
Bachelor’s Thesis

An Efficient Algorithm for Proof

Search in the Calculus of Influence
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1. Introduction

Today, society benefits from computer systems while the industry and other areas

depend on improvements made possible by these. Schools are mainly digitalized by

providing electronic whiteboards, often referred to as smart boards. Additionally,

tablets are used for writing notes instead of the traditional pen and paper. However

besides that, no further advantages of the digitalization are used in school yet, while

the usage of these digital tools could support skills and strategies that are needed

in scientific contexts [4, p. 3]. Studies confirm, that methodologies using digitalized

resources can improve their efficiency [9].

Since the requirement for each subject differs, there is not one tool that is suffi-

cient for all subjects. To address this, different tools for different subject have to be

created. In this case, the biology subject was picked to create a possible learning

tool for it. Considering biology often concentrates on different factors influencing

each other, the tool should be able to represent this behavior. Therefore, influence

experiments (see Section 2.2) are introduced to capture these influences. The pur-

pose of the learning tool is to read data about an experiment and to allow checking

whether a hypothesis about the influence of the two underlying factors of the ex-

periment is true. This can especially be useful when experiments cannot be done in

class due to timing or safety reasons.

This thesis creates the foundation for building such a tool, by providing a cal-

culus for checking whether a hypothesis is true (see Chapter 3) and acquiring an

algorithm to check this for real world experiments. For that, in Chapter 2, the influ-

ence experiments are formally described and the internal representation of them will

be introduced. After the calculus being introduced, the algorithm (see Chapter 4)

for applying the proof rules will be introduced with the main goal of being efficient

considering time complexity. After that, the implementation (see Chapter 5) and

its design choices will be presented, while introducing useful extension modules. Fi-

nally, the implementation will be tested using benchmarks representing real world

experiments, which will be scaled in granularity to see the time complexity consid-

ering more dense modeled experiments. To finalize the research done in this thesis,

it will be concluded in Chapter 7.
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2. Preliminaries

Before introducing the calculus which will be the foundation of the algorithm, the

influence experiments will be introduced. Especially the statements will be formally

defined which are used to abstract and store data from a given experiment and are

used inside the calculus to check whether a hypothesis is true. While the experiments

are not needed for understanding the calculus and the acquired algorithm, it is

beneficial to introduce them for understanding the origin of the proof rules and for

analyzing the time complexity of the algorithm for an input size sufficient for these

experiments. Additionally, since the definitions rely on intervals, they are introduced

separately with the used notations and properties.

2.1. Intervals

We define R∞ as R ∪ {−∞,∞} and define an order on it by giving the relation

≤R∞=≤R ∪{(x,∞) | x ∈ R} ∪ {(−∞, x) | x ∈ R}, with ≤R ∈ R × R being the

order on R. By that, the order uses the order of the underlying set while respecting

the newly added extreme points. Analogously, this can be defined for Q∞.

Definition 1 (Interval). Let a, b ∈ R, then the following intervals can be defined as

subsets of R:

[a, b] = {x | a ≤ x ≤ b} (closed interval)

(−∞, b] = {x | −∞ < x ≤ b} (left-opened interval)

[a,∞) = {x | a ≤ x <∞} (right-opened interval)

(−∞,∞) = {x | −∞ < x <∞} (opened interval)

For representability reasons, the borders a, b should be in Q∞. To avoid distinction

between the borders being in Q or in {−∞,∞}, always [a, b] will be used, abusing

the introduced notation.

Furthermore, an order on intervals is defined to be able to search through a

collection of intervals more efficiently.
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2. Preliminaries 3

Definition 2 (Interval order). [a, b] ≤ [x, y] applies for a, b, x, y ∈ R∞, if a < x or

a = b and b ≤ y holds. By that, order on a collection of intervals can be defined.

2.2. Influence Model

To be able to formally proof assumptions over an experiment, these experiments

have to be defined and abstracted into a mathematical space. With V = {a, b, ...}
being a finite set of variables, an influence experiment can be defined as a function

F : V2 → (R→ R). On top of that, a partial order for V should exist that is being

respected by the influences, meaning no variable should influence another variable

being lower in the order than itself. Each function F(a, b) with a, b ∈ V describes the

influence of variable a on variable b as a (partial) piece-wise function. Additionally,

the influences should behave in a transitive way and variables influencing itself

should behave like the identity function.

To derive provable, abstracted data from an experiment, statements are defined.

These statements model a variable a ∈ V on a given interval influencing a variable

b ∈ V on another interval with a quality, describing if the influence in this area

follows a monotonic (↗), antitonic (↘), constant (→) or arbitrary ( ) way.

Definition 3 (V-Statement). A V-statement is a 5-tuple (a, I1, q, I2, b) with a, b ∈
V . Furthermore, let I1, I2 be intervals over R∞ as introduced in Section 2.1 and

q ∈ { ,↘,↗,→} be the quality. For readability reasons, a V-statement is denoted

as a
I1 q I2
====⇒ b. If V is clear from the context, we may only speak of a statement

instead of a V-statement.

For such a statement to satisfy an influence experiment some conditions have to

be met. For a given variable pair (a, b), let F(a, b) be an influence experiment and

a
[x,y] q [x′,y′]
=======⇒ b with a, b ∈ V , q ∈ {↘,↗,→} be a V-statement, then one of these

cases should hold.

� q =↗ and for all z, z′ ∈ [x, y] with z ≤ z′ : F(a, b)(z) ≤ Fa,b(z′)

� q =↘ and for all z, z′ ∈ [x, y] with z ≤ z′ : F(a, b)(z′) ≤ Fa,b(z)

� q =→ and for all z, z′ ∈ [x, y] : Fa,b(z′) ≤ F(a, b)(z)

In addition to that, for all z ∈ [x, y], F(a, b)(z) ∈ [x′, y′] should be the fulfilled.

Definition 4 (Influence Model). A V-influence model M is a finite set of V-

statements. If V is clear from the context, we may only speak of an influence

model instead of a V-influence model.
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Figure 2.1.: Abstract model of sin′(x).

By that we defined a symbolic and abstract model of an influence experiment, in

which proofs can be formulated. Apart from the introduced definition of an influence

model, the used variables in the model can be restricted to extract a model which

only included statements over a variable a influencing another variable b.

Definition 5 (Specific Model). A (a, b)-model is a finite set of statements a
I q I′
===⇒ b

with I, I ′ being intervals and q being the quality.

Example 1. In this example the function sin′ : [0, 4π] → [−1, 1], x 7→ sin(x) de-

scribes an influence experiment and is abstracted by the (x, y)-model

M =
{
x

[0,π2 ]↗ [0,1]
=======⇒ y, x

[π−1
2
,π+1

2 ]↗ [0.87,1.13]
==============⇒ y, x

[π2−0.4,π+0.3]↗ [−0.4,0.95]
=================⇒ y,

x
[π, 3π2 ]↗ [−1.1,0]
==========⇒ y, x

[ 3π2 ,
5π
2 ]↗ [−1.05,1]

============⇒ y, x
[ 5π2 ,4π]↗ [−1.1,1.1]
============⇒ y

}
.

The function sin′ and the modelM are visualized in Fig. 2.1. The model is one out

of an infinite amount of possible models that abstract the given function correctly.

As seen in Example 1 and Fig. 2.1, a (a, b)-model can be visualized in a 2-

dimensional graph by plotting the statements as windows according to their in-

tervals. To avoid distinctions these axes are called the x-axis and the y-axis, not

respecting the actual variable name they represent. Consequently, the first interval

of a statement is referred to as the x-interval and the second interval of the state-

ment is referred to as the y-interval. According to this, a model can be interpreted

geometrically as a set of windows with different properties.

To sort a set of statements, the order of intervals can be used, ordering the state-

ments on their x-interval.



3. Calculus of Influence

To be able to check whether an assumption is being supported by a given model, the

viable input should be defined. In the case of a V-influence model, a V-statement as

introduced in Section 2.2 can be defined as a hypothesis. To explain the correctness

of such hypothesis S regarding the model M, M |= S is defined as the behavior in

S matching the one that is described in the model M
To be able to automatically decide |=, a set of proof rules is needed, which can be

used to formulate proofs. With these, the ` relation can be decided which implies

the |= relation.

Definition 6. LetM be a V-influence model and S be a V-statement,M ` S holds

if and only if S is derivable from M by using the proof rules stated in Fig. 3.1.

When referring to the process of building a proof tree to decide `, we may refer

to it as proving or solving.

To improve the intuitive understanding of the proof rules provided by Fig. 3.1

they will be discussed shortly. Furthermore, additional functions needed for the

rules will be introduced.

The Fact rule provides a completion of a branch in the proof tree by checking whether

a statement exists in the model. The Refl rule provides the same completion of a

branch in the proof tree for a reflexive statement. For the next rules, an order

on the qualities has to be defined and the term of a stronger statement has to be

introduced.

Definition 7 (Quality order). The partial order on the qualities is →� q � 
with q ∈ {↗,↘}

Definition 8 (Stronger statement). A statement a
I1 q I2
====⇒ b is stronger than another

statement a
I′1 q
′ I′2====⇒ b if I ′1 ⊆ I1, I2 ⊆ I ′2 and q � q′ holds.

Moreover, the I− rule provides the functionality to create weaker statements,

which might be useful for adapting borders to be able to use the Join, I+left and the

I+right rules. The I+ rule on the other hand allows building the intersection window of

overlapping statements. For that, the qualities of the statements will be combined,

5



3. Calculus of Influence 6

(Fact) if a
I q I′
===⇒ b ∈M

a
I q I′
===⇒ b

a
I q I1
===⇒ b b

I2 q′ I′
====⇒ c

(Trns) if I1 ⊆ I2
a

I q⊗q′ I′
=====⇒ c

a
I1 q I′1====⇒ b a

I2 q′ I′2====⇒ b
(I+)

a
I1∩I2 min�{q,q′} I′1∩I′2==============⇒ b

a
[x,z] q I
====⇒ b a

[z,y] q′ I′

=====⇒ b
(Join) if I ∩ I ′ 6= ∅

a
[x,y] q

⊕
q′ I∪I′

=========⇒ b

(Refl)

a
I q I
==⇒ a

a
[x,z] q [x0,y0]
=======⇒ b a

[z,y] q′ [x1,y1]
========⇒ b

(I+right)

a
[x,z] q [bx(q,x0,x1),by(q,y0,y1)]
=================⇒ b

a
[x,z] q [x0,y0]
=======⇒ b a

[z,y] q′ [x1,y1]
========⇒ b

(I+left)

a
[z,y] q [bx(q,x0,x1),by(q,y0,y1)]
=================⇒ b

a
I q I′
===⇒ b

(I−) if I1 ⊆ I, I ′ ⊆ I2, q � q′

a
I1 q′ I2
====⇒ b

Figure 3.1.: Rules of the calculus.

taking the minimum value of the qualities of the combined statements, respecting

the partial order �.

Definition 9 (Right neighbor). Statement a
[x0,y0] q I
======⇒ b is a right neighbor of state-

ment a
[x1,y1] q′ I′

======⇒ b, if x0 = y1 holds.

Definition 10 (Left Neighbor). Statement a
[x0,y0] q I
======⇒ b is a left neighbor of state-

ment a
[x1,y1] q′ I′

======⇒ b, if y0 = x1 holds.

The I+left and I+right rules are for propagating height borders through the corre-

sponding neighbored statements. For determining the resulting boundaries for the

height, the boundary functions provided by Fig. 3.3 can be used. Next, the Join

rule can be used on two neighbored statements, providing the functionality to cre-

ate wider statements. To connect the qualities of those statements, the function

⊕ : Q→ Q with Q = {↗,↘,→, } can be used as stated in Fig. 3.2a. Finally, the

Trns rule provides the functionality to propagate statements over different variables

in a transitive fashion. For the combination of the qualities the function × : Q→ Q

can be defined which can be extracted from Fig. 3.2b.
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Figure 3.2.: Operations for (a) quality add and (b) quality times.

bx(q, x0, x1) =


x0 if q =↗
x1 if q =↘
max(x0, x1) if q =→

(a)

by(q, y0, y1) =


y1 if q =↗
y0 if q =↘
min(y0, y1) if q =→

(b)

Figure 3.3.: Bound functions for the I+right and I+left rules to determine the resulting
lower (a) and upper (b) bounds.

3.1. Proofs

The proof rules of the calculus can be used to form proofs in the style of a sequent

calculus [2, Sec. 1.2]. Such a proof can be represented as a tree which starts with the

hypothesis as the root at the bottom, having the rules stacked on top of it to build

different branches of the tree. If all the created branches end with an axiom, namely

the Refl or the Fact rule, the proof is done and the given hypothesis S is derivable

from the modelM. On the other hand, if such a rule cannot be applied to conclude

a branch, the given proof does not imply M ` S. If no tree can be found fulfilling

this condition, M 6` S holds. Generally, a proof tree can be built in two different

ways. Firstly, the hypothesis could be the starting point from which statements are

build on top of it until each branch is finished with an axiom. We refer to this as

the bottom-up approach. While this potentially creates small proof trees since no

unnecessary branches are created, it is not a suitable approach in this case since the

I− rule allows the creation of an infinite amount of statements. Secondly, the initial

statements of the model can be taken by using the Fact rule. After that, the rules

of the calculus are applied to create new statements in each step with the goal of

deriving the hypothesis. The approach will be referred to as the top-down approach.

Observation 1. For the calculus of influence, a top-down, goal driven approach is

the most suitable to solve ` using proofs.

Since the boundaries of the hypothesis are fixed, it is possible to apply a goal

driven approach and avoid the abuse of the I− rule to prevent creating an infinite

amount of statements.
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As stated, a given (a, b)-model can be interpreted geometrically as windows in a

2-dimensional graph. Additionally, a proof over such a model can also be intepreted

geometrically, by combining the statements in an analogous manner to the proof

rules. The statements of the model can be interpreted as windows and additional

windows can be added to the model by using the proof rules. These equal the

statements that are created by rules inside the proof tree. Those do not change

the intuitive semantic interpretation of the model, since the added statements are

implied by ones already in the model. With that, the proof-theoretic interpretation

and geometric interpretation can be transformed into the other interpretation. The

goal of the proof is to derive a stronger statement than the hypothesis. Following the

geometric interpretation, the proof can be visualized by plotting the statements that

are on top of the proof tree coupled to the Fact or Refl rules as windows with dashed

lines. Except those, the statements that are derived by other statements using the

proof rules are visualized as windows with solid lines. Lastly, the hypothesis is

highlighted, having a red window. All the statements have the quality inside them,

while the hypothesis is also highlighted. To improve the distinction of the bounds

and qualities, the visualized model may include small offsets added to the windows

to improve the explicitness of the geometric interpretation.

In the following, some examples will be discussed to clarify proofs and the rules

used in it.

Example 2. LetM =
{
a

[0.5,4.5]↘ [0.5,3.5]
===========⇒ b, a

[2,3]→ [2.5,3.5]
=========⇒ b

}
be a (a, b)-model and

S = a
[0.5,2]↘ [2.5,3.5]
==========⇒ b be the hypothesis. Then one possible proof tree would look

like the following.

(Fact)

a
[0.5,4.5]↘ [0.5,3.5]
===========⇒ b

(Fact)

a
[2,3]↗ [2.5,3.5]
=========⇒ b

(I+)

a
[2,3]→ [2.5,3.5]
=========⇒ b

(Fact)

a
[0.5,4.5]↘ [0.5,3.5]
===========⇒ b

(I−)

a
[0.5,2]↘ [0.5,3.5]
==========⇒ b

(I+right)

a
[0.5,2]↘ [2.5,3.5]
==========⇒ b

Since all the paths end with the Fact rule, M ` S is the case. In general, there

can be multiple possible proof trees. In this case, we could trim the tree since the

I+ rule is not needed for proving the hypothesis. The statements in the model are

visualized by Fig. 3.4.

Example 3. Let M =
{
a

[0.5,3]↗ [1.5,3]
=========⇒ b, a

[2,4.5]↗ [1,2.5]
=========⇒ b

}
be a (a, b)-model and

S = a
[1,4.5]↗ [1.25,2.75]
===========⇒ b be the hypothesis. For this, the following proof can be
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Figure 3.4.: Visualization of the proof in Example 2.

formulated. To avoid duplicates in the tree subtrees can be used on multiple occa-

sions. For that, a label (*Label) is used whenever a subtree is build to verify that

the statement on the bottom of it is actually derivable, and it is referred to with a

label (Label*). When referring a subtree like that, it can be substituted it into the

given position. While this notation does not work when these labels are used for

different subtrees, it is sufficient for the following example.

(Fact)

a
[0.5,3]↗ [1.5,3]
=========⇒ b

(I−)

a
[0.5,2]↗ [1.5,3]
=========⇒ b

(Fact)

a
[0.5,3]↗ [1.5,3]
=========⇒ b

(Fact)

a
[2,4.5]↗ [1,2.5]
=========⇒ b

(*I+)

a
[2,3]↗ [1.5,2.5]
=========⇒ b

(I+right)

a
[0.5,2]↗ [1.5,2.5]
==========⇒ b

(I+*)

a
[2,3]↗ [1.5,2.5]
=========⇒ b

(*Join)

a
[0.5,3]↗ [1.5,2.5]
==========⇒ b

This subtree provides a statement that we can use in the proof. Since it is needed

twice, it improves the readability of the proof to extract it once and substitute it
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Figure 3.5.: Visualization of the proof in Example 3.

into the correct position afterwards.

(Join*)

a
[0.5,3]↗ [1.5,2.5]
==========⇒ b

(Join*)

a
[0.5,3]↗ [1.5,2.5]
==========⇒ b

(Fact)

a
[2,4.5]↗ [1,2.5]
=========⇒ b

(I−)

a
[3,4.5]↗ [1,2.5]
=========⇒ b

(I+left)

a
[3,4.5]↗ [1.5,2.5]
==========⇒ b

(Join)

a
[0.5,4.5]↗ [1.5,2.5]
===========⇒ b

(I−)

a
[1,4.5]↗ [1.25,2.75]
===========⇒ b

Since the hypothesis is in the root and all paths end with the Fact rule, M ` S
holds. Again, the proof and the model is visualized in Fig. 3.5. Additionally, since

all the qualities are ↗, they are not explicitly visualized.



4. Algorithm

The goal of the algorithm is to efficiently check for a hypothesis S and an influence

model M, whether M ` S is the case. As stated, the top-down approach is more

suitable than the bottom-up approach. Due to that, the algorithm has to derive new

statements fromM using the proof rules trying to derive a stronger statement than

the hypothesis. Given such a statement, it can be weakened using the I− rule to

derive the hypothesis. Firstly, the problem is decidable since it is possible to build

a finite cover of the model where all derivable statements are build. On that cover,

it could be checked whether one of the statements is stronger than the hypothesis,

which would imply M ` S. Although it is possible to build this cover, it has to

be done with care since the I− rule could create an infinite amount of statements.

However, this approach is not sufficient since the time complexity would be too

high and a goal driven algorithm is more suitable. For now, a complete and correct

algorithm will be acquired, keeping the time complexity as low as possible before

discussing the efficiency in Chapter 6.

4.1. Underlying Data Structure

To perform an efficient proof search, the statements should be stored in a sufficient

way. For that, the access of the data has to be addressed. Since the access of

statements dependents on the influence, the influence model can be split up into

non-empty (a, b)-models for all influences (a, b) ∈ V ×V that exist in the model. By

that, the existing influences of the model can be determined and potential transitive

connections in the model can be extracted more efficiently. In addition to that,

statements targeting the same influence as the hypothesis S can be extracted. In

conclusion, the model can be saved as a hash table, where (a, b) ∈ V × V are viable

keys that point to a container storing the (a, b)-model. Such a container needs to

support different access mechanisms to be sufficient. Namely, the random access of

statements, sorting statements, querying for overlapping statements on the x-axis,

checking for neighbored statements and modifying the container should be efficiently

possible. Considering this, an interval tree [1, Sec. 10.1] could be used. With that,

11



4. Algorithm 12

modifying the container and randomly accessing elements is possible in logarithmic

time. However, querying for overlapping intervals is not supported by the structure

and intervals can only be queried for overlapping a given point. Although the query

can be adjusted for querying an interval [a, b] by saving all endpoints c that are

included in the interval and querying for those, this process is rather inefficient since

this leads to a query time of O(r log n) with n being the amount of statements in the

model and r being the amount of endpoints included by the query interval. This can

easily extend the linear query time which can be achieved by simply iterating over

all the given intervals and collecting the intervals fulfilling the overlap condition.

As a consequence of this, a list is a more sufficient data structure. The time

complexity of the random access of elements is constant. While modifying the list

has a linear time complexity, adding elements to the end of the list has a complexity

of O(1). By that, the initial set of elements can be sorted in O(n log n) with n

being the amount of statements in the container. This is sufficient, since it can

be avoided to dynamically add statements during the running time, which allows

sorting the statements just once. The downside of this structure is, that querying for

overlapping statements has a linear worst-case complexity. The main problem is to

efficiently determine the overlapping statements of a statement that are predecessors

in the sorted list. The problem will be investigated with the following example.

Example 4. Let M =
{
a

[0,4]→ [0,1]
=======⇒ b, a

[1,2]→ [0,1]
=======⇒ b, a

[3,4]→ [0,1]
=======⇒ b

}
be a sorted

list of statements. For checking which statements overlap the last one in the list,

this can be used as a starting point. From there, the list can be walked through to

the left until a statement stops overlapping. As seen in the example, this procedure

can already be stopped at the next statement. Consequently, the first statement in

the list is not found while overlapping the desired area.

To address this, a normalized list of statements is introduced.

Definition 11 (Normalized Statements). Let L =
{
a

[x0,y0] q0 I0
=======⇒ b, . . . ,

[xn,yn] qn In
=======⇒ b

}
be a list of statements. L is called normalized, if ∀i ∈ {0, . . . , n− 1} : yi = xi+1.

Consequently, a normalized list of statements does not contain statements that

are enveloped by others on the x-axis except for ones where the lower bound is

equal to the upper bound. Those can be removed from the list and are dealt with

in Section 4.4. Consequently, problems like in Example 4 do not occur anymore.

To address the initial problems the sorted list had, an algorithm for finding the

overlapping statements of an area [x, y] will be given. Intuitively, a sufficient entry

point for the search can be determined and from there the list gets walked through

to the left and right until a statement occurs that does not overlap the interval
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Algorithm 1. Construct overlap map

1: procedure ConstructMap(S) . S is a set of statements
2: points ← ∅ . Store bounds
3: map ← {} . Map for intervals overlapping bounds
4: for st in S do . Extract bounds
5: points.update(st.begin, st.end)
6: map[st.begin].add(st)
7: map[st.end].add(st)

8: s points ← sorted(points)
9: collect ← ∅
10: for bound in s points do . Fix overlapping boundaries
11: collect.update(map[s])
12: if bound in map[s] then
13: map[s].remove(s)
14: collect.remove(s)

15: return s points, map

Algorithm 2. Construct normalized list

1: procedure ConstructList(S) . S is a set of statements
2: s points, map ← ConstructMap(S)
3: for i in s.length - 1 do
4: st ← intervalStr(map[s[i]]) . Use (I+) rule
5: st.begin ← s[i] . Fix the boundaries
6: st.end ← s[i + 1]

[x, y]. More precisely, the binary search algorithm [5, Sec. 6.2.1] can be applied

to the normalized list of statements, searching for x. If the statement found by

these overlaps the given area, the statements to the left and right are collected

until statements occur that do not overlap the given area. Due to the sorting and

the nominalization of the statements, no further statements can be collected after

these occurrences and the algorithm can stop. Thereby, the running time of the

algorithm is O(r+ log n) with n being the length of the list and r being the amount

of statements overlapping [x, y]. Additionally, the neighbors of a statement can be

determined in constant time, since they are the predecessor and successor of the

statement in the list.

After extracting a sufficient data structure, an algorithm will be provided to trans-

form a given (a, b)-model into the correct form. Firstly, as seen in Algorithm 1, the

set of statements gets read and all boundaries are saved and sorted. The bound-

aries of the x-axis are used and can be accessed via the st.begin and st.end call on

a statement object. Additionally, for each of these endpoints a set of overlapping

statements is created. Initially, each statement is only associated with its bound-
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aries. Since each statement does not only overlap their endpoints but rather all

bounds between these endpoints, the bounds get iterated over again to fix this by

collecting and inserting the statements as needed. In addition to that, the state-

ments are removed from their endpoint since they are not needed there for the next

stop of the normalization process. The ConstructMap procedure returns the

sorted list of boundaries and the hash table that contains information about each

boundary and the statements overlapped by it.

Observation 2. Let S be a set of statements given as an input into the Con-

structMap-function. Additionally, let M be the hash table and B be the sorted

list of boundaries returned by it. Now, for each boundary b0 ∈ B and its successor

b1 ∈ B the set of all statement that envelop the interval [b0, b1] is equal to M [b0].

As seen in Algorithm 2, the output of the ConstructMap is used to build the

normalized list of statements. Using Observation 2, the sorted list of boundaries can

be iterated over and for each bound the intersection of all the statements overlapping

it can be build. For that, the bounds on the x-axis given by the current bound and

the next bound in the list are taken. The min value of the qualities can be determined

by reducing them pair-wise. For the bounds on the y-axis, the lowest upper bound

and the highest lower bound of the statements can be taken. Thereby, the desired

normalized list of statements can be extracted. Additionally, the definition requires

the normalized list to have no gaps on the x-axis of the statements. If a gap in the

area [x, y] occurred, it can be fixed by inserting the statement a
[x,y] [−∞,∞]
=========⇒ b at

the correct index of the list. This fixes the problem by adding a statement that

implies the behavior of the gap in the model. Since they provide no additional

information, statements that share the lower and the upper bound on the x-axis can

be removed from the list. This will be further investigated in Section 4.4.

Observation 3. Given a (a, b)-model and a normalized list L created by it using the

ConstructList procedure, L contains all possible intersections of the statements

in the (a, b)-model, leading to the qualities of each section of the x-axis being the

most minimal one and not more intersection statements being buildable. The only

exception for this are the statements sharing their lower and upper bound on the

x-axis.

Observation 4. Given a (a, b)-model and a normalized list L created by it using the

ConstructList procedure, each statement of the (a, b)-model can be reconstructed

or strengthened with the statements of L and the proof rules of the calculus.

Proof. Let the (a, b)-model and L be given as stated. If a statement s = a
[x,y] q I
====⇒ b

of the (a, b)-model is not overlapped by other statements on the x-axis, it will be
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in L since its bounds are only enveloped by itself. On the other hand, if s is being

overlapped by other statements, the given range is generally split up depended on

the bounds of the overlapping statements. Let the statements in the given range

in L be L[x,y] =
{
a

[x,x0] q0 I0
======⇒ b, a

[x0,x1] q1 I1
=======⇒ b, . . . , a

[xn,y] qn In
=======⇒ b

}
. Since the I+

rule combines qualities by using the minimum value, q0 � q ∧ . . . ∧ qn � q holds.

Additionally, for given qualities q′, q′′, with q′′ � q′: ⊕(q′, q′′) � q′ holds. As a

consequence of the I+ rule building the intersection of the y-intervals to create the

resulting y-interval, I0 ⊆ I ∧ . . . ∧ In ⊆ I holds. With that, when joining these

y-intervals back together, the resulting interval will remain a subset of I. Due to

these facts, the statements in L[x,y] can be combined using the join rule, resulting in

a statement a
[x,y] q′ I′

=====⇒ b, with q′ � q and I ′ ⊆ I, which verifies the observation.

4.2. Checking M ` S

To check M ` S for a given hypothesis S = a
I q I′
===⇒ b and an influence model M,

the (a, b)-model is relevant. For now, the assumption that all information targeting

this pair of variables is already in the model, meaning no more statements with these

variables can be created using the transitivity rule. In Section 4.3, it is investigated

how to deal with this assumption and whether it is a possible one to make.

To verify M ` S, a stronger statement than the hypothesis S has to be found

by using the proof rules to create new statements from M. This is the case since

such a statement can be weakened using the I− rule to match the hypothesis. That

being said, the goal is to derive the most narrow statement that envelops I on the

x-axis and is enveloped by I ′ on the y-axis. In addition to that, the statements

with the strongest quality should be build. Since the quality in an area can only be

strengthened by using the intersection rule on the overlapping statements and since

the algorithm works on normalized lists, the model contains the strongest quality

for each section of the x-interval in the model. To keep the amount of created

statements as low as possible which reduces the running time of the algorithm,

only the statements in the area of the hypothesis will be build. Consequently, the

ConstructMap algorithm will be used to construct the hash table used to build

the normalized (a, b)-model, but the statements will be created step by step rather

than all at once.

Definition 12 (Overlapping). A statement a
[x0,y0] q I
======⇒ b overlaps a given area

[x1, y1] if x0 ≤ y1 ∧ x1 ≤ y0. It conditionally overlaps the area, when additionally

y1 6= x0 ∧ y0 6= x1 holds.
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Initially, the statements conditionally overlapping the interval I on the x-axis are

build. By that, minimum amount of statements that combined fully envelop I on the

x-axis can be extracted. If the given data does not span over I,M 6` S holds. Let X
be the normalized list holding these statements. Consequently, these statements can

be joined to check whether the resulting statement is stronger than the hypothesis.

When joining multiple statements, for both the x and the y-axis the lowest lower

bound and the greatest upper bounds of the combinded statements are used to create

the intervals of the newly created statement. Let T =

{
a

I0 q0 I′0====⇒ b ∈ X | I ′0 6⊆ I ′
}

be the list of statements that conditionally overlap the hypothesis while not being

enveloped by the hypothesis on the y-axis.

Generally, the height of a statement can be reduced by propagating height borders

using the I+right and I+left rules. Looking into those rules, they adjust the y-interval of

a statement by combining its own quality with the relative positioning of the left and

right neighbor. However, whenever a statement s ∈ T with the  quality occurs,

the height cannot be adjusted by the rules any further, leading to the hypothesis

not being derivable from the model. Whenever the y-interval of a statement in T is

being adjusted and due to that being enveloped by the y-interval of the hypothesis,

it will be removed from T .

Observation 5. For an influence model M and a hypothesis S, let T be created

as described before. If a statement in T is not enveloped by the hypothesis on the

y-axis while having the  quality, M 6` S holds. With |T | = 0, all the statements

conditionally overlapped by the hypothesis are enveloped by the hypothesis on the

x-axis, which enables the join of these statements to create a stronger window than

the hypothesis. If q′ � q holds for the resulting quality q′ of the join, M ` S holds.

If not, M 6` S holds since as stated, the quality is already minimized due to the

normalization of the statements.

This observation can be used to check whether M ` S holds dependent on the

statements in T . If |T | > 0, all statements that could potentially propagate its

height borders to the statements in T have to be created. Generally, the statements

that are not overlapping the hypothesis on the y-interval can be discarded, since the

bounds of these are not in the relevant area. Since the hypothesis is known since the

beginning, this can be done while reading in the statements initially. Because of this,

the produced gaps in the normalized list get automatically filled in the normalization

process.

To extract the minimum range of statements, the geometrically most left state-

ment SL and the geometrically most right statement SR of T have to be extracted.
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Potentially, a statements’ height can be reduced using the right or the left neighbor

depending on the quality and the bound of the y-interval exceeding the y-interval

of the hypothesis. The direction from which a statements’ height can be reduced

is stated in Table 4.1. The entries of the table imply the direction from which a

statement can be corrected. For that, the quality of the statement and whether the

upper or the lower bound of the y-interval exceed the y-interval of the statement

have to be provided. If the first statement in X is equal to SL, the search direction

can be checked. If the search direction does not include ⇐, or if the first statement

in X is not equal to SL in the first place, X does not have to be extended to the

left. Otherwise, the bounds of the y-interval of SL exceeding the y-interval of S get

saved. Now, the goal is to generate the minimum amount of statements that allow

the correction of the bounds of SL. To correct the upper bound, a statement is

needed whose upper bound of the y-interval is included in the y-interval of the hy-

pothesis. The lower bound can be corrected analogously. Now, X will be extended

by repeatedly adding the left neighbor of the most left statement of X . These can be

generated by using the overlap map that was created in the normalization process.

This process can be stopped in three different ways. Firstly, it can be stopped when-

ever the bound can potentially be corrected, since it can be propagated through the

neighbors to correct the bound of SL. Analogously, this can be done when both

bounds have to be corrected, while not one statement has to potentially correcting

both bounds at once. Using this, the search has to be continued until both bounds

can be potentially corrected. Secondly, whenever a statement having the  qual-

ity is generated which cannot correct the bounds as described, the process can be

stopped since no information can be propagated through this statement. Lastly,

if no more statements can be generated since the end of the data is reached, this

process terminates as well.

Analogously, this process can be adapted for searching statements for correcting

the bounds of the y-interval of SR. Before that, it will be checked if X has to be

extended by adding right neighbors, which can be determined using SR and checking

whether it matches the last statement of X and the checking search direction table,

similarly to the left direction.

Observation 6. By extending X stepwise as described, the minimal amount of

statements is added. The correctness of this process remains, since while more

statement would lead to a potentially lower y-interval of the bounds to correct, more

precision is not needed as long the bounds lie in the y-interval of the hypothesis. By

that, no more statements have to be generated.

For the extracted list of statements X , the right and left strengthening rules can
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Figure 4.1.: Example of multiple usages of the I+left and I+right rules.

be applied. The following example shows, why it is not enough to strengthen each

statement with its left and right neighbors once.

Example 5. Let M =
{
a

[1,2]↘ [1,4]
=======⇒ b, a

[2,3]↘ [2,4]
=======⇒ b, a

[3,4]↘ [3,4]
=======⇒ b

}
be a set of

statements, which are visualized in Fig. 4.1. Since the quality is ↘ for each state-

ment, it is omitted in the graph. By trying to produce stronger statements using

the I+left and I+right rules, we may start at the most left statement in the order. On

the current statement, the rules are applied respecting the left and right neighbors.

Continuing this until the last statement in the list is reached, the height of the state-

ments can be reduced as shown by the dashed lines. By reapplying this algorithm to

the newly created statements, the height can be reduced even further, as shown by

the dotted line. This example shows that the list of normalized statements cannot

be iterated over once to minimize the height of each statement. Obviously, the al-

gorithm cannot go through the list in reversed order either, since a counterexample

for this case can be produced in an analogous manner.

Since each usage of the I+left and I+right leads to the potential improvement of its

neighbors as well, statements have to be processed multiple times. An algorithm

implementing this idea can be seen in Algorithm 3. To minimize the height of

each statement, the list of normalized statements gets walked over from left to right

and each statement is strengthened by using the I+left and I+right rules if possible.

Whenever one of these rules produces a new statement, it is an existing one with

its height being reduced. Due to that, the old statement can be removed, and the

new one can be inserted at the given index. Whenever a statement is successfully
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Algorithm 3. Strengthen interval height

1: procedure StrengthenIntervals(L)
2: i← 0
3: while i < L.length do
4: changed ← ⊥
5: if i > 0 then
6: L[i]← I+left(L[i− 1], L[i])
7: changed ← >
8: if i < L.length - 1 then
9: L[i]← I+right(L[i], L[i+ 1])
10: changed ← >
11: if changed then
12: i← i− 1
13: continue
14: i← i+ 1

Table 4.1.: Search direction for using the I+left and I+right rules.

upper
bound

lower
bound

↗ ⇐ ⇒
↘ ⇒ ⇐
→ ⇒,⇐ ⇒,⇐

strengthened, the left neighbor has to be checked again. For this reason, bounds

can be propagated back to the left end of the list. When the statement could not

be strengthened, the algorithm continues with the next statement in the list. This

is repeatedly done until the end of the list is reached.

Observation 7. For a normalized list of statements L, the procedure Strength-

enIntervals modifies the list in such way, that each statement has its minimum

height, meaning that no rule can reduce its height even further.

This algorithm can be applied to the extracted list of statements X . Additionally,

the modified statements in T are removed if the given invariant for a statement in

the list does not hold anymore. Afterwards, |T | can be used to decideM ` S using

Observation 5.

4.3. Building the Transitive Cover

For a given influence model M and a given hypothesis S = a
I q I′
===⇒ b, the relation

M ` S can be decided in its corresponding (a, b)-model. This is done under the
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assumption of all the statements creatable by the use of the transitivity rule already

being in the model. Since generally, this is not always the case, a way of creating the

transitive cover over all the used variables will be presented, including all statements

needed to potentially decide M ` S.

Definition 13 (Dependency Graph). Let G = (V,E) be a directed, acyclic graph.

For a given V-influence modelM, let V = V . Since each node represents a variable,

the terms node and variable are used as synonyms regarding the graph. Additionally,

let E contain all the variable pairs (a, b) ∈ V × V with a non-empty (a, b)-model

extractable from M.

By that, a graph is defined, where each edge (c, d) represents a (c, d)-model. This

graph has two main purposes. Firstly, while adding statements to the model and

building the graph, it can be checked whether a partial order on the variables exist.

For this, the acyclic behavior of the graph has to be verified. In case of the graph

not being acyclic, no partial order on the set of variables exists. To check this, the

depth first search algorithm [3, Sec. 22.3] can be used while memorizing the visited

variables to report whenever a variable is visited multiple times, which indicates

a circle in the graph. Additionally, the graph can be used to check which models

are relevant for building statements using the transitivity rule to propagate all the

statements into the (a, b)-model. Considering this, the depth first search algorithm

can be used as well by starting at a and memorizing all variables on the current

path, collecting them whenever b is reached from that path. After going through all

possible paths, the variables are extracted that lie between a and b. Now, all the

other variables and the associated edges can be removed from the graph.

Observation 8. For checking M ` S for a given influence model M and a given

hypothesis S = a
I q I′
===⇒ b, only the models represented by edges that lie between a

and b in the generated dependency graph are relevant for solving.

Consequently, a graph G = (V,E) is created which only contains the variables

that are relevant for propagating statements into the (a, b)-model in a transitive

manner. The goal is to reduce this graph, until only the variables a and b are

left over. To do this, a variable v ∈ V \ {a, b} is picked and for each predecessor

pre ∈ V and each successor succ ∈ V of v, the transitivity rule is applied to combine

the statements of the (pre, v)-model with the statements of the (v, succ)-model, to

create statements for the (pre, succ)-model. If this model is not existent yet, the

edge will be added to the graph and the corresponding model will be created to put

the created statements in its container. After all combinations of predecessors and

successors are processed, v and its associated edges can be removed from the graph.
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Generally, the order of the variables being reduced does not influence the efficiency

of the approach. But since the goal is to create a statement stronger than the

hypothesis a
I q I′
===⇒ b, its intervals can be used to determine which statements have

to be build. Looking at the transitivity rule, when successfully applying the rule

to a statement S ′ and a statement S ′′, the x-interval of the resulting statement

equals the one of S ′ and the y-interval of the resulting statement equals the one

of S ′′. Considering this, the model can be split up into different categories. Let

M0 = {(a, c) ∈ E \{(a, b)} | c ∈ V } be the set of models that involve a, additionally

let M1 = {(c, a) ∈ E \ {(a, b)} | c ∈ V } be the set of models that involve b and let

M2 = E \ (M0 ∪M1 ∪ {(a, b)}) be the remaining models. Lastly, let m be the (a, b)-

model. Since for deciding M ` S, only statements which overlap the y-interval of

S are used for solving as seen in Section 4.2, all statements not overlapping the y-

interval of each model in M1 can be removed. By lowering the amount of statements

in these models, the search space for building transitive statements involving these

models is reduced. To use this, an order of reducing the variables of the graph is

extracted, which ensures that the models in M1 are used in every step.

Definition 14 (Reducing Order). For a dependency graph G = (V,E) and a hy-

pothesis a
I q I′
===⇒ b, let the reducing order on the variables V \ {a, b} be a partial

order given by the distance of a variable v ∈ V \ {a, b} to the variable b, with the

distance being the amount of edges between these variables.

To actually extract this order out of a graph, the breadth first search algorithm [3,

Sec. 22.2] can be used, starting from b and collecting all variables encountered, except

a and b. An example can be seen in Fig. 4.2, where a dependency graph is visualized

with the order noted as labels on the nodes. The variables of the hypothesis are

highlighting as a starting and an ending node to emphasizes their importance. In

addition to that, the graph is visualized after the first variable in the order is reduced.

Until now it is declared in which order the transitive connections are build. In

the following, the most efficient way of building the transitive statements will be

discussed.

In general, the use of the transitivity rule should be reduced to the minimum

to improve the running time of the algorithm. Furthermore, all the important

statements have to be built for the correctness of the algorithm. Before trying

to minimize the use of the transitivity rule while extracting which statements are

important for solving, it is discussed why previous work has to be done to ensure the

completeness of the transitive cover. Unfortunately, it is not possible to build the

transitive cover first before using other rules to combine and strengthen statements.

The reasons for that are discussed in the following.
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Figure 4.2.: Dependency Graph annotated with the reducing order (a) and the graph
after the first variable is reduced (b).

Observation 9. Given a proof for a modelM and a hypothesis S, the proof tree is

not modifiable in such way, that the transitivity rule is used directly after the Fact

rule.

Proof. Let M =

{
b
I1 q′ I′1====⇒ c, b

I2 q′ I′2====⇒ c, a
I3 q I′3====⇒ b

}
be an influence model, then a

subtree could be the following.

(Fact)

a
I3 q I′3====⇒ b

(Fact)

b
I1 q′ I′1====⇒ c

(Fact)

b
I2 q′ I′2====⇒ c

(I+)

b
I1∩I2 q′ I′1∩I′2========⇒ c

(Trns)

a
I3 q⊗q′ I′1∩I′2========⇒ c

If this tree is being reconstructed into using the Trns rule first, the following tree

can be extracted.

(Fact)

a
I3 q I′3====⇒ b

(Fact)

b
I1 q′ I′1====⇒ c

(Trns)

a
I3 q⊗q′ I′1======⇒ c

(Fact)

a
I3 q I′3====⇒ b

(Fact)

b
I2 q′ I′2====⇒ c

(Trns)

a
I3 q⊗q′ I′2======⇒ c

(I+)

a
I3 q⊗q′ I′1∩I′2========⇒ c

While the result initially looks the same, this tree may be incorrect since the

rules are not applied correctly. Looking at the transitivity rule, a statement can be

connected with another one in a transitive way, if the variables match and if the

y-interval of the first statement is a subset of the x-interval of the second statement.
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Due to this, we can extract I ′3 ⊆ I1 ∩ I2, since the transitivity rule applied. In

the reconstructed tree, the relations I ′3 ⊆ I1 and I ′3 ⊆ I2 are needed. Since a

counterexample is constructable where I ′3 ⊆ I1∩ I2 holds but I ′3 ⊆ I1 or I ′3 ⊆ I2 does

not, the transitivity rule cannot be pushed to the top of the proof tree.

To ensure not missing important statements in the process of building the transi-

tive cover, the models have to be prepared to allow all possible transitive statements

to be build. Considering that, the Trns rule will be investigated. No statements

have to be joined before building the transitive cover, since this behavior can always

be reconstructed in the final (a, b)-model. As mentioned, when applying the transi-

tivity rule, the y-interval of the first statement has to be a subset of the x-interval of

the second statement. Since the statements of the models in M0 ∪M2 are the ones

used as the first component in the transitivity rule, the height of these statements

has to be minimized. For that, the models are normalized and Algorithm 3 is used

to minimize the height of their statements.

Given a statement a
I0 q I′0====⇒ c, the transitivity rule can be applied for each state-

ment c
I1 q I′1====⇒ b of the (c, b)-model, with I ′0 ⊆ I1. Since the width of statements

can be enlarged by joining multiple statements together, all statements condition-

ally overlapping I ′0 of the (c, b)-model are extracted and joined. If the join was

successful, the resulting statement can be used to apply the transitivity rule.

To solve a hypothesis a
[x,y] q I′

=====⇒ b the relevant statements can be generated step

by step to lower the amount of total statements as seen in Section 4.2. This idea

can also be implemented when applying the transitivity rule. This only works for

the models in M0, since here the information about the x-interval of the hypothesis

can be used. Given a model (a, c) ∈ M0, all statements conditionally overlapping

[x, y] are generated, before creating transitive statements using them. If a statement

is generated that overlaps x, it is checked whether it is enveloped by I ′ on the y-

axis. If this is not the case, the left neighbors of those conditionally overlapping

[x, y] are generated repeatedly while checking if a statement can be built using the

transitivity rule that fixes this bound as described in Section 4.2. When such a

statement is found, the process terminates remembering the lower bound of the last

created statement on the x-axis as xlow. If the statement overlapping x is enveloped

by I ′ on the y-axis anyway, set xlow = x. Analogously, this is done for the statement

overlapping y where the bound is saved as xhigh. When others models of M0 are

processed, statements conditionally overlapping [x, y] are generated analogously, but

the search that just has been described can be canceled when exceeding the interval

[xlow, xhigh].

To conclude the method of building the transitives, it is given by Algorithm 4.
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Algorithm 4. Build transitive cover

1: procedure BuildTransitiveCover(M, a
[x,y] q I
====⇒ b)

2: G = (V,E)← buildGraph(M)
3: Extract the reducing order [v0, . . . , vn]
4: Split M into M0,M1,M2 and m
5: Normalize and minimize height of models in M0 and M2

6: Remove statements of models in M1 not overlapping I on the y-axis
7: xlow ← −∞, xhigh ←∞
8: for v in [v0, . . . , vn] do
9: for pre in getPredeccesors(G, v) do
10: for suc in getSuccesors(G, v) do
11: Build transitive statements as described, distinguishing whether
12: (pre, v) ∈M0 or (pre, v) ∈M2 holds.
13: In case of (pre, v) ∈M0, update the xlow and xhigh
14: values to avoid creating statements exceeding them.

4.4. Special Cases

In case of the hypothesis being a reflexive statement, the introduced algorithm does

not have to be applied, rather a simpler algorithm can be used. This is the case,

since the influence of a variable on itself is the identity function I : R→ R, x 7→ x,

which can always be derived and does not have to be added to the model. By that,

the hypothesis is false, if the quality is neither ↗ nor  . A given reflexive hypoth-

esis a
[z,z′] q I′

=====⇒ a is true, whenever the identity function intersects the left and right

border of its window. More precisely, the hypothesis is true whenever I(z) ∈ I ′

and I(z′) ∈ I ′ holds. When receiving a reflexive hypothesis, the algorithm can do

this check since the previously presented algorithm only works on a non-reflexive

hypothesis. It is easily verifiable that this geometric interpretation of checking a

reflexive hypothesis is recreatable using the proof rules, by combining the Refl rule

and the I− rule.

When creating a normalized list of statements, the intersection of neighbored

statements is not done which would lead to statements where the lower and upper

bound of the x-axis are equal. Normally, this is not a problem since can be applied

creating statements which can be weakened using the I− rule to match the width.

But due to the intersection rule, the quality might be strengthened to →. By that,

information could be lost by not building the intersection like this. This special

case can be evaded, by building the intersection if the lower and upper bound of

the x-axis of the hypothesis are equal. Additionally, a rule for changing the quality
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of such a statement to the quality → could be added to the proof rules, since these

always fulfill the definition of a statement having the → quality.

Lastly, the model that is being received by the algorithm should be consistent.

Definition 15. A modelM is consistent, when for each overlapping statement, the

y-intervals of the statements also overlap. Additionally, no inconsistencies should

be creatable using the proof rules.

Since to be able to check this, all possible statements derivable using the transitiv-

ity rule have to be created, the algorithm expects the input to already be consistent.

If not, many optimizations targeting the minimization of the amount of built state-

ments using the transitivity rule could not be used.

4.5. Completed Algorithm

Since all parts for checking whether a hypothesis S = a
I q I′
===⇒ b is derivable by

a model M are acquired, they are collected and put into order to complete the

algorithm.

1. Split up the model M into all possible non-empty (c, d)-models.

2. Check whether the hypothesis is true in the (a, b)-model. Thereby, build the

statements conditionally overlapping I and extend the resulting list if needed

to propagate height borders as described in Section 4.2. Additionally, initialize

the xlow and xhigh values and set them if possible.

3. If M ` S could not be positively decided yet, build the transitives using the

BuildTransitiveCover procedure, using the already initialized values of

xlow and xhigh. Else, return M ` S.

4. Finally, try solving in the (a, b)-model again reporting whether M ` S or

M 6` S is the case.

4.6. Complexity and Correctness

For the complexity of the algorithm, the main question is whether the algorithm

runs in a polynomial time complexity. Intuitively, the running time of the algorithm

should not exceed this, since no new bounds are created during the process, only

statements are created with bounds already existent in the model. The only rule
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potentially threatening this, is the I− rule. However, since it is only used in the

normalization process, only bounds already existent in the model will be used to trim

the statements. While this implies a polynomial time complexity, the complexity

will be analyzed further by going through the important steps of the algorithm,

estimating the complexity regarding the input size.

Firstly, let n be the average amount of statements in each (a, b)-model. Addi-

tionally, let k be the amount of (a, b)-models extractable from the given model M.

To normalize each (a, b)-model, all bounds have to be extracted and sorted, before

the statements between these bounds are build and sorted. The maximum amount

of bounds extracted will be 2n = m. Let l be the average amount of statements

overlapped by each statement, which is relevant when building the intersection state-

ment between the bounds. In total, m statements are created. This leads to the

normalization algorithm running in O(k ∗ (n log n+m ∗ l))
For a hypothesis a

I q I′
===⇒ b spanning the whole (a, b)-model in the width, the

whole model has to be generated. The time complexity of this process was already

described in the normalization algorithm. To minimize the statements of the model

in height, Algorithm 3 is used. In the worst case of the correction of each statement

enabling the correction of all other statements, the algorithm runs in a quadratic

time. Afterwards, the join of the statement can be created in linear time, leading

to a combined time complexity of O((m)2 +m).

Lastly, Algorithm 4 is analyzed to conclude the time complexity of the creation

off the transitive cover. The time complexity of operations on the dependency graph

G = (V,E) is O(|V | + |E|) for the depth first search and breadth first search algo-

rithms. Since the amount of variables is low compared to the amount of statements

in the model, the impact of the graph on the running time is low anyway. When

building the transitive cover, a maximum amount of k − 1 pairs of (a, b)-models

can be used to create new statements using the transitivity rule. To create new

statements for the (a, c)-model using the (a, b)-model and the (b, c)-model, For each

statement of the (a, b)-model the overlapping statements in the (b, c)-model have

to be searched. While the query time is logarithmic in average cases, in the worst

case of all statements in the (b, c)-model overlapping the query range, it is linear.

Since the statements returned by the query have to be joined together, they have

to be traversed a second time. This leads to the construction of the transitive cover

having a complexity of O((k − 1) ∗m ∗ 2m).

Observation 10. Since all the acquired time complexities are polynomial and the

different procedures are executed sequentially, the time complexity of the algorithm

is polynomial.
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For the algorithm to be correct, it has to be sound and complete. In order to

be sound, whenever the algorithm finds a statement S0 implying M ` S, S0 has to

derivable from model M. The soundness of the algorithm is given, since only the

rules of the calculus are used to create new statements and the rules are sound. For

the algorithm to be complete, it should never return M 6` S when a proof can be

given which would imply the opposite. For that it has to be shown that all possible

proof trees can be modified to match ones that are implied by the algorithm. Since,

for example, the algorithm never uses the I− rule without using the intersection

first, some work has to be done to show each proof tree can be modified to use the

I− rule like that. Since this exceeds the purpose of this thesis, it will be left for

future work.



5. Implementation

In general, the implementation strongly follows the algorithm described in Chap-

ter 4. It was implemented in Python for reasons described in Section 5.1. Since

the algorithm is already described, the language specific implementation will not

be explained, rather the usage of the solver and the folder structure of the project

will be described to facilitate possible modifications. In addition to that, some more

specific implementation details will be discussed. Finally, a tool for plotting the

statements in the model and a tool for building influence models from experiments

will be described.

5.1. Choice of Programming Language

The goal of this thesis is to develop an algorithm that is capable of efficiently checking

if a given statement is derivable from a given model M. To be able to implement

the algorithm and check its performance on real world test cases and benchmarks,

the used programming language has to be chosen first. In this case, Python was

chosen.

Python [6] is a general-purpose programming language which is dynamically-typed

and emphasizes a simple syntax. By that, the language provides implementations

that have a good readability and a low development time. Since it is an interpreted

language, it does not get compiled and safety checks are done while executing the

program. This leads to the language being rather slow compared to compiled lan-

guages like C.

Python was chosen, since its advantages concerning the development time and

the readability of the algorithm fit the purpose of the implementation. To improve

the understandability of the implementation even further, type-hinting was used to

visualize the types of the variables to the reader. It should be noted that since

Python is rather slow, there would be faster implementations possible in other lan-

guages. But since in this thesis the traceability is important, Python is the best

option. Because of the usage of new features, python version 3.10 has to be used to

run the algorithm.

28
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5.2. Project Structure

To improve the accessibility of the around 1750 lines of code, the folder structure

is presented and the purpose of each folder will be explained. The implementation

can be found on GitHub1.

influence solver

benchmark

benchmark.py

csv to model.py

transitive.py

data

altitude pressure.csv

angle intensity.csv

examples

current.py

intersect.py

other.py

statementstruct

statement.py

statement list dynamic.py

statement list static.py

overlap map.py

util.py

plotter

plotter.py

images.png

solver

constants.py

dependecy graph.py

rules.py

solver.py

util.py

main.py

Firstly, the benchmark folder contains code used to perform a benchmark and mea-

sure the timing of different experiments each performed with an increasing amount of

statements. This will be explained further in Chapter 6. Namely, the benchmark.py

1https://github.com/SoerenMoeller/influence_solver.git

https://github.com/SoerenMoeller/influence_solver.git
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file can be executed to perform the benchmark. Through adapting the parameters

in the file the increase of the statements per step and the amount of steps can be

adjusted. The file csv to model.py provides the functionality to extract a param-

eterized model out of an experiment and will be further explained in Section 5.5.

Lastly, the transitive.py file contains a function to create a parameterized model to

provide a benchmark that can be scaled over the size of the transitivity graph.

Secondly, the data folder contains experiments that are saved as csv-files. The

format of these files will be explained in Section 5.5.

Thirdly, the examples folder contains different models that can be used for de-

bugging or testing different parts of the algorithm.

Fourthly, the intervalstruct folder contains the data structures used in the al-

gorithm, where the different sets of models M0, M1 and M2 and the model m as

introduced in Section 4.3 are split up into different data structures according to

the procedures applied to them. Generally, all of them manage normalized lists of

statements.

The plotter folder contains code providing the functionality of plotting the model

which may be used for debugging. For plotting the qualities, the symbols for those

are included as images. For each image a red counterpart exists to enable highlight-

ing a statement. This will be further explained in Section 5.4.

Finally, the solver folder contains the actual solver, which will be explained in

Section 5.3. The solver.py file contains the solver class which acts as the interface

with the user and contains the main solving algorithm. The constants.py file defines

some constants and the rules.py file contains functions which implement the rules

of the calculus. While the util.py file provides useful functionality that may be used

in other files, the dependency graph.py file contains the dependency graph and the

algorithms applied to it.

5.3. Usage of the Solver

The solver can be accessed by initiating an object of the solver class. To add the

statements of an influence model M, different methods are provided. Initially, a

container or a single statement can be given as an argument when initiating the

solver object to add these statements. Additionally, the add method can be used to

add statements in the same way. By that, a model can be dynamically build and

added to the solver object instead of collecting them all once and then adding them.

To match a set-like interface, the discard and remove methods provide the option to

remove statements from the solver object. Finally, the solve method can be used on
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the solver object. It expects the hypothesis S as a statement and returns a boolean

value indicating if M ` S holds.

The statements in the model and the hypothesis are expected as 5-tuples matching

the ones in Definition 3. An example of the usage can be seen in main.py.

5.4. Debug Tools

When using the solver, some extra information may be expected by the user instead

of just getting a boolean returned indicating the result. This information will be

printed to the console. For that, the verbose flag was introduced, having 3 different

levels to choose from.

Case verbose= 0: No additional information will be printed (standard)

Case verbose= 1: Timing information will be printed. More specific, the

time of adding the relevant statements to the solver, the

initial solving time in the final model, the time of building

the transitive cover and the final solving time in the final

model will be printed. Additionally, the total solving time

will be presented. In addition to that, the amount of ini-

tially added statements to the solver and the final amount

of statements will be compared. Finally, the result will be

printed.

Case verbose= 2: Additional windows occur, showing the plot of the initial

model and the model after the proof.

To activate the flag, the verbose flag of the solver object can be changed, or it can

be changed using the v parameter of the solve function. For plotting the statements

currently in the model, a procedure was written to take these models and plot them

using matplotlib according to the geometric interpretation. The window of each

statement in the model is visualized having black solid borders, while the hypothesis

is highlighted in red.

To be able to use this tool, matplotlib has to be installed which can be done using

the following command in the console.

$ pip i n s t a l l matp lo t l i b

5.5. CSV Reader

Typically, influence models are abstractions of influence experiments. Such exper-

iments are most likely given as measurement data. By that, experiments can be
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Figure 5.1.: Influence experiment of Table A.1.

seen as tables with two columns. The entries of the first row determine the variable

names. Consequently, a table with a, b as the entries in the first row, can be used

to create a (a, b)-model. For that, the other entries of the lower rows are points

in the 2-dimensional vector space. These tables can be stored in csv files to store

experiment data. These can be read and formed into a model with statements. One

file can hold multiple influences, by putting the tables side by side. In the following,

the data will be transformed into the correct form.

For a variable pair (a, b), the data of the corresponding csv file can be read

and the n data points can be collected in a list {(x1, y1), . . . , (xn, yn)} which is

sorted by the xi value. Before building the statements, the gaps between the given

points have to be filled by connecting neighbored points. For that, the given data

points can be transformed into the following piece-wise function E : [x1, xn] →
[min(y1, . . . , yn),max(y1, . . . , yn)] which is an influence experiment.

E(x) =


y2−y1
x2−x1 ∗ x+ y2 − x2 ∗ y2−y1

x2−x1 if x1 ≤ x < x2
...

...

yn−yn−1

xn−xn−1
∗ x+ yn − xn ∗ yn−yn−1

xn−xn−1
if xn−1 ≤ x ≤ xn

As shown in Fig. 5.1, the experiment captured in Table A.1 can be turned into

an influence experiment as described. Now, a parameterized function is provided

to manipulate the granularity of the influence model created by the experiment.

There are three parameters provided, w determining the width of each statement,

h determining the height of each statement and o ∈ (0, 1) determining the relative
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overlap of a statement to its neighbors.

To extract a (a, b)-model, the lowest lower bound xmin = x1 will be taken as

a starting point. From there, a statement of the width w and height h will be

created. The center of the statement will be (xmin + w
2
, E(xmin + w

2
)). The quality

of the statement can be determined by checking the pitch of the linear function of

E for the given range [x0, x0 + w]. If this area spans over multiple cases of E , all

the pitches of the sufficient linear functions can be considered and transformed into

qualities which can be added according to
⊕

. After that, the next statement can

be created similarly, with the x-axis bounds being shifted by o∗w. This process will

be continued until the highest upper bound xn is exceeded.

Depending on the height and width of the statements and the pitch of the underly-

ing experiment, neighbored statements might not overlap on the y-axis. To prevent

this, it can be checked by looping over the list again and adjusting the height to the

required extend if necessary.

To create a model from a csv file, the build model from csv method can be used,

which expects the file name of the csv as a parameter. Additionally, the width is

not given as a parameter, rather the amount of statements that should be in the

model is given which can be transformed into the w variable as needed. This is

more sufficient for scaling the models to benchmark the time complexity, since the

amount of statements can be calculated by the amount of models that fit into the

space and the overlap that each statement has.



6. Benchmark

To test the running time behavior of the implemented algorithm, some benchmarks

are provided. To discuss the efficiency of the algorithm, two real world experiments

will be modeled and scaled in granularity. Furthermore, the running time behavior

of a benchmark scaling the amount of transitive steps taken for solving will be

analyzed, since arguably the creation of the transitive cover is one of the most time-

consuming steps in the algorithm. Each of the following benchmarks was run three

times and the average timing for each of the configurations was used.

6.1. (Angle, Light intensity) Benchmark

Firstly, an experiment about light rays hitting a surface will be discussed. The

experiment shows the relation between the angle of the light source relative to the

surface area and the light intensity that can be measured on the surface. The data

about this experiment can be found in Table A.1. The CSV-Reader tool was used

to build a model out of the given data, which is stored in the angle intensity.csv

file. The first measurement was done with 750 statements being in the model. In

total, 10 measurements are done while the amount of statements being increased

by 2812 statements in each step. The hypothesis is being ′′Angle
[0,360] [−50,1100]
===========⇒

Light intensity′′. While this ensures that the complete model has to be built, since

it spans over the whole collected data, some optimizations of the algorithm cannot be

used. Namely, the building of the area overlapping the x-interval of the hypothesis to

minimize the amount of statements builds and the initial removal of the statements

that do not overlap the y-interval of the hypothesis can not obtain any improvements,

since the whole model has to be built anyway. Although, this prevents distorting

the relation between the amount of statements in the model and the running time,

since all the statements are effectively used. The result of the benchmark can be

seen in Fig. 6.1a. There, the relation between the amount of statements and the

running time is visualized. Optically, the resulting curve resembles a function in

either O(n log n) or O(n2) with n being the amount of statements in the model. In

a real world scenario, the model would most likely have a lower solving time, since

34
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Figure 6.1.: Result of the benchmarks (a) (angle, light intensity) and (b) (altitude,
barometer, atmospheric pressure).

the hypothesis generally does not span the whole model.

6.2. (Altitude, Barometer, Atmospheric Pressure)

Benchmark

The next influence experiment describes the influence of the altitude to barometric

pressure, which itself influences the atmospheric pressure. By that, this model

contains data about an experiment including a transitive step, which is given by

Table A.2. Analogously to the previous benchmark, the CSV-Reader is used to

build the model out of the given data. The first measurement is done with 375

statements, increasing by the same amount in each of the 10 steps. The hypothesis
′′Altitude

[−100,15100]↘ [−10,122]
===============⇒ Atmospheric pressure′′ is being used, which forces

the complete model to be built. Analogously to the previous benchmark, some

optimizations like the lowering of the amount of transitive statements being build

by using information about the x-axis and y-axis of the hypothesis cannot be used,

since the hypothesis spans all the collected data. The results of this benchmark can

be seen in Fig. 6.1b. Optically, the pitch of the resulting graph is higher than the

previous one. That being said, the assumption that building transitives is the most

heavy operations is supported. The increase of running time is due to the fact, that

for building statements using the transitivity rule, all statements of the model used

in the front side of the rule have to be iterated over while scanning for overlapping

statements in the other model, which is a lot of effort especially in Python.
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6.3. Transitivity Benchmark

To check the running time behavior for an increasing amount of variables in the

model, which increases the amount of transitive steps that have to be performed for

solving, no real world experiment is suitable. Consequently, an abstract benchmark

was designed to check this behavior nonetheless. For that, the following dependency

graph can be generated, with (A,C) being the influence which is targeted by the

hypothesis and Bj
i being the variables between those.

A

B0
0

B1
0

B2
0

. . .

. . .

. . .

B0
n

B1
n

B2
n

C

Given such a graph, it can be scaled according to the i and j parameters to

adjust the size of the graph. In the benchmark, j is set to three analogously to

the graph shown above. To fill the models represented by the edges, we have to

keep in mind that the transitivity rule follows a pattern that could either lead to

inconsistent model or to a model that gets simpler after reducing the variables during

the solving process by restricting the search space. To prevent this, all statements

are enveloped by a predefined area and for all models, each point of this area is

overlapped by at least one statement. The statements quality can either be ↗ or

↘. To clarify this, both possibilities for the given area [0, 5] are given by Fig. 6.2.

Due to the ⊗ operation, the qualities may change during the process when using the

version with the ↘ quality. Coupled to the intervals, an inconsistent model could

be created. Due to that, each model is build equally to Fig. 6.2b. To intensify the

benchmark, the statements can be adjusted to overlap each other, to force the use

of the I+ rule. This behavior can be controlled using parameters.

In Fig. 6.3 the result of the benchmark is visualized. Here, the benchmark is

scaled through the amount of transitive steps in each path. Again, 10 iterations

are done starting with 10 transitive steps and increasing by 4 transitive steps each

iteration. By that, the amount of statements increases linearly to the amount of

transitive steps performed, starting with 33000 statements and increasing by 12000

each step. The resulting graph is more linear than the previous one, meaning the
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Figure 6.2.: Possible models in transitivity benchmark (a) using the ↘ quality (b)
using the ↗ quality.
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Figure 6.3.: Result of the transitivity benchmark.

benchmark does not scale negatively with the amount of transitive steps when the

models in those steps are modeled with the same granularity.

6.4. Evaluation

Generally, the benchmarks support the time complexity analyzed in Section 4.6.

Whether this is efficient or not is dependent on the use case. Since generally, this

solver is intended to be used as a part of a learning tool, the results should be

calculated in a short period of time. To set an arbitrary border, we say a solving

time of up to one second is acceptable, since it could be hidden behind a transition

effect in the tool.
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Looking at the benchmark, especially the ones derived from real world experi-

ments are interesting for evaluating the efficiency of the solver. Since the (angle,

light intensity) benchmark firstly exceeds the 1-second mark at around 6375 state-

ments, the algorithm can be declared as efficient in this case. The reasons for that

are, that the area of the model on the x-axis [0, 360] is being split up into 6375

statements. Consequently, each statement is unnecessarily slim. Additionally, each

model is being generated by a fixed amount of data points. In this case, the model

is extracted using 25 data points. Arguably, this number can be multiplied by a low

amount to create a model which is sufficient. Besides that, the granularity of the

statements should not be too high, since this could lead to deviations of the exper-

iment not being modeled correctly or statements not being provable due to slight

offsets. The same argumentation applies to the (altitude, barometer, atmospheric

pressure) benchmark, even though the running time is slightly higher as already

stated. This applies to all models where transitive statements have to be build. As

seen in the transitivity benchmark, the amount of transitive steps does not have a

heavy impact on the running time, rather the granularity and size of the underlying

models. As described, the running time generally is lower than the ones measured in

the benchmarks, since a hypothesis covering only parts of the collected data greatly

reduces the amount of statements in the model. Concluding this, the algorithm

performs an efficient proof search regarding the solving time needed for real-world

experiments.



7. Conclusion

In this thesis, an algorithm for proving whether M ` S holds for a given influence

model M and a hypothesis S is acquired. The theoretical foundation for the proof

is the calculus, which provides the rules used to extract a proof. As elaborated in

Chapter 6, the algorithm performs appropriate running times for the given use case,

which can be verified by the given benchmarks.

By that, the goal of the thesis to write an algorithm that expects an unmodified

model and a hypothesis and solves it by using all the proof rules of the calculus us-

ing an efficient, goal driven approach is successfully reached. In practice, generally

more assumptions about the model can be done to decrease the solving time of the

algorithm even further. For that, the solving can be split up in two parts. Firstly,

the model gets prepared by normalizing each (a, b)-model and by minimizing each

statements’ height as low as possible. Additionally, all possible statements are build

using the transitivity rule. Afterwards, the modified model can be saved in a ded-

icated format, for example json. The second part of the algorithm would perform

the proof search without having to normalize the models or having to build transi-

tive connections. By that, only the (a, b)-model relevant for solving the hypothesis

has to be read from the save-files and the statements conditionally overlapping the

hypothesis can be joined together, trying to proof the hypothesis. While this would

greatly reduce the running time of the solving algorithm, the first step would have

an increased running time due to the whole model being prepared. But since in

practice, the model will be build once and hypothesis are checked separately, this

approach is sufficient. To optimize this process, the work of this thesis can be used.

Additionally, the consistency of the model could be verified using this procedure.

Finally, parallelization could be used to decrease the running time of this procedure

even further, since multiple transitive connections could be build in parallel without

interfering each other. To conclude the work, the correctness of the algorithm and

the proof rules has to be proven to allow correctly checking whether a hypothesis is

derivable by an influence experiment.
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A. Experiment Data

A.1. (Angle, Light intensity) Experiment Data

Table A.1.: Data about the (angle, light intensity) experiment.

Angle, φ (degrees) Light intensity (arb. units)
0 970
15 912
30 728
45 480
60 237
75 53
90 5
105 85
120 271
135 527
150 758
165 942
180 1036
195 970
210 752
225 484
240 226
255 57
270 4
285 87
300 280
315 528
330 765
345 908
360 950

iv



A. Experiment Data v

A.2. (Altitude, Barometer, Atmospheric Pressure)

Experiment Data

Table A.2.: Data about the (altitude, barometer, atmospheric pressure) experiment.
Altitude (meter) Barometer (mm Hg) Atmospheric pressure (kPa)
-1524 903.7 120.5
-1372 889 118.5
-1219 874.3 116.5
-1067 859.5 114.6
-914 845.1 112.7
-762 830.6 110.7
-610 816.4 108.8
-457 802.1 106.9
-305 787.9 105
-152 773.9 103.1
0 760 101.3
152 746.3 99.49
305 733 97.63
457 719.6 95.91
610 706.6 94.19
762 693.9 92.46
914 681.2 90.81
1067 668.8 89.15
1219 656.3 87.49
1372 644.4 85.91
1524 632.5 84.33
1829 609.3 81.22
2134 586.7 78.19
2438 564.6 75.22
2743 543.3 72.4
3048 522.7 69.64
4572 429 57.16
6096 349.5 46.61
7620 282.4 37.65
9144 226.1 30.13
10668 179.3 23.93
12192 141.2 18.82
13716 111.1 14.82
15240 87.5 11.65
16764 68.9 9.17
18288 54.2 7.024
21336 33.7 4.49
24384 21 2.8
27432 13.2 1.76
30480 8.36 1.12
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