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Chapter 1

Introduction

In tuition of natural sciences pupils learn the scienti�c method. Part of the
scienti�c method is �nding a research question, formulating a hypothesis that
can be tested and conducting an experiment to actually test the hypothesis.
A hypothesis describes how a measured variable in�uences another measured
variable, e.g. Light in�uences plant growth., and has to refer to the research
question. The pupils receive the prede�ned research question from the teacher
and their task is to �nd relevant hypotheses relating to the given research ques-
tion. The teacher then assesses the pupils hypotheses on whether they are
grammatically correct and �t in the context of the question. When pupils are
assigned with such tasks, their learning process can be assisted by introducing
interactive systems for learning and teaching (ITL) as described in [3]. ITLs
can provide interactive feedback to the pupils. The research group from [9] has
developed an ITL for use in biology lessons. Before the devices with the ITL
installed are handed out to the pupils, the pupils will be introduced to a biolog-
ical phenomenon. Then, using the ITL, they put together a hypothesis from a
given set of words and clauses. Clicking on a word or clause appends it to the
hypothesis. Whenever a pupil is content with its hypothesis, it can request the
ITL to check the hypothesis for grammatical correctness and relevance. The
ITL then provides feedback whether the hypothesis is syntactically correct. We
aim to extend the functionality of the ITL by improving the feedback. The
pupil should receive feedback about which parts of its hypothesis are correct
and which parts must be changed in order to form a grammatically correct hy-
pothesis. To provide this kind of feedback we need to generate suggestions that
represent simple and minimal ways to correct the hypothesis, so the pupil can
choose a suggestion which �ts its intended hypothesis best. The ITL contains
a representation of all valid hypotheses, which can be speci�ed by the teacher
in advance.

1.1 Motivation

Speaking from a mathematical standpoint, the ITL checks the given hypothesis
against a context-free grammar. A method to algorithmically correct words to
match a context-free grammar is given by a minimum distance parser presented
in [1]. If a hypothesis is rejected by the ITL, the minimum distance parser can

3



CHAPTER 1. INTRODUCTION 4

�nd correct hypotheses with the lowest edit distance to the pupils input. The
edit distance indicates the lowest number of edits required to transform one
word into another word and vice versa. An edit is the deletion, insertion or
replacement of a symbol. This distance measure is also referred to as Leven-
shtein distance �rst presented in [12]. However, we demonstrate that the lowest
number of edits may not be the best metric to decide whether a suggestion
represents a minimal way of editing a malformed hypothesis. If a student enters
the hypothesis

Light in�uences plant (1)

we can argue that a minimal way of �xing (1) would be to insert the missing
word growth, which leads us to the hypothesis:

Light in�uences plant growth. (2)

Let us assume that the pupil tries to form the following hypothesis containing
a subordinate clause:

Light in�uences plant growth, but. (3)

We observe that (3) and (2) are an edit distance of 1 apart, while the correct
hypothesis with the full subordinate clause is an edit distance of 7 apart from
(3):

Light in�uences plant growth, but only between 500 nm and 600 nm. (4)

From a didactic perspective (4) is considered to be a good hypothesis, because
it is more complex and speci�c than (2). If we provided all suggestions leading
to hypotheses with the lowest edit distance � 1 in this case � to the pupil, we
would promote the inferior hypothesis and hide away the superior hypothesis.
What makes (4) minimal is the fact that no pre�x of the edit sequence that
turns (3) into (4) produces a correct hypothesis. This idea of minimality is
what we discuss in this thesis. A suggestion should be seen as minimal, if the
last edit is the �rst edit that produces a correct hypothesis.

To further illustrate this idea, consider another example:

Humidity in�uences plant growth. (5)

When correcting (1), there are two obvious ways of reaching (5). One option is
�rst replacing Light against Humidity and then inserting growth. Another option
is to �rst insert growth and then replace Light against Humidity. According to
the notion of minimality we propose, replacing Light against Humidity and
then inserting growth should be considered minimal, because the intermediate
hypothesis is not correct:

Humidity in�uences plant. (6)

The aim of this thesis is to present and discuss an alternative notion of minimal-
ity which is based on the idea that the sequence of edits correcting a hypothesis
does not produce a correct hypothesis before the last edit. We prove that there
are �nitely many minimal hypotheses according to this notion and present an
algorithm to compute these hypotheses.
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1.2 Structure of Thesis

We begin by laying down the de�nition of words and languages in Chapter 2.
Thereafter, we introduce regular and context-free languages and their represen-
tations. These are, formal grammars, regular expressions and �nite automata.
In addition we outline how commonly known computational problems such as
the word problem and emptiness problem are solved for these types of languages.
We then de�ne scattered subwords and Higman's Lemma, which we later utilize
to prove the �niteness of the set of minimal corrections. In Chapter 3, we for-
mally de�ne the types and semantics of edit operations that can be applied to a
word. We then combine these edit operations into edit sequences, called correc-
tions, and describe how corrections can be reordered and simpli�ed according to
a given set of rules. Next up, in Chapter 4 a two-level de�nition of minimality on
edit sequences is presented. We present how minimality behaves for scattered
subwords and de�ne a normal form for corrections. After the groundwork is
laid out, we prove that for an arbitrary hypothesis and a �nite representation of
all correct hypotheses there exist only �nitely many minimal corrections. From
the proof we derive an algorithm to e�ciently compute these corrections and
discuss the runtime complexity and optimizations of the algorithm in Chapter 5.
We close in Chapter 6 with concluding remarks on how suitable the presented
algorithm is for deployment in an ITL and what must be improved to enhance
the quality of the computed corrections.



Chapter 2

Preliminaries

The de�nitions in this chapter are mostly taken from the lecture slides of Formal
Languages and Logic held by Martin Lange in 2019 [10], [6] and [15].

2.1 Words and Languages

An alphabet Σ is a �nite, non-empty set of symbols. A word is a sequence of
symbols w0 · · ·wn−1 of length n, where w0, . . . , wn−1 ∈ Σ. The empty word ϵ
is the only word where length n = 0. With Σ∗ we denote the set of all words
over the alphabet Σ. The set of all words of length |w| = n is denoted as Σn.
A language L ⊆ Σ∗ is a set of words over the alphabet Σ∗. A language class
C ⊆ 2Σ

∗
over Σ is a set of languages.

Concatenation. Let u, v be two words with u, v ∈ Σ∗. We de�ne the con-
catenation of u = u0 · · ·un−1 and v = u0 · · ·um−1 via

(u · v) := u0 · · ·un−1v0 · · · vm−1.

We abbreviate u · v with uv.

Closure Properties. Let k ≥ 0 and f : 2Σ
∗
× · · · × 2Σ

∗︸ ︷︷ ︸
k times

→ 2Σ
∗
. A language

class C is closed under f , if f(L1, . . . , Lk) ∈ C is true for all L1, . . . , Lk ∈ C.

Grammars. A grammar G = (N,Σ, P, S) is a 4-tuple whereN is a �nite set of
nonterminal symbols, Σ is an alphabet whose symbols are also called terminals,
P ⊆ (N ∪ Σ)+ × (N ∪ Σ)∗ is a set of derivation rules and S ∈ N is the initial
nonterminal. Terminals and nonterminals may not coincide, i.e. N ∩ Σ = ∅.

Beginning with the start symbol S we can apply derivation rules to produce
sentential forms s ∈ (N ∪Σ)∗ and �nally words w ∈ Σ∗ of the language induced
by the grammarG. We de�ne the relation⇒G for deriving one step, i.e. applying
a single derivation rule to a sentential form. Let u, v ∈ (N ∪Σ)∗. Then u ⇒G v
if u and v are of the form u = xyz and v = xy′z such that x, z ∈ (N ∪ Σ)∗

and y → y′ ∈ P . We say that G derives u into v in one step. Let ⇒∗
G be

the re�exive and transitive closure of ⇒G. The language L(G) induced by the
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grammar G, namely L(G) = {w ∈ Σ∗ | S ⇒∗
G w }, is the set of all words

that can be derived in any number of steps beginning at the initial nonterminal.
A sequence of sentential forms (s0, s1, . . . , sn) such that s0 = S, sn ∈ Σ∗ and
s0 ⇒G s1 ⇒G . . . ⇒G sn is a derivation of sn. In general there may exist
multiple derivations for one word, introducing ambiguity into the grammar.

Computational Problems for Languages. Computing whether w ∈ L if
L ⊆ Σ∗ is a language and w ∈ Σ∗ is a word is commonly known as the word
problem. The emptiness problem is de�ned as follows. Let L ⊆ Σ∗. Compute,
whether L = ∅.

2.2 Regular Languages

Regular languages are languages that can be described by a regular grammar or
a regular expression, or that can be recognized by a deterministic or nondeter-
ministic automaton. These formalisms are equally descriptive in the sense that
they formalize the same set of languages.

Regular Grammars. A regular grammarG is a grammar where every deriva-
tion rule w1 → w2 ∈ P satis�es w1 ∈ N and w2 = Σ ∪ ΣN ∪ {ϵ}, meaning w2

must consist of a terminal and an optional nonterminal or the empty word. We
call a language L(G) induced by a regular grammar G a regular language. The
language class of regular languages is denoted as REG. Regular languages can
also be described by regular expressions.

Regular Expressions. We use regular expressions to describe regular lan-
guages. Firstly, we de�ne the syntax of well-formed regular expressions. Sec-
ondly, we de�ne the semantics of such regular expressions. The set of regular
expressions over an alphabet Σ is the smallest set RegEx, for which the following
is true:

� ∅ ∈ RegEx

� Σ ⊆ RegEx

� if α, β ∈ RegEx, then α ∪ β, α · β, α∗ ∈ RegEx

We proceed by introducing the semantics of concatenation and the Kleene
closure on languages. Concatenation of two languages L1, L2 is de�ned as
L1 · L2 := {xy | x ∈ L1 and y ∈ L2 }, abbreviated with L1L2. The Kleene
closure L∗ of a language L ⊆ Σ∗ is de�ned as L∗ :=

⋃
n≥0 L

n where L0 := {ϵ}
and Li+1 := LLi. The language L(α) of a regular expression α is de�ned by
induction over the structure of the expression via

� L(∅) := ∅

� L(α ∪ β) := L(α) ∪ L(β)

� L(α∗) := L(α)∗

� L(a) := {a}, a ∈ Σ
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� L(α · β) := L(α)L(β).

Every language that can be described by a regular expression is a regular lan-
guage. We abbreviate L(α) with α. The set of languages that can be described
by a regular expression is exactly the set of regular languages. For any given
regular expression we can construct an NFA describing the same language as
explained in [15] and vice versa.

Finite Automata. We de�ne deterministic and nondeterministic �nite au-
tomata to describe regular languages. A �nite automaton operates by reading
an input word symbol-wise from left to right. It has a set of states, one of which
is an initial state. It also has a designated set of �nal states. The set of states
that it can transition into is de�ned by the transition rules given in the form of
a function, in case of a deterministic �nite automaton, or a relation, in case of
a nondeterministic �nite automaton. Which of these transitions are valid in the
current situation depends on the symbol from the input word that is currently
read and the state. While a nondeterministic �nite automaton possibly has
multiple successor states per pair of a symbol and a state, a deterministic �nite
automaton has exactly one. A �nite automaton accepts a word if and only if
there exists a path from an initial state to a �nal state labeled with the input
word. An automaton can be visualized as a directed graph where the transition
rules correspond to the edges and the vertices correspond to the set of states.
An edge connects two vertices, if the state of the destination vertex is a valid
successor state of the source vertex state according to the transition rules of the
automaton. The edge is labeled with all symbols that can be read to transition
from the source vertex state to the destination vertex state. The initial state
is labeled with an arrow and the �nal states are labeled with a double outline
stroke.

A nondeterministic �nite automaton (NFA) A = (Q,Σ, δ, I, F ) is a 5-tuple
where Q is a set of states, the input alphabet Σ is an alphabet, δ ⊆ Q×Σ×Q
is a transition relation, I ⊆ Q is a set of initial states and F ⊆ Q is a set of �nal
states. To determine whether an NFA accepts a word we introduce the concept
of a run λ. A run λ of an automaton A on a word w = a0, . . . , an−1 ∈ Σ∗ is a
(�nite) sequence of alternating states and alphabet symbols of the form

λ = q0, a0, q1, . . . , qn−1, an−1, qn ∈ Q(ΣQ)∗

such that (qi, ai, qi+1) ∈ δ for all i ∈ {0, . . . , n− 1}. Runs use by de�nition only
valid transitions from the transition relation δ. A run λ = q0, . . . , qn is called an
accepting run of automaton A if q0 ∈ I and qn ∈ F . The language L recognized
by an NFA is denoted as L(A) and de�ned via

L(A) := {w ∈ Σ∗ | there exists an accepting run of A on w }.

Note that in general for one word there may exist multiple runs on the same
NFA.

A deterministic �nite automaton (DFA) A = (Q,Σ, δ, q0, F ) is a 5-tuple
where Q is the set of states, the input alphabet Σ is an alphabet, δ : Q×Σ → Q
is the transition function, q0 ∈ Q is the initial state and F ⊆ Q is the set of
�nal states. A DFA is similar to an NFA, with the di�erence that δ is a function
instead of a relation and q0 is a single initial state instead of a set of initial
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states I. We extend the transition function δ to operate on words rather than
symbols. The transition function for words δ̂ : Q×Σ∗ → Q is de�ned inductively
over the input word w = aw′ as δ̂(q, aw′) := δ̂(δ(q, a), w′) where w ∈ Σ∗, a ∈ Σ
and q ∈ Q. When reading the empty word ϵ, the automaton will remain in the
current state, i.e. δ̂(q, ϵ) = q. The accepted language L of the automaton A is

de�ned as L(A) := {w ∈ Σ∗ | δ̂(q0, w) ∈ F }, meaning all words that can be
read by the automaton using valid transitions, beginning in the initial state and
resulting in the �nal state.

As shown in [15, Section 1.2.3] for any DFA A we can construct a regular
language L described by a regular grammar G such that L(A) = L, and thus
every language recognized by a DFA is a regular language. The word problem
for REG can be solved by conducting a constrained reachability search on the
graph of a �nite automaton A to determine the acceptance of A on the word
w. A �nite automaton describes the empty language L = ∅ if and only if there
exists no path from the initial state to a �nal state. The emptiness problem
for REG is solved by a breadth-�rst search on the graph of a �nite automaton
beginning at the initial state q0, terminating with true if and only if a �nal
state qF ∈ F can be reached. As shown in [7] the emptiness problem for �nite
automata can be solved in polynomial time.

2.3 Context-Free Languages

A context-free grammar G is a grammar where P ⊆ N × (Σ ∪ N)∗. We de-
note the language L generated by the context-free grammar G as L(G). Every
regular language is also context-free, since every regular grammar satis�es the
constraints of a context-free grammar.

The class of context-free languages CFL is closed under the operations
∪, ·, ·∗, and homomorphisms. Context-free languages are closed under inter-
section with regular languages, meaning L1 ∩ L2 ∈ CFL if L1 ∈ CFL and
L2 ∈ REG. The construction of L1 ∩ L2 is shown in [14] and can be solved in
polynomial time [16].

The word problem for CFL is solvable in polynomial time, namely O(|G|·n3)
where n is the length of the input word, with the CYK algorithm explained in
[11] or by using the Earley algorithm proposed in [2].

For a context-free grammar G we �nd the solution to the emptiness problem
by checking whether at least one word can be produced starting from the initial
symbol S. We consider those symbols of G to be productive that are terminals
or fully derive to productive symbols. Hence, whether L(G) is empty can be
solved iteratively by computing the least �xed point of productive symbols and
checking whether it contains S. Let X denote the set of productive symbols
that have been found so far. We initialize X := Σ to start with the terminals.
Thereafter, we �nd nonterminals that derive to symbols in X. That means X =
X ∪ {A | A ⇒G x and x ⊆ X }. To �nd the least �xed point we successively
compute X until |X| remains constant for two iterations. Then, L(G) is empty
if S /∈ X. This procedure is presented in [5, Section 7.1.1] and runs in O(n2)
time where n = |G|. In [5, Section 7.4.3] there is presented an even more e�cient
algorithm with a runtime complexity of O(n).
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2.4 Scattered Subwords

Let y ∈ Σ∗ be a word. A scattered subword (also known as subsequence) x of y
is obtained by leaving out any number of symbols in the initial word y. Word
x = x0 . . . xn−1 is a scattered subword of word y, denoted as x ≤ y, if y has
the form y = y0x0y1x1 . . . xn−1yn, where yi ∈ Σ∗ and xi ∈ Σ. Every word is a
scattered subword of itself. For a pair of a word y and a scattered subword x
with di�erent lengths, |x| < |y|, we write x < y to denote the strict subsequence
relation.

Example 1. Let x = raspy and y = raspberry, then x is a scattered subword
of y, written raspy ≤ raspberry.

Lemma 2 (Higman's Lemma [4]). Let Σ be an alphabet and Y be an in�nite
set of words over Σ. Then, there exists a �nite subset X ⊆ Y , which contains a
scattered subword x for any given word y ∈ Y . Consequently, if w0, w1, . . . is an
in�nite sequence of words, two words wi, wj with i < j exist such that wi ≤ wj.

Thus, if a set S is a set of words over Σ and S does not contain two words
x, y such that one is a scattered subword of the other, i.e. x ≤ y, S must be
�nite, namely |S| < ∞. We will utilize this in the proof of Theorem 19 to prove,
that there are �nitely many minimal corrections.



Chapter 3

Corrections

In this chapter we introduce the syntax and semantics of the operations we
can use to change a word, namely insertions, deletions and replacements. They
represent simple instructions that specify how words can be transformed into
di�erent words in an atomic step. Then, we chain these instructions together
into sequences of edit operations we call corrections. We proceed by describing
how these corrections can be simpli�ed and which corrections we consider to
be equivalent. We argue why semantic equivalence is not su�cient for our
endeavor and introduce the concept of similarity to describe how corrections
can be reordered while preserving their e�ect on all words.

3.1 Edit Operations and Corrections

To start o� we formally de�ne the atomic operations that we can apply to a
word w. For instance, if we want to turn the word a into ab, we need to insert
the symbol b at the second position. Conversely, if we want to turn the word ab
into a, we need to delete the symbol at the second position. To turn ab into aa,
we would replace b at the second position against an a. We continue by de�ning
the syntax for these kinds of simple instructions.

De�nition 3. An edit operation τ is one of a ↑i, b ↓i or b ↕i a. These are
insertion, deletion and replacement, respectively. The symbols a and b with
a, b ∈ Σ denote, which symbol will be inserted and which symbol will be deleted
or both in the case of a replacement. The index i ∈ N denotes at which location
in the word the operation is executed, i.e. at which index a is inserted or b is
deleted. Each edit operation τ induces a partial function fτ : Σ∗ → Σ∗. When
an edit operation τ is applied to a word w = w0 . . . wn−1, the result τ(w) is a
new word w′, de�ned via

11
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a↑i (w) :=

{
w0 · · ·wi−1awi · · ·wn−1 , if i ≤ n

⊥ , otherwise,

b↓i (w) :=

{
w0 · · ·wi−1wi+1 · · ·wn−1 , if i < n and wi = b

⊥ , otherwise,

b↕ia (w) :=

{
w0 · · ·wi−1awi+1 · · ·wn−1 , if i < n and wi = b

⊥ , otherwise.

When giving feedback to a pupil regarding his hypothesis, suggesting only
a single edit operation to modify the hypothesis will not be su�cient in most
cases. That is why we introduce corrections as a means to group multiple edit
operations together.

De�nition 4. A correction ρ = (τ1, . . . , τm) is a sequence of edit operations.
All edit operations are applied in order of the sequence from left to right. We
utilize the de�nition of the functions induced by the edit operations to de�ne
the function fρ : Σ∗ → Σ∗ of a correction ρ as

f(τ1,...,τm)(w) :=


w , if m = 0,

f(τ2,...,τm)(v) , if τ1(w) = v and v ̸=⊥,
⊥ , otherwise.

A correction ρ can be empty, written ρ = (), if it contains zero edit opera-
tions.

As a next step, we need a concept to determine whether two corrections
have the same behavior. Two corrections with the same behavior may di�er in
length, order or in the edit operations they contain. To transcend these con-
crete features, we need an equivalence on corrections. We discuss two notions
of equivalence, namely syntactic and semantic equivalence. We introduce se-
mantic equivalence �rst and discuss syntactic equivalence (similarity) and the
relationship between these notions in Section 3.3.

De�nition 5 (Equivalence). We consider two corrections ρ1, ρ2 to be (seman-
tically) equivalent, written ρ1,≡ ρ2, if ρ1(w) = ρ2(w) for every word w ∈ Σ∗.

We proceed by giving examples for corrections operating on words over the
alphabet Σ = {a, b}. For example, we �nd that

(a↑0, b↓1) ≡ (b↓0, a↑0).

That is, because both corrections are only de�ned on words that start with b.
Their application on a word causes the b at the �rst position of the word to
disappear and introduces a at the �rst position instead. Both corrections di�er
in the order that the operations are applied.

An example for two corrections that are not equivalent reads as follows:

(a↓1) ̸≡ (b↕0a, b↑0).

For instance, the results of applying both corrections to the word aa di�er.
While (a ↓1)(aa) = a, (b ↕0 a, b ↑0)(aa) =⊥. After having de�ned semantic
equivalence we discuss in the following sections how simplifying and reordering
corrections a�ects the preservation of semantic equivalence.
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3.2 Simpli�cation

In this section we discuss obvious cases in which corrections can be simpli-
�ed based on their syntactical features. There exist combinations of insertions,
deletions and replacements which are unnecessarily complex, i.e. the result of
applying both to a word could be achieved with fewer operations. Deleting and
inserting the same symbol at the same position over the course of a correc-
tion would be nonsensical. Inserting a symbol and replacing that symbol with
another symbol later on can also be achieved by directly inserting the desired
symbol. There are even more cases in which we can simplify combinations of
edit operations. To formally de�ne these trivial ways of simplifying corrections
containing such combinations we introduce the concept of a simpli�cation. We
begin by de�ning how pairs of operations can be simpli�ed and then extend the
de�nition onto corrections of arbitrary length. This de�nition is a prerequisite
to de�ne an order on corrections which we can utilize to determine whether a
correction is minimal regarding its syntactical features.

Example 6. Consider the hypothesis w = Heat in�uences yeast growth over
the alphabet Σ = {Heat,in�uences,yeast,growth,linearly} and the correction

ρ = (linearly↑4, linearly↓4).

We want to simplify ρ by substituting ρ with (). Intuitively, one would assume
that ρ is semantically equivalent to (), because their e�ect on the given hypoth-
esis w from above would be equal. That is, (linearly↑4, linearly↓4)(w) = w and
()(w) = w. However, ρ ̸≡ (). The empty correction () is de�ned on all words
over Σ and its application on a word yields that word without any modi�cation.
In contrast, ρ is de�ned on words of length greater than three. We conclude
that ρ ̸≡ (), because ρ(w′) = ()(w′) only holds for words w′ with |w′| > 3.

As a second example we consider ρswapped = (linearly ↓4, linearly ↑4) which
is unde�ned on words that do not include the symbol linearly at index 4.

We conclude that there are two reasons why simpli�cation cannot always
preserve equivalence. The �rst reason is that an index occurring in an edit op-
eration requires the word it is applied to to have a minimum length. This could
be de�ned away by introducing a padding for words, which modi�es all words to
be su�ciently long. The second reason is a character mismatch. Deletions and
insertions expect a speci�c symbol at a speci�c index in a word. We decided
that in the context of the ITL generating helpful corrections for pupils we do not
require a simpli�cation to preserve semantic equivalence. That is, because in
this context we are interested in determining whether a correction applied to a
single input word is minimal or not. Instead of preserving semantic equivalence,
we only demand that the simpli�cation of a correction yields the same result on
all words on which the original correction is de�ned.

Example 6 demonstrates that we cannot always call two corrections equiv-
alent, even though the presented substitution of the correction (linearly ↑4,
linearly ↓4) to () seems to represent a more direct way of achieving the same
result. Similarly, the correction (linearly ↑4, linearly ↕4nonlinearly) can be sim-
pli�ed to (nonlinearly↑4). Even though we cannot arbitrarily interchange a part
of a correction with such a simpli�cation and vice versa, a simpli�ed correction
will be de�ned (not evaluate to ⊥) and its result be equal for all words that the
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HHH
HHα
β

a↓i a↑i a↕ic a↓i+1 a↓i−1 b↑i b↑i+1

a↓i (α, β) () (α, β) (α, β) (α, β) a↕ib (α, β)
a↑i () (α, β) (c↑i) (α, β) (α, β) (α, β) (α, β)
b↕ia (b↓i) (α, β) (b↕ic) b↓i b↓i a↑i+1 a↑i

Table 1: The pair (α, β) can be simpli�ed according to the table.

initial correction is de�ned on, which we denote in Corollary 10. Simplifying
corrections in such a way is one aspect of �nding minimal corrections. We will
utilize this concept in Chapter 4 to de�ne minimality on corrections.

Analogous to Example 6 we de�ne a map of simpli�cation rules given in
Table 1, which maps a pair of operations (α, β) to one of two cases:

(i) a correction γ which may be empty, written γ = (),
or contain a single edit operation, written γ = (τ), or

(ii) not simpli�able: (α, β).

If we can �nd a pair of adjacent edit operations (as a part of a correction)
that matches a simpli�cation rule, we can apply that rule to obtain a simpler
correction. We do so by substituting the pair of edit operations with its sim-
pli�cation whilst preserving the rest of the correction. Next, we formally de�ne
this concept.

De�nition 7. Let ρ, ρ′ be two corrections where ρ = (τ1, . . . , τn). Correction ρ′

is simpler than ρ, denoted by ρ′ ◁ ρ, if the pair (τi, τi+1) where i ∈ {1, . . . , n−1}
matches a simpli�cation rule from Table 1 and can be simpli�ed to

� () and ρ′ has the form (τ1, . . . , τi−1, τi+1, . . . , τn), or

� (τ) and ρ′ has the form (τ1, . . . , τi−1, τ, τi+2, . . . , τn).

Note that in cases where the simpli�cation of (τi, τi+1) is (τi, τi+1) as well,
ρ′ = ρ and thus ρ′ is not e�ectively a simpler correction.

After having de�ned what we mean by calling a correction simpler than
another correction, we need to extend De�nition 7 to relate corrections that are
farther than one step of simplifying away. For instance, we can express that
(linearly ↑4, linearly ↓4) ▷ (), by applying (a ↑i, a ↓i) ▷ (). However, we cannot
yet express

(linearly↑4, linearly↕4nonlinearly,nonlinearly↓4) ▷ (),

even though the sequence of simpli�cations

(linearly↑4, linearly↕4nonlinearly,nonlinearly↓4)
▷ (linearly↑4, linearly↓4)
▷ ()

which at �rst simpli�es the pair of the second and third operation, and thereafter
simpli�es the pair of the �rst and second operation, holds. That is why we
introduce transitivity to the de�nition of simplicity.
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De�nition 8. ◀ is the re�exive and transitive closure of ◁.

After having de�ned ◀, we can express

(linearly↑4, linearly↕4nonlinearly,nonlinearly↓4) ▶ ().

In order to make use of the standard notion of minimality on partial orders we
need to prove that ◀ is a partial order.

Lemma 9. ◀ is a (non-strict) partial order.

Proof. Re�exivity and transitivity hold by construction of ◀. We prove anti-
symmetry by contradiction. Note that |ρ| < |ρ′| for two corrections ρ, ρ′ where
one is a (direct) simpli�cation of the other, written ρ ◁ ρ′. Every applicable
rule from Table 1 decreases the length of ρ by at least one. Assume that anti-
symmetry does not hold. Let ρ, ρ′ be corrections such that ρ ◀ ρ′ and ρ′ ◀ ρ
and ρ ̸= ρ′. Let |ρ| = n and |ρ′| = m. Because m < n and n < m cannot
be true simultaneously, only one of ρ ◀ ρ′ and ρ′ ◀ ρ can be true if ρ ̸= ρ′.
Simultaneous relationships ρ ◀ ρ′ and ρ ◀ ρ′ only exist when derived from
re�exivity. In those cases |ρ| = |ρ′| and thus ρ = ρ′.

To �nd minimal (fully simpli�ed) corrections amongst a set of corrections
we can utilize the standard notion of minimality on partial orders, meaning a
correction ρ is minimal regarding ◀ if there exists no correction ρ′ with ρ ̸= ρ′

such that ρ′ ◀ ρ. For instance, the corrections

(linearly↑4), (Heat↕0Air, pressure↑1)

are minimal regarding ◀.

Corollary 10. Let ρ, ρ′ be two corrections such that ρ′ ◀ ρ. If ρ(w) ̸=⊥ with
w ∈ Σ∗, then ρ(w) = ρ′(w).

After having de�ned ◀ as a concept for syntactic minimality, we now look
at how we can group together corrections that have the same e�ect on a word
based on their syntactical features. In doing so we abstract from the speci�c
instance of a correction.

3.3 Similarity

Corrections should be seen as being equivalent, if they contain the same opera-
tions, but in a di�erent order. It is not su�cient to check whether two corrections
are permutations of each other to classify them as equivalent, since we need to
account for the change of indices. For instance, if we conduct an insertion in the
beginning of a correction, all subsequent operations operating on greater indices
than the inserted symbol have to factor in the fact that the word they are op-
erating on is extended by one symbol. In contrast, if we conduct that insertion
at the end, all previous operations need to have their indices reduced by one.
We may encounter that some operations cannot be permuted past each other,
because they depend on each other. We consider two corrections to be similar if
their length is equal, they contain the same edit operations in a di�erent order
without con�icts and the indices have been shifted accordingly.
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(α, β) j < i j = i j > i
(a↓i, b↓j) (β, a↓i−1) (b↓j+1, α) (b↓j+1, α)
(a↑i, b↓j) (β, a↑i−1) ⊥ (b↓j−1, α)

(a↕ic, b↓j) (β, a↕i−1c) ⊥ (β, α)

(α, β) j ≤ i j > i
(a↓i, b↑j) (β, a↓i+1) (b↑j+1, α)
(a↑i, b↑j) (β, a↑i+1) (b↑j−1, α)

(a↕ic, b↑j) (β, a↕i+1c) (β, α)

(α, β) j < i j = i j > i
(a↓i, b↕jd) (β, α) (b↕i+1d, α) (b↕j+1d, α)
(a↑i, b↕jd) (β, α) ⊥ (b↕j−1d, α)

(a↕ic, b↕jd) (β, α) ⊥ (β, α)

Table 2: Taking two adjacent edit operations α and β from a correction ρ and
swapping them results in a reordered correction ρ′. a, b, c, d ∈ Σ and i, j ∈ N.

De�nition 11. Let the (α, β) be a pair of edit operations. According to Table 2
we de�ne the swapping of that pair as a partial map. The result of swapping
(α, β) is a new pair (β′, α′), or ⊥ in some cases. Let ρ, ρ′ be two corrections,
where ρ = (τ1, . . . , τn). Correction ρ′ is a reordering of ρ, written ρ⇝ ρ′, if

� the pair (τβ , τα) ̸=⊥ is a swapping of (τi, τi+1) where i ∈ {1, . . . , n − 1}
and

� ρ′ = (τ1, . . . , τi−1, τβ , τα, τi+2, . . . , τn).

De�nition 12. ≃ is the re�exive, symmetric and transitive closure of ⇝.

If a successive series of reorderings in the form of ρ⇝ · · ·⇝ ρ′ is possible, we
call ρ and ρ′ similar. All reorderings that can be reached from ρ are contained
in the equivalence class [ρ]≃.

We proceed by discussing which corrections will always yield ⊥. These are
corrections which can be formed but are not useful because they contain oper-
ations that are logically inconsistent. Namely, if a correction can be reordered
in a way that two adjacent operations match one of these cases:

(a↑i, b↓i), (a↕ic, b↓i), (a↑i, b↕id), (a↕ic, b↕id)

with a, b, c, d ∈ Σ being pairwise unequal and i ∈ N.
In contrast, there are corrections containing at least two operations which

edit the same symbol and therefore both operations are dependent on one an-
other. That is why swapping these operations does not preserve equivalence:

(a↑i, a↓i), (b↕ia, a↓i), (a↑i, a↕ic), (b↕ia, a↕ic).

As discussed in Section 3.3, corrections containing a pair matching one of the
cases above can be simpli�ed.

Theorem 13. If ρ ≃ ρ′, then ρ ≡ ρ′.
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Proof. We prove Theorem 13 by induction on the number of reorderings n re-
quired to turn ρ into ρ′. For the base case n = 0 we know that ρ ≡ ρ′, because
ρ = ρ′.

For n > 0 we assume that for the sequence of n−1 reorderings ρ⇝ · · ·⇝ ρ′′

we know that ρ′′ ≡ ρ. We show that the sequence ρ ⇝ · · · ⇝ ρ′′ ⇝ ρ′′′ of n
reorderings preserves equivalence, such that ρ ≡ ρ′′′. In ρ′′ = (τ1, . . . , τm) exists
a pair (τk, τk+1) for some k ∈ {1, . . . ,m − 1} with τk being the k-th and τk+1

being the k + 1-th operation in ρ′′. The swapping of (τk, τk+1) into (τ ′k, τ
′
k+1)

according to Table 2 leads to ρ′′′ = (τ1, . . . , τ
′
k, τ

′
k+1, . . . , τm). By construction,

ρ′′(w) = ρ′′′(w) for every w ∈ Σ∗.
For instance, consider the �rst case in Table 2 (a ↓i, b ↓j) ≃ (b ↓j , a ↓i−1)

where i, j ∈ N with j < i and a, b ∈ Σ. Let (τ1, . . . , τk−1)(w) = w′. The
equation

(a↓i, b↓j)(w′) = (b↓j , a↓i−1)(w
′)

must hold for any w′ ∈ Σ∗. If (a↓i, b↓j)(w′) =⊥, then (b↓j , a↓i−1)(w
′) =⊥.

Otherwise, w′ = w0 · · ·wj · · ·wi · · ·wn−1. Accordingly,

(a↓i, b↓j)(w′) = w0 · · ·wj−1wj+1 · · ·wi−1wi+1 · · ·wn−1

= (b↓j , a↓i−1)(w
′).

We conclude that

ρ′′′(w) = (τk+2, . . . , τm)((b↓j , a↓i−1)((τ1, . . . , τk−1)(w)))

= (τ1, . . . , τk−1, b↓j , a↓i−1, τk+2, . . . , τm)(w)

= ρ(w).

for any w ∈ Σ∗. The remaining cases from Table 2, where the swapping
of (τk, τk+1) is not ⊥, follow the same pattern. However, if the swapping of
(τk, τk+1) is ⊥ we do not consider ρ to be a useful correction as described earlier
and cannot reorder ρ whilst preserving equivalence.



Chapter 4

Minimality

After having de�ned similarity and simplicity for corrections, which determine
whether two corrections are equivalent or simpli�cations of each other respec-
tively, we bring together these concepts with the notion of minimality introduced
in the introduction of this thesis. Namely, that a correction is minimal regard-
ing a word and a language if no proper pre�x of that correction produces a
word matching the language. Therefore, we de�ne a necessary condition for
minimality. This condition singles out corrections that are potentially minimal.
Then, we demonstrate that the necessary condition is not su�cient, because
it classi�es corrections as minimal that are unnecessarily long. In doing so, we
also discover that equivalence classes can be partly minimal, meaning that some
potentially minimal corrections can be reordered into similar corrections which
are not considered potentially minimal, which is undesirable. To ensure that
every operation in a correction poses a meaningful step of correcting a word,
we de�ne a su�cient condition which we call actual minimality. Thereafter, we
discuss how minimal corrections behave if the word they correct is a scattered
subword of their resulting words. As a prerequisite for the proof in Section 4.3
we prove that corrections can be reordered into a normal form in which the
operations are ordered by their type. Then, we prove that for a given word and
a given language there exist only �nitely many minimal corrections leading into
the language.

4.1 Minimal Corrections

The notion of minimality we discuss in this thesis is based on the idea that a
correction should be seen as minimal with regard to a word and a language if
it does not contain a pre�x which already produces a word of the language.
Obviously, a correction should not be considered minimal if it can be simpli�ed
based on its syntactical features. The following de�nition of minimality connects
these ideas.

De�nition 14 (p-Minimality). Let L be a language, w a word and ρ a correc-
tion. A correction ρ is potentially minimal (p-minimal), if there is no proper
pre�x ρ′ of ρ, so that applying ρ′ to w produces a word w′ ∈ L and ρ cannot be
simpli�ed further, i.e. there exists no ρ′′ with ρ′′ ̸= ρ′ such that ρ′′ ◀ ρ.

18
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Thus, p-minimality serves as a necessary condition. Every correction that
matches our intuitive notion of minimality must satisfy the constraints de�ned
by p-minimality. However, p-minimality does not accurately model our intuitive
notion of minimality. Note, that a correction can be p-minimal even if it does
not result in a word of the language L. The following example demonstrates
why similarity is no congruence with regard to p-minimality:

Example 15. Let Lex = a∗b be a language induced by a regular expression
and w = a be a word. Consider the the following corrections for some k ∈ N
denoting the count of inserted a symbols:

ρ = (a↑1, . . . , a↑1, b↑k+1)

σ = (b↑1, a↑1, . . . , a↑1︸ ︷︷ ︸
k times

)

σ′ = (b↑1)

When applying the correction ρ, the symbol a is appended k times, even-
tually appending the symbol b. This correction is p-minimal because we reach
ρ(w) ∈ L only after appending the symbol b in the last step (a↑k+1).

When applying the correction σ, initially symbol b will be inserted at posi-
tion 1. The successive insertion of the symbol a at index 1 continually keeps
symbol b at the end of the word. Thus, "pushing" all previously inserted sym-
bols to the right. We can see that σ is not p-minimal , because we can �nd a
pre�x σ′ = (b↑1), so that σ′(a) = ab ∈ Lex.

The correction σ′ is p-minimal regarding w and Lex, because there is no
proper pre�x σ′′, so that σ′′(a) ∈ Lex.

On application of corrections ρ(a) and σ(a), both result in the word ak+1b.
The sequences ρ and σ are similar, because one can successively swap the in-
sertion of b (b↑k+1) forward, until the correction starts with the insertion of b.
We start with swapping the last two operations according to the rule (b↑j−1, α)
from Table 2, so that (a ↑1, b ↑k+1) becomes (b ↑k, a ↑1). We successively apply
this rule ρ⇝ (a↑1, . . . , a↑k, a↑1)⇝ · · ·⇝ σ and thus, ρ ≃ σ.

Observation 1. We �nd that corrections ρ and σ are similar ρ ≃ σ. Correction
ρ is p-minimal , while correction σ is not. However, both belong to the same
equivalence class [ρ]≃. As a consequence, similarity is not congruent with regard
to p-minimality.

We argue that ρ should not be considered minimal according to our intuitive
notion of minimality, because the arbitrarily long pre�x (a ↑1, . . . , a ↑1) is not
necessary to correct w from above so that the result matches Lex. Leaving
the pre�x out wholly would represent a more minimal way of editing the word.
To prevent such corrections from receiving the status of being minimal, we
introduce the second de�nition of (actual) minimality.

De�nition 16 (Minimality). A correction ρ is (actually) minimal, if ρ is p-
minimal and there exists no similar correction that is not p-minimal.
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4.2 Observations on Minimality

In this chapter we examine how a minimal correction must be built if the word
that is to be corrected is a scattered subword of the resulting word of the correc-
tion. Afterwards, we introduce a normal form for corrections as a prerequisite
for the proof in the following section.

We demonstrate that the only minimal way to transform a scattered subword
into a superword is to insert the symbols missing in the subword. That is, be-
cause any replacement or deletion operation present in a correction representing
such a transformation can be simpli�ed into a direct insertion.

Lemma 17 (Minimality and Scattered Subwords). Let w,w′ be two words,
where w ≤ w′ and ρ(w) = w′ where ρ contains deletion or replacement opera-
tions. Then ρ cannot be minimal.

Proof. Because w ≤ w′, all symbols a0, . . . , an−1 occurring in w = a0 · · · an−1

must also be present in w′ in that order. ρ must contain exactly |w′| − |w| in-
sertions. If ρ contains fewer insertions, ρ(w) ̸= w′. If ρ contains more insertions
or insertions s↑i with s being a symbol not occurring in w′, ρ can be simpli�ed.
We consider three cases, of which at least one applies to ρ:

(i) ρ contains a deletion s ↓i with s ∈ Σ, i ∈ N. Then, for ρ to reach w′, ρ
must also contain an insertion s ↑j with j ≤ |w′| to reinsert that symbol
s later. Then, ρ can be reordered so that s ↑j and s ↓i are adjacent with
i = j and can be simpli�ed by (s↓i, s↑j) ▷ ().

(ii) ρ contains a replacement s ↕is' and an insertion s ↑j of the prior replaced
symbol s, which e�ectively is a deletion of s′. Then, we can reorder ρ and
simplify (s↕is', s↑j) ▷ (s'↓i+1) if i = j, or (s↕is', s↑j) ▷ (s'↑i) if j = i+1.

(iii) ρ contains a replacement s↕is'. Then, for ρ to reach w′, ρ must contain the
symbol with s'↕is to bring back s, so (s↕is', s'↕is) ▷ () can be simpli�ed
when reordering both replacements to be adjacent.

Note that for (iii), if we try to swap (s↕is', s'↕is) then ρ(w) =⊥. Hence, we do
not consider ρ to be useful, and thus, not minimal as pointed out in Section 3.3,
since a symbol is edited twice.

The type of edit operation a�ects the length of the resulting word di�erently,
when the edit operation is applied to a word. A deletion decreases the word
length by one, a replacement does not change the word length and an insertion
increases the word length by one. To make corrections easier to handle we intro-
duce a normal form for a correction. This normal form states that a correction
in normal consists of three segments such that each segment contains operations
of one type only. The �rst segment may contain only deletions, while the sec-
ond and third segments contain replacements and insertions respectively. If the
correction does not contain an operation of a type, the segment corresponding
to that type is empty. If a correction in normal form is applied to a word there
is a point at the end of the second segment such that all operations prior to
that point are deletions and replacements which do not increase the word length
and all operations after that point are insertions. In particular, this means that
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after applying all operations of the �rst and second segment the resulting word
is a scattered subword of all words that result from applying insertions of the
third segment.

We can bring every correction into that normal form by swapping every
deletion to the beginning and swapping every insertion to the end of the cor-
rection. If at some point we encounter the scenario that two operations cannot
be swapped according to the rules given by Table 2 we can disregard the cor-
rection we are trying to normalize, because it is logically inconsistent or can be
simpli�ed.

Lemma 18 (Equivalent Normal Form). Let L ⊆ Σ∗ be a language and ρ be a
correction with ρ(w) ̸=⊥ for all w ∈ L. Then there exists a similar correction ρ′

such that ρ′ ∈ [ρ]≃ and ρ is ordered in a normal form where all deletions come
�rst, followed by all replacements and �nally all insertions.

Proof. Let ρ = (τ1, . . . , τn) and d, r, i be the number of deletions, replacements
and insertions in ρ, respectively. Then there exists a similar reordered correction
ρ′ in normal form such that

ρ′ = (τ1, . . . , τd, τd+1, . . . , τd+r, τd+r+1, . . . , τd+r+i)

with τ1 · · · τd being deletions, τd+1 · · · , τd+r being replacements and
τd+r+1 · · · τd+r+i being insertions.

We start by propagating all deletions to the beginning of the correction. If
there exists a deletion τi and a replacement or insertion τj in ρ with i = j + 1,
we swap τj and τi, adjusting the operating indices according to Table 2, until
the �rst d operations in ρ are deletions.

Then, we propagate all replacements into the middle segment. If there exists
a replacement τi and an insertion τj with i = j + 1, we swap τi and τj , also
adjusting their operating indices, until τd+1 · · · τd+r are replacements.

If, at some point we cannot swap τi and τj according to Table 2, because the
swapping is ⊥ we proved that ρ is inconsistent and τi and τj depend on each
other. Therefore, we omit ρ.

4.3 Finitely Many Minimal Corrections

After having introduced a normal form for corrections we utilize the observations
presented in the previous section to prove that there are �nitely many minimal
corrections leading into the target language. Our de�nition of minimality de-
pends on a given word and a given (target) language � an incorrect hypothesis
and a �nite representation of all correct hypotheses, respectively. Obviously,
we are only interested in corrections that actually correct a hypothesis in a way
that the result is a correct hypothesis. Because our de�nition of minimality does
not include that a minimal correction must produce a word of the language in
the following proof we cover corrections that are minimal and result in a word
of the target language.

Theorem 19. For any given word and language there are �nitely many minimal
corrections leading into the given language. Moreover, there is a �nite number
of words that can be produced by applying all minimal corrections on the given
word.
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We outline the structure of the following proof. As described in the previous
section we can reorder every correction into a normal form and assume, without
loss of generality, that all corrections are given in normal form. Therefore, we
can partly apply each minimal correction leading into the target language to
the point where all deletions and replacements are applied. We observe that
there are �nitely many ways to correct a word in a minimal way by only using
deletions and insertions. The partial application described above leads to an
intermediate word. If that word is in the target language, according to the
de�nition of minimality there cannot exist more minimal corrections having the
operations as a pre�x that lead to the intermediate word. If the intermediate
word is not in the target language, the correction must contain one or more
insertions. As a next step we prove that there exist �nitely many minimal
corrections consisting of insertions that turn the intermediate word into a word
of the target language. Therefore, we use the fact that the intermediate word is
a scattered subword of every result produced by applying insertions. If we join
each minimal correction consisting of deletions or replacements leading to an
intermediate word with each minimal correction consisting of insertions leading
from the intermediate word into the target language, we obtain a �nite upper
bound for all minimal corrections leading into the target language.

Proof. Let Σ be an alphabet. Let L ⊆ Σ∗ be a language and w ∈ Σ∗ a word
over the alphabet. We de�ne the set of all minimal corrections for w leading to
L via

ML(w) := { ρ | ρ is minimal and ρ(w) ∈ L }.

We prove that ML(w) is �nite. We start by observing that the number of
minimal corrections which preserve or decrease the length of the word in each
operation is �nite.

Corrections without Insertions These corrections result in words of shorter
or equal length when compared to |w|. We de�ne them via

KL(w) := { ρ | ρ is minimal and ρ consists only of

replacement or deletion operations }.

We describe how the corrections in KL(w) are built. When building a mini-
mal correction for w with replacements and deletions, every symbol in w can be
edited at most once. When deleting a symbol, it is not present in the word af-
terwards. As a consequence, all subsequent edit operations may not refer to this
symbol anymore, but refer to all remaining symbols. If the correction contained
a number of deletions greater than |w|, the correction would evaluate to ⊥ when
applied to w. It would also evaluate to ⊥ if a symbol in w was deleted twice.
Note that the correction may contain two deletions having the same index or
symbol, due to the index shift happening to the remaining symbols after ap-
plying a deletion to a word. Deleting any number of symbols yields 2d possible
options to build deletions, if d is the number of deleted symbols and 0 ≤ d ≤ |w|.
Additionally, only those symbols in w may be replaced which are not deleted
during the whole correction. Each symbol wi in w with i ∈ {0, . . . , n− 1} that
is not deleted may be replaced once against any symbol s ∈ Σ with s ̸= wi. A
correction containing a replacement s ↕is with i ∈ {0, . . . , n − 1} and s ∈ Σ is
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never minimal, because it can be simpli�ed. Replacing any number of remain-
ing symbols yields |Σ||w|−d options. Hence, for any given word w, |KL(w)| is at
most (|Σ|+ 1)d and thus, �nite.

Note that in general KL(w) contains corrections leading to words that are
part of the language L and corrections leading to words that are not in L. That
is, because for a correction to be minimal, we do not demand its result to be in
L. Instead, we demand that regardless of how the correction is reordered, the
correction cannot be simpli�ed and no proper pre�x produces a word in L.

We denote the set of all words that can be reached by applying all corrections
in a set S to a word w as Ww(S) := {w′ | ρ(w) = w′ with ρ ∈ S }. Every
minimal correction in ML(w) will produce a word w′ ∈ Ww(KL(w)) when all
deletions and replacements are applied. In the following, we prove that for
any word w′ there exist �nitely many minimal corrections consisting solely of
insertions and resulting into a word in L.

Corrections with Insertions. Next, we consider corrections that solely con-
sist of insertions and, thus, increase the length of the word in each step. We
de�ne this set of corrections via

EL(w) := { ρ | ρ is minimal and ρ consists only of

insertion operations and ρ(w) ∈ L }.

We prove that for any given word w and any given language L the set EL(w) is
�nite.

Let EL(w) be in�nite. Hence, Ww(EL(w)) is also in�nite, because for a word
there exist only �nitely many corrections containing only insertions leading to
that word. According to Higman's Lemma, there must be two words x and
y with x, y ∈ Ww(EL(w)), so that x ≤ y with |x| < |y|. There exist two
minimal corrections ρx and ρy with ρx, ρy ∈ EL(w) consisting only of insertion
operations, so that ρx(w) = x and ρy(w) = y. According to the de�nition of
EL(w), w ≤ x and x, y ∈ L. Because w ≤ x and x ≤ y, a correction leading
from w to y only by using insertion operations will inevitably pass through x.
This means ρx or a reordering of ρx is a proper pre�x of ρy. Thus, ρy cannot
be minimal because ρx(w) ∈ L. However, ρy has to be minimal by de�nition
of EL(w). This poses a contradiction to the assumption that EL(w) is in�nite.
We conclude that EL(w) must be �nite.

All Corrections. Because of Lemma 18 we can assume, without loss of gen-
erality, that all corrections in ML(w) follow the normal form where all deletions
come �rst, followed by all replacements and �nally, all insertions. Thus, a cor-
rection ρmin ∈ ML(w) can be represented as ρmin = ρ1 ρ2 such that ρ1 contains
the deletions and replacements and ρ2 contains the insertions. Let ρ1(w) = w′.
The application of the deletions and replacements leads to the intermediate
word w′. The correction ρ1 is in KL(w) which we proved �nite above. Hence,
there are �nitely many intermediate words w′. The second part of ρmin is ρ2
which is in EL(w

′). And as we proved above EL(w
′) is also �nite for every w′.

We obtain an upper bound for all minimal corrections leading to a word of the
language L, namely ML(w) ⊆

⋃
ρ1∈KL(w)

⋃
ρ2∈EL(ρ1(w)) ρ1ρ2 where the index

sets of both unions are �nite. Thus, we proved that ML(w) is also �nite.



Chapter 5

Computation of Minimal

Corrections

In this chapter we present an algorithm that follows the structure of the proof
from the previous chapter. We begin by describing how the corrections without
insertions KL(w) can be computed and checked for minimality. Thereafter, we
present how based on the words resulting from the application of all correc-
tions in EL(w), the corrections can be extended by insertions. In doing so we
compute EL(w). That computation is closely related to the termination con-
dition of the algorithm, which is thematized simultaneously. As a next step,
we point out optimizations that we have implemented to avoid computing all
shortening and length preserving corrections naively. That can be achieved by
starting with short corrections and consecutively appending operations whilst
testing for p-minimality between each step. Moreover, we utilize a sorted nor-
mal form which builds on our de�nition of a normal form for corrections set out
earlier. This sorted normal form can also be used to speed up checking whether
a correction is minimal. Thereafter follows a description of our implementation
and a discussion of the �ndings from running the implementation on an exem-
plary grammar. We then examine the runtime complexity of each step in the
algorithm. We close this chapter by proposing how the implementation can be
improved further.

5.1 The Algorithm

From the proof of Theorem 19 we can derive an algorithm to compute all mini-
mal corrections. We divide the algorithm in four steps. Steps one to three com-
pute KL(w), i.e. corrections without insertions, while step four checks whether
the algorithm can terminate and consecutively extends the corrections found in
step three by insertions, thus, computing EL(w). We implemented the compu-
tation of KL(w) and enumerate the insertions from step four without checking
the termination condition. Instead, our implementation terminates after a �xed
iteration count received as a parameter.

1. Corrections without Insertions. Enumerate all corrections (τ1 · · · τn),
for n = 1, . . . , |w| where τi is the i−th operation and τi is a deletion or

24
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replacement.

2. Filter for p-Minimality. Filter the corrections from step one for p-
minimality by checking two conditions. For each corrections ρ = (τ1, . . . τn):

(i) For all (τi, τi+1) with i ∈ {1, . . . , n− 1} we check if (τi, τi+1) can be
simpli�ed to (τ) or (). If so, we �lter out ρ.

(ii) Solve the word problem mentioned in Section 2.3 for every proper
pre�x ρ′ < ρ with the CYK algorithm as described in [11] or the
Earley algorithm as described in [2]. If ρ′(w) ∈ L, �lter out ρ.

3. Filter for a-Minimality. Filter corrections from step two for a-minimality.
For every correction ρ calculate all reorderings ρ′ ∈ [ρ]≃ with ρ′ ̸= ρ and
execute step two for ρ′.

4. Extend by Insertions. After KL(w) has been computed we need to
�nd out which corrections from the previous steps can be extended by
insertions, such that the extended correction is minimal and leads into the
language. We take the resulting words from KL(w) as basis to �nd these
insertions. The idea is that we construct a regular language Lmissing(w)
which describes for a resulting word all words that can be produced by
inserting symbols into the resulting word. Hence, we utilize the language
Lmissing(w) to �nd the missing symbols that need to be inserted, and with
that the corresponding insertion.

First, we compute ρ(w) = w′ for every ρ from step three. Let w′ =
b0 · · · bn−1. We de�ne the language of all superwords of w′ that have at
least one symbol preceding w′ via Lmissing(w

′) = Σ+b0Σ
∗b1Σ

∗ · · ·Σ∗bn−1Σ
∗.

Now we can intersect this language Lmissing(w
′) with the target language

L with the construction mentioned in Section 2.3. Then we solve the
emptiness problem for the intersection which also is described in Sec-
tion 2.3. If the intersection is not empty, we know that there may be a
minimal correction leading to that word in the intersection. To �nd out
which symbol the insertion must insert, we replace Σ+ against each sym-
bol s ∈ Σ in Lmissing(w

′). If we again intersect sb0Σ
∗b1Σ

∗ · · ·Σ∗bn−1Σ
∗

with L and �nd that the intersection is not empty for s, we extend all
corrections leading to w′ by an insertion s ↑0. We also apply the inser-
tion s ↑0 to w′ and add the result of the application to a list of words
for which we need to �nd the next insertion by repeating the described
procedure. However, we do also need to check for possible insertions be-
tween every symbol. That means, Σ+ must be moved between every gap
in Lmissing(w

′), e.g. Σ∗b0Σ
+b1Σ

∗ · · ·Σ∗bn−1Σ
∗ and if we �nd out through

the intersection with L that a symbol can possibly be inserted in that gap,
we try Σ∗b0sb1Σ

∗ · · ·Σ∗bn−1Σ
∗ for every s ∈ Σ. So:

� If L ∩ Lmissing(w
′) = ∅, we know that we cannot insert any symbol

into the gap in w′ and match the target language L with the result.
We move Σ+ to the next gap.

� If L ∩ Lmissing(w
′) ̸= ∅ we know that we can extend ρ by an inser-

tion. To �nd out, by which insertion s↑i we can extend ρ, we check
Ls(w

′) = sb1Σ
∗b2Σ

∗ · · ·Σ∗bn−1Σ
∗ for every s ∈ Σ.
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We save for every correction ρ by which insertions s↑i it can be extended
and add new corrections ρ′ = ρs ↑i. Of course, these corrections ρ′ must
be checked for minimality as described in step three. We can terminate
if there is no ρ′(w) that we can insert a symbol into. Hence, repeat step
four for all new corrections ρ′ from step four, until no new corrections are
found. Since the algorithm is derived from the proof of Theorem 19 we
know that at some point the algorithm will terminate when all minimal
corrections have been computed. Step four may produce insertions that
insert symbols that have been deleted previously. Such corrections can be
simpli�ed and must be �ltered.

5.2 Implementation and Optimizations

For steps one to three of the algorithm we found some optimizations that will
be presented in this section. Steps one, two and three can be combined by
incrementing the maximum length of the correction by one progressively. In-
stead of enumerating all reorderings of all corrections consisting of deletions
and replacements, one can generate all corrections of length one and �lter all
corrections leading to a word in L. Any extensions of such corrections cannot
be minimal by de�nition of minimality. All remaining corrections can then be
extended by all possible deletions and replacements that can be applied after
the �rst operation has been applied to the input word w.

By tracking which symbols in the input word already have a corresponding
operation in the correction, one can avoid deleting or replacing a symbol twice.
Hence, we only generate useful corrections. For instance, if we are correcting
the word abc and have computed the correction (b ↕1d, a ↓0), any extension of
that correction that deletes or replaces a symbol at index 0 should be omitted,
because the correction would edit the symbol b twice.

In addition to the normal form presented in Section 4.2, which is not unique,
one can demand that the operations of each type are ordered by their index as
second constraint. Namely, that deletions are sorted non-descending by the
indices they are operating on and replacements are sorted ascending. This
strategy further reduces the number of generated corrections.

Generating corrections in their normal form straightaway has a second ad-
vantage. Checking whether a correction can be simpli�ed is less costly, because
the rules in column four and �ve in Table 1 can be checked by propagating
each pair of deletion and replacement to the transition border between the dele-
tion and replacement segment, so that they are adjacent. For example in the
correction

(b↓1, c↓5, c↕0d, a↕1b)

we can propagate the �rst operation to the second position and the fourth
operation to the third position resulting in

(c↓6, b↓1, a↕1b, c↕0d) ▷ (c↓6, a↓2, c↕0d)

and see that the simpli�cation rule (b↓i, a↕ib) ▷ (a↓i+1)matches the second and
third operation. Note that in Table 1 the rule is transposed for better readability.
This method discovers corrections which cannot be minimal because they can
be simpli�ed early in the computation. Without using this method we would
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hypothesis → <simple> | <complex>

simple → <independentVariable> `in�uences'
<dependentVariable>

complex → <simple> <modal>

modal → `, but only' <valueRange>

independentVariable → `Light' | `Intensity' | `Wavelength'

dependentVariable → `plant growth' | `stem length' | `photosynthesis rate' |
`leaf color'

valueRange → `up to 500nm' | `from 500nm' | `between 500 and 600
nm'

Figure 1: A simple grammar which describes syntactically correct hypotheses.
Its initial symbol is hypothesis.

have discovered the fact that the above correction is not minimal in step three
of the algorithm when computing all reorderings. However, with this method
we do not need to compute all permutations of the correction, and we can also
exclude every correction from the computation that is an extension of the above
correction.

To prevent computing a word problem twice, the solutions of all previously
calculated word problems can be cached using the memoization technique.

When programming step three, we need to generate all reorderings for a given
correction. Utilizing the Steinhaus-Johnson-Trotter algorithm as described in
[8] is the obvious solution. The algorithm generates all permutations of a se-
quence by swapping two elements of the sequence in each step. This mode of
operation aligns nicely with the de�nition of similarity, since every reordering of
a correction needs to account for index modi�cations of the a�ected operations.

Our implementation expects a parameter iterations which speci�es the num-
ber of deletions or replacements and insertions. If iterations is set to two, the
computed corrections may contain at most two corrections of type deletion or
replacement and in addition at most two insertions. We ran the algorithm on
the exemplary grammar from Figure 1.

5.3 Experimental Results and Findings

For the hypothesis Light in�uences, the algorithm computed the following cor-
rections:

(plant growth↑2), (stem length↑2), (photosynthesis rate↑2), (leaf color↑2).

This example demonstrates that the algorithm does compute helpful corrections.
We proceed by presenting an example for a correction that is rather unde-

sirable even though we consider it to be minimal according to the de�nition set
out in this thesis. The following correction proposes to turn Light in�uences
into Intensity in�uences plant growth:

(Light↕0in�uences, in�uences↕1plant growth, Intensity↑0).
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The correction above demonstrates that our de�nition of minimality is still
insu�cient, because it represents an odd way of correcting the given hypothesis.
Instead, the correction

(Light↕0Intensity, plant growth↑2)

would be a better correction to achieve the same result. However, the latter
correction is not minimal because it can be reordered so that plant growth is
inserted �rst. That is why it is not amongst the computed minimal corrections.
We observe that undesirable minimal corrections edit symbols that are present
at the same position of the hypothesis before and after their application. The
same behavior can be observed when considering

(in�uences↓1,Light↕0plant growth, Intensity↑0, in�uences↑1).

The correction mentioned above deletes and inserts in�uences and therefore
poses another example of correcting the hypothesis Light in�uences in an odd
way. Further research is required to exclude corrections like those presented
above.

When running the algorithm on the hypothesis Light in�uences Wavelength,
but only we see that some of them are symmetrical and semantically equivalent
but not similar, such as

(, but only↓3,Wavelength↕2stem length) and

(Wavelength↓2, , but only↕2stem length).

Obviously, when displaying them to a pupil both corrections should be combined
and displayed as one, because they describe the same way of editing the hypoth-
esis. Therefore, we require a concept to determine whether two corrections are
symmetrical like the two corrections above.

5.4 Runtime and Complexity

We ran the algorithm on a machine with an 11th Gen Intel(R) Core(TM) i7-
11800H processor with a base clock speed of 2.30 GHz and 32 GB of RAM.

Computing the results for the �rst hypothesis in the previous section took
50 ms with iterations set to one. When running the algorithm with iterations
set to two, we obtained 28 corrections in 1015 ms. For iterations set to values
greater than two, our implementation of the algorithm did not yield a full a
result, because the heap was full. For the hypothesis in the second example
we obtained 12 minimal corrections in 70 ms with iterations set to one. When
setting iterations to two the algorithm computed 63 minimal corrections in 14918
ms. When setting iterations to three, the algorithm did not return a full result.
However, all corrections containing deletions and insertions were returned after
1077 ms. Before any correction including insertions was found, the heap was
full.

At the end of this chapter we discuss which actions can be taken to im-
prove the implementation such that the algorithm yields results for minimal
corrections of greater length.

When comparing the computation time for iterations set to one (corrections
with a maximum length of two) and two (corrections with a maximum length of
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four) we can see that computing took 20 times longer for the �rst hypothesis and
213 times longer for the second hypothesis. This huge increase can be explained
by analyzing the asymptotic runtime complexity of the algorithm.

One should mention that since the proof of Theorem 19 yields an upper
bound for ML(w) the algorithm does not compute corrections in a target-
oriented way. Many corrections are computed that turn out to be not minimal
when the corrections without insertions are joined with the corrections with
insertions. Hence, a superset of ML(w) is computed which is then reduced. We
do not have a method to compute ML(w) directly. We proceed by analyzing
each step of the algorithm.

In the �rst step there are at most (|Σ|+ 1)w corrections in KL(w), because
each symbol in the word can either be deleted, replaced against any other symbol
from the alphabet, or ignored by a correction. The �rst part of the second step,
namely checking adjacent operations for simpli�cation, takes O(|ρ|) time for
each ρ in KL(w). All remaining corrections get checked against the condition
of the second part of step two, namely whether a pre�x exists that produces a
word of the language. Therefore, for each correction |ρ| word problems must
be solved with an algorithm mentioned in Section 2.3. Hence, step two runs in
O(|ρ| · |G| · |w|3) for each correction ρ. The third step computes all reorderings
of each correction, which can be done in O(ρ!). Step three is a very costly
computation, since each reordering of each correction ρ must be checked against
the conditions of step two. The fourth step of the algorithm is even more costly,
because for each word w′ resulting from each correction an intersection between
a regular and a context-free language is computed |w′| times, which can be done
in polynomial time, and checked for emptiness, which can be done in O(|G|)
as pointed out in Section 2.3. The correction leading to w′ is then extended
by insertions and is checked for minimality again, which adds the complexity
of steps two and three for each appended insertion. One can not determine a
priori how many iterations are necessary until all minimal corrections have been
found. Our implementation brute forces step four, which implies an exponential
blow-up of the search space for insertions.

After having analyzed the runtime complexity and discussed computation
results worth remarking we proceed by mentioning aspects in which our imple-
mentation can be improved. The implementation should produce less interme-
diate data so that less heap space is required. One approach is to use iterator
functions instead of arrays. In doing so we would eliminate intermediate data
after each iteration. Additionally, we can use index structures to prevent saving
parts of memoized hypotheses twice. Also, instead of memoizing the solution
to the word problem for each correction, we can use the non-descending sorted
normal form mentioned previously. Before looking up whether a solution to the
pre�x of a correction has been calculated, we can normalize the pre�x and then
do the lookup. Similarly, if the lookup fails and the word problem has been
solved for that pre�x, we save the solution together with the normalized version
of the pre�x. This method requires insigni�cantly more time but saves space.
The normalization of a correction ρ can be done in O(|ρ|2) as described in the
previous chapter.
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Conclusion

Through the course of the thesis we have de�ned a system for editing words
and a notion of minimality to determine which constraints a minimal edit se-
quence must satisfy. We then proved that for any given word and language
there is a �nite number of minimal edit sequences. On the basis of that proof
we described an algorithm which can compute this �nite set of edit sequences.
We presented how we implemented the �rst part of the algorithm and found a
few optimizations which arise as a result from the de�nitions of simplicity and
similarity.

6.1 Results

The quality of results that we were able to compute were partly suitable to
be used in an ITL as a means to provide feedback to pupils. However, due to
the runtime complexity of the algorithm we were only able to compute short
corrections even for small grammars and hypotheses.

6.2 Outlook

If we assume that in practice hypotheses have a length of �ve to ten words then
the implementation needs to be capable of computing minimal corrections of
length ten within a few seconds, so that the ITL provides feedback to a pupil in
reasonable time. Our implementation is not su�cient to meet this requirement.
The inherent complexity of the algorithm constraints a fast computation for
larger hypotheses and larger grammars. However, for smaller inputs there are
many optimizations to be made. Our implementation is written in TypeScript
which is a just-in-time compiled high-level programming language [13]. Using
an embedded programming language and choosing a more e�cient encoding for
corrections may speed up the computation signi�cantly.

Alternatively, because of the exponential blow-up of the search space spanned
by possible indices, operation types and symbols, using a declarative program-
ming language may be more suitable to solve the computation problem presented
in this thesis. Optimizations as presented in the previous chapter are necessary
to render the algorithm suitable for practical use in an ITL.
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Even though we tried to de�ne away as many nonsensical ways to correct a
word, some computed corrections still seem unnecessarily long. That is because
the algorithm presented does not make use of the inner structure of the given
language � a context-free grammar in this case. If information about which
terminal is derived from which nonterminal was incorporated into the algorithm,
the quality of the computed results could be improved further. For the speci�c
use case of correcting hypotheses of pupils in an ITL application, we propose
that an algorithm computing suggestions should be more custom-tailored to the
given language of valid hypotheses.
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