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Chapter 1

Introduction

Fixpoint logics play a major role in the area of formal logics in computer science and
can be regarded as a classical extension of other logics like first-order, propositional
or modal logic. The introduction of fixpoint operators to such logics enables the
expression of recursive properties, which is of fundamental interest in many fields of
formal computer science.

A well-known fixpoint logic is the Modal µ-Calculus (Lµ), usually considered in the
form given by Kozen [Koz83]. It possesses high expressive power and incorporates
other widely-studied logics like CTL∗ [Dam94]. Nevertheless, properties expressible
by a Lµ-formula are at most regular [JW96]. This gives room for modal logics with
the ability to express properties beyond regularity.

The Higher-Order Fixpoint Logic (HFL) is such a modal logic, which was first in-
troduced by Viswanathan and Viswanathan [VV04]. It subsumes a simply-typed
λ-calculus into the modal µ-calculus. From a semantic perspective this enables a
formula of HFL to describe higher-order objects, e.g. functions, besides base-type ob-
jects like sets. The model-checking problem of HFL is still decidable, but due to the
expressive power gained the problem is k-EXPTIME complete, where k corresponds
to the highest order of used types [ALS07].

Ususally, fixpoint formulas of Lµ (or HFL) are interpreted over Labeled Transition
Systems (LTS). Then, Kleene‘s fixpoint theorem states that their semantics can be
computed in an iterative fashion, which is not necessarily a finite iteration. Such an
iterative procedure leads to various questions regarding convergence. Examples here
are: ”What is the point of convergence for a specific fixpoint formula over a specific
LTS?” or ”Is finite convergence guaranteed for a fragment of (fixpoint) formulas over
some class of LTS?” and many more. These question belong to the recently studied
field of convergence behaviour of fixpoint formulas, definable in the modal µ-calculus
and modal logics in general. A short overview of results in this area is given in Sec. 1.1.

This work is concerned with the question whether the gap in expressive power of Lµ
and HFL comes with a gap in the convergence behaviour of fixpoint formulas of Lµ
and fixpoint formulas of HFL. A family of infinite words wn,m is investigated, which
witness a difference in the convergence behaviour of Lµ and HFL. The interpretation
of Lµ-formulas and HFL-formulas over infinite words is done with linear-time variants
Llinµ and HFLlin. Then, the difference between Lµ and HFL is described as follows: It
is suspected that the iteration of all fixpoints definable by a Llinµ -formula does converge
after a finite number of steps over all wn,m and that there are fixpoints definable by
an HFLlin-formula such that its iteration does not converge after a finite number of
steps for some wn,m. To formally capture this, a suitable convergence criterion, called



Chapter 1. Introduction 2

the finite convergence, is defined for a pair formula and structure. The iteration of a
fixpoint formula is done in a syntactic way in this work, which is called unfolding a
fixpoint formula. Then, a formula is said to be finitely converging over some structure
if there is some n-th unfolding of all fixpoint subformulas, starting with the innermost
and ending with the outermost, such that this unfolding equals the true semantics.
Futhermore, it is required that all unfolded subformulas are equal to their respective
true semantics as well. Such an n-th unfolding is semantically equal to a point of full
stability of a fixpoint iteration.

In the main part of this work it is shown that all alternation-free Llinµ -formulas are
finitely converging over all wn,m. Additionally, a strong conjecture that this also
implies the finite convergence of arbitrary Llinµ -calculus formulas over all wn,m is dis-
cussed. In contrast to this, this work presents rather simple examples of HFLlin-
formulas, which are not finitely converging for some wn,m. The work is divided into
the following parts:

• Chap. 2 defines all needed preliminaries. This includes basic syntactical and
semantical concepts as well as Lµ and the HFL with needed, existing results.
Furthermore, the simultaneous bottom-up unfolding and the finite convergence
of a formula are defined. A major part of the proofs in this work uses automata-
theoretic arguments. To do this, a model of Alternating Parity Automata (APA)
is defined and the well-known equivalence between Lµ and APA is established.
In the end, linear-time equivalents Llinµ , HFLlin and a corresponding APA inter-
pretation are introduced.

• Chap. 3 introduces the word-family wn,m. Besides the plain introduction, needed
properties of this family are discussed and formally captured.

• Chap. 4 proves that all alternation-free Llinµ -formulas are finitely converging over
wn,m. The proof is divided into two parts: First, the finite convergence is proven
for all Llinµ -formulas with just one kind of fixpoint operator, which are called
unipolar formulas. Then, this result is used to prove the finite convergence of all
alternation-free formulas. At the end of this chapter, a strong conjecture that
this also implies the general result is discussed. A formal proof lies beyond the
scope of this thesis.

• Chap. 5 gives examples of HFLlin-formulas without finite convergence for some
instances of wn,m. The presented formulas are from the first- and second-order
fragment of HFLlin, which correlates with the highest order of used types.

• Chap. 6 summarizes this works findings and discusses its implications for Lµ
and HFL. Furthermore, possible continuations of this work are presented.

1.1 Related Work

The main part of this work is concerned with the convergence of fixpoints definable
in the modal µ-calculus. One major line of research in this area is the problem of
closure ordinals, which is the least number of iterations a fixpoint formula needs to
converge across all structures. More precisely, the question asked is: “For which
ordinals does a formula exist with precisely this ordinal as closure ordinal?” There are
several partial results. Czarnecki [Cza10] has given a construction principle for every
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ordinal below ω2. Besides this result, an important contribution of Czarnecki’s work
to the problem of closure ordinals was the introduction of designated propositions,
which in combination lift the closure ordinal of a formula. Afshari and Leigh [AL13]
generalized this idea and proved that w2 is a tight upper bound for closure ordinals
of the alternation-free fragment of the modal µ-calculus. Another generalization of
Czarnecki’s idea was given by Gouveia and Santocanale [GS19]. In this work it was
proven that ω1 is a closure ordinal and that the set of closure ordinals is closed under
ordinal sum. The problem of closure ordinals for the two-way modal µ-calculus was
investigated by Milanese and Venema [MV19]. This work proves that all ordinals
below ωω are closure ordinals in the two-way setting.

Considering the question of closure ordinals as a decision problem, there is the well-
known result of Otto [Ott99] stating that it is decidable whether a modal µ-calculus
formula is equivalent to a formula in (basic) modal logic. A direct implication is that
the question if a formula has a finite closure ordinal is decidable as well. Further-
more, it was shown by Blumensath, Otto and Weyer [BOW14] that it is decidable
for MSO-formulas if there is a finite closure ordinal over the class of infinite trees.
Besides the fact that bisimulation-invariant MSO coincides with the modal µ-calculus
[JW96] over transition systems, this work is of interest as it makes use of special
weighted automata, lately called distance parity automata [CL08]. This model offers
an interesting concept to argue about approximative semantics.
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Chapter 2

Preliminaries

This chapter defines fundamentals, needed in the context of this work. Sec. 2.1 intro-
duces basic structures like words, trees, transition systems and linear-time structures.
The Modal µ-Calculus (Lµ) and related definitions are given in Sec. 2.2. This includes
its syntax, its semantics, an alternation hierachy, the unfolding of fixpoint formulas,
the concept of finite convergence and guardedness of Lµ-formulas. Sec. 2.3 presents
the Higher-Order Fixpoint Logic (HFL) in sufficient detail. This includes its type
system, syntax and semantics. Furthermore, a hierachy of fragments HFLk is de-
fined, depending on the highest order of used types, and a connection between Lµ
and the base-type fragment HFL0 is established. In Sec. 2.4 is introduced a model
of Alternating Parity Automata (APA) and the semantic equivalence of Lµ-formulas
and APAs is recapped. The given APA model is tailored to this purpose. Sec. 2.5
presents linear-time variants for Lµ, HFL and APAs, which allow arguing about these
concepts on infinite words instead of (linear-time) structures.

2.1 Structures

2.1.1 Words and Trees

Throughout this work, an alphabet is assumed to be finite and usually referred to by
Σ.

Definition 2.1.1. Let Σ be an alphabet. A finite word w over Σ is a sequence
x0 x1 · · · xk−1 with k ∈ N such that xi ∈ Σ for all i ∈ {0, . . . , k− 1}. An infinite word
w over Σ is an infinite sequence x0 x1 · · · such that xi ∈ Σ for all i ≥ 0.

The set of all finite words over some alphabet Σ is denoted by Σ∗ and the set of all
infinite words by Σω. The set of prefixes pre(w), the set of infixes inf(w) and the set
of suffixes suff(w) of w are defined as

• pre(w) = {v ∈ Σ∗ | there is u ∈ Σω such that vu = w},

• inf(w) = {v ∈ Σ∗ | there are u ∈ Σ∗, u′ ∈ Σω such that uvu′ = w},

• suff(w) = {v ∈ Σω | there is u ∈ Σ∗ such that uv = w},

where the concatenation of two words u and v is denoted by uv. Note, this concate-
nation is not defined if u ∈ Σω. Let w = x0 x1 · · · . The i-th letter xi is addressed by
w(i), the prefix x0 · · · xi is denoted by w[: i], the infix xi · · · xj by w[i : j] and the
suffix xi xi+1 · · · by w[i :]. If w ∈ Σ∗ these definitions are given analogously.
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Figure 2.1: Visualisation of two LTS (T , s0) and K. The LTS T
shows several relations and propositions and K is in fact a linTS.

Definition 2.1.2. Let Σ be an alphabet. A Σ-labeled tree is a partial function
t : N∗ → Σ, which satisfies the following conditions:

• t is prefix-closed, which means that if t is defined for some v ∈ N∗ and u ∈ N∗
is a prefix of v then t is defined for u.

• t is left-closed, which means that if t is defined for some vi ∈ N∗ and i > 0 then
t is defined for v(i− 1).

If v ∈ N∗ is defined in a tree t it is called a node of t. For every non-empty tree it
holds that ε ∈ N∗ is a node, which is called the root. Some node vi ∈ N∗ is called a
child of v and v is called the parent of vi. A branch in a tree t is a possibly infinite
sequence t(v0) t(v1) · · · such that v0 = ε and for all vi+1 with i ≥ 0 it holds that
vi+1 = vij such that vij is a node in t. Thus, a branch of t can be interpreted as an
(infinite) word over the alphabet Σ. All nodes u, v ∈ N∗ in a tree are said to be on
one level if |u| = |v|. For the length i ∈ N the corresponding level is called the i-th
level of ρ. A finite tree ρ is said to be of height k if the maximum level of ρ is the
k-th. This is denoted by height(k).

2.1.2 Labeled Transition Systems

Definition 2.1.3. Let A, P be countable sets of symbols. A Labeled Transition
System (LTS) is a tuple T = (S, { a−→ | a ∈ A}, L), where S is a finite set of states,
each a−→ describes a binary relation a−→ ⊆ S × S of transitions, and L is a labeling
function of type S → 2P , which assigns a set of propositions to each state.

Let T be an LTS. The abbreviation s a−→ t denotes (s, t) ∈ a−→ and t is called an
a-successor of s respectively s an a-predecessor of t. Sometimes T is considered with
some designated state s0 ∈ S, called the initial state. This is denoted by (T , s0).

Usually, an LTS is visualized as given in Fig. 2.1. States are depicted as circles and
relations as directed edges. If states are named, the name is written inside the circle.
For the LTS T it holds that S = {s0, s1, s2}. Valid propositions are written outside
the circle. For instance, it holds that L(s1) = {p, q}. Edges are named as well, to
clarify to which relation they belong. The LTS T includes two relations a−→ and b−→.
An initial state, if it exists, is denoted by an unique directed edge with no starting
point. In the case of T it is the state s0.

A special class of LTS are the so called linear-time structures.
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Definition 2.1.4. Let P be a countable set of propositions. A Linear-Time Structure
(linTS) is a special kind of labeled transition system defined as (N, {(i, i + 1) | i ∈
N},K), where the state set is the set of natural numbers N, the only relation is the
usual successor relation on N and K is a labeling function N→ 2P .

A linear-time structure is completely defined by its labeling function K. Therefore, a
linTS is referred to by its labeling function K throughout this work. As for the case of
general LTS, the tuple (K, i) with i ∈ N denotes a linear-time structure with specified
initial state i. An example is given in Fig. 2.1 in the form of the linTS K.

Remark 2.1.5. Let w ∈ Σω be an infinite word. The corresponding linear-time
structure Kw is defined as the function Kw : N→ Σ with i 7→ xi, where xi is the i-th
letter in w and Σ is interpreted as a set of propositions.

Let K : N → 2P be a linear-time structure. The corresponding infinite word wK is
defined as the infinite sequence K(0)K(1) · · · over the alphabet 2P .

2.2 The Modal µ-Calculus

2.2.1 Syntax

Definition 2.2.1. Let P be a countable set of propositions, A be a countable set
of actions and V be a countable set of variables. A formula ϕ is a modal µ-calculus
formula (ϕ ∈ Lµ) if it is producible by the following grammar:

ϕ ::= p | ¬p | x | ⊥ | > | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | µx. ϕ | νx. ϕ,

where p ∈ P , a ∈ A and x ∈ V .

Throughout this work it is assumed that a variable x occurring in a formula ϕ is
bound by µ or ν at most once and every bound variable in ϕ occurs in the scope of
its binding operator only. This property is called well-namedness. A variable is called
free in ϕ if it occurs unbound and ϕ is called a sentence if no free variables occur in ϕ.
Let ϕ,ψ ∈ Lµ be formulas. The abbreviation ϕ[ψ/x] denotes the Lµ-formula which is
obtained by simultaneously replacing every free occurrence of x in ϕ with ψ. The set
of subformulas sub(ϕ) of ϕ is defined recursively as

sub(ϕ) =



{ϕ} if ϕ = p, x,⊥,>,
{ϕ} ∪ {p} if ϕ = ¬p,
{ϕ} ∪ sub(ψ1) ∪ sub(ψ2) if ϕ = ψ1 ∨ ψ2, ψ1 ∧ ψ2,

{ϕ} ∪ sub(ψ) if ϕ = 〈a〉ψ, [a]ψ,

{ϕ} ∪ sub(ψ) if ϕ = µx. ψ, νx. ψ.

The size of a formula |ϕ| is the amount of distinct subformulas, formally defined as
|ϕ| = |sub(ϕ)|.
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The modal-depth of a formula ϕ is denoted by md(ϕ) and is defined as

md(ϕ) =


0 if ϕ = p, x,⊥,>,
1 + md(ψ) if ϕ = 〈a〉ψ, [a]ψ,

max(md(ψ1),md(ψ2)) if ϕ = ψ1 ∨ ψ2, ψ1 ∧ ψ2,

md(ψ) if ϕ = σx. ψ.

The abbreviation σx. ψ denotes a Lµ-formula where σ ∈ {ν, µ}. Given a fixpoint
variable x, which is bound in some formula ϕ, its fixpoint formula σx. ψ ∈ sub(ϕ) is
denoted by fpϕ(x). A formula ϕ is called a σ-unipolar if for all σ′x. ψ ∈ sub(ϕ) it
holds that σ′ = σ. If the actual σ is not relevant ϕ is simply called unipolar. The
(fixpoint) nesting-depth of a formula ϕ is denoted by nd(ϕ) and defined recursively
as

nd(ϕ) =


0 if ϕ = p, x,⊥,>, 〈a〉ψ, [a]ψ,

max(nd(ψ1), nd(ψ2)) if ϕ = ψ1 ∨ ψ2, ψ1 ∧ ψ2,

1 + nd(ψ) if ϕ = σx. ψ.

2.2.2 Alternation Hierarchy

The set of Lµ-formulas defines an infinite hierachy, expressing the degree of nesting of
least and greatest fixpoints. The following definition was first introduced by Niwiński
[Niw86]. There are other alternation hierarchy definitions, for instance the hierar-
chy given by Emerson, Lei [EL86]. However, Niwiński’s definition is used commonly
becuase it better captures the interdependence between least and greatest fixpoints.

Definition 2.2.2. Let ϕ be a Lµ-formula. The alternation depth of ϕ is the least
n (ad(ϕ) = n) such that ϕ ∈ Σn+1 ∩ Πn+1. For all n ∈ N the sets Σn and Πn are
inductively defined:

• Σ0,Π0 are the sets of Lµ-formulas such that for every ϕ ∈ Σ0 and ϕ ∈ Π0 it
holds that: There is no formula σx. ψ for some variable x and ψ ∈ Lµ in sub(ϕ).
It holds that Σ0 = Π0 and besides formulas with free occurring variables these
sets are equal to the set of modal logic formulas.

• Σn+1 is defined as the least set that includes Σn ∪ Πn and is closed under the
following rules:

1. If ϕ,ψ ∈ Σn+1 and a ∈ A then ϕ ∨ ψ,ϕ ∧ ψ, 〈a〉ϕ, [a]ϕ ∈ Σn+1.
2. If ϕ ∈ Σn+1 and x is a variable then µx. ϕ ∈ Σn+1.
3. If ϕ,ψ ∈ Σn+1 and x ∈ V then ϕ[ψ/x] ∈ Σn+1 provided that no fixpoint

operator in ϕ binds a free variable in ψ.

• Πn+1 is defined analogously. Instead of closure under the least fixpoint operator
(2.) it demands closure under the greatest fixpoint operator.

A formula ϕ ∈ Lµ is called alternation-free if ad(ϕ) ≤ 1. Informally, a formula ϕ is
alternation-free if there is no fixpoint variable x which is bound by σx.ψ ∈ sub(ϕ),
such that x occurs in ψ′ of a subformula σ′x′.ψ′ ∈ sub(ϕ) such that σ 6= σ′. This
excludes all formulas with mutually dependent least and greatest fixpoint formulas.
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Example 2.2.3. Let ϕ1 = µx. (νy. p∧ [b]y)∨ 〈a〉x and ϕ2 = νy. µx. (p∧ 〈a〉y)∨ 〈a〉x.
Informally, ϕ1 expresses the property “there is an a∗-successor such that from there on
all b-paths satisfy p” and ϕ2 expresses the property “there is an a-path on which there
are infinitely many states where p holds”. The formula ϕ1 has an alternation-depth of
1 as there are two fixpoint-formulas in sub(ϕ1), but the variable of the outer does not
occur in the scope of the inner. Thus, ϕ1 is alternation-free. The formula ϕ2, on the
other hand, is a canonical example for a formula of an alternation-depth of 2. The
reason for this is that the greatest fixpoint variable y occurs in the scope of the least
fixpoint µx. (p ∧ 〈a〉y) ∨ 〈a〉x.

2.2.3 Semantics

Definition 2.2.4. Let T be an LTS, η be a mapping V → 2S called environment and
ϕ a Lµ-formula. The semantics of ϕ regarding T and η, denoted by JϕKTη , are defined
inductively:

JpKTη := L(p) J¬pKTη := S \ L(p)

JxKTη := η(x) J⊥KTη := ∅ J>KTη := S

Jψ1 ∨ ψ2KTη := Jψ1KTη ∪ Jψ2KTη Jψ1 ∧ ψ2KTη := Jψ1KTη ∩ Jψ2KTη
J〈a〉ψKTη := {s ∈ S | there is t ∈ S such that s a−→ t and t ∈ JψKTη }
J[a]ψKTη := {s ∈ S | for all t ∈ S with s a−→ t holds t ∈ JψKTη }

Jµx. ψKTη :=
⋂
{U ⊆ 2S | JψKTη[x 7→U ] ⊆ U}

Jνx. ψKTη :=
⋃
{U ⊆ 2S | JψKTη[x 7→U ] ⊇ U}.

The update η[x 7→ U ] of η maps x to U and everything else according to η.

Note that the powerset of a set forms a complete lattice. Following this, the Knaster-
Tarski Theorem [Tar+55] ensures the existence of least and greatest fixpoints for
monotonic formulas. As Def. 2.2.1 only allows negations in front of atomic proposi-
tions, the existence of fixpoints in the definition of Jµx. ψKTη and Jνx. ψKTη is guaran-
teed. Let T be an LTS. If a state s is an element of JϕKTη it is said that s satisfies ϕ.
A set of states U ⊆ S is said to be definable by ϕ ∈ Lµ if it holds that JϕKTη = U .

2.2.4 Fixpoint Unfolding and Finite Convergence

From Kleene’s fixpoint theorem it is known that the semantics of a fixpoint defin-
able by a Lµ-formula can be approximated iteratively. Ususally, these iterations are
considered beyond finitely many steps. To do this, the concept of ordinal numbers is
used.

Definition 2.2.5. Let σx.ψ ∈ Lµ be a fixpoint formula, T an LTS, η an environment,
α a limit ordinal. The α-th approximation of the formula Jσx.ψKTη is denoted by
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Jσx.ψ, αKTη and defined as

Jµx.ψ, αKTη :=


∅ if α = 0,

JψKT
η[x 7→Jµx.ψ,βKTη ]

if α = β + 1,⋃
β<αJσx.ψ, βK

T
η if α is a limit ordinal and

Jνx.ψ, αKTη :=


S if α = 0,

JψKT
η[x 7→Jµx.ψ,βKTη ]

if α = β + 1,⋂
β<αJσx.ψ, βK

T
η if α is a limit ordinal.

As noted in Sec. 2.2.3, every ψ of a fixpoint formula µx. ψ can be seen as a monotonic
function ψ(x) : 2P → 2P , which leads to the convergence of the value of Jσx. ψ, αKTη
with increasing α and thus for every fixpoint formula σx. ψ, LTS T and η there is a
least ordinal α such that Jσx. ψ, αKTη = Jσx. ψ, α + 1KTη = Jσx. ψKTη . If there is such
least α across all LTS it is called the closure ordinal of σx. ψ.

This notion of fixpoint iteration can be generalized in the sense that each fixpoint
defined by subformula is iteratively approximated as well.1 There is a semantic and
a syntactic way to define this. As this work is only interested in iterations below
ω, it is more convenient to use the syntactic variant and restricting the iteration
to finite steps, which is then called the unfolding of a formula. Therefore, let s =
(c0, c1, . . . , ck−1) be a tuple such that ci ∈ N. An update of s is denoted by s[d/ci],
which is defined as (c0, c1, . . . , ci−1, d, ci+1, . . . , ck−1). The update (s+ i) is defined as
the tuple s+ i = (c0 + i, c1 + i, . . . , ck−1 + i).

Definition 2.2.6. Let ϕ be a Lµ-formula and {x0, . . . , xk−1} the set of all pairwise
different fixpoint variables in ϕ. The formula ϕs denotes the an unfolding of ϕ specified
by s, which is defined as

ps := p, (¬p)s := ¬p, xs := x,

⊥s := ⊥, >s := >, (ψ1 ∨ ψ2)s := ψs1 ∨ ψs2,
(ψ1 ∧ ψ2)s := ψs1 ∧ ψs2, (〈a〉ψ)s := 〈a〉(ψs), ([a]ψ)s := [a](ψs),

(σxi. ψi)
s :=


⊥ if ci = 0 and σ = µ,

> if ci = 0 and σ = ν,

(ψi[(σxi. ψ)s[ci−1/ci]/xi])
s[0/ci] if ci > 0.

This formalizes the notion of simultaneously unfolding each fixpoint in ϕ from the
innermost to the outermost. The bottom-up approach avoids the duplication of inner
fixpoint formulas while unfolding outer ones. If it holds that c0 = c1 = · · · = ck−1 = n
the corresponding tuple (c0, . . . , ck−1) is simply denoted by n.

Example 2.2.7. Consider the formula ϕ = µx0. (νx1. p ∧ [b]x1) ∨ 〈a〉x0. Apart from
different designations, this is the same formula as ϕ1 of Ex. 2.2.3. Per definition the
unfolding ϕ2 is given by((

(νx1. p ∧ [b]x1) ∨ 〈a〉x0

)[
(µx0. (νx1. p ∧ [b]x1) ∨ 〈a〉x0)(1,2)/x0

])(0,2)
.

1It should be mentioned that the definition in [AL13] seems suitable for this purpose, but is flawed
when considering nested fixpoints.
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The two times unfolding of (νx1. p∧ [b]x1)∨〈a〉x0 is defined as p∧ [b](p∧ [b]>)∨〈a〉x0.
This means that (µx0. (νx1. p ∧ [b]x1) ∨ 〈a〉x0)(1,2) = p ∧ [b](p ∧ [b]>) ∨ 〈a〉⊥. In
conclusion ϕ2 is equal to

p ∧ [b](p ∧ [b]>) ∨ 〈a〉(p ∧ [b](p ∧ [b]>) ∨ 〈a〉⊥).

It can be seen that a state satisfies this formula if it or a direct a-successor satisfies
p ∧ [b]p. This corresponds to the notion of proceeding exactly two iterations of the
least and two of the greatest fixpoint.

If a unipolar formula ϕ is considered then the monotonicity properties of a single
fixpoint iteration are transferred to the unfolding.

Lemma 2.2.8. Let ϕ ∈ Lµ be a σ-unipolar formula, T an LTS and η an environment.
It holds that Jϕ0KTη ⊆ Jϕ1KTη ⊆ · · · ⊆ JϕKTη if σ = µ and Jϕ0KTη ⊇ Jϕ1KTη ⊇ · · · ⊇ JϕKTη
if σ = ν.

Proof. The proof is done for the σ = µ case. For the case σ = ν the proof works in
the same way, using dual arguments. W.l.o.g. it is assumed that ϕ = µx0. ψ0 and that
there are k distinct fixpoint subformulas in ϕ. The proof is done by induction on the
nesting-depth of µx0. ψ0.

If nd(µx0. ψ0) = 1 the statement is a result of the monotonicity of the usual iteration
of a single, least fixpoint.

Assume that nd(µx0. ψ0) = n + 1 and that the statement is valid for all formulas of
nesting-depth up to n. Fix c1 = c2 = · · · = ck−1 = i. By induction it is shown for
each case of c0 that J(µx0. ψ0)sKTη ⊆ J(µx0. ψ0)(s+1)KTη and J(µx0. ψ0)sKTη ⊆ Jµx0. ψ0KTη .
With c0 = i this implies the statement of the lemma for this case.

The case c0 = 0 is straightforward. Assume that s = (l + 1, c1, . . . , ck−1) and that
J(µx0. ψ0)s

′KTη ⊆ J(µx0. ψ0)(s′+1)KTη and J(µx0. ψ0)s
′KTη ⊆ Jµx0. ψ0KTη hold for s′ =

(l, c1, . . . , ck−1). It holds that (µx0. ψ0)s = (ψ0[(µx0. ψ0)s[l/c0]/x0])s[0/c0] and that
nd(ψ0[(µx0. ψ0)s[l/c0]/x0]) ≤ n. Then, by induction on the nesting-depth it is implied
that

J(ψ0[(µx0. ψ0)s[l/c0]/x0])s[0/c0]KTη ⊆ J(ψ0[(µx0. ψ0)s[l/c0]/x0])(s+1)[0/c0]KTη .

Note that ψ0 is monotonic in x0 and s[l/c0] = s′. Thus, by induction on c0 follows
that

J(ψ0[(µx0. ψ0)s[l/c0]/x0])(s+1)[0/c0]KTη ⊆ J(ψ0[(µx0. ψ0)s
′+1/x0])(s+1)[0/c0]KTη

= J(ψ0[(µx0. ψ0)(s+1)[l+1/c0]/x0])(s+1)[0/c0]KTη ,

which is the same as J(µx. ψ)s+1KTη . The statement J(µx0. ψ0)sKTη ⊆ Jµx0. ψ0KTη is
proven in the same way.

Similar to the iteration of a single fixpoint, a stability criterion can be defined for
the unfolding of a formula ϕ. As the unfolding also considers subformulas, it is not
sufficient to solely demand semantic equivalence of ϕ and some unfolding ϕn. Ad-
ditionally, the unfolding of a subformula must be equivalent to its true semantics as
well, provided that free occurring fixpoint variables are mapped to their true seman-
tics. For a subformula σx. ψ ∈ sub(ϕ) of some ϕ ∈ Lµ let ηx be the update of an
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Figure 2.2: Visualisation of the semantics of unfoldings ϕ1
1, ϕ

2
1, ϕ

3
1

and ϕ4
1 of ϕ1 of Ex. 2.2.10 over the given LTS T1. Filled states are
included in the respective semantics, unfilled are not.

environment η, which maps every fixpoint variable x′, x′ 6= x that occurs freely in ψ
and to Jσ′x′.ψ′KTηx′ with fpϕ(x′) = σ′x′.ψ′. If there is no such variable it holds that
ηx = η.

Definition 2.2.9. Let ϕ ∈ Lµ be a formula, T an LTS and η an environment. The
formula ϕ is called finitely converging over T if there is n such that JϕnKTη = JϕKTη and
for all σx. ψ ∈ sub(ϕ) it holds that J(σx. ψ)nKTηx = Jσx. ψKTηx . The set of all finitely
converging Lµ-formulas over T is denoted by FC(T ).

Informally, if ϕ ∈ FC(T ) it means that there is n such that the maximum amount
of unfoldings needed for any fixpoint subformula in ϕ to reach its true semantics is n
times, provided that outer fixpoints are stable already.

Example 2.2.10. Consider ϕ1 = µx0. (νx1. p∧ [b]x1)∨ 〈a〉x0 of Ex. 2.2.7 again. The
semantics of the first four unfoldings of ϕ1 regarding LTS T1 are depicted in Fig. 2.2.
The unfolding ϕ0

1 is left out as its semantics are trivial. There are a two things
to take from this example. Firstly, in general there are no monotonicity properties
regarding the semantics of unfoldings. This can be seen in the difference of Jϕ1

1K
T1
η

and Jϕ2
1K
T1
η . The reason for this is the nesting of greatest and least fixpoint formulas

in ϕ1. Secondly, it can be seen that with unfolding ϕ4
1 the semantics become stable.

This is not a sufficient criteria for the finite convergence of ϕ1, but with its simple
form comes that ϕ4

1 is also a point of finite convergence of ϕ1 over T1.

Consider now the formula ϕ2 = µx. p∨〈a〉x and the LTS T2 in Fig. 2.3. The increasing
distances between states with proposition p leads to Jϕn2 KT2η 6= Jϕn+1

2 KT2η for all n ∈ N
This implies that ϕ2 is not finitely converging over T2.

2.2.5 Guardedness

Definition 2.2.11. Let ϕ be a Lµ-formula. ϕ is called a guarded formula if every
occurrence of a fixpoint variable x ∈ sub(ϕ) is in the scope of some modality operator
〈a〉 or [a] which occurs inside fpψ(x).

Correspondingly, a fixpoint-variable x is called guarded if it occurs under the scope
of some modality operator which occurs inside fpϕ(x).
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It is well-known that for every Lµ-formula there is an equivalent guarded one [Wal00],
but all known translations come with an exponential blowup in the size of the formula
as shown in [BFL15]. The translation principles given by Kupferman et al. [KVW00]
and Mateescu [Mat02] rely on two principles. These are presented here again as later
given proofs make use of the transformation in detail.

The first principle is the observation that unfolding a fixpoint formula does not change
its true semantics.

Proposition 2.2.12. Let σx. ψ ∈ Lµ be a fixpoint formula. For every LTS T and
environment η it holds that Jσx. ψKTη = Jψ[(σx. ψ)/x]KTη .

The second principle needs some specifications: For a fixpoint formula σx. ψ ∈ Lµ
let σ̂ be ⊥ if σ = µ and > if σ = ν. An occurrence of a variable x is called weakly-
guarded if it is is guarded or under the scope of another fixpoint quantifier which is
inside fpϕ(x). The second principle is then given by the observation that replacing not
weakly-guarded occurrences of x in a fixpoint formula σx. ψ with σ̂ does not change
its semantics.

Proposition 2.2.13. Let σx. ψ ∈ Lµ and let σx. ψ′ be the result from replacing every
occurrence of x which is not weakly-guarded in ψ by σ̂. Then it holds for all LTS T
and environments η that Jσx. ψKTη = Jσx. ψ′KTη .

An Lµ-formula can then be transformed into an equivalent guarded formula by ap-
plying these principles in a bottom-up approach to all fixpoint subformulas σx. ψ.
In each step lower fixpoint formulas are unrolled once and then remaining weakly-
guarded occurrences of x are replaced with σ̂. This ensures guardedness and does not
change the semantics as seen in the propositions above.

Example 2.2.14. Consider the unguarded formula ϕ = νx. (µy. (p ∧ x) ∨ 〈a〉y) ∧
(µz. (q ∧ [a]x) ∨ z) ∧ x. The sole purpose of this formula is to demonstrate how the
guarding procedure works. The first step in the guarding procedure considers inner-
most fixpoint subformulas and replaces all unguarded occurrences of their respective
fixpoint variable with σ̂. In the case of ϕ innermost fixpoint subformulas are fpϕ(y)
and fpϕ(z). After the first step the formula ϕtmp is given by

ϕtmp = νx. (µy. (p ∧ x) ∨ 〈a〉y) ∧ (µz. (q ∧ [a]x) ∨ ⊥) ∧ x.

Nothing changed from fpϕ(y) to fpϕtmp(y) as there is no unguarded occurrence of y
in fpϕ(y). The unguarded occurrence of z in fpϕ(z) was replaced by ⊥ in fpϕtmp(z).
Consider now the outer fixpoint formula fpϕtmp(x). First, each inner fixpoint formula
is unrolled once, which gives

ϕtmp2 = νx. ((p ∧ x) ∨ 〈a〉(µy. (p ∧ x) ∨ 〈a〉y)) ∧ ((q ∧ [a]x) ∨ ⊥) ∧ x.

Two things are to be noted here: Firstly, the already ensured guardedness of all
y occurrences in ϕtmp ensures that all x ∈ fpϕtmp2

(y) are guarded. Secondly, as all
occurrences of z vanished in the previous steps it follows that the subformula fpϕtmp(z)
is not present in ϕtmp2 . The last step in this example is to replace all not weakly-
guarded occurrences of x in ϕtmp2 . This gives the guarded variant ϕ′ of ϕ, which is
defined as

ϕ′ = νx. ((p ∧ >) ∨ 〈a〉(µy. (p ∧ x) ∨ 〈a〉y)) ∧ ((q ∧ [a]x) ∨ ⊥) ∧ >.
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Figure 2.3: LTS T2 with increasing distances between two occur-
rences of p. The formula ϕ2 of Ex. 2.2.10 is not finitely converging

over this structure.

2.3 Higher-Order Fixpoint Logic

Higher-Order Fixpoint Logic (HFL) is an extension of the modal µ-calculus, incor-
porating a simply-typed λ-calculus. This lifts its expressional power to higher-order
objects, but brings with it the need for a type system.

2.3.1 Higher-Order Types

Definition 2.3.1. τ is an HFL-type if it is producible by the following grammar:

τ ::= • | τv → τ

where v ∈ {+,−, 0} is called variance, • is the base-type. All other derivable types
are called function-types.

If not further stated, a HFL-type is simply called type. For two given types τ, τ ′

the variance v in τv → τ ′ denotes whether the argument is used monotonically (+),
anti-monotonically (−) or in an arbitrary way (0). The arrow operator → is right-
associative, which means that each function type is isomorphic to one of the form
τ1 → · · · → τn → • for some n ∈ N.

The order of a type is defined inductively: ord(•) = 0, ord(τv → τ ′) = max(ord(τ) +
1, ord(τ ′)).

Definition 2.3.2. Let T be a labeled transition system. The semantics T JτK of a
type τ over T is defined inductively as

T J•K := (2N,v•),
T Jτv → τ ′K := (T JτKv → T Jτ ′K,vτv→τ ′),

where (S,≤)+ = (S,≤), (S,≤)− = (S,≥) and (S,≤)0 = (S,≤)+ ∩ (S,≤)− for some
order ≤. T JτKv → T Jτ ′K is the set of monotonic functions from T JτKv to T Jτ ′K. The
order v• denotes the usual set inclusion ⊆, and vτv→τ ′ is the pointwise ordering of
functions from T JτKv to T Jτ ′K: f vτv→τ ′ g iff for all x ∈ (T JτK)v we have f(x) vτ ′
g(x).

It is a well-known fact that the power set of a set ordered by inclusion forms a complete
lattice. Let L = (S,≤) be a complete lattice. Then L+ and L− of Def. 2.3.2 are
complete lattices as well. Furthermore, in the way the semantics of a type are defined
it holds that each function-type defines a complete lattice, too.
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Γ ` p:•
v ∈ {+, 0}

Γ, xv,τ ` x:τ

Γ ` ϕ:•
Γ ` 〈a〉ϕ:•

Γ− ` ϕ:•
Γ ` ¬ϕ:•

Γ ` ϕ1:• Γ ` ϕ2:•
Γ ` ϕ1 ∨ ϕ2:•

Γ, xv,τ ` ϕ:τ ′

Γ ` λ(xv,τ ). ϕ:τv → τ ′
Γ, x+,τ ` ϕ:τ

Γ ` µ(xτ ). ϕ:τ

Γ ` ϕ:τ+ → τ ′ Γ ` ϕ′:τ
Γ ` ϕϕ′:τ ′

Γ ` ϕ:τ− → τ ′ Γ− ` ϕ′:τ
Γ ` ϕϕ′:τ ′

Γ ` ϕ:τ0 → τ ′ Γ ` ϕ′:τ Γ− ` ϕ′:τ
Γ ` ϕϕ′:τ ′

Figure 2.4: The HFL typing rules.

2.3.2 Syntax

Definition 2.3.3. Let A be a set of transition names, P a set of propositions and V
a set of variable names. ϕ is called a HFL-formula (ϕ ∈ HFL) if it is producible by
the following grammar:

ϕ ::= p | x | ¬ϕ | ϕ ∨ ϕ | 〈a〉ϕ | λ(xv,τ ). ϕ | ϕϕ | µ(xτ ). ϕ

where p ∈ P , a ∈ A, x ∈ V , τ is an HFL-type and v a variance.

In addition to this basic grammar, there are several usual abbreviations:

⊥ = p ∧ ¬p, > = p ∨ ¬p,
ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ), [a]ϕ = ¬〈a〉(¬ϕ),

νx.ϕ = ¬µx.¬ϕ[¬x/x],

for some proposition p ∈ P , action a ∈ A and variable x ∈ X. The set of subformulas
sub(ϕ) of a HFL-formula is defined in the same manner as it is defined for Lµ-formulas
in Sec. 2.2.1.

Not every derivable HFL-formula using this grammar is meaningful. For example an
application ψ1 ψ2 needs to respect the types of ψ1 and ψ2 in order to have meaningful
semantics. Additionally, it must be ensured that every occurrence of the variable x
in a formula µ(xv,τ ).ϕ (as well as in the ν case) appears under an even number of
negations to guarantee monotonicity and the existence of a fixpoint.

To ensure these properties, HFL makes use of its type system defined in Def. 2.3.1
and Def. 2.3.2. A sequence of Γ = xv0,τ00 , xv1,τ11 , . . . , x

vn−1,τn−1

n−1 , where xi is a variable,
vi a variance and τi a type, is called a context. It is assumed that these contexts are
well-named, which means that no variable appears twice in a context. Γ− is defined
as the context where every vi = + is replaced by v′i = − and vice-versa.

An HFL-formula is called well-typed for some context Γ and type τ if Γ ` ϕ:τ is
derivable using the rules of Fig. 2.4. An HFL-formula ϕ has type τ if ∅ ` ϕ:τ is
derivable using these rules. Such a type derivation is unique, provided that all lambda-
abstractions and fixpoint constructions are properly typed [VV04]. It is assumed that
every HFL-formula in this work is well-typed and well-named. To improve readability,
the typing information is suppressed most of the time.

Definition 2.3.4. Let ϕ be an HFL-formula. ϕ is a formula of HFLk (ϕ ∈ HFLk)
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for some k ∈ N if there is no subformula ψ ∈ sub(ϕ) with a type of order more than
k.

Common HFL-formulas tend to be hard to read, especially if they contain higher-
order subformulas. The following introduces some abbreviations, making it easier to
read and understand HFL-formulas:

λx1, x2, . . . , xl.ψ := λx1.λx2. · · ·λxl.ψ,
f x1 x2 · · · xl := (· · · (f x1)x2) · · · )xl),
◦ := λf1.λf2.λx.f1 (f2 x),

ψ1 ◦ ψ2 := ◦ψ1 ψ2 and
ψ1 ◦ ψ2 ◦ · · · ◦ ψl := (ψ1 ◦ (ψ2 ◦ · · · ◦ (ψl−1 ◦ ψl) · · · ).

Purposefully, the types of the variables are suppressed as the abbreviations work for
arbitrary types with exception of f1, f2 in the abbreviation ◦, which need to match
each other.

The unfolding of a HFL-formula as seen for µ-calculus formulas in Def. 2.2.6 is defined
similarly for HFL-formulas. Let ϕ ∈ HFL be a formula with k distinct fixpoint
subformulas. If ϕ = σxi. ψi of type τ0 → τ1 → · · · → τl−1 → • the unfolding for
s = (c0, . . . , ck−1) is defined as

(σxi.ψi)
s :=


λy0, . . . , yl−1.⊥ if σ = µ, ci = 0,

λy0, . . . , yl−1.> if σ = ν, ci = 0,

ψi[(σxi.ψi)
s[ci−1/ci]/xi]

s[0/ci] otherwise.

The case ϕs = (ψ1 ψ2)s is to be understood as ψs1 ψs2. Other cases of ϕ are not effected
by the unfolding, respectively pass the unfolding on to subformulas. With this, the
finite convergence criterion of a Lµ-formula and LTS, formally defined in Def. 2.2.9,
is defined for HFL-formulas and LTS in the same way. A noteworthy difference is
that the condition on fixpoint subformulas requires that the unfolding of a fixpoint
subformula defines the correct semantics of its corresponding type. For example, if a
fixpoint subformula is of type • → • the unfolding needs to define the same function
from • to • as the function of its true semantics.

2.3.3 Semantics

Given an LTS T , an environment η is a possibly partial map which assigns to each
variable of the variable set an object of its respective type. Formally, η is called Γ-
respecting for some context Γ = xv1,τ11 , . . . , xvn,τnn if for every xi holds η(xi) ∈ T JτiK.
An update of η is denoted by η[x 7→ d], which maps x to d and everything else
according to η.

Definition 2.3.5. Let T be an LTS, Γ a context and η a Γ-respecting environment.
The semantics JΓ ` ϕ:τKTη for an HFL-formula ϕ are defined inductively as given in
Fig. 2.5.

If an HFL-formula ϕ is of type τ , it means that there is a type-derivation using the
empty context. In this case its semantics regarding LTS T and environment η are
denoted by JϕKTη . As seen in Sec. 2.3.1, each HFL-type forms a complete lattice.
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JΓ ` p:•KTη = {s ∈ S | p ∈ L(s)}
JΓ ` x:τKTη = η(x)

JΓ ` ¬ϕ:•KTη = S \ JΓ− ` ϕ:•KTη
JΓ ` ϕ1 ∨ ϕ2:•KTη = JΓ ` ϕ1:•KTη ∪ JΓ ` ϕ2:•KTη

JΓ ` 〈a〉ϕ:•KTη =
{
s ∈ S | ex. s′ ∈ JΓ ` ϕ:•KTη s.t. s a−→ s′

}
JΓ ` λ(xv,τ ). ϕ:τv → τ ′KTη = f ∈ T Jτv → τ ′K s.t.

f.a. d ∈ T JτK : f(d) = JΓ, xv,τ ` ϕ:τ ′KTη[x 7→d]

JΓ ` ϕ1 ϕ2:τ ′KTη = JΓ ` ϕ1:τv → τ ′KTη
(
JΓv ` ϕ2:τKTη

)
JΓ ` µ(xτ ). ϕ:τKTη =

l{
d ∈ T JτK | JΓ, x+ : τ ` ϕ:τKTη[x 7→d] vT JτK d

}
Figure 2.5: The semantics of HFL.

Thus, the Knaster-Tarski Theorem [Tar+55] guarantees the existence of fixpoints for
every derivable HFL fixpoint-formula.

2.3.4 The Modal µ-Calculus as a Fragment of HFL

A hierarchy for HFL-formulas which depends on the highest type occurring in its set
of subformulas is given in Def. 2.3.4. An HFL-formula ϕ is a formula of the fragment
HFL0 if all subformulas ψ ∈ sub(ϕ) can be typed with the base-type. Especially, if
ϕ ∈ HFL0 then there is no subformula of the form λxv,τ .ψ or (ψ1 ψ2).

Remark 2.3.6. For each ϕ ∈ HFL0 there is an equivalent ϕ′ ∈ Lµ such that for
all LTS T and environments η it holds that JϕKTη = Jϕ′KTη , ad(ϕ) = ad(ϕ′) and
ϕ ∈ FC(T ) if and only if ϕ′ ∈ FC(T ). The same is valid for the other direction.

With some further explanation this remark becomes clear: Every Lµ-formula can be
interpreted as a HFL-formula by using the abbreviations of Sec. 2.3.2 and assuming
that every subformula is of the base-type •.

The other direction, namely interpreting a formula ϕ ∈ HFL0 as a Lµ-formula, seems
to be more difficult to argue as the HFL syntax allows negations in front of arbitrary
formulas. But as ϕ is a formula of the fragment HFL0 it can be argued that there
is no subformula of the form λxv,τ .ψ or (ψ1 ψ2). For the other cases of non-atomic
negations ϕ can be altered according to De Morgan’s laws and the duality of [a] and
〈a〉 as well as µ and ν.

2.4 Alternating Parity Automata

The following definition of an alternating parity automaton is tailored to a translation
between Lµ-formulas and alternating parity automata. A similar definition can be
found in [GKL14]. Other suitable definitions can be found in [Wil01].

Let P be some set of propositions. B+(P ) denotes the set of positive Boolean formulas
over P . The set ¬P is the set of negated propositions of P , namely ¬P = {¬p | p ∈ P}.
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Figure 2.6: Visualisation of a run of automaton A of Ex. 2.4.2 on
the LTS of Ex. 2.2.10. The black filled state is currently considered.
Previous steps of the automaton on the LTS are depicted with a grey

filled state.

Definition 2.4.1. Let P be a set of propositions and A a set of actions. An Alter-
nating Parity Automaton (APA) A is a tuple A = (Q, qinit, δ,Ω), where

• Q is a finite set of states, qinit ∈ Q is called the initial state,

• δ : Q→ B+(P ∪ ¬P ∪M) with M = Q× {♦,�} ×A is the transition function
and

• Ω : Q→ N the priority function.

A run ρ ofA on some LTS (T , sinit) is a tree ρ : N∗ → S×Q such that ρ(ε) = (sinit, qinit)
and for each node i ∈ N∗ with ρ(i) = (si, qi) there is a set R ⊆ L(si) ∪ ¬L(si) ∪M
such that R satisfies δ(qi) and it holds that:

• if (qj ,♦, a) ∈ R then there is a state sj ∈ R with si
a−→ sj and a child j ∈ N∗ of

the node i such that ρ(j) = (sj , qj),

• if (qj ,�, a) ∈ R then for each sj ∈ R with si
a−→ sj there is a child j ∈ N∗ of the

node i such that ρ(j) = (sj , qj).

A run is called accepting if for every branch π it holds that the value of max({Ω(q) |
(s, q) for some s occurs infinitely often on π}) is even. If a runs is not accepting then
it is called rejecting. The language LT (A) of an automaton A for some LTS T is
defined as LT (A) = {s ∈ S | there is an accepting run of A on (T , s)}.

Example 2.4.2. Let P = {p} be a set of one proposition and A = {a, b} a set of
actions. Consider the automaton A = ({q0, q1}, q0, δ,Ω) such that
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• the transition function δ is given by δ(q0) = (p ∧ (q1,�, b)) ∨ (q0,♦, a), δ(q1) =
p ∧ (q1,�, b) and

• the priority function Ω is given by Ω(q1) = 0 and Ω(q0) = 1.

A run of the automaton A on some LTS is shown in Fig. 2.6. In this case the run
consists of a single branch. Furthermore, the run is accepting as the state q1 is the
only state that occurs infinitely often and Ω(q1) = 0 holds. There are other accepting
runs, namely runs which follow the a-path a greater but finite amount of steps.

2.4.1 The Modal µ-Calculus and Alternating Parity Automata

In the following a translation from guarded Lµ-sentences to semantically equivalent
APA is presented. Therefore, let aiϕ(x) be defined as the least natural number that
satisfies

• aiϕ(x) is odd if fpϕ(x) = µx. ψ with ψ ∈ sub(ϕ),

• aiϕ(x) is even if fpϕ(x) = νx. ψ with ψ ∈ sub(ϕ) and

• for all y ∈ sub(ϕ) such that y occurs freely in fpϕ(x) holds aiϕ(x) ≥ aiϕ(y).

The following theorem can be found in a more detailed version in [GKL14]. The
result is presented here again as it includes the specific translation from guarded
Lµ-sentences to APA. This is needed in detail throughout this work.

Theorem 2.4.3. Let ϕ ∈ Lµ be a guarded sentence, T an LTS and η an environment.
There is an APA Aϕ such that JϕKTη = LT (Aϕ).

Proof. Let ϕ ∈ Lµ be a guarded sentence. The components of the equivalent automa-
ton Aϕ = (Q, qinit, δ,Ω) are given by

• Q := sub(ϕ)× {0, . . . , ad(ϕ)}, qinit = (ϕ, 0),

• Ω : Q→ N with Ω(ψ, d) = d and

• the transition function is defined as δ((ψ, d)) = trav0(ψ), where travd(ψ) is
defined as

travd(ψ) =



ψ if ψ = p,¬p,>,⊥ with p ∈ P,
travaiϕ(x)(fpϕ(x)) if ψ = x with x ∈ V,
travd(ψ

′) ∗ travd(ψ
′′) if ψ = ψ′ ∗ ψ′′, ∗ ∈ {∨,∧}

((ψ′, d),♦, a) if ψ = 〈a〉ψ′ with a ∈ A,
((ψ′, d),�, a) if ψ = [a]ψ′ with a ∈ A,
travd(ψ

′) if ψ = σx. ψ′.

It can be seen in the definition of travψ(d) why guardedness is needed: If there would
be an unguarded variable x the corresponding call of travd(x) would lead to an infinite
chain of travd(x) calls and thus its value would be undefined.
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Example 2.4.4. Consider the formula ϕ = µx. (νy. p ∧ [b]y) ∨ 〈a〉x. As seen in
Ex. 2.2.3, it holds that ad(ϕ) = 1. The fixpoint dependency measure is given as
aiϕ(x) = 1 and aiϕ(y) = 0. Note, that the condition aiϕ(x) ≥ aiϕ(y) is not demanded,
but that aiϕ(x) is odd and aiϕ(y) is even. The corresponding APA Aϕ is defined as
(sub(ϕ)×{0, 1}, (ϕ, 0), δ,Ω), where the transition function δ is built according to trav.
For example, the values of δ((ϕ, 0)), δ((y, 0)), δ(x, 0), δ(y, 1) and δ(x, 1) are

δ((ϕ, 0)) = (p ∧ ((y, 0),�, b)) ∨ ((x, 0),♦, a),

δ((y, 0)) = p ∧ ((y, 0),�, b),

δ((x, 0)) = (p ∧ ((y, 1),�, b)) ∨ ((x, 1),♦, a),

δ((y, 1)) = p ∧ ((y, 0),�, b),

δ((x, 1)) = (p ∧ ((y, 1),�, b)) ∨ ((x, 1),♦, a).

A simplified version of the automaton Aϕ is the automaton A of Ex. 2.4.2. The states
(y, 0) and (x, 1) correspond to states q1 respectively q0. The other states mentioned
above, namely (ϕ, 0), (x, 0) and (y, 1), have no significant influence on the language
of the automaton Aϕ as they are reachable at most once. These states can be seen as
artifacts of the recursive definition of the transition function δ.

There is an important observation about a µ-unipolar fixpoint sentences which is used
in later proofs. Let ϕ be a µ-unipolar sentence. In the automaton Aϕ every fixpoint
necessarily comes with an odd priority. This means that on a corresponding run
there are only odd priorities and the priority 0, which occurs because of intermediate,
modal steps. But these intermediate steps can only occur finitely often before going
into another fixpoint state, which means that they do not influence the acceptance
of an infinite branch. Thus, the priority of all states can be mapped to a single odd
priority e.g. priority 1 without changing the language of the automaton. This leads
to an alternative, simpler acceptance condition for the automaton Aϕ: A run of Aϕ
is accepting if it is finite, which in turn leads to a useful simplification of Aϕ by
forgetting about the priorities at all.

Observation 2.4.5. Let ϕ be a µ-unipolar, guarded sentence and Aϕ = (sub(ϕ) ×
{0, . . . , ad(ϕ)}, (ϕ, 0), δ,Ω) the corresponding APA. There is a simplified automa-
ton A′ϕ = (sub(ϕ), ϕ, δ′), where δ′ is defined according to δ, but each proposition
((ψ, d),♦, a) or ((ψ, d),�, a) is projected to (ψ,♦, a) respectively (ψ,�, a). A run is
defined similarly, but called accepting if it is finite. Then it holds for all LTS T that
LT (Aϕ) = LT (A′ϕ).

This simplified model is used in the proof of Sec. 4.1.

A similar observation can be made about ν-unipolar sentences. Let ϕ be a ν-unipolar
sentence. First, notice that all existing runs of Aϕ on some LTS are necessarily
accepting. To ensure the existence of rejecting runs the APA model needs to be
extended by a state qrej which has an odd priority and its only successor is qrej itself.
Then, if a transition condition is not satisfiable the automaton can go into qrej which
does not change the language of the automaton over a given LTS. Then the observation
can be made that a run is rejecting if it is finite which leads to a similar simplification
of Aϕ as in the µ-unipolar case. This extended and simplified model is needed for the
dual case of the proof of Sec. 4.1.
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2.5 Linear-Time Variants: Mu-Calculus, HFL and APA

The goal of this work is presenting examples of structures, which witness a funda-
mental difference in the convergence behaviour of Lµ- and HFL-formulas. Chap. 3
presents such examples but in the form of infinite words. With the discussion about
linear-time structures and infinite words in Rem. 2.1.5 these are morally the same,
but corresponding definitions of Lµ, HFL and APAs are needed to interpret them
over infinite words.

The linear-time variant of Lµ (see Sec. 2.2), called the linear-time µ-calculus Llinµ , is a
research topic itself, originally proposed in [BKP86] and earlier mentioned in [EC80].
From this works perspective, the idea is that over linTS respectively infinite words
the semantics of diamond and box coincide, so only one modality operator is needed.

Definition 2.5.1. Let P be a countable set of propositions and V a countable set of
variables. A formula ϕ is a linear-time µ-calculus formula (ϕ ∈ Llinµ ) if it is producible
by the following grammar:

ϕ ::= q | ¬q | x | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | µx. ϕ | νx. ϕ

where q ∈ P and x ∈ V .

As mentioned above, the difference to the syntax of the usual µ-calculus lies in the
modal operators. The operators 〈a〉 and [a] are not present, but a general one � is.

With regard to the introduction of this section, the semantics of Llinµ are defined in
context of infinite words.

Definition 2.5.2. Let w ∈ Σw with w = x0 x1 . . . be an infinite word, η : V → 2N

an environment and ϕ a Llinµ -formula. The semantics of ϕ over w given η are denoted
by JϕKwη and inductively defined as

JaKwη := {i ∈ N | xi = a}, J¬aKwη := {i ∈ N | xi 6= a},
JxKwη := η(x), J⊥Kwη = ∅, J>Kwη = N,
Jψ1 ∨ ψ2Kwη := Jψ1Kwη ∪ Jψ2Kwη , Jψ1 ∧ ψ2Kwη := Jψ1Kwη ∩ Jψ2Kwη ,

J�ϕKwη := {i ∈ N | i+ 1 ∈ JϕKwη },

Jµx. ϕKwη :=
⋂
{U ⊆ N | JϕKwη[x 7→U ] ⊆ U},

Jνx. ϕKwη :=
⋃
{U ⊆ N | U ⊆ JϕKwη[x 7→U ]}.

Further definitions and abbreviations regarding syntax of Lµ-formulas (see Sec. 2.2.1),
the alternation hierarchy given for Lµ-formulas (see Sec. 2.2.2) and the guardedness
procedure (see Sec. 2.2.5) can be defined in the same manner for Llinµ . The same
holds for the definition of unfolding a formula and the finite convergence criterion (see
Sec. 2.2.4). The latter is then denoted by FC(w) for some word w ∈ σω.

It is noteworthy that for all ϕ ∈ Llinµ and infinite words w ∈ Σω it holds that JϕKwη =
Jϕ, ωKwη , which means that the ω-approximation of ϕ is equal to its true semantics.
The reason for this is that w is an infinite word which means that every position
respectively state has finitely many successors. For finitely-branching systems each
fixpoint iteration terminates at the latest with the ω-step.
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Remark 2.5.3. For every Llinµ -formula and infinite word w there is a formula ϕ′ ∈
Lµ (and vice-versa) such that for all environments η it holds that: JϕKwη = Jϕ′KKwη ,
ad(ϕ) = ad(ϕ′) and ϕ ∈ FC(w) if and only if ϕ′ ∈ FC(Kw).

A linear-time variant of HFL (see Sec. 2.3) called HFLlin can be defined in the exact
same way. To avoid to much repetition it is referred to the relation between Lµ
and Llinµ . The relation between HFL and HFLlin is the same, which means that the
operators 〈a〉 and [a] coincide to � and the semantics of HFLlin are defined over
infinite words.

Remark 2.5.4. For every HFLlin-formula and infinite word w there is a formula ϕ′ ∈
HFL (and vice-versa) such that for all environments η it holds that: JϕKwη = Jϕ′KKwη ,
ord(ϕ) = ord(ϕ′) and ϕ ∈ FC(w) if and only if ϕ′ ∈ FC(Kw).

An alternating parity automata (see Sec. 2.4) A can also be interpreted over infinite
words. Let w ∈ Σω with w = x0 x1 . . .. The transition function δ is given by δ :
Q → B+(Σ ∪ ¬Σ ∪M) with M = Q × {�}. A run on w is a tree ρ : N∗ → N × Q
with root ρ(ε) = (0, qinit). The conditions on children-nodes are equal to the LTS-
case but with R := {xi} ∪ ¬{xi} ∪ M . The acceptance condition for a run stays
the same and the language of A for a given word w is defined as Lw(A) := {v |
v ∈ suff(w) and there is an accepting run of A on v}. With this direct relation to
Def. 2.4.1 it immediately follows from the translation given in Th. 2.4.3 that for each
Llinµ -formula there is a semantically equivalent APA.

Corollary 2.5.5. Let ϕ ∈ Llinµ , w ∈ Σω and η an environment. There is an APA Aϕ
such that it holds JϕKwη = Lw(A).

There is an important implication of these relations for this work. All differences in the
finite convergence of Llinµ -formulas and HFLlin-formulas over some family of infinite
words imply that there is a class of linear-time structures that witness the same
difference between Lµ-formulas and HFL-formulas. Thus, further considerations can
be restricted to these linear-time variants.
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Chapter 3

Words with Finite Convergence of
µ-Formulas

This chapter introduces a family of words wn,m which witness a fundamental difference
in the convergence behaviour of the modal µ-calculus and the higher-order fixpoint
logic. It is strongly suspected that all Llinµ -formulas are finitely converging over wn,m
(see Chap. 4). In contrast to this there are HFLlin-formulas which are not finitely
converging for some wn,m (see Chap. 5). The implications of this difference in the
convergence behaviour are discussed in Chap. 6

Definition 3.0.1. Let Σ = {a, b} be a binary alphabet. An infinite word wn,m ∈ Σω

is defined as wn,m = α0 α1 · · · with

α0 = a, αi+1 = αni β
m
i α

n
i ,

β0 = b, βi+1 = βni α
m
i β

n
i ,

where n,m ∈ N such that n > m, m ≥ 1.

In the remaining part of this work let wn,m refer to an instance of this family. To
avoid trivial instances of this family, m is restricted to be at least 1. The restriction
n > m is a necessary feature. It ensures that the middle part of some αi, namely
βmi−1, is a prefix of βi+1. In detail this property is needed in Lem. 4.1.7.

Example 3.0.2. Let n = 2 and m = 1. The respective word w2,1 is given by

w2,1 = a︸︷︷︸
α0

a︸︷︷︸
α0

a︸︷︷︸
α0

b︸︷︷︸
β0

a︸︷︷︸
α0

a︸︷︷︸
α0︸ ︷︷ ︸

α1

a a b a a︸ ︷︷ ︸
α1

a a b a a︸ ︷︷ ︸
α1

b b a b b︸ ︷︷ ︸
β1

a a b a a︸ ︷︷ ︸
α1

a a b a a︸ ︷︷ ︸
α1︸ ︷︷ ︸

α2

· · · .

The following proposition describes important properties of a word wn,m. For each
quantitative property a sufficiently tight but not optimal bound is given.

Proposition 3.0.3. Let wn,m be a word of Def. 3.0.1 and i ∈ N. It holds that

1. the length of αi is |αi| = |βi| = (2n+m)i,

2. the length of u ∈ pre(wn,m) with u = α0 α1 · · · αi−1 is |u| = 1−(2n+m)i

1−(2n+m) ≤
(2n+m)i,

3. there is no u ∈ suff(wn,m) such that αi /∈ inf(u),

4. the length of u ∈ inf(wn,m) with αi /∈ inf(u) is |u| ≤ (2 +m)(2n+m)i and
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5. the length of all u ∈ inf(wn,m) with u = γ0 γ1 · · · γk−1 such that γj = αi for all
j < k is |u| = 2n(2n+m)i.

Proof. First, by induction it is proven for all i ∈ N that |αi| = |βi| = (2n+m)i. The
case i = 0 is trivial. Let i = j+1. Per definition it follows that |αi| = 2n|αj |+m|βj | =
2n(2n + m)j + m(2n + m)j = (2n + m)j+1. The case βi is shown in the exact same
way.

This result can be used to prove the second property. From the first property follows
that |u| =

∑i−1
j=0(2n + m)j . This is a partial sum of the geometric series with base

(2n+m). Thus, it follows that
∑i−1

j=0(2n+m)j = 1−(2n+m)i

1−(2n+m) ≤ (2n+m)i. The validity
of the inequality is inferred in the following way:

1− (2n+m)i

1− (2n+m)
≤ (2n+m)i

⇔ (2n+m)i ≤ (2n+m)i+1 − (2n+m)i

⇔ 1 ≤ 2n+m− 1,

which is true as n,m > 0.

The third property is a straightforward implication of Def. 3.0.1.

To prove the fourth property, consider an infix u ∈ inf(wn,m). It follows that u is also
an infix of a sequence αj αj+1 · · · αi+k for some j, k ∈ N. From Def. 3.0.1 it follows
that αi ∈ pre(αj) and αi ∈ suff(αj) for all j ≥ i, which means that no such αj can
be an infix of u. Thus, the maximum case is either the prefix of wn,m described in
the second property or it holds that |u| = (2 + m)(2n + m)i − 2 which describes the
case that u is almost equal to αiβmi αi. This is the biggest infix of αi+1 that does not
completely include αi. As the second one is greater, it gives the desired bound.

For the fifth property it is argued that there are at most 2n consecutive αi in wn,m.
By induction it can be shown for all αj with j ≥ i that the longest prefix and suffix
of consecutive αi in αj is equal to n and that the longest infix is equal to 2n. From
the definition of wn,m it follows that u must be an infix of αi αi+1 · · · αi+k for some
k ∈ N. But with the previous argument it follows that for all k there are at most 2n
consecutive αi in a sequence αi αi+1 · · · αi+k. This implies that the same is valid for
u.

The properties four and five are core properties of a word wn,m and the main reason
why this family of words is defined this way. Informally put, property four states for
all i that there is a bound for the distance between two occurrences of αi in wn,m.
Property five states for all i that there is a bound for the number of consecutive αi in
wn,m. This leads to the conjecture that all Llinµ -formulas are finitely converging over
all wn,m. Intuitively, the semantics of simple Lµ-formulas and especially of formulas
with fixpoint operators can be understood as “somewhere pattern ABC is valid” (least
fixpoints) or “from here on pattern DEF is always valid” (greatest fixpoints). Nested
fixpoint formulas are naturally difficult to describe by such a simple intuition, but
this basic intuition is transmitted to these formulas. Property four and five of a word
wn,m ensure, regardless of the position in wn,m, that there is a bound until “somewhere
pattern ABC” and “always pattern DEF” is verified. This leads to the assumption
that every fixpoint Llinµ -formula only needs finitely many unfoldings to reach its true
semantics over wn,m. In a following step this leads to the assumption that finite
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convergence is guaranteed for all Llinµ -formulas over all wn,m. As mentioned above
this is investigated in Chap. 4. In contrast to this, fixpoint formulas of higher-order
fragments of HFLlin are able to modify the pattern that has to be valid ”somewhere“
or ”always“ from iteration step to iteration step. This leads to the assumption that
there are HFLlin-formulas which are not finitely converging over some wn,m as there
are infinitely many patterns to look for in each wn,m. This is investigated in Chap. 5.

Another important property of a word wn,m is that for all i any suffix from and after
the first αi in wn,m can be represented as a sequence of αi and βi. One can see this as
different levels of detail of observation. This is formalised in the following proposition.

Proposition 3.0.4. Let wn,m be a word of Def. 3.0.1, i ∈ N, γj ∈ {αi, βi} for all
j ∈ N and ni = (1 − (2n + m)i)/(1 − (2n + m)) the starting point of the first αi in
wn,m. There is a sequence αi γ0 γ1 · · · such that wn,m[ni :] = αi γ0 γ1 · · · .

Proof. By induction it is shown that for all k ≥ 1 holds that αi+k = γ′1 γ
′
2 · · · γ′(2n+m)k

with γ′j ∈ {αi, βi} for all 1 ≤ j ≤ (2n+m)k. The case k = 1 is a direct implication of
Def. 3.0.1.

Assume that the statement holds for k. For the induction step consider

αi+(k+1) = αi+k · · · αi+k βi+k · · · βi+k αi+k · · · αi+k,

where αi+k occurs n times, respectively βi+k occurs m times in sequence. By the
induction hypothesis it follows that each αi+k, βi+k can be represented as a sequence
of (2n+m)k blocks of αi and βi. But this means that αi+(k+1) can be represented by
(2n+m) · (2n+m)k = (2n+m)k+1 blocks of αi and βi.

With this statement proven it follows that every αi+k with k ≥ 1 can be represented
as a sequence of αi and βi. This implies the existence of a sequence γ0 γ1 · · · such
that wn,m[ni :] = αi γ0 γ1 · · · .
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Chapter 4

Finite Convergence of µ-Calculus
Formulas

The goal of this chapter is to show that every Llinµ -sentence is finitely converging over
each wn,m. A formal proof is given for all alternation-free sentences. An idea of a
proof for the general case is sketched.

The first step (Sec. 4.1) is to prove the finite convergence of all unipolar Llinµ -sentences
over all wn,m. Let ϕ be a unipolar sentence. The proof is divided into the following
parts: First, the guarded variant ϕ′ of ϕ is considered. Then, a relation between the
height of a run of Aϕ′ and a finite unfolding of ϕ′ is established, allowing to pro-
ceed the proof by arguing on Aϕ′ . After this, the automaton Aϕ′ is translated into a
deterministic automaton Dϕ′ by making an intermediate translation into a nondeter-
ministic automaton Nϕ′ . A relation between the height and length of corresponding
runs is established in each translation. After this it is argued for all wn,m and all
v ∈ suff(wn,m) that there is a bound for an accepting run of Dϕ′ on v. Applying all
translation in the opposite direction results in the fact that for all wn,m there is a
unfolding ϕ′k which is semantically equivalent to ϕ′ over wn,m. In the following this
is used to prove that ϕ′ is finitely converging over all wn,m. In the end it is argued
that finite convergence of the guarded variant ϕ′ implies finite convergence of the
original, possibly unguarded sentence ϕ. In conclusion, this proves for all unipolar
Llinµ -sentences that they are finitely converging over all wn,m.

The second step (Sec. 4.2) is to prove the finite convergence of all alternation-free
Llinµ -sentences over all wn,m. Let ϕ be an alternation-free sentence. First, it can be
observed that ϕ is a stack of unipolar sentences. Then, finite convergence of ϕ over
all wn,m is shown by induction while using the result that all unipolar sentences are
finitely converging over all wn,m.

The third and last step (Sec. 4.3) is to show finite convergence of all Llinµ -sentences over
all wn,m. As a formal proof is out of scope for this work, this step is only sketched.
Let ϕ be an arbitrary sentence. It is a known that for all infinite words there is
an alternation-free sentence ϕ′ which is semantically equivalent to ϕ. Applying the
previous results of this work on ϕ′ results in the fact that for each wn,m there is a
sentence of basic modal logic ϕ′n,m which is semantically equivalent to ϕ. Then, a
bound d for the length of words which are included in the semantics of ϕ′n,m can be
derived. This bound is also valid for the semantics of ϕ over wn,m. This means that ϕ
can only distinguish between infixes of wn,m up to length d. With this, it can be argue
that there are semantically equivalent unfoldings of all outer fixpoint subformulas in
ϕ, while assuming that inner fixpoint subformulas are computed completely. This
argument could be used in an inductive approach, but this comes with some difficulties
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which are not resolved in this work.

4.1 Finite Convergence of Unipolar Fixpoint Formulas

The technically most demanding proof of this work is to argue that all unipolar Llinµ -
sentences are finitely converging over all wn,m. The first step in this proof is to show
for al guarded, unipolar sentences ϕ ∈ Llinµ and words wn,m that there is a semantically
equivalent unfolding of ϕ. Thus, let ϕ be guarded and unipolar. For clarity reasons
the proof is done in detail for the µ-unipolar case. With a few technical adaptions the
proof for the ν-case is dual to the following. This is discussed in detail at the end of
this section.

First, it is shown for all wn,m that there is a relation between the height of an accepting
run of Aϕ on any suffix of wn,m and the semantics of some unfolding of ϕ. This
allows proceeding the proof with automata-theoretic arguments. To establish this
relation, the simplified but equivalent version of Aϕ is used, which is presented in
Obs. 2.4.5. This simplification forgets about priorities and calls a run accepting if it
is finite, which is valid as ϕ is Llinµ -unipolar. Therefore, let Aϕ = (sub(ϕ), ϕ, δ) with
δ : sub(ϕ) → B+(Σ ∪ ¬Σ ∪ (sub(ϕ) × {�})). Furthermore, the semantics of Aϕ are
considered in context of infinite words as described in Sec. 2.5.

Lemma 4.1.1. Let ϕ ∈ Llinµ be a guarded, µ-unipolar sentence, w ∈ Σω, i ∈ N and
η an environment. If there is an accepting run ρ of Aϕ on w[i :] then it follows that
i ∈ Jϕheight(ρ)+1Kwη .

Proof. W.l.o.g. it is assumed that ϕ = µx0. ψ0 and that there are n′ distinct fixpoint
subformulas. First, a stronger statement is proven: If ρ is an accepting run on w[i :]
such that on each branch π there are at most cj nodes labeled with (i′, xj) for some
i′ ∈ N it follows that i ∈ J(µx0. ψ0)s+1Kwη with s = (c0, . . . , cn′−1). The proof is done
by induction on the nesting-depth of µx0. ψ0. In the following, the variables i′, i′′, . . .
refer to arbitrary positions of wn,m.

Assume that nd(µx0, ψ0) = 1, which means that s = (c0). Let ρ be an accepting
run of Aµx0. ψ0 on w[i :]. If c0 = 0 then there is no node labeled with (i′, x0), which
means that ρ is also an accepting run of the automaton Aψ0[⊥/x0] on w[i :]. According
to Th. 2.4.3 it follows that i ∈ Jψ0[⊥/x0]Kwη which is the same as J(µx0. ψ0)(1)Kwη .
Assume that c0 = k + 1 and that the stronger statement holds for k. For each node
h ∈ N∗ which is labeled with (i′, x0) it can be inferred that there is an accepting run
of Aµx0. ψ0 on w[i′ :] with no more than k states labeled with (i′′, x0) on each branch.
Namely, the run with root (i′, µx0. ψ0) followed by the subtree of ρ starting in node
h. Thus, it follows that i′ ∈ J(µx0. ψ0)(k+1)Kwη . This means that ρ is also an accepting
run of Aψ0[(µx0. ψ0)(k+1)/x0] on w[i :] which leads to

i ∈ Jψ0[(µx0. ψ0)(k+1)/x0]Kwη = J(µx0. ψ0)(k+2)Kwη .

Assume that nd(µx0, ψ0) = m′+1 and that the stronger statement holds for formulas
of nesting-depth up to m′. Let ρ be an accepting run of Aµx0. ψ0 on w[i :] such that
for all 0 ≤ j < n′ there are cj occurrences of (i′, xj). This case is shown by induction
on c0. If c0 = 0 then it follows that ρ is also an accepting run of Aψ0[⊥/x0] on w[i :].
Then, the stronger statement follows by induction on the nesting-depth. Assume
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that c0 = k + 1 and that the stronger statement holds for c0 = k. By induction
on c0 it follows for any node labeled with (i′, x0) that i′ ∈ J(µx0. ψ0)s[k/c0]Kwη with
s = (c0, . . . , cn′−1). This means that ρ is also an accepting run for the automaton
Aψ[(µx0. ψ0)s[k/c0]/x0]. Again, the statement follows by induction on the nesting-depth.

With this stronger statement proven, the statement of this lemma can be inferred from
the observation that for a finite run ρ it must hold for each cj that cj ≤ height(ρ) and
the monotonicity properties of Lem. 2.2.8.

For a guarded, µ-unipolar sentence ϕ this lemma enables arguing on Aϕ, respectively
its runs, to find a semantically equivalent unfolding of ϕ over some wn,m. Namely,
if there is k ∈ N for all i ∈ N with an accepting run ρ of Aϕ on wn,m[i :] such that
height(ρ) ≤ k then it holds that JϕkKwn,mη = JϕKwn,mη . To find such k it is necessary
to transform Aϕ into a semantically equivalent, deterministic automaton.

From Alternating to Deterministic Automata

First, Aϕ is translated into a semantically equivalent, pure nondeterministic automa-
ton called Nϕ. The main difference between Aϕ and Nϕ is that runs of Nϕ are no
longer trees but paths. Informally put, this means that the translation from Aϕ to
Nϕ avoids alternation. To ease later steps, Nϕ is defined in the manner of a word
automaton. This means that for a given state and proposition the transition function
of Nϕ maps into a set of possible successor states. This translation is similar to the
language equivalence preserving translation from AFA to NFA. For an example of this
translation see [HL11].

Definition 4.1.2. Let Aϕ = (sub(ϕ), ϕ, δ) be the simplified APA of a guarded, µ-
unipolar sentence ϕ ∈ Llinµ with the transition function δ : sub(ϕ) → B+(Σ ∪ ¬Σ ∪
(sub(ϕ)×{�})). The automaton Nϕ is defined as the tuple (Q, qinit, qacc, δ

′) such that

• Q := 2sub(ϕ) is the state set,

• qinit := {ϕ} is the initial state, qacc := ∅ is called the accepting state and

• the transition function δ′ : Q× Σ→ 2Q is defined as

δ′(q, a) := {q′ | {a} ∪ ¬{a} ∪ q′ × {�} satisfies
∧
ψ∈q

δ(ψ)}.

A run of Nϕ on some infinite word w ∈ Σω is a possibly infinite sequence π = q0 q1 · · ·
such that q0 = qinit and for qj+1 with j ≥ 0 holds qj+1 ∈ δ′(qj , w(j)). If there is i ∈ N
such that qi = qacc then π = q0 · · · qi. Thus, a run ends with the first occurrence of
qacc. A run is called accepting if it reaches qacc respectively if it is finite.

The following lemma proves that Aϕ and Nϕ are equivalent over all infinite words
and that the length of an accepting run of Nϕ and the height of an accepting run of
Aϕ do correspond.

Lemma 4.1.3. Let w ∈ Σω and i ∈ N. It holds that Lw(Aϕ) = Lw(Nϕ) and if there
is an accepting run π of Nϕ on w[i :] then there is an accepting run ρ of Aϕ on w[i :]
with height(ρ) = |π| − 1.
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Proof. First, language equivalence of Aϕ and Nϕ over w is proven. The directions ⊆
and ⊇ are proven separately.

Assume that i ∈ Lw(Aϕ). Then it holds that there is an accepting run ρ of Aϕ on
w[i :]. An accepting run for the automaton Nϕ can be built by assembling all states
levelwise into a a sequence q0q1 · · · . From the definition of the transition function it
follows that this is a run of Nϕ and from the fact that there is maximum level k of ρ
it follows that it is an accepting run. Thus, all state conditions are satisfied without
using a proposition from Q × {�} in the k-th level of ρ. This implies that qk+1 = ∅
which is the same as qacc.

Assume that i ∈ Lw(Nϕ). Then it follows that there is a run q0 q1 · · · qk−1 of Nϕ on
w[i :] with qk−1 = qacc. A run ρ for Aϕ can be built by labeling the root with (i0, ϕ)
and then taking children from qj+1 in a step-wise fashion to build the (j + 1)-th level
of ρ according to the conjunction

∧
ψj∈qj δ(ψj). From the fact that qk−1 = ∅ it follows

that the maximum level of ρ is k − 2. This makes ρ an accepting run.

The relation between the length of an accepting run π of Nϕ and corresponding run
ρ of Aϕ is a straightforward implication of the previous arguments. The difference of
1 is explained by the fact that the root level of a tree is 0.

So far it has been shown that there is a nondeterministic automaton Nϕ which is
semantically equivalent to Aϕ and that there is a relation between the length of an
accepting run ofNϕ and height of an accepting run ofAϕ. The next step is to translate
Nϕ into an equivalent determinstic automaton which is called Dϕ.

Definition 4.1.4. Let Nϕ = (Q, qinit, qacc, δ). The deterministic automaton Dϕ is a
tuple (Q′, q′init, q

′
acc, δ

′) with

• the state set Q′ := 2Q,

• q′init := {qinit}, q′acc := {qacc} and

• the transition function δ′ : Q′ × 2Σ → Q′ such that

δ′(q, a) :=

{
q′acc if qacc ∈

⋃
q′∈q δ(q

′, a),⋃
q′∈q δ(q

′, a) otherwise.

The definition of a run and its acceptance condition are the same as for Nϕ.

In the same manner as in the translation from Aϕ to Nϕ, language equivalence is
given between Nϕ and Dϕ. Furthermore, the lengths of corresponding, accepting runs
are identical.

Lemma 4.1.5. Let w ∈ Σω and i ∈ N. It holds that Lw(Nϕ) = Lw(Dϕ) and if π is
an accepting run of Dϕ on w[i :] then there is an accepting run π′ of Nϕ on w[i :] such
that |π′| = |π|.

Proof. The proof is similar to the usual powerset construction on NFA. This includes
language equivalence as well as a straightforward argument for the length equivalence
of runs.
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The given translation from Aϕ to Dϕ allows proceeding the proof with Dϕ. The
relations between the automata Aϕ,Nϕ and Dϕ transfer a bound for the length of
accepting runs of Dϕ on suffixes of some wn,m to the height of accepting runs of Aϕ on
suffixes of wn,m. Furthermore, language equivalence is preserved in each translation.
With the help of Lem. 4.1.1, this implies the existence of an unfolding ϕk which is
semantically equivalent to ϕ over wn,m.

Bounded Reachability of Deterministic Automata

The next step is to argue that for all wn,m and all i ∈ Lwn,m(Dϕ) the length of the
accepting run of Dϕ on wn,m[i :] is bounded.

Let Dϕ = (Q, qinit, qacc, δ). For a state q ∈ Q and finite word u ∈ Σ∗ with u =
x0x1 · · ·xi−1 let reachq(u) := {q′ | there is q0q1 · · · qi s.t. δ(qj , xj) = qj+1 f.a. j <
i, q0 = q′ and qi = q}. Informally, reachq(u) is a subset of Q which includes all states
that reach q by walking along the path, which is defined by u, in Dϕ. For the state
qacc the reachability is defined slightly different: reachqacc(u) is defined as the set
{q′ | there is q0q1 · · · qi′ , i′ ≤ i s.t δ(qj , xj) = qj+1 f.a. j < i′, q0 = q′ and qi′ = qacc}.
This definition respects that a run of Dϕ ends if it reaches qacc.

First, some preliminary considerations are needed. These concern the reachability of
qacc in context of some wn,m.

Lemma 4.1.6. Let wn,m be a word of Def. 3.0.1.

1. For all i ∈ N it holds that reachqacc(αi) ⊆ reachqacc(αi+1) and reachqacc(βi) ⊆
reachqacc(βi+1) and

2. there is h ∈ N such that for all i ∈ N with i ≥ h it holds that reachqacc(αh) =
reachqacc(αi) and reachqacc(βh) = reachqacc(βi).

Proof. The first oberservation results from the structure of w as it holds for all i ∈ N
that αi ∈ pre(αi+1). The same holds for βi and βi+1. The second observation follows
from the first one and the fact that Q is finite.

Let (reachqacc(αi)∪ reachqacc(βi))∪Mi be a partition of the state set Q. Let i := h+1
with h ∈ N of Lem. 4.1.6. The following proves for all q ∈ Mi that neither αi nor
βi is able to reach a state outside Mi starting from q. Informally, Mi can be seen as
the set of states which prevent a run of Dϕ, which takes too long to reach qacc, from
reaching qacc at all.

Lemma 4.1.7. Let wn,m be a word of Def. 3.0.1, h of Lem. 4.1.6, γi ∈ {αi, βi} with
i := h+ 1 and (reachqacc(αi)∪ reachqacc(βi))∪Mi a partition of Q. For all q ∈Mi and
q′ ∈ Q with q ∈ reachq′(γi) it holds that q′ ∈Mi.

Proof. The proof is done for the case γi = αi. The case βi is proven in the exact
same way. Let q ∈ Mi and q ∈ reachq′(γi). Most of the following arguments make
use of the result of Lem. 4.1.6 which states that reachqacc(αh) = reachqacc(αi) and
reachqacc(βh) = reachqacc(βi). This property is referred to as (∗).

Per definition it holds that αi = αnhβ
m
h α

n
h. Let p, p′ ∈ Q be the states with q ∈

reachp(α
n−1
h ) and p ∈ reachp′(αh). The first step is to argue that p ∈ reachqacc(βi) \

reachqacc(αi) or p ∈Mi. This situation is depicted in Fig. 4.1 a).
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It is shown that the case p ∈ reachqacc(αi) leads to a contradiction. Assume that
p ∈ reachqacc(αi). With (∗) this implies that q ∈ reachqacc(αi), which is a contradiction
to the assumption that q ∈Mi. Thus, it must hold that p ∈ reachqacc(βi)\reachqacc(αi)
or p ∈Mi. The next step is to argue that this implies p′ ∈Mi (see Fig. 4.1 b) ).

Assume that p′ is an element of reachqacc(αi). It follows that p ∈ reachqacc(α
2
h),

because of p ∈ reachp′(αh) and (∗). But this means that p ∈ reachqacc(αi), because of
αi = αnhβ

m
h α

n
h. This is a contradiction to the findings about p. Thus, it must hold that

p′ ∈ reachqacc(βi) \ reachqacc(αi) or p′ ∈Mi. The case p′ ∈ reachqacc(βi) \ reachqacc(αi)
implies that q ∈ reachqacc(αi). Again, this is a contradiction to q ∈Mi. Thus, it follows
that p′ ∈Mi. The next step is to argue that the state p′′ with p′ ∈ reachp′′(β

m
h ) is in

Mi (see Fig. 4.1 c) ).

The case p′′ ∈ reachqacc(αi) is a contradiction to q ∈Mi, because of (∗). Thus, it holds
that p′′ ∈ reachqacc(βi) \ reachqacc(αi) or p′′ ∈ Mi. Assume that p′′ ∈ reachqacc(βi) \
reachqacc(αi). This implies that p′ ∈ reachqacc(β

m
h βi). Then it also holds that p′ ∈

reachqacc(β
m+1
h ), because of (∗). But with βi = βnhα

m
h β

n
h and n > m follows that

p′ ∈ reachqacc(βi). This is a contradiction to p′ ∈ Mi. Thus, it follows that p′′ ∈ Mi.
The last step in this proof is to argue that q′ ∈Mi under the assumption that p′′ ∈Mi

(see Fig. 4.1 d)). It can be seen that the situation is essentially the same as in the
step from state q to p′. This means that the arguments are the same and that it must
hold that q′ ∈Mi.

With these preliminary considerations, the key finding of this section becomes prov-
able. Namely, on all suffixes of all wn,m the length of accepting runs of Dϕ is bounded.

Theorem 4.1.8. Let wn,m be a word of Def. 3.0.1. There is k ∈ N such that for all
i0 ∈ Lwn,m(Dϕ) the length of the run π of Dϕ on wn,m[i0 :] is |π| ≤ k.

Proof. Let π = q0 q1 · · · qn′−1 be the accepting run of Dϕ on wn,m[i0 :] for some
i0 ∈ Lwn,m(Dϕ), u = w[i0 : (i0 + (n′ − 1))] be the infix of wn,m that corresponds to
π and i := h + 1 where h is the bound of Lem. 4.1.6. It is important to note that
i is independent of π. For both cases αi /∈ inf(u) and αi ∈ inf(u) it is shown that i
induces a bound for |u|. This bound for the length of u implies a bound for the length
of π.

If αi /∈ inf(u) then it follows by the fourth observation of Prop. 3.0.3 that |u| ≤
(2 +m)(2n+m)i.

If αi ∈ inf(u) then there are vpre, vpost ∈ {a, b}∗ such that u = vpreαivpost and αi /∈
vpre. From the previous case it is known that |vpre| ≤ (2 + m)(2n + m)i. Thus, it is
left to argue that there is a bound for the length of vpost. From Prop. 3.0.4 it follows
that there is l ∈ N such that u ∈ pre(vpre αi γ0 γ1 · · · γl−1) with γj ∈ {αi, βi} for all
j < l. The proof is proceeded by arguing that there is a bound, which is induced
by i, for the minimum l needed to reach qacc. This implies that |vpost| is bounded as
vpost is a prefix of γ0 γ1 · · · γl−1 for any l that reaches qacc. Consider the partition
(reachqacc(αi) ∪ reachqacc(βi)) ∪Mi of Lem. 4.1.7. Let qj be the state of π after vpre.
The proof is proceeded with a case distinction on qj in context of this partition.

If qj ∈ Mi then it follows with Lem. 4.1.7 that neither with αi nor with βi the state
qj can reach qacc. This means that there is no l such that the run corresponding to
vpre αi γ0 γ1 · · · γl−1 reaches qacc. This is a contradiction, as π is accepting and u is a
prefix of vpre αi γ0 γ1 · · · γl−1 for some l.
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Figure 4.1: Visualisation of the proof steps of Lem. 4.1.7. The follow-
ing things are depicted for each step: The left side shows the transition
between states of Dϕ currently under consideration (dotted arrow) in
connection with the position in word αi. The right side shows which
assumptions are made about the considered states of Dϕ in relation to

the partition (reachqacc(αi) ∪ reachqacc(βi)) ∪Mi.
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For the case that qj ∈ reachqacc(αi) it holds that l = 0.

If qj ∈ reachqacc(βi) \ reachqacc(αi) then consider the state qj′ after vpreαi. That
qj′ ∈ reachqacc(αi) is not possible as it implies that qj ∈ reachqacc(α

2
i ) and thus

qj ∈ reachqacc(αi+1). As it holds that qj /∈ reachqacc(αi), this is a contradiction to
observation two of Lem. 4.1.6. The case qj′ ∈ Mi is also not possible. The argument
is the same as for the case qj ∈ Mi. If qj′ ∈ reachqacc(βi) \ reachqacc(αi) consider γ0.
If γ0 = βi it holds that l = 1. If γ0 = αi the argument is repeated for the state qj′′
after vpreαiαi. With the help of observation five of Prop. 3.0.3 it follows that l ≤ 2n.
This bound respects the worst case, namely that all γk with k < 2n are equal to αi
and γ2n = βi.

This shows for each case of qj that vpost is bounded and therefore for both cases
αi /∈ inf(u) and αi ∈ inf(u) it proves that |u| is bounded. This implies that |π| is
bounded and as i is independent of π it means that there is a bound k for all accepting
runs of Dϕ on all suffixes of wn,m.

So far, the combination of the results of this section shows for all wn,m that there is
an unfolding ϕk which is semantically equivalent to ϕ. But it still needs to be shown
that this implies the finite convergence of ϕ for each wn,m and that guardedness is no
restriction to the validity of these findings for unguarded sentences.

From Boundedness of Automata to Finite Convergence of Unipolar For-
mulas

Theorem 4.1.9. Let ϕ ∈ Llinµ be a guarded, µ-unipolar sentence and wn,m a word of
Def. 3.0.1. It holds that ϕ ∈ FC(wn,m).

Proof. The starting point for this proof is Th. 4.1.8. This theorem states that there is
a boundm′ for all i ∈ Lwn,m(Dϕ) on the length of the accepting run of Dϕ on wn,m[i :].
Then, Lem. 4.1.5 states that Lwn,m(Dϕ) = Lwn,m(Nϕ) and that m′ is a bound for all
i ∈ Lwn,m(Nϕ) on at least one accepting run of Nϕ on wn,m[i :]. Then, Lem. 4.1.3
states that Lwn,m(Nϕ) = Lwn,m(Aϕ) and that m′− 1 is a bound for all i ∈ Lwn,m(Aϕ)
on the height of at least one accepting run of Aϕ on wn,m[i :]. With Lem. 4.1.1 this
leads to the result that Jϕm′Kwη = JϕKwη . Fix m′ to be such unfolding for ϕ.

It needs to be argued that there is n′ ∈ N for each µx. ψ ∈ sub(ϕ) such that
J(µx. ψ)n

′Kwn,mηx = Jµx. ψKwn,mηx . For each subformula µxi. ψi it is shown that there
exists ni, satisfying the property J(µxi. ψi)niK

wn,m
ηxi

= Jµxi. ψiK
wn,m
ηxi

. Then, it follows
with the monotonicity properties of Lem. 2.2.8 that the overall n is the maximum of
all ni.

For an outermost µx0. ψ0 fixpoint sentence it holds that n0 = m′. Consider an inner
fixpoint formula µxk.ψk and let x0, x1, . . . , xk−1 be a sequence of all mutually distinct
fixpoint variables such that nd(µxi. ψi) ≥ nd(µxi+1.ψi+1) for all i < k. It is assumed
that ni ∈ N is the unfolding such that J(µxi. ψi)niK

wn,m
ηxi

= Jµxi. ψiK
wn,m
ηxi

. Thus, it
follows that

Jµxk.ψk[(µxk−1.ψk−1)nk−1/xk−1] · · · [(µx0. ψ0)n0/x0]Kwn,mη = Jµxk.ψkK
wn,m
ηxk

.

Then, with the result of Th. 4.1.8 and corresponding preliminary steps, there is an
unfolding nk such that J(µxk.ψk)nkK

wn,m
ηxk

= Jµxk.ψkK
wn,m
ηxk

.
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Using this result for guarded, µ-unipolar sentences, it can be argued that the same
holds for guarded, ν-unipolar sentences. Let ϕ be a ν-unipolar sentence. The idea
is to argue that each rejecting run of Aϕ on any suffix of some wn,m is bounded. To
ensure the existence of rejecting runs, the automaton Aϕ is extended by a rejecting
state qrej and then simplified as described at the end of Sec. 2.4.1. The translation
into a nondeterministic and then into a deterministic automaton as well as the follow-
ing reachability arguments are similar, respecting the state qrej instead of qacc. The
monotonicity argument of Lem. 2.2.8 is the same just in the vice-versa direction.

Corollary 4.1.10. Let ϕ ∈ Llinµ be a guarded, unipolar sentence and wn,m a word of
Def. 3.0.1. It holds that ϕ ∈ FC(wn,m).

Now, it remains to extend the result from a guarded, unipolar sentence to a possibly
unguarded, unipolar sentence. This is done by applying the guarding procedure pre-
sented in Sec. 2.2.5 in a backwards direction, while arguing that finite convergence is
preserved in each step.

Theorem 4.1.11. Let ϕ ∈ Llinµ be an unipolar sentence and wn,m a word of Def. 3.0.1.
It holds that ϕ ∈ FC(wn,m).

Proof. Let ϕ be σ-unipolar. If ϕ is guarded the result is given by Cor. 4.1.10. If ϕ
is unguarded then consider the guarded, σ-unipolar sentence ϕ′ which is the result of
the guarding procedure of Sec. 2.2.5 applied on ϕ. Again, with Cor. 4.1.10 it follows
that ϕ′ is finitely converging over wn,m. Assume that all due to Prop. 2.2.13 gener-
ated σ̂ in a subformula σxi. ψi ∈ sub(ϕ′) are identifiable and exclusively referred to as
σ̂i. Furthermore, assume that all subformulas ψ[σx. ψ/x] ∈ sub(ϕ′) generated using
Prop. 2.2.12 are identifiable and referred to as unrolled subformulas. It is straightfor-
ward that applying the guarding procedure in the opposite direction on ϕ′ results in
ϕ. Thus, it needs to be argued that each reverse step of the procedure does preserve
finite convergence. Let ϕ′tmp denote an intermediate form in the reverse procedure.

First, consider replacing all σ̂i with xi in a subformula σxi. ψi of the current sen-
tence ϕ′tmp. This corresponds to undoing the replacement of all not weakly-guarded
occurrences of a fixpoint variable. Assume that m′ is a point of finite convergence
of ϕ′tmp over wn,m. For all k ∈ N can be inferred with a straightforward induction
that J(σxi. ψi)m

′[k/ci]Kwη = J(σxi. ψi[xi/σ̂i])m
′[k/ci]Kwη . This is a result from the fact

that σ̂i originally replaced not weakly-guarded occurrences of xi. It follows from this
that J(σxi. ψi)m

′Kwη = J(σxi. ψi[xi/σ̂i])m
′Kwη . Furthermore, from Prop. 2.2.13 it follows

for each σxj . ψj ∈ sub(ψi) that it still holds J(σxj . ψj)m
′Kwn,mηxj

= Jσxj . ψjK
wn,m
ηxj

after
replacing σ̂i with xi. In conclusion, undoing the replacement of not weakly-guarded
xi preserves the point of finite convergence m′.

Consider now an unrolled formula ψi[σxi. ψi/xi] and assume thatm′ is a point of finite
convergence of the current sentence ϕ′tmp. It needs to be argued that ψi[σxi. ψi/xi] can
be replaced with σxi. ψi such that finite convergence is preserved. This corresponds
to undoing the unfolding of inner fixpoint subformulas. Note, ϕ′tmp is a σ-unipolar
sentence. With the monotonicity properties of Lem. 2.2.8 it follows that m′ + 1 also
is a point of finite convergence of ϕ′tmp. Let ηm′xi be the environment that maps each
fixpoint variable xh ∈ sub(ψi) occurring freely in ψi to

J(σxh.ψh)(m′+1)[m′/ch]Kwn,m
ηm′xh

.
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The environments ηm′xi and ηm′xh are semantic equivalents to the syntactic replacement
of free occurring fixpoint variables with the m′ unfolding of their respective fixpoint
subformula. From the monotonicity properties of Lem. 2.2.8 and the fact that m′ is
a point of finite convergence of ϕ′tmp over wn,m it follows that

J(σxh.ψh)(m′+1)[m′/ch]Kwn,m
ηm′xh

= Jσxh.ψhK
wn,m
ηxh

.

As m′ + 1 also is a point of finite convergence of ϕ′tmp over wn,m, it holds for all
σxj . ψj ∈ sub(ψi) that

J(σxj . ψj)m
′+1Kwn,mηxj

= Jσxj . ψjK
wn,m
ηxj

which leads to

J(σxj . ψj)m
′+1Kwn,m

ηm′xj
= Jσxj . ψjK

wn,m

ηm′xj
.

The second equivalence states for each fixpoint subformula of ψi that the semantics
of the (m′ + 1)-th unfolding are equal to the true semantics. This implies that

J(ψi[σxi. ψi/xi])m
′+1Kwn,m

ηm′xi
= Jψi[σxi. ψi/xi]K

wn,m

ηm′xi
and with Prop. 2.2.12 that

J(ψi[σxi. ψi/xi])m
′+1Kwn,m

ηm′xi
= J(σxi. ψi)(m′+1)Kwn,m

ηm′xi
.

Thus, the unrolled formula ψi[σxi. ψi/xi] can be replaced with σxi. ψi without chang-
ing the semantics of ϕ′(m

′+1)
tmp . That m′ + 1 is a point of finite convergence after this

replacement follows from the fact that σxi. ψi was a subformula of ϕ′tmp before the
replacement. Therefore, the subformula conditions of a finite convergence are still
valid.

These two arguments show that each reverse step of the guarding procedure preserves
finite convergence over wn,m which implies that ϕ is finitely converging over wn,m.

4.2 Finite Convergence of Alternation-Free Formulas

With the results of Sec. 4.1 about the finite convergence of unipolar sentences over
all wn,m, a proof of finite convergence of all alternation-free sentences over all wn,m
becomes arguable. Informally put, the idea behind this proof is that alternation-free
sentences are in fact a stack of unipolar sentences.

Theorem 4.2.1. Let ϕ ∈ Llinµ be an alternation-free sentence and wn,m a word of
Def. 3.0.1. It holds that ϕ ∈ FC(wn,m).

Proof. Let V µ
ϕ and V ν

ϕ be the sets of least and greatest fixpoint variables occurring in
ϕ. It follows from the fact that ϕ is alternation-free that there is no pair x ∈ V µ

ϕ and
y ∈ V ν

ϕ such that x occurs free in sub(fpϕ(y)) or y occurs free in sub(fpϕ(x)). This
property leads to the following ordering: Each unipolar fixpoint sentence σx. ψ ∈
sub(ϕ) is of order 0, denoted by order(σx. ψ) = 0. For a non-unipolar sentence
σx. ψ ∈ sub(ϕ) the order is defined as

max({order(σ′x′. ψ′) | σ′x′. ψ′ ∈ sub(ψ) is a sentence and σ 6= σ′}) + 1.

If order(σx. ψ) = 0 the sentence is unipolar. For this case it follows by Th. 4.1.11 that
σx. ψ is finitely converging over wn,m.
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For the induction step let σx. ψ ∈ sub(ϕ) be a sentence and let there be k sentences
σixi.ψi ∈ sub(ψ) with order(σixi.ψi) = order(σx. ψ) − 1. The induction hypothesis
states that each of these subsentences is finitely converging over wn,m. Let ni be the
corresponding unfolding. Then it follows that

Jσx. ψKwn,mη = Jσx. ψ[(σixi. ψi)
ni/σixi. ψi]

k−1
0 Kwn,mη ,

where [· · · ]k−1
0 denotes the replacement for all 0 ≤ i ≤ k. This new sentence is

unipolar. Thus, with Th. 4.1.11 it follows that there is some n′ which is a point
of finite convergence for σx. ψ[(σixi. ψi)

ni/σixi. ψi]
k−1
0 over wn,m. As each replaced

fixpoint subformula is an unipolar sentence, the monotonicity properties of Lem. 2.2.8
can be applied. Then, the point of finite convergence of σx. ψ over wn,m is given by
max({n0, . . . , nk−1, n

′}).

Using this, it can be assumed that each outermost fixpoint sentence of ϕ is finitely
converging over wn,m. An additional induction argument over the structure of ϕ gives
the final result.

4.3 Presumed Generalisation of the Result

This section sketches a conjecture on how to use the proven results of this work to
show that all Llinµ -formulas are finitely converging over all wn,m. The main result
to fall back on is given by Th. 4.2.1. Namely, the result that all alternation-free
Llinµ -formulas are finitely converging over all wn,m.

The idea of the proof is informally described as follows: Consider a formula ϕ ∈ Llinµ
and a word wn,m. It is shown for a fixpoint subformula σx.ψ that there is a seman-
tically equivalent finite unfolding while assuming that outer fixpoint subformulas are
unfolded already and that inner fixpoint subformulas are computed completely. Ap-
plying this procedure in a top-down manner to each fixpoint subformula should lead
to a proof for the finite convergence of ϕ over wn,m. How to argue that there is a
semantically equivalent unfolding for an outermost fixpoint formula, while computing
inner fixpoints completely, is shown in the following. This is followed by a brief dis-
cussion of the difficulties that come with this approach. These difficulties are one of
the reasons why a formal proof is not given in this work.

First, some preliminaries from the theory of basic modal logic are needed. Basic
modal logic is not formally defined in Chap. 2, but can be regarded as the fragment of
Lµ-formulas ϕ such that ad(ϕ) = 0 and that there are no free occurring variables in
ϕ. This also implies that there is no subformula σx.ψ ∈ sub(ϕ). The same holds for
the linear-time variant Llinµ . For the remaining part of this section a formula ϕ ∈ Llinµ
is said to be a modal logic formula if ad(ϕ) = 0. For further insights into the theory
of modal logic it is referred to [BBW07]. The first observation needed is that the
inclusion of a position i of an infinite word w ∈ Σω in the semantics JϕKwη of a basic
modal logic formula with md(ϕ) = d is only dependent on the first d positions after
i. This leads to the case that either all i for which w[i : i + d] looks the same are
included in the semantics of JϕKwη or none of them.

Observation 4.3.1. Let ϕ be modal logic formula with md(ϕ) = d, w ∈ Σω and
I ⊆ N such that for all i, i′ ∈ I it holds w[i : i + d] = w[i′ : i′ + d]. It holds that
I ⊆ JϕKwη or I ∩ JϕKwη = ∅.
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The second observation needed is an implication of this understanding. Across all w ∈
Σω each modal logics formula ϕ is semantically equivalent to a disjunction

∨
u∈U ϕu.

Here, U is the set of all finite words of length d that satisfy ϕ and the formula ϕu is
satisfied by a position i if and only if the infix of length d starting in i is equal to u.
Additionally, it can be shown that U is finite.

Observation 4.3.2. Let ϕ be a modal logics formula and
∨
u∈U ϕu as described

above. For all w ∈ Σω it holds that JϕKwη = J
∨
u∈U ϕuK

w
η .

Consider now an (arbitrary) formula ϕ ∈ Llinµ and w.l.o.g. assume that ϕ = µx.ψ.
The following arguments are dual for the ν-case. Consider now the single unfolding of
µx.ψ, defined as (µx.ψ, 0) = ⊥ and (µx.ψ, i+ 1) = ψ[(µx.ψ, i)/x]. This is a syntactic
variant of Def. 2.2.5 for finite steps. For the remaining part of this section unfolding
refers to this notion of a single fixpoint unfolding. It is straightforward that for all
w ∈ Σω it holds

Jϕ, 0Kwη ⊆ Jϕ, 1Kwη ⊆ . . . ⊆ JϕKwη .

It is a well-known result by Kaivola that for each Llinµ -formula there is a semantically
equivalent alternation-free formula over all infinite words [Kai95]. With the results of
this work, particularly Th. 4.2.1, it follows that there is also an equivalent modal logic
formula over each wn,m. Fix some word wn,m. Let ϕ′ be the equivalent modal logic
formula for ϕ over wn,m and assume that md(ϕ′) = d. The arguments of Obs. 4.3.2
lead to the case that there is a set U of words of length d such that Jϕ′Kwn,mη =
J
∨
u∈U ϕ

′
uK
wn,m
η . With the same arguments it follows for each unfolding (ϕ, i) that

there is a set Ui and with the relation Jϕ, iKwn,mη ⊆ JϕKwn,mη it follows that Ui ⊆ U .
This leads to the sequence of inclusions U0 ⊆ U1 ⊆ . . . ⊆ U . It is known that U
is finite. This means that this sequence stabilizes with some Ui, which implies that
J(ϕ, i)Kwη = JϕKwη .

Observation 4.3.3. Let ϕ ∈ Llinµ and let wn,m a word of Def. 3.0.1. There is i ∈ N
such that J(ϕ, i)Kwn,mη = JϕKwn,mη .

At this point it can be inferred that for each wn,m and Llinµ -formula ϕ there is a
semantically equivalent unfolding of all outermost fixpoint formulas (ϕ, i). It is left to
argue that this implies the finite convergence of ϕ over all wn,m. This step is the one
of the reasons why a general proof is only sketched in this work: The validity of the
previous arguments is not doubted, but using these in an induction over all fixpoint
subformulas of ϕ comes with difficulties.

Consider an inner fixpoint subformula σx.ψ of ϕ and assume that there are seman-
tically equivalent unfoldings for outer fixpoint subformulas. The same procedure as
described above can be applied to σx.ψ while assuming that all fixpoint variables
x′ which are occurring freely in sub(ψ) are replaced with the respective unfolding of
their defining fixpoint subformula σ′x′.ψ′. However, the unfolding of σ′x′.ψ′ includes
fixpoint subformulas, especially the subformula σx.ψ, which means that σx.ψ is du-
plicated while replacing x′ in ψ. As the unfolding of σx.ψ is done in reference to these
outer unfoldings further arguments are needed to find one unfolding of σx.ψ for all
occurrences. Because of this difficulty and the reliance on basic modal logic, which is
not topic of this work, a formal proof is out of scope.

Conjecture 4.3.4. Let ϕ ∈ Llinµ be a sentence and wn,m a word of Def. 3.0.1. It holds
that ϕ ∈ FC(wn,m).
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Chapter 5

HFL-Formulas without Finite
Convergence

This chapters shows that there are HFLlin-sentences, which are not finitely converging
over some wn,m. An example from the second-order fragment HFL2

lin and an example
from the first-order fragment HFL1

lin is presented. Both example sentences are con-
sidered in context of the infinite word w2,1. This means that all αi, βi in this chapter
refer to the respective infix of w2,1.

The HFL2
lin-sentence ϕ2 is considered first as its non-finite convergence is easier to

see. The definition of ϕ2 uses the abbreviations presented in Sec. 2.3.2:

ϕ2 =
(
νx. λfα, fβ. fα+1> ∧ x fα+1 fβ+1

)
(a→) (b→),

(ψ →) := λy. ψ ∧� y,
fα+1 := fα ◦ fα ◦ fβ ◦ fα ◦ fα,
fβ+1 := fβ ◦ fβ ◦ fα ◦ fβ ◦ fβ.

Consider ϕ2 in context of w2,1. Informally, a position i of w2,1 is included in Jϕ2K
w2,1
η if

all αi start in this position. To understand this, finite unfoldings of ϕ2 are considered.
These are depicted in a simplified version, using β-reduction and the semantic equiva-
lence of � (ψ1 ∧ψ2) and �ψ1 ∧�ψ2. A subformula (x0 → (x1 → · · · (xn−1 → ψ) · · · )
is denoted by u → ψ with u = x0 · · · xn−1. If ψ = > it is further simplified and
denoted by u. The first three unfoldings and the i-th one are given by

ϕ0
2 = >,

ϕ1
2 = aabaa︸ ︷︷ ︸

α1

∧>,

ϕ2
2 = aabaaaabaabbabbaabaaaabaa︸ ︷︷ ︸

α2

∧ aabaa︸ ︷︷ ︸
α1

∧> and

ϕi2 = αi ∧ · · · ∧ α1 ∧ >.

Taking a look at Def. 3.0.1 it follows that no position of w2,1 satisfies this property,
which means that JϕKw2,1

η = ∅ for all η. In contrast to the results about Llinµ -sentences
of Chap. 4 the HFL2

lin-sentence ϕ2 is not finitely converging over w2,1. The reason for
this is the stepwise inclusion of greater αi, if seen as simplifications of→ applications,
in greater unfoldings of ϕ2. This excludes further positions in each further unfolding.

Theorem 5.0.1. Let ϕ2 be defined as above. It holds that ϕ2 /∈ FC(w2,1).
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Proof. For all i it is shown that Jϕi2K
w2,1
η 6= Jϕi+1

2 Kw2,1
η . As there is only one fixpoint

subformula present in ϕ2, this implies that ϕ2 is not finitely converging over w2,1.
Let ni = (1 − 5i)/(1 − 5), which is the starting point of the first αi in w2,1. The
following shows that for all i it holds that ni ∈ Jϕi2K

w2,1
η and that there is no j < ni

such that j ∈ Jϕi2K
w2,1
η . This implies that ni /∈ Jϕi+1

2 Kw2,1
η , which gives the desired

statement. From the discussion above about the i-th unfolding of ϕ2 it follows that
k ∈ JϕiKw2,1

η if each αi′ with i′ ≤ i starts at position k of w2,1. The second observation
of Prop. 3.0.3 states that this is the case for position ni as there starts αi. Furthermore,
this observation also implies that no position j with j < ni is included in JϕiKw2,1

η as
there starts no αi-infix. This means that for all i it holds that Jϕi2K

w2,1
η 6= Jϕi+1

2 Kw2,1
η ,

which implies that ϕ2 /∈ FC(w2,1).

This theorem shows that there are HFL2
lin-sentences which are not finitely converg-

ing over some wn,m. Besides this result, the sentence ϕ2 is not that interesting as
its semantics are trivial in context of w2,1. This leaves room for critique that each
meaningful HFLlin-formula could be finitely converging over all wn,m. Additionally,
it could still be the case that all HFL1

lin-formulas are finitely converging over all wn,m.
Nevertheless, ϕ2 is a fairly simple example compared to the following HFL1

lin-sentence.

The HFL1
lin-formula ϕ1 is considered in the followin. The definition of ϕ1 makes use

of the same abbreviations as the definition of ϕ2:

ϕ1 := νx. ψα x,

ψα := µxα. λy. (a→ y) ∨ (xα (xα (ψβ (xα (xα y))))),

ψβ := µxβ. λz. (b→ z) ∨ (xβ (xβ (xα (xβ (xβ z))))).

Note, ψα and ψβ are of type • → •. The formula ϕ1 is also considered in context of
w2,1. Among others reasons, a position of w2,1 is included in the semantics of ϕ1 if
an infinite chain of arbitrary αi starts from it. To show this, it can be inferred that
for all i and i′ < i the unfolding ψiα includes αi′ → y as a disjunct, if αi′ is seen as a
simplification of→ applications. This can be proven with a straightforward induction.
An intuitive understanding of the unfolding of ϕ1 is given in the following. First, the
first three and the i-th unfolding of ψα are considered. Disjuncts of an unfolding ψiα,
which are not of interest for this understanding, are subsumed in Ψi

α:

ψ0
α = λy.⊥,

ψ1
α = λy.(a→ y) ∨ (ψ0

α (ψ0
α ((ψβ[ψ0

α/xα])1 (ψ0
α (ψ0

α y)))))

= λy.(a→ y) ∨ ⊥,(
ψβ[ψ0

α/xα]
)1

= λz.(b→ z) ∨ ⊥,

ψ2
α = λy.(a→ y) ∨ (ψ1

α (ψ1
α ((ψβ[ψ1

α/xα])2 (ψ1
α (ψ1

α y)))))

= λy.(a→ y) ∨ (aabaa→ y) ∨Ψ2
α,(

ψβ[ψ1
α/xα]

)2
= λz.(b→ z) ∨ (bbabb→ z) ∨ ⊥,

ψiα = λy.(a→ y) ∨ (ψi−1
α (ψi−1

α ((ψβ[ψi−1
α /xα])i (ψi−1

α (ψi−1
α y)))))

= λy.(α0 → y) ∨ · · · ∨ (αi−1 → y) ∨Ψi
α.
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As stated above, the i-th unfolding of ψiα includes a disjunct αi′ → y for all i < i.
Next, the first three and the i-th unfolding of ϕ1 are considered:

ϕ0
1 = >,

ϕ1
1 = ψ1

α>,
ϕ2

1 = ψ2
α (ψ2

α>) and

ϕi1 = ψiα (ψiα (· · · (ψiα︸ ︷︷ ︸
i times

(>)) · · · )).

This shows that with each unfolding of ϕ1 there occurs one more unfolding of ψα. In
conclusion, the intuitive understanding gained so far can be described as follows. The
i times unfolding of ϕ1 creates a chain of length i of • → • building blocks taken from
ψiα which are ultimately applied to >. The i times unfolding of ψα provides building
blocks of the form (αi′ →) for all i′ < i. In combination, a position of w2,1 is in the
semantics of ϕi1 if there starts a sequence of length i of αi′ such that i′ < i. Therefore,
if i goes to infinity, which corresponds to the full computation of the semantics of ϕ1,
a position of w2,1 is in Jϕ1K

w2,1
η if an infinite chain of arbitrary αi starts from it.

This understanding leads to the first result about ϕ1 and w2,1. In contrast to ϕ2, the
semantics Jϕ1K

w2,1
η define a non-trivial set. In particular, Jϕ1K

w2,1
η includes the starting

points of all first occurring αi. The reason for this is that at each of these points starts
an infinite chain of αi.

Theorem 5.0.2. Let ϕ1 be defined as above and w2,1 of Def. 3.0.1. For all ni =
(1− 5i)/(1− 5) it holds that ni ∈ Jϕ1K

w2,1
η . Furthermore, it holds that Jϕ1K

w2,1
η 6= N.

Proof. Let x0 x1 · · · with xi ∈ {a, b} be equal to w2,1. For all ni ∈ N it it is proven
that ni ∈ Jϕ1K

w2,1
η . Informally put, it is shown that the starting point of each first

αi in w2,1 is included in the semantics of ϕ1 over w2,1. Therefore, the formula ψα is
considered. Let I ⊆ N be some subset of positions in w2,1. From the understanding
gained of finite unfoldings of ψα it follows for all i ∈ I and all j ∈ N that if there is an
infix xj αk[1 :]xi ∈ inf(w2,1) for some αk then j ∈ Jψα xK

w2,1

η[x 7→I]. With this observation
it can be argued that each ni is included in Jϕ1K

w2,1
η . By induction it is shown for each

iteration step i of the greatest fixpoint (see Def. 2.2.5) that ni ∈ Jϕ1, iK
w2,1
η . It is a

straightforward argument that ni ∈ Jϕ1, 0K
w2,1
η is valid for all i. Consider Jϕ1, j+1Kw2,1

η

and assume that ni ∈ Jϕ1, jK
w2,1
η for all i. Fix some ni and note that

Jϕ1, j + 1Kw2,1
η = Jψα xK

w2,1

η[x 7→Jϕ1,jK
w2,1
η ]

.

Per definition of ni it follows that xni αi[1 :]xni+1 ∈ inf(w2,1). From the induc-
tion hypothesis it can be inferred that ni+1 ∈ Jϕ1, jK

w2,1
η . With the understanding

gained of unfoldings of ψα it follows that ni ∈ Jψα xK
w2,1

η[x 7→Jϕ1,jK
w2,1
η ]

= J(ϕ1, j + 1)Kw2,1
η .

Thus, it follows that each ni is in each finite approximation of ϕ1 and therefore in⋂
i∈NJ(ϕ1, i)K

w2,1
η . With reference to the discussion in Sec. 2.5 it can be inferred that

this intersection is equal to Jϕ1K
w2,1
η as w2,1 is an infinite word. This gives the desired

result.

That Jϕ1K
w2,1
η 6= N holds can be seen in Conj. 5.0.4. It is stated there that for all i

it follows that mi+1, which is the starting point of the second αi in the first αi+1 of
w2,1, is not included in Jϕ1K

w2,1
η .



Chapter 5. HFL-Formulas without Finite Convergence 40

Note, the positions ni are not the only positions of w2,1 included in Jϕ1K
w2,1
η as there

are disjuncts included in the unfolding of ϕ1 which do not follow the pattern of some
αj .

Another important implication of the understanding gained of the unfolding of ϕ1 and
ψα is the following: The position mi+1, which is the starting point of the second αi
in the first αi+1, is included in the semantics of the ϕi1. The reason for this is that
in mi+1 starts a sequence αi−1 αi−2 · · · α0. This sequence also occurs as a disjunct in
ϕi1, if considered as a simplification of → applications.

Observation 5.0.3. Let ϕ1 be defined as above and w2,1 of Def. 3.0.1. For all
mi+1 = (1− 5i+1)/(1− 5) + (2n+m)i it holds that mi ∈ Jϕi1K

w2,1
η .

In contrast to this, it can be shown that mi+1 is not included in the semantics of ϕi+1
1

or any greater unfolding of ϕ1. As a formal proof tends to be lengthy and tedious, it
is not given in this work.

Conjecture 5.0.4. Let ϕ1 be defined as above and w2,1 of Def. 3.0.1. For all i and
j > i it holds that mi+1 = (1− 5i+1)/(1− 5) + (2n+m)i is not included in Jϕj1K

w2,1
η .

From the combination of Obs. 5.0.3 and Con. 5.0.4 it can be inferred for all i that
there is a position included in the semantics of ϕi1 but is not included in the semantics
of ϕ. Thus, no finite unfolding ϕi1 is semantically equal to ϕ1 over w2,1. This implies
that ϕ1 is not finitely converging over w2,1.

Conjecture 5.0.5. Let ϕ1 be defined as above and w2,1 of Def. 3.0.1. It holds that
ϕ1 /∈ w2,1 ∈ FC().

From Th. 5.0.2 and Conj. 5.0.4 it follows for all i that the position ni+1, which is the
starting point of the highest-level αi+1 in w2,1, is included in Jϕ1K

w2,1
η and that the

position mi+1, which is the starting point of the second αi in this αi+1, is not included
in Jϕ1K

w2,1
η . In Sec. 4.3 it is discussed that over each wn,m each Llinµ -formula is equal to

some formula of basic modal logic. Such a modal logic formula has some modal-depth
d which means that it is not able to distinguish between ni+1 and mi+1 if |αi| ≥ d.
This implies for all Llinµ -formulas ϕ that there is an i such that ni+1 ∈ JϕK

w2,1
η if and

only if mi+1 ∈ JϕK
w2,1
η . As the results for ϕ1 regarding the positions ni+1 and mi+1

are valid for all i, it follows that Jϕ1K
w2,1
η is not definable by a Llinµ -formula.

Observation 5.0.6. Let w2,1 be of Def. 3.0.1. There is no ϕ ∈ Llinµ such that JϕKw2,1
η =

Jϕ1K
w2,1
η .

These examples, especially the sentence ϕ1, show that there are non-trivial HFLlin-
formulas which are not finitely converging over some w2,1. Furthermore, it was shown
that the semantics of ϕ1 over w2,1 are not Llinµ -definable. It can therefore be excluded,
that there is a Llinµ -formula which defines the same property over w2,1 but is finitely
converging.
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Chapter 6

Implications and Outlook

In Chap. 4 it was proven that all alternation-free ϕ ∈ Llinµ are finitely converging over
all wn,m. Additionally, a way how to use this result to show the finite convergence for
arbitrary Llinµ -formula over all wn,m was sketched. In contrast to this, in Chap. 5 it
was shown that there are simple HFL1

lin-formulas and HFL2
lin-formulas which are not

finitely converging over at least one instance of wn,m. Furthermore, it was discussed
that the HFL1

lin-example defines a non-trivial property which is not definable by a Llinµ -
formula. With the understanding from Sec. 2.5 that the usage of Llinµ and HFLlin is
no restriction to the validity of these findings for Lµ and HFL, the results of this work
can be summarized as follows: There are classes of structures that allow non-finite
convergence of meaningful higher-order HFL-formulas in contrast to a guaranteed
finite convergence of all Lµ-formulas. In addition to this, there are properties of these
structures which are definable by a HFL-formula with non-finite convergence but not
definable by any Lµ-formula. This implies that the higher expressive power of HFL
compared to Lµ also comes with higher or non-finite convergence.

In [BLL14] some techniques to eliminate fixpoint alternation in low-order fragments of
HFL are presented. These techniques require that the HFL-formulas are considered
in context of a special class of LTS. These special LTS are transition systems for which
the considered (fixpoint) formula converges after a finite number of iterations. This
classification leads to the following hierarchy of LTS: Let Tifin be the class of LTS such
that for all T ∈ Tifin and all ϕ ∈ HFLi it holds that ϕ ∈ FC(T ). Then, the hierarchy
is given as follows:

T0
fin ⊇ T1

fin ⊇ · · · ⊇
⋂
i∈N

Tifin.

The relation Tifin ⊇ Ti+1
fin is directly implied by HFLi ⊆ HFLi+1. The strictness of this

hierarchy is an open question. The findings of this work lay a foundation for a possible
answer: It is strongly conjectured that T0

fin 6= T1
fin, which implies that T0

fin ) T1
fin. The

case T0
fin ) T2

fin is also considered by this work, but is already implied by T0
fin 6= T1

fin.
For the alternation-free fragments of Lµ respectively HFL0 and HFL1 the separation
of the classes T0

fin and T1
fin is proven and for the general case the result does seem to

be an adjacent step.

Further Research

There are several next steps, which could be taken in continuation of this work:

• The finite convergence of arbitrary Llinµ -formulas over wn,m needs a formal proof.
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The alternation-free case is proven, but the general case was only sketched in
Sec. 4.3. An idea how to approach this was given, but there are crucial parts
which still need to be worked out in detail.

• The family wn,m should be investigated thoroughly. Its properties were used in
this work, but it is left open to formally capture a property or a combination of
properties which cause the findings of this work.

• The methods used in the proof of Chap. 4 are tailored for the specific case of
Lµ-calculus or HFL0 formulas. In particular, this means the utilized equiva-
lence of Lµ and APA, which allows the use of automata-theoretic arguments.
In hindsight of differentiating higher-order fragments of HFL, a redesigned ver-
sion of this proof, avoiding such specific steps, could carve out a more general
understanding.

• A more distant step is further investigating the strictness of the hierarchy pre-
sented in the previous section. It is suspected that clearing the situation for T1

fin
and T2

fin leads to a sophisticated conjecture about the strictness in general. The
introduced family wn,m holds a good starting point for further insights into this
problem.

• This work is located in the area of convergence studies of fixpoints, especially
fixpoints definable in the modal µ-calculus. This research direction is at best in
the early stages, which causes a lack of tools and methods. For example, taking
existing results about semantic equivalence of automata, games and logics and
extending them to also include arguments about approximative semantics offers
an interesting set of tools for further research.



43

Bibliography

[AL13] Bahareh Afshari and Graham E. Leigh. “On closure ordinals for the modal
mu-calculus”. In: Computer Science Logic 2013 (CSL 2013), CSL 2013,
September 2-5, 2013, Torino, Italy. Ed. by Simona Ronchi Della Rocca.
Vol. 23. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013,
pp. 30–44. doi: 10.4230/LIPIcs.CSL.2013.30. url: https://doi.org/
10.4230/LIPIcs.CSL.2013.30.

[ALS07] Roland Axelsson, Martin Lange, and Rafal Somla. “The Complexity of
Model Checking Higher-Order Fixpoint Logic”. In: Logical Methods in
Computer Science 3.2 (2007). doi: 10.2168/LMCS- 3(2:7)2007. url:
https://doi.org/10.2168/LMCS-3(2:7)2007.

[BBW07] Patrick Blackburn, J. F. A. K. van Benthem, and Frank Wolter, eds.
Handbook of Modal Logic. Vol. 3. Studies in logic and practical reason-
ing. North-Holland, 2007. isbn: 978-0-444-51690-9. url: https://www.
sciencedirect.com/bookseries/studies-in-logic-and-practical-
reasoning/vol/3/suppl/C.

[BFL15] Florian Bruse, Oliver Friedmann, and Martin Lange. “On guarded trans-
formation in the modal µ-calculus”. In: Log. J. IGPL 23.2 (2015), pp. 194–
216. doi: 10.1093/jigpal/jzu030. url: https://doi.org/10.1093/
jigpal/jzu030.

[BKP86] Howard Barringer, Ruurd Kuiper, and Amir Pnueli. “A Really Abstract
Concurrent Model and its Temporal Logic”. In: Conference Record of the
Thirteenth Annual ACM Symposium on Principles of Programming Lan-
guages, St. Petersburg Beach, Florida, USA, January 1986. ACM Press,
1986, pp. 173–183. doi: 10.1145/512644.512660. url: https://doi.
org/10.1145/512644.512660.

[BLL14] Florian Bruse, Martin Lange, and Etienne Lozes. “Collapses of fixpoint
alternation hierarchies in low type-levels of higher-order fixpoint logic”. In:
Workshop on Programming and Reasoning on Infinite Structures. 2014.

[BOW14] Achim Blumensath, Martin Otto, and Mark Weyer. “Decidability Results
for the Boundedness Problem”. In: Logical Methods in Computer Science
10.3 (2014). doi: 10.2168/LMCS-10(3:2)2014. url: https://doi.org/
10.2168/LMCS-10(3:2)2014.

[CL08] Thomas Colcombet and Christof Löding. “The Non-deterministic Mostowski
Hierarchy and Distance-Parity Automata”. In: Automata, Languages and
Programming, 35th International Colloquium, ICALP 2008, Reykjavik,
Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic, Semantics,
and Theory of Programming & Track C: Security and Cryptography Foun-
dations. Ed. by Luca Aceto et al. Vol. 5126. Lecture Notes in Computer
Science. Springer, 2008, pp. 398–409. doi: 10.1007/978-3-540-70583-
3\_33. url: https://doi.org/10.1007/978-3-540-70583-3\_33.

https://doi.org/10.4230/LIPIcs.CSL.2013.30
https://doi.org/10.4230/LIPIcs.CSL.2013.30
https://doi.org/10.4230/LIPIcs.CSL.2013.30
https://doi.org/10.2168/LMCS-3(2:7)2007
https://doi.org/10.2168/LMCS-3(2:7)2007
https://www.sciencedirect.com/bookseries/studies-in-logic-and-practical-reasoning/vol/3/suppl/C
https://www.sciencedirect.com/bookseries/studies-in-logic-and-practical-reasoning/vol/3/suppl/C
https://www.sciencedirect.com/bookseries/studies-in-logic-and-practical-reasoning/vol/3/suppl/C
https://doi.org/10.1093/jigpal/jzu030
https://doi.org/10.1093/jigpal/jzu030
https://doi.org/10.1093/jigpal/jzu030
https://doi.org/10.1145/512644.512660
https://doi.org/10.1145/512644.512660
https://doi.org/10.1145/512644.512660
https://doi.org/10.2168/LMCS-10(3:2)2014
https://doi.org/10.2168/LMCS-10(3:2)2014
https://doi.org/10.2168/LMCS-10(3:2)2014
https://doi.org/10.1007/978-3-540-70583-3\_33
https://doi.org/10.1007/978-3-540-70583-3\_33
https://doi.org/10.1007/978-3-540-70583-3\_33


Bibliography 44

[Cza10] Marek Czarnecki. “How Fast Can the Fixpoints in Modal mu-Calculus
Be Reached?” In: 7th Workshop on Fixed Points in Computer Science,
FICS 2010, Brno, Czech Republic, August 21-22, 2010. Ed. by Luigi San-
tocanale. Laboratoire d’Informatique Fondamentale de Marseille, 2010,
pp. 35–39. url: https://hal.archives-ouvertes.fr/hal-00512377/
document\#page=36.

[Dam94] Mads Dam. “CTL* and ECTL* as Fragments of the Modal mu-Calculus”.
In: Theor. Comput. Sci. 126.1 (1994), pp. 77–96. doi: 10.1016/0304-
3975(94)90269-0. url: https://doi.org/10.1016/0304-3975(94)
90269-0.

[EC80] E. Allen Emerson and Edmund M. Clarke. “Characterizing Correctness
Properties of Parallel Programs Using Fixpoints”. In: Automata, Lan-
guages and Programming, 7th Colloquium, Noordweijkerhout, The Nether-
lands, July 14-18, 1980, Proceedings. Ed. by J. W. de Bakker and Jan van
Leeuwen. Vol. 85. Lecture Notes in Computer Science. Springer, 1980,
pp. 169–181. doi: 10.1007/3-540-10003-2\_69. url: https://doi.
org/10.1007/3-540-10003-2\_69.

[EL86] E. Allen Emerson and Chin-Laung Lei. “Efficient Model Checking in Frag-
ments of the Propositional Mu-Calculus (Extended Abstract)”. In: Pro-
ceedings of the Symposium on Logic in Computer Science (LICS ’86),
Cambridge, Massachusetts, USA, June 16-18, 1986. IEEE Computer So-
ciety, 1986, pp. 267–278.

[GKL14] Julian Gutierrez, Felix Klaedtke, and Martin Lange. “The µ-calculus al-
ternation hierarchy collapses over structures with restricted connectivity”.
In: Theor. Comput. Sci. 560 (2014), pp. 292–306. doi: 10.1016/j.tcs.
2014.03.027. url: https://doi.org/10.1016/j.tcs.2014.03.027.

[GS19] Maria João Gouveia and Luigi Santocanale. “ℵ1 and the modal µ-calculus”.
In: vol. 15. 4. 2019. url: https://lmcs.episciences.org/5808.

[HL11] Martin Hofmann and Martin Lange. Automatentheorie und Logik. eXa-
men.press. Springer, 2011. isbn: 978-3-642-18089-7. doi: 10.1007/978-
3-642-18090-3. url: https://doi.org/10.1007/978-3-642-18090-3.

[JW96] David Janin and Igor Walukiewicz. “On the Expressive Completeness of
the Propositional mu-Calculus with Respect to Monadic Second Order
Logic”. In: CONCUR ’96, Concurrency Theory, 7th International Confer-
ence, Pisa, Italy, August 26-29, 1996, Proceedings. Ed. by Ugo Montanari
and Vladimiro Sassone. Vol. 1119. Lecture Notes in Computer Science.
Springer, 1996, pp. 263–277. doi: 10.1007/3-540-61604-7\_60. url:
https://doi.org/10.1007/3-540-61604-7\_60.

[Kai95] Roope Kaivola. “Axiomatising Linear Time Mu-calculus”. In: CONCUR
’95: Concurrency Theory, 6th International Conference, Philadelphia, PA,
USA, August 21-24, 1995, Proceedings. Ed. by Insup Lee and Scott A.
Smolka. Vol. 962. Lecture Notes in Computer Science. Springer, 1995,
pp. 423–437. doi: 10.1007/3-540-60218-6\_32. url: https://doi.
org/10.1007/3-540-60218-6\_32.

[Koz83] Dexter Kozen. “Results on the Propositional mu-Calculus”. In: Theor.
Comput. Sci. 27 (1983), pp. 333–354. doi: 10 . 1016 / 0304 - 3975(82 )
90125-6. url: https://doi.org/10.1016/0304-3975(82)90125-6.

https://hal.archives-ouvertes.fr/hal-00512377/document\#page=36
https://hal.archives-ouvertes.fr/hal-00512377/document\#page=36
https://doi.org/10.1016/0304-3975(94)90269-0
https://doi.org/10.1016/0304-3975(94)90269-0
https://doi.org/10.1016/0304-3975(94)90269-0
https://doi.org/10.1016/0304-3975(94)90269-0
https://doi.org/10.1007/3-540-10003-2\_69
https://doi.org/10.1007/3-540-10003-2\_69
https://doi.org/10.1007/3-540-10003-2\_69
https://doi.org/10.1016/j.tcs.2014.03.027
https://doi.org/10.1016/j.tcs.2014.03.027
https://doi.org/10.1016/j.tcs.2014.03.027
https://lmcs.episciences.org/5808
https://doi.org/10.1007/978-3-642-18090-3
https://doi.org/10.1007/978-3-642-18090-3
https://doi.org/10.1007/978-3-642-18090-3
https://doi.org/10.1007/3-540-61604-7\_60
https://doi.org/10.1007/3-540-61604-7\_60
https://doi.org/10.1007/3-540-60218-6\_32
https://doi.org/10.1007/3-540-60218-6\_32
https://doi.org/10.1007/3-540-60218-6\_32
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1016/0304-3975(82)90125-6


Bibliography 45

[KVW00] Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. “An automata-
theoretic approach to branching-time model checking”. In: J. ACM 47.2
(2000), pp. 312–360. doi: 10.1145/333979.333987. url: https://doi.
org/10.1145/333979.333987.

[Mat02] Radu Mateescu. “Local Model-Checking of Modal Mu-Calculus on Acyclic
Labeled Transition Systems”. In: Tools and Algorithms for the Construc-
tion and Analysis of Systems, 8th International Conference, TACAS 2002,
Held as Part of the Joint European Conference on Theory and Practice of
Software, ETAPS 2002, Grenoble, France, April 8-12, 2002, Proceedings.
Ed. by Joost-Pieter Katoen and Perdita Stevens. Vol. 2280. Lecture Notes
in Computer Science. Springer, 2002, pp. 281–295. doi: 10.1007/3-540-
46002-0\_20. url: https://doi.org/10.1007/3-540-46002-0\_20.

[MV19] Gian Carlo Milanese and Yde Venema. “Closure Ordinals of the Two-Way
Modal µ-Calculus”. In: Logic, Language, Information, and Computation
- 26th International Workshop, WoLLIC 2019, Utrecht, The Netherlands,
July 2-5, 2019, Proceedings. Ed. by Rosalie Iemhoff, Michael Moortgat,
and Ruy J. G. B. de Queiroz. Vol. 11541. Lecture Notes in Computer
Science. Springer, 2019, pp. 498–515. doi: 10.1007/978-3-662-59533-
6\_30. url: https://doi.org/10.1007/978-3-662-59533-6\_30.

[Niw86] Damian Niwinski. “On Fixed-Point Clones (Extended Abstract)”. In: Au-
tomata, Languages and Programming, 13th International Colloquium,
ICALP86, Rennes, France, July 15-19, 1986, Proceedings. Ed. by Lau-
rent Kott. Vol. 226. Lecture Notes in Computer Science. Springer, 1986,
pp. 464–473. doi: 10.1007/3-540-16761-7\_96. url: https://doi.
org/10.1007/3-540-16761-7\_96.

[Ott99] Martin Otto. “Eliminating Recursion in the µ-Calculus”. In: STACS 99,
16th Annual Symposium on Theoretical Aspects of Computer Science,
Trier, Germany, March 4-6, 1999, Proceedings. Ed. by Christoph Meinel
and Sophie Tison. Vol. 1563. Lecture Notes in Computer Science. Springer,
1999, pp. 531–540. doi: 10.1007/3- 540- 49116- 3\_50. url: https:
//doi.org/10.1007/3-540-49116-3\_50.

[Tar+55] Alfred Tarski et al. “A lattice-theoretical fixpoint theorem and its appli-
cations.” In: Pacific journal of Mathematics 5.2 (1955), pp. 285–309.

[VV04] Mahesh Viswanathan and Ramesh Viswanathan. “A Higher Order Modal
Fixed Point Logic”. In: CONCUR 2004 - Concurrency Theory, 15th Inter-
national Conference, London, UK, August 31 - September 3, 2004, Pro-
ceedings. Ed. by Philippa Gardner and Nobuko Yoshida. Vol. 3170. Lecture
Notes in Computer Science. Springer, 2004, pp. 512–528. doi: 10.1007/
978-3-540-28644-8\_33. url: https://doi.org/10.1007/978-3-540-
28644-8\_33.

[Wal00] Igor Walukiewicz. “Completeness of Kozen’s Axiomatisation of the Propo-
sitional µ-Calculus”. In: Inf. Comput. 157.1-2 (2000), pp. 142–182. doi:
10.1006/inco.1999.2836. url: https://doi.org/10.1006/inco.1999.
2836.

[Wil01] Thomas Wilke. “Alternating Tree Automata, Parity Games, and Modal m-
Calculus.” In: Bulletin of the Belgian Mathematical Society Simon Stevin
8.2 (2001), p. 359.

https://doi.org/10.1145/333979.333987
https://doi.org/10.1145/333979.333987
https://doi.org/10.1145/333979.333987
https://doi.org/10.1007/3-540-46002-0\_20
https://doi.org/10.1007/3-540-46002-0\_20
https://doi.org/10.1007/3-540-46002-0\_20
https://doi.org/10.1007/978-3-662-59533-6\_30
https://doi.org/10.1007/978-3-662-59533-6\_30
https://doi.org/10.1007/978-3-662-59533-6\_30
https://doi.org/10.1007/3-540-16761-7\_96
https://doi.org/10.1007/3-540-16761-7\_96
https://doi.org/10.1007/3-540-16761-7\_96
https://doi.org/10.1007/3-540-49116-3\_50
https://doi.org/10.1007/3-540-49116-3\_50
https://doi.org/10.1007/3-540-49116-3\_50
https://doi.org/10.1007/978-3-540-28644-8\_33
https://doi.org/10.1007/978-3-540-28644-8\_33
https://doi.org/10.1007/978-3-540-28644-8\_33
https://doi.org/10.1007/978-3-540-28644-8\_33
https://doi.org/10.1006/inco.1999.2836
https://doi.org/10.1006/inco.1999.2836
https://doi.org/10.1006/inco.1999.2836

	Introduction
	Related Work

	Preliminaries
	Structures
	Words and Trees
	Labeled Transition Systems

	The Modal Mu-Calculus
	Syntax
	Alternation Hierarchy
	Semantics
	Fixpoint Unfolding and Finite Convergence
	Guardedness

	Higher-Order Fixpoint Logic
	Higher-Order Types
	Syntax
	Semantics
	The Modal Mu-Calculus as a Fragment of HFL

	Alternating Parity Automata
	The Modal Mu-Calculus and Alternating Parity Automata

	Linear-Time Variants: Mu-Calculus, HFL and APA

	Words with Finite Convergence of Mu-Formulas
	Finite Convergence of Mu-Calculus Formulas
	Finite Convergence of Unipolar Fixpoint Formulas
	Finite Convergence of Alternation-Free Formulas
	Presumed Generalisation of the Result

	HFL-Formulas without Finite Convergence
	Implications and Outlook

