP Φ(X,X1, . . . , Xn)](V1, . . . , Vn) is an HO (PFP) formula over P
and Σ with free variables V1, . . . , Vn iff Φ(X,X1, . . . , Xn) is an HO(PFP)
formula with free variables X,X1, . . . , Xn, where X has HO type τ =
(τ ′, . . . , τ ′) and X1, V1, . . . , Xn, Vn have HO type τ ′.

HO(PFP)k denotes the set of all those HO(PFP) formulas whose vari-
ables have types of order less or equal k with one exception: The variable X
occurring in formulas of kind [PFP ϕ(X,X1, . . . , Xn)](V1, . . . , Vn) is the only
one that can have a type of an order k + 1.

Definition 2.49. Let T be an LTS and η a variable mapping over universe Q.
The semantics of an HO formula are extended to the semantics of HO(PFP)
via the following definition:

• T , η |= [PFP ϕ(X,X1, . . . , Xn)](V1, . . . , Vn) iff (η(V1), . . . , η(Vn)) ∈
PFP (FA,ηΦ).

Example 2.50. Let T = (Q, {a}, P,∆, v) be an LTS with Q = {1, . . . , n}
and ∆ = {(x, a, y) | x, y ∈ Q and x < y}. Furthermore, let

Φ(X,X1) = X(X1) ∧ ∃(X2 : �). a(X2, X1) ∧X(X2)∨
¬X(X1) ∧ ∀(X2 : �). a(X2, X1)⇒ X(X2)

be an HO1 formula. Then F T ,ηΦ describes the same operator as in Exam-
ple 2.13 and therefore PFP (FA,ηΦ) = ∅ holds. Note that T , η 6|= [PFP Φ(X,
X1)](V1) for any variable mapping η.

24 CHAPTER 2. PRELIMINARIES

Chapter 3

Upper Bounds

In this chapter we regard the upper bounds of the expressive power of PHFLk

and PHFLktail. First, we have to show that the upper bound of the expressive
power of PHFLk is k-EXPTIME/∼.

3.1 Upper Bound of PHFLk

To show that the upper bound of the expressive power of PHFLk is k-
EXPTIME/∼ we reduce the model checking problem of PHFLk that to HFLk.
Remember that HFLk is the set of 1-adic PHFLk formulas. In combination
with Theorem 3.1 we get the upper bound of the expressive power of PHFLk.

Theorem 3.1. [16] The model checking problem of HFLk is solvable in k-
EXPTIME, i.e. on input T , s and Φ it is decidable in k-EXPTIME whether
T , s is a model of Φ, where T is an LTS, s is a state and Φ in HFLk.

In the following, we have to reduce the semantics of PHFLk to that of
HFLk. Thus, we have to convert the input LTS T and the input PHFLk

formula Φ of the problem of deciding whether T with a state tuple s is a
model of Φ. We first define a mapping that transforms an LTS into the d-fold
product of itself, where d ∈ N and give an example for this transformation
process. In the next step we define a function that maps a PHFLk type to an
HFLk type. We then continue to define one additional function that maps a
PHFLk formulas to HFLk formulas and give an example for such a mapping.
Finally, we show that the semantics of the original formula with the original
types and the original LTS in the PHFLk context coincide with the semantics
of the converted formula with the converted types and the converted LTS in
the HFLk context1.

1Because the new LTS will have as underlying set d-tuples of states of the original LTS,

25

26 CHAPTER 3. UPPER BOUNDS

As mentioned above we do start by defining a mapping that transforms
a given LTS.

Definition 3.2. Let d ∈ N and T = (Q,Σ, P,∆, v) an LTS, then Td =
(Qd,Σd ∪ Sd, Pd,∆d, vd), where

• Σd =
⋃
a∈Σ

(
d⋃
i=1

{ai}),

• Sd = {s(e(1),...,e(d)) | e : {1, . . . d} → {1, . . . , d}},

• Pd =
⋃
p∈P

(
d⋃
i=1

{pi}),

• ∆d = {((q1, . . . , qi−1, qi, qi+1, . . . , qd), ai, (q1, . . . , qi−1, qi
′, qi+1, . . . , qd)) |

(qi, a, qi
′) ∈ ∆}

∪ {((qe(1), . . . , qe(d)), s(e(1),...,e(d)), (q1, . . . , qd)) |
e : {1, . . . , d} → {1, . . . , d}} and

• vd : Qd → 2Pd , vd((q1, . . . , qd)) =
d⋃
i=1

{pi | p ∈ v(qi)}.

The following example shows the construction of an LTS as described in
Definition 3.2.

Example 3.3. Let T be an LTS given by

1T :

2p

a

3 qb

c

Let d = 2 be a natural number then Td is the LTS at Figure 3.1. Note that
for readability reasons not all edges are drawn in this representation of Td.
The edges that are missing are those that uses action s(1,2) (except (1, 1) to

(1, 1)) and the following edges are also not drawn {(1, 2)
s(1,1)→ (1, 1), (1, 3)

s(1,1)→
(1, 1), (1, 3)

s(2,1)→ (3, 1), (2, 1)
s(2,2)→ (1, 1), (2, 2)

Sd→ (2, 2), (2, 3)
s(2,1)→ (3, 2), (3, 1)

s(2,1)→ (1, 3), (3, 1)
s(2,2)→ (1, 1), (3, 2)

s(2,1)→ (2, 3), (3, 3)
Sd→ (3, 3), (1, 2)

b1→ (3, 2),

(1, 3)
b1→ (3, 3), (2, 1)

b2→ (2, 3), (3, 1)
b2→ (3, 3)}, where q

Sd→ q′ = {q a→ q′ | a ∈
Sd}.

The next step is to define a function that maps a PHFL type to an HFL
type.

the semantics of both logics represents the same mathematically object.

3.1. UPPER BOUND OF PHFLK 27

Figure 3.1: Construction of an LTS for d = 2 with respect to Definition 3.2.

(1, 1)

Sd

Td : (1, 2)

p2

a2
(1, 3)

q2

c2

b2

(2, 1)p1

s(2,1)

s(2,1)

a1

(2, 2) p1, p2
a2, s(1,1)

a1, s(2,2)

(2, 3) p1, q2

c2

s(1,1) a1

(3, 1)

q1

b1

c1

(3, 2)

q1, p2

a2

c1 s(2,2)

(3, 3)

q1, q2

c2, s(1,1)

c1, s(2,2)

s(2,2)

s(1,1)

Definition 3.4. Let τPHFL, σPHFL be arbitrary PHFL types, •PHFL the base
type of PHFL, •HFL the base type of HFL and v an arbitrary variance, then
T is a function that maps a PHFL type to an HFL type defined inductive
over the type of PHFL as follows:

T (•PHFL) = •HFL,
T (σvPHFL → τPHFL) = T (σPHFL)v → T (τPHFL)

The type function T of Definition 3.4 can be adapted on type environ-
ments. If Γ = Xv1

1 : τ1, . . . , X
vn
n : τn is a type environment, then T (Γ) =

Xv1
1 : T (τ1), . . . , Xvn

n : T (τn).

Definition 3.5. Let T be an LTS, d ∈ N with d > 0 and Td the transformed
LTS by Definition 3.2 and T the type mapping of Definition 3.4. Furthermore,
let η be a variable mapping over T for PHFL formulas, then V (η) is a variable
mapping over Td for HFL formulas, where V (η)(X) = η(X) = X with X ∈
JτKT . Note that for X it holds that X ∈ JτKT iff X ∈ JT (τ)KTd due to the
definition of Td and T (τ).

We continue with the definition of the function that maps a PHFLk for-
mula to an HFLk formula.

28 CHAPTER 3. UPPER BOUNDS

Definition 3.6. Let T be the type function from Definition 3.4 and let P
be a set of propositions, Σ a set of actions and V = {X1, . . . , Xn} a finite set
of variables for a d-adic PHFLk formula Φ, then F is a function that maps a
d-adic PHFLk formula over P , Σ and V to an HFLk formula over proposition

set Pd =
⋃
p∈P

(
d⋃
i=1

{pi}), action set Σd ∪ Sd =
⋃
a∈Σ

(
d⋃
i=1

{ai}) ∪ {s(e(1),...,e(d)) | e :

{1, . . . d} → {1, . . . , d}} and variable set V which is defined inductive over
the d-adic PHFLk formula as follows:

F (>) = >
F (X) = X

F (pi) = pi

F (〈a〉iψ) = 〈ai〉F (ψ)

F (ψ ∨ ψ′) = F (ψ) ∨ F (ψ′)

F (¬ψ) = ¬F (ψ)

F ({j }ψ) = 〈sj〉F (ψ)

F (µ(X : τ). ψ) = µ(X : T (τ)). F (ψ)

F (λ(Xv : τ). ψ) = λ(Xv : T (τ)). F (ψ)

F (ψ ψ′) = F (ψ)F (ψ′)

Example 3.7. We transform the 2-adic PHFL2 formula of Example 2.20
with the function of Definition 3.6 to an HFL2 formula.

Φ =(µ(F : •0
PHFL → (•0

PHFL → •PHFL)). λ(X : •PHFL). λ(Y : •PHFL).

X ⇔ Y ∧
∧
a∈Σ

F 〈a〉1X〈a〉2Y)>>

will be transformed to

F (Φ) =(µ(F : •0
HFL → (•0

HFL → •HFL)). λ(X : •HFL). λ(Y : •HFL).

X ⇔ Y ∧
∧
a∈Σ

F 〈a1〉X〈a2〉Y)>>.

Remark 3.8. It holds for type environment Γ and PHFLk formula Φ of PHFLk

type τ that if Γ ` Φ: τ is derivable, then T (Γ) ` F (Φ) : T (τ) is also deriv-
able. This statement can easily be proven by induction over the structure of
formula Φ.

Because the type judgement is always derivable we ignore the type envi-
ronment in the following proof and write just JΦKηT instead of JΓ ` Φ: τKηT ,
where Φ is a PHFL formula, η is a variable mapping, T is an LTS, Γ is a
type environment and τ is a PHFL type.

3.1. UPPER BOUND OF PHFLK 29

3.1.1 Correctness Proof

In the final step we show that the semantics of a given PHFLk formula
coincides with the transformed HFLk formula.

Lemma 3.9. Let T be an LTS, η a variable mapping, Φ a well-typed d-adic
PHFLk formula, Td the LTS transformed by the process of Definition 3.2,
T the type function of Definition 3.4, V the variable mapping function of
Definition 3.5 and F the formula function of Definition 3.6 then JΦKηT =

JF (Φ)KV (η)
Td

Although it looks unexpected this is exactly the statement that we have
to prove. The semantics of a PHFL formula is a set of tuples but in the HFL
formula this is just a set. Because this set is the set of states of Td and this
is a set of tuples, the both semantics operates on the same kind of sets.

Proof. We show that JΦKηT = JF (Φ)KV (η)
Td by induction on formula Φ.

• In case of Φ = >, JΦKηT is the set of d-tuples of state set Q of T what
means that

JΦKηT = Qd.

By construction of Td the set of states is also the set of d-tuples of state
set Q. Moreover, due to formula function F it is true that F (>) = >.
It holds that

JF (Φ)KV (η)
Td = Qd

because the set of states of Td is Qd.
• In case of Φ = pi,

JΦKηT = {(q1, . . . , qd) ∈ Qd | p ∈ v(qi)}.

By construction of Td it holds that vd((q1, . . . , qd)) =
d⋃
i=1

{pi | p ∈ v(qi)}

and by formula function F it is true that F (pi) = pi. Because pi ∈
vd((q1, . . . , qd)) iff p ∈ v(qi) it holds that

JF (Φ)KV (η)
Td = {(q1, . . . , qd) ∈ Qd | pi ∈ vd((q1, . . . , qd))}

and furthermore that

{(q1, . . . , qd) ∈ Qd | p ∈ v(qi)}

is equal to

{(q1, . . . , qd) ∈ Qd | pi ∈ vd((q1, . . . , qd))}.

30 CHAPTER 3. UPPER BOUNDS

• The last base case is Φ = X. It holds that

JΦKηT = η(X).

Moreover, it is true that

JF (Φ)KV (η)
Td = V (η)(X).

By definition of the function F it is also true that F (X) = X. The
combination of construction Td, type function T and by construction
of variable mapping V (η) in Definition 3.5 it follows that V (η)(X) =
η(X).

The induction hypothesis is that it holds for all subformulas ψ and ψ′ of Φ
that JψKηT = JF (ψ)KV (η)

Td and Jψ′KηT = JF (ψ′)KV (η)
Td

• In case of Φ = 〈a〉iψ,

JΦKηT = {(q1, . . . , qd) ∈ Qd |
there exists (q1

′, . . . , qd
′) ∈ JΓ ` ψKηT such that

qi
a→ qi

′ and for all i 6= j it holds that qj = qj
′}.

By the induction hypothesis (q1
′, . . . , qd

′) ∈ JF (ψ)KV (η)
Td because (q1

′, . . . ,

qd
′) ∈ JψKηT . Based on construction of Td and qi

a→ qi
′ ∈ ∆ it follows

that (q1
′, . . . , q′i−1, qi, q

′
i+1, . . . , qd

′)
ai→ (q1

′, . . . , q′i−1, qi
′, q′i+1, . . . , qd

′) ∈
∆d. That means that

{(q1, . . . , qd) ∈ Qd | there exists (q1
′, . . . , qd

′) ∈ JψKηT such that

qi
a→ qi

′ and for all i 6= j it holds that qj = qj
′}

is equal to

{(q1, . . . , qd) ∈ Qd | there exists (q1
′, . . . , qd

′) ∈ JF (ψ)KV (η)
Td such that

qi
ai→ qi

′ and for all i 6= j it holds that qj = qj
′}.

As a result of of T , V and that F (〈a〉iψ) = 〈ai〉ψ holds the second set
is exactly the definition of the semantics of

JF (Φ)KV (η)
Td .

• In case of Φ = ψ ∨ ψ′,

JΦKηT = JψKηT t• Jψ′KηT .

3.1. UPPER BOUND OF PHFLK 31

By the induction hypothesis it holds that

JF (ψ)KV (η)
Td = JψKηT

and
JF (ψ′)KV (η)

Td = Jψ′KηT .

By construction of T it is true that

JF (ψ)KV (η)
Td tT (•) JF (ψ′)KV (η)

Td

is equal to
Jψ : τKηT t• Jψ′KηT .

Because F (ψ ∨ ψ′) = F (ψ) ∨ F (ψ′) one can see that

JF (Φ)KV (η)
Td

is equal to
JF (ψ)KV (η)

Td tT (•) JF (ψ′)KV (η)
Td .

• In case of Φ = ¬ψ,
JΦKηT = Qd \ JψKηT .

By the induction hypothesis it holds that

JF (ψ)KV (η)
Td = JψKηT .

Due to the equality of the two sets it follows that

Qd \ JF (ψ)KV (η)
Td = Qd \ JψKηT .

Since F (¬ψ) = ¬F (ψ) the first set is exactly the semantics of

JF (Φ)KV (η)
Td .

• In case of Φ = {(e(1), . . . , e(d))}ψ,

JΦKηT = {(q1, . . . , qd) ∈ Qd |
(qe(1), . . . , qe(d)) ∈ JψKηT }.

By the induction hypothesis (qe(1), . . . , qe(d)) ∈ JF (ψ)KV (η)
Td because (qe(1),

. . . , qe(d)) ∈ JψKηT . Moreover, the state tuple (qe(1), . . . , qe(d)) that fulfills
ψ is reached by ’moving’ from state tuple (q1, . . . , qd) to (qe(1), . . . , qe(d)).
This movement is integrated in the construction of Td. There exists for
each endomorphism e a substitution action s(e(1),...,e(d)) for each tuple

32 CHAPTER 3. UPPER BOUNDS

state. With F ({(e(1), . . . , e(d))}ψ) = 〈s(e(1),...,e(d))〉F (ψ) we receive the

state tuples that have the action (q1, . . . , qd)
s(e(1),...,e(d))→ (qe(1), . . . , qe(d))

where (q1, . . . , qd) ∈ JF (ψ)KV (η)
Td . It follows that

JΦKηT = JF (Φ)KV (η)
Td .

• In case of Φ = µ(X : τ). ψ,

JΦKηT =
l

JτKT {X ∈ JτKT | JψKη[X 7→X]
T ≤JτKT X}.

By the induction hypothesis it applies that

JF (ψ)KV (η)[X 7→X]
Td = JψKη[X 7→X]

T .

Moreover, F (µ(X : τ).ψ) = µ(X : T (τ)).F (ψ). In particular, it holds
that

JΦKηT =
l

JτKTd
{X ∈ JτKTd |

JF (ψ)KV (η)[X 7→X]
Td ≤JτKTd

X}.

This is exactly the semantics of

JF (Φ)KV (η)
Td .

• In case of Φ = λ(Xv : σ). ψ,

JΦ: σv → τKηT =F ∈ Jσv → τKT

such that for all X ∈ JσKT it holds that F (X) = Jψ : τKη[X 7→X]
T . By the

induction hypothesis it is true that

JF (ψ) : T (τ)KV (η)[X 7→X]
Td = Jψ : τKη[X 7→X]

T .

Moreover, F (λ(Xv : σ).ψ) = λ(Xv : T (σ)).F (ψ). Consequently it holds
that

JΦ: σv → τKηT =F ∈ JT (σv → τ)KTd

such that for all X ∈ JT (σ)KTd the following is true

F (X) = JF (ψ) : T (τ)KV (η)[X 7→X]
Td .

This is exactly the semantics of

JF (Φ) : T (σv → τ)KV (η)
Td .

3.1. UPPER BOUND OF PHFLK 33

• In case of Φ = ψ ψ′,

JΦ: τKηT = Jψ : σv → τKηT (Jψ′ : σKηT).

By the induction hypothesis it applies that

JF (ψ) : T (σv → τ)KV (η)
Td = JΓ ` ψ : σv → τKηT

and
JF (ψ′) : T (σ)KV (η)

Td = JΓ ` ψ′ : σKηT .

It follows that

JF (ψ) : T (σv → τ)KV (η)
Td (JF (ψ′) : T (σ)KV (η)

Td

is equal to
Jψ : σv → τKηT (Jψ′ : σKηT).

Because F (ψ ψ′) = F (ψ)F (ψ′) the first set is equal to the semantics of

JF (Φ) : T (τ)KV (η)
Td .

This shows the correctness of the construction.

To make sure that this construction does not exceed the bounds of HFLk

we have to verify that the growth of the defined construction is at most poly-
nomially. Thereafter it is proven that the semantics of PHFLk is reducible
to the semantics of HFLk.

Lemma 3.10. Let T = (Q,Σ, P,∆, v) be an LTS, η a variable mapping,
Γ a type environment, Φ a well-typed d-adic PHFLk formula of type τ , Td
the LTS transformed by the process of Definition 3.2, T the type function of
Definition 3.4, V the variable mapping function of Definition 3.5 and F the
formula function of Definition 3.6 then

• Td grows polynomially related to T ,
• T (τ) grows polynomially related to τ ,
• T (Γ) grows polynomially related to Γ,
• V (η) grows polynomially related to η and
• F (Φ) grows polynomially related to Φ.

Proof. F (Φ) and T (τ) grow obviously linearly related to Φ and τ respectively.
It follows that also T (Γ) grows linearly related to Γ. To show that Td grows
polynomially related to T , we take a look at the particular components of
the LTS. For the set of states it holds that |Qd| = |Q|d. That means Qd

grows polynomially related to Q. The cardinality of the set of actions of

34 CHAPTER 3. UPPER BOUNDS

Td is |Σd| + |Sd|. Since |Sd| is a constant it holds also that |Σd| = |Σ|d. By
combining these two statements, one can see that the set of actions also grows
polynomially. The set of propositions P d also grows polynomially, because it
is constructed like the subset of actions Σd. The labelled transition relation
∆d also grows polynomially because it is constructed like the set of actions of
Td. The first set has cardinality |∆|d and the second set is a constant. Again,
by combining the previous statements it is clear that ∆d grows polynomially
related to ∆. At least, the mapping vd grows polynomially related to v
because the set of states and the set of propositions of T grow polynomially.
As a result it follows that Td grows polynomially related to T . Because Td
grows polynomially related to T and T (τ) grows polynomially related to τ
V (η) also grows polynomially related to η.

The following theorem is a consequence of Lemma 3.9, Lemma 3.10 and
Theorem 3.1.

Theorem 3.11. The model checking problem of PHFLk for k > 0 is solvable
in k-EXPTIME, i.e. on input T , s and Φ it is decidable in k-EXPTIME
whether T , s is a model of Φ, where T is an LTS, s is a state and Φ in
PHFLk.

3.2 Upper Bound of PHFLk+1
tail

To show that the upper bound of the expressive power of PHFLk+1
tail is k-

EXPSPACE/∼ we can reduce the semantics of PHFLktail to the semantics of
HFLktail. Keep in mind that HFLktail is the set of tail-recursive 1-adic PHFLk

formulas. In combination with the following theorem we get the upper bound
of the expressive power of PHFLktail.

Theorem 3.12. [13] Given an LTS T , a state s and an HFLk+1
tail formula

Φ, the model checking problem i.e., deciding whether T , s |= Φ is in k-
EXPSPACE, where k > 0.

Lemma 3.13. Let T be an LTS, η a variable mapping, Φ a well-typed d-adic
PHFLktail formula, Td the LTS transformed by process of Definition 3.2, V the
variable mapping function of Definition 3.5 and F the formula function of
Definition 3.6 then JΦKηT = JF (Φ)KV (η)

Td .

Proof. This proof is similar to the proof of Lemma 3.9. Because the definition
of F obviously retains tail-recursiveness this lemma holds.

The following theorem is a consequence of Lemma 3.13 and Theorem 3.12.

3.2. UPPER BOUND OF PHFLK+1
TAIL 35

Theorem 3.14. The model checking problem of PHFLk+1
tail for k > 0 is

solvable in k-EXPSPACE, i.e. on input T , s and Φ it is decidable in k-
EXPSPACE whether T , s is a model of Φ, where T is an LTS, s is a state
and Φ in PHFLk+1

tail .

36 CHAPTER 3. UPPER BOUNDS

Chapter 4

Lower Bounds

In this chapter we want to establish that the lower bounds of the expressive
power of PHFLk and PHFLktail are k-EXPTIME/∼ and k-EXPSPACE/∼,
respectively. The lower bounds of PHFLk and PHFLktail can be proven by
encoding the run of a Turing Machine as query. As another possibility one
can use intermediate logics HO(LFP)k+1 and HO(PFP)k+1 and encode the
bisimulation-invariant fragments of these as PHFLk and PHFLktail, respec-
tively. Note that PHFL cannot distinguish between bisimilar structures [3].
This means that PHFL formulas can only define bisimulation-invariant graph
problems. Moreover, PHFL is sufficient to encode the bisimulation-invariant
fragments of HO(LFP)k+1 and HO(PFP)k+1. To encode the bisimulation-
invariant fragments of HO(LFP)k+1 and HO(PFP)k+1 as PHFLk and PHFLktail
respectively we want to translate HO(LFP)k+1 formulas into PHFLk formulas
and HO(PFP)k+1 into a PHFLktail formula.

Encoding existential quantifiers is the most complex part of the transla-
tion. In the first section we consider some preparations that are necessary to
model them in PHFL. Thereafter, we show that existential quantifiers that
bind a variable of order k ≥ 1 can be expressed by a PHFLk−1 formula. In
the subsequent section we use this formula to show that the bisimulation
invariant fragment of HO(LFP)k+1 can be encoded into PHFLk and so that
the lower bound of the expressive power of PHFLk is k-EXPTIME/∼. And
finally we show that the lower bound of the expressive power of PHFLktail is
k-EXPSPACE/∼.

4.1 Preparation

Before we can start with the encodings there are some important steps that
we have to consider. Let T = (Q,Σ, P,∆, v) be an LTS, q1, . . . , qn, p1, . . . , pm ∈

37

38 CHAPTER 4. LOWER BOUNDS

Q some states of T and let T ′ be the reduced LTS of T with respect to
p1, . . . , pm. As mentioned in the introduction of this chapter it is known
from [2] that PHFL cannot distinguish between bisimilar structures. That
means PHFL formulas can only define bisimulation-invariant graph problems.
That means that, without loss of generality, we can check if ([q1]∼, . . . , [qn]∼)
satisfies a formula Φ with respect to T ′ instead of checking if (q1, . . . , qn)
satisfies Φ with respect to T . With [qi]∼ we denote the equivalence class of
qi with respect to ∼.

From this point all LTS are reduced LTS with respect to some states of
their state sets. In more detail, let T = (Q,Σ, P,∆, v) be a reduced LTS
with respect to (q1, . . . , qr), where q1, . . . , qr ∈ Q. On those LTS it is possible
to define a total order on their states.

Remark 4.1. In [4] it was shown that it is possible to define a 2-adic PHFL0

formula Φ< over reduced LTS that defines a transitive relation < such that
< ∩ >= ∅ and < ∪ >=6∼. This relation < defines a total order on states of
a reduced LTS.

4.2 Existential Quantifiers in PHFL

In this section we define PHFLk formulas that describe existential quantifi-
cation over HO domains of types of order k ≥ 1. But before we can define
these formulas we have to translate the types.

Note that most types in HOk+1 do not exist in PHFLk. For example,
while HOk+1 includes sets of sets, PHFLk does not support this kind of type.
But each set X in HOk+1 can be described by the characteristic function of
X in PHFLk.

The following definition translates all HO types of order 2 or greater to
types in PHFL. The base type of HO has to be encoded differently, and will
be established after this definition.

Definition 4.2. T is a function that maps any type of HO of order 2 or
greater to a type of PHFL defined inductive over the type of HO as follows:

T ((�, . . . ,�)) = •
T ((τ ′, . . . , τ ′)) = T (τ ′)+ → (T (τ ′)+ → · · · → (T (τ ′)+ → •) · · ·),

where τ ′ 6= �.

Note that the orders of HO types and PHFL types are defined differently.
It holds that ord(T (τ)) = order(τ) − 2 for all HO types τ with order 2 or
greater.

4.2. EXISTENTIAL QUANTIFIERS IN PHFL 39

Example 4.3. Let τ = (τ ′, τ ′) be a type of HO with

τ ′ = ((�), (�))

then by Definition 4.2 of type function T

T (τ) = T (τ ′)→ (T (τ ′)→ •)

where
T (τ ′) = • → (• → •).

With this type function T an HOk+1 variableX of type τ can be translated
to a PHFLk variable of type T (τ). Intuitively, the variable X which is a set
of Dτ (Q) in HOk+1 is represented in PHFLk as the characteristic function of
X over Dτ (Q). This function maps x to Qd if x ∈ X and x to ∅ if x 6∈ X,
where d > 0 is a natural number. Note that the domain of HO types of order
2 is similar to the domain of base type of PHFL.

As mentioned above the base type of HO has to be encoded differently.
The reason for that is that the base type in PHFL is a set of tuples of states
and a single state cannot be depicted directly by a variable. This thesis uses
the idea of [2] to use the polyadicity of PHFL to represent the different first-
order variables of an HO formula Ψ. Each first-order variable of Ψ represents
one component in the dimension of the corresponding PHFLk formula Φ that
means each variable increases the dimension of Φ. The assignment of a first-
order variable Xi in Ψ is then the current state of the i-th component in
Φ.

Let Φ be an HO formula. From now on, we assume that for every HO
formula Φ, the first-order variables occurring in Φ are X1, . . . , Xq for some q
depending on Φ.

4.2.1 First-Order and Second-Order Quantification

After we know how to interpret the different HO types and variables we can
now take a look at the existential quantification. Before we establish higher-
order quantification we start with first-order and second-order quantification.

As mentioned in the introduction of this chapter we encode the bisimula-
tion-invariant fragment of HO(LFP)k+1 and HO(PFP)k+1. In Section 4.1 we
explained that we can treat the semantics of them by using only reduced
LTS, where any state is reachable by at least one of the states q1, . . . , qr.
Because of the total order on states of T explained in Remark 4.1 the first-
order quantification can be encoded by going over all states reachable from
one q1, . . . , qr and check whether we reached a state tuple where the bound
formula holds.

40 CHAPTER 4. LOWER BOUNDS

To access the states q1, . . . , qr in the PHFL formulas that we get by encod-
ing HO formulas we use the polyadicity and store q1, . . . , qr in components
of a dimension that will be never influenced by the PHFL formulas. The
following remark explains that the PHFL formulas has a dimension that is
large enough to satisfy all the requirements.

Remark 4.4. The PHFL formula Φ that we get through the encoding of a
given HO formula Ψ has dimension d that is always large enough to translate
all second-order variables of Ψ to an order 0 variable in Φ. In more detail s
is the maximal arity of second-order variables in Ψ and d > s. To compare
two elements of Qs, where Q is the set of states of an LTS, the dimension d
of Φ is at least twice as big as the maximum of s. Because the higher-order
variables can be handled otherwise they do not influence the dimension d. To
distinguish all different first-order variables in Ψ, the dimension d of Φ has
to be extended by q, where q is the number of different first-order variables.
That means d > 2s + q. Finally, to access the states q1, . . . , qr described in
Section 4.1, we extend d additionally with r components. That means the
dimension of Φ is d = 2s+ q + r.

If we consider ∃(Xi : �).Φ then it can be understood as the check whether
we reach a state tuple where Φ holds once the i-th component is replaced by
one of the last r components. This is where q1, . . . , qr are stored.

Definition 4.5. Let d and r be the constants as described in Remark 4.4
where r < d, and 1 ≤ i ≤ d then ∃iΦ is a PHFLk formula of dimension d
defined as

∃iΦ :=
d∨

j=d−r+1

{(1, . . . , i− 1, j, i+ 1, . . . , d)}µ(X : •).Φ ∨
∨
a∈Σ

〈a〉iX.

The formula ∀iΦ is also a PHFLk formula of dimension d and is defined as

∀iΦ := ¬∃i¬Φ.

Note that the constant i of Definition 4.5 can be between 1 and d. Because
we use ∃i later in this thesis only for such i that are in the range of 1 and
d− r the formula works as expected.

Observation 4.6. Let T = (Q,Σ, P,∆, v) be a reduced LTS with respect to
(q1, . . . , qr), where q1, . . . , qr ∈ Q. The formula given in Definition 4.5 defines
first-order quantification in PHFL, because it replaces the i-th component by
one of the last r components and moves through all reachable states. This
is enough because any element of Q is reachable in reduced LTS T from at
least one state of q1, . . . , qr and those are stored in the last r components of

4.2. EXISTENTIAL QUANTIFIERS IN PHFL 41

any d tuple. The movement at the i-th component and checking if Φ holds is
a consequence of µ(X : •).Φ∨

∨
a∈Σ〈a〉iX. To replace the i-th component by

one of q1, . . . , qr we use this part of the formula
∨j=d−r+1
d {(1, . . . , i− 1, j, i+

1, . . . , d)}.

Now we consider second-order quantification. Let τ = (�, . . . ,�) be an
HO type and Q the set of states of an LTS T . Because the transformation
for first-order quantification cannot be adapted to the second-order quantifi-
cation, we use a different encoding. To obtain second-order quantification in
PHFL we have to iterate over all possible elements of a given domain Dτ (Q)
and check if the given formula is satisfied. The first thing that we need to
iterate over any element of a domain Dτ (Q) is an order on Dτ (Q). If we have
the order of Dτ (Q) we can use this order to define a formula that returns the
successor of a given element of Dτ (Q) in the scope of this order. Finally, this
formula can be used to iterate over all elements and check if a given formula
is satisfied. At first, we need the order of domains of type (�, . . . ,�).

To get the order of type τ = (�, . . . ,�) we define two formulas. The
first one describes which is the smaller one of two given sets of type τ . The
other one describes the smaller of two tuples of sets of type τ . We say that
a tuple x is smaller than y with respect to τ if there is an index i such that
the element in x on i is smaller than the element in y on i in respect to �,
and such that there is no position j on the left-hand side of i such that the
element in x on j is larger than the element in y on j with respect to �.
We say that a set X is smaller than a set Y with respect to τ if there is
an element s1 in X that is not in Y , and such that all elements s2 that are
smaller than s1 with respect to � are only in X if s2 is also in Y . This is
formalized in PHFL in the following definition.

Definition 4.7. Let d and s be the constants as described in Remark 4.4
where 2 ∗ s < d, then <�, <�×···×� and <(�,...,�) (X, Y) are PHFLk formulas
of dimension d defined as:

<�:= Φ<

<�×···×�:=
s∨
i=1

{(i, i+ s, 3, . . . , d)} <� ∧

i−1∧
j=1

{(j + s, j, 3, . . . , d)}¬ <�

42 CHAPTER 4. LOWER BOUNDS

<(�,...,�) (X, Y) :=∃i1∃in .{(i1, . . . , in, n+ 1, . . . , d)}Y ∧
¬{(i1, . . . , in, n+ 1, . . . , d)}X ∧
∀j1∀jn .{(j1, . . . , jn, n+ 1, . . . , s,

i1, . . . , in, s+ n+ 1, . . . , d)} <�×···×�⇒
({(j1, . . . , jn, n+ 1, . . . , d)}X ⇒
¬{(j1, . . . , jn, n+ 1, . . . , d)}Y)

We can see that <�×···×� defines the lexicographic order of HO type
�× · · · × � and <(�,...,�) (X, Y) the orders of HO types (�, . . . ,�).

After we have now orders of the HO types (�, . . . ,�) we can define for-
mulas that return the successor of an input element with respect to the order
of (�, . . . ,�). The idea of the following formula is based on binary incremen-
tation. Let τ = (�, . . . ,�) be an HO type and Q the set of states of an LTS
T . Remember that a set X ∈ Dτ (Q) can be represented by its characteristic
function. This can be transformed to a binary string where each position of
this string represents an element of D�(Q)n. Because each position in the
binary string represents an element of D�(Q)n and a position always has
to represent the same element in D�(Q)n, the elements in D�(Q)n have to
be ordered. The order of the elements of D�(Q)n is a consequence of the
formula <�×···×� of Definition 4.7. If the position i in the binary string is
1, the element with index i in D�(Q)n is also in X. And if the position i
in the binary string is 0, the element with index i in D�(Q)n is not in X.
This binary representation of X in regard to D�(Q)n can be thought of as a
function f : Dτ (Q)→ 0, . . . , |Dτ (Q)| − 1 such that each element X of Dτ (Q)
will be mapped to its binary string in regard to D�(Q)n. Similar to operator
F of Example 2.13 or operator F TΦ of Example 2.50 the following formula
identifies Y ∈ Dτ (Q) as the successor of X ∈ Dτ (Q) if f(Y) = f(X) + 1
mod |Dτ (Q)|. In detail that means that the i-th bit is 1 in f(Y) if the i-th
bit is either 1 in X and there is a bit on the left of i that is 0 in X or the
i-th bit is 1 in f(Y) if it is 0 in X and all bits to the left of i are 1 in X.

Definition 4.8. Let d and s be the constants as described in Remark 4.4
where 2 ∗ s < d, then next(�,...,�) is a PHFLk formula of dimension d defined
as:

next(�,...,�) :=λ(X : •). (¬X ∧ ∀s+1 . . . ∀s+s <�×···×�⇒
{(s+ 1, . . . , s+ s, s+ 1, . . . , d)}X)∨
(X ∧ ∃s+1 . . . ∃s+s <�×···×� ∧
{(s+ 1, . . . , s+ s, s+ 1, . . . , d)}¬X)

4.2. EXISTENTIAL QUANTIFIERS IN PHFL 43

Remark 4.9. Iterated application of next(�,...,�) to ⊥ cycles through all el-
ements in the domain of (�, . . . ,�). The PHFL formula ⊥ represents the
empty set. If we put ⊥ into next(�,...,�) we can check whether all elements of
D(�,...,�) satisfy one of the subformulas of the disjunction. We will see that
only the smallest element with respect to <�×···×� satisfies the first subfor-
mula. The reason is that the smallest element is not in the empty set and
there are no smaller elements than the smallest. So the first subformula is
true and it is the only element that satisfies the disjunction. So the formula

next(�,...,�)1⊥ returns the set that includes only the smallest element with

respect to � × · · · × �. If we take a look at the formula next(�,...,�)2⊥, we
put the set that only contains the smallest element into next(�,...,�). If we
dive deeper into this formula we will see that the formula returns a set that
includes only the second smallest element. The smallest element does not
satisfy the disjunction, but the second smallest satisfies the second subfor-
mula. As described in the introduction of Definition 4.8, formula next(�,...,�)

can be thought of as binary incrementation. In this manner each possible
set of type (�, . . . ,�) will be reached. Note that if we put the full set into
next(�,...,�) it returns the empty set.

With this definition we are now able to define the second-order quantifi-
cation in PHFL.

Definition 4.10. Let d be the constant as described in Remark 4.4 and Φ be
a PHFLk formula with order 0 variable X, then ∃(�,...,�)X.Φ(X) is a PHFLk

formula of dimension d defined as:

∃(�,...,�)X.Φ(X) := (µ(F : • → •). λ(X : •).Φ(X) ∨ F (next(�,...,�)X))⊥

The formula ∀(�,...,�)X.Φ is also a PHLk formula of dimension d and is defined
as

∀(�,...,�)X.Φ(X) := ¬∃(�,...,�)X.¬Φ(X).

In the last step we show that the given formula of Definition 4.10 defines
second-order existential quantification in PHFL.

Lemma 4.11. For all HO types τ = (�, . . . ,�), all variable mappings η and
all LTS T it holds that

J∃τX.Φ(X)KηT ≡
⊔

X∈JτKT

JΦ(X)Kη[X→X]
T .

Proof. By fixpoint unfolding and β-reduction the formula

∃(�,...,�)X.Φ(X) = (µ(F : • → •). λ(X : •).Φ(X) ∨ F (next(�,...,�)X))⊥

44 CHAPTER 4. LOWER BOUNDS

is equivalent to

Φ(⊥) ∨ Φ(next(�,...,�)⊥) ∨ Φ(next(�,...,�)(next(�,...,�)⊥)) ∨ · · · .

This can be simplified to

∨
i≥0

Φ(next(�,...,�)i⊥)

Because these sets, reached as explained in Remark 4.9, are checked one
after another in the scope of Φ and this iteration is finite because of the least
fixpoint operator, the lemma holds.

4.2.2 Higher-Order Quantification

In this subsection we use the encoding of second-order quantification we
just defined to lift this encoding to higher-order quantification. The idea
to obtain higher-order quantification in PHFL is similar to the second-order
quantification. We use the existential quantifier of type τ = (�, . . . ,�) to
define the order of domains of kind D(τ,...,τ)(Q). This order can then be
used to define a formula that returns the successor of a given element of
D(τ,...,τ)(Q) with respect to this order. Finally, we use this formula to define
the existential quantifier of type (τ, . . . , τ). This procedure will be applied
to all possible types of HO. In this way we get higher-order quantification of
any type in PHFL.

The first thing we need is the order for every domain. Note that an order
for a type τ = (τ ′, . . . , τ ′) always depends on the quantifiers of type τ ′ and
the orders of type τ ′ × · · · × τ ′. The orders of type τ ′ × · · · × τ ′, however,
depends on the order of type τ ′. In case of τ ′ = (�, . . . ,�) we use the
quantifier formulas of Definition 4.10. On the other hand if τ ′ is a type of an
order bigger then 2, the quantifier formulas of Definition 4.16 are used. Like
we did in the second-order case we define two formulas. The first one tells us
which set of two given sets of type τ is the smaller one. The other formula
tells us the same for two tuples in the same sets of type τ .

Definition 4.12. Let d be the constant as described in Remark 4.4 and
τ 6= � an HO type, then <(τ,...,τ) (X, Y) and <τ×···×τ (X, Y) are PHFLk

4.2. EXISTENTIAL QUANTIFIERS IN PHFL 45

formulas of dimension d defined as:

<τ×···×τ (X1, Y1, . . . , Xn, Yn) :=
n∨
i=1

<τ (Xi, Yi) ∧
i−1∧
j=1

¬ <τ (Yj, Xj)

<(τ,...,τ) (X, Y) :=∃τX1. . . .∃τXn. (· · · (Y X1) · · ·)Xn

∧ ¬(· · · (X X1) · · ·)Xn ∧
∀τY1. . . .∀τYn. <τ×···×τ (Y1, X1, . . . , Yn, Xn)

⇒
(
(· · · (X Y1) · · ·)Yn ⇒ (· · · (Y Y1) · · ·)Yn

)
.

The formulas ∃τ and ∀τ are defined in Definition 4.10 or Definition 4.16 if
ord(τ) = 2 or ord(τ) > 2, respectively. In case of τ = (�, . . . ,�) the formula
<(�,...,�) (X, Y) is defined in Definition 4.7.

We can see that <τ×···×τ defines the lexicographic order of HO type τ
and <(τ,...,τ) (X, Y) the orders of HO types (τ, . . . , τ), where τ 6= �. Note
that <(τ,...,τ) (X, Y) is well defined because the formula uses the quantifier
formulas of a lower type and the lowest possible type is already defined in
Definition 4.10. The same holds for <τ×···×τ , where the lowest used order
formula is defined in Definition 4.7.

The following definition defines an abbreviation for the smallest function
of an arbitrary PHFL type that have an PHFL order of at least 1.

Definition 4.13. Let (τ, . . . , τ) be an HO type with τ 6= � then ⊥T ((τ,...,τ))

is PHFL formula defined as

⊥T ((τ,...,τ)) := (λ(X1 : T (τ)). . . . λ(Xn : T (τ)).⊥)).

This formula represents a function that maps any input for X1, . . . , Xn to ⊥
and ⊥ represents the empty set. That means this function is the smallest
element with respect to <(τ,...,τ).

With this definition of order of any HO type, always depending on the
lower type existential quantifier, we can define formulas that return the suc-
cessor of an input element with respect to the order of the HO type. The
idea of the following formula is similar to the successor formula of Defini-
tion 4.8 and can be thought of as binary incrementation. Note that here the
binary string represents functions. That means that one configuration of a
function, represents one bit in the binary string. The smallest function, see
Definition 4.13, is this where any element is mapped to ∅ and the greatest
function where any element is mapped to Qd, where Q is a state set of an
LTS and d a dimension of PHFL.

46 CHAPTER 4. LOWER BOUNDS

Definition 4.14. Let d be the constant as described in Remark 4.4 and
τ 6= � an HO type, then next(τ,...,τ) is a PHFLk formula of dimension d
defined as:

next(τ,...,τ) :=λ(X : T ((τ, . . . , τ))). λ(X1 : T (τ)). · · ·λ(Xn : T (τ)).(
¬(· · · (X X1) · · ·)Xn ∧ ∀τY1. . . .∀τYn.
<τ×···×τ (Y1, X1, . . . , Yn, Xn)⇒ (· · · (X Y1) · · ·)Yn

)
∨(

(· · · (X X1) · · ·)Xn ∧ ∃τY1. . . .∃τYn.
<τ×···×τ (Y1, X1, . . . , Yn, Xn) ∧ ¬(· · · (X Y1) · · ·)Yn

)
Remark 4.15. Iterated application of next(τ,...,τ) to ⊥T (τ) cycles through all
elements in the domain of (τ, . . . , τ). Note that this works similar to the iter-
ated application of next(�,...,�) to⊥ in Remark 4.9. If we put⊥T (τ) into nextτ ,
where τ = (τ ′, . . . , τ ′) is an HO type of order k+ 1 and τ ′ 6= �, we can check
whether all elements of Dτ satisfy one of the subformulas of the disjunction.
Note that the formulas for the quantifiers used in nextτ and <τ ′×···×τ ′ respec-
tively are all for types of order k. By induction hypothesis those formulas
define quantification of types of order k. Using these quantifiers we will see
that only the smallest element with respect to τ ′ × · · · × τ ′ satisfies the first
subformula. The reason is that the smallest element is mapped in the input
function to the empty set and there are no smaller elements to the smallest.
That means the first subformula is true and it is the only element that sat-
isfies the disjunction. So the formula nextτ 1⊥T ((τ,...,τ)) returns the function
that maps the smallest element with respect to τ ′ × · · · × τ ′ to Qd and all
other elements to ∅ where d is a dimension of PHFL formula J∃τX.Φ(X)KηT .
If we take a look at the formula nextτ 2⊥T ((τ,...,τ)), the function that maps
only the smallest element to Qd is set as input of nextτ . If we dive deeper
into this formula we will see that now the formula returns a function that
maps only the second smallest element to Qd. The smallest element does not
satisfy the disjunction, but the second smallest satisfies the second subfor-
mula. As described in the introduction of Definition 4.8 formula next(�,...,�)

is some kind of binary incrementation. The same holds for the formula nextτ

of Definition 4.14. In this manner each possible function of type τ will be
reached. Note that if we put the function that maps any input to the full
set into next(�,...,�) it returns the function that maps any input to the empty
set.

With the previous definition we are now able to define the higher-order
quantification in PHFL.

4.2. EXISTENTIAL QUANTIFIERS IN PHFL 47

Definition 4.16. Let d be the constant as described in Remark 4.4 and let
τ = (τ ′, . . . , τ ′) be an HO type of order l where τ ′ 6= �. Furthermore, let Φ
be a PHFLk formula with free variable X of order l − 2, then ∃τX.Φ(X) is
a PHFLk formula of dimension d defined as

∃τX.Φ(X) :=
(
µ(F : T (τ)→ •). λ(X : T (τ)).Φ(X) ∨ F (nextτX)

)
⊥T (τ).

The formula ∀τX.Φ is also a PHFLk formula of dimension d and is defined
as

∀τX.Φ(X) := ¬∃τX.¬Φ(X).

The last step is to show that the given formula of Definition 4.16 defines
higher-order existential quantification.

Lemma 4.17. For all HO types τ of order 3 or greater, all variable mappings
η and all reduced LTS T = (Q,Σ, P,∆, v) holds

J∃τX.Φ(X)KηT ≡
⊔

X∈JτKT

JΦ(X)Kη[X→X]
T .

Proof. This lemma is proven by induction over the order of type τ . The
induction basis τ = (�, . . . ,�) is given by Lemma 4.11. Based on the induc-
tion hypothesis, for any HO type τ of order k, all variable mappings η and
all reduced LTS T = (Q,Σ, P,∆, v) it holds that

J∃τX.Φ(X)KηT ≡
⊔

X∈JτKT

JΦ(X)Kη[X→X]
T .

We have to show that for any HO type τ ′ = (τ, . . . , τ) of order k + 1, all
variable mappings η and all reduced LTS T = (Q,Σ, P,∆, v) the following
statement holds

J∃τ ′X.Φ(X)KηT ≡
⊔

X∈Jτ ′KT

JΦ(X)Kη[X→X]
T .

By fixpoint unfolding and β-reduction the formula

∃τ ′X.Φ(X) :=
(
µ(F : T (τ ′)→ •). λ(X : T (τ ′)).Φ(X) ∨ F (nextτ

′
X)
)
⊥T (τ ′)

is equivalent to

Φ(⊥T (τ ′)) ∨ Φ(nextτ
′⊥T (τ ′)) ∨ Φ(nextτ

′
nextτ

′⊥T (τ ′)) ∨ · · · .
This can be simplified to ∨

i≥0

Φ(nextτ i⊥T (τ ′)).

Because these functions, reached as explained in Remark 4.15, are checked
consecutively in the scope of Φ and this iteration is finite because of the least
fixpoint operator, the lemma holds.

48 CHAPTER 4. LOWER BOUNDS

4.3 Lower Bound of PHFLk

As mentioned in the introduction of this chapter we can show that the lower
bound of PHFLk is k-EXPTIME/∼ by making a detour over HO(LFP)k+1.
This and following ideas are oriented on [2] where it was shown that PHFL1

captures 1-EXPTIME/∼. At first we will see that it was proven that k-
fold exponential time coincides with HO(LFP)k+1 over finite and ordered
structures. To use this we have to encode the bisimulation invariant frag-
ment of HOk+1 into PHFLk. Therefore, we define an abbreviation for the
HO(LFP) formulas that uses the LFP operator first and then a function that
use this abbreviation and those of Section 4.2 to map an HO(LFP)k+1 formula
to a PHFLk formula. Finally, we show that for any bisimulation-invariant
HO(LFP)k+1 formula Φ there is a transformed PHFLk formula Ψ such that
the query QdΨ defined by Ψ can be obtained from the query QfΦ defined by
Φ via projection to the relevant components. Hence, PHFLk can define all
queries defined by the bisimulation-invariant fragment of HO(LFP)k+1.

Theorem 4.18. [5] For all k ≥ 1, HO(LFP)k+1 captures k-EXPTIME over
finite and ordered structures.

The proof follows the idea to encode the run of a k-EXPTIME Turing
Machine M by a formula Φ of HO(LFP)k+1 in such a way that M accepts
the standardized encoding of A and η iff A, η |= Φ. On the other hand, such
a model-checking problem can be solved by a k-EXPTIME Turing Machine
MΦ.

Because Theorem 4.18 holds, it is also possible to prove that the lower
bound of PHFLk is in k-EXPTIME/∼ by encoding the bisimulation invariant
fragment of HO(LFP)k+1 into PHFLk. To encode the bisimulation invariant
fragment of HO(LFP)k+1 into PHFLk we have to define a function that trans-
forms an HO (LFP)k+1 formula into a PHFLk formula. Note that the types
and variables of an HO formula also need to be transformed. See Section 4.2
for further details.

Before we consider the definition of the transforming function, we define
a PHFL formula for HO formulas that uses the LFP operator.

Definition 4.19. Let d be the constant as described in Remark 4.4 and let X
be an HO variable of HO type τ = (τ ′, . . . , τ ′) where τ ′ 6= �. Furthermore, let
Φ be a PHFLk formula, then LFP τX.Φ is a PHFLk formula with dimension
d, defined as:

LFP τX.Φ := µ(X : T (τ)).Φ(X).

In case of τ = (�, . . . ,�) let

LFP τX.Φ := µ(X : •).Φ(X).

4.3. LOWER BOUND OF PHFLK 49

Now we are able to define the function in the following definition by
using the abbreviations of Definitions 4.10, 4.16, 4.5 and 4.19. The function
translates a bisimulation invariant HO(LFP)k+1 formula to a PHFLk formula.

Definition 4.20. Define F as the function that maps a bisimulation invari-
ant HO(LFP)k+1 formula ϕ to a PHFLk formula with dimension d, where d
and s are the constants as described in Remark 4.4 and Φ∼ is the formula of
Example 2.19. In detail, F is defined inductive over ϕ as follows:

F (p(Xi)) := p2s+i

F (a(Xi, Xj)) := 〈a〉2s+i{(2s+ i, 2s+ j,

3, . . . , d)}Φ∼
F (Φ ∨Ψ) :=F (Φ) ∨ F (Ψ)

F (¬Φ) :=¬F (Φ)

F (∃(Xi : �).Φ) :=∃2s+iF (Φ)

F (∃(X : τ).Φ) :=∃τX.F (Φ(X))

F ([LFP Φ(X,Xi1 , . . . , Xin)](Vj1 , . . . , Vjn)) := {(j1, . . . , jn, n+ 1, . . . , d)}
LFP (�,...,�)X.F (Φ)

F ([LFP Φ(X,X1, . . . , Xn)](V1, . . . , Vn)) := (· · ·
(
LFP τX.F (Φ)

)
V1) · · ·)Vn

F (X(Xi1 , . . . , Xin)) := {(2s+ i1, . . . , 2s+ in,

n+ 1, . . . , d)}X
F (X(X1, . . . , Xn)) := (· · · (X X1) · · ·)Xn

Keep in mind that we are working on LTS that means that the relations in
the signatures for HO(LFP) formulas have either arity one or two. Relations
with arity one represent the propositions and those with arity two the actions
of an LTS.

4.3.1 Variables

After we encoded HO(LFP)k+1 syntactically into PHFLk formulas, the last
step is to translate the interpretation of variables. As described in Section 4.2
the variables in HO of types with order 3 or higher are not supported in
PHFL. Also first-order variables are not supported. Therefore, we define a
function that maps a given variable mapping for an HO formula to the correct
variable mapping for PHFL semantics. This function ignores the mapping
of first-order variables, maps second-order variables to sets and higher-order
variables to the corresponding characteristic function. Note that the sets
of order 2 in HO have order 0 in PHFL. The first-order variables of an

50 CHAPTER 4. LOWER BOUNDS

HO formula that are marked as undefined in the following function, can be
mapped to any arbitrary value because we do not use them in PHFL directly.

Normally, the HO variables of order 2 or higher are syntactically equiva-
lent to the variables used in the translated PHFL formulas. To distinguish
them in this definition an HO variable X is denoted by X̂ for the usage in
PHFL context.

Definition 4.21. Let d be the constant as described in Remark 4.4, let η
be a variable mapping for an HOk formula and let T = (Q,Σ, P,∆, v) be
a reduced LTS, then ηV is a variable mapping for a PHFLk formula with
dimension d. Then the variable mapping ηV is defined as:

ηV (X̂) :=


undefined, if X is of type �
A, if X is of type (�, . . . ,�)

G, if X is of type (τ, . . . , τ) and τ 6= �,

where A ⊆ Qd such that (q1, . . . , qn, qn+1, . . . , qd) ∈ A iff (q1, . . . , qn) ∈ η(X)
and G is a function of type T ((τ, . . . , τ)) defined as follows:

(· · ·
(
GηV (X̂1)

)
· · ·) ηV (X̂n) = Qd iff (η(X1), . . . , η(Xn)) ∈ η(X)

(· · ·
(
GηV (X̂1)

)
· · ·) ηV (X̂n) = ∅ iff (η(X1), . . . , η(Xn)) 6∈ η(X)

The following example shows how a set of higher type variables will be
translated into the characteristic function via the variable mapping ηV of
Definition 4.21.

Example 4.22. Let T = (Q,Σ, P,∆, v) be a reduced LTS with the set of
states Q = {1, 2, 3}, let X be an HO(LFP)k+1 variable of type ((�,�), (�,�))
mapped through variable mapping η to

η(X) = {({(1, 1)}, {(2, 2)}), ({(1, 1), (2, 2)}, {(3, 3)})},

let d be a dimension of PHFL, then ηV (X) is a PHFLk function of type
• → (• → •) such that ηV (X) ({(1, 1)}) = f , ηV (X)({(1, 1), (2, 2)}) = g and
ηV (X)(z) = h for z ∈ Qd where z 6= {(1, 1)} and z 6= {(1, 1), (2, 2)}. More-
over, f , g and h are functions of type • → • where f({(2, 2)}) = g({(3, 3)}) =
Qd and f(z) = g(z′) = h(z′′) = ∅ for z, z′, z′′ ∈ Qd where z 6= {(2, 2)} and
z′ 6= {(3, 3)}.

4.3.2 Correctness Proof

The last step is to show that for any query that is defined by an HO(LFP)k+1

formula Φ can be obtained from the query defined by the PHFLk formula Ψ

4.3. LOWER BOUND OF PHFLK 51

that is obtained by transforming Φ via projection to the relevant components.
As mentioned in Section 4.1, without loss of generality, the statement can be
proven by considering only reduced LTS.

To make the correctness proof clearer there is one last remark.

Remark 4.23. It holds for any HO(LFP)k+1 formula Φ that for PHFLk for-
mula F (Φ) the type judgment ∅ ` F (Φ) : • is derivable. This statement is
easily proved by induction over the structure of formula Φ.

Because the type judgement is always derivable we ignore the type envi-
ronment in the following proof and write just JΦKηT instead of JΓ ` F (Φ) : τKηT ,
where Φ is a PHFL formula, η is a variable mapping, T is an LTS, Γ is a
type environment and τ is a PHFL type.

Theorem 4.24. Let Φ be a bisimulation-invariant formula of HO(LFP)k+1,
Ψ a formula of PHFLk and let d, f ≥ 1 and k > 0. For every Φ there is a
Ψ such that a projection on the d-adic query QdΦ that is defined by Φ is equal
to the f -adic query QfΨ that is defined by Ψ.

Proof. This lemma can be proven by showing for all HO(LFP)k+1 formulas
Φ with first-order variables X1, . . . , Xq, all reduced LTS T = (Q,Σ, P,∆, v)
with respect to qr = q1, . . . , qr and all variable mappings η that it holds that
T , η |= Φ iff q = (qs,qs,qq,qr) and q ∈ JF (Φ)KηVT . Here qs = q′1, . . . , q

′
s is a

sequence of s placeholders used for the interaction of second-order variables,
qq = η(X1), . . . , η(Xq) is a sequence of first-order variables that are mapped
by η where η(Xi) = q0 if Xi is bound to a quantifier, q0, q

′
1, . . . , q

′
s ∈ Q

are arbitrary states, F is the formula function of Definition 4.20 and ηV
the variable mapping of Definition 4.21. This statement can be proven by
induction over Φ.

• In case of Φ = p(Xi) where Xi is a free first-order variable then T , η |=
Φ holds exactly then if η(Xi) ∈ pT . Translated to the normal LTS
definition of T it is the same as p ∈ v(η(Xi)). With F (Φ) = p2s+i this
is exactly

(qs,qs, η(X1), . . . , η(Xi−1), η(Xi), η(Xi+1), . . . , η(Xq),qr) ∈ JF (Φ)KηVT .

• In case of Φ = a(Xi, Xj) where Xi and Xj are free first-order variables
such that, without loss of generality, i < j. All other cases working
similar. Then T , η |= Φ holds exactly then if (η(Xi), η(Xj)) ∈ aT .

Translated to the normal LTS definition of T it is the same as η(Xi)
a→

η(Xj). By definition of the semantics of 〈a〉2s+i the tuple

(qs,qs, η(X1), . . . , η(Xi−1), η(Xi), η(Xi+1), . . . , η(Xj−1), η(Xj),

η(Xj+1), . . . , η(Xq),qr)

52 CHAPTER 4. LOWER BOUNDS

is an element of the semantics of 〈a〉2s+iΦ∼ iff

(qs,qs, η(X1), . . . , η(Xi−1), qm, η(Xi+1), . . . , η(Xj−1), qn,

η(Xj+1), . . . , η(Xq),qr)

is an element of the semantics of Φ∼ where from η(Xi) there is an a-
action to qm. Because η(Xj) is the state that has to be reachable via
an a action from η(Xi) we have to check if qn = η(Xj). If two states
are equal in a reduced LTS it is the same to check if these two states
are bisimilar. ∼ is given by formula Φ∼ of Example 2.19. Because this
formula returns those d-tuples where the first and second component
are bisimilar, we have to move the 2s + i-th and 2s + j-th component
to the first and second component. This is given by {(2s + i, 2s +
j, 3, . . . , d)}Φ∼. Summarizing all these steps with F (Φ) = 〈a〉2s+i{(2s+
i, 2s+ j, 3, . . . , d)}Φ∼ it follows

(qs,qs, η(X1), . . . , η(Xi−1), η(Xi), η(Xi+1), . . . , η(Xj−1), η(Xj),

η(Xj+1), . . . , η(Xq),qr) ∈ JF (Φ)KηVT

if (η(Xi), η(Xj)) ∈ aT and

(qs,qs, η(X1), . . . , η(Xi−1), η(Xi), η(Xi+1), . . . , η(Xj−1), η(Xj),

η(Xj+1), . . . , η(Xq),qr) 6∈ JF (Φ)KηVT

if (η(Xi), η(Xj)) 6∈ aT .
• In case of Φ = X(Xi1 , . . . , Xin) where X is a free variable of HO type

(�, . . . ,�) and Xi1 , . . . , Xin are free first-order variables such that,
without loss of generality, i1 < i2, . . . , in−1 < in. All other cases work-
ing similar. Then T , η |= Φ holds exactly then if (η(Xi1), . . . η(Xin)) ∈
η(X). Because of definition of ηV the tuple (η(Xi1), . . . η(Xin), q′n+1, . . . ,
q′s,qs,qq,qr) is in ηV (X) if (η(Xi1), . . . η(Xin)) ∈ η(X) and is not in
ηV (X) otherwise. Because components 1, . . . , n are not set to the map-
pings of first-order variables Xi1 , . . . , Xin , we first move the components
2s+ i1, . . . , 2s+ in to components 1, . . . , n respectively and check then
if

(η(Xi1), . . . η(Xin), q′n+1, . . . , q
′
s,qs,qq,qr) ∈ ηV (X).

So it holds with F (Φ) = (2s+ i1, . . . , 2s+ in, n+ 1, . . . , d)X that

(qs,qs, η(X1), . . . , η(Xi1−1), η(Xi1), η(Xi1+1), . . . , η(Xin−1), η(Xin),

η(Xin+1), . . . , η(Xq),qr) ∈ JF (Φ)KηVT

4.3. LOWER BOUND OF PHFLK 53

if (η(Xi1), . . . η(Xin)) ∈ η(X) and

(qs,qs, η(X1), . . . , η(Xi1−1), η(Xi1), η(Xi1+1), . . . , η(Xin−1), η(Xin),

η(Xin+1), . . . , η(Xq),qr) 6∈ JF (Φ)KηVT

if (η(Xi1), . . . η(Xin)) 6∈ η(X).
• In case of Φ = X(X1, . . . , Xn) where X is a free variable of HO type

(τ, . . . , τ) and X1, . . . , Xn are free variables of HO type τ then T , η |= Φ
holds exactly then if (η(X1), . . . η(Xn)) ∈ η(X). Because of definition
of ηV it follows

(· · ·
(
ηV (X) ηV (X1)

)
· · ·) ηV (Xn) = Qd

if (η(X1), . . . η(Xn)) ∈ η(X) and

(· · ·
(
ηV (X) ηV (X1)

)
· · ·) ηV (Xn) = ∅

if (η(X1), . . . η(Xn)) 6∈ η(X). With F (Φ) = (· · · (X X1) · · ·)Xn it fol-
lows

q ∈ JF (Φ)KηVT = Qd.

if (η(X1), . . . η(Xn)) ∈ η(X) and

q 6∈ JF (Φ)KηVT = ∅.

if (η(X1), . . . η(Xn)) 6∈ η(X).
By induction hypothesis it holds for HO(LFP)k+1 formulas Ψ and Ψ′ with

first-order variables X1, . . . , Xq, all reduced LTS T = (Q,Σ, P,∆, v) with
respect to qr and all variable mappings η that T , η |= Ψ iff q ∈ JF (Ψ)KηVT
and T , η |= Ψ′ iff q ∈ JF (Ψ′)KηVT , where q = (qs,qs,qq,qr).

• In case of Φ = ¬Ψ it follows that T , η |= Φ exactly then if T , η 6|= Ψ.
By induction hypothesis that is exactly then the case when

q 6∈ JF (Ψ)KηVT .

This is exactly the case if

q ∈ Qd \ JF (Ψ)KηVT .

And this is exactly the semantics of F (Φ) = ¬F (Ψ).
• In case of Φ = Ψ∨Ψ′ it follows that T , η |= Φ exactly then if T , η |= Ψ

or T , η |= Ψ′. By induction hypothesis that is exactly then the case
when

q ∈ JF (Ψ)KηVT

54 CHAPTER 4. LOWER BOUNDS

or
q ∈ JF (Ψ′)KηVT .

Because t• = ∪ this can be combined to

q ∈ JF (Ψ)KηVT t• JF (Ψ′)KηVT ,

which is as desired.
• In case of Φ = ∃(Xi : �).Ψ it follows that T , η |= Φ iff there exists
X ∈ Q with T , η′ |= Ψ, where η′ is a variable mapping with η′(x) = η(x)
for all variables x 6= Xi and η′(Xi) = X . By induction hypothesis it
holds that T , η′ |= Ψ is exactly the case when

(qs,qs, η
′(X1), . . . , η′(Xi−1), η′(Xi), η

′(Xi+1), . . . , η(Xq),qr) ∈ JF (Ψ)Kη
′
V
T .

To reach the value of η′(Xi) we have to replace the 2s+ i-th component
by one of the last r components and move through all reachable states.
By Observation 4.6 the formula defined in Definition 4.5 fulfils this
behaviour. Because the first-order variable Xi is represented by the
2s+i-th component and F (Φ) = ∃2s+iΨ, we replace in F (Φ) the 2s+i-th
component by one of the last r components, move through all reachable
states and checking if F (Ψ) holds. That means it holds that

q ∈ JF (Φ)KηVT

iff T , η |= Φ.
• In case of Φ = ∃(X : τ).Ψ it follows that T , η |= Φ iff there exists
X ∈ Dτ (Q) with T , η′ |= Ψ, where η′ is a variable mapping with
η′(x) = η(x) for all variables x 6= X and η′(X) = X . By induction

hypothesis it follows that q ∈ JF (Ψ)Kη
′
V
T iff T , η′ |= Ψ. By Lemma 4.17

the formula ∃τX.Ψ(X) is semantically equivalent to
⊔

X∈JτKT
JΨ(X)Kη

′

T .

It follows with F (Φ) = ∃τX.F (Ψ)(X) that it holds

q ∈ JF (Φ)KηVT

iff T , η |= Φ.
• In case of Φ = [LFP Ψ(X,Xi1 , . . . , Xin)](Vj1 , . . . , Vjn), whereX is a free

variable in Ψ of HO type (�, . . . ,�) and Xi1 , . . . , Xin are free first-order
variables of Ψ and Vj1 , . . . , Vjn are first-order variables of Φ such that,
without loss of generality, i1 < i2, j1 < j2, . . . , in−1 < in, jn−1 < jn.
All other cases working similar. Then it follows that T , η |= Φ exactly
if (η(Vj1), . . . , η(Vjn)) ∈ LFP (F TΨ). By definition of LFP the tuple

4.3. LOWER BOUND OF PHFLK 55

(η(Vj1), . . . , η(Vjn)) is in LFP (F TΨ) iff X is the smallest X such that
X = F TΨ (X) and (η(Vj1), . . . , η(Vjn)) ∈ F TΨ (X). By definition of F TΨ (X)
it holds that (η(Vj1), . . . , η(Vjn)) ∈ F TΨ (X) exactly then if T , η′ |= Ψ,
where η′ is a variable mapping with η′(x) = η(x) for all variables x 6= X
and η′(X) = F TΨ (X). By induction hypothesis this is exactly the case
if

(qs,qs, η
′(X1), . . . , η′(Xi1−1), η′(Xi1), η

′(Xi1+1), . . . , η′(Xin−1),

η′(Xin), η′(Xin+1), . . . , η′(Xq),qr) ∈ JF (Ψ)Kη
′
V
T .

The next step is to show that it holds that η′(X) = LFP (F TΨ) ex-

actly then if JF (Ψ)Kη
′
V
T = Jµ(X : •). F (Ψ)KηVT . By Theorem 2.11 the

least fixpoint of F TΨ can be calculated by a sequence X0, . . . , Xm where
here X0 = ∅ and Xi+1 = F TΨ (Xi) and η′(X) = Xm. On the other
hand Jµ(X : •). F (Ψ)KηVT can be calculated by a sequence Y0, . . . , Ym′

where here Y0 = ∅ and Yi+1 = JF (Ψ)KηV [X 7→Yi]
T and Ym′ = JF (Ψ)Kη

′
V
T .

Furthermore, let η′0, . . . , η′m be a sequence of variable mappings where
η′i(x) = η(x) for all x 6= X and η′i(X) = Xi. It is easy to verify that
η′m = η′. For any η′i we get by Definition 4.21 the variable mapping
η′iV and so a sequence of variable mappings η′0V , . . . , η

′m
V . Moreover, ηj+1

V

is JF (Ψ)Kη
′j
V
T . Because η′0V (X) = ∅, η′1V (X) = JF (Ψ)Kη

′0
V
T and so on, it

follows that η′mV (X) = JF (Ψ)Kη
′
V
T if and only if η′(X) is the least fixpoint

of F TΨ .
Because of the construction of variable mapping η′V and (η′(Vj1), . . . ,
η′(Vjn)) ∈ η′(X) the tuple (η′(Vj1), . . . , η

′(Vjn), q′n+1, . . . , q
′
s,qs,qq,qr)

is also in η′V (X).
Because components 1, . . . , n are not set to the mappings of first-order
variables Vj1 , . . . , Vjn , we first move the components 2s + j1, . . . , 2s +
jn to components 1, . . . , n respectively and check then the least fix-
point operator. So it holds with F (Φ) = {2s + j1, . . . , 2s + jn, n +
1, . . . , d}µ(X). F (Ψ) that

(qs,qs, η(X1), . . . , η(Vj1−1), η(Vj1), η(Vj1+1), . . . η(Vjn−1),

η(Vjn), η(Vjn+1), . . . , η(Xq),qr) ∈ JF (Φ)KηVT

exactly then if T , η |= Φ.
• In case of Φ = [LFP Ψ(X,X1, . . . , Xn)](V1, . . . , Vn), where X is a free

variable in Ψ of HO type (τ, . . . , τ) and X1, . . . , Xn are free variables of
Ψ of type τ and V1, . . . , Vn are free variables of Φ also of type τ , then it
follows that T , η |= Φ exactly then if (η(V1), . . . , η(Vn) ∈ LFP (F TΨ). By

56 CHAPTER 4. LOWER BOUNDS

definition of LFP the tuple (η(V1), . . . , η(Vn)) is in LFP (F TΨ) iffX is the
smallest X such that X = F TΨ (X) and (η(V1), . . . , η(Vn)) ∈ F TΨ (X). By
definition of F TΨ (X) it holds that (η(V1), . . . , η(Vn)) ∈ F TΨ (X) exactly
then if T , η′ |= Ψ, where η′ is a variable mapping with η′(x) = η(x) for
all variables x 6= X and η′(X) = F TΨ (X). By induction hypothesis this
is exactly the case if

q ∈ JF (Ψ)KηVT .

The next step is to show that it holds that η′(X) = LFP (F TΨ) exactly

then if JF (Ψ)Kη
′
V
T = Jµ(X : T ((τ, . . . , τ))). F (Ψ)KηVT . By Theorem 2.11

the least fixpoint of F TΨ can be calculated by a sequence X0, . . . , Xm

where here X0 = ∅ and Xi+1 = F TΨ (Xi) and η′(X) = Xm. On the other
hand Jµ(X : T ((τ, . . . , τ)). F (Ψ)KηVT can be calculated by a sequence

Y0, . . . , Ym′ where here Y0 = ⊥T ((τ,...,τ)) and Yi+1 = JF (Ψ)KηV [X 7→Yi]
T and

Ym′ = JF (Ψ)Kη
′
V
T . Furthermore, let η′0, . . . , η′m be a sequence of variable

mappings where η′i(x) = η(x) for all x 6= X and η′i(X) = Xi. It is easy
to verify that η′m = η′. For any η′i we get by Definition 4.21 the vari-
able mapping η′iV and so a sequence of variable mappings η′0V , . . . , η

′m
V .

Moreover, ηj+1
V is JF (Ψ)Kη

′j
V
T . Because η′0V (X) = ⊥T ((τ,...,τ)), η

′1
V (X) =

JF (Ψ)Kη
′0
V
T and so on, it follows that η′mV (X) = JF (Ψ)Kη

′
V
T if and only if

η′(X) is the least fixpoint of F TΨ .
Because of the construction of variable mapping η′V and (η′(V1), . . . ,
η′(Vn)) ∈ η′(X) it holds that (· · ·

(
η′V (X) η′V (V1)

)
· · ·) η′V (Vn) = Qd and

so

q ∈ (· · ·
(
η′V (X) η′V (V1)

)
· · ·) η′V (Vn).

With F (Φ) = (· · ·
(
µ(X : T ((τ, . . . , τ))).Φ(X)

)
V1) · · ·)Vn it follows

q ∈ JF (Φ)KηVT .

exactly then if T , η |= Φ.

Remark 4.25. In the proof of Theorem 4.24 the dimension d of F (Φ) is 2s+q+
r but only the components where the free variables are represented are filled
with input parameters. That means by only projecting these components
in the by F (Φ) defined query QdF (Φ) we get the resulting query QfΦ that is
defined by Φ.

The combination of Theorem 4.24, Theorem 4.18 and Theorem 3.11
proves the following theorem for k > 0. For k = 0 and k = 1 this state-
ment was proven by M. Otto in [4] and by M. Lange and E. Lozes in [2].

4.4. LOWER BOUND OF PHFLK+1
TAIL 57

Theorem 4.26. Let k ≥ 0. PHFLk captures k-EXPTIME/∼ over finite
labelled transition systems.

4.4 Lower Bound of PHFLk+1
tail

The lower bound of PHFLk+1
tail can be proven similar to the lower bound of

PHFLk. The main idea is not to show directly that the lower bound of
PHFLk+1

tail is k-EXPSPACE/∼ but rather by detour over the bisimulation-
invariant fragment of HO(PFP)k+1. In the first subsection we show that a
Turing Machine that is in k-EXPSPACE can be encoded by an HO(PFP)k+1

formula. The next subsection uses this statement to show that the lower
bound of PHFLk+1

tail is k-EXPSPACE/∼ by encoding formulas of HO(PFP)k+1

in PHFLk+1
tail .

4.4.1 k-EXPSPACE and HO(PFP)k+1

In this subsection we want to show that a run of an exp(k, f(n)) space
bounded DTM can be encoded by some HOk+1 formula. The main idea
of this statement is an extension of the result of Abiteboul and Vianu [17] into
higher-order. They have shown that HO(PFP)1 coincides with 0-EXPSPACE.

Lemma 4.27. Given a k-EXPSPACE-bounded DTM M = (Q,Σ,Γ, δ, q0,�,
F, R) there exists a formula Ψ in HO(PFP)k+1 over signature σ such that
for all suitable variable mappings η and all LTS T it holds that T , η |= Ψ
exactly then if the run of M on the standard coding of (T , η) is accepting.

Proof. Let M = (Q,Σ,Γ, δ, q0,�, F, R) be a exp(k, f(n)) space bounded
DTM, T an LTS and Q′ the set of states of T . Furthermore, we can ad-
vise an linear ordering ∃(< : (�,�)). ϕ on Q′ of T , where ϕ describes that <
is an order [1]. Finally, let τ be an HO type of order k + 1 and η a variable
mapping. To prove this lemma we want to define a relational representation,
of the final configuration of M that has the standardized encoding of (T , η)1,
abbreviated with w, as input word, as a partial fixpoint of some HO(PFP)k+1

formula. In order to do this, we construct a partial fixpoint of order k + 2
such that for all i, the i-th approximation of this fixpoint encodes the i-th
configuration in the run of M with input word w.

1The standardized encoding of structures is a non-trivial problem. Because the de-
scription of the encoding goes beyond the scope of this thesis, we only refer to [17] for
further information about the standardized encoding of structures.

58 CHAPTER 4. LOWER BOUNDS

Before we can define the configurations of M in HO we have to make
some preparations. Remember that a configuration of M comprises the cur-
rent state, the current reading head position and the current tape content
represented by a function. These configurations will be combined in one re-
lation X. Because the size of the formula we build have to be polynomial
and the reading head of M can be on one of exp(k, f(n)) cells for example,
we have to encode the number in sets of order k + 1. Furthermore, in order
to not exceed the bound of order k + 1, we have to split the tape content
function in such a way that in one tuple x of X is just the current state,
the current head position and one position of the tape with its content. By
syntax of HO types each component of x ∈ X has to be of the same type, so
to access the different states and tape symbols they have to be numerated.
{0, . . . , |Q| − 1} for states and {0, . . . , |Γ| − 1} for tape symbols.

The next step is to define some abbreviations that we want to use in the
definitions of the configurations. The first and most important abbreviation
is the definition of orders of any HO type. These orders are defined similarly
to the defined formulas of Definition 4.12. A tuple x is smaller then a tuple
y if there is a position i where Xi < yi and there is no position j < i where
Xj > yj. A set X is smaller then a tuple Y if there is a x ∈ Y such that
x 6∈ X and there is no y < x such that y ∈ X but y 6∈ Y .

<� (x, y) := < (x, y)

<τ ′×···×τ ′ (X1, y1, . . . , Xn, yn) :=
n∨
i=1

<τ ′ (Xi, yi) ∧
i−1∧
j=1

¬ <τ ′ (yj, Xj)

<(τ ′,...,τ ′) (X, Y) :=∃(X1 : τ ′). . . .∃(Xn : τ ′). Y (X1, . . . , Xn)

∧ ¬X(X1, . . . , Xn) ∧ ∀(y1 : τ ′). . . .∀(y1 : τ ′).

<τ ′×···×τ ′ (y1, X1, . . . , yn, Xn)

⇒ (X(y1, . . . , yn)⇒ Y (y1, . . . , yn))

With these formulas it is possible to define another two important abbrevia-
tions. On the one hand equality of two variables of arbitrary type and on the
other hand the successor of a given element. If X and Y are two variables of
type τ then the equality of X and Y is given by the formula

X = Y := ¬ <τ (X, Y) ∧ ¬ <τ (Y,X).

Finally, if X and Y are two variables of type τ then the prove that Y is the
successor of X is given by the formula

nextτ (X, Y) := <τ (X, Y) ∧ ∀(Z : τ). <τ (Z, Y)⇒ <τ (Z,X).

4.4. LOWER BOUND OF PHFLK+1
TAIL 59

Now we are able to define the configurations in HO(PFP)k. The first
configuration is the initial configuration. For input word w this is given by
the formula

ϕ0(q, h, i, b) := q = q0 ∧ h = 0 ∧ (¬ <τ (|w|, i)⇒ b = wi)∨
(¬ <τ (i, |w|) ∧ ¬i = |w| ⇒ b = �))

where q is the current state, h the current head position, i a tape index and
b the symbol on i. q0, 0, |w|, wi and � are the numerical representations as
sets of the same elements in Q and Γ.

To iterate through all configurations of M on input w, we need a variable
X of type τ = (τ ′, τ ′, τ ′, τ ′) where τ ′ has order k+1, so X has order k+2. On
an iteration (F T ,ηϕ)i+1(∅) for the following formula ϕ the variable X includes
all configurations that will be reached within i transitions.

ϕ(X, q, h, j, b) := (∀(qold : τ ′).∀(hold : τ ′).∀(jold : τ ′).∀(bold : τ ′).

¬X(qold, hold, iold, bold) ∨ ¬ϕ0(q, h, i, b)) ∨ ξ(X, q, h, i, b)

Note that ϕ0 is invoked only in the first iteration and thus provides the
correct initialisation. The formula ξ collects the transitions of those tuples
inX according to the transition function δ ofM . In each iteration exactly one
configuration will be added to X because M is deterministic. The formula ξ
is given by

ξ(X, q, h, i, b) :=∃(qold : τ ′).∃(hold : τ ′). ∃(iold : τ ′).∃(bold : τ ′).

∃(qnew : τ ′).∃(bnew : τ ′). X(qold, hold, iold, bold)∧(∨
δ(qold,bold)=(qnew,bnew,d)

q = qnew ∧ h = hold + d ∧ i = iold ∧

(
(¬i = hold ∧ b = bold) ∨ (i = hold ∧ b = bnew)

))
where h = hold + d depends on d and is given by

h = hold + d :=


nextτ (hold, h), if d = L

nextτ (h, hold), if d = R

h = hold, if d = N

Because M terminates, the formula

ψ0(q′, h′, i′, b′) := [PFP ϕ(X, q, h, i, b)](q′, h′, i′, b′)

60 CHAPTER 4. LOWER BOUNDS

is guaranteed to define the relational description of the final configuration of
M on input word w. Finally, the formula

ψ := ∃(h′ : τ ′).∃(i′ : τ ′).∃(b′ : τ ′).
∨
q′∈F

ψ0(q′, h′, i′, b′)

defines the acceptance of M on input w.

4.4.2 Encoding of Bisimulation Invariant HO(PFP)k+1

in PHFLk+1
tail

As mentioned in the introduction of this section the main idea is not to show
directly that the lower bound of PHFLk+1

tail is k-EXPSPACE/∼ but rather by
detour over the bisimulation-invariant fragment of HO(PFP)k+1. In the pre-
vious subsection we have seen that a k-EXPSPACE-bounded DTM can be
performed by an HO(PFP)k+1 formula. Encoding the bisimulation-invariant
fragment of HO(PFP)k+1 into PHFLk+1

tail combined with the knowledge that
k-EXPSPACE is captured by HO(PFP)k+1 leads to the lower bound of
PHFLk+1

tail . In Section 4.2 and Section 4.3 we have shown that the HOk+1

part can be encoded in PHFLk. It is easy to prove that the encoded formu-
las are all tail-recursive2. It follows that the HOk+1 part can also be encoded
in PHFLk+1

tail . The PFP operator is the only kind of HO(PFP)k+1 formula that
we have to encode in this subsection to get the lower bound of PHFLk+1

tail .
Before we give the definition of the transforming function, we define a

PHFL formula for HO formulas that uses the PFP operator.

Definition 4.28. Let d be the constant as described in Remark 4.4 and X
an HO variable of HO type τ = (τ ′, . . . , τ ′) where τ ′ 6= �. Furthermore,
let Φ be a PHFLktail formula, then PFP τX.Φ is a PHFLktail formula with
dimension d defined as:

PFP τX.Φ :=
(
µ(F : T (τ)→ •). λ(X : T (τ)).

(
X ∧ ∀τ ′X1. · · · ∀τ

′
Xn.

((· · · (XX1) · · ·)Xn ⇔ Φ(X,X1, . . . , Xn)) ∨ F (Φ(X)
))
⊥T (τ)

In case of τ = (�, . . . ,�) let PFP (�,...,�)X.Φ defined as:

PFP (�,...,�)X.Φ :=
(
µ(F : • → •). λ(X : •).

(
X ∧ ∀1 · · · ∀n

(X ⇔ Φ(X)) ∨ F (Φ(X)
))
⊥

2The PHFL0 formula Φ∼ (Example 2.19) is, indeed, not tail-recursive, but over finite
LTS it is equivalent to a tail-recursive PHFL1 formula [18].

4.4. LOWER BOUND OF PHFLK+1
TAIL 61

Now we are able to define the function that translates a bisimulation
invariant HO(PFP)k+1 formula to a PHFLk+1

tail formula. Note that the en-
coding function defined in the following definition differs only in the fixpoint
operators from the encoding function from Definition 4.20.

Definition 4.29. Define F as the function that maps a bisimulation invari-
ant HO(PFP)k+1 formula ϕ to a PHFLk+1

tail formula with dimension d, where
d and s are the constants as described in Remark 4.4 and Φ∼ is the formula
of Example 2.19, then F is defined inductive on ϕ as follows:

F (p(Xi)) := p2s+i

F (a(Xi, Xj)) := 〈a〉2s+i{(2s+ i, 2s+ j,

3, . . . , d)}Φ∼
F (Φ ∨Ψ) :=F (Φ) ∨ F (Ψ)

F (¬Φ) :=¬F (Φ)

F (∃(Xi : �).Φ) :=∃2s+iF (Φ)

F (∃(X : τ).Φ) :=∃τX.F (Φ(X))

F ([PFP Φ(X,Xi1 , . . . , Xin)](Vj1 , . . . , Vjn)) := {(j1, . . . , jn, n+ 1, . . . , d)}
PFP (�,...,�)X.F (Φ)

F ([PFP Φ(X,X1, . . . , Xn)](V1, . . . , Vn)) := (· · ·
(
PFP τX.F (Φ)

)
V1) · · ·)Vn

F (X(Xi1 , . . . , Xin)) := {(2s+ i1, . . . , 2s+ in,

n+ 1, . . . , d)}X
F (X(X1, . . . , Xn)) := (· · · (X X1) · · ·)Xn

The last step is to show that the semantics of a given HO(PFP)k+1 for-
mula coincides with the semantics of the translated PHFLk+1

tail formula. As
mentioned in Section 4.1 without loss of generality the statement can be
proven by consider only reduced LTS.

Lemma 4.30. Let f ≥ 1 and k ≥ 0. For every bisimulation-invariant
formula Φ of HO(PFP)k+1 there is a PHFLk+1

tail formula Ψ such that the f -

adic query QfΦ defined by Φ is equal to the f -adic query QfΨ defined by Ψ.

Proof. This lemma can be proven by showing for all HO(PFP)k+1 formulas
Φ with first-order variables X1, . . . , Xq, all reduced LTS T = (Q,Σ, P,∆, v)
with respect to qr = q1, . . . , qr and all variable mappings η that it holds that
T , η |= Φ iff q = (qs,qs,qq,qr) and q ∈ JF (Φ)KηVT . Here qs = q′1, . . . , q

′
s is a

sequence of s placeholders used for the interaction of second-order variables,
qq = η(X1), . . . , η(Xq) is a sequence of first-order variables that are mapped
by η where η(Xi) = q0 if Xi is bound to a quantifier, q0, q

′
1, . . . , q

′
s ∈ Q are

62 CHAPTER 4. LOWER BOUNDS

arbitrary states, F is the formula function of Definition 4.20 and ηV the vari-
able mapping of Definition 4.21. This statement can be proven by induction
over formula Φ. Because the correctness proof of the non-fixpoint formulas
is very similar to the correctness proof of Theorem 4.24 we concentrate us
on showing correctness of the PFP operators.

• In case of Φ = [PFP Ψ(X,Xi1 , . . . , Xin)](Vj1 , . . . , Vjn), where X is a
free variable in Ψ of HO type (�, . . . ,�) and Xi1 , . . . , Xin are free
first-order variables of Ψ and Vj1 , . . . , Vjn are first-order variables of
Φ such that, without loss of generality, i1 < i2, j1 < j2, . . . , in−1 <
in, jn−1 < jn. All other cases working similar. Then it follows that
T , η |= Φ exactly then if (η(Vj1), . . . , η(Vjn)) ∈ PFP (F T ,ηΨ). By Defi-

nition 2.12 this is the case when there is an m such that F T ,ηΨ

m
(∅) =

F T ,ηΨ

m+1
(∅) and (η(Vj1), . . . , η(Vjn)) ∈ F T ,ηΨ

m
(∅). By Definition 2.44

(η(Vj1), . . . , η(Vjn)) ∈ F T ,ηΨ

m
(∅) iff T , η |= Ψ(F T ,ηΨ

m
(∅), η(Vj1), . . . ,

η(Vjn)). By induction hypothesis this is exactly the case when

(qs,qs, η(X1), . . . , η(Xi1−1), η(Xi1), η(Xi1+1), . . . , η(Xin−1),

η(Xin), η(Xin+1), . . . , η(Xq),qr) ∈ JF (Ψ)KηVT .

Note that X is set to F T ,ηΨ

m
(∅).

If we use λ-approximation and β-reduction on PFP(�,...,�)X.F (Ψ) we
can see that it can be summarized to

ϕ :=
m′∨
i=0

(
F (Ψ)i⊥ ∧ ∀1 · · · ∀n

(
F (Ψ)i⊥ ⇔ F (Ψ)i+1⊥

))
Note that

F T ,ηΨ

m
(∅) = F (Ψ)m

′⊥.
This holds because by induction over i obviously it holds that ∅ = ⊥
and F T ,ηΨ (∅) = F (Ψ)⊥. That means F T ,ηΨ

i+1
(∅) = F (Ψi+1)⊥ holds

because by induction hypothesis it holds that F T ,ηΨ

i
(∅) = F (Ψi)⊥ and

F T ,ηΨ (F T ,ηΨ

i
(∅)) = F (Ψ)

(
F (Ψ)i⊥

)
.

If there existst an i such that F T ,ηΨ

i
(∅) = F T ,ηΨ

i+1
(∅) this is exactly the

case when the right conjunct of ϕ

∀1 · · · ∀n
(
Ψi(⊥)⇔ Ψi+1(⊥)

)
holds. The left conjunct of ϕ returns then the set that we get through
the i-th application of F (Ψ) on the empty set.
Because of the construction of variable mapping ηV and (η(Vj1), . . . ,
η(Vjn)) ∈ η(X) the tuple (η(Vj1), . . . , η(Vjn), q′n+1, . . . , q

′
s,qs,qq,qr) is

4.4. LOWER BOUND OF PHFLK+1
TAIL 63

also in ηV (X). That means it holds that (η(Vj1), . . . , η(Vjn)) ∈ F T ,ηΨ

i
(∅)

with
F (Φ) = {(i1, . . . , in)}(PFP (�,...,�)X.F (Ψ))

exactly then if

(qs,qs, η(X1), . . . , η(Vj1−1), η(Vj1), η(Vj1+1), . . . η(Vjn−1),

η(Vjn), η(Vjn+1), . . . , η(Xq),qr) ∈ JF (Φ)KηVT .

In the case that PFP (F T ,ηΨ) returns the empty set because there is no

m such that F T ,ηΨ

m
(∅) = F T ,ηΨ

m+1
(∅), the right conjunct of ϕ is always

false. Because of the least fixpoint operator in PFP (�,...,�)X.F (Ψ) the
iteration is finite and it also will return the empty set.

• In case of Φ = [PFP Ψ(X,X1, . . . , Xn)](V1, . . . , Vn), where X is a free
variable in Ψ of HO type (τ, . . . , τ) and X1, . . . , Xn are free variables
of Ψ of type τ and V1, . . . , Vn are free variables of Φ also of type τ ,
then it follows that T , η |= Φ exactly then if (η(V1), . . . , η(Vn)) ∈
PFP (F T ,ηΨ). By Definition 2.12 this is exactly the case when there

is an m such that F T ,ηΨ

m
(∅) = F TΨ

m+1
(∅) and (η(V1), . . . , η(Vn)) ∈

F T ,ηΨ

m
(∅). By Definition 2.44 (η(V1), . . . , η(Vn)) ∈ F T ,ηΨ

m
(∅) iff T , η |=

Ψ(F TΨ
m

(∅), η(V1), . . . , η(Vn)). By induction hypothesis this is exactly
the case when q ∈ JF (Ψ)KηVT . Note that X is set to F T ,ηΨ

m
(∅).

If we use λ-approximation and β-reduction on PFPτX.F (Ψ) we can
see that it can be summarized to

ϕ :=
m′∨
i=0

(
F (Ψ)i⊥T ((τ,...,τ)) ∧ ∀τ

′
X1. · · · ∀τ

′
Xn.(

(· · · (F (Ψ)i⊥T ((τ,...,τ))X1) · · ·)Xn ⇔

(· · · (F (Ψ)i+1(⊥T ((τ,...,τ)))X1) · · ·)Xn

))
Note that

F T ,ηΨ

m
(∅) = F (Ψ)m

′⊥T ((τ,...,τ)).

This holds because by induction over i obviously it holds that

∅ = ⊥T ((τ,...,τ))

and
F T ,ηΨ (∅) = F (Ψ)⊥T ((τ,...,τ)).

That means
F T ,ηΨ

i+1
(∅) = F (Ψ)i+1⊥T ((τ,...,τ))

64 CHAPTER 4. LOWER BOUNDS

holds because by induction hypothesis it holds that

F T ,ηΨ

i
(∅) = F (Ψ)i⊥T ((τ,...,τ))

and
F T ,ηΨ (F T ,ηΨ

i
(∅)) = F (Ψ)

(
F (Ψ)i⊥T ((τ,...,τ)))

If there existst an i such that F T ,ηΨ

i
(∅) = F TΨ

i+1
(∅) this is exactly the

case when the right conjunct of ϕ

∀τ ′X1. · · · ∀τ
′
Xn.(

(· · · (Ψi(⊥T ((τ,...,τ)))X1) · · ·)Xn ⇔
(· · · (Ψi+1(⊥T ((τ,...,τ)))X1) · · ·)Xn

)
holds. The left conjunct of ϕ returns then the function that we get
through the i-th application of Ψ on ⊥T ((τ,...,τ)).
Because of the construction of variable mapping ηV and (η(V1), . . . ,
η(Vn)) ∈ η(X) it holds that (· · ·

(
ηV (X) ηV (V1)

)
· · ·) ηV (Vn) = Qd and

so
q ∈ (· · ·

(
ηV (X) ηV (V1)

)
· · ·) ηV (Vn).

That means it holds that (η(V1), . . . , η(Vn)) ∈ F T ,ηΨ

i
(∅) with

F (Φ) = (· · · ((PFP T ((τ, . . . , τ))X.F (Φ))V1) · · ·)Vn

exactly then if
q ∈ JF (Φ)KηVT .

In the case that PFP (F T ,ηΨ) returns the empty set because there is no

m such that F T ,ηΨ

m
(∅) = F T ,ηΨ

m+1
(∅), the right conjunct of ϕ is always

false. Because of the least fixpoint operator in PFP T ((τ,...,τ))X.F (Ψ)
the iteration is finite and it will return ⊥T ((τ,...,τ)).

The combination of Lemma 4.30, Lemma 4.27 and Theorem 3.14 proves
the following theorem for k > 0. For k = 0 and k = 1 this statement was
proven by M. Otto in [4] and by M. Lange and E. Lozes in [2].

Theorem 4.31. Let k ≥ 0. PHFLk+1
tail captures k-EXPSPACE/∼ over la-

belled transition systems.

Chapter 5

Conclusion

In this thesis, we contributed to descriptive complexity theory by relating any
order of PHFL to the corresponding complexity class. In detail, we showed
that PHFLk captures the complexity class k-EXPTIME/∼ for any k > 1 over
finite labelled transition systems. Due to the fact that the statement above
is also true for k = 0 [4] and k = 1 [2] we were able to verify that PHFLk

captures k-EXPTIME/∼ for any k ≥ 0 on finite labelled transition systems.
Furthermore, it was showed that the logic PHFLk+1

tail captures the complexity
class k-EXPSPACE/∼ for any k > 1. In analogy to the exponential time
classes, it was also proven that PHFLk+1

tail captures k-EXPSPACE/∼ for any
k ≥ 0 on finite labelled transition systems [4] [2].

Since PHFL does not have existential and universal quantification over
arbitrary higher-order relations a lot of effort had to be spent into the devel-
opment of the encoding of the existential quantifiers of any order. To obtain
higher-order quantification in PHFL we used the existential quantifiers of
type τ = (�, . . . ,�) to define the order of domains of kind D(τ,...,τ)(Q). This
order was then be used to define a formula that returns the successor of a
given element of D(τ,...,τ)(Q) in respect to this order. Finally, we used this
formula to define the existential quantifier of type (τ, . . . , τ). This procedure
was applied to all possible types of HO. In this way we got higher-order
quantification of any type in PHFL.

The presented results contribute to the understanding on these complex-
ity classes, which opens the possibilities for additional research, especially
for further characterization of k-EXPTIME and k-EXPSPACE. That could
lead to a further research on the characterization of classes k-NEXPTIME/∼.
Those characterizations cannot be mapped to the encodings of k-EXPTIME/∼
presented in this thesis. Another possibility may be the characterization of
the polynomial hierarchy [19].

65

66 CHAPTER 5. CONCLUSION

Acknowledgements

First of all I would like to thank my thesis advisor Prof. Dr. Martin Lange for
transferring the topic to me. I am very thankful for the help of Florian Bruse.
In a twentyfour-seven service he gave me a patient guidance and lot of proof
reading. I also like to thank Andreas and Michael for their English proof
readings. Furthermore, I want to express my gratitude to my wife Lisa, who
supported me in this exhausting time with much patience, understanding
and the care of our daughter. A special thanks goes to Richard who not only
did a good English proof reading, but furthermore backed me up morally.

Bibliography

[1] R. Fagin. Generalized first-order spectra, and polynomial. time recog-
nizable sets. Complexity and Computation, 7:43–73, 1974.

[2] M. Lange and E. Lozes. Capturing bisimulation-invariant complexity
classes with higher-order modal fixpoint logic. In Josep Dı́az, Ivan
Lanese, and Davide Sangiorgi, editors, IFIP TCS, volume 8705 of Lec-
ture Notes in Computer Science, pages 90–103. Springer, 2014.

[3] M. Viswanathan and R. Viswanathan. A higher order modal fixed point
logic. In Philippa Gardner and Nobuko Yoshida, editors, CONCUR,
volume 3170 of Lecture Notes in Computer Science, pages 512–528.
Springer, 2004.

[4] M. Otto. Bisimulation-invariant ptime and higher-dimensional µ-
calculus. Theoretical Computer Science, 224(1-2):237–265, 1999.

[5] C. M. Freire and A. T. C. Martins. The descriptive complexity of the
deterministic exponential time hierarchy. Electronic Notes in Theoretical
Computer Science, 269:71–82, 2011.

[6] N. Immerman. Descriptive complexity. Graduate texts in computer
science. Springer, 1999.

[7] C. H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[8] A. Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics, 5(2):285–309, 1955.

[9] V. Stoltenberg-Hansen, I. Lindström, and E. R. Griffor. Mathematical
Theory of Domains. Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 1994.

[10] D. Kozen. Results on the propositional mu-calculus. Theoretical Com-
puter Science, 27:333–354, 1983.

67

68 BIBLIOGRAPHY

[11] J. E. Hopcroft and J. Ullman. Einführung in die Automatentheorie,
Formale Sprachen und Komplexitätstheorie. Addison-Wesley, 3. edition,
1994. deutsche Ausgabe.

[12] A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular
expressions with squaring requires exponential space. In SWAT (FOCS),
pages 125–129. IEEE Computer Society, 1972.

[13] F. Bruse, M. Lange, and E. Lozes. Space-efficient fragments of higher-
order fixpoint logic. In Matthew Hague and Igor Potapov, editors,
RP, volume 10506 of Lecture Notes in Computer Science, pages 26–41.
Springer, 2017.

[14] J. Van Benthem and K. Doets. Higher-order logic, pages 189–243.
Springer Netherlands, Dordrecht, 2001.

[15] K.-D. Schewe and J. M. Turull Torres. Fixed-point quantifiers in higher
order logics. In Proceedings of the 2006 Conference on Information
Modelling and Knowledge Bases XVII, pages 237–244, Amsterdam, The
Netherlands, The Netherlands, 2006. IOS Press.

[16] R. Axelsson, M. Lange, and R. Somla. The complexity of model
checking higher-order fixpoint logic. Computing Research Repository,
abs/0704.3931, 2007.

[17] S. Abiteboul and V. Vianu. Computing with first-order logic. Journal
of Computer and System Sciences, 50(2):309–335, 1995.

[18] M. Lange and E. Lozes. Capturing bisimulation-invariant com-
plexity classes with higher-order modal fixpoint logic. available at
http://carrick.fmv.informatik.uni-kassel.de/∼lozes/tcs14-long.pdf.

[19] Stockmeyer L. J. The polynomial-time hierarchy. TCS, 3(1):1–22, 1976.

	Introduction
	Preliminaries
	Bisimulation Invariance
	Fixpoints
	Polyadic Higher Order Fixpoint Logic
	Types of PHFL
	Syntax of PHFL
	Semantics of PHFL
	Tail-Recursive PHFL

	Descriptive Complexity
	Higher Order Logic
	Syntax of HO
	Semantics of HO
	HO + LFP
	HO + PFP

	Upper Bounds
	Upper Bound of PHFLk
	Correctness Proof

	Upper Bound of PHFLk+1tail

	Lower Bounds
	Preparation
	Existential Quantifiers in PHFL
	First-Order and Second-Order Quantification
	Higher-Order Quantification

	Lower Bound of PHFLk
	Variables
	Correctness Proof

	Lower Bound of PHFLk + 1tail
	k-EXPSPACE and HO(PFP)k+1
	Encoding of Bisimulation Invariant HO(PFP)k+1 in PHFLk+1tail

	Conclusion

