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1 INTRODUCTION

1 Introduction

When debugging or inspecting programs, the usual approach is to make use
of breakpoints, a mechanism by which the execution of a program is stopped
at predetermined points. This allows for inspection of the register state, of
global and local variables, and of the so-called call-stack, which is the list of
functions that called each other in order to reach the breakpoint.

Often, this is not enough to find the root cause of a bug or problem, and
one may prefer to stop program execution not based on a certain instruction
or line of code being reached, but as the result of a specific variable or memory
address being read from or written to.

For this purpose, some processor architectures offer a mechanism referred
to as memory breakpoints or watch points, which theoretically allows one to
do exactly that. Unlike breakpoints that trigger when a certain instruction
or line of code is reached, a memory breakpoint is triggered when a specific
memory address is read from and/or written to.

Conventional breakpoints are usually implemented by replacing the in-
struction at the requested address with some kind of branch instruction that
transfers execution to the breakpoint handler which in turn allows the user
to inspect the system. When resuming execution, the replaced instruction is
temporarily restored and executed, allowing the system to resume execution
as if nothing had happened. This approach allows for an infinite number
of breakpoints (bounded only by available system memory) to be placed in
program text.

Unlike conventional breakpoints, memory breakpoints are a limited re-
source. For example, the x86 architecture, while providing a mechanism for
memory breakpoints, not only defines this functionality as an optional pro-
cessor feature, but limits the number of simultaneous memory breakpoints to
a maximum of 41. The obvious approach of artificially increasing this number
by rotating active memory breakpoints is unfeasible, as this would require
perfect prediction of which memory breakpoints need to be active when ex-
ecuting a particular set of instructions. This cannot be achieved without
a degree of complexity that would ultimately exceed that of disregarding
memory breakpoints and executing one instruction at a time while monitor-
ing for effects on memory. This is the solution used by debuggers such as

1While speculation, the author believes these to be the reasons why some debuggers
do not bother including facilities for the creation of memory breakpoints.
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1 INTRODUCTION

GDB, though this is “[...] hundreds of times slower than normal execution.”2

Given the obvious advantages of memory breakpoints, but considering the
restrictions that come with using them, a different approach for achieving the
same end goal is designed and considered in this thesis.

More specifically, we implement a system called Virtual Input/Output,
which offers a pure software solution for the implementation of memory
breakpoints. It doesn’t require architectural support for memory break-
points, but only depends on the presence of a memory management unit
(see Section 2.2).

To facilitate our approach, access to the regions of memory containing
variables one wishes to monitor is virtualized, such that any such access is
handled through abnormal means discussed in Sections 3.2 and 3.3. This
allows for introspection of arbitrary details regarding the access made, in-
cluding the ability to monitor for reads and writes to individual variables.
This way, VIO does not pose any performance penalties when not accessing a
virtualized region of memory, and the number of such regions is not limited.

Besides the example detailed above, VIO also makes it possible to imple-
ment other functionality such as:

� Emulation of memory-mapped peripheral devices

� Software-implementation of non-volatile memory (NVRAM )

� Black-box analysis of interactions between functions and memory, aid-
ing in reverse engineering

� Journaling of memory accesses made by programs, including all accesses
made to memory

This document is structured as follows. First, necessary background
knowledge is conveyed while stating requirements imposed upon computers
hosting VIO in Section 2. Then, Section 3 describes how VIO is implemented
and integrated into a kernel. Finally, Section 4 gives information on a refer-
ence implementation of VIO, before Sections 5 and 6 discuss use cases and
caveats, respectively.

2https://sourceware.org/gdb/onlinedocs/gdb/Set-Watchpoints.html#

index-hardware-watchpoints
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2 BACKGROUND

2 Background

This section explains terminology and the essential features of current com-
puters that are necessary for the implementation of VIO.

2.1 Computers and Memory

Any modern computer in existence today is derived from the model of a
Turing machine3 and its definition of memory.

Briefly stated, memory in a modern computer can be abstracted as an ad-
dressable array of locations that can be read from and written to in arbitrary
order.

The original Turing machine specifies that memory be consecutive, and
theoretically unlimited. It takes the form of a tape and includes a tape-head
located somewhere on the tape with the ability to read, write, and seek left or
right. Additionally, a Turing machine remembers its current program-state4

which, if combined with the contents read from the tape, is translated into a
new program-state, a tape-head movement that is one of “move left”, “move
right”, or “keep position”, as well as a new value that is written to the tape
prior to the optional movement step.

A modern computer’s memory differs from this, mainly in that further
complexity is added for the sake of performance and ease in programming,
though it has been proven that modern computers are just as turing-complete5.

In the following, we list important aspects of a modern computer that are
relevant to VIO:

� Memory is linearly indexed, and no read/write head is used for the
purpose of performing an access. Instead, the term linear memory
access is defined as a read- or write-access being performed by indexing
into an array of sequential physical memory addresses.

The array is referred to as linear memory or physical memory, and
memory indices in general are called addresses.

Each physical memory address is usually capable of holding its own
value independently of any other.

3Named after its inventor, Alan Turing, born 1912
4In literature, a Turning machine’s program-state is held by the state-register, but we

will call it the PC-register.
5The ability to simulate a Turing machine.
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As noted in Section 1, debugging a program that accesses variables
stored in memory requires knowledge of which addresses correspond to
specific variables, requiring a mechanism through which to obtain the
address of a variable. Such a mechanism is not further elaborated here,
as it is independent of VIO.

� In the context of a Turing machine, we define the register-state as
the current position of the head, combined with the current program-
state upon which future head movements and program-state transitions
depend. Notably, the contents of memory are not considered part of
the register-state.

� In a modern computer, the register-state is defined similarly and is
held by a finite set of designated storage locations called registers.
These registers can be categorized as a single PC-register 6 that holds
the program-state, and an architecture-dependent set of work-registers.
The combination of all register contents forms the register-state.

� Work-registers only serve the purpose of augmenting the program-state
described by the primary PC-register. They serve no designated pur-
pose within a VIO implementation, but carry architecture-specific rel-
evance for VIO instruction emulation, as described in Section 3.3.

� The PC-register represents the program-state and translates to the ad-
dress of the instruction that is– or will be executed next. In the context
of a Turing machine, it can be thought of as holding an index into an
array of all possible program-states.

� Instructions are addressable, meaning that it is possible to interpret
the PC-register as an address. The contents of memory read at this
address can then be decoded into said instruction. This process forms
the basis of how a computer assigns semantic meaning to every possible
value the PC-register might take.

� The exact behavior of individual instructions must be known and repli-
cable. Replicating an instruction’s behavior is called instruction emula-
tion, which is done by combining a decoded instruction with read/write
access to memory and work-registers, before using software to emulate

6Standing for “Program Counter”
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the steps taken by the computer hardware upon encountering the in-
struction. VIO takes this a step further by defining special handling
for memory accesses done during VIO instruction emulation; see Sec-
tion 3.3.

2.2 Memory Management Unit

For a multitude of historical reasons, modern computers include a piece of
hardware called a memory management unit, or short MMU. It is a peripheral
memory controller with which the computer can interface in order to control
and limit access to linear memory made by processes7, specifically in the case
where multiple processes are executed in parallel on a single computer.

This is done by assigning each process its own self-contained instance
of linear memory, then called an address space. The exact specifics of how
address spaces are controlled is beyond the scope of this thesis. However,
what is important here are some logical consequences that stem from the
introduction of a MMU:

� Any MMU offers the ability to mark specific ranges8 of addresses as
PRESENT, which stands for not present. Any access performed to such
a range will differ from a normal memory access, in that the computer
will branch to a designated program location (by means of loading a
special value into the PC-register) called the page fault handler.

� The page fault handler, or short PF-handler, is usually a part of the
kernel9, and contains a set of instructions defining the consequences
of such an access. Traditionally, a PF-handler serves a number of pur-
poses10, though this document will not go into further detail about such
uses.

The exact details of how a MMU is programmed are specific to that
MMU, but every MMU must provide the means of specifying a function
PMMU(a) to determine if a given address a is present:

PMMU(a) ∈ {PRESENT, PRESENT}
7An actively executing instance of a program
8Term defined in Section 2.4
9See Section 2.3

10e.g. demand paging, copy-on-write, and the termination of a miss-behaving process
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� The PF-handler also has access to the computer’s register-state prior
to it being branched to. The value of the PC-register at that time is
referred to as the Fault-PC, and the instruction it indexes is referred to
as the faulting instruction, while the register-state at the time is called
the fault-state.

Unless otherwise stated, all mentions of the equivalent terms address and
pointer throughout the rest of this document refer to virtual addresses, mean-
ing locations relative to the specific address space of the currently running
program (unless otherwise stated), as opposed to linear memory.

2.3 Kernel

A kernel takes the form of a set of instructions that are loaded into every
program’s address space (as described in Section 2.2).

As such, a kernel forms a supervisor or controller of programs running on
a system. It is responsible for distributing resources, and controlling when
and how processes are executed, among other things. The exact details of
most of these tasks are not of relevance to VIO.

The PF-handler is assumed to be part of the kernel, and must be designed
or modified to include semantic support for VIO. Semantic requirements and
modifications are described in Section 3.1.

Additionally, an interface for programs to control VIO must be provided
by the kernel. Other parts of the kernel may also need to be adjusted or
redesigned to support VIO. This is further discussed in Section 5.

2.4 Other Terms

The following terms are used throughout this document:

� NULL: A null-value, meaning a placeholder value that does not equal
any other valid value except for itself. By convention, it can only be
assigned to pointers.

� Address ranges : An address range R = [R.minaddr, R.maxaddr] is a
pair of addresses, one of which represents a lower bound (R.minaddr),
while the other represents an upper bound (R.maxaddr). By conven-
tion, these bounds are always inclusive.
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Given an address a and an address range R, we define:

a ∈ R⇔ a ≥ R.minaddr ∧ a ≤ R.maxaddr

Given two address ranges A and B, we define:

A ∩B = [max(A.minaddr, B.minaddr),min(A.maxaddr, B.maxaddr)]

A = ∅ ⇔ A.minaddr > A.maxaddr

A ⊆ B ⇔ (A.minaddr ≥ B.minaddr ∧ A.maxaddr ≤ B.maxaddr)

⇔ (A = (A ∩B))

� Memory mapping descriptor : A memory mapping descriptor describes
the semantic behavior of memory accesses performed to a specific ad-
dress range. This includes the intended and permitted use by programs,
taking the form of mapping-specific semantic rules enforced by the PF-
handler and MMU11. We define it as a tuple (R,P, ...), where R is the
address range it maps (describes), and ... represents additional, mem-
ory mapping descriptor-specific data (relating to the aforementioned
rules).

For an address a ∈ R, P (a) equals the value of PMMU(a), as described
in Section 2.2. The value of PMMU(a) must not necessarily be identical
for every a ∈ R. Additionally, an MMU defines a so-called PAGESIZE

constant (which is usually at least 4096) that states the size and align-
ment of chunks of memory for which PMMU must be the same. As a
consequence, PAGESIZE is also the size of the smallest address range
which any kind of memory mapping descriptor can span. We define:

R 6= ∅
(R.minaddr mod PAGESIZE) = 0

(R.maxaddr mod PAGESIZE) = PAGESIZE− 1

∀a, b :

(
b a

PAGESIZE
c = b b

PAGESIZE
c
)
⇒ (PMMU(a) = PMMU(b))

11A violation of these rules, such as writing to a read-only address or accessing an
inaccessible address (s.a. PMMU ), traditionally results in the program being terminated.
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Furthermore, the value of P (a) may change over the course of the mem-
ory mapping descriptor’s lifetime. Any such changes are usually opaque
to the program, a portion of whose memory the memory mapping de-
scriptor is used to describe, but can be used to facilitate advanced
memory access techniques, such as demand paging or copy-on-write.
Such techniques are not further elaborated here, but VIO poses no
hindrance to their implementation.

Traditionally, memory mapping descriptors can be categorized into two
classes:

– File mapping descriptor : Generally used for memory regions oc-
cupied by a program’s instructions.

– Anonymous mapping descriptor : Generally used for dynamically
allocated memory, as might be returned by the C function malloc(3).

In Section 3 we will introduce a new class for the purposes of VIO.

� Page: A page G is an address range whose size equals PAGESIZE. Fur-
thermore, it’s base address (G.minaddr) is divisible by PAGESIZE. In
turn, every address a ∈ G yields the same value for PMMU(a).

� PFA: In order to aid a kernel’s handling of page faults, some computer
architectures include means for the PF-handler to retrieve the precise
address a to which a memory access12 was performed that violated the
MMU’s constraints imposed on that address. This includes the case
where PMMU(a) = PRESENT, though other functionality might exist
which facilitates the same result (for example: writing to an address
the MMU has been told to only permit read-accesses for). Such func-
tionality is neither required for–, nor detrimental to the implementation
of VIO.

When the computer branches into the PF-handler, it also passes along
the value of a, which we call the primary faulting address, or short
PFA. For example, the X86 architecture allows the PF-handler to de-
termine the PFA by reading from the %cr2 register. By collecting the
set of address ranges accessed by the faulting instruction, it is possible

12The implied width of this memory access is 1 address unit.
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to implement VIO without the use of the PFA, but for the sake of sim-
plicity, this thesis assumes that the PFA is directly accessible to the
PF-handler.

� Function pointer : A pointer that may be invoked by writing it to the
PC Register, thus facilitating a branch to the pointed-to set of instruc-
tions.

Like with normal functions, semantics allow a function pointer to ac-
cept arguments, as well as have a meaningful return value. The mean-
ing of arguments and return values is context-sensitive and described
as appropriate. A function or function pointer that does not yield a
meaningful return value is said to return a value of type void.

We use C-notation to encode functions and function pointers. For ex-
ample, long (*funptr)(int arg) describes a function pointer named
funptr, whose semantics state it returns a value of type long, as well
as take a value of type int via an argument named arg.

� V-Table: A V-Table, short for virtual table, is an array of function
pointers. By convention, elements of this array are given names, rather
than indices.

� Address unit : The delta between two addresses is referred to as an in-
tegral value expressed in address units. For example, the size N of an
address range R can be expressed in address units, by use of the expres-
sion N = (R.maxaddr - R.minaddr) + 1. Conventionally, computer
architectures assign the width of a byte as the address unit.

� Memory access : A memory access describes the act (or intent/attempt)
of accessing memory at a specific address range R. For the sake of
simplicity, a memory access is often said to refer to a singular address
a. In this case, a = R.minaddr, alongside a (sometimes implied) word
width that is equal to the size S (in address units) of the range R. The
type of the word being accessed is written as Word<S>.

For example, the expression x = *(Word<4> *)p performs a read-only
memory access from an address range R = [p, p + 3].

The precise set of possible values for N is equal to the set of memory ac-
cess sizes Nvalid which can be expressed using any instruction accepted
by the computer architecture. This is an architecture-specific set of

10



2.4 Other Terms 2 BACKGROUND

positive numbers and usually consists of only a few, small power-of-2
integers. For example, most 32-bit computers define Nvalid = {1, 2, 4},
while most 64-bit computers define Nvalid = {1, 2, 4, 8}. The greatest
element of this set is called Nmax = max(Nvalid).

� Recursive page fault : A page fault is said to be recursive if it is triggered
from inside of the PF-handler, or some other function invoked by it,
implying that the kernel was still in the process of handling a preceding
page fault.

Care must be taken to ensure that no page fault can ever re-trigger
itself or cause infinite recursion in some other manner. Otherwise, the
most likely outcome will be what is referred to as a stack overflow.

VIO both uses and relies on recursive page faults to function properly,
but also takes precaution to ensure that infinite recursion is impossible
without making alterations or extensions to descriptions given by this
thesis.

� Memory access primitive: A semantic description of what a memory
access tried to achieve. Examples for memory access primitives include:

– Word<N> read(Address a)

Read N bytes starting from address a.

– void write(Address a, Word<N> v)

Write v to N consecutive bytes starting with address a.

Other examples might include atomic operations, but for the sake of
simplicity, this thesis forgoes their discussion.

� VIO memory : an address range R is said to represent VIO memory
if every address unit it contains is associated with some VIO mapping
descriptor (as described in Section 3):

∀a ∈ R : getVioMappingAt(a) 6= NULL

Note that not all addresses must necessarily refer to the same VIO
mapping descriptor for the range to be considered VIO memory.

Note also that instructions used to implement program code detailed
in– or referenced by the following sections, are never allowed to reside in

11
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VIO memory. The same also goes for pre-existing parts of the kernel’s
PF-handler, as well as its dependencies. Careless failure to adhere to
these restrictions might result in a stack overflow or system crash. In
general, it is never a good idea to use VIO memory to describe program
instructions. Doing so is possible, but the primary intended use of VIO
is to virtualize data, rather than instructions accessing said data.

3 VIO

To achieve its goal of virtualizing memory accesses, VIO extends the func-
tionality of a kernel’s PF-handler, as well as a kernel’s capabilities of defining
the semantic meaning of address ranges, as done by means of creating mem-
ory mapping descriptors using facilities such as the *NIX 13 system call14

mmap(2).
For this purpose, a new class of memory mapping descriptor is defined,

called a VIO mapping descriptor. A VIO mapping descriptor is defined as a
tuple (R,P, V ), where R and P serve the same purpose as they do for every
other class of memory mapping descriptors (see Section 2.4). V represents a
V-Table that is further detailed in Section 3.2. The creation of VIO mapping
descriptors in general is detailed in Section 3.5.

VIO mapping descriptors always define P (a) = PRESENT, thus guaranty-
ing that every memory access to an address a ∈ R causes the computer to
branch to the PF-handler (see Figure 1 on page 14).

Another data structure called the VIO mappings table exists for every
process, as shown in Figure 2 on page 22. The VIO mappings table of the
current process is controlled by the kernel and is accessible to the PF-handler.
It allows for translation of an address a into the VIO mapping descriptor
whose address range R contains a. This functionality is used to implement
getVioMappingAt().

Once a memory access into VIO memory has passed control to the PF-
handler, it is up to said handler to determine if a VIO access was the cause
before acting accordingly. The specifics of actions taken by the PF-handler
to determine cause, as well as the consequences thereof, are described in
Section 3.1.

13Collective term for operating systems such as Unix, Posix, Linux, BSD, KOS, ...
14The common term for mechanisms by which programs interface with a kernel.
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To simplify VIO as described by this thesis, the following assumptions are
made about the computer architecture. These assumptions are not necessary,
but they help to simplify the presentation in this thesis.

� Nmax (as defined in Section 2.4) is smaller than– or equal to PAGESIZE.
From this, the greatest number of distinct pages (and thus potential
VIO mapping descriptors) with which a singular memory access may
overlap, becomes limited to 1 or 2 (2 only when its range’s lowest
address unit is part of a different memory mapping descriptor than its
greatest address unit).

In practice, this assumption can always be made, and the author is
unaware of any (non-theoretical) computer architecture to which it
would not apply.

� No instruction will ever attempt to perform a so-called unaligned mem-
ory access. An unaligned memory access is defined as a memory access
spanning N consecutive address units starting at address a, such that
(a mod N) 6= 0. Consequently, an aligned memory access (the only
possible kind as per our assumption) guaranties that (a mod N) = 0.
Combined with the previous assumption, this guaranties that any mem-
ory access always references exactly 1 page, meaning that the greatest
number of distinct VIO mapping descriptors with which a singular
memory access may overlap also equals 1.

In practice, this assumption cannot be made, as even computer ar-
chitectures which don’t natively support unaligned memory accesses
can be (and are15) made to support such behavior via special handling
integrated into kernels.

Note that the author’s reference implementation, as described in Sec-
tion 4, does not make this assumption.

15For example, arm does not natively support unaligned memory accesses, but the linux
kernel handles attempts to perform one via emulation in arch/arm/mm/alignment.c.

13
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3 VIO

The following diagram shows an example of the control flow and actions
taken in response to an instruction mov4 [A], B performing a read of 4
address units from an address a = A into register B. Following a fault, the PF-
handler determines the cause being VIO-related, before acting accordingly.

PC-register
Instruction instr:

mov4 [A], B
Memory access at address A

p = [PMMU(a) | a ∈ [A, A + 3]]Execute normally
p = 4× [PRESENT]

Branch to PF-handler.
a is the PFA, and equals A.

p 6= 4× [PRESENT]

vmap = getVioMappingAt(a);Normal PF-handler
vmap = NULL

emulateVioAccess(instr, vmap, rs = FAULT STATE)

vmap 6= NULL

emulateVioAccess (see page 19)
...

case MOV4 DEREF A INTO B:

Address a = rs.A;

Word<4> v = vioRead(vmap, a);

rs.B = v;

rs.PC += instr.length;

return;

...

Load register-state from
rs and resume execution.

vioRead (incomplete; see page 21)
...

Address rel = a - vmap.range.minaddr;

return vmap.vtable.read(rel);

Hardware

Software

Figure 1: VIO Control Flow
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3.1 PF-handler

Many reasons can exist for the PF-handler being entered. For the purposes of
VIO, the only one of relevance is that of a VIO mapping descriptor existing
at the PFA. When this is the case, the page fault is said to be a VIO fault.

Because a VIO mapping descriptor (R,P, V ) implies PMMU(a) = PRESENT |
∀a ∈ R, and the PF-handler can query for the presence of VIO mapping de-
scriptors, a page fault with a = PFA becomes a VIO fault exactly in those
cases when getVioMappingAt(a) 6= NULL.

In order to detect and handle the case of a VIO fault, modifications are
made to a kernel’s existing PF-handler. These modifications first test if a
VIO fault happened, in which case a call to emulateVioAccess() is made in
order to handle it. Any other reason for the PF-handler being entered will
be implicitly handled by falling through to the kernel’s existing PF-handler
(see Figure 1 on page 14).

Some computer architectures may not provide any means for the PF-
handler to (easily) determine the PFA. In this case, the faulting instruction
must be analyzed in order to test if it might perform a memory access to VIO
memory. For the sake of simplicity, this case will not be further discussed.

When the PFA can be determined by the PF-handler (such as by reading
from %cr2 under x86), modifications made to the PF-handler look as follows:

PF_HANDLER() {

Address faddr = PFA; /* "Primary Fault Address" */

VioMappingDescriptor vmap = getVioMappingAt(faddr);

if (vmap != NULL) {

Address fpc = FAULT_PC; /* "Fault-PC" */

RegisterState rs = FAULT_STATE; /* "Fault-state" */

Instruction instr = readInstruction(fpc);

emulateVioAccess(instr, vmap, rs);

return;

}

... /* Normal, kernel-specific PF-handler */

}

The act of retrieving the VIO mapping descriptor overlapping with an ad-
dress is facilitated by use of the getVioMappingAt() function, which takes

15
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said address as argument. Its implementation makes use of the current pro-
cess’s VIO mappings table, and its return value is the overlapping VIO map-
ping descriptor. When no such descriptor exists, NULL is returned instead.
Details regarding VIO mapping descriptors are discussed in Section 3.2.

The readInstruction() function loads and decodes the instruction poin-
ted to by the fault-PC. Such functionality has already been described in
Section 2.2.

The emulateVioAccess() function represents the heart-piece of VIO’s
“Memory Emulation”, and takes information about the instruction that
caused the page fault (here: instr), the VIO mapping descriptor associ-
ated with the PFA (here: vmap), as well as access to the fault-state (rs).
In the form as it is passed to emulateVioAccess(), rs can be thought of
as a copy of the entire register-state as it was at the time of the page fault
happening (the point where hardware transitioned to software in Figure 1 on
page 14). Once the PF-handler returns, its contents are written back into the
cpu’s actual register-state, causing execution to resume at whatever context
it describes at that point (including any modifications made).

Specifics regarding the implementation of emulateVioAccess() are de-
scribed in Section 3.3.

3.2 Mappings

The central idea behind VIO is the virtualization of memory accesses. This is
achieved by breaking down any possible memory access into a set of memory
access primitives, such as read or write, that are combined within the VIO
operator table. The VIO operator table takes the form of a V-Table.

Every VIO mapping descriptor (R,P, V ) includes an instance V of a VIO
operator table, thus making it possible to define custom behavior for memory
access primitives on a per-VIO mapping descriptor basis.

The primitives stored inside a VIO operator table are conditionally in-
voked when dispatching memory accesses made during emulation of the fault-
ing instruction following a VIO fault. The conditions for invocation to take
place, as well as the process of emulation in general, is described in Sec-
tion 3.3.

The set of memory access primitives defined by the VIO operator table
must be capable of describing any type of memory access that can also be
expressed using a computer architecture’s native instructions. Undefined
function pointers can sometimes be substituted, but for the sake of simplicity,

16
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we assume that any function pointer used from a VIO operator table will have
been defined during the VIO mapping descriptor’s creation.

In the following, the layout and semantic contents of a typical VIO oper-
ator table (as also presented in Figure 2 on page 22) will be described while
elaborating on the semantic behavior of memory access primitives encoun-
tered on typical computer systems.

Ignoring the possibility of atomic operations, we define simple read and
write primitives, as also referenced in Section 3.3 and the rest of this thesis:

Word<N> (*read)(Address addr)

void (*write)(Address addr, Word<N> value)

Unlike usual, during a VIO access the function pointers stored in VIO
operator tables may point into the address space of a process different from
the one performing the access. This makes it possible for one program to
specify the VIO operator table used to describe memory accesses performed
by another program. The creation and use of VIO mapping descriptors inside
of programs is discussed in Section 3.5.

Note that it is usually not possible for a kernel to directly call a func-
tion pointer that has been defined outside of the kernel itself, without also
risking the possibility of the entire system misbehaving or security to be
compromised. For the sake of simplicity, we ignore such restrictions, but an
implementation must take this into account and devise means to circumvent
this problem. Such means are not further elaborated here, but the refer-
ence implementation provided in Section 4 solves this problem by using a
request & response client/server model.

3.3 Emulation

As described in Section 3.1, any instruction that performs a memory access
into VIO memory will cause the computer to unconditionally branch into the
kernel’s PF-handler. Next, the PF-handler confirms the cause of the page
fault to be a VIO fault, before invoking the function emulateVioAccess().
As previously stated, the following information is passed during this call:

� The faulting instruction instr, as described in Section 2.2.

� The VIO mapping descriptor vmap = (R,P, V ) associated with the
primary fault address, as described in Section 3.2. In the context of
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emulateVioAccess(), vmap is also referred to as the fault mapping de-
scriptor. Pseudo-code references the elements of vmap as vmap.range =
R and vmap.vtable = V .

� A copy of the fault-state (called rs), whose contents will be loaded by
the PF-handler once emulateVioAccess() returns.

� Furthermore, emulateVioAccess() retains the ability of performing
normal memory accesses to the linear memory of the current process,
and will do so to facilitate recursive page faults and do non-vio memory
accesses. When and how this is done is discussed later in this section.

The implementation of the emulateVioAccess() function takes a closer
look at the faulting instruction (instr) in order to recreate its semantics in
a manner that matches the instruction’s natural behavior. This process is
referred to as VIO instruction emulation. The term natural behavior here
refers to the instruction’s expected behavior, had it not attempted to access
VIO memory.

During the act of VIO instruction emulation, any memory access which
might16 overlap with vmap.range is not performed directly, but is instead
done by dispatching the relevant memory access primitives within the VIO
operator table (vmap.vtable). The selection between invocation of operators
from the VIO operator table, and performing a direct memory access, is
encapsulated by VIO wrapper functions such as vioRead(). VIO wrapper
functions are elaborated upon later in this section.

The act of VIO instruction emulation is highly dependent upon the set of
instructions accepted by the computer architecture (including their composi-
tion and semantics). Without exception, all instructions must be emulated,
even those that might not appear to include any means of accessing memory,
and in turn VIO memory.

This is because any instruction is implicitly capable of accessing mem-
ory due to the fact that prior to being executed, the computer must first
load said instruction from memory, similar to how we do the same with our
readInstruction() function.

As an example, an implementation of emulateVioAccess() with support
for an instruction we call mov4 [A], B is provided below. For this purpose,

16Instructions that access multiple memory locations might reference both VIO memory
and non-VIO memory.
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said instruction converts the value of work register A into an address. Next,
this address is used to load 4 consecutive address units from memory, before
storing the loaded value in work register B.

void emulateVioAccess(Instruction instr,

VioMappingDescriptor vmap,

RegisterState rs) {

switch (instr.identifier) {

...

case MOV4_DEREF_A_INTO_B:

rs.B = Word<4>(vioRead(vmap, Address(rs.A)));

rs.PC += instr.length; /* Adjust Program Counter */

break;

...

default:

/* Can’t get here because there is no

* instruction that doesn’t get emulated */

UNREACHABLE;

}

}

Here, the vioRead() function is used to differentiate between accesses
to memory part of–, and not part of vmap. Because it acts as a wrapper
for the memory access primitive vmap.vtable.read, it is classified as a VIO
wrapper function. VIO wrapper functions are further discussed below.

Note that even though, as specified in Section 2.1, and repeated by the
default case in the above code block, all instructions must be known and
emulated by emulateVioAccess(), in practice this is likely impossible to
achieve for a multitude of reasons. These reasons include the introduction
of new instructions in computer architecture revisions released after a spe-
cific VIO implementation was written, or instructions left undocumented by
computer architecture vendors.

As such, any practical implementation of VIO can only ever give a best-
effort guaranty in terms of instructions that are supported for accessing VIO
memory. Generally, this is sufficient because any reasonable use-case of VIO
implies some amount of knowledge as to which instructions might reasonably
be encountered during execution. There should be no situation where this
set isn’t a subset of those instructions that have been publicly disclosed for a
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specific computer architecture, and as such can be expected to be supported
by a sufficiently recent VIO implementation.

To work around the issue of unknown instructions, an implementation
might branch to the kernel’s illegal instruction handler when the default-
case would be reached. The specifies of what an illegal instruction handler
is, or what to do when no such handler is defined, are not further discussed
here.

Memory accesses for at least those address ranges which may overlap with
vmap.range must be passed to a designated VIO wrapper function (such as
vioRead()). A memory access which never accesses VIO memory can be
performed as usual.

Every VIO wrapper function serves the purpose of selecting between invo-
cation of function pointers from the VIO operator table associated with the
fault mapping descriptor (vmap.vtable), or performing a normal memory ac-
cess. They do so based on the passed address wa to which an access should be
emulated (in the above example’s call to vioRead(), wa = Address(rs.A)).
Because we assume that unaligned memory accesses are impossible, a mem-
ory access partially overlapping with the start or end of vmap.range also
becomes impossible, and it suffices to check the association with the base
address of the accessed address range (R.minaddr = wa), rather than the
association of every address unit inside of the range R = [wa,wa + N − 1]).

1. wa ∈ vmap.range: The accessed address is described by the fault map-
ping descriptor. In this case, the access is handled solely by means of
dispatching through function pointers from vmap.vtable.

2. wa 6∈ vmap.range: The accessed address doesn’t overlap with the fault
mapping descriptor. In this case, the memory access can be facilitated
entirely by means of performing a normal memory access, which in turn
is allowed to recurse when wa overlaps with a VIO mapping descriptor
other than vmap.

In turn, because wa is known not to overlap with vmap.range in this case,
the PFAinner of a recursive page fault will be relative to wa (for simplicity,
our assumption of only aligned memory accesses being allowed allows us
to assume that PFAinner = wa), and thus won’t overlap with vmap.range,
either. Because we assume that any memory access always references a
singular page, the case where that page belongs to another VIO mapping
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descriptor will see the recursive invocation of the PF-handler make another
call to emulateVioAccess() using getVioMappingAt(PFAinner).

emulateVioAccess() then emulates the instruction used by the original
fault’s VIO wrapper function to do what it believed to be a normal mem-
ory access. However, during this second call of the VIO wrapper func-
tion, case 1 applies (because wa ∈ getVioMappingAt(PFAinner).range),
thereby allowing the memory access to be handled by functions from
getVioMappingAt(wa).vtable and preventing any further recursion.

Thus, infinite recursion could only become possible when memory accesses
made by functions pointed-to by the VIO operator table vmap.vtable

erroneously perform a memory access to their own VIO mapping, or some
other that does similarly and ends up forming a circular dependency loop.
Such use of VIO is not intended and can easily be prevented by never
(intentionally) accessing VIO memory from inside functions pointed-to by
VIO operator tables. Should this restriction not be adhered to, the error
lies in the program(s) that provided the functions that ended up forming
the loop.

As an example of VIO wrapper functions, the aforementioned vioRead()

function is implemented as follows. Note that without our assumption of no
unaligned memory accesses, VIO wrapper functions would become signifi-
cantly more complex due to a third case where the accessed address range
only partially overlaps with vmap.range.

Word<N> vioRead(VioMapping vmap, Address wa) {

if (wa >= vmap.range.minaddr && wa <= vmap.range.maxaddr) {

/* Case #1 */

return vmap.vtable.read(wa - vmap.range.minaddr);

} else {

/* Case #2 */

return NORMAL_READ(wa);

}

}

As shown in the above pseudo-code, the Address argument taken by
function pointers from the VIO Operator Table represent the relative offset
of the lowest address unit that is being accessed, based off of the beginning
of the associated VIO mapping descriptor. As such, it also represents the
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effective address within virtualized memory, thus making it possible for VIO
mapping descriptors to be placed anywhere in memory without the imple-
mentation of memory access primitives such as vmap.vtable.read needing
to concern themselves with the associated mapping descriptor’s base address
(vmap.range.minaddr).

3.4 Data Structures

The following figure displays how VIO data structures relate to each other
and to existing kernel components. The VIO-specific components displayed
by the figure are explained throughout the preceding sub-sections. Termi-
nology for existing components (not part of the VIO-specific block) follows
conventional *NIX-style names that are not further elaborated here.

Process
pid: pid t

...
fork(2)

...

mmap(2)

Linear address space
MMU Context

VIO mappings table
VioMappingDescriptor getVioMappingAt(Address addr)

Returns NULL when no VIO mapping descriptor exists

VioMappingDescriptor (R,P, V )
range: Range<Address> (R)
present: (a) 7→ PRESENT (P )

VioOperatorTable

Word<N> (*read)(Address a)

void (*write)(Address a, Word<N> v)

...

1..1

1..1

0..N

1..1: vtable (V )

VIO-specific

Application
Kernel

Figure 2: VIO Data Structures
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3.5 Usage

As stated in Section 3, a kernel with support for VIO must provide some
means for programs to construct VIO mapping descriptors, and in turn VIO
memory. The following is pseudo code for a program that does this:

Word<4> read4(Address addr) {

printf("In read4: 0x%x\n", addr);

return 42;

}

VioOperatorTable operators = {

.read = { [N: 4] = &read4 }

};

void main() {

int fd = createVioMappingObject(&operators);

Address mem = mmap(NULL, 0x10000, PROT_READ, MAP_PRIVATE, fd, 0);

printf("Before read\n");

/* This memory access invokes ‘read4(0x350)’ above. /

Word<4> val = *(Word<4> *)(mem + 0x350);

printf("After read: %d\n", val);

}

Running the above program’s main() function produces the following output:

Before read

In read4: 0x350

After read: 42

The above program defines a function read4() to facilitate a read from
VIO memory. This operator is linked for N=4 read-operations in the defini-
tion of operators, which is then passed to createVioMappingObject() to
create a kernel object that is used with mmap(2) in order to turn it into a
VIO mapping descriptor. Afterwards, VIO memory is read at offset 0x350,
causing the read4() function to be invoked with that same offset. Its return
value 42 is then printed.
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Explanation of previously unmentioned functions used in the above code:

� int createVioMappingObject(VioOperatorTable *ops);

This function represents a new system call introduced for VIO that cre-
ates a so-called file descriptor which can be passed to mmap(2) in order
to map it into memory. In the reference implementation (see Section 4),
this function takes additional arguments and is called vio create(3).

� void *mmap(void *hint, size t size, int prot,

int flags, int fd, off t offset);

This function is a well-established *NIX-style system call that is used
to map the object referenced by fd into memory, by asking the kernel
to construct a new memory mapping descriptor. The function’s re-
turn value is that memory mapping descriptor’s R.minaddr. mmap(2)

includes many features not relevant to us, but what is relevant is
that size is the size of the constructed memory mapping descrip-
tor, and (relevant only for its use in Section 3.6) when flags con-
tains MAP FIXED, R.minaddr = hint, with preexisting and overlapping
memory mapping descriptors getting truncated or overwritten.

Note that void * is the C-name for what we refer to as an Address.
More details regarding mmap(2) can be found in its man-page17.

3.6 Watchpoints

As stated in Section 1, VIO makes it possible to implement watchpoints
that do not impose any performance penalties for memory accesses per-
formed to non-VIO memory. The following pseudo code defines a function
createWatchpoint() that can be used to create VIO-based watchpoints, as
well as demonstrates how that function may be used:

/* Overlay pages of the given address range [addr, addr+size) with

* a read-/write-through memory mapping descriptor, but any access

* to the given range itself first calls ‘handler’ */

void createWatchpoint(Address addr, size_t size, void (*handler)()) {

Address aligned_addr = FLOOR_ALIGN(addr, PAGESIZE);

Address aligned_end = CEIL_ALIGN(addr + size, PAGESIZE);

size_t aligned_size = aligned_end - aligned_addr;

17https://www.man7.org/linux/man-pages/man2/mmap.2.html
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Address watch_mindelta = (addr ) - aligned_addr;

Address watch_maxdelta = (addr + size - 1) - aligned_addr;

Address copy = duplicateMemoryMappings(aligned_addr, aligned_size);

Word<N> readWrapper(Address offset) {

if ((offset + N) > watch_mindelta && offset <= watch_maxdelta)

handler(); /* Read from monitored area */

return *(Word<N> *)(copy + offset);

}

void writeWrapper(Address offset, Word<N> value) {

if ((offset + N) > watch_mindelta && offset <= watch_maxdelta)

handler(); /* Write to monitored area */

*(Word<N> *)(copy + offset) = value;

}

VioOperatorTable operators = {

.read = { [N: *] = &readWrapper },

.write = { [N: *] = &writeWrapper }

};

int fd = createVioMappingObject(&operators);

mmap(aligned_addr, aligned_size, PROT_READ | PROT_WRITE,

MAP_FIXED | MAP_PRIVATE, fd, 0);

}

/* Custom watchpoint handler */

void myWatchpointHandler() {

printf("WATCHPOINT!\n");

}

void main() {

int array[1024];

createWatchpoint(&array[94], sizeof(int), &myWatchpointHandler);

for (int i = 0; i < 1024; ++i) {

printf("Writing to array[%d]\n", i);

array[i] = i;

}

}

Running the above program’s main() function produces the following output:

Writing to array[0]
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Writing to array[1]

...

Writing to array[93]

Writing to array[94]

WATCHPOINT!

Writing to array[95]

Writing to array[96]

...

Writing to array[1022]

Writing to array[1023]

In the above code, createWatchpoint() calculates the page-aligned bound-
aries of the address range it is given by main(). It then duplicates whatever
memory mapping descriptors are already present within that range by use of
duplicateMemoryMappings(), and stores the base-address of this duplicate
in a variable called copy. Then, that same address range is replaced with a
VIO mapping descriptor whose operator table is defined to forward all ac-
cesses to copy, only that any access made which overlaps with the originally
given address range calls handler() prior to being forwarded.

Explanation of previously unmentioned functions used in the above code:

� FLOOR ALIGN and CEIL ALIGN are defined as:

FLOOR ALIGN(x, a) = bx/ac · a
CEIL ALIGN(x, a) = dx/ae · a

� void *duplicateMemoryMappings(void *addr, size t size);

This function asks the kernel to duplicate all (sub-ranges of) memory
mapping descriptors that overlap with the given address range R =
[addr, addr+size−1], which is assumed to be page-aligned. It’s return
value is the base address of a new set of memory mapping descriptors
that reference the same physical memory or VIO operator tables, as are
already referenced by memory in R. Following its return, any access to
an address addr+ a | a ∈ [0, size) behaves the same as one to address
return + a. It is implied that addr 6= return.
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4 Reference Implementation

Beyond the thesis itself, the author has created a functional reference im-
plementation of VIO. It is part of their kernel named KOS 18, which can
be found under https://github.com/GrieferAtWork/KOSmk419. Files and
lines relevant to VIO are listed in the following:

PF HANDLER() src/kernel/core/arch/i386/fault/handle pagefault.c:797

emulateVioAccess() src/libviocore/arch/i386/viocore.c:103

include/libemu86/emulate.c.inl:3229

VIO operator table include/libvio/vio.h:112

VIO creation (user) src/libvio/vio.c:484

VIO creation (kernel) src/kernel/core/memory/uvio.c:988

Usage example src/apps/playground/main.c:665

5 Caveats

Implementing and using VIO comes with some caveats, which we list and
discuss in the following:

� While memory accesses to non-VIO memory are completely unaffected,
any access to VIO memory is many times slower than expected. This is
because any such access requires the faulting instruction to be decoded
and emulated in software (see Section 3.3).

� VIO breaks the natural expectation made by programs, of any mem-
ory access completing in finite time. For example, because almost no
restrictions are put on what the user-provided functions from a VIO
operator tables are allowed to do, actions taken by them might include
sleeping for an indeterminate amount of time.

� Adding support for VIO to widely-used kernels such as NT (Windows)
or Linux would be highly difficult. This is because of the aforemen-
tioned fact that a VIO access might sleep for an indeterminate amount
of time, or perform arbitrary other operations during its execution,
none of which may result in a system crash or deadlock. As a result,

18A home-made, monolithic, but still modular kernel for i386 and x86 64.
19Files/lines are relative to git commit 6ec1573d091da60db0ea7bb4607cf1733c93abc5.
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6 GOING FURTHER

this means that whenever a kernel with VIO support makes an access
to potential VIO memory (for which any region of memory it is given
by a programs qualifies), it can never hold any kind of lock while doing
so. Otherwise, should a function from a VIO operator table simply wait
indefinitely, the entire system might deadlock due to lock-starvation.

A similar problem arises when a program is terminated while emulating
a VIO access. Doing so must be made possible to ensure that programs
can always be force-closed. As a result, any access made by the kernel
to memory with the potential of being VIO memory, must provide
some means of being aborted for the purpose of handling a termination
request20.

Kernels such as those mentioned above already contain an existing
mechanism called swap memory that imposes restrictions similar to
those required by VIO. Swap memory is used to simulate additional
memory by reusing memory that’s already in use. This is done by
writing the contents of memory to-be reused to a mass-storage medium
(such as a hard-disk), and using the PF-handler to read back the con-
tents when they are needed again. As such, accessing memory that has
been turned into swap memory implies the potential of having to wait
for a hard-disk to start spinning, but this is still less restrictive than
what is required for VIO, since reading from a hard-disk is guarantied
to complete in finite time (assuming an intact hard-disk), and thereby
isn’t something that necessarily needs to be interruptible.

6 Going Further

Access to memory is one of the fundamental features shared by every com-
puter in existence. VIO expands upon this idea by making it possible to break
pre-existing semantics and notions of how memory should work, such that a
simple read from memory might result in an entirely distinct sub-program
being executed to compute and eventually return the result of the preced-

20The author’s kernel (see Section 4) is written in C++ and uses exceptions to accom-
plish this, but this would not work for the Linux kernel, which is written in C and isn’t
designed with exceptions in mind. Furthermore, source code for the Linux kernel assumes
that accessing memory can only ever fail due to “faulty” memory (EFAULT), but not due
to a need to be interrupted (EINTR).
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ing read. The same goes for writes and other memory access primitives; see
Section 3.2.

As such, aside from the example use case of efficiently simulating watch-
points, there are many more use cases where VIO can be applied:

� A very simple example is a memory address that can be read to yield
the current time in an arbitrary format. The same can be done to
construct an address to yield a unique random number each time it is
read.

� The emulation of so-called MMIO, which stands for Memory-mapped
I/O. This is a mechanism commonly used by hardware peripherals
to expose control interfaces to the computer, and in turn to running
programs. This is also what led to the name VIO (which stands for
Virtual I/O).

� VIO can be used to keep a transactional journal of all memory accesses
performed by a program over the course of its execution, making it
a tool for doing black-box analysis of interactions between functions
and memory, or even to roll-back memory modifications made past a
certain point in time.

� So-called NVRAM, standing for non-volatile RAM, can be implemented
in software using VIO. NVRAM acts like normal memory, but any
modification made to its contents is retained even after a power failure.

Emulating read-operations by reading from an arbitrary persistent stor-
age medium, and doing the equivalent for write-operations, VIO can
define a region of memory that does the same without the need of ded-
icated hardware. Furthermore, said persistent storage medium need
not necessarily be local, but could even reside in a remote location
reachable over a network.

7 Related Work

While the general idea behind VIO – as presented by this thesis – is new, a
somewhat similar technique is already being used in practice.

A mechanism present in kernels such as the Linux kernel allows for un-
aligned memory access on architectures that do not natively allow this [2]. To
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achieve this goal, these kernels define an exception handler21 that is triggered
when an instruction attempts to perform an unaligned memory access.

Inside of this handler, the last-executed instruction is retrieved and de-
coded, before then being emulated by means of splitting the memory access it
attempted into multiple smaller accesses, all of which can now be performed
whilst properly aligned. In the case of a read, the results of this are then put
back together and stored at the location or locations (normally, a singular
work-register) indicated by the last-executed instruction. The inverse is done
if the instruction attempted a write.

As detailed by this thesis, VIO does something similar. We hook the
PF-handler and use it to decode and emulate the last-executed instruction,
only that in our case we are forced to emulate all instructions, rather than
only those that might be able to perform an unaligned memory access in
a manner that triggers the associated exception handler. Furthermore, our
emulation does not only perform regular memory accesses, but may also call
functions from VIO operator tables in order to dispatch the access.

8 Conclusions

In this thesis we have described the semantics of VIO and how it can be
implemented in modern computer systems.

By defining a new class of memory mapping descriptor which we call
VIO mapping descriptor, it becomes possible to force execution to branch
to the PF-handler following an access to VIO memory. This is because VIO
memory is always mapped as non-present as far as the MMU is concerned.

After expanding the PF-handler with the ability to detect VIO accesses,
as well as decode and emulate the faulting instruction, we are able to virtu-
alize the semantics of what an access to VIO memory does, means, returns,
and/or should accomplish.

Because any region of memory22 can be replaced by VIO memory, this
also means that any memory access can now become– or be replaced by a
sub-program, without any modifications needing to be made to the program
that performs the access.

We also presented a couple of use cases for VIO functionality, such as
pseudo-code for implementing VIO-based watchpoints, as well as others like

21The PF-handler used by VIO can also be classified as an exception handler.
22Memory used by the VIO implementation itself must not reside in VIO memory.
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software-based NVRAM.
More uses for VIO likely exist, and we encourage further research to look

into these.
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