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Chapter 1

Introduction

Whether the design of a system is correct regarding an intended specification is a
reoccurring question in almost all fields of computer science. With increasing com-
plexity of the system, the developer loses the ability to make a resilient statement
about its correctness. Hence, automatic or at least semi-automatic methods for ad-
dressing this question are needed. One common way is simulating and testing the
actual implementation of a system. However, this method allows finding errors,
but can not make any comprehensive statement about the absence of errors or the
correctness of the implementation.

For many cases formal verification allows answering this question with mathematical
reasoning. A valid verification by a formal verification method implies that all possi-
ble behaviors of the intended system have been explored, thus it guarantees that the
design is in fact correct with respect to a given specification [CGP99]. Model checking
is one of the main techniques in this context, which enables checking a given model
against a given specification. The model is a formal description of a system and the
specification is a property that this system should meet or not meet, encoded in form
of a formula. Typically, these formulas are specified formulas of a temporal logic.

The modal µ-calculus is such a temporal logic, which possesses a high expressive
power. Many other temporal logics like CTL* can be embedded into the modal
µ-calculus [DGL16]. But properties that are expressible in the modal µ-calculus
are at most regular, a result from its equi-expressiveness to the Monadic Second
Order Logic [JW96]. However, there are many interesting properties that are non-
regular such as uniform inevitability, infinite counting properties or certain assume-
guarantee properties [Eme87][Lan07][VV04].

Higher-order fixpoint logic (HFL) [VV04] achieves expressability of such properties
by incorporating a simply typed λ-calculus into the modal µ-calculus. This makes
it possible that formulas not only describe state sets, but also functions between
them, functions between sets of functions and so on. At the same time, the model
checking problem for finite transition systems remains decidable in HFL as shown
in its introductory work. Unfortunately, this gain in expressive power leads to the
fact that the model checking problem in HFL for a fixed model and formula is k-
EXPTIME complete, where k is a restriction on the order of usable functions [ALS07].
There exist fragments that can be model checked in (k− 1)-EXPSPACE [BLL17], but
this relatively high computational complexity still creates a need for efficient model
checking algorithms.
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Axelsson and Lange introduced a symbolic model checker for the first-order frag-
ment HFL1 of HFL, which restricts formulas to denote state sets or functions be-
tween them only. The idea is to localize fixpoint computations and thus avoid best-
case exponential behavior [AL07]. To achieve this, they transfered the idea of needed-
ness analysis from traditional data-flow analysis to model checking HFL1. Originally,
neededness analysis states that it is sufficient to only include values that appear non-
trivially in the computation of a fixpoint of interest [Jør94]. In the context of model
checking HFL, this can be achieved by utilizing the fact that the value of a fixpoint
is usually not needed globally, i.e. for all possible arguments. Therefore, it can be
localized to needed ones only. It is shown in its introductory work that for NFAs of
finite size the universality problem encoded in HFL1 can be model checked with this
algorithm with far less computations then a naive model checking algorithm would
need.

Therefore, it is a problem of interest to lift this approach to higher-order fragments
of HFL. The goal of this thesis is developing a model checking algorithm with need-
edness analysis for the second-order fragment HFL2 of HFL, where formulas also
can denote functions between functions of state sets. Furthermore, it will be dis-
cussed, which challenges and difficulties come with lifting the original approach of
Axelsson and Lange to a higher-order fragment like HFL2:

In Chap. 2 all needed preliminaries, including syntax, semantic and type-system of
HFL are defined as well as needed definitions for the fragments HFL1 and HFL2 are
given.

In Chap. 3 the model checking algorithm for HFL1 as it was originally introduced by
Axelsson and Lange in [AL07] is described. Furthermore, an example computation,
underlining the computational benefits of this approach and the expressive power
already gained in HFL1 compared to the modal µ-calculus, is given.

In Chap. 4 an algorithm with neededness analysis for model checking HFL2 and its
proof of correctness is presented. This is followed by a discussion of different pos-
sible optimizations in a practical context and an example, illustrating the computa-
tional benefits compared to a naive approach and the increased expressive power
compared to HFL1.

In Chap. 5 challenges coming with a neededness analysis approach for model check-
ing HFL2 are discussed and it shows that the problem of optimizing this approach
is significantly more complex in HFL2 than in HFL1.

In Chap. 6 this thesis is summarized and directions for possible future work are
given, based on the results of this thesis. Especially, the results are considered in
the light of an actual implementation and lifting this approach to other, even higher
order fragments and ultimately generalizing it to complete HFL.

In App. A a short introduction to fundamentals of the higher-order fixpoint logic is
given, including the modal µ-calculus and the simply typed λ-calculus.



3

Chapter 2

Preliminaries

2.1 Labeled Transition Systems

Definition 1. A finite labeled transition system (LTS) is a structure T = {S , {Ra | Ra ∈
S × S , a ∈ A},L}, where

• S = {s0, ..., sk} is a finite set of states

• A is a finite set of symbols, representing transition names

• P is a finite set of symbols, representing propositions

• each Ra describes a binary relation on S

• and L is a labeling function S → 2P , which assigns to each s its set of valid
propositions.

Typically, transition names are denoted by a, b, . . . and p, q, . . . are used to range over
proposition names.

Intuitively, an LTS is a directed graph with labeled edges and vertices, where the
labels of edges are elements of A and the valid propositions for each vertex are ele-
ments of P . With this in mind, an infix notation s a−→ s′ for edges can be used, which
means (s, s′) ∈ Ra and identify Ra with a−→.

Example 1. The LTS shown in Fig. 2.1 is formally described by {{s0, s1, s2, s3}, {
a−→

, b−→, c−→},Lex}, whereLex maps the states s2, s3 to the proposition {p} and every other

state to ∅. The transitions a−→, b−→, c−→ are defined as:

a−→= {(s0, s1), (s1, s2), (s2, s3)}
b−→= {(s1, s3), (s3, s1)}
c−→= {(s2, s2), (s3, s3)}

2.2 The HFL Type System

HFL uses a type system, to prevent polymorphic effects and in general ensure that
its semantics are well-defined. This type system can be seen as an extension of the
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s0 s1 s2 p

s3p

a a

b b a

c

c

FIGURE 2.1: Simple labeled transition system.

type system of the simply typed λ-calculus. τ is called a type if it is producible by
the following grammar:

τ ::= • | τv → τ v ∈ {+,−, 0}

• denotes the base-type predicates, which are subsets of the underlying state space S .
v is called variance and it corresponds to the behavior of a function in its arguments.
The variance v of a type τv → τ′ describes how the ordering of τ is respected. If
v = + then a function with type τv → τ′ is monotonic, for v = − it is antimonotonic
and for v = 0 it is arbitrary in the corresponding arguments.

Over a given LTS T such a type τ is interpreted as a partially ordered set. This is
formally defined in the following.

1. For a relation R ⊆ U ×U on a set U, the relations R+, R− and R0 are defined
as follows: R+ = R, R− = {(b, a) | (a, b) ∈ R} and R0 = R+ ∩ R−. For any
partial order U = (U,vU), the partial order U v is defined as (U,vv

U) with
v = {+,−, 0}.

2. The semantics T JτK of any type τ are inductively defined as

T J•K = (2S ,⊆)
T Jτv → τ′K = (T JτK)v → T Jτ′K

For the base-type • this is the power set of S with ⊆ as ordering. For a type of
the form τv → τ′ the elements are functions mapping from elements of type τ to
elements of type τ′ with respect to v ordered pointwise, means that T Jτv → τ′K
denotes the set

{ f : τv → τ′ | f.a x, y ∈ T JτK : x vv
T JτK y⇒ f (x) vT Jτ′K f (y)}.

The ordering of two functions f , g of type τv → τ′ is denoted by vT Jτ→τ′K and
defined as:

f vT Jτ→τ′K g⇔ f.a. x ∈ T JτK : f (x) vT Jτ′K g(y),

It can be shown that each type τ forms a complete lattice, which results from the fact
that the base-type • is a complete lattice with ∩ and ∪ as meet and join and that each
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(var)
Γ, Xv : τ, Γ′ ` X : τ if v ∈ {0,+} (prop)

Γ ` q : •

(or)
Γ ` ϕ : • Γ ` ψ : •

Γ ` ϕ ∨ ψ : • (mod)
Γ ` ϕ : •

Γ ` 〈a〉ϕ : •

(abs)
Γ, Xv : τ ` ϕ : τ′

Γ ` λ(Xv : τ).ϕ : (τv → τ′)
(fix)

Γ, X+ : τ ` ϕ : τ

Γ ` µ(X : τ).ϕ : τ

(app +)
Γ ` ϕ : (τ+ → τ′) Γ ` ψ : τ

Γ ` (ϕ ψ) : τ′
(app -)

Γ ` ϕ : (τ− → τ′) Γ− ` ψ : τ

Γ ` (ϕ ψ) : τ′

(app 0)
Γ ` ϕ : (τ0 → τ′) Γ ` ψ : τ Γ− ` ψ : τ

Γ ` (ϕ ψ) : τ′
(neg)

Γ− ` ϕ : •
Γ ` ¬ϕ : •

TABLE 2.1: The type-system and syntax of HFL.

type is a partially ordered set. Therefore the meet and join for higher order types can
be computed pointwise.

2.3 The Syntax of HFL

First a set of transition names A, a set of propositions P as described in Sec. 2.1 and
a set of variable names V = {X, Y, . . .} are fixed. A formula ϕ is an element of HFL
if it is producible by the following grammar:

ϕ ::= q | X | ¬ϕ | ϕ ∨ ϕ | 〈a〉ϕ | λ(Xv : τ).ϕ | (ϕ ϕ) | µ(X : τ).ϕ

where q ∈ P , a ∈ A, X ∈ V . τ and v are the type and the variance of a formula as
described in the previous section. The set of subformulas of a formula ϕ is denoted
by sub(ϕ) and is defined in the usual way.

In addition to this basic grammar there are some standard abbreviations:

tt := q ∨ ¬q ff := ¬tt
ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ) [a]ϕ := ¬〈a〉¬ϕ

ν(X : τ).ϕ := ¬µ(X : τ).¬ϕ[¬X/X]

In Tab. 2.1 it can be seen how the type of a formula is evaluated. Γ is called a context
and is a sequence of the form Xv1

1 : τ1, . . . , Xvn
n : τn, where Xvi

i : τi means that Xi

has type τi and variance vi in this context. Γ− means Xv−1
1 : τ1, . . . , Xv−n

n : τn, which
is evaluated in the following way: +− = −, −− = + and 0− = 0. Intuitively, it
means negating the variance. Γ, Xv : τ denotes Γ ∪ Xv : τ. We say that a formula ϕ
is well-typed if for some Γ and τ the statement Γ ` ϕ : τ holds and that ϕ has type τ
if Γ ` ϕ : τ can be inferred by using the rules in Tab. 2.1.

By the Kleene Fixpoint Theorem any formula µX.ψ of type τ1 → . . . → τk → • is
equivalent to a finite approximation Xn

ψ. This is recursively defined as:

X0
ψ := λX1. . . . λXk.ff Xi+1

ψ := ψ[Xi
ψ/X]

It is assumed that all formulas are well-named. This means that in every formula



6 Chapter 2. Preliminaries

T JΓ ` q : •Kη = {s ∈ S | q ∈ L(s)}
T JΓ ` X : τKη = η(X)

T JΓ ` ¬ϕ : •Kη = S \ T JΓ− ` ϕ : •Kη

T JΓ ` ϕ ∨ ψ : •Kη = T JΓ ` ϕ : •Kη ∪ T JΓ ` ψ : •Kη

T JΓ ` 〈a〉ϕ : •Kη =
{

s ∈ S | ex. t ∈ T JΓ ` ϕ : •K : s a−→ t
}

T JΓ ` λ(Xv : τ).ϕ : τv → τ′Kη = f ∈ T Jτv → τ′K s.t.
f. a. d ∈ T JτK : f (d) = T JΓ, Xv : τ ` ϕ : τ′Kη{X→d}

T JΓ ` ϕ ψ : τ′Kη = T JΓ ` ϕ : τv → τ′Kη

(
T JΓ′ ` ψ : τKη

)
T JΓ ` µ(X : τ).ϕ : τKη =

d{
d ∈ T JτK | T JΓ, X+ : τ ` ϕ : τKη[X→d] vT JτK d

}
TABLE 2.2: The semantics of HFL.

ϕ ∈ HFL every variable X occurs only once as a bound variable. Furthermore, there
exist no free-variable X in ϕ if X already occurs as a bound variable.

Some important restrictions due to the type-system explaining its benefits can be
noticed at this point: Firstly, the negation ¬ϕ is only defined for formulas ϕ of type
•. Secondly, it is ensured that in the application part ϕ ψ the input ψ has a correct
type regarding the type of the input expected by ϕ. Lastly, it forces the X in µX.ϕ
to be monotonic in its arguments. With this and the fact that each type forms a
complete lattice the Tarski-Knaster Theorem [Tar55] guarantees the existence of least
(and greatest) fixpoints.

2.4 The Semantics of HFL

Let T be a fixed LTS. η is called an environment, which is a possibly partial map on the
variable set. An environment η is called Γ-respecting with Γ = Xv1

1 : τ1, . . . , Xvn
n : τn

if η |= Γ which means η(Xi) ∈ T JτiK, i ∈ {1, . . . , n}. An update of η is denoted by
η{X → d}, which maps X to d and everything else is mapped as given by η. It
follows that if η |= Γ and d ∈ T JτK for some type τ then η{X → d} |= Γ, X : τ,
where X : τ /∈ Γ. With such an environment η with η |= Γ the semantics of HFL are
defined inductively in Tab. 2.2 for any well-typed formula Γ ` ϕ : τ to be an element
of T JτK. In the case of application ϕ ψ the context Γ′ is equal to Γ if v ∈ {0,+} and
Γ− if v = −.

For the sake of completeness, the semantics of the standard abbreviations from Sec. 2.3
are:

T JΓ ` tt : •Kη = S
T JΓ ` ff : •Kη = ∅

T JΓ ` ϕ ∧ ψ : •Kη = T JΓ ` ϕ : •Kη ∩ T JΓ ` ψ : •Kη

T JΓ ` [a]ϕ : •Kη =
{

s ∈ S | f.a. t ∈ S : s a−→ t⇒ t ∈ T JΓ ` ϕ : •K
}

T JΓ ` ν(X : τ).ϕ : τKη =
⊔{

d ∈ T JτK | d vT JτK T JΓ, X+ : τ ` ϕ : τKη{X→d}

}
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With this, the approximation given by the Kleene Fixpoint Theorem can be defined
on a semantic level as:

F0
ψ := JX0

ψKTη Fi+1
ψ := JψKT

η{X→Fi
ψ}

Example 2. Consider the following formula:

ϕAG = λ(F− : •+ → •).λ(G+ : •+ → •).(ν(Z : •− → •+ → •).
λ(X− : •).λ(Y+ : •).(¬X ∨Y) ∧ Z (F X) (G Y)) tt (G tt)

ϕAG is of type (•+ → •)− → (•+ → •)+ → •. This is an encoding of assume guar-
antee properties [VV04], which means that “Assuming that X holds, then it is guaranteed
that Y holds.” in a model that satisfies ϕAG. For instance, if λX.〈a〉X is applied for F
and λY.〈b〉Y is applied for G then ϕAG F G means “Assuming that there is an a-path of
length n, then there is a b-path of length n with n ≥ 0.”

The following conventions are used in this thesis: All formulas are considered well-
typed from now on and types and variances of a formula are omitted if they are
not relevant in the respective situation. Furthermore variables with a functional
type will range over F, G, . . ., variables of type • over X, Y, . . . and the shorthand
λX1, X2, . . . Xn is used instead of λX1.λX2. . . . λXn. With these conventions the for-
mula of Example 2 looks like

λF, G.(νZ.λX, Y.(¬X ∨Y) ∧ Z (F X)(G Y)) tt (G tt).

2.5 The First- and Second-Order Fragment of HFL

Different fragments of HFL are defined by the set of types that are needed to type
their respective formulas. First, an order of types is defined in the manner given in
[ALS07].

ord(•) := 0 ord(τ → τ′) := max{ord(τ) + 1, ord(τ′)}

That a type τ has an order of smaller or equal i ∈N is denoted by τ≤i.

Definition 2. The first-order fragment of the higher-order fixpoint logic HFL1 is de-
fined as the set of HFL formulas:

HFL1 := {ϕ ∈ HFL | f.a. ψ ∈ Sub(ϕ) : ψ is of type τ≤1}

HFL1 is informally defined as the fragment of all formulas, where all occurring types
are of the form • → . . . → •. This means there are no applications ψ1 ψ2 ∈ Sub(ϕ)
where ψ2 has a type other than •.

Definition 3. The second-order fragment of the higher-order fixpoint logic HFL2 is
defined as the set of HFL formulas:

HFL2 := {ϕ ∈ HFL | f.a. ψ ∈ Sub(ϕ) : ψ is of type τ≤2}

The fragment HFL2 can be understood as the fragment of HFL, where in an included
formula ϕ for all formulas ψ1 ψ2 ∈ Sub(ϕ) holds that ψ2 has a type of at most • →
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. . . → •, i.e., there are no applications ψ1 ψ2 where ψ2 expects any input of a type
other than •. With the above definition this means the type τ of ψ2 has an order of
at most 1.



9

Chapter 3

Model Checking in HFL1 with
Neededness Analysis

3.1 Neededness Analysis in HFL1

In traditional data-flow analysis a neededness analysis approach only includes val-
ues that appear non-trivial in the computation of a fixpoint of interest [Jør94]. Ax-
elsson and Lange adopted this approach for model checking HFL1 in [AL07]. They
exploited the fact that the value of a fixpoint is usually not needed on all possi-
ble arguments, hence, the computation can be localized to the necessary ones only.
The result is a model checking algorithm that achieves major computational benefits
compared to a naive model checking algorithm, which computes every fixpoint of
interest entirely. In this introductory work an extended grammar for HFL1 is used. It
is defined that a formula ϕ is an element of HFL1 if it is producible by the following
grammar.

ϕ ::= q | ¬q | X | ¬X | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | ϕ ϕ | λX.ϕ | µXτ.ϕ | νXτ.ϕ

where q ∈ P , X ∈ V and a ∈ A of some given LTS T . The semantics are the same as
given in Chap. 2 with the restriction that only τ with ord(τ) ≤ 1 are possible. For this
chapter it is assumed that if a formula ϕ ∈ HFL1 then it is built with the grammar
above. This allows presenting the algorithm in its original form.

3.2 Model Checker MC for HFL1

In Algorithm 1 (on p. 12) the model checker MC is given, as it was introduced in
[AL07]. This algorithm is a symbolic model checker with neededness analysis, which
recursively evaluates a formula ϕ ∈ HFL1 along its syntax-tree .

A call of MC is denoted by MC(ϕ, [T1, . . . , Tk]), where ϕ is a HFL1-formula of type τ =
• → . . .→ •with k function arrows and [T1, . . . , Tk] ∈ (2S )k is a list of arguments for
ϕ. If k = 0, the formula ϕ is of type •, which means it expects no further arguments.
The initial call of the algorithm is then denoted by MC(ϕ, [ ]), where [ ] represents the
empty list of arguments. Note that the algorithm also needs the corresponding LTS
T and environment η, but both are needed as global values only, which makes it
unnecessary to include them in the signature of MC.
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The global variable env represents a map from the variable set V to the set of possi-
bly partial functions from T Jτ≤1K. It is needed to map variables to their correspond-
ing arguments in functional parts of a formula. In particular, it is needed to build
up approximations of fixpoints. env must be initialized according to the environ-
ment η if MC should be able to model check a formula ϕ including free variables.
An update of env, where the value of X for [T1, . . . , Tk] is set to d is denoted by
env(X){[T1, . . . , Tk]→ d}.

Due to its recursive nature, the algorithm MC is best described for each possible case
separately. Assuming that MC(ϕ, [T1, . . . , Tk]) is called. Then one of the following
cases occurs:

Case (q, ¬q, ψ1 ∨ ψ2, ψ1 ∧ ψ2,〈a〉ψ, [a]ψ): Note that for all of these cases ϕ is of type
•, which means k = 0. With respect to the given LTS T and environment η the
algorithm computes the semantics described in Chap. 2. For the cases ψ1 ∨ ψ2 and
ψ1 ∧ ψ2 it makes recursive calls to evaluate ψ1, ψ2 separately, before evaluating the
boolean operator.

Case (ψ1 ψ2): Note that ψ2 has to be of type • because ϕ ∈ HFL1. The value of inter-
est is Jψ1KTη ([Jψ2KTη , T1, . . . , Tk]). To compute this, the algorithm MC makes a recursive
call and computes MC(ψ2, [ ]) first and then uses this result as the first argument in
the call MC(ψ1, [MC(ψ2, [ ]), T1, . . . , Tk]).

Case (λX.ψ): When MC(λX.ϕ, [T1, . . . , Tk]) is called, env(X) is updated with {[ ] →
T1}. Again, from the fact that ϕ ∈ HFL1 it follows that X is of type •. This means the
argument T1 expects no input itself and therefore can be represented as a function
from the singleton domain {[ ]} to T1.

Case (X): If ϕ is a free variable a case distinction is needed: If env(X) is undefined
for [T1, . . . , Tk], then X has to be a fixpoint variable and it has to be the first applica-
tion of the arguments [T1, . . . , Tk]. It can be verified that in all other cases X would
have been defined at this point. If this is the case then X is mapped to ∅ or S , de-
pending on whether X is a least of greatest fixpoint variable, in order to set an initial
value for the fixpoint computation. After that and in all other cases, the algorithm
returns the value env(X)([T1, . . . , Tk]). If X is of type • the value is env(X)([ ]). This
makes clear, why an abstraction of base-type arguments to a singleton function is
needed.

Case (¬X): Note that X can only be of type •. Therefore the algorithm simply re-
turns S \ env(X)([ ]) which is the complement of the value of X in S .

Case (ϕ = σX.ψ, σ ∈ {µ, ν}): If a fixpoint case occurs then the algorithm approxi-
mates the fixpoint JσX.ψKTη sufficiently to compute its value for the given argument
list [T1, . . . , Tk]. The mapping of env (X) is used to build up this approximation step-
by-step. The algorithm starts with mapping env(X) ([T1, . . . , Tk]) to the value ∅ or S
according to the binding fixpoint-operator of X. After this initial operation the actual
fixpoint computation begins. In every iteration of the repeat-loop the algorithm com-
putes the value of JψKTη{X→env(X)} ([T

′
1, . . . , T′k]) for all [T′1, . . . , T′k] ∈ dom(env(X)),

where dom(env(X)) is the domain of the partial function that env(X) currently rep-
resents. Note that in the first iteration dom(env(X)) = {[T1, . . . , Tk]}. If an appli-
cation env(X) ([T′1, . . . , T′k]) occurs during such a computation, where the argument
list [T′1, . . . , T′k] is undefined for env(X), the value for this argument list is initialized
as described in the variable case above. This means that the argument list is added
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FIGURE 3.1: LTS with paths of the form 〈anbn〉.

to dom(env(X)) and with that included in further iterations of the repeat-loop. This
is in fact how the algorithm avoids including unnecessary arguments in a fixpoint
computation: Only those argument lists are added to the domain of env(X) for
which the values of already included argument lists depend on and ultimately the
value JσX.ψKTη ([T1, . . . , Tk]) depends on. The repeat-loop terminates if no changes
happened in the last iteration. This means that no new argument list was added
to dom(env(X)) and no value of env(X) for any argument list in dom(env(X))
changed. After this the value of env(X) ([T1, . . . , Tk]) is returned. This is sufficient
to ensure that MC(σX.ψ, [T1, . . . , Tk]) = JσX.ψKTη ([T1, . . . , Tk]) holds [AL07].

3.3 Application: Existence of Paths Definable in HFL1

To obtain a better understanding of how neededness analysis for model checking
HFL1 works as well as showing the expressive power of HFL1 compared to the
modal µ-calculus, consider the following HFL1 formula:

ϕ := (µF.λX.X ∨ 〈a〉 (F 〈b〉X)) p

By unfolding the fixpoint part of ϕ to an infinite disjunction

p ∨ 〈a〉〈b〉p ∨ 〈a〉〈a〉〈b〉〈b〉p ∨ . . .

it can be seen that the formula describes the property "There exists a word w of the
context-free language {anbn | n ∈ N} such that there is a state with proposition p that is
reachable under w". This language is not regular, which means that this property is
not expressible in the modal µ-calculus as stated in Chap. 1. Without explicit model
checking it can be verified that in Fig. 3.1 this property holds for {s0, s2, s5}.

In the following this property is model checked for the given LTS with the algorithm
MC. From the fact that ϕ is of type •, it follows that MC needs no further arguments and
is called with MC(ϕ, [ ]). Considering the syntaxtree of ϕ, the highest-level operation
is an application which leads to the case ψ1 ψ2 and the call MC(ψ, [MC(p, [ ])]), where
ψ := (µF.λX.X ∨ 〈a〉 (F 〈b〉X)). From the propositional case of MC and the given LTS
it follows directly that MC(p, [ ]) = {s2}. This is the first argument for the following
fixpoint computation.
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Input: ϕ ∈ HFL1, [T1, . . . , Tk] ∈ ((2S ))k, T and η
Output: JϕKTη ([T1, . . . , Tk])

1 env : V → T Jτ≤1K

2 Function MC(ϕ, [T1, . . . , Tk])
3 switch ϕ do
4 case q do return L(q);
5 case ¬q do return S \ L(q);
6 case ψ1 ∨ ψ2 do return MC(ψ1, [ ])∪ MC(ψ2, [ ]);

7 case ψ1 ∧ ψ2 do return MC(ψ1, [ ])∩ MC(ψ2, [ ]);

8 case 〈a〉ψ do return
{

s ∈ S | ex. t ∈ MC(ψ, [ ]) s.t. s a−→ t
}

;

9 case [a]ψ do return
{

s ∈ S | f.a. t ∈ S : s a−→ t⇒ t ∈ MC(ψ, [ ])
}

;

10 case X do
11 if env(X)([T1, . . . , Tk]) = UNDEF then
12 if fixpoint(X) = µ then T := ∅;
13 else T := S ;
14 env(X) = env(X) {[T1, . . . , Tk]→ T}
15 return env(X)([T1, . . . , Tk])

16 case ¬X do return S \ env(X)([ ]);

17 case λX.ψ do
18 env(X) := {[ ]→ T1};
19 return MC(ψ, [T2, . . . , Tk])

20 case ψ1 ψ2 do return MC(ψ1, [MC(ψ2, [ ]), T1, . . . , Tk]);

21 case σX.ψ do
22 if σ = µ then T := ∅;
23 else T := S ;
24 env(X) := {[T1, . . . , Tk]→ T} ;
25 repeat
26 f := env(X);
27 forall [T′1, . . . , T′k] ∈ dom(env(X)) do
28 env(X) := env(X)

{
[T′1, . . . , T′k]→ MC(ψ, [T′1, . . . , T′k])

}
29 end
30 until f = env(X);
31 return env(X)([T1, . . . , Tk])

32 end
33 end

Algorithm 1: Symbolic model checking algorithm for HFL1.
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Iter. Arg. {s2} {s1} {s3} {s6} ∅

0 ∅

1 {s2} ∅

2 {s2} {s1} ∅

3 {s0, s2} {s1} {s3} ∅

4 {s0, s2} {s1, s4} {s3} {s6} ∅

5 {s0, s2, s5} {s1, s4} {s3, s7} {s6} ∅

6 {s0, s2, s5} {s1, s4, s8} {s3, s7} {s6} ∅

7 {s0, s2, s5} {s1, s4, s8} {s3, s7} {s6} ∅

TABLE 3.1: Fixpoint computation of example in Sec. 3.3.

This fixpoint computation is listed in Tab. 3.1. Row i denotes env(F) after the i-
th execution of the repeat-loop. Empty cells can be interpreted as still undefined
arguments. The initial argument, as stated above, is {s2}. Therefore, it is added to
dom(env(F)) and its value is set to ∅ before the first iteration of the repeat-loop.
This can be seen in Row 0. In the first iteration of the repeat-loop the only update
happening is env(F){{s2} → MC(ψ, [{s2}])}. The application env(F)({s1}) appears
in the call of MC(ψ, [{s2}]). Therefore, the argument {s1} is added to dom(env(F))
and its value is set to ∅. With that the value of env(F) for {s1} changes and is
updated. The result can be seen in Row 1. This procedure is repeated until the
iteration becomes stable, which means that no further undefined arguments for F
occurred and no value of any argument in dom(env(F)) changed. This can be seen
in comparison of Row 6 and 7. With this the repeat-loop terminates after the 7-th
iteration and the current and correct value for env(F)({s2}) is returned, which is
{s0, s2, s5}.

It can be seen that the algorithm localizes the computation to the needed arguments
only. In quantitative terms, this means that only the values of 5 arguments were
computed instead of the values of all |2S | = 29 = 512 possible arguments. This
underlines that this neededness analysis approach achieves a major reduction of
computational effort compared to a naive approach.
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Chapter 4

Model Checking in HFL2 with
Neededness Analysis

4.1 Neededness Analysis in HFL2

Model checking HFL2 with neededness analysis can be done in a similar way as
model checking HFL1, described in Chap 3. The computation of the value of a fix-
point for a certain argument can be localized by starting the computation with this
argument and including only those arguments that the value depends on.

The only difference is the possible type of applicable arguments. In HFL1 the type
of ψ2 in a formula ψ1 ψ2 is restricted to the base-type •, whereas in HFL2 the formula
ψ2 can be of type • → . . . → •. For a given LTS T this means that a correspond-
ing algorithm for model checking HFL2 with neededness analysis needs to handle
arguments from T Jτ≤1K, respectively their syntactical representation.

It can be considered that the values of such functional arguments are only needed
for certain arguments in their specific applications in the fixpoint formula. However,
a partial evaluation of these arguments comes with unsolved problems, which are
further discussed in Chap. 5.

4.2 Model Checker MC2 for HFL2

In Alg. 2 (on p. 17) a symbolic model checker with neededness analysis for HFL2
is given, which is denoted by MC2. This model checker should be understood as
a development of the approach adopted by the algorithm MC described in Chap. 3,
hence there can be seen a far-reaching similarity between these two algorithms. Note
that the algorithm MC2 uses the grammar defined in Sec. 2.3.

Consider the signature of MC2 and an example call MC2(ϕ, [T1, . . . , Tk]), where ϕ is
of type τ1 → . . . τk → •. Applicable formulas ϕ are from HFL2. This means that
the argument list parameter [T1, . . . , Tk] is an element of (T Jτ≤1K)k. Furthermore,
the algorithm needs an LTS T and an environment η. These inputs are needed as
global values only, therefore it is not necessary to include them in the signature of
MC2 directly.

The global variable env is a map, mapping from the set of variables V to the set of
possibly partial functions from T Jτ≤2K. This includes state sets from S , functions
between those state sets and functions between those functions. The variable env
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has the same functionality in the different functional parts of MC2 as in the algorithm
MC: In the λ and variable case it is used to map a variable to the correct argument
and in the µ case it is used to compute an approximation of the fixpoint considered.
Furthermore, the global variable env needs to be initialized according to η in order
to enable model checking formulas including free variables.

The structure of the algorithm MC2 is similar to that of the algorithm MC as well. It is
a symbolic model checker that recursively checks a given formula along its syntax
tree. Therefore its functionality is best discussed for the different cases separately.

Case (q, ¬ψ, ψ1 ∨ ψ2, 〈a〉ψ): In all of these cases the algorithm MC2 computes the
return value according to the semantics defined in Sec. 2.4. For the cases q, ψ1 ∨ ψ2
and 〈a〉ψ this is done in the same way as in the algorithm MC. This is possible, because
in these cases the formulas are still restricted to the base-type •. In the case of ¬ψ
the subformula ψ has to be of type • too, hence, the algorithm computes MC2(ψ, [ ])
and returns its complement in S .

Case (ψ1 ψ2): In comparison to the algorithm MC this case is computed differently,
because ψ2 is not necessarily of type • anymore. By assumption ψ2 is of type τ1 →
. . . → τk′ → •. The algorithm computes the value of Jψ2KTη first. This can be seen
in Alg. 2 in line 9-13. First the algorithm identifies how many arguments the for-
mula ψ2 expects, which is done in the call of #args(ψ2). For instance, in an ac-
tual implementation this could be derived from the type of ψ2. In the next step
it computes Jψ2KTη by initializing a map fψ2 and computing Jψ2KTη ([T′1, . . . , T′k′ ]) for
all possible [T′1, . . . , T′k′ ] ∈ (2S )k′ . This is done in the for-all loop. Note that in the
case that k′ = 0 this creates a function that maps the empty list [ ] to Jψ2KTη . Once
the for-all loop terminates, the algorithm uses fψ2 as the first argument in the call MC2
(ψ1, [ fψ2 , T1, . . . , Tk]), which computes the value of interest Jψ1KTη ([Jψ2KTη , T1, . . . , Tk]).

Case (λX.ψ): In this case the algorithm sets env(X) := T1. Considering the variable
case, this can be understood as mapping X to T1 in all following occurrences of X.
After this, the algorithm returns the value of the call MC2(ψ, [T2, . . . , Tk]). Note that
from the application case it is guaranteed that T1 is a function, assuming that MC2 is
called correctly initially.

Case (X): In this case the algorithm MC2 checks if the value of env(X) is undefined
for [T1, . . . , Tk]. If so, X has to be bound by a µ-operator and it has to be the first oc-
currence of this application, hence, the value of env(X) ([T1, . . . , Tk]) is set to ∅. Af-
ter this and in every other case the algorithm returns the value env(X) ([T1, . . . , Tk]).
Note that for an initially unbound variable env is initialized corresponding to η.

Case (µX.ψ): In the fixpoint part the algorithm works similar to the algorithm MC.
It starts with setting the value of env(X) ([T1, . . . , Tk]) to ∅, followed by the actual
fixpoint computation. In each iteration of the repeat-loop the algorithm updates the
values for the arguments included in dom(env(X)). The value of newly occurring
arguments is initialized with ∅, as can be seen in the variable case, hence, it is in-
cluded in further iterations. This is done until stability is reached, which means that
no new arguments occurred and no values for included arguments changed. After
this the algorithm returns the value of env(X) ([T1, . . . , Tk]).
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Input: ϕ ∈ HFL2, [T1, . . . , Tk] ∈ (T Jτ≤1K)k, T and η
Output: JϕKTη ([T1, . . . , Tk])

1 env : V → T Jτ≤2K

2 Function MC2(ϕ, [T1, . . . , Tk])
3 switch ϕ do
4 case q do return L(q);
5 case ¬ψ do return S \ MC2(ψ, [T1, . . . , Tk]);

6 case ψ1 ∨ ψ2 do return MC2(ψ1, [])∪ MC2(ψ2, []);

7 case 〈a〉ψ do return
{

s ∈ S | ex. t ∈ MC2(ψ, []) s.t. s a−→ t
}

;

8 case ψ1 ψ2 do
9 k′ = #args(ψ2) ;

10 fψ2 := { UNDEF } ;
11 forall [T′1, . . . , T′k′ ] ∈ (2S )k′ do
12 fψ2 := fψ2

{
T → MC2(ψ2, [T′1, . . . , T′k′ ])

}
13 end
14 return MC2(ψ1, [ fψ2 , T1, . . . , Tk])

15 case X do
16 if env(X) {[T1, . . . , Tk]} = UNDEF then
17 T := ∅;
18 env(X) := env(X) {[T1, . . . , Tk]→ T}
19 return env(X) ([T1, . . . , Tk])

20 case λX.ψ do
21 env(X) := T1 ;
22 return MC2(ψ, [T2, . . . , Tk])

23 case µX.ψ do
24 T := ∅;
25 env(X) := {[T1, . . . Tk]→ T};
26 repeat
27 f := env(X) ;
28 forall [T′1, . . . , T′k] ∈ dom(env(X)) do
29 env(X) := env(X)

{
[T′1, . . . , T′k]→ MC2(ψ, [T′1, . . . , T′k])

}
30 end
31 until f = env(X);
32 return env(X) ([T1, . . . , Tk])

33 end
34 end

Algorithm 2: Symbolic model checking algorithm for HFL2.



18 Chapter 4. Model Checking in HFL2 with Neededness Analysis

4.3 Correctness of MC2

Due to the far-reaching similarity between the algorithms MC and MC2, proving cor-
rectness of MC2 can be done similar to the correctness proof of MC in [AL07]. For the
µ case a fundamentally different proof is given.

In general this proof is done inductively on the structure of a formula ϕ ∈ HFL2.
For that the following assumption is made: The call MC2(ϕ, [T1, . . . , Tk])η denotes the
result of MC2 with formula ϕ and argument list [T1, . . . , Tk] if the global variable env
has the following form before the call: For all X ∈ V of type τ1 → . . .→ τk → • and
all [T1, . . . , Tk] ∈ (T Jτ≤1K)k

• if X is λ-bound then env(X)[T1, . . . , Tk] = η(X)[T1, . . . , Tk]

• if X is µ-bound then η(X)([T1, . . . , Tk]) 6= ∅ implies env(X)([T1, . . . , Tk]) =
η(X)([T1, . . . , Tk])

• if X is ν-bound then η(X)([T1, . . . , Tk]) 6= S implies env(X)([T1, . . . , Tk]) =
η(X)([T1, . . . , Tk])

In order to prove correctness of MC2, the following lemma is needed. Let ε be an
element of {∈, 6∈}, ε+ := ε and ε− := ¬ ε.

Lemma 1. For all LTS T , all environments η, all ε ∈ {∈, 6∈}, all ϕ ∈ HFL2 of type
τ1 → . . . → τk → •, where the variance v of the variable X is + or −, all [T1, . . . , Tk],
where Ti ∈ T JτiK and all partial functions F1, F2 of type τ′1 → . . . → τ′k′ → •, such
that JϕKTη{X→Fi} ([T1, . . . , Tk]) is defined and f.a. ψ1 ψ2 ∈ sub(ϕ) the value Jψ2KTη{X→Fi} is
defined:

If there is s ∈ S s.t. s ε(JϕKTη{X→F1} ([T1, . . . , Tk])) and s ε−(JϕKTη{X→F2} ([T1, . . . , Tk])),
then there is s′ ∈ S s.t. s′ εv(F1 ([T′1, . . . , T′k′ ])) and s′ ε−

v
(F2 ([T′1, . . . , T′k′ ])).

Informally, this lemma states: If the value of a formula ϕ is different under the envi-
ronment η{X → F1} than it is under the environment η{X → F2}, at least one of the
occurring applications of F1 must differ from the corresponding application of F2.

Proof. This lemma can be proven inductively on the structure of the formula ϕ. In
the case that ϕ is of type • the application JϕKTη ([ ]) is denoted by JϕKTη .

Note that from the fact that JϕKTη{X→Fi} ([T1, . . . , Tk]) is defined for F1 and F2 follows

that all occurring applications of F1 and F2 in JϕKTη{X→Fi} ([T1, . . . , Tk]) are defined.
In Sec. 2.3 it is described that any fixpoint formula µX.ψ is equivalent to a finite
approximation Xn

ψ. Hence, all µX.ψ ∈ sub(ϕ) can be replaced by the corresponding
Xn

ψ, which means w.l.o.g. it can be assumed that a fixpoint formula does not occur.
For the cases ϕ = q and ϕ = X′, where X′ 6= X, the premise is wrong in any case.
The statement is proven for the case that the variance v of X is +. The case that
v = − is proven analogously.

Case (ϕ = X): It can be inferred directly, that if there is a state s ∈ S such that
s ε(JXKTη{X→F1} ([T1, . . . , Tk])) and s ε−(JXKTη{X→F2} ([T1, . . . , Tk])), then it follows that
s ε(F1 ([T1, . . . , Tk])) and s ε−(F2 ([T1, . . . , Tk])), because η{X → Fi} (X) = Fi for i ∈
{1, 2}.



4.3. Correctness of MC2 19

Case (ϕ = ¬ψ): Note that ϕ is of type • in this case. By definition, J¬ψKTη is the
same as S \ JψKTη . This means that if there is an s ∈ S such that s ε J¬ψKTη{X→F1} and

s ε− J¬ψKTη{X→F2}, then s ε− JψKTη{X→F1} and s ε JψKTη{X→F2}. With use of the induction

hypothesis, it follows that there is a state s′ ∈ S such that s′ ε−
v′
(F1 ([T′1, . . . , T′k′ ]))

and s′ εv′(F2 ([T′1, . . . , T′k′ ])). But this v′ is the variance of X regarding ψ, which
has to be −, because the variance of X in ¬ψ is +. Then it follows directly that
s′ ε(F1 ([T′1, . . . , T′k′ ])) and s′ ε−(F2 ([T′1, . . . , T′k′ ])).

Case (ϕ = ψ1 ∨ ψ2): Note that ϕ is of type • in this case. By definition Jψ1 ∨ ψ2KTη =

Jψ1KTη ∪ Jψ2KTη . Then there exists at least one i ∈ {1, 2} such that if there is a state
s ∈ S such that s εJψ1 ∨ ψ2KTη{X→F1} and s ε−Jψ1 ∨ ψ2KTη{X→F2}, then s εJψiKTη{X→F1}
and s ε−JψiKTη{X→F2}. Using the induction hypothesis, it immediately follows that
the statement is true.

Case (ϕ = 〈a〉ψ): Note that ϕ is of type • in this case. By definition J〈a〉ψKTη = {s̃ ∈
S | ex. s̃′ ∈ JψKTη : s̃ a−→ s̃′}. With this it follows that if there is a state s ∈ S such
that s εJ〈a〉ψKTη{X→F1} and s ε−J〈a〉ψKTη{X→F2}, then there is a state s′ ∈ S such that

s′ εJψKTη{X→F1} and s′ ε−JψKTη{X→F2}. Applying the induction hypothesis, it immedi-
ately follows that the statement is true.

Case (ϕ = ψ1 ψ2): By definition Jψ1 ψ2KTη = Jψ1KTη Jψ2KTη . With this it can be in-
ferred that if there is a state s ∈ S such that s ε(Jψ1 ψ2KTη{X→F1} ([T1, . . . , Tk])) and

s ε−(Jψ1 ψ2KTη{X→F2} ([T1, . . . , Tk])), then s ε(Jψ1KTη{X→F1} ([Jψ2KTη{X→F1}, T1, . . . , Tk]))

and s ε−(Jψ1KTη{X→F2} ([Jψ2KTη{X→F2}, T1, . . . , Tk])). At this point a case distinction is
needed:

If Jψ2KTη{X→F1} = Jψ2KTη{X→F2} then the premise of the lemma is true. This means that

the lemma can be applied to the statement s ε(Jψ1KTη{X→F1} ([Jψ2KTη{X→F1}, T1, . . . , Tk]))

and s ε−(Jψ1KTη{X→F2} ([Jψ2KTη{X→F2}, T1, . . . , Tk]). Therefore the conclusion follows
immediately in this case.

Otherwise, if Jψ2KTη{X→F1} 6= Jψ2KTη{X→F2} then a case distinction between ε =∈ and
ε = 6∈ and for each between the three possibilities of inequality A, @ and incom-
parability is needed. But it turns out that the proofs of the cases ∈,A and 6∈,@ are
identical and the proofs of the cases ∈,@ and 6∈,A are identical too. The incompara-
bility case is proven equally for both possibilities of ε. Therefore, it suffices to show
the three inequality cases for ε =∈.

From the inequality follows that there has to be at least one occurrence of X in ψ2.
Note that this means that ψ1 has to be monotonic or anti-monotonic regarding ψ2,
depending on the variance of X in ψ2. Furthermore, note that Jψ2KTη{X→Fi} is defined
for F1 and F2. Assuming that ψ2 is of type τ1 → . . .→ τk̃ → •:

1. If Jψ2KTη{X→F1} A Jψ2KTη{X→F2}, then there exists a [T̃1, . . . , T̃k̃] ∈ (T Jτ≤1K)k̃ such

that Jψ2KTη{X→F1} ([T̃1, . . . , T̃k̃]) ) Jψ2KTη{X→F2} ([T̃1, . . . T̃k̃]). This means there

exists at least one state s̃ ∈ S such that s̃ ε(Jψ2KTη{X→F1} ([T̃1, . . . , T̃k̃])) and

s̃ ε−(Jψ2KTη{X→F2} ([T̃1, . . . , T̃k̃])). Using the induction hypothesis, it follows that

there is s′ ∈ S such that s′ εv′(F1 ([T′1, . . . , T′k′ ])) and s′ ε−
v′
(F2 ([T′1, . . . , T′k′ ])).
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This v′ is the variance of X regarding ψ2. From the fact that the premise of
the lemma holds for ψ1 ψ2 it follows that ψ1 has to be monotonic regarding ψ2
in this case. Therefore v′ must be + to ensure that v = +. This means that
s′ ε(F1 ([T′1, . . . , T′k′ ])) and s′ ε−(F2 ([T′1, . . . , T′k′ ])), which is in fact the conclu-
sion of the lemma for the original premise regarding ψ1 ψ2.

2. If Jψ2KTη{X→F1} @ Jψ2KTη{X→F2}, then there exists a [T̃1, . . . , T̃k̃] ∈ (T Jτ≤1K)k̃ such

that Jψ2KTη{X→F1} ([T̃1, . . . , T̃k̃]) ( Jψ2KTη{X→F2} ([T̃1, . . . T̃k̃]). This means there

exists at least one state s̃ ∈ S such that s̃ ε−(Jψ2KTη{X→F1} ([T̃1, . . . , T̃k̃])) and

s̃ ε(Jψ2KTη{X→F2} ([T̃1, . . . , T̃k̃])). Using the induction hypothesis, it follows that

there is s′ ∈ S such that s′ ε−
v′
(F1 ([T′1, . . . , T′k′ ])) and s′ εv′(F2 ([T′1, . . . , T′k′ ])).

This v′ is the variance of X regarding ψ2. From the fact that the premise of the
lemma holds for ψ1 ψ2 follows that ψ1 has to be anti-monotonic regarding ψ2
in this case. Therefore v′ must be − to ensure that v = +. This means that
s′ ε(F1 ([T′1, . . . , T′k′ ])) and s′ ε−(F2 ([T′1, . . . , T′k′ ])), which is in fact the conclu-
sion of the lemma for the original premise regarding ψ1 ψ2.

3. If Jψ2KTη{X→F1} 6w Jψ2KTη{X→F2} and Jψ2KTη{X→F1} 6v Jψ2KTη{X→F2} is the case, then

there has to exist a [T̃1, . . . , T̃k̃] ∈ (T Jτ≤1K)k̃ such that there exists a state s1 ∈
S such that s1 ε(Jψ2KTη{X→F1} ([T̃1, . . . T̃k̃])) and s1 ε−(Jψ2KTη{X→F2} ([T̃1, . . . , T̃k̃]))

and there exists another state s2 ∈ S such that s2 ε−(Jψ2KTη{X→F1} ([T̃1, . . . , T̃k̃]))

and that s2 ε(Jψ2KTη{X→F2} ([T̃1, . . . , T̃k̃])). Depending on whether ψ1 is mono-
tonic or anti-monotonic regarding ψ2, the state s1 respectively s2 can be chosen.
Then the conclusion of the statement follows with the same argumentation as
in the A, respectively the @ case.

Case (ϕ = λX′.ψ): Using β-reduction1, it follows that JλX′.ψKTη ([T1, . . . , Tk]) =

JψKTη{X′→T1} ([T2, . . . , Tk]). With this, it can be inferred that if there is s ∈ S such that

s ε(JλX′.ψKTη{X→F1} ([T1, . . . , Tk])) and s ε−(JλX′.ψKTη{X→F2} ([T1, . . . , Tk])), it follows

that s ε(JψKTη{X→F1}{X′→T1} ([T2, . . . , Tk])) and s ε−(JψKTη{X→F2}{X′→T1} ([T2, . . . , Tk])).
Let η′ := η{X′ → T1}. Then, it follows from the fact that X′ is not an element
of sub(X) that s ε(JψKTη′{X→F1} ([T2, . . . , Tk])) and s ε−(JψKTη′{X→F2} ([T2, . . . , Tk])). Ap-
plying the induction hypothesis, it immediately follows that the statement is true.

With this the following theorem can be proven, which shows correctness of the al-
gorithm MC2.

Theorem 1. For all LTS T , all environments η, all formulas ϕ ∈ HFL2 of type τ1 → . . .→
τk → • and all [T1, . . . , Tk] ∈ (T Jτ≤1K)k: MC2(ϕ, [T1, . . . , Tk])η = JϕKTη ([T1, . . . , Tk])

Proof. This theorem can be proven by induction on the structure of the formula ϕ.
Consider the call MC2(ϕ, [T1, . . . , Tk])η , where [T1, . . . , Tk] ∈ (T Jτ≤1K)k. Then one of
the following cases occurs:

Case (ϕ = q): Comparing the defined semantics in Sec. 2.4 for a proposition and
this case of MC2, the statement is true immediately.

1The semantic of HFL inherits invariance under β-reduction from the simply typed λ-calculus.
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Case (ϕ = X): It can be verified in Alg. 2 that MC2(X, [T1, . . . , Tk])η is the same
as env(X)([T1, . . . , Tk]). With the above assumption about the form of env before
a call follows that env(X)([T1, . . . , Tk]) = η(X)([T1, . . . , Tk]). By definition this is
JXKTη ([T1, . . . , Tk]).

Case (ϕ = ¬ψ): Note that ¬ψ and ψ are of type •. It can be verified in Alg. 2 that
MC2(¬ψ, [ ])η = S \ MC2(ψ, [ ])η . By induction hypothesis follows that MC2(ψ, [ ])η =
JψKTη . Therefore MC2(¬ψ, [ ])η = S \ JψKTη , which by definition is the same as J¬ψKTη .

Case (ϕ = ψ1 ∨ ψ2): Note that ψ1 ∨ ψ2, ψ1 and ψ2 are of type •. It can be verified
in Alg. 2 that MC2(ψ1 ∨ ψ2, [ ])η = MC2(ψ1, [ ])η ∪ MC2(ψ2, [ ])η . Using the induction
hypothesis, it can be inferred that this is equal to Jψ1KTη ∪ Jψ2KTη , which in turn is the
same as Jψ1 ∨ ψ2KTη .

Case (ϕ = ψ1 ψ2): By assumption ϕ2 is of type τ1 → . . . → τk′ → •. It can be
verified in Alg. 2 that MC2(ϕ1 ϕ2, [T1, . . . , Tk])η = MC2(ϕ1, [ fψ2 , T1, . . . , Tk])η and that
fψ2 ([T

′
1, . . . , T′k′ ]) = MC2(ϕ2, [T′1, . . . , T′k′ ])η for all arguments [T′1, . . . T′k′ ] ∈ (T Jτ≤1K)k′ .

Using induction hypothesis, it follows that fψ2 = Jψ2KTη after termination of the for-
all loop. This means MC2(ϕ1, [ fψ2 , T1, . . . , Tk])η = MC2(ϕ1, [Jψ2KTη , T1, . . . , Tk])η . Using
the induction hypothesis again, it follows that this equals Jψ1KTη ([Jψ2KTη , T1, . . . , Tk]),
which by definition is the same as Jψ1 ψ2KTη ([T1, . . . , Tk]).

Case (ϕ = λX.ψ): It can be verified in Alg. 2 that env(X) = T1 after the call
of MC2(λX.ψ, [T1, . . . , Tk])η . This means that MC2(λX.ψ, [T1, . . . , Tk])η is the same as
MC2(ψ, [T2, . . . , Tk])η{X→T1}. With use of the induction hypothesis, it can be inferred
that MC2(ψ, [T2, . . . , Tk])η{X→T1} = JψKTη{X→T1}([T2, . . . , Tk]) and using β-reduction

this is the same as JλX.ψKTη ([T1, . . . , Tk]).

Case (ϕ = 〈a〉ψ): Note that 〈a〉ψ and ψ are of type •. It can be verified in Alg. 2
that MC2(〈a〉ψ, [ ])η =

{
s ∈ S | ex. t ∈ MC2(ψ, [])η s.t. s a−→ t

}
. Using the induction

hypothesis, this is the same as
{

s ∈ S | ex. t ∈ JψKTη s.t. s a−→ t
}

, which by definition

is the same as J〈a〉ψKTη .

Case (µX.ψ): To prove correctness of the µ case, the case MC2(µX.ψ, [T1, . . . , Tk])η ⊆
JµX.ψKTη ([T1, . . . , Tk]) and the case MC2(µX.ψ, [T1, . . . , Tk])η ⊇ JµX.ψKTη ([T1, . . . , Tk])
are proven separately.

Case (⊆ of µ case): In order to show this case, the following statement is proven to
be an invariant of the repeat-loop of the µ case in Alg. 2.

f.a. [T1, . . . , Tk] ∈ dom(env(X)) : env(X)([T1, . . . , Tk]) ⊆ JµX.ψKTη ([T1, . . . , Tk])

The invariant holds before the loop, because dom(env(X)) = {[T1, . . . , Tk]} and env
maps this argument to ∅, which is a subset of JµX.ψKTη ([T1, . . . , Tk]). For the next
step it must be shown, that if the invariant holds at the beginning of an iteration of
the repeat-loop, it follows that it holds at its end. Let env(X) be the global variable
at the beginning of an arbitrary repeat-loop iteration and [T′1, . . . , T′k] ∈ dom(env(X))
at this point. From the fact that this is a fixpoint formula follows that ψ is monotonic
in X. Therefore, with the assumption that the invariant holds at the beginning of a
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repeat-loop iteration and the fact that JµX.ψKTη is a fixpoint of ψ follows that:

JψKTη{X→env(X)}([T
′
1, . . . , T′k]) ⊆ JψKTη{X→JµX.ψK}Tη

([T′1, . . . , T′k])

But JψKTη{X→env(X)}([T
′
1, . . . , T′k]) is, using the induction hypothesis, equivalent to

MC2(ψ, [T′1, . . . , T′k])η{X→env(X)}, which is the value of env(X) for [T′1, . . . , T′k] at the
end of this repeat-loop iteration and by definition JψKT

η{X→JµX.ψK}Tη
([T′1, . . . , T′k]) is

the same as JµX.ψKTη ([T′1, . . . , T′k]). This shows that the invariant holds after this it-
eration. For finite transition systems the loop terminates eventually and since the
domain of env grows or stays the same in each iteration it is valid that [T1, . . . , Tk] ∈
dom(env(X)) at this point. This means the invariant is applicable to [T1, . . . , Tk] after
the repeat-loop. With the fact that MC2(µX.ψ, [T1, . . . , Tk])η = env(X) ([T1, . . . , Tk]),
where env is the global variable upon termination of the repeat-loop, this proves the
⊆ direction of the µ case.

Case (⊇ of µ case): In order to show this direction of the µ case, it must be shown
that the following statement is true.

MC2(ϕ, [T1, . . . , Tk])η ⊇ JµX.ψKTη ([T1, . . . , Tk]) (4.1)

As it is described in Sec. 2.3, the fixpoint JµX.ψKTη is the same as some finite approx-
imation Fn

ψ , which in turn is the same as JψKT
η{X→Fn−1

ψ }. It can be seen in Alg. 2 that

MC2(µX.ψ, [T1, . . . , Tk]) = env(X)([T1, . . . , Tk]), where env(X) denotes the value of
the global variable for X upon termination of the repeat-loop. From the termination
criterion of the loop follows that env(X) equals env(X) after the second to last itera-
tion. This means that env(X)([T1, . . . , Tk]) = MC2(ψ, [T1, . . . , Tk])η{X→env(X)} and by
induction hypothesis it follows that this is the same as JψKTη{X→env(X)}([T1, . . . , Tk]).
To prove statement 4.1 it is assumed that the opposite is true and shown that this
assumption leads to a contradiction. If the statement is wrong, then the following
must be true:

ex. n ∈N ex. s ∈ S : s ∈ Fn
ψ ([T1, . . . , Tk]) and s 6∈ env(X)([T1, . . . , Tk]) (4.2)

With the above argumentation, this means there is an n ∈N such that there is an s ∈
S such that s ∈ JψKT

η{X→Fn−1
ψ }([T1, . . . , Tk])) and s 6∈ (JψKTη{X→env(X)}([T1, . . . , Tk])).

Let n be fixed as such an approximation. From the fact that X is a fixpoint variable
follows that the variance of X in ψ is +. This means, that Lem. 1 can be applied with
ε =∈ and it follows that:

ex. s′ ∈ S : s′ ∈ (Fn−1
ψ ([T′1, . . . , T′k′ ])) and s′ 6∈ (env(X) ([T′1, . . . , T′k′ ]))

If n− 1 = 0 this would be a contradiction because F0
ψ maps to ∅ for all arguments.

If n− 1 > 0 the argumentation starting from statement 4.2 can be repeated until this
case occurs. Therefore, the assumption must be wrong and it must in fact be true
that statement 4.1 holds, which proves the ⊇ part of the µ case.

This means Th. 1 holds for all possible cases of ϕ, which finishes the proof and shows
that the algorithm MC2 is correct.
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s0 s1 s2 s3 pa b c

FIGURE 4.1: LTS with path of the form 〈abc〉.

4.4 Application: Existence of Paths Definable in HFL2

Consider the following formula.

(µF.λG1, G2, G3. ((G1 ◦ G2 ◦ G3) p) ∨ F (G1 ◦ 〈〈a〉〉) (G2 ◦ 〈〈b〉〉) (G3 ◦ 〈〈c〉〉)) id id id

where ◦ := λF1, F2, X. F1 (F2 X), f ◦ g := ◦ f g, 〈〈x〉〉 := λX. 〈x〉X and id := λX. X.
Furthermore let 〈〈x0〉〉 := id and 〈〈xn+1〉〉 := 〈xn〉 ◦ 〈〈x〉〉. The formula beneath the
µ operator is denoted by ψ. Informally, this formula describes the property "There
exists a word w of the not context-free language {anbncn | n ∈ N} s.t. there is a state
with proposition p that is reachable under w". This is a not-regular property, which
means it is not definable in the modal µ-calculus. Furthermore, it is believed that
this property is not expressible in HFL1.

Consider the LTS in Fig. 4.1. In this LTS the property described above is true for the
set {s0, s3}. In Tab. 4.1 the computation of MC2(µF.ψ, [id, id, id]) is given. Each column
corresponds to an included argument and Row i denotes the form of env(X) after
the i-th iteration of the repeat-loop. Empty cells are understood as still undefined. It
can be seen in Row 0, that the algorithm starts with setting the value of the initial ar-
gument list [id, id, id] to ∅. In Alg. 2 this is done before the repeat-loop of the µ case.
After this the actual fixpoint computation starts: In each iteration of the repeat-loop
the values for all arguments of dom(env(X)) are updated until stability is reached.
Row 1 shows that dom(env(X)) = {[id, id, id], [〈〈a〉〉, 〈〈b〉〉, 〈〈c〉〉]} after the first itera-
tion of the repeat-loop. The argument list [〈〈a〉〉, 〈〈b〉〉, 〈〈c〉〉] is added to the domain
during the computation of MC2(ψ, [id, id, id]) in the corresponding variable case of the
algorithm MC2. In Row 2 it can be seen, that the argument list [〈〈a2〉〉, 〈〈b2〉〉, 〈〈c2〉〉] is
added to dom(env(X)) in the second iteration of the repeat-loop. This happens dur-
ing the computation of MC2(ψ, [〈〈a〉〉, 〈〈b〉〉, 〈〈c〉〉]). After the second iteration all nec-
essary arguments are included. The argument list [〈〈a3〉〉, 〈〈b3〉〉, 〈〈c3〉〉] occurs during
the computation of MC(ψ, [〈〈a2〉〉, 〈〈b2〉〉, 〈〈c2〉〉]), but it can be verified that J〈〈a2〉〉KTη =

J〈〈a3〉〉KTη , J〈〈b2〉〉KTη = J〈〈b3〉〉KTη and J〈〈c2〉〉KTη = J〈〈c3〉〉KTη . This means that the ar-
gument list [〈〈a3〉〉, 〈〈b3〉〉, 〈〈c3〉〉] is the same as [〈〈a2〉〉, 〈〈b2〉〉, 〈〈c2〉〉] semantically and
therefore not needed. In comparison of Row 3 and 4 it can be seen that no changes
happened, which means that the termination criterion of the repeat loop is fulfilled
and stability is reached. Therefore, the algorithm MC2 returns the value of [id, id, id]
of Row 4, which is {s3, s0} at this point.

Tab. 4.1 shows that the algorithm needed 3 argument lists to compute the value of
interest. For the LTS in Fig. 4.1 there exists a total of (24)24

functions of the form 2S →
2S . This means that in fact there is a total of ((24)24

)3 ≈ 6× 1057 possible argument
lists, which underlines the efficiency gained by adopting neededness analysis for
model checking HFL2.
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Iter. Arg. [id, id, id] [〈〈a〉〉, 〈〈b〉〉, 〈〈c〉〉] [〈〈a2〉〉, 〈〈b2〉〉, 〈〈c2〉〉]
0 ∅

1 {s3} ∅

2 {s3} {s0} ∅

3 {s3, s0} {s0} ∅

4 {s3, s0} {s0} ∅

TABLE 4.1: Fixpoint computation of example in Sec. 4.4.

4.5 Practical Optimizations of MC2 for HFL2

First of all it can be noticed, that the operators ∧, [ ] and ν do not occur in MC2. In
the way that the grammar of HFL is defined in Sec. 2.3 this is not necessary, but
would require all formulas that are applied to MC2 to use the correspondences given
in Sec. 2.3 instead of the above mentioned operators. To avoid this the algorithm MC2
should be supplemented by the corresponding cases in an actual implementation.

It was already mentioned that the values of functional arguments may only be needed
for certain arguments. However, the algorithm MC2 computes these arguments com-
pletely, which means that it performs unnecessary computations. But there are some
practical adjustments that can attenuate this efficiency gap:

One can distinguish between arguments of fixpoint formulas and λ formulas. In fact
the full information about a functional argument is only needed if it is applied to a
fixpoint variable or fixpoint formula to check for equality. Therefore a short case-
distinction can lead to computational improvements, especially if there is a high
number of different λ applications in a given formula. But this requires information
about the structure of the formula in application cases.

Arguments for a fixpoint formula are typically applied again in later iterations of
a fixpoint computation. In a practical context arguments, which are already com-
puted, should be identified and reused instead of recomputed.

Example 3. Consider the following formula.

ϕ = µF. λG1, G2. (G1 q) ∨ (G2 p q)(X (G2 p) G2)

An argument for G2 has to be of type • → • → •. Hence, in the first application it
would be evaluated for all [T1, T2] ∈ (2S )2. But in the next iteration of the fixpoint it
appears in G2 p as a new argument. Here it would be redundant to recompute it for
all possibilities of its second argument. It makes much more sense to use some kind
of interface for the original G2 argument, which simply fixes its first argument to q.

Another optimization is based on the underlying data-structure of dom(env(X)),
where X is a fixpoint variable. The main idea of the localization of a fixpoint com-
putation is to include only needed arguments, which are identified through their
dependencies regarding the value of interest. This means that the computed value
of one argument depends on the computed value of another argument. To illus-
trate this, consider the example from Sec. 3.3 again. In Tab. 4.2 the computation
of Tab. 3.1 is given. Additionally, dependencies between the values are marked
through arrows. Some of these arrows show that redundant computations happen
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Iter. Arg. {s2} {s1} {s3} {s6} ∅

0 ∅

1 {s2} ∅

2 {s2} {s1} ∅

3 {s0, s2} {s1} {s3} ∅

4 {s0, s2} {s1, s4} {s3} {s6} ∅

5 {s0, s2, s5} {s1, s4} {s3, s7} {s6} ∅

6 {s0, s2, s5} {s1, s4, s8} {s3, s7} {s6} ∅

7 {s0, s2, s5} {s1, s4, s8} {s3, s7} {s6} ∅

TABLE 4.2: Fixpoint computation with dependencies between argu-
ments.

in this computation. For instance, it can be seen that the value for {s2} in iteration
1 and 2 is computed with the same value of {s1}. This is a result from the fact that
in this example computation dom(env(X)) is considered as some sort of ordered
structure e.g. a list, where new found arguments are appended at the end. The
reason for this becomes clearer if these dependencies between values are reduced
to dependencies between the corresponding arguments. This is given in form of a
dependency graph for the included arguments in Fig. 4.2. This dependency graph
shows that it would be more efficient to add new found arguments at the beginning
of dom(env(X)), if it continues to be considered as a list. This is because it has a
chain-like structure starting from the node ∅, which is dependent on itself, and end-
ing at the node {s2}, which is ultimately dependent on the values for s1, s3, s6 and
∅. If this approach is adopted, the same computation can be performed with fewer
computations. This can be seen in the computation given in Fig. 4.3. There, a row
i || . . . s → s′; . . . , i ∈ {0, . . . , 5}, s, s′ ∈ dom(env(X)) denotes that the ar-
gument s is evaluated to s′ in the i-th iteration. Obviously, this computations needs
two iterations less than the original one. This shows that an ordering of included
arguments based on their dependency graph promises computational advantages
against a naive succession.

Another optimization related to dependencies between included arguments is up-
dating only the values of those arguments where the dependencies were updated. In
fact, this is part of the traditional neededness analysis approach, where in advanced
iterations of a fixpoint computation only those values are updated for which the val-
ues they depend on change [Jør94]. In Alg. 2 in the µ case it can be seen that in each
iteration of the repeat-loop all arguments of the domain of the global variable env
are updated. But considering Tab. 4.2 and Fig. 4.2 the value of the argument ∅ is
dependent on itself, which means that it is sufficient to compute it once, because the
value will not change in further iterations. And this would mean that the argument
{s6} has to be computed just once, too.

{s2} {s1} {s3} {s6} ∅

FIGURE 4.2: Dependency graph of arguments.
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0 {s2} → ∅
1 {s2} → ∅; {s1} → ∅
2 {s1} → {s1}; {s3} → ∅; {s2} → {s0, s2}
3 {s3} → {s3}; {s6} → ∅; {s1} → {s1, s4}; {s2} → {s0, s2, s5}
4 {s6} → {s6}; ∅→ ∅; {s3} → {s3, s7}; {s1} → {s1, s4}; {s2} → {s0, s2, s5}
5 ∅→ ∅; {s6} → {s6}; {s3} → {s3, s7}; {s1} → {s1, s4}; {s2} → {s0, s2, s5}

FIGURE 4.3: Optimized fixpoint computation.

In general such a dependency graph would be more complex than in the given ex-
ample and will not include binary dependencies only. In this case a broader ap-
proach could be helpful, where the computation of a fixpoint starts with collecting
all needed arguments first. With this an optimal ordering of the arguments could
be found, which allows avoiding redundancies in the following computation of the
fixpoint approximation.

It should be taken into considerations that the efficiency gain of most of the opti-
mizations discussed depends heavily on the actual applied formula. This means, it
should be decided situationally if and which adjustments of MC2 promise relevant
computational advantages.
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Chapter 5

Efficient Model Checking in
Higher-Order Fragments of HFL

5.1 Model Checking HFL with Neededness Analysis

As mentioned before the approach of the algorithms MC and MC2 for avoiding un-
necessary computations in a fixpoint computation is an adoption of the neededness
analysis approach of traditional data-flow analysis. The goal here is to only include
values that appear non-trivial in the computation of a fixpoint of interest [Jør94]. In
the context of a fixpoint computation, this means including needed arguments only.

Alg. 3 is an informal description of the functionality of the algorithms MC and MC2.
The input for this algorithm is a fixpoint formula µX.ψ, an initial argument list T0,
an LTS T over which the formula is evaluated and the corresponding environment
η. The output is the value of interest JµX.ψKTη (T0). It can be seen that such an algo-
rithm needs to initialize some sort of map MX first, which holds the approximation
of JµX.ψKTη created in the following. After this the algorithm starts with computing
this approximation, beginning with the computation of the value of JψKTη (T0). If a
new argument occurs during this it is added to MX and included in following itera-
tions. The algorithm terminates and returns the value of interest if nothing changes
anymore. This is checked by comparing the map MX with its snapshot SX, which is
created before the last iteration.

5.2 Efficient Model Checking HFL2 with Neededness Anal-
ysis

In the case of model checking the first-order fragment HFL1, the avoidance of un-
necessary computations, in other words, neededness analysis, is fully met by the
functionality of MC. In the case of HFL2, the algorithm MC2 only partially meets this
requirement. Indeed, unnecessary arguments are omitted, but necessary ones are
computed completely. Considering Alg. 3 this is needed in Line 7 to check if a new
argument for the fixpoint variable is already defined in the corresponding map and
therefore already included in the computation. However, the values of functional
arguments are only required for certain arguments.

Example 4. Consider following formula:

(µF.λG1, G2. ((G1 ◦ G2) p) ∨ F (G1 ◦ 〈〈a〉〉) (G2 ◦ 〈〈b〉〉)) id id
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Input: A fixpoint formula µX.ψ, a list of arguments T0, a LTS T and an
environment η.

Output: The value of JµX.ψKTη (T0).

1 initialize a map MX and set MX(T0) to ∅;
2 repeat
3 save snapshot SX of MX;
4 forall T defined in MX do
5 calculate value JψKTη ([T]) with MX replacing X begin
6 . . . ;
7 if undefined MX(T

′
) occurs then set MX(T

′
) to ∅;

8 . . . ;
9 end

10 update MX(T) with calculated value;
11 end
12 until MX equals SX;
13 return MX(T0)

Algorithm 3: Fixpoint computation in HFL with neededness analysis.

where ◦ := λF1, F2, X. F1 (F2 X), f ◦ g := ◦ f g, 〈〈x〉〉 := λX. 〈x〉X and id := λX. X.
Furthermore, let 〈〈x0〉〉 := id and 〈〈xn+1〉〉 := 〈〈xn〉〉 ◦ 〈〈x〉〉 and let ψ denote the for-
mula beneath the µ operator. Informally, this formula describes the property “There
exists a path of the form anbn for some n ∈N to a state where p is true.”. It can be seen that
in a fixpoint computation following the approach of Alg. 3 new arguments occur ac-
cording to the pattern [id, id], [〈〈a〉〉, 〈〈b〉〉], [〈〈a2〉〉, 〈〈b2〉〉], . . . and so on. Nevertheless,
regardless of the arguments currently applied to ψ, the value of G2 is only needed for
p and the value of G1 is only needed for the value of G2 p. Hence, a full computation
of the arguments for G1 and G2 is not necessary.

As seen in Ex. 4, to achieve a complete neededness analysis in HFL2 a weaker con-
cept of equality is needed, which avoids unnecessary computations of functional
arguments but still ensures correctness of a fixpoint computation.

Let≈ψ denote a relation between two possible arguments in a computation of JµX.ψKTη
with µX.ψ ∈ HFL2 for some argument T0 ∈ HFL1k. If T ≈ψ T′ holds for some
T, T′ ∈ HFL1k, then T′ can be omitted from the computation if T is included.

A first hypothesis for the definition of the relation ≈ψ is comparing two arguments
based on their actual occurrences within the fixpoint formula only. This would avoid
computing values of functional arguments for unnecessary arguments.

Hypothesis 1. Assuming that T, T′ ∈ HFL1k with T = [α1, . . . , αk] and T′ = [α′1, . . . , α′k]
are possible arguments in a computation of the value of JµX.ψKTη for some initial ar-

gument list. Then T ≈ψ T′ holds if and only if for all αi and α′i holds that their
occurring applications in ψ are equal.

Practically, this can be checked by applying T and T′ to ψ, saving the occurring ap-
plications as well as their values for each single argument in T and T′ and comparing
them afterward.
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Example 5. Consider the formula

(µF.λG1, G2. ((G1 ◦ G2) p) ∨ F (G1 ◦ 〈〈a〉〉) (G2 ◦ 〈〈b〉〉)) id id

again and the LTS in Fig. 5.1. In Tab. 5.1 the approach of Hyp. 1 is performed for this
example. Each row represents one of the variables G1, G2. Column 1 represents the
initial argument list respectively arguments and the small tables in the cells repre-
sent their applications. For example, the initial argument corresponding to G2 is id,
whose value is needed for {s2} only. Considering the formula this is correct, because
the value of the current argument for G2 is only needed for p, which in this LTS eval-
uates to {s2}. The arguments of Column 2 occur as arguments for the variable F if
[id, id] is applied to ψ. The arguments of Column 3 occur if the arguments of Column
2 are applied to ψ and so on. In fact, this is the scheme described in Alg. 3. It can
be verified that the applications listed in Column 4 and 5 are identical. Following
Hyp. 1 it is true that:

[〈〈a3〉〉, 〈〈b3〉〉] ≈ψ [〈〈a4〉〉, 〈〈b4〉〉]

which means that the argument list [〈〈a4〉〉, 〈〈b4〉〉] does not need to be included in
the computation if [〈〈a3〉〉, 〈〈b3〉〉] is already included. Taking a look at Fig. 5.1 this
is correct: The longest path of the form 〈anbn〉 is for n = 2, hence, all checks for the
existence of paths 〈an′bn′〉with n′ > 2 will return false, i.e., the empty set. This means
that including [〈〈a3〉〉, 〈〈b3〉〉] is necessary, but all argument lists up from [〈〈a4〉〉, 〈〈b4〉〉]
are redundant because they evaluate to the same values as [〈〈a3〉〉, 〈〈b3〉〉].

However, for a different example it turns out that Hyp. 1 is wrong.

Example 6. Consider the following formula:

(µF.λG1, G2. (G1 p) ∨ F G2 (G1 ◦ 〈〈b〉〉)) 〈〈a〉〉 〈〈a〉〉

Informally, this formula denotes the property “There is a path of the form 〈abn〉 for some
n ∈ N that leads to a state where p is true.” Due to the way the arguments are applied
to the variable F every possible path is checked twice. This is best understood if the
formula is unfolded to an infinite disjunction:

〈〈a〉〉 p ∨ 〈〈a〉〉 p ∨ 〈〈a〉〉〈〈b〉〉 p ∨ 〈〈a〉〉〈〈b〉〉 p ∨ 〈〈a〉〉〈〈b2〉〉 p ∨ 〈〈a〉〉〈〈b2〉〉 p ∨ . . .

This leads to the computation in Tab. 5.2 for the LTS in Fig. 5.1. It can be verified that
for this LTS the property is true for the set {s0, s4}. But the applications in Column
1 and Column 2 are equal, which means that an algorithm adopting Hyp. 1 would
not include the argument list of Column 2 in the computation. But then, according
to the scheme in Alg. 3, Column 3, 4 and 5 would not occur, which means that state
s4 is not considered. This would be incorrect and therefore the hypothesis must be
wrong.

The failure of Hyp. 1 shows that equality in the occurring applications of different
arguments is an insufficient relation. Alg. 3, Ex. 4 and Ex. 6 show that new occurring
arguments are in fact modifications, combinations or permutations of the initially
applied arguments. Therefore, a next idea is comparing two argument lists T and T′

based on the occurring applications of the initial arguments if T and T′ are applied
to the fixpoint formula.
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s0 s1 s2 p

s3s4s5s6

a b

b

baa

FIGURE 5.1: LTS with paths of the form 〈anbn〉.

Hypothesis 2. Assuming that T, T′ ∈ HFL1k are possible argument lists in the com-
putation of the value of JµX.ψKTη for some argument list T0 = [α1, . . . , αk]. Then

T ≈ψ T′ holds if and only if for all αi holds that the occurring applications of αi

in the application of T to ψ are the same as the occurring applications of αi in the
application of T′ to ψ.

Practically, the approach of Hyp. 2 is checked in almost the same way as for Hyp. 1:
Applying T and T′ to ψ, saving the occurring applications of the initial arguments
and comparing them afterward.

Example 7. Consider the formula

(µF.λG1, G2. (G1 p) ∨ F G2 (G1 ◦ 〈〈b〉〉)) 〈〈a〉〉 〈〈a〉〉

and the LTS in Fig. 5.1 again. Let ψ denote the formula beneath the µ operator.
In Tab. 5.3 the approach of Hyp. 2 is performed for this example. Each column
represents a possible argument list and each of the two rows stands for one of the
initial arguments. 〈〈a〉〉1 denotes the initial argument 〈〈a〉〉 for the variable G1 and
〈〈a〉〉2 the initial argument 〈〈a〉〉 for the variable G2. This index is also used to denote
where which initial argument occurs in the argument list currently considered e.g.
〈〈ab2〉〉1 includes 〈〈a〉〉1. The small table in a cell shows the applications of the initial
argument of this row, if the argument-list of this column is applied to the fixpoint
formula. It can be seen that with the column corresponding to [〈〈ab3〉〉1, 〈〈ab3〉〉2] the
applications of 〈〈a〉〉1 and 〈〈a〉〉2 start to repeat. Therefore, by Hyp. 2 it follows that

[〈〈ab3〉〉1, 〈〈ab3〉〉2] ≈ψ [〈〈ab4〉〉1, 〈〈ab4〉〉2] and [〈〈ab3〉〉2, 〈〈ab4〉〉1] ≈ψ [〈〈ab4〉〉2, 〈〈ab5〉〉1]

Considering the given LTS this is correct, because there exists no path 〈bn〉 with n >
2, which means there exists no path 〈abn〉with n > 2. Therefore, all arguments of G1
checking for such a path to {s2} must evaluate to the empty set and the argument
lists [〈〈ab4〉〉1, 〈〈ab4〉〉2] as well as [〈〈ab4〉〉2, 〈〈ab5〉〉1] can be omitted in the computation.

However, for a similar example it turns out that the approach of this hypothesis is
insufficient, too.

Example 8. Consider the following formula:

(µF.λG1, G2. (G1 p) ∨ F G2 (〈〈b〉〉 ◦ G1)) 〈〈a〉〉 〈〈a〉〉

and the LTS in Fig. 5.2. Let ψ denote the formula beneath the µ operator. In compar-
ison to the formula of Ex. 6 and Ex. 7 the only change in the formula above is that
the order of the composition of 〈〈b〉〉 and G1 changed. Hence, this formula describes
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s0 s1 s2 s3 pb b a

FIGURE 5.2: LTS with path of the form 〈b2a〉.

the property “There is a path of the form 〈bna〉 for some n ∈ N that leads to a state where
p is true.” Tab. 5.4 shows the occurring applications of the initial arguments for the
different possible argument lists. Following the approach of Hyp. 2, it can be seen
that:

[〈〈a〉〉1, 〈〈a〉〉2] ≈ψ [〈〈ba〉〉1, 〈〈ba〉〉2] and [〈〈a〉〉2, 〈〈ba〉〉1] ≈ψ [〈〈ba〉〉2, 〈〈b2a〉〉1]

This means an algorithm adopting the approach of this hypothesis omits the argu-
ment lists [〈〈ba〉〉1, 〈〈ba〉〉2] and [〈〈ba〉〉2, 〈〈b2a〉〉1]. But then the path 〈b2a〉 is not consid-
ered, which in fact is incorrect for the given LTS. Therefore, Hyp. 2 must be wrong.

In the failure of Hyp. 1 and Hyp. 2 it can be seen that partial computation is most
likely not sufficient for the definition of ≈ψ. Different variations of these two hy-
pothesis can be considered, but it should be taken into account that Hyp. 2 already
uses the atomic components of possible arguments in a fixpoint computation in
form of the initial arguments. This makes it unlikely that other approaches of this
form, which necessarily consider combinations or variations of the initial arguments,
promise success.
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[id, id] [〈〈a〉〉, 〈〈b〉〉] [〈〈a2〉〉, 〈〈b2〉〉] [〈〈a3〉〉, 〈〈b3〉〉] [〈〈a4〉〉, 〈〈b4〉〉]

G1
{s2}
{s2}

{s1, s3}
{s0}

{s4}
{s6}

∅
∅

∅
∅

G2
{s2}
{s2}

{s2}
{s1, s3}

{s2}
{s4}

{s2}
∅

{s2}
∅

TABLE 5.1: Table corresponding to Example 5.

[〈〈a〉〉, 〈〈a〉〉] [〈〈a〉〉, 〈〈ab〉〉] [〈〈ab〉〉, 〈〈ab〉〉] [〈〈ab〉〉, 〈〈ab2〉〉] [〈〈ab2〉〉, 〈〈ab2〉〉]

G1
{s2}

∅
{s2}

∅
{s2}
{s0}

{s2}
{s0}

{s4}
{s5}

G2

TABLE 5.2: Table corresponding to Example 6.

[〈〈a〉〉1, 〈〈a〉〉2] [〈〈a〉〉2, 〈〈ab〉〉1] [〈〈ab〉〉1, 〈〈ab〉〉2] [〈〈ab〉〉2, 〈〈ab2〉〉1] [〈〈ab2〉〉1, 〈〈ab2〉〉2]

〈a〉1
{s2}

∅
{s1, s3}
{s0}

{s4}
{s5}

〈a〉2
{s2}

∅
{s1, s3}
{s0}

[〈〈ab2〉〉2, 〈〈ab3〉〉1] [〈〈ab3〉〉1, 〈〈ab3〉〉2] [〈〈ab3〉〉2, 〈〈ab4〉〉1] [〈〈ab4〉〉1, 〈〈ab4〉〉2] [〈〈ab4〉〉2, 〈〈ab5〉〉1]

〈a〉1
∅
∅

∅
∅

〈a〉2
{s4}
{s5}

∅
∅

∅
∅

TABLE 5.3: Table corresponding to Example 7.

[〈〈a〉〉1, 〈〈a〉〉2] [〈〈a〉〉2, 〈〈ba〉〉1] [〈〈ba〉〉1, 〈〈ba〉〉2] [〈〈ba〉〉2, 〈〈b2a〉〉1] [〈〈b2a〉〉1, 〈〈b2a〉〉2]

〈a〉1
{s3}
{s2}

{s3}
{s2}

{s3}
{s2}

〈a〉2
{s3}
{s2}

{s3}
{s2}

TABLE 5.4: Table corresponding to Example 8.
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Chapter 6

Conclusion

6.1 Results

This thesis presented a symbolic model checker MC2 for HFL2 using neededness anal-
ysis. In the example computation of Sec. 4.4 it was shown that even for a simple LTS
and formula the adoption of neededness analysis for model checking HFL2 promises
major computational benefits compared to a naive approach. Furthermore, it can be
seen that there is not much difference between neededness analysis for model check-
ing HFL1 and HFL2, which suggests that an adaptation for higher order fragments
or complete HFL can be achieved in a similar way.

An actual implementation of the algorithm MC2 given in Alg. 2 can achieve further
computational advantages. The chosen data-structure for the map env and its inter-
nal sorting as well as informations about dependencies between included arguments
can reduce the number of necessary iterations of a fixpoint computation further. Ad-
ditionally, the neededness analysis idea can be extended such that not all included
arguments in a fixpoint computation are updated in each iteration, but only those,
whose dependencies were updated before.

Considering efficiency, this thesis showed that the algorithm MC2 has limitations.
Functional arguments need to be computed completely, even if their value is only
needed for certain arguments in the formula of interest. This is necessary to identify
which arguments need to be included and which do not need to be included in a
fixpoint computation. It was shown that it is most likely not sufficient to compute
corresponding arguments partially and compare them solely based on computed
values. Moreover, a more complex approach seems to be needed to further improve
the efficiency of a model checker for HFL2 with neededness analysis.

6.2 Outlook

Currently, there are three possible continuations of this work, which have already
been mentioned implicitly. Firstly, an actual implementation of the algorithm MC2 is
a topic of interest. This would not only give an efficient model checker for HFL2
at hand, but opens a way for more profound studies of its computational benefits
and drawbacks due to the unsolved problem regarding efficiency. Furthermore, the
practical optimizations discussed in Sec. 4.5 could be verified and extended.

Secondly, this neededness analysis approach is most likely applicable on even higher
order fragments. As it turns out, the structure of MC2 is quite similar to the structure
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of the algorithm MC by Axelsson and Lange. This is not surprising, since the algo-
rithm MC2 can be seen as an advancement of MC, however, it shows that the adopted
idea of neededness analysis works in more or less the same way for model check-
ing HFL2 as for model checking HFL1. This implies that the approach can be used
for model checking HFL with neededness analysis and that the corresponding algo-
rithm will not differ that much from MC2 respectively MC. A next step is investigating
this notion further.

Lastly, the problem of necessary complete computation of applied arguments un-
solved in this thesis should be addressed further. If it is considered to lift this ap-
proach to higher order fragments than HFL2, the drawbacks become bigger. This
results from the fact that in HFL2 arguments are at most functions between state
sets, but for instance in HFL3 they can be functions between these functions, which
are more expensive to compute. Therefore, an efficient evaluation of arguments be-
comes more relevant with the increasing order of fragments. In this context, the
insufficient approaches shown in this thesis are to be seen as a foundation for more
profound research of this problem.
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Appendix A

Fundamentals

In this appendix basic knowledge and short introductions for necessary fundamen-
tals are presented.

A.1 The modal µ-calculus

The modal µ-calculus is an extension of the propositional modal logic and todays
commonly used definition was given by D. Kozen in [Koz83], and a sufficient intro-
duction can be found in [BS01].

First we fix a set of atomic propositions P and a set of transitions { a−→, b−→, . . .} with
transition names from A. Additionally, we need a set V = {X, Y, ....} of variables.
The syntax of MMC is then defined as:

ϕ ::= p | X | ϕ ∨ ϕ | ¬ϕ | 〈a〉ϕ | µX.ϕ

where p ∈ P , a ∈ A and X ∈ V . µ denotes the least fixpoint operator and 〈〉 is called
diamond operator. In addition there are some standard abbreviations. Let ϕ and ψ be
formulas of MMC, then the following are formulas of MMC as well:

ϕ ∧ ψ := ¬(¬φ ∨ ¬ψ)

[a]ϕ := ¬〈a〉¬ϕ

νX.φ := ¬µX.¬ϕ[¬X/X]

where [¬X/X] means substituting every free occurrence of X with ¬X, [ ] is the box
operator and ν denotes the greatest fixpoint operator.

The expressiveness of MMC and its added value compared to propositional modal
logic becomes clear, taking a look at its actual semantics. To describe these we need
an environment η, which is a partial function V → 2S mapping each used variable to
a subset of the state set S . With such the semantics are described as follows:

JpKTη := {s ∈ S | p ∈ L(s)} J¬ϕKTη := S \ JϕKTη

Jϕ ∨ ψKTη := JϕKTη ∪ JψKTη J〈a〉ϕKTη := {s ∈ S | ∃t ∈ JϕKTη : s a−→ t}

JXKTη := η(X) JµX.ϕKTη :=
⋂
{T ⊆ S | JϕKTη[T/X] ⊆ T}

At this point it can be seen that the defining feature of MMC is the µ operator. This
operator provides semantics of recursive expressions, which allows a neat way of
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expressing usual temporal logic operators [BS01].

Example 9. Given the following MMC formula ϕ:

ϕ = µX.p ∨ 〈a〉X (A.1)

with p ∈ P and a ∈ A the name of the transition denoted by a−→. ϕ then expresses
the property ”There is an a-path where p holds”. This can best be seen by unfolding the
fixpoint formula to p ∨ 〈a〉p ∨ 〈a〉〈a〉p ∨ . . ., showing that each length of a possible
a-path is checked.

A.2 Simply typed λ-calculus

The simply typed λ-calculus is a typed form of the classical lambda calculus, which
is a model for computable functions. The prefix "simply" denotes that it has one
type-constructor only. It was first described by A. Church in [Chu40] and a detailed
description can be found in [Bar93].

Terms of the classical (untyped) λ-calculus are described by the grammar

f ::= x | λx. f | f f

where x is a term-variable. λx. f and f f are the two basic operations of the lambda
calculus: abstraction and application.

An abstraction is an expression of the form λx. f , where f is some kind of statement
possibly dependent on x. Intuitively this term represents the mapping x → f (x).

The application is an expression of the form f1 f2 which simply means applying f1
considered as some algorithm or function on the input f2. Application is left asso-
ciative, means f1 f2 f3 . . . fn is to be read as (. . . ( f1 f2) f3) . . . fn). If f1 = f2, means
they denote the same kind of object, f1 f2 would still be valid, which is a result of the
untyped lambda calculus being type-free.

Both operations in combination can intuitively be understood as (λx. f (x)) c = f (c)
which formally means

(λx. f [x])c = f [c/x]

thus the substitution of x in the expression f with c. This equation is called β-
conversion and is the only essential axiom of the lambda calculus.

As mentioned above the simply typed λ-calculus adds types with just one kind of
type-constructor→ to the untyped lambda calculus, hence we can skip the discus-
sion of the general typed lambda calculus here and start with this simplified type
system. To denote different types we range over σ, τ, . . .. Let A be a set of base-
types. Then the set of STLC-types is inductively defined as

τ ::= α | τ → τ α ∈ A

Furthermore → is defined to be right associative, which means that σ1 → σ2 →
. . .→ σn is to be read as (σ1 → (σ2 → . . .→ (σn−1 → σn)).
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To determine if a term is well-formed, there exist three typing rules

(1)
(x : σ) ∈ Γ
Γ ` x : σ

(2)
Γ ` f1 : (σ→ τ) Γ ` f2 : σ

Γ ` ( f1 f2) : τ
(3)

Γ, x : σ ` f : τ

Γ ` (λx. f ) : (σ→ τ)

the axiom (1), elimination (2) and the introduction (3) rule. A term of the form f : σ is
called statement and means that f has type σ. For a variable x the term x : σ is called
declaration. Γ is called context and represents a set of such declarations and Γ ` f : σ
denotes that f : σ is derivable from Γ.

A term is called well-typed if it is derivable from a context Γ with the given typing-
rules.
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