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Chapter 1

Introduction

A proof assistant (also called interactive theorem prover) is an interactive computer
system used for carrying out mathematical proofs on a computer. Traditionally, mathe-
matical proofs are carried out on paper and then are peer-reviewed to ensure they are
correct. But often these proofs leave out some details, contain misstatements, missing
hypotheses or unstated background assumptions [1]. In contrast, formal proofs contain
every single application of inference rules and state exactly which axioms, assumptions
or previously deduced facts the rules are applied to. However, formal proofs on pa-
per are huge and it is unfeasible for humans to read them. Proof assistants facilitate
these problems by carrying out parts of the proof automatically. They are also called
interactive theorem provers, because they require an interplay between the user and the
computer as opposed to having full automation provided by automatic theorem provers.
Fully automated theorem proving is not expressive enough to meet the needs of formal
verification [2] but is used in conjunction with proof assistants.

In the past, proof assistants have been used to formalize a variety of different domains,
not only limited to the area of mathematics. In the area of pure mathematics, notable
projects are the proof of the Kepler Conjecture [3], a verification of the Prime Number
Theorem [4], and proving the Four Color Theorem [5]. Proof assistants have also been
used for system and hardware verification. The Verisoft [6] project formalized a whole
computer system from the hardware up to the microkernel, and a compiler. The seL4
project is a formal verification of the L4 microkernel [7]. In the area of programming
languages, proof assistants have been used in the verification of CompCert [8], a formally
verified C compiler, and to formalize a subset of Java [9].

The goal of this thesis is the formal verification of different semantics of a higher-
order fixpoint algebra presented in [10]. The algebra defines terms in a lattice and is
used to express fixpoint evaluation problems which occur in many areas of computer
science. Its semantics is denotational based on the Knaster-Tarski Fixpoint Theorem, but
one can also employ an algorithmic semantics based on the Kleene Fixpoint Theorem
making use of fixpoint iteration. In addition, Bruse et al. [10] defined an on-the-fly
model-checking algorithm which localizes fixpoint iteration allowing to only compute
the values of as few variables as possible in the best case.

This thesis formalizes the abstract higher-order fixpoint algebra and its different
semantics in the proof assistant Isabelle/HOL and provides a formal proof that the
denotational and algorithmic semantics are equivalent. Furthermore, the local model-
checking algorithm is formalized as a recursive program.
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The structure of the thesis is as follows:

• Chapter 2 introduces the needed mathematical background and the higher-order
fixpoint algebra with its semantics.

• Chapter 3 introduces Isabelle and provides an introduction to theorem proving in
Isabelle.

• Chapter 4 presents the formalization in Isabelle and explains and highlights some
of the proofs and hurdles.

• Chapter 5 concludes this thesis.
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Chapter 2

Preliminaries

This chapter provides a short introduction to the needed mathematical background
for this thesis. After that, we present the abstract higher-order fixpoint algebra and its
semantics, which were formalized in this thesis.

2.1 Orders, Lattices and Fixpoints

Partial Order A partial order is a binary relation which is reflexive, antisymmetric, and
transitive.

Ordered Sets A partially ordered set, also called poset, (M,≤) is a set M equipped with
a partial order ≤. The least element of the poset, if it exists, is denoted by ⊥ (called
bottom), such that ∀x ∈ M : ⊥ ≤ x. Similarly, the greatest element is denoted by
> (called top), such that ∀x ∈ M : x ≤ >. Let S ⊆ M. An upper bound of S is an
element d ∈ M such that ∀x ∈ S : x ≤ d. The least upper bound of S is an upper
bound d ∈ M such that for every upper bound d′ ∈ M : d ≤ d′. When it exists, it is
unique and denoted by

⊔
S. Dually, a lower bound of S is an element d ∈ M such

that, ∀x ∈ S : d ≤ x. The greatest lower bound of S is a lower bound d ∈ M such that
for every lower bound d′ ∈ M : d′ ≤ d. When it exists, it is unique and denoted byd

S.

Lattices A lattice (M,≤) is a poset where each pair of elements x, y ∈ M has a least
upper bound and greatest lower bound. Any totally ordered set is a lattice. A
complete lattice is a lattice where any subset S ⊆ M has a least upper bound

⊔
S

and a greatest lower bound
d

S. A complete lattice has both a least element and a
greatest element.

Monotonic Functions Let (Mi,≤i), i ∈ {1, 2} be posets. A function f : M1 → M2 is
monotonic if ∀x, y ∈ M1, x ≤1 y −→ f (x) ≤2 f (y).

Fixpoints Given a poset (M,≤) and a function f : M → M, a fixpoint of f is an element
x ∈ M such that f (x) = x. The least fixpoint of f (if it exists), written lfp f , is a
fixpoint of f such that for every fixpoint x ∈ M of f , lfp f ≤ x. Dually, we define
the greatest fixpoint of f , denoted by gfp f .

We now recall a fundamental theorem due to Knaster [11] and Tarski [12]:
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Theorem 2.1.1 (Knaster-Tarski Fixpoint Theorem) The set of fixpoints of a monotonic func-
tion f : M → M over a complete lattice is also a complete lattice.

The theorem guarantees that f has a least fixpoint lfp f =
d
{x ∈ M | f (x) ≤ x} and

greatest fixpoint gfp f =
⊔{x ∈ M | x ≤ f (x)}.

These fixpoint characterizations are not constructive, hence we introduce a construc-
tive characterization due to Kleene [13]:

Theorem 2.1.2 (Kleene Fixpoint Theorem) Let (M,≤) be a finite lattice and let f : M →
M be a monotonic function. Then f has a least fixpoint which is the least upper bound of the
increasing chain

⊥ ≤ f (⊥) ≤ f ( f (⊥)) ≤ . . . ≤ f n(⊥) ≤ . . .

i.e., lfp f =
⊔{ f n(⊥) | n ∈ N}.

2.2 Abstract Higher-Order Fixpoint Algebra

In [10], Bruse et al. define an abstract higher-order fixpoint algebra µHO which allows
to define terms in a lattice to express fixpoint evaluation problems. In this thesis,
we consider a fragment µHO1 of µHO with the following restrictions to reduce the
complexity of the formalization:

• Functions are restricted to be of first-order only. This restriction is necessary to
be able to formalize this algebra in Isabelle/HOL, because Isabelle/HOL does
not have dependent types, but only simple types. Hence, to the best of this author’s
knowledge, there would be no conventional way of modeling the semantics of
µHO1 in Isabelle/HOL otherwise. An explanation of this is provided in Section 4.2.

• There is no greatest fixpoint operator because most proofs for this case are carried
out in a similar fashion to its dual operator.

• In µHO1, all functions are monotonic while µHO allows non-monotonic functions.
When non-monotonic functions are involved one has to be careful when it comes to
fixpoint operators mixed with non-monotonic functions because the semantics of
fixpoint operators is not well-defined in this case. To ensure well-defined semantics,
µHO comes with a type system, that is not considered in this formalization. The
type system also ensures that functions are always applied to the right amount of
arguments. In case of µHO1, we restrict ourselves to functions of arity 1 only.

It should be noted that the omission of both greatest fixpoint operator and non-
monotonic functions is technically a weakening of the expressiveness of the algebra but
the formalization could be extended with every restriction above, except adding terms
of arbitrary order because of the aforementioned reason.

Next we define the syntax and semantics of µHO1.
Syntax. Let Func0,Func1 be a set of zero-order, resp. first-order monotonic functions

and Var0,Var1 be a set of zero-order, resp. first-order variables. Terms of µHO1 are
generated by the following grammars:
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φ ::= f | x | ψφ | µx. φ

ψ ::= g | X | λx. φ | µX. ψ

where x ∈ Var0, X ∈ Var1, f ∈ Func0 and g ∈ Func1. A term of the form ψφ is called
application and feeds the right subterm to the left, which is a function. A term of the form
λx. φ is called lambda abstraction, and stands for an anonymous function that consumes
an argument x and returns φ. If a variable occurs under λ or µ it is called a bound
variable, otherwise it is called free.

Semantics. Let M be a complete lattice and suppose that all abstract functions in
Func0 = { f , . . . } and Func1 = {g, . . . } have a monotonic interpretation fM, resp. gM.
Let η : Var0 ∪ Var1 → M∪ {mono f | f : M → M} be a variable interpretation that
assigns values in the lattice, resp. functions from lattice element to lattice element to free
variables. An update of η is denoted by η[x 7→ d], which maps x to d and everything else
is mapped as originally given by η.

The semantics of µHO1 assigns a lattice element to terms derived from φ and a
monotonic first-order function to terms derived from ψ. The semantics is defined
inductively as follows:

JxKMη := η(x)

JXKMη := η(X)

JψφKMη := JψKMη (JφKMη )

Jµx. φKMη :=
l

{d | JφKMη[x 7→d] v d}

J f KMη := fM

JgKMη := gM

Jλx. φKMη := d 7→ JφKMη[x 7→d]

JµX. ψKMη :=
l

{mono d | JψKMη[X 7→d] v d}

The right-hand side of the λ-abstraction denotes the function that maps d to the
value JφKMη[x 7→d]. In case of the fixpoint operators, the values on the right-hand side are
well-defined according to the Knaster-Tarksi Fixpoint Theorem (Theorem 2.1.1). Note
that all first-order functions are monotonic and therefore all terms are monotonic in their
free variables, hence the semantics are well-defined.

In addition to the semantics above, we can define the finite approximation of the
least fixpoint µx. φ given by the Kleene Fixpoint Theorem (Theorem 2.1.2) as

F0
x := ⊥M Fi+1

x := JφKMη[x 7→Fi
x ]

and for µX. ψ as

F0
X := _ 7→ ⊥M Fi+1

X := JψKM
η[X 7→Fi

X ]

where ⊥M denotes the bottom element of the lattice M and _ 7→ ⊥M denotes the
function that maps every argument to the bottom element.

Local Model-Checking Algorithm. The evaluation problem for µHO1 is: given a term
φ with function symbols in Func0 and Func1 interpreted over a finite lattice M, compute
the value JφKM.

A naive model-checking algorithm directly derived from the algorithmic semantics
computes the value of subterms in a bottom-up manner, using Kleene fixpoint iteration,
storing function values as tables. However, this algorithm is potentially inefficient,
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because it computes function tables for all values. This is not needed and instead
functions can be computed in a demand-driven fashion building a partial function table
where only the values of needed arguments are computed. Due to fixpoint operators,
the value of a function might be defined recursively, thus may depend on the value of
the same function on a different argument. In these cases, the domain of the function
will be updated and the argument included in further iterations.

Figure 2.1 presents a local model-checking algorithm derived from [10] for the first-
order fragment µHO1. Here, the algorithm is presented as two mutually recursive
functions. The algorithm computes the semantics of a term recursively following the
semantics of µHO1 in applicative order, meaning first evaluate the operands and then
apply the operator. In case of a fixpoint operator, the algorithm only computes needed
values, which means it localizes the fixpoint iteration. The algorithm starts with a
function that maps its argument to ⊥M, as the initial value of the iteration. The global
variables env0 and env1 are used to keep track of the environment and are updated in
the repeat loops.
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B global lattice M with interpretations fM f.a. f and gM f.a. g
B global (partial) env0 : Var0 → M, env1 : Var1 → M → M

procedure Eval0(φ):
switch φ:

case f : return fM

case x: return env0(x)
case ψφ: return Eval1(ψ, Eval0(φ))

case µx. φ: env0(x) := ⊥M
repeat:

f := env0(x)
env0(x) := Eval0(φ)

until f = env0(x)
return env0(x)

procedure Eval1(ψ, arg):
switch ψ:

case g: return gM arg
case X: if env1(X)(arg) = undef:

env1(X) := env1(X)[arg 7→ ⊥M]

return env1(X)(arg)
case λx. φ: env0(x) := arg; return Eval0(φ)

case µx. ψ: env1(x) := {arg 7→ ⊥M}
repeat:

f := env1(x)
for all arg′ ∈ dom(env1(x)) do:

env1(x) := env1(x)[arg′ 7→ Eval1(ψ, arg′)]

until f = env1(x)
return env1(x)(arg)

Figure 2.1: Local Model-Checking Algorithm for µHO1.
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Chapter 3

Isabelle: A Proof Assistant

Isabelle is a generic proof assistant but also a generic framework for creating deductive sys-
tems. Generic means that Isabelle is not bound to a specific logical formalism. Isabelle’s
meta logic Isabelle/Pure, an intuitionistic fragment of higher-order logic, allows the
formalization of object logics by introducing their characteristics as axioms [14]. Several
different object logics have been developed inside Isabelle/Pure, notably Isabelle/ZF
(based on Zermelo-Fraenkel set theory) and Isabelle/FOL (based on first-order logic [15]
and Isabelle/HOL (based on higher-order logic with simple types). Isabelle/HOL is the
most important and most used instance of Isabelle.

Isabelle/HOL provides mechanisms for specifying (co)datatypes, (co)inductive defi-
nitions and recursive functions with pattern matching and a large theory library. Isa-
belle/Isar is used to write structured proofs and specifications. Isabelle’s code generator
facilities allow to generate SML, Ocaml, Haskell or Scala code from Isabelle files [16].
Recently, support for generating LLVM bytecode has been added [17]. Isabelle also
includes extensive typesetting support [18]. New notations using mathematical symbols
can be introduced, LATEX can be directly embedded into Isabelle files, and Isabelle files
can be converted into typeset documents1.

Isabelle comes with an official interface based on the text editor jEdit2. The interface
provides continuous proof checking of all visible proofs with instant feedback in real-
time. As seen in Figure 3.1, the interface is responsible for syntax-highlighting and
rendering of special symbols. At the bottom is a window showing information about
the current proof (step), showcasing what remains to be proven. When a proof did not
succeed, the failing part is highlighted in red.

3.1 Isabelle’s Architecture

Isabelle follows the LCF approach [19] which consists of using a strong statically-typed
programming language together with an abstract data type called thm for theorems
where the only values of that data type are the axioms of the logical calculus, and the
only functions over that data type are the inference rules of the logical calculus. The only
terms of type thm are derivable sequents of the form Γ ` ϕ. The programming language
ensures that there is no other way to construct a term of type thm than via inference

1This text was partially written in and compiled with Isabelle.
2http://www.jedit.org

8

http://www.jedit.org


Figure 3.1: Isabelle/jEdit: Isabelle was not able to verify the correctness of a proof.

rules. For example, one of the functions over that type would be assume : formula →
thm, with assume ϕ representing the derivable sequent ϕ ` ϕ. The LCF approach gives
soundness by construction relative to the correctness of the proof kernel implementation,
which is kept as small as possible3. If the goal is to prove ϕ and only functions on
type thm are applied, there will never be a faulty proof. Another advantage is that the
user is able to define new proof automation methods by writing more sophisticated
functions on type thm. This enhances the power of the automation but does not lead
to inconsistencies, because everything eventually goes back to the primitive inference
rules of the proof kernel. This is comparable to an operating system kernel processing a
system call. This approach has been very successful and has been employed in other
proof assistants [20]. It was invented to remove the need of storing the proof of theorems
in memory, because with the LCF approach only the result of a theorem is stored and
not its proof.

3.2 Isabelle/HOL

Isabelle/HOL is an instantiation of higher-order logic [21] extended with polymorphism
and type classes. It can be seen as a functional programming language.

Types. Base types are types like nat for natural numbers or bool for boolean values.
Type constructors are polymorphic types like ’a list, ’a × ’b, or ’a set. Type variables
like ’a are placeholders that can be instantiated with concrete types and always start with
a prime. Function types are written with a double-dashed arrow ’a ⇒ ’b. Functions
are curried by default, i.e. addition on natural numbers has the type nat ⇒ nat ⇒ nat,
as opposed to the type nat × nat ⇒ nat. This means that addition is a function that
takes an argument of type nat and returns a function of type nat ⇒ nat, which takes an

3The Isabelle kernel consists of rougly 2000 lines of StandardML.
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argument of type nat again and returns a natural number. Note that ⇒ associates to the
right.

Type Classes. Types can be organized into type classes. Type classes are used to
define properties that a type belonging to that class must fulfill. We use this in this thesis
to restrict ourselves to types that implement finite lattices.

Terms. Terms are either variables, constants, function applications, or λ-abstractions:

• Variables represent an arbitrary value of a type. In addition to free and bound
variables, there are schematic variables, e.g. ?x which can be instantiated with
arbitrary terms. When stating a theorem and proving it, variables are usually fixed.
Whenever a proof of a theorem is finished, variables are treated as schematics such
that the theorem can be instantiated with arbitrary terms.

• Constants represent a specific value of a type. Since functions are first-class objects
in Isabelle, variables and constants can also represent functions.

• Function application does not use parentheses or commas for separating the
arguments, i.e. f x y describes the application of a function f to its arguments x
and y. Function application associates to the left.

• A λ-abstraction builds an anonymous function, e.g. λx. x describes the identity
function, so the term λx. x has type ’a ⇒ ’a.

Type constraints are denoted by the operator ::, i.e. x :: nat is a term of type nat.
If there are no type annotations for variables or functions, Isabelle will infer the type
automatically using type inference.

Logical Connectives. Since Isabelle distinguishes between meta logic and object logic,
there are two different versions for commonly found logical operators and quantifiers
in Isabelle. Its meta logic uses non-standard syntax to leave the usual mathematical
syntax for the object logics, such as HOL. In the meta logic, the universal quantifier is

∧
,

implication is =⇒, and equality is ≡. These operators and quantifiers operate on the meta
level truth values. In addition to that, HOL introduces the type bool with values True
and False and a collection of operators and quantifiers usually found in mathematics.
These include ¬ (negation), ∧ (conjunction), ∨ (disjunction), −→ (implication), and =
(equality). Quantifiers are written as ∀ x. (universal quantification) and ∃ x. (existential
quantification) followed by the term that is quantified over. The difference between the
meta and object level operators and quantifiers is mostly technical and for this thesis
they can be assumed to be equal.

Inductive Datatypes. Datatypes are defined using the command datatype. It creates
an algebraic datatype commonly used in functional programming. For example a datatype
for defining binary trees could be

datatype ’a bintree = Leaf | Branch "’a bintree" ’a "’a bintree"

The name of the declared type is bintree and has two constructors Leaf for leaves of
the tree and Branch for internal nodes of the tree that carry a value.
Function Definitions. (Recursive) Functions are defined using the command fun. The
following function computes the length of a list:

fun length :: "’a list ⇒ nat" where
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"length [] = 0" |
"length (x # xs) = 1 + length xs"

A function definition has a name and an (optional) type signature followed by its
function body defined using pattern matching. This function definition is defined using
two cases, either an empty list or a non-empty list that will be traversed recursively.

In HOL all functions are total, therefore termination is a fundamental requirement
when defining functions. When using the fun command, Isabelle tries to prove termi-
nation automatically when the definition is made. If the proof fails, the definition is
rejected. This can have two causes, either the definition does indeed not terminate, or
the default proof procedures were not powerful enough. For these cases, Isabelle offers
the function command, where the necessary proof obligations become visible to the user
and can analyzed and solved manually. In addition to this, Isabelle provides a few more
proof methods for proving termination of functions automatically. More information on
termination proofs can be found in [22].

Locales. Locales can be compared to parameterized modules. A locale fixes types,
constants and assumptions within a specified context.

For the remainder of this thesis, we will use Isabelle to refer to Isabelle/HOL.

3.3 Proof Methods

Isabelle provides a rich set of automation to prove theorems, called proof methods. They
differ in which goals they can solve and how they react if they where unsuccessful. Some
proof methods will present an error message to the user that it failed and how far it got,
while other proof methods will stop and only report a failure or might run forever.

The most used proof methods include:

• simp: Invokes the simplifier. Has a predefined pool of simplification rules that can
be extended temporarily or permanently, if needed. Operates only on one subgoal.
It rewrites terms with provided equations until the theorem is trivial or no further
simplification rules can be applied.

• auto: Includes simp but has additional rules about logical and set-theoretic reason-
ing. Operates on all subgoals and will report an error message on how far it got,
in case of a failed proof.

• blast: Includes a powerful rule set but only operates on the first goal and will only
report failure, with no additional information in case of a failed proof. It also has
no knowledge about simplification.

• metis: Mostly used by proofs delivered by sledgehammer (see Section 3.5) to replay
the proofs through the proof kernel in order to verify them.

• smt: Is used to ask an automatic theorem prover to prove a proof obligation. If a proof
is found, then Isabelle replays the found proof through its kernel. This means that
the external tool is not trusted. If the proof replay fails, the proof is rejected. This
can either mean that the proof is faulty or that the time limit was reached and
the replay process was canceled. Since it depends on external tools such as Z34,

4https://z3prover.github.io/
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compatibility with future Isabelle versions cannot be guaranteed and previously
successful proofs might fail. Nevertheless, quite often it is the only proof method
returned by sledgehammer .

3.4 Proving in Isabelle

Statements to be proven are stated using the commands lemma and theorem, which have
no technical difference besides allowing the user to highlight the important statements
via theorem. The commands are followed by an optional name and the statement itself,
e.g.

lemma exists_n_gt_zero: "∃ n::nat. n + m > 0"

All free variables are implicitly universally quantified, i.e. the lemma is equivalent to

lemma exists_n_gt_zero_alt: "
∧

m. ∃ n::nat. n + m > 0"

Theorems with assumptions are written as

lemma "(n::nat) + m = m =⇒ n = 0"

In addition, Isabelle also offers an alternative syntax for writing theorems with
assumptions. The above lemma can be rewritten equivalently as

lemma
fixes n::nat and m
assumes "n + m = m"
shows "n = 0"

The command fixes is used to introduce variables. The command assumes states
assumptions and shows states the conclusion.

After stating a theorem, Isabelle creates a proof state, which consists of a collection of
statements, called subgoals, that must be proved to show that the theorem holds. Using
proof methods, subgoals can be transformed into zero or more new subgoals. When the
proof state consists of zero subgoals after the application of a proof method, the proof is
finished and Isabelle has accepted that the theorem holds.

Isabelle uses a proof language called Isabelle/Isar [23] which allows to write proof
in a structured and forward fashion starting from assumptions and ending with the proof
goal. It was designed to bring formal proofs closer to ordinary mathematical proofs on
paper. Traditionally, proof assistants used a backwards style for writing proofs. Starting
with the proof goal and applying proof methods (also called tactics in the literature) to
split the goal into subgoals until no goals are left. In this style, a proof only consists of
a list of used proof methods without stating subsequent subgoals, which makes these
proofs incomprehensible without opening the proof assistant and stepping through the
proof state explicitly. Proofs written in Isabelle/Isar aim to be readable without being
required to open Isabelle and looking at the proof state explicitly.

A proof in Isabelle/Isar follows the structure of the proof goal. In general, a proof
goal is of the form

∧
x1 . . . xk. [[ A1 ; . . . ; An ]] =⇒ C where x1 . . . xk are variables,

A1 ; . . . ; An a list of assumptions, and C being the goal5. An Isabelle/Isar proof for this
goal is given by

5The notation [[ A1 ; . . . ; An ]] =⇒ C is a syntactic shorthand for A1 =⇒ A2 =⇒ . . . =⇒ An
=⇒ C.
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proof -
fix x1 . . . xk

assume "A1"
...
assume "An"
have l1: "P1" by simp
...
have ln: "Pn" by blast
show "C" by . . .

qed
where P1, . . . , Pn are intermediate facts with optional labels l1, . . . , ln to reference

the facts in later steps. Isabelle/Isar proofs are enclosed in a proof -qed-block. The proof
command can be optionally followed by an initial proof method to transform the proof
goal before entering the proof block. Otherwise, the minus symbol (-) indicates no
initial proof method and the proof is started without transforming the goal. Variables
and assumptions are introduced by the commands fix and assume. Only assumptions
present in the proof state can be assumed, otherwise it is impossible to prove the goal.
Intermediate facts can be introduced using the command have. To complete a goal,
the command show is used. The commands have and show need to be followed by a
proof method or a nested proof -qed-block as a justification that these hold. Facts can be
chained together using the then command to indicate that the proceeding fact follows
from the previous fact.

3.4.1 An Example Proof

Figure 3.2 shows a proof that the length of the concatenation of two lists is equal to addi-
tion of the length of both lists. Here, the function @ is a syntactic sugar for the function
append :: ’a list ⇒ ’a list ⇒ ’a list which takes two lists and concatenates them
The proof is started with the initial proof method induction which indicates a proof by
structural induction on the list xs resulting in the proof state:

1. length ([] @ ys) = length [] + length ys
2.

∧
a xs.

length (xs @ ys) = length xs + length ys =⇒
length ((a # xs) @ ys) = length (a # xs) + length ys

The numbered lines indicate the subgoals. The first subgoal is the base case, the second
one the induction step. The . . . are a shorthand for the term on the right-hand side of an
equality in the previous fact. In the induction step the induction hypothesis is used via
the using command.

3.5 Sledgehammer

Isabelle offers a unique feature called sledgehammer , which calls a number of external
automatic theorem provers that will run for up to 30 seconds, searching for a proof. If
successful, a proof method will be generated which can be inserted into the proof,
so the external provers do not need to be trusted. One of the advantages of using
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lemma "length (xs @ ys) = length xs + length ys"
proof (induction xs)

case Nil
have "length ([] @ ys) = length ys" by simp
also have "... = 0 + length ys" by simp
also have "... = length [] + length ys" by simp
finally show ?case by simp

next
case (Cons x xs)
assume IH: "length (xs @ ys) = length xs + length ys"
have "length ((x # xs) @ ys) = length (x # (xs @ ys))"

by simp
also have "... = Suc (length (xs @ ys))" by simp
also have "... = Suc (length xs + length ys)"

using IH by simp
also have "... = Suc (length xs) + length ys" by simp
also have "... = length (x # xs) + length ys" by simp
finally show ?case by simp

qed

Figure 3.2: An example proof in Isabelle.

sledgehammer is that it will take all available lemmas (selected heuristically) into account
when searching for a proof. However, there is no guarantee that sledgehammer will find
a proof if one exists. More information on sledgehammer and its inner workings can be
found in [24].
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Chapter 4

Formalization of Different Semantics

This chapter presents the formalization of the abstract higher-order fixpoint algebra and
its semantics carried out in Isabelle and provides an overview of the important proofs
and lemmas. It shows how the algorithm presented in Figure 2.1 can be modeled in
Isabelle and which complications might arise when attempting to prove the correctness
of the algorithm in Isabelle.

This thesis was formalized using Isabelle 20221. The formalization can be found on
GitHub2.

4.1 Syntax

We start the formalization with the definition of a locale ctx (short for context) used to
create a context in which the formalization and all proofs will be carried out3. This
context consists of a fixed set of elements that implement finite_lattice, an interpre-
tation function for zero-order abstract function symbols, an interpretation function for
first-order abstract function symbols, and the requirement that the interpretation is
monotonic.

locale ctx =
fixes elems :: "’a :: finite_lattice"

and abs_func0 :: "name ⇒ ’a"
and abs_func1 :: "name ⇒ (’a ⇒ ’a)"

assumes abs_func1_mono: "x ≤ y −→ abs_func1 f x ≤ abs_func1 f y"
begin

Terms of µHO1 are represented by two mutually recursive datatypes where tm0
describes zero-order terms and tm1 describes first-order terms.

datatype
tm0 = Var0 name | Func0 name | App tm1 tm0 | Mu0 name tm0

and
tm1 = Var1 name | Func1 name | Lam name tm0 | Mu1 name tm1

1https://isabelle.in.tum.de/
2https://github.com/waynee95/muHO-isabelle
3The type name is a synonym for nat and describes variables denoted by natural numbers instead of

strings. Natural numbers are easier to handle and explicit variables are not needed in the formalization.
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4.2 Semantics

4.2.1 Denotational Semantics

The denotational semantics of µHO1 is modeled as two mutually recursive functions,
each taking variable interpretations and a term as arguments. The semantics of zero-
order terms is an element in the lattice denoted by the return type ’a of sem_tm0 and
the semantics of first-order terms is a function from lattice element to lattice element
denoted by ’a ⇒ ’a of sem_tm1. Because ’a is fixed in this context and was constrained
to implement finite_lattice, there is no explicit type constraint needed in this function
definition for ’a. The return type of the semantics of a term depends on the order
of the term, therefore a separate function for each order is needed. Having only one
function with a general return type for terms of arbitrary order is impossible, as this
would require dependent types, which Isabelle does not support. More information about
dependent types may be found in [25].

The syntax η0(X := d) is a shorthand for updating the variable interpretation. In the
following, the two functions sem_tm0 and sem_tm1 will be abbreviated by the name sem.

fun
sem_tm0 :: "(name ⇒ ’a) ⇒ (name ⇒ (’a ⇒ ’a)) ⇒ tm0 ⇒ ’a"

and
sem_tm1 :: "(name ⇒ ’a) ⇒ (name ⇒ (’a ⇒ ’a)) ⇒ tm1 ⇒ (’a ⇒ ’a)"

where
"sem_tm0 η0 η1 (Var0 x) = (η0 x)" |
"sem_tm0 η0 η1 (Func0 f) = (abs_func0 f)" |
"sem_tm0 η0 η1 (App ϕ ψ) = (sem_tm1 η0 η1 ϕ) (sem_tm0 η0 η1 ψ)" |
"sem_tm0 η0 η1 (Mu0 X ϕ) =

d
{d. sem_tm0 (η0(X := d)) η1 ϕ ≤ d}" |

"sem_tm1 η0 η1 (Var1 x) = (η1 x)" |
"sem_tm1 η0 η1 (Func1 f) = (abs_func1 f)" |
"sem_tm1 η0 η1 (Lam x ϕ) = (λd. sem_tm0 (η0(x := d)) η1 ϕ)" |
"sem_tm1 η0 η1 (Mu1 X ϕ) =d

{d. mono d ∧ sem_tm1 η0 (η1(X := d)) ϕ ≤ d}"

In the Mu1 case, we use the predicate mono provided by Isabelle to specify that all functions
in the set should be monotonic.

An important lemma needed for later proofs is the monotonicity of the semantics
function sem under monotonic variable interpretations. This lemma can be formulated in
Isabelle as follows:

lemma sem_mono:
"
∧

η0 η1 η0’ η1’.
[[ ∀ z. η0 z ≤ η0’ z;

∀ f z. (η1 f) z ≤ (η1’ f) z;
∀ f. mono (η1 f);
∀ f. mono (η1’ f) ]]

=⇒ sem_tm0 η0 η1 ϕ ≤ sem_tm0 η0’ η1’ ϕ"

"
∧

η0 η1 η0’ η1’.
[[ ∀ z. η0 z ≤ η0’ z;

∀ f z. (η1 f) z ≤ (η1’ f) z;
∀ f. mono (η1 f);
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∀ f. mono (η1’ f) ]]
=⇒ sem_tm1 η0 η1 ϕ’ ≤ sem_tm1 η0’ η1’ ϕ’

∧ mono (sem_tm1 η0 η1 ϕ’) ∧ mono (sem_tm1 η0’ η1’ ϕ’)"

The lemma statement consists of two statements, one for each function of sem because
it is defined as two mututally recursive functions. As these are two separate proof
goals, both need the assumptions that variable interpretations only provide monotonic
functions themselves. The proof is done by simultaneous induction over ϕ and ϕ’. We
will not show the full proof in detail but highlight two cases:

case (App ψ ϕ)
have 0: "sem_tm0 η0 η1 ϕ ≤ sem_tm0 η0’ η1’ ϕ"

using App.IH(2) App.prems by simp

have 1: "sem_tm1 η0 η1 ψ ≤ sem_tm1 η0’ η1’ ψ"
using App.IH(1) App.prems by simp

from 0 have "(sem_tm1 η0 η1 ψ) (sem_tm0 η0 η1 ϕ)
≤ (sem_tm1 η0 η1 ψ) (sem_tm0 η0’ η1’ ϕ)"

using App.IH(1) App.prems(3) monoD by blast
with 1 have "(sem_tm1 η0 η1 ψ) (sem_tm0 η0 η1 ϕ)

≤ (sem_tm1 η0’ η1’ ψ) (sem_tm0 η0’ η1’ ϕ)"
by (metis dual_order.trans le_fun_def)

then show ?case by simp

In order to prove the App case, we first introduce the facts that sem is monotonic in ϕ,
resp. ψ, by using the induction hypothesis. Both facts get a label to refer to them in later
proof steps. We then use the fact 0 to conclude that ψ is monotonic in its operands. From
this, together with the fact that ψ is monotonic, we can conclude that the application ψφ

is monotonic. In the last step, this fact is combined with the function definition of sem for
the App case to finish the proof. The lemmas monoD, dual_order.trans, and le_fun_def
were found by using sledgehammer and describe facts about monotonicity over orders
and functions.

A standard workflow when proving is to first use sledgehammer on the current
subgoal. This is done for two reasons. Firstly, to see if Isabelle can finish the proof
goal automatically without further user input and secondly, if sledgehammer manages to
find a proof, it will provide a list of lemmas that might be used to finish the subgoal
together with a proof method. Isabelle’s standard library is extensive and split across
many different files, so it is not always easy to locate useful lemmas for a specific proof
by hand.

If sledgehammer is used on the Lam case, it will generate:

by (smt dual_order.eq_iff fun_upd_apply le_funI monoI sem_tm1.simps(3))

The automation had to rely on the powerful proof method smt together with additional
lemmas in order to prove this subgoal automatically. There may be several reasons not
to insert this proof method. One reason is that this proof method now hides many steps
and it is not immediately clear how this subgoal was proven. Instead, this case could be
split into intermediate steps, resulting in the following proof for the Lam case:

case (Lam x ϕ)

17



then have 1: "mono (sem_tm1 η0 η1 (Lam x ϕ))
∧ mono (sem_tm1 η0’ η1’ (Lam x ϕ))"

by (simp add: mono_def)

from Lam have 2: "(λd’. sem_tm0 (η0(x := d’)) η1 ϕ) d
≤ (λd’. sem_tm0 (η0’(x := d’)) η1’ ϕ) d" for d

by simp

from 1 2 show ?case by (simp add: le_funI)

Instead of relying on smt, this proof only uses the simple proof method simp in each
step. Two additional lemmas had to be added to the simp method, mono_def unfolds the
definition of the mono predicate and le_funI describes when a function is less than or
equal to another function, which is needed here because the semantics of a λ-abstraction
is a function. The command for is used to introduce an arbitrary but fixed variable
scoped to the preceding statement.

4.2.2 Algorithmic Semantics

Next we define a different version of the semantics of µHO1 based on approximation
of fixpoints via fixpoint iteration. To improve readability, we only show the parts that
are different compared to the previous definition. We introduce two new functions that
approximate the respective fixpoint operator approx_tm0 and approx_tm1, as per Kleene’s
Fixpoint Theorem (see Theorem 2.1.2). In the following, we will use the same name
abbreviation as with sem. The whole function now consisting of four mutually recursive
functions is referred to as sem_k and we use approx to refer to the two auxiliary functions
approx_tm0 and approx_tm1.

"approx_tm0 η0 η1 ϕ x init 0 = init" |
"approx_tm0 η0 η1 ϕ x init (Suc n) =

sem_tm0_k (η0(x := approx_tm0 η0 η1 ϕ x init n)) η1 ϕ" |

"approx_tm1 η0 η1 ϕ x init 0 = init" |
"approx_tm1 η0 η1 ϕ x init (Suc n) =

sem_tm1_k η0 (η1(x := approx_tm1 η0 η1 ϕ x init n)) ϕ" |

"sem_tm0_k η0 η1 (Mu0 X ϕ) =
approx_tm0 η0 η1 ϕ X ⊥ (card (UNIV::’a set))" |

"sem_tm1_k η0 η1 (Mu1 X ϕ) =
approx_tm1 η0 η1 ϕ X (λ_. ⊥) (card (UNIV::(’a⇒’a) set))"

termination
by size_change

The built-in constant UNIV is used to refer to the universal set of all elements of a certain
type, in this case, the underlying set of the lattice in question, resp. the appropriate
function set. This constant has to be constrained with a type annotation in order to refer
to the correct type. The built-in function card describes the cardinality of a set.

The function declaration is followed by the termination command because it was
defined using the function command. In this case Isabelle’s automatic termination
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checker was not able to conclude that this function terminates, so a proof has to be
provided explicitly. This is done via the size_change proof method. This method is
usually required in case of several mutually recursive functions with multiple arguments
[22].

Similar to sem, we prove that sem_k is monotonic w.r.t. monotonic variable interpre-
tations. Before being able to prove the monotonicity of sem_k, we have to prove the
monotonicity of approx, because in cases of fixpoint operators the approx function is
involved. We will showcase this for approx_tm0:

lemma approx_tm0_mono:
"[[

∧
η0 η1 η0’ η1’.

[[ ∀ z. η0 z ≤ η0’ z;
∀ f z. η1 f z ≤ η1’ f z;
∀ f. mono (η1 f);
∀ f. mono (η1’ f) ]]

=⇒ sem_tm0_k η0 η1 ϕ ≤ sem_tm0_k η0’ η1’ ϕ;

∀ z. η0 z ≤ η0’ z;
∀ f z. (η1 f) z ≤ (η1’ f) z;
∀ f. mono (η1 f);
∀ f. mono (η1’ f) ]]

=⇒ approx_tm0 η0 η1 ϕ x ⊥ n ≤ approx_tm0 η0’ η1’ ϕ x ⊥ n"
by (induction n) auto

In addition to the assumptions that the variable environments are monotonic, the
assumption is required that sem_tm0_k is monotonic. Then the monotonicity of approx_tm0
follows by induction on n. Since both cases in the induction can be solved with auto, it
is not necessary to write out both cases explicitly and the shorthand by (induction n)
auto can be used.

With the auxiliary lemmas that approx is monotonic, we can prove that sem_k is
monotonic w.r.t. to monotonic variable interpretations:

theorem sem_k_mono:
"
∧

η0 η1 η0’ η1’.
[[ ∀ z. η0 z ≤ η0’ z;

∀ f z. (η1 f) z ≤ (η1’ f) z;
∀ f. mono (η1 f);
∀ f. mono (η1’ f) ]]

=⇒ sem_tm0_k η0 η1 ϕ ≤ sem_tm0_k η0’ η1’ ϕ"

"
∧

η0 η1 η0’ η1’.
[[ ∀ z. η0 z ≤ η0’ z;

∀ f z. (η1 f) z ≤ (η1’ f) z;
∀ f. mono (η1 f);
∀ f. mono (η1’ f) ]]

=⇒ sem_tm1_k η0 η1 ϕ’ ≤ sem_tm1_k η0’ η1’ ϕ’
∧ mono (sem_tm1_k η0 η1 ϕ’) ∧ mono (sem_tm1_k η0’ η1’ ϕ’)"

The proof follows the same pattern as with sem_mono, except that the fixpoint operator
cases are proved by using by simp add: approx_mono, which means that we can apply
the auxiliary lemma here and the case is solved by simplification which instantiates the
lemma and solves the proof goal.
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4.2.3 Equivalence of Algorithmic and Denotational Semantics

This section covers the proof that the algorithmic semantics based on fixpoint iteration
semantics is equivalent to the denotational semantics. On paper this proof involves two
steps:

1. Prove that any approximant is less than the denotational fixpoint. This is done by
fixpoint unfolding.

2. Prove that the approximation stabilizes and that the result is a fixpoint which is at
least as big as the least fixpoint.

We start by proving that function approx stabilizes after at most cardinality of the
base set many steps, meaning that there exists an n such that the value of approx applied
to n + 1 does not change anymore. We will show the proof strategy for approx_tm0. For
this we need two auxiliary lemmas:

lemma approx_tm0_mono_min:
"∀ f. mono (η1 f)
=⇒ approx_tm0 η0 η1 ϕ x ⊥ n ≤ approx_tm0 η0 η1 ϕ x ⊥ (Suc n)" for n

proof (induction n)
case 0
then show ?case by simp

next
case (Suc n)
then show ?case

using sem_k_mono(1) by simp
qed

Stating that approx_tm0 is monotonic in n in one step. From which we can prove, that
approx_tm0 is monotonic in n for any number of steps:

lemma approx_tm0_mono_min2:
"[[ ∀ f. mono (η1 f); m ≥ n ]]
=⇒ approx_tm0 η0 η1 ϕ x ⊥ n ≤ approx_tm0 η0 η1 ϕ x ⊥ m"

proof (induction m)
case 0
then show ?case

by (simp add: approx_tm0_mono)
next

case (Suc m)
then show ?case

by (metis approx_tm0_mono_min lift_Suc_mono_le)
qed

Without an explicit proof for both lemmas, Isabelle is not able to figure out that approx
is monotonic in n. A fact that is usually obvious on paper and does not get special
treatment.

Now we can prove the easier case, that approx_tm0 stays stable, once it became stable:

lemma approx_tm0_stays_stable:
assumes "approx_tm0 η0 η1 ϕ x ⊥ n = approx_tm0 η0 η1 ϕ x ⊥ (Suc n)"

and "m ≥ n"
and "∀ f. mono (η1 f)"
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lemma inj_func_card:
assumes "∀ i ≤ card S + 1. ∀ i’ ≤ card S + 1.

i 6= i’ −→ f i 6= f i’"
shows "n ≤ card S + 1 −→ n ≤ card (

⋃
i≤n. {f i})"

proof (rule impI, induction n)
case 0
then show ?case

by simp
next

case (Suc n)
have "∀ i≤n. ∀ i’≤n. i 6= i’ −→ {f i} 6= {f i’}"

using Suc.prems assms by auto
then have "∀ i≤n. {f i} 6= {f (Suc n)}"

using Suc.prems assms by auto
then have 0: "¬ ({f (Suc n)} ⊆ (

⋃
i≤n. {f i}))"

by auto

have "(
⋃

i≤Suc n. {f i}) = (
⋃

i≤n. {f i}) ∪ {f (Suc n)}"
by (simp add: atMost_Suc)

then have "card (
⋃

i≤Suc n. {f i}) = card ((
⋃

i≤n. {f i}) ∪ {f (Suc
n)})"

by auto
with 0 have 1: ". . . = card (

⋃
i≤n. {f i}) + card ({f (Suc n)})"

by simp

have "Suc n ≤ card (
⋃

i≤n. {f i}) + 1"
using Suc.IH Suc.prems by auto

also have ". . . ≤ card ((
⋃

i≤n. {f i}) ∪ {f (Suc n)})"
using 1 by auto

also have ". . . ≤ card ((
⋃

i≤Suc n. {f i}))"
by (simp add: atMost_Suc)

finally show ?case by simp
qed

Figure 4.1: Auxiliary lemma about the fact that the image of an injective function into a set
is at least as big as the set.

shows "approx_tm0 η0 η1 ϕ x ⊥ m = approx_tm0 η0 η1 ϕ x ⊥ n"

The proof is done by splitting it into the case ≤ and ≥ and applying the previously
proven lemma.

Next, we need to prove that approx_tm0 gets eventually stable, after at most cardinality
of the base set many steps:

lemma approx_tm0_eventually_stable:
assumes "∀ f. mono (η1 f)"
shows "∃ n ≤ card (UNIV::’a set).

approx_tm0 η0 η1 ϕ x ⊥ n = approx_tm0 η0 η1 ϕ x ⊥ (Suc n)"

The proof can be found in Figure 4.2. The proof is done by contradiction denoted by
the initial proof method rule ccontr, assuming there is no n less than the cardinality
of the base set. This proof could make an argument over the length of the chain of all
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proof (rule ccontr)
assume 0: "¬ (∃ n≤(card (UNIV::’a set)).

approx_tm0 η0 η1 ϕ x ⊥ n = approx_tm0 η0 η1 ϕ x ⊥ (Suc n))"
then have 1: "∀ m≤(card (UNIV::’a set)).

approx_tm0 η0 η1 ϕ x ⊥ m < approx_tm0 η0 η1 ϕ x ⊥ (Suc m)"
using approx_tm0_mono_min assms order_less_le by blast

let ?A = "
⋃

i≤(card (UNIV::’a set) + 1).
{(approx_tm0 η0 η1 ϕ x ⊥ i)}"

have 2: "?A ⊆ (UNIV::’a set)"
by auto

from 0 1 have "∀ i≤(card (UNIV::’a set) + 1).
∀ i’≤(card (UNIV::’a set) + 1).

i’ 6= i −→ approx_tm0 η0 η1 ϕ x ⊥ i 6= approx_tm0 η0 η1 ϕ x ⊥ i’"
using approx_tm0_mono_min approx_tm0_mono_min2 assms
by (metis Suc_eq_plus1 antisym not_less_eq_eq)

then have "∀ n≤(card (UNIV::’a set) + 1).
n ≤ card (

⋃
i≤n. {(approx_tm0 η0 η1 ϕ x ⊥ i)})"

using inj_func_card by metis
then have 3: "card ?A > (card (UNIV::’a set))"

by auto

from 2 3 show False
by (meson card_mono finite_UNIV leD)

qed

Figure 4.2: Proof that approx_tm0 becomes eventually stable.

approximants, but this would require information and lemmas about chains provided
by Isabelle. Instead, the proof uses an argument about the cardinality of the set of
approximants. In the proof we define a variable ?A to be the set of all approximants. This
set is clearly a subset of the set of all elements in the lattice. From the fact that, there is
no n on which approx_tm0 stabilizes, we can conclude that all approximants are pairwise
disjunct, which means that the cardinality must be greater than the cardinality of the
base set. However, the set of approximants ?A is a subset of the base set, which leads to
a contradiction.

This proof needed an auxiliary lemma inj_func_card which can be found in Fig-
ure 4.1.

With that, we can finally prove that both semantics are equivalent:

theorem sem_k_eq_sem:
"
∧

η0 η1. ∀ f. mono (η1 f) =⇒ sem_tm0_k η0 η1 ϕ = sem_tm0 η0 η1 ϕ"

"
∧

η0 η1. ∀ f. mono (η1 f) =⇒ sem_tm1_k η0 η1 ϕ’ = sem_tm1 η0 η1 ϕ’"

This proof is done by simultaneous induction over both terms. A proof for the Mu0
case can be found in Figure 4.4. As described in the initial proof strategy, this proof is
split into two parts. First show that any approximant is less than the actual fixpoint,
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lemma unfold_mu0:
assumes "∀ f. mono (η1 f)"
shows "sem_tm0 η0 η1 (Mu0 x1a ϕ)

= sem_tm0 (η0(x1a := sem_tm0 η0 η1 (Mu0 x1a ϕ))) η1 ϕ"
(is "?l = ?r")

proof -
have 0: "sem_tm0 η0 η1 (Mu0 x1a ϕ) =d

{d. sem_tm0 (η0(x1a := d)) η1 ϕ ≤ d}"
by simp

have 1: "sem_tm0 (η0(x1a := d)) η1 ϕ ≤ d −→ ?l ≤ d" for d
by (simp add: Inf_lower)

then have 2: "(sem_tm0 (η0(x1a := d)) η1 ϕ ≤ d)
−→ (η0(x1a := ?l)) x ≤ (η0(x1a := d)) x" for x d

by simp
then have "sem_tm0 (η0(x1a := d)) η1 ϕ ≤ d

−→ ?r ≤ sem_tm0 (η0(x1a := d)) η1 ϕ" for d
by (simp add: assms sem_mono(1))

then have "sem_tm0 (η0(x1a := d)) η1 ϕ ≤ d −→ ?r ≤ d" for d
using dual_order.trans by blast

then have 3: "?r ≤
d

{d. sem_tm0 (η0(x1a := d)) η1 ϕ ≤ d}"
by (simp add: le_Inf_iff)

with 1 2 have "sem_tm0 η0 η1 (Mu0 x1a ϕ)
≤ sem_tm0 (η0(x1a := sem_tm0 η0 η1 (Mu0 x1a ϕ))) η1 ϕ"
using assms sem_mono(1) by auto

with 3 show ?thesis by simp
qed

Figure 4.3: Proof about fixpoint operator unfolding.
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which is proved by induction over n making use of the previously proven monotonicity
of sem and using the fixpoint unfolding lemma unfold_mu0 found in Figure 4.3. The other
direction follows from the two lemmas about the stabilization of approx_tm0 which are
combined in the single lemma approx_tm0_mu_final.

4.3 Local Model-Checking Algorithm

4.3.1 The Algorithm

In this section, we formalize the local model-checking algorithm for µHO1 described in
Figure 2.1. There are several things to consider when attempting to write this algorithm
in Isabelle:

• The algorithm uses repeat-loops, which are not available in Isabelle, therefore, we
need to replace the loops by recursion.

• The algorithm operates over a global variable reflecting the current environment,
which gets updated in the repeat-loop. Since Isabelle is a purely functional lan-
guage, it is impossible to update values in-place. Hence, the updated environments
become a return value of the function.

• The algorithm builds partial functions, but this cannot be easily reflected in Isabelle
since all functions are total by definition. To solve this, we add an additional return
value to the function, which tracks the current domains of the partial functions.

In summary, the return type of the function eval is a 3-tuple: ’a × (name ⇒ ’a ⇒ ’a)
× (name ⇒ ’a list), where the first value describes the value of the term that was
evaluated, the second value is the updated environment, and the third value is a map
from a function symbol to its current partial domain. Each domain is represented by a
list of elements for which this function is currently defined. We use a list instead of a set
because then it is easy to iterate over the elements of the domain by using fold. This
would not be possible with a set.

We only show the parts that are different for eval compared to sem_k:

"lapprox_tm1 η0 η1 d ϕ x arg 0 = (η1 x arg, η1, d)" |
"lapprox_tm1 η0 η1 d ϕ x arg (Suc n) =

(let (_,η1’’,d’’) = fold (λarg’ ((_::’a), η1’, d’).
(let (val’’’,η1’’’,d’’’) = eval_tm1 η0 η1’ d’ ϕ arg’

in (⊥,
(η1’’’(x := (λz. if z = arg’ then val’’’ else η1’ x z))),

d’’’))) (d x) (⊥,η1,d)
in (if ((η1’’ = η1) ∧ (d’’ = d))

then (η1 x arg, η1, d)
else lapprox_tm1 η0 η1’’ d’’ ϕ x arg n))" |

"eval_tm1 η0 η1 d (Var1 x) arg =
(if ListMem arg (d x)

then (η1 x arg, η1, d)
else (η1 x arg,

(η1(x := (λz. if z = arg then ⊥ else (η1 x) z))),
(d(x := arg # (d x)))))" |
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proof (induction ϕ and ϕ’)
case (Mu0 x ϕ)

have 1: "approx_tm0 η0 η1 ϕ x ⊥ n
≤

d
{d. sem_tm0 (η0(x := d)) η1 ϕ ≤ d}" for n

proof (induction n)
case 0
then show ?case

by simp
next

case (Suc n)
have 0: "approx_tm0 η0 η1 ϕ x ⊥ (Suc n)

= sem_tm0_k (η0(x := approx_tm0 η0 η1 ϕ x ⊥ n)) η1 ϕ"
by simp

then have 1: "approx_tm0 η0 η1 ϕ x ⊥ (Suc n)
= sem_tm0 (η0(x := approx_tm0 η0 η1 ϕ x ⊥ n)) η1 ϕ"

using Mu0.IH Mu0.prems by fastforce
then have "approx_tm0 η0 η1 ϕ x ⊥ n ≤ sem_tm0 η0 η1 (Mu0 x ϕ)"

by (simp add: Suc)
then have 2: "sem_tm0 (η0(x := approx_tm0 η0 η1 ϕ x ⊥ n)) η1 ϕ

≤ sem_tm0 (η0(x := sem_tm0 η0 η1 (Mu0 x ϕ))) η1 ϕ"
using Mu0.prems sem_mono(1) by auto

have "sem_tm0 η0 η1 (Mu0 x ϕ) =
sem_tm0 (η0(x := sem_tm0 η0 η1 (Mu0 x ϕ))) η1 ϕ"

using Mu0.prems unfold_mu0 by blast
with 0 1 2 show ?case

by (metis sem_tm0.simps(4))
qed

let ?t = "approx_tm0 η0 η1 ϕ x ⊥ (card (UNIV::’a set))"

have "sem_tm0 (η0(x := ?t)) η1 ϕ ≤ ?t"
by (metis approx_tm0.simps(2) approx_tm0_mu_final

dual_order.eq_iff Mu0.IH Mu0.prems)
then have 2: "?t ≥

d
{d. sem_tm0 (η0(x := d)) η1 ϕ ≤ d}"

by (simp add: Inf_lower)

from 1 2 show ?case
by (simp add: order.antisym)

Figure 4.4: Sub-proof for the Mu0 case for proving the equality of sem and sem_k.
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"eval_tm1 η0 η1 d (Mu1 x ϕ) arg =
(let (val, η1’, d’) = lapprox_tm1 η0 (η1(x := λz. ⊥)) (d(x := Nil))

ϕ x arg (card (UNIV::(’a⇒’a) set))
in (val, (η1’(x := λz. ⊥)), (d’(x := []))))"

termination
by size_change

Similar to the function definition of sem_k, the definition of eval needs an explicit
termination proof. It is also necessary to introduce the last parameter of lapprox_tm1 in
order for the termination proof to work, otherwise no automatic proof method is able
to conclude that the function indeed terminates. Refactoring out the iteration function
used inside the fold to improve readability is not possible because the termination proof
failed since another mutually recursive function is added.

4.3.2 Verification Strategy

The definition of algorithm eval complicates proofs in several ways. Since each function
returns a tuple, it is necessary to introduce let expressions into the function definition to
unpack intermediate values to pass them to the next function call. These let expressions
have a big impact when doing proofs involving eval because to reason about intermediate
values, every let has to be handled explicitly. Since eval includes an if-else, proofs might
have to include case distinctions whether an argument belongs to the current domain of a
function or not. Additionally, there are mathematical challenges. The algorithm operates
on partial functions, so it is necessary to wrap partial functions with a function that maps
arguments not in the domain to some value in order to totalize the functions. However,
while we get total functions this way, it is not necessarily the case that those functions
are monotonic. The fact that eval can produce non-monotonic functions has a big impact
on a possible proof strategy for proving the correctness of eval. For the equality proof
of sem_eq_sem_k, induction was used along the computation of the approximations. This
proof strategy will not work in case of eval because to prove equality for the App case,
monotonicity is required, otherwise the induction hypothesis will not be applicable.
Instead of induction along the computation of the fixpoint iteration, it is necessary
to start the proof when eval already stabilized. This requires a completely different
approach to prove the correctness of eval. A verification proof will also involve proving
several auxiliary lemmas that are necessary and need to be proven in Isabelle4.

4We sketch a few lemmas and proofs that might be required to attempt a verification proof for eval
which are not shown here because of readability reasons.
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Chapter 5

Conclusion

5.1 Result

In this thesis, we formalized two different semantics for a higher-order fixpoint algebra
and provided a formal proof that both semantics are equal. We showcased how such
a formal proof was carried out in Isabelle. In addition, we formalized the local model-
checking algorithm in Isabelle. We sketched which issues arise when attempting to
follow a similar proof structure to prove that the model-checking algorithm is correct.

The formalization revealed a plethora of challenges one is faced when attempting
to carry out formal proofs in Isabelle compared to classical pen-and-paper proofs. The
explicit listing of all required assumptions for a lemma (or theorem) greatly impacts
the readability of the lemma itself and the proof state while proving the lemma. An
additional challenge was being faced with non-terminating functions because the auto-
matic termination checker could not verify the termination, although the functions all
terminated in theory. While switching to the function definition to enable more powerful
termination automation resulted in successfully proving termination, these proofs took
a noticeable amount of time on all machines this formalization was tested. This had a
big impact on working with these functions because after each change made to a proof
document, Isabelle will re-run every proof, including the termination proofs, which
leads to delays when a termination proofs takes roughly 20 seconds to finish.

The statefulness of the model-checking algorithm required to carry around state
explicitly in the form of return values which makes the function definition hard to work
with and less readable since the insertion of let expressions is needed.

Isabelle offers powerful proof automation and sledgehammer is a useful tool to
automate proofs and discover needed lemmas. Isabelle’s standard library is extensive
and it is not always easy to find needed lemmas by hand, instead sledgehammer is a great
tool for finding needed lemmas, although there where a few occasions where Isabelle
crashed because sledgehammer consumed too much RAM. This mainly happened on
older computers and impacts the workflow inside Isabelle.

5.2 Future Work

There are a few directions for further work regarding this formalization. A formal proof
of the correctness of the local model-checking algorithm could be carried out. To improve
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the workflow and reduce delays, it might be useful to carry out all termination proofs
that require explicit handling manually. This would reduce the waiting time since no
termination proof search has to be carried out by Isabelle in the background.

It would also be interesting to see how a formalization of the abstract higher-order
fixpoint algebra for arbitrary order using a proof assistant that supports dependent types
would look like.
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