
ASYNCHRONOUS MANY-TASKING (AMT):
LOAD BALANCING, FAULT TOLERANCE, RESOURCE ELASTICITY

JONAS POSNER

University of Kassel (Germany), PLM, jonas.posner@uni-kassel.de

MOTIVATION
• Recently, HPC applications are getting more and more diverse, including

irregular ones limiting the predictability of computations.
• To enable efficient and productive programming of today’s

supercomputers and beyond, a variety of issues must be addressed, e.g.:

– Load Balancing: utilizing all resources equally,
– Fault Tolerance: coping with hardware failures, and
– Resource Elasticity : allowing the addition/release of resources.

• In this work, we address above issues in the context of AMT for clusters.
• In AMT, programmers split a computation into many fine-grained

execution units (called tasks), which are dynamically mapped to
processing units (called workers) by a runtime system. We consider
dynamic independent tasks, which can be generated at runtime.

LOAD BALANCING
• We propose a coordinated work stealing technique that transparently

schedules tasks to resources of the overall system, balancing the
workload over all processing units.

• In this context, we introduce novel tasking constructs for spawning
dynamic independent tasks and computing their results.

• Tasks can be canceled, which is useful for, e.g., search problems.
• Productivity evaluations show intuitive use compared to other

programming systems such as PCJ and Spark.
• Experiments show good scalability.

Sp
ee

du
p

Nodes/processes (workers)

UTS
NQueens

BC
TSP

Pi
MatMul

20

40

60

80

100

120

1 (40
)

8 (32
0)

16
(64

0)

32
(12

80
)

64
(25

60
)

12
8 (51

20
)

Figure 1: Inter-process speedups over running time with 1 process with 40 workers

REFERENCES

[1] Jonas Posner. Load Balancing, Fault Tolerance, and Resource Elasticity for
Asynchronous Many-Task Systems. PhD thesis, University of Kassel (Germany),
12/2021. submitted.

FAULT TOLERANCE
• We propose four techniques to protect programs transparently.
• All perform localized recovery and continue the program execution with

fewer resources after failures.

– Task-level Checkpointing (TC): Writes uncoordinated checkpoints
comprising descriptors of all open tasks in a resilient store.

– Incremental and Selective Task-level Checkpointing (IncTC): Saves only
parts of open tasks.

– Supervision with Steal Tracking (SST): Writes no checkpoints at all, but
exploits natural task duplication of work stealing.

– Combination of TC and SST (LogTC): Logs stealing events to reduce the
number of checkpoints.

• Experiments show no clear winner between the techniques.
• Compared to the well-known checkpoint/restart library DMTCP, our

techniques clearly pay off and have significantly less overhead.
• For instance, TC has a failure-free running time overhead below 1% and

a recovery overhead below 0.5 seconds, both for smooth weak scaling.
• We derive formulas predicting running times including failure handling.

Ti
m

e
in

se
co

nd
s

Failures

TC
TC formula

SST
SST formula

110

120

130

140

150

160

170

180

0 1 2 4 8 12

Figure 2: Total running times for failures

• Simulations of job set executions show that the makespan can be
reduced by up to 97%.

M
ak

es
pa

n
in

ho
ur

s

Component MTBF in years

Unprotected
TC

SST

0

100

200

300

400

500

600

700

800

900

1000

20 21 22 23 24 25 26 27 28 29 210

27.0

27.4

27.8

20 22 24 26 28

Figure 3: Makespan simulations of unprotected jobs and protected jobs

RESOURCE ELASTICITY
• We propose a technique to enable the addition and release of nodes at

runtime by transparently relocating tasks accordingly.
• We derive formulas that estimate the overhead-free running time of

work stealing programs with a changing number of resources.
• Analyses show costs for adding and releasing nodes below 0.5 seconds.

Ti
m

e
in

se
co

nd
s

Released nodes/processes (workers)

StaticSyn
DynamicSyn

0

0.1

0.2

0.3

0.4

0.5

1 (40
)

2 (80
)

4 (16
0)

8 (32
0)

16
(64

0)

32
(12

80
)

64
(25

60
)

Ti
m

e
in

se
co

nd
s

Added nodes/processes (workers)

StaticSyn
DynamicSyn

0

0.1

0.2

0.3

0.4

0.5

1 (40
)

2 (80
)

4 (16
0)

8 (32
0)

16
(64

0)

32
(12

80
)

64
(25

60
)

Figure 4: Costs for adding and releasing nodes

• Simulations of job set executions with several heuristics show that the
makespan can be reduced by up to 20%.

RigidPrefNodes

M
ak

es
pa

n
in

se
co

nd
s

Percentage of malleable jobs

LaterSub
EarlierSub

LaterComp
EarlierComp

LaterStart
EarlierStart

3560

3580

3600

3620

3640

3660

3680

3700

3720

20 40 60 80 100

Figure 5: Makespan simulations of a varying number of malleable jobs

CONCLUSIONS
• We have proposed

– a novel coordinated work stealing technique that achieves both intra-
and inter-process load balancing,

– four novel fault tolerance techniques to protect programs
transparently while incurring negligible overhead, and

– a novel resource elasticity technique that enables programs to
transparently adapt to the addition or release of multiple nodes while
incurring negligible overhead.

• AMT enables efficient programming, scalability, and can provide load
balancing, fault tolerance, and resource elasticity in an efficient way.

• Future work should adapt our techniques to heterogenous architectures
such as GPUs or FPGAs.

mailto:jonas.posner@uni-kassel.de

