
Task-Level Checkpointing
for Nested Fork-Join Programs

Lukas Reitz
Advisor: Prof. Dr. Claudia Fohry
Research Group Programming Languages / Methodologies
University of Kassel, Germany
lukas.reitz@uni-kassel.de

Motivation
• Checkpointing is an established technique for tolerating

fail-stop failures.
• Task-level checkpointing can be e�icient, because only

task descriptors are saved.
• We consider Nested Fork-Join (NFJ) programs (see below).
• Recently, a task-level checkpointing scheme (CP) for NFJ

programs has been sketched [1].
• Problem: CP has been designed for programs that restrict

the number of worker threads per process to one.

Contribution
• We devise a new backup writing scheme:

• It supports multiple worker threads per process.
• Checkpoints are saved per process to reduce the

overall number of checkpoints.
• Workers independently contribute to a process

checkpoint.

Nested Fork-Join Programs
• Tasks may spawn child tasks, wait for their results, and

return a result to their parent. An example of a naive
implementation of Fibonacci:

1 func fib(n) {
2 if (n <= 2) return 1;
3 a = spawn fib(n - 1);
4 b = spawn fib(n - 2);
5 sync;
6 return a + b;
7 }

• Tasks do not have side e�ects.
• The NFJ task model is suitable for, e.g., divide-and-conquer

algorithms.
• Each worker maintains an own task queue.
• When a process runs out of tasks, it steals tasks from another

process. Local workers additionally share some tasks.
• We consider the work-first policy: When a task spawns

another task, the worker branches into the child task and
puts the continuation of the parent task into its queue.

• Each worker alternates between task processing phases and
communication phases.

• Local workers store certain data in a shared data location,
e.g., intermediate results.

Task-Level Checkpointing Scheme
Original Scheme (CP)
• The original checkpointing scheme saves checkpoints at:

– regular time intervals,
– in the event of work stealing (steal backups), and
– during recovery.

• The scheme writes a checkpoint per worker thread.
• Upon failure, it recovers locally confining the failure

handling to a small subset of processes.
• It deploys shrinking recovery, i.e., the program execution

continues on a reduced set of processes.

Extension
• A naive approach to backup writing might pause all

workers of a process from the beginning until the end of
backup writing.

• Our approach avoids stalling the workers:
1. Backup writing is initiated by an arbitrary worker, e.g.,

when a time interval is over.
2. Each worker checks in its communication phase,

whether a backup writing has begun, and if so, it copies
its task queue.

3. The last worker additionally writes the task queue copies
and the shared data to a resilient store.

• During backup writing, operations that move frames
between di�erent parts of the shared state are logged and
executed a�er backup writing.

• Incremental steal backups avoid delaying work stealing
due to the independent contributions to the checkpoint.

• Victims only save the number of stolen tasks. This number
can be updated without the participation of all workers.

Conclusions
• This work removed the restriction of CP to support

multiple worker threads per process.
• Future work should implement and experimentally

evaluate the scheme.

References
[1] C. Fohry, “Checkpointing and localized recovery for
nested fork-join programs,” in SuperCheck, 2021.


