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MOTIVATION
• Recently, HPC applications are getting more and more diverse, including

irregular ones limiting the predictability of computations.
• To enable efficient and productive programming of today’s

supercomputers and beyond, a variety of issues must be addressed, e.g.:

– Load Balancing: utilizing all resources equally,
– Fault Tolerance: coping with hardware failures, and
– Resource Elasticity : allowing the addition/release of resources.

• In this work, we address above issues in the context of AMT for clusters.
• In AMT, programmers split a computation into many fine-grained

execution units (called tasks), which are dynamically mapped to
processing units (called workers) by a runtime system. We consider
dynamic independent tasks, which can be generated at runtime.

LOAD BALANCING
• We propose a coordinated work stealing technique that transparently

schedules tasks to resources of the overall system, balancing the
workload over all processing units.

• In this context, we introduce novel tasking constructs for spawning
dynamic independent tasks and computing their results.

• Tasks can be canceled, which is useful for, e.g., search problems.
• Productivity evaluations show intuitive use compared to other

programming systems such as PCJ and Spark.
• Experiments show good scalability.
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Figure 1: Inter-process speedups over running time with 1 process with 40 workers
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FAULT TOLERANCE
• We propose four techniques to protect programs transparently.
• All perform localized recovery and continue the program execution with

fewer resources after failures.

– Task-level Checkpointing (TC): Writes uncoordinated checkpoints
comprising descriptors of all open tasks in a resilient store.

– Incremental and Selective Task-level Checkpointing (IncTC): Saves only
parts of open tasks.

– Supervision with Steal Tracking (SST): Writes no checkpoints at all, but
exploits natural task duplication of work stealing.

– Combination of TC and SST (LogTC): Logs stealing events to reduce the
number of checkpoints.

• Experiments show no clear winner between the techniques.
• Compared to the well-known checkpoint/restart library DMTCP, our

techniques clearly pay off and have significantly less overhead.
• For instance, TC has a failure-free running time overhead below 1% and

a recovery overhead below 0.5 seconds, both for smooth weak scaling.
• We derive formulas predicting running times including failure handling.
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Figure 2: Total running times for failures

• Simulations of job set executions show that the makespan can be
reduced by up to 97%.
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Figure 3: Makespan simulations of unprotected jobs and protected jobs

RESOURCE ELASTICITY
• We propose a technique to enable the addition and release of nodes at

runtime by transparently relocating tasks accordingly.
• We derive formulas that estimate the overhead-free running time of

work stealing programs with a changing number of resources.
• Analyses show costs for adding and releasing nodes below 0.5 seconds.
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Figure 4: Costs for adding and releasing nodes

• Simulations of job set executions with several heuristics show that the
makespan can be reduced by up to 20%.
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Figure 5: Makespan simulations of a varying number of malleable jobs

CONCLUSIONS
• We have proposed

– a novel coordinated work stealing technique that achieves both intra-
and inter-process load balancing,

– four novel fault tolerance techniques to protect programs
transparently while incurring negligible overhead, and

– a novel resource elasticity technique that enables programs to
transparently adapt to the addition or release of multiple nodes while
incurring negligible overhead.

• AMT enables efficient programming, scalability, and can provide load
balancing, fault tolerance, and resource elasticity in an efficient way.

• Future work should adapt our techniques to heterogenous architectures
such as GPUs or FPGAs.
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