
Faculty of Electrical Engineering and Computer Science

Reseach Group Theoretical Computer Science/Formal Methods

SoPHY - A specification language for hybrid systems

A thesis submitted to the
Faculty of Electrical Engineering and Computer Science

of the University of Kassel
in partial fulfillment of the requirements for the degree of

Master of Science

Submitted from: Lara Yörük Mi

Matriculation Number: 30219418

Department: Fachgebiet Theoretische Informatik/Formale Methoden

Examiner: Prof. Dr. Martin Lange
Prof. Dr. Jörg Kreiker (Hochschule Fulda)

Supervisor: Dr. Norbert Hundeshagen

Submitted: 06.09.2017

Abstract ii

Abstract

This work contributes to the three subjects, hybrid systems, modeling languages and edu-
cational software. We develop the specification language for hybrid systems, SoPHY. The
aim of this language is to describe scientific experiments. These experiments are modeled
as hybrid automata. On the basis of SoPHY, a simulation tool can be developed, which is
oriented towards didactic use in the context of self-regulated learning.
The specification language is easily readable and self-explanatory by its close reference to
experiments. It is also easy to process by computers since its design is adapted to the
well-known JSON format. This facilitates its later use in the software.

Zusammenfassung

Diese Arbeit leistet einen Beitrag zu den drei Themen, hybride Systeme, Modellierungssprachen
und Bildungssoftware. Hierbei wird die Spezifikationssprache für hybride Systeme, SoPHY,
entwickelt. Das Ziel dieser Sprache ist, wissenschaftliche Experimente zu beschreiben.
Diese Experimente werden in Form von hybriden Automaten modelliert. Auf Basis von
SoPHY kann dann ein Simulationstool entwickelt werden, welches auf den didaktischen
Einsatz im Themenbereich Selbstgesteuertes Lernen ausgerichtet ist.
Die Spezifikationssprache ist durch ihre nahe Anlehnung an Experimente leicht lesbar und
selbsterklärend. Sie ist außerdem leicht durch Computer zu verarbeiten, da ihr Aufbau an
das bekannte JSON Format angepasst ist. Das erleichtert ihre spätere Verwendung in der
Software.

Declaration iii

Declaration

Herewith I declare, that I have made the presented paper myself and solely with the aid
of the means permitted by the examination regulations of the University of Kassel. The
literature used is indicated in the bibliography. I have indicated literally or correspondingly
assumed contents as such.

Kassel, 06.09.2017

Lara Yörük

Contents iv

Contents

Abstract ii

Declaration iii

List of Figures vi

Listings vii

1 Introduction 1
1.1 Motivation . 1
1.2 Task and Outline . 3
1.3 Related Work . 4

1.3.1 Work on hybrid systems . 4
1.3.2 Work on modeling languages . 5
1.3.3 Work on educational software . 6

2 Preliminaries 7
2.1 Modeling experiments . 7
2.2 Transition Systems . 9
2.3 Hybrid Systems . 13
2.4 Hybrid Automata . 13
2.5 Semantics . 17

2.5.1 Satisfaction Relation for Invariants and Guards 17
2.5.2 Transition System Semantics of a Hybrid Automaton 18

2.6 Ordinary Differential Equations . 21
2.6.1 Definition . 21
2.6.2 Existence and Uniqueness of solutions 22

3 The syntax and semantics of SoPHY 24
3.1 Challenges . 24
3.2 Syntax . 24

3.2.1 Definition part . 25
3.2.2 Configuration part . 28

Contents v

3.3 Semantics: From SoPHY to hybrid automata 30
3.3.1 Continuous Variables . 30
3.3.2 Locations . 30
3.3.3 Invariants and Continuous Evolution 31
3.3.4 Transitions . 31
3.3.5 Initial States . 33

4 Using SoPHY: Scientific examples 34
4.1 Constrained Pendulum [Kle08] . 34
4.2 Predator-Prey Relationship . 37

5 From SoPHY to HSolver 41
5.1 Reasons to transfer . 41

5.1.1 Verification . 41
5.1.2 Safety Verification of Hybrid Systems 42

5.2 Translating SoPHY to HSolver . 44
5.2.1 Comparing the hybrid systems models 45
5.2.2 Pseudocode . 46

6 Conclusion and Future Work 48

7 Bibliography 50

List of Figures vi

List of Figures

1.1 Modeling . 3
1.2 Subjects of this thesis . 5

2.1 Water Tank . 10
2.2 Water Tank Transition System . 12
2.3 Edge of a Hybrid Automaton . 15
2.4 Water Tank Automaton . 16
2.5 Experiments, Hybrid Automata and Transition Systems 18

3.1 Locations . 31
3.2 Invariants and Continuous Evolution . 31
3.3 Transitions and Initial State . 32

4.1 Constrained Pendulum . 35
4.2 Pendulum Automaton . 37
4.3 Predator-Prey Model . 37
4.4 Lotka-Volterra Graph . 39
4.5 Predator-Prey Automaton . 39

5.1 Water tank with forbidden location . 43

Listings vii

Listings

3.1 Definition part example . 26
3.2 Configuration part example . 29

4.1 Pendulum Definition . 36
4.2 Predator-Prey Definition . 40

5.1 Water tank in HSolver . 44

1 Introduction 1

1 Introduction

1.1 Motivation

Nowadays most children grow up using computers in their daily life. As a logical con-
sequence the advantages of computers are also recognized in the didactical scope. Thus,
technology in education plays a more and more important role in research and practice,
which can be seen by the fact that the german Federal Ministry of Education and Research
strongly supports projects in this area [Bun]. Computers have the power to solve a lot
of problems from various topics. For instance, they can be used as calculators for math-
ematical problems or –with an internet connection– for online researches and to provide
teaching materials on online platforms. But they can also be used to entirely replace sin-
gle teaching units. The Application DiVoX, which is shown later, serves as an example
that also indicates that computers are a vital component in the context of self-regulated
learning.

Definition 1.1 Self-regulated learning [GNH13]
Self-regulated learning is a form of acquiring knowledge and skills in which the learners are
independent and self-motivated. Learners independently choose their own goals and learning
strategies that will lead to achieving those goals. It is through evaluating the effectiveness
of one’s learning strategies — comparing one’s current state with the target state — that
learning can be modified and optimized.

While a lot of methods on the subject of educational technology, like interactive white-
boards, computer algebra systems and systems to manage electronic resources, were yet
mainly used to support the teacher, software in the context of self-regulated learning can
result in a major change. By applications that are developed in this scope, the way of teach-
ing can really be changed. On that account some examples can be found in Section 1.3.
Those tools are used by students to learn without the need of a teacher performing the
classical direct instruction. The students can find their own speed which suits them the
best, define their own goals and thus, they motivate themselves to learn. The aim of this
work is to make a contribution in the context of self-regulated learning by working towards
a tool that will be able to simulate scientific experiments.

1 Introduction 2

The tablet application DiVoX [HMP+] is the basis for this work. It is used by the Di-
dactics of Biology department at the University of Kassel to examine the use of digital
media in teaching. By means of the app teachers can create a whole teaching unit on the
subject of a scientific experiment with a tablet. Every experiment is segmented in multiple
steps, like hypothesis, planning, execution and result. For each of these steps teachers can
add work materials in form of texts, images, videos or multiple-choice questions. After a
teacher completed a teaching unit he can divide the students of his class into groups and
assign them to this unit. While performing the teaching unit, each group of students gets a
tablet and they can log in with their personal data. The materials that were added by the
teachers are presented to the students step by step and they can add their answers, again,
in form of texts, images or videos. Even if problems occur, the students do not necessarily
have to consult the teacher, because he can add multilevel help information to every step.
Thus the students can look at these information when they start to have understanding
problems. In the execution step the students really have to perform the experiment and
they can protocol their results in the app. Finally after the teaching unit is finished, the
teacher is able to look at the given answers of each group, on his tablet and to evaluate
the unit in this way. The application DiVoX is a good example for a tool on the subject
of self-regulated learning because the students can determine the progress of the teaching
unit by theirselves while they are supported by the app. They can work with their own
speed and acknowledge help information if they want to. This application is actually the
starting point of this work, since with DiVoX it is still necessary that the students perform
the experiments in reality. To do so they certainly have to be in school, because they need
the tools to build the experiment. Moreover in the majority of cases there is only one
chance to perform the experiment. Thereby the students can not estimate possible effects
that would be caused by changing the process. On these grounds the aim of this work is
to create a possibility how scientific experiments can be simulated by a computer.
When something from the real world should be brought to the computer, like scientific
experiments, the subject needs to be formulated in a computer understandable way. This
process is called modeling and is explained in Section 2.1. When experimenting, students
create hypotheses and want to test, whether they are valid. Scientific experiments have
discrete and continuous properties, which necessarily have to be modeled. A model which
meets this requirements is a hybrid system. Hybrid systems unite discrete and continuous
behavior, where the continuous parts evolve over time and discrete events can be modeled
by adding conditions that determine when these events happen. More information on hy-
brid systems can be found in Chapter 2. In this section we will also see that hybrid systems
are a good way to model scientific experiments, because they can handle the flow of the
properties over time with the continuous parts and they are able to define the occurrence
of special events with the discrete behavior.
Therefore the decision was made to develop SoPHY, as a specification language for mod-
eling scientific experiment with hybrid systems, and the simulation tool that is based on
SoPHY. The tool can be used in the context of self-regulated learning, like it was men-
tioned at the beginning of this section. Teachers will be able to model experiments with

1 Introduction 3

Figure 1.1: Modeling

Real World
1

Model
2 Program

the tool and students can fill them with parameters to determine if they can corroborate
their hypothesis. Thus, the students can not only simulate the experiments at home with-
out the materials they normally need in school, they can also perform the experiments in
multiple ways by changing the parameters, in a time in which they could never do it in
the conventional way.
In Figure 1.1 we can see the process that needs to be performed to develop the mentioned
tool. The task of this thesis is to model experiments via hybrid systems (1). The second
step is (2), to use this model in a tool for simulation, developed in another thesis by Orcun
Yörük [Yör17], parallel to this one.

1.2 Task and Outline

The task for this master thesis is to develop a language to describe hybrid systems. The aim
of the language is, to be used by a tool, which is applied in the context of self-regulated
learning for the simulation of scientific experiments. Since hybrid systems are used for
modeling the experiments, the topic of verification is interesting in addition to simulation.
This can be used to prove the correctness of a system or to check certain theses. For
example it could be checked whether in any possible configuration of the experiment the
population of a species has doubled after a certain time. With simulation the answer
to such questions is not always clear. The big difference is that a simulation is only a
particular run of the experiment. Many experiments are not deterministic, in the sense
that they are probabilistic. This means that at certain points in the experiment there is
more than one possible further course. In the simulation, one of these courses must be
selected and it remains unclear what would have happened in the others. In verification,
the entire system is viewed, and thus global specifications such as those mentioned above
can be checked. Therefore the thesis shall also give a possibility how to verify the hybrid
systems that are modeled within the language. This work is structured as follows:
In Chapter 2 an overview about hybrid systems is given in Section 2.3. In Section 2.4 their
representation as automata is discussed. Regarding the aim to simulate these systems in
Section 2.5.2 a calculation of an execution is shown.
Next, in Chapter 3 we focus on the design process of the language SoPHY. The syntax for
SoPHY is defined in Section 3.2. The defined syntax is intended to be used in didactics,

1 Introduction 4

which is why it is kept simple. Regarding the defined syntax in Section 3.3 it is revealed
how a system, which was modeled with SoPHY, can be translated into a hybrid automaton,
the standart specification model for hybrid systems.
In Chapter 4 the reader gets a closer look on how SoPHY is used. Therefore a set of
example experiments is described and it is shown how these can be modeled with SoPHY
as hybrid systems.
Chapter 5 explains how a specification in SoPHY can be translated to HSolver, a tool to
verify hybrid systems. We will also see how the verification fits into the application of this
thesis.
The conclusion and an outlook on the future use of SoPHY can be found in Chapter 6.

1.3 Related Work

This thesis is a combination of three main topics: hybrid systems, modeling languages and
educational software. In Figure 1.2 this coherence is illustrated. The three subjects are
labeled with the words semantics, syntax and pragmatics. That is because the model of
hybrid systems is used as the semantics of the experiments. SoPHY, the language to model
the experiments forms the syntax in which the experiments are formulated. And finally
educational software is the subject where SoPHY will be applied, that is why it is denoted
as the pragmatic part of this thesis.
Before presenting SoPHY, this section will briefly review some of the work in these three
subjects.

1.3.1 Work on hybrid systems

Hybrid systems were introduced by Thomas A. Henzinger in 1996 [Hen96]. He stated
a formal definition for hybrid systems and classified them “according to what questions
about their behavior can be answered algorithmically”. In the same time he also published
an article about the algorithmic analysis of hybrid systems [ACH+95]. To the best of
my knowledge, there are currently no publications about hybrid systems that are used
in the terms of didactics available, so this thesis will be a first step in this particular
field. Nevertheless there are several languages to model hybrid systems, which should be
mentioned. In 2000 the language CHARON [AGH+00] was introduced. With CHARON
interacting hybrid systems could be specified modularly. CHARON is used for simulation
and verification of hybrid systems. Some other tools that are used for simulation are
Simulink [ABRW17], an industrial tool, HyVisual [BCL+05] and SHIFT [DGS00] which
are developed in academia. Simulink is integrated into the popular environment MATLAB
and is not only made for hybrid systems. Therefore the language is more difficult to use
than the languages that are specially used in the context of hybrid systems. An advantage

1 Introduction 5

Figure 1.2: Subjects of this thesis

Semantics
Hybrid
systems

Pragmatics

Educational
software

SyntaxModeling
languages

Thesis

is that it is a graphical language whose syntax is very intuitive. On the academic side,
The Hybrid System Visual Modeler HyVisual also uses a graphical language to model the
system and it is, like the name already says, especially made for hybrid systems. The
model that is created with the graphical language is saved in he popular XML format.
As graphical languages are more useful for simpler hybrid systems, SHIFT is a language
that can be used for highly complex hybrid systems. SHIFT, which is a permutation of
the acronym of Hybrid Systems Tool Interchange Format, can describe networks of hybrid
automata, whose components can be created, interconnected and destroyed during the
evolution of the system.

1.3.2 Work on modeling languages

A pivotal moment for the work on modeling languages for dynamical systems was the
introduction of CCS [Mil80], short for Calculus of Communicating Systems. With CCS
the interaction of processes could be modeled. In 1990 a calculus that extends CCS with
probability and time [HJ90] was published. With this calculus it is possible to model
real-time aspects of distributed systems. Another process calculus that arose in the same
time as CCS is CSP, Communicating sequential processes [BHR84]. CSP is very similar
to CCS which originates from the fact that both works were influenced by each other. As
a proceeding of his work on CCS the π-calculus was developed in 1992 [MPW92]. The

1 Introduction 6

π-calculus is very expressive and can, in contrast to CCS, model processes, which have
changing structure. After that a lot of modeling languages were, where the most important
for this paper was the introduction of timed automata in 1994 [AD94]. Timed Automata
are an interesting subclass of hybrid systems where all continuous variables are real timed
clocks and the conditions and resets are more limited. They are interesting because the
reachability problem for timed automata is, unlike for hybrid automata, decidable. In 1997
a modeling language for timed automata, UPPAAL, was published [LPY97]. UPPAAL is
used for simulating, specifying and verifying safety and bounded liveness properties for
real-time systems that are modeled as networks of timed automata.

1.3.3 Work on educational software

One example of tools for self-regulated learning is GeoGebra. It is a common education tool
for students, which motivates the students to work independently, because the students
simply start to test what they can do with mathematics. GeoGebra connects geometry,
algebra, tables, mathematical drawings, statistics and analysis in one software [Int]. The
work on GeoGebra started in 2002 [Hoh02]. The aim was to unite the features of computer
algebra systems, which handle geometrical objects by their equations, and dynamical ge-
ometry software, which can be used to draw geometrical object on the computer. The
students should be able to change the equation of an object and this should result in
changing the geometrical figure. In the same way, by moving the figure, the equation will
be changed dynamically. Thus, the students can learn about this coherence by themselves.
The work on GeoGebra was continued in 2006 [Hoh06] and it is until now proceeded by the
International GeoGebra Institute. Recently, GeoGebra has been enhanced with Theorem-
Proving techniques. This extends the usage of GeoGebra in terms of self-regulated learning
once more.
Another set of tools which also interact with the student were published between 2002
and 2004 by the University of Hildesheim on the subject of fractions [Hen]. The tools are
called Mathematik heute - Bruchrechnung, Maßstab - Bruchrechnung and Welt der Zahl -
Bruchrechnung. All tools have the same use case, but are adapted to three different text-
books. With this tools the students can learn to calculate with fractions by going through
all the steps of the calculation. These tools are also able to recognize mistakes that are
made by the students and give hints what they did wrong. For example when a student
should solve the calculation 5

3 + 2
5 and answers with 7

8 , the program gives the hint that
before adding the fractions they need to be converted to a common denominator.

2 Preliminaries 7

2 Preliminaries

At the beginning of this section we will examine how scientific experiments can be modeled.
First we will look closely on the terms of modeling and then we will introduce transition
systems by determining the characteristic parts of experiments. After that, there is a formal
definition of hybrid systems that is on a very general level. A hybrid system is a system
with discrete and continuous behavior. The discrete behavior of the system corresponds
to changes of states in a finite automaton. The continuous behavior is modeled by real
valued variables that evolve over time. Afterwards in Section 2.4 we will define the concept
of hybrid automata, where parts of the definition are more limited, for the reason how a
hybrid system is represented. For the subject of this paper we do not need to work on
this highly generic level. We will use the limited representation, hybrid automata, because
their graphical representation is easy to understand and totally fits our needs.

2.1 Modeling experiments

To simulate scientific experiments with a computer, these experiments need to be modeled
so that they are machine-readable. But what does it mean to model experiments? In
Figure 1.1 the concept of modeling is shown. Modeling is the process of creating a model
that abstracts a part of the real world (1), so that the computer can perform calculations
or work in other ways with this model (2). In this thesis the model needs to be a for-
mal representation that uses methods from mathematics or computer science because the
model should be used by a tool for simulation. As mentioned in the last section we use
hybrid systems to define a model for a scientific experiment.
As a first step, we need to determine in which way scientific experiments could be mod-
eled. Thus, we need to look at the properties that characterize them. While the students
hypothesize, they are mostly talking about values of some properties of the experiment.
We now take a look at the following experiment.

2 Preliminaries 8

Example 2.1 Water flea experiment
We consider a simple experiment with the aim to examine the growth of a water flea pop-
ulation. The setup of the experiment consists of a container which is filled with water.
The water fleas are located inside this container and are fed regularly. The students should
examine how fast the population of the water fleas grows, assuming that the outside condi-
tions, like temperature and light, remain constant. Thus, the students need to measure the
amount of water fleas periodically.

The central question for the experiment in Example 2.1 is “How many water fleas are
inside the container after a certain time?”. The important properties for this experiment
therefore are time and the amount of water fleas. Such a pattern can also be found whilst
considering other experiments. In case of physical experiments, for example ones with a
pendulum, aspects like velocity or the angle of the pendulum are examined. In experiments
in physics, objects are always placed in situations in which they are exposed to physical
laws. In order to examine these, the state of the object is viewed at certain times. It
is also possible to recognize such a procedure in biological experiments. This leads to
the assumption that the important parts for a certain class of experiments are time and
additional properties that are interesting for the hypothesis. When the students build the
setup for the experiments, they implicitly define a dynamic interaction between various
objects that take part in the experiment, for example an organism and light. To represent
such circumstances, we need a dynamical system that on the one hand can handle the flow
of some properties over time and on the other hand it should also provide the ability to
define moments when something changes discretely. This is the reason why we decided to
use hybrid systems.
Before we can begin to model experiments, we need to explain modeling. Therefore we
again use the experiment of Example 2.1. First of all, it should be pointed out that the real
world is not exactly depicted while modeling. It is only modeled what is really important.
A model abstracts from unimportant details, that are not relevant for the current task. In
the water flea experiment, for example, the gender distribution is not relevant for the study
of the growth of the fleas. Therefore, the gender is completely ignored in the model. In
reality, for example, a student might overthrow the container in which the water fleas are
located. For simulations this kind of information is absolutely not important and thus, such
circumstances are omitted in the model. A model can also contain simplifications. This
means that influences from unknown data are ignored or simplified. In reality, of course,
it is not possible to permanently create exactly the same conditions. The temperature of
the water is affected for example by the ambient temperature, etc. However, this fact is
not of great importance, therefore, it is considered simplified that e.g. the temperature
is always the same and optimal conditions for growth are created. Moreover complicated
effects, for example the disease of a water flea or its infertility can also be omitted or used
simplified [EGK11], by assuming that every 1000th flea is sick or barren.

2 Preliminaries 9

2.2 Transition Systems

Transition systems are a common model in computer science to represent dynamical sys-
tems. They describe the possible states of a systems and how the system can change
between these states. A transition system can be seen as a directed graph, whose nodes
represent the states of the system and whose edges model the state changes, called transi-
tions [BK08].

Definition 2.1 Transition System [BK08]
A transition system T is a tuple (S, S0, Lab,→) where

• S is a set of states,

• S0 ⊆ S is a set of initial states,

• Lab is a set of action labels,

• → ⊆ S × Lab× S is a transition relation.

In the following we will see an experiment that we will take as an example several times
in the course of the work. In this section we will examine it more closely and build a
transition system from it.

Example 2.2 Water tank experiment
As an example for a simple experiment consider a water tank whose water level should be
kept between a lower bound and an upper bound. As illustrated in Figure 2.1, the tank has
a valve which is used to connect a pump that fills in the water. The illustration also shows,
that the water tank has a small leak at the bottom, where water constantly drops out. The
red lines mark the boundaries between which the water level should be kept. During the
experiment, the procedure is the iteration of the following steps:

1. Pump water into the tank until the maximum height is reached. While the pump is
turned on, the evolution of the height can be described by the ordinary differential
equation (ODE)

ḣ = 1 + (−c ·
√
h),

where c is

c = − Leak size
Tank size

√
2 · g

1− Leak size
Tank size

2

and g is the gravity acceleration (981cm/s2).

2 Preliminaries 10

2. Turn off the pump until the minimum height is reached (due to the loss of water by
the leak). Here the ODE for the height is:

ḣ = −c ·
√
h

and c is the same as before.

3. Open the valve and connect the pump. While the valve is opened, water will pour out
until the pump is connected, which takes 3 seconds. The evolution of h is described
with the same ODE as if the pump is turned off. But the size of the leak is now the
size of the real leak plus the size of the valve.

This water tank is based on an example from [Pla10].

Figure 2.1: Water Tank

Valve Leak

Using the experiment from Example 2.2 we will now find out which properties are the
most important, which can not be omitted during the modeling. Therefore, we examine
the experiment on characteristics that are used to describe the current state. It is obvious
that it is pointless to talk about the state of an experiment without specifying a time at
which this state occurs. Thus, an important feature is the time. If we now look at the
water tank experiment at a certain point in time and want to describe it, it is important
to mention how high the water level in the tank is. Values such as the temperature or the
pH value of the water are of no interest to our experiment, but in others it of course might
be. In addition to the water level, it is also important to know in which position the pump
is located. To summarize, we now know that we can describe the state of our experiment
at a given time by the water level and the state of the pump. The next step is to figure
out how these values, i.e. the water level and the pump, change over the course of the
experiment. The description of the experiment clearly defines when the level of the pump
changes. The pump is switched off as soon as the maximum level is reached. The valve
is opened as soon as the water level drops to the minimum and after 3 seconds the pump
is switched on. The status of the pump is therefore always linked to certain conditions.

2 Preliminaries 11

Finally it is to be defined how the water level changes. The change follows the specified
ODEs, which however may be different depending on the state of the pump. In order to
find out the water level, the level of the pump must also be known. Then the respective
ODE can be used to calculate the water level.
Now we have worked out the characteristics of the experiment, which are indispensable. We
now want to create a transition system that describes the possible sequences of the exper-
iment. As defined in Definition 2.1, a transition system is a tuple TWT = (S, S0, Lab,→).
We know that the state of the system can be described by the water level and the state
of the pump. For our transition system, this means that the set states S is equiva-
lent to S = {On, Off, Open} × water level. Next, we need to define the initial set of
states S0. This depends on how the experiment is set up at the beginning. We as-
sume that at the beginning of the experiment the pump is always on and the water
level is at the minimum. Therefore, the set of initial states is S0 = {(On, 1)}. The
set Lab contains labels that describe the actions, which lead to a change of the state
of the system. In this example the state can change in two ways: Either the status of
the pump/valve changes or just the water level changes. On the one hand, the water
level changes when time evolves, so we need all possible times as labels. On the other
hand we need some labels that describe the changes of the pump/valve. Finally we get
Lab = R ∪ {Turn pump off,Open valve,Connect pump}. The last element of the tuple is
the transition relation →. To figure out which transitions can be taken, we start at the
initial state and determine which states can be reached. In the following h′ denotes the
value that is calculated with the ODEs from Example 2.2 for time t. Therefore we get the
transitions→1 = {((On, h), t, (On, h′))} for the transitions that can be taken when only the
height changes while time t has evolved. The transitions that can be taken to change from
On to Off are →2 = {((On, h),Turn pump off, (Off, h)) | h ≥ maximum height}. Now
there are again some transitions where only the height changes and the pump stays off: →3

= {((Off, h), t, (Off, h′))}. For the transitions where the status changes from Off to Open
there are the transitions →4 = {((Off, h),Open valve, (Open, h)) | h ≤ minimum height}.
While the valve is open there are again the transitions where the status does not change,
but the connection of the pump will need 3s: →5 = {((Open, h), t, (Open, h′)) | t < 3}.
The last set of transitions are the ones when the status changes from Open to On. To
assure that the valve was open for 3s, we need to introduce a variable x that counts the
time. x will also be existent in all the other states, but is not needed, so we omit it there.
When the valve is open, x evolves with ẋ = 1, just like a clock. Accordingly, the last set of
transitions is →6 = {((Open, h, x),Connect pump, (On, h)) | x = 3}. Taken together, the
transition relation → of the system TWT is → = →1 ∪ →2 ∪ →3 ∪ →4 ∪ →5 ∪ →6.
To visualize transition systems, they can be seen as directed graphs, where a path of the
graph is a run of the system over time. The graph GTWT

for the transition system TWT is
partially shown in Figure 2.2, where we set the maximum height to 7cm and the minimum
height to 3cm. The path consisting of the colored vertices and edges, is representing the
beginning of a run that fills the tank until the water level is 7cm. Afterwards the water
level falls to 3cm and the valve is opened for 3s before the pump is filling the tank with

2 Preliminaries 12

water again. It is obvious, that the pictured transition system is infinite (the dots indicate
infinite other transitions).
Now that we have worked out the most important features of an experiment and have
seen how to describe it through a transition system, we return to hybrid systems. Hybrid
systems give exactly the capabilities we need to capture all the important information
of an experiment. Furthermore, their denotational semantics accurately describes such a
transition system as we have created it from the information.

Figure 2.2: Water Tank Transition System

(On, 1)

(On, 7)

(Off, 7)

(Off, 3)

(Open, 3, 0)

(Open, 0.3, 3)

(On, 0.3)

(On, 8.3)

(On, 9) (Off, 8.3)

(On, h1) (On, h2)

(Off, 5)

(Off, 2)

(On, 5)(On, 4)

...

... ...

...

...

... ...

......

...

...

...

...
...

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

t a

Tu
rn

pu
mp

off

tb

Op
en

val
ve

3

Con
nec

t

pum
p

tx

ty tz Turn pump off

t1 t2

tg

th

ti tj

2 Preliminaries 13

2.3 Hybrid Systems

Now we want to focus on hybrid systems to model the experiments. In Section 2.5.2 we
will see, that the semantic of hybrid systems can be described by transition systems.
This Section 2.3 is mainly based on [Hen96], [LTS08] and [ACH+95].

The hybrid system H is a collection H = (L,X,Lab,E,Act, Inv) where the following is
defined:

• The finite set L denotes the discrete values . The elements l ∈ L are called locations.

• The finite set X denotes the continuous variables.

• The function Inv : L→ 2R
|X| assigns an invariant to each location l ∈ L .

• The function Act : L→ (R|X| → (R→ R|X|)) denotes the continuous changes in the
variables x ∈ X. This function assigns a function f : R|X| → (R→ R|X|) to each
location l ∈ L, which is called the activity of the location l.

• The finite set Lab annotates the transitions. The elements a ∈ Lab are called labels.

• The set E ⊆ L× Lab× 2R
|X| × R|X| × L denotes the changes between the discrete

values. We call the elements e ∈ E transitions. Each transition e = (l, a,G, r, l′)

consists of the source location l ∈ L, the target location l′ ∈ L, the label a ∈ Lab,
the guard G ∈ 2R

|X| and the reset r ∈ R|X|.

2.4 Hybrid Automata

In Section 2.3, the formal definition of a hybrid system was introduced. In this section, we
look at hybrid automata. In the literature on hybrid systems, the use of hybrid automata
is confused. Often they are also used synonymously. In this work, we want to clearly
delineate hybrid automata from hybrid systems.
Hybrid systems are a general description of dynamic systems. We introduce hybrid au-
tomata as a syntactic representation of a special class of hybrid systems. A hybrid
automaton is depicted by a directed graph where the set of vertices is finite and the
vertices are labeled with the invariants and activities. We will now define this special
class of hybrid systems, called hybrid automata, by considering each element of the tuple
H = (L,X, V, Lab,E,Act, Inv).

2 Preliminaries 14

The locations l ∈ L form the vertices of the automaton.
Each vertex contains its invariant Inv(l). We restrict the invariants to conditions, 〈Cond〉,
that are described by the following intervals, according to the grammar

〈Cond〉 ::= 〈Term〉 α 〈Term〉 | 〈Cond〉 β 〈Cond〉 | ¬ 〈Cond〉

〈Term〉 ::= 〈Term〉 γ 〈Term〉 | c | x

where α ∈ {=, <,>,≤,≥}, β ∈ {∧,∨}, γ ∈ {+, ∗,−}, x ∈ X and c ∈ R.
The vertices also contain the activity Act(l) of the corresponding location l. For hybrid au-
tomata, we restrict the form of the activity. A function of the form f : R|X| → (R→ R|X|)
gives a function g : R→ R|X| for an element x̃ ∈ R|X|. In order to describe the activities
in a hybrid automata, we restrict these functions to those that can be describes by sys-
tems of first order ODEs. The element x̃ ∈ R|X| describes the initial values with which
the system of ODEs can be solved. The solution is the mentioned function g. By using
a system of ODEs with initial values to describe the activity, there is a unique solution
(see Section 2.6.2), what is necessary for simulation. Obviously this is a strong limitation,
because with the previous definition much more could be represented. For example, even
partial or unsolvable differential equations could be produced there. In the following, we
will see some examples from [Sta16] to justify that ODEs are sufficient for a variety of
experiments. For example the ODE

ẋ(t) = kx(t)

denotes the simple exponential growth, which is used to model the malthusian population
growth. Also the non-malthusian population growth, which considers the decrease of the
population due to a competition for resources, can be modeled by the first order ODE

ẋ = rx(1− x

k
).

Even enzymatic reactions can be modeled by first order ODEs, for example with the
Michaelis-Menten equation or the Hill equation from [Sta16].
But not only biological applications can be modeled with first order ODEs. In [Gre12]
there are a lot more examples, like the radioactive decay of carbon-14, plutonium-241,
radium-226 and thorium-234 with

ṁ(t) = −km(t).

And also differential equations for electric circuits, like the ones for resistors, inductors and
capacitors can be modeled with first order ODEs.
Even if first order ODEs are not enough to describe an experiment, every higher order
ODE can be transformed to a system of first order ODEs [Col81]. Since we use systems of
first order ODEs, we can also model behavior that is described by higher order ODEs.

2 Preliminaries 15

Figure 2.3: Edge of a Hybrid Automaton

l

Act(l)

Inv(l)

l’

Act(l’)

Inv(l’)

G, r

a

We have seen that the nodes of the automaton represent the locations l ∈ L, which in turn
contain the activities Act and the invariants Inv. Now we consider the elements X, Lab
and E. The sets X and Lab result directly from the hybrid system. For each transition
e = (l, a,G, r, l′) ∈ E the hybrid automaton has an edge from the vertex l to the vertex l′

labeled with a, like it is depicted in Figure 2.3. Every edge contains the guard G that has
the same form as the invariant of a vertex and the reset r which is given as a list of value
assignments for each continuous variable x ∈ X of the form

〈Reset〉 ::= x := 〈Term〉

where 〈Term〉 is formed like we have seen for the invariant. It means that the value of x
after transition e is the solution of the expression 〈Term〉. If there is no reset for some
x ∈ X on an edge we assume that the reset is x := x and the value of the continuous
variable x does not change during the discrete transition.

Example 2.3 As an example, the hybrid automaton HWaterTank = (L,X,Lab,E,Act, Inv)

for the water tank from Example 2.2 is shown in Figure 2.4, where the following is defined:

• L := {On,Off,Open},

• X := {h, x}, where h is the height and x is a clock for connecting the pump,

• Lab := {Turn pump off, Open valve, Connect pump},

• E := {(On,Turn pump off, G1, r1,Off), (Off,Open valve, G2, r2,Open),

(Open,Connect pump, G3, r3,On)}, where
G1 := h ≥ 7

G2 := h > 4

G3 := h = 0 ∨ x = 3}
r1 = (h := h+ 0.5, x := x)

r2 = (h := h, x := x)

r3 = (h := h, x := 0),

2 Preliminaries 16

Figure 2.4: Water Tank Automaton

On

ḣ = 1− 0.0295
√
h

ẋ = 0

h ≤ 9.5

Open

ḣ = −1.5069
√
h

ẋ = 1

h ≥ 0 ∧ x ≤ 3

Off

ḣ = −0.0295
√
h

ẋ = 0

h ≥ 1

h = 1

x = 0

h ≥ 7, h := h+ 0.5

Turn pump off

h
<

4

O
pe
n
va
lv
e

h
=

0 ∨
x

=
0, x

:=
0

Connect pum
p

• Act :

Act(On) :=

(
ḣ = 1− 0.0295

√
h

ẋ = 0

)
,

Act(Off) :=

(
ḣ = −0.0295

√
h

ẋ = 0

)
,

Act(Open) :=

(
ḣ = −1.5069

√
h

ẋ = 1

)
,

• Inv :

Inv(On) := h ≤ 9.5

Inv(Off) := h ≥ 1

Inv(Open) := h ≥ 0 ∧ x ≤ 3

Now that we have defined the syntax of a hybrid automaton, we still need to define its
semantics.

2 Preliminaries 17

2.5 Semantics

Figure 2.5 illustrates the content of this section. We are going to see how transition systems
can describe the semantics of hybrid automata.
In the following section we define the semantics of a hybrid automaton as a transition
system. At first a satisfaction relation for invariants and guards is defined and after that
it can be seen how a transition system for a hybrid automaton is built.

2.5.1 Satisfaction Relation for Invariants and Guards

Next we define the satisfaction relation for invariants and guards. We will use the grammar
for conditions and terms from Section 2.4, because it defines the form of invariants and
guards.
To determine whether the system fulfills a condition, we need to define the valuation of
the continuous variables.

Definition 2.2 Valuations
A valuation v for the set of continuous variables X is a function v : X → R, assigning to
each variable x ∈ X its current value v(x). We denote the set of all valuations with V .

In the following, t1, t2 are terms and cond, cond1, cond2 are conditions.
Now we can define whether a condition cond holds for a valuation v, also written as
v |= cond. We will do this by induction.
First, we need to define the evaluation of terms:

JcK = c,

JxK = v(x),

Jt1 γ t2K = Jt1K γJt2K where γ ∈ {+, ∗,−}.

Now we can define the relation |=:

v |= t1 α t2 iff Jt1K α Jt2K, where α ∈ {=, <,>,≤,≥},
v |= cond1 ∧ cond2 iff v |= cond1 and v |= cond2,
v |= cond1 ∨ cond2 iff v |= cond1 or v |= cond2,
v |= ¬cond iff v 6|= cond.

Finally the invariant of a location l ∈ L holds for a valuation v ∈ V , if v |= Inv(l). The
guard G of a transition e = (l, a,G, r, l′) ∈ E holds for a valuation v ∈ V when v |= G.

2 Preliminaries 18

Figure 2.5: Experiments, Hybrid Automata and Transition Systems

Experiments Hybrid automata Transition systems

Trace =̂ Run of hybrid automaton

Trace =̂ Run of experiment

We still need to determine how to evaluate the result of the resets from r. The result is a
new valuation v′. We know that r is a list of resets of the form x := t, where t is a term.
We define a function r̂ for a list of resets r that gives the corresponding reset r̂(x) for a
variable x ∈ X.
Now we can evaluate a list of resets r, by evaluating the reset r̂(x) for each variable x by

Jr̂(x)K = JtK.

The new valuation v′ is determined by

v′(x) = Jr̂(x)K for each x ∈ X.

2.5.2 Transition System Semantics of a Hybrid Automaton

Finally we will define the semantic of a hybrid automaton, as a transition system. It needs
to be defined how the states of this transition system look like. As mentioned before, the
states of a hybrid automaton contain discrete and continuous parts. So the states of the
corresponding transition system are defined as a set S = L× V . Such a state s = (l, v) ∈ S
consists of the location l ∈ L for the discrete part and a valuation v ∈ V for the continuous
part of the state.

Let H = (L,X,Lab,E,Act, Inv) be a hybrid automaton. The corresponding transition
system TH = (S, S0, LabTH

,→) is defined as

• S = L× V

• S0 ⊆ S, contains all states s ∈ S in which the hybrid system H can be at the begin-
ning of the execution

• LabTH
= Lab ∪ R≥0, Lab for the discrete and R≥0 for the timed transitions

2 Preliminaries 19

• the transition relation → is separated in two types of transitions:

– discrete transitions: (l, v) →a (l′, v′), for a ∈ Lab, if the following conditions
hold:

∗ (l, a,G, r, l′) ∈ E

∗ v |= G

∗ v′(x) = Jr(x)K, for all x ∈ X

∗ v′ |= Inv(l′)

– timed transitions: (l, v) →t (l, g(t)), for t ∈ R≥0, if the following conditions
hold:

∗ g = Act(l)(v)

∗ g(t′) |= Inv(l), for 0 ≤ t′ ≤ t

Note, to keep things simple, we use v in two ways. In the states (l, v), v is a function with
domain X that is taking values in R. If we want to use it for the activity, actually an
element from R|X| is needed. A function v : X → R can also be seen as such a tuple of its
values. Therefore we will also use v in this way.

For a discrete step (l, v)→a (l′, v′) a transition e = (l, a,G, r, l′) ∈ E needs to exist in the
underlying hybrid system, the invariant of the location l needs to hold for v on the one
hand and the guard G on the other hand to ensure that the transition is enabled, v′ is
calculated by the reset and needs to satisfy the invariant of the target location l′.
With a timed transition (l, v)→t (l, f(v, t)) the system stays in a location l if the function
f is the action of the location l and for all 0 ≤ t′ ≤ t, f(v, t′) satisfies the invariant of the
location l.
As t ∈ R≥0 is real valued, there are uncountably many edges from the state (l, v) of the
form (l, v)→t as long as v satisfies the invariant of l.

For the timed transitions we have to look at the way the continuous part of the target
state is calculated. So for all x ∈ X, beginning at time t0 = 0 with the initial state
(l0, v0) ∈ S0, where v0(x) = x0 and Act(l0)(v0) = g, the value of the continuous variable x
flows according to the related first order ODE where we know that g is the solution of the
ODE and the initial value is g(0) = x0.
For all other states (l, v) /∈ S0 the initial value is g(0) = v(x). How a calculation of the
solution and the new value works can be seen in the following example.

2 Preliminaries 20

Example 2.4 We can now state the transition system for the water tank example from
Figure 2.4. THWaterTank

= (S, S0, LabT ,→), where

• S = {(On, v) | v(h), v(x) ∈ R≥0} ∪ {(Off, v) | v(h), v(x) ∈ R≥0} ∪ {(Open, v) |
v(h), v(x) ∈ R≥0}

• S0 = {(On, v0)} where v0 : v0(x) = 0 and v0(h) = 1

• LabT = {Turn pump off,Open valve,Connect pump} ∪ R≥0

• → ={(
(On, v), t, (On, f(v, t))

)
| v(h), f(v, t)(h) ≤ 9.5 ∧ f = Act(On)

}
∪{(

(On, v),Turn pump off, (Off, v′)
)
| 7 ≤ h ≤ 9 ∧ v′(h) = v(h) + 0.5

}
∪{(

(Off, v), t, (Off, f(v, t))
)
| v(h), f(v, t)(h) ≥ 1 ∧ f = Act(Off)

}
∪{(

(Off, v),Open valve, (Open, v′)
)
| 1 ≤ h < 4

}
∪{(

(Open, v), t, (Open, f(v, t))
)
| v(h), f(v, t)(h) ≥ 0 ∧ v(x), f(v, t)(x) ≥ 0 ∧ f =

Act(Open)
}
∪{(

(Open, v),Connect pump, (On, v′)
)
| v(h), v(x) = 0 ∧ v′(x) = 0

}
To see how the calculation of the actions works, here is an example for a timed transition
from the state (Off, v) where v(h) = 6.
First we have to find a general solution for

ḣ = −0.0295
√
h,

which is

h(t) = 1
4(−0.0295 · t+ C)2.

Including the initial value h(0) = 6 gives

6 = 1
4(−0.0295 · 0 + C)2√

24 = C,

which can be used to get the particular solution for this initial value,

h(t) = 1
4(−0.0295 · t+

√
24)2.

2 Preliminaries 21

We now choose the time as t = 60, then

h(60) = 1
4(−0.0295 · 60 +

√
24)2 ≈ 2.4476.

So there is a timed transition

(Off, v)→60 (Off, v′), where v(h) = 6 and v′(h) ≈ 2.4476

in the transition system of the water tank. And as 1 ≤ v(h) < 4, the transition
e = (Off,Open valve, G, r,Open), with G = {v | v(h) > 4} and r : r(h) = h, r(x) = x, in the
water tank automaton is enabled. So there is also a discrete transition

(Off, v′)→Open valve (Open, v′).

2.6 Ordinary Differential Equations

As mentioned in Section 2.4 the activity of a location is described by a system of first
order ordinary differential equations, because they have a lot of applications in scientific
fields. For a better understanding of the evolution of a hybrid system this Section will
give a quick overview of ordinary differential equations. The information in this section
are taken from [Col81] and [Grö77].

2.6.1 Definition

A differential equation is a mathematical equation that contains derivatives of a function
which is the unknown variable in that equation. If this function is a function of only one
independent variable the differential equation is called to be ordinary and is abbreviated
as ODE. A differential equation is, in contrast to an ordinary one, called partial differential
equation if the unknown variable is a function of multiple independent variables.
For n ∈ N, D ⊂ Rn+2 and a function F : D → R an nth order ODE where the unknown
function is y(x), is in the implicit form when it is defined as

F (x, y(x), ẏ(x), ÿ(x), ..., y(n)(x)) = 0.

2 Preliminaries 22

In this paper the explicit form is used. For f : Rn+1 → R, an ODE is in the explicit form,
if the equation is resolved to its highest derivative:

y(n)(x) = f(x, y(x), ẏ(x), ÿ(x), ..., y(n−1)(x))

The highest derivative determines the order of the differential equation. Thus, a first
order ordinary differential equation in explicit form looks like

ẏ(x) = f(x, y(x)),

which can also be written shortly as

ẏ = f(x, y).

The latter form is mostly used throughout the paper.
As previously mentioned we use a system of first order ODEs for the activity.

2.6.2 Existence and Uniqueness of solutions

For a system of n first order ODEs ẏ1, ..., ẏn

ẏ1 = f1(x, y1, y2, ..., yn)

ẏ2 = f2(x, y1, y2, ..., yn)
...

ẏn = fn(x, y1, y2, ..., yn)

and a set of initial values
yi(a) = bi (for i = 1...n),

where a, bi ∈ R, the essential question is, whether there is a solution to this system and if
it is the only one. This solution would be a system of functions that satisfy the ODEs and
the initial values.
According to [Col81], for a system of n first order ODEs the existence and uniqueness of
the solution system is given, if all functions fi (for i = 1...n) are continuous in the range

|x− a| < h, |yi − bi| < hMi

for some positive numbers h and Mi, and meet the conditions

|fi(x, y1, y2, ..., yn)| ≤Mi

(Boundedness) and

2 Preliminaries 23

|fi(x, y1, y2, ..., yn)− fi(x, y∗1, y∗2, ..., y∗n)|
≤ k{|y1 − y ∗1 |+ ...+ |yn − y ∗n |}.

(Lipschitz condition)

for some positive constant k and two different points {x, y1, y2, ..., yn}, {x, y∗1, y∗2, ..., y∗n}
with the same x-coordinate.

3 The syntax and semantics of SoPHY 24

3 The syntax and semantics of SoPHY

In the following chapter we will define the language SoPHY, a specification language for
hybrid automata. Section 3.2 is devoted to the syntax. After that in Section 3.3 we will see
how a hybrid automaton can be built from a specification in SoPHY. In the whole chapter
the water tank example from the previous sections is used a the better understanding of
the concept.

3.1 Challenges

The aim of SoPHY is to provide a language to model scientific experiments with hybrid
systems in a didactical setting such as biology class in school. Every experiment has an ex-
perimental arrangement that describes the scientific system and contains a set of variables
that change their values during the experiment. In an application that models scientific
experiments, it mainly needs to be possible for the teachers to define those variables and
the scientific laws they follow. They also need to be able to determine the experimental
arrangement in a way that fits to their purpose. If they want to examine a special detail in
the experimental arrangement, they should be able the place this detail in the center of the
experiment. According to this point the language should give the teacher a great degree
of freedom to design the experiment. In the last chapters, we have seen the important
features of experiments and how they can be modeled with hybrid systems. SoPHY needs
to be able to represent all these features. Since SoPHY is meant to be used in the didactic
environment, the syntax should be easy to read and does not need to correspond exactly
to those of hybrid systems.

3.2 Syntax

The format on which the syntax of SoPHY is based is JSON. The JavaScript Object
Notation, short JSON, is a text format for the serialization of structured data [Cro06].
This format has been chosen because it is easy to understand for users and computers.
As we stick to the conventions of JSON when designing the syntax, it is not necessary
to write a parser for SoPHY in future tools. There are parsers for JSON in almost all

3 The syntax and semantics of SoPHY 25

popular programming languages, which is also making it easier to use SoPHY on multiple
platforms.
In SoPHY the specification of an experiment is separated into two parts. The first is
called the Definition part. The general information about the structure of the experiment
is defined in this part, by indicating the characteristics like properties and events that can
happen. In addition to this, the Configuration part configures the exact experiment by
determining the initial values of the system.

3.2.1 Definition part

To make SoPHY easy to understand, we have aligned the structure of the definition to the
characteristics of experiments that we have elaborated in the course of the work so far. To
this end, we have defined a number of key words that should guide the user through the
structure of the experiment.
At the very beginning, the name of the experiment is set. Looking at the previous exam-
ples, we first defined the properties, which contain values of the experiment, which are
continuously changing. After that, we devoted attention to the discrete states, which
describe the status of the experiment. Each state is identified by a name. We have found
that the current state of the experiment depends on the values of the properties. Therefore,
a range can be defined for each state, which limits the values of the properties for this
state. The evolution of the properties depends on the respective state and can be defined
there. In examining the experiments we have observed that the discrete state changes
due to different events. These events can be described by a name. When such an event
occurs depends on the values of the properties and is determined by a condition. Such an
event results in another state that has a name. In addition, the values of the properties,
property_values can be changed during an event.
An example for a definition part in SoPHY can be found in Listing 3.1. In this example the
water tank from Figure 2.4 is defined. The properties of the water tank are the height
of the water level h and the clock x. The states show in which different states the pump
can be. The pump can either be On, Off or the valve can be Open. We will now look
at the components of the state On to explain the syntax. The same scheme can also be
applied to the other states. The pump is On as long as the height does not reach 9.5cm.
The height evolves due to the differential equation h′ = 1− 0.0295 ∗ sqrt(h) (sqrt denotes
the square root) and the clock due to x′ = 0.
In the On state only one event can happen. The pump can be turned off. The condition
for this event is, that the water level raised up to 7cm. The result of this event is the
state Off, while the water level h is increased by 0.5cm and the clock x does not change.

3 The syntax and semantics of SoPHY 26

Listing 3.1: Definition part example

1 {

2 "name":"Water tank",

3 "properties":[

4 "h",

5 "x"

6],

7 "states":[

8 {

9 "name":"On",

10 "range":"h <= 9.5",

11 "evolution":"h’ = 1 - 0.0295 * sqrt(h); x’ = 0",

12 "events":[

13 {

14 "name":"Turn pump off",

15 "condition":"h >= 7",

16 "result":{

17 "name":"Off",

18 "property_values":"h := h + 0.5; x := x"

19 }

20 }

21]

22 },

23 {

24 "name":"Off",

25 "range":"h >= 1",

26 "evolution":"h’ = -0.0295 * sqrt(h); x’ = 0",

27 "events":[

28 {

29 "name":"Open valve",

30 "condition":"h < 4",

31 "result":{

32 "name":"Open",

33 "property_values":"h := h; x :=x"

34 }

35 }

36]

37 },

38 {

39 "name":"Open",

40 "range":"h >= 0 && x <= 3",

41 "evolution":"h’ = -1.5069 * sqrt(h); x’ = 1",

3 The syntax and semantics of SoPHY 27

42 "events":[

43 {

44 "name":"Connect pump",

45 "condition":"h = 0 || x = 0",

46 "result":{

47 "name":"On",

48 "property_values":"h := h; x := 0"

49 }

50 }

51]

52 }

53]

54 }

To specify the syntax formally, we have generated a grammar on the basis of which a
definition of an experiment in SoPHY is constructed. This is the grammar of the definition
part, written in EBNF:

〈System〉 = ’{’
"name": 〈Identifier〉 ,
"properties": 〈PropertyList〉 ,
"states": ’[’ (〈State〉)+ ’]’
’}’

〈State〉 = ’{’
"name": 〈Identifier〉 ,
"range": 〈Condition〉 ,
"evolution": 〈Activity〉 ,
"events": ’[’ (〈Event〉)+ ’]’
’}’

〈Event〉 = ’{’
"name": 〈Identifier〉 ,
"condition": 〈Condition〉 ,
"result": 〈Result〉
’}’

〈Result〉 = ’{’
"name": 〈Identifier〉 ,
"property_values": 〈Resets〉
’}’

〈Identifier〉 = 〈Letter〉 (〈Letter〉 | 〈Digit〉 | ’_’)*

〈PropertyList〉 = ’[’ (〈Identifier〉 ,)* 〈Identifier〉 ’]’

3 The syntax and semantics of SoPHY 28

〈Condition〉 = 〈Expression〉 (= | < | > | <= | >=) 〈Expression〉 | 〈Condition〉 AND
〈Condition〉 | 〈Condition〉 OR 〈Condition〉 | NOT 〈Condition〉

〈Expression〉 = arithmetical expressions with +, -, *, real constants and the properties
from 〈PropertyList〉

〈Activity〉 = (〈ODE 〉 ;)* 〈ODE 〉

〈ODE 〉 = first order ordinary differential equation in explicit form

〈Resets〉 = (〈Reset〉)*

〈Reset〉 = 〈Identifier〉 ’:’ ’=’ 〈Expression〉

〈Letter〉 = ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ | ’G’
| ’H’ | ’I’ | ’J’ | ’K’ | ’L’ | ’M’ | ’N’
| ’O’ | ’P’ | ’Q’ | ’R’ | ’S’ | ’T’ | ’U’
| ’V’ | ’W’ | ’X’ | ’Y’ | ’Z’ | ’a’ | ’b’
| ’c’ | ’d’ | ’e’ | ’f’ | ’g’ | ’h’ | ’i’
| ’j’ | ’k’ | ’l’ | ’m’ | ’n’ | ’o’ | ’p’
| ’q’ | ’r’ | ’s’ | ’t’ | ’u’ | ’v’ | ’w’
| ’x’ | ’y’ | ’z’

〈Digit〉 = ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’

We now want to explain this grammar in a textual way.
The system is identified by a name and has a nonempty list of properties that define
the behavior of the system. Such a system consists of a nonempty set of states in which
the system can be. The states are identified by a name and determine a range in which
the properties can be, without changing the state. The evolution in the state contains a
nonempty list of first order ordinary differential equations that describe the evolution of
the properties.
Each state has a set of events that show what can happen in the related state. An event
has a name and a condition that determines when this event happens. The result of the
event consists of the resulting state and the new values for the properties.

3.2.2 Configuration part

Also in the configuration of the experiment, keywords, which are based on our gained
knowledge about experiments, are used. First of all, the name used in the definition is
needed as the configurations id, to connect the two parts. In order to distinguish different
configurations of the same experiment, a configuration can be provided with a name. To
describe the starting point of an experiment, the initial_state, in which the system
starts, must be specified. In addition, initial_values for all properties must be defined,
whereby the initial description of the experiment is complete.
An example for a configuration part in SoPHY can be found in Listing 3.2. In this example

3 The syntax and semantics of SoPHY 29

the created water tank starts in the state On, so the pump is working. The initial water
level is 1cm and the clock is set to 0.

Listing 3.2: Configuration part example

1 {

2 "id":"Water Tank",

3 "name":"Water Tank",

4 "initial_state":"On",

5 "initial_values":[

6 1,

7 0

8]

9 }

For the configuration, we have again specified the syntax formally by generating a grammar,
on whose basis a configuration in SoPHY is constructed. This is the grammar of the
configuration part, written in EBNF.

〈Setup〉 = ’{’
"id": 〈Identifier〉 ,
"name": 〈Identifier〉 ,
"initial_state": 〈Identifier〉 ,
"initial_values": 〈ValueList〉 ’}’

〈Identifier〉 = 〈Letter〉 (〈Letter〉 | 〈Digit〉 | ’_’)*

〈ValueList〉 = ’[’ (〈Value〉 ,)* 〈Value〉 ’]’

〈Value〉 = 〈DigitSequence〉 (’.’ 〈DigitSequence〉)?

〈Letter〉 = ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’ | ’G’
| ’H’ | ’I’ | ’J’ | ’K’ | ’L’ | ’M’ | ’N’
| ’O’ | ’P’ | ’Q’ | ’R’ | ’S’ | ’T’ | ’U’
| ’V’ | ’W’ | ’X’ | ’Y’ | ’Z’ | ’a’ | ’b’
| ’c’ | ’d’ | ’e’ | ’f’ | ’g’ | ’h’ | ’i’
| ’j’ | ’k’ | ’l’ | ’m’ | ’n’ | ’o’ | ’p’
| ’q’ | ’r’ | ’s’ | ’t’ | ’u’ | ’v’ | ’w’
| ’x’ | ’y’ | ’z’

〈Digit〉 = ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’

〈DigitSequence〉 = 〈Digit〉 (〈Digit〉)*

3 The syntax and semantics of SoPHY 30

In summary, the grammar can be explained as follows.
The setup is referred to a system from the definition part by an ID that needs to match
the name of the system. The system has an own name to specialize it. The initial state
refers to one of the states from the system in the definition part and determines that this
system starts in this actual state. A setup also has a nonempty list of initial values that
assigns a value to each property of the system.

3.3 Semantics: From SoPHY to hybrid automata

A hybrid automaton can be extracted from each pair of a definition and a configuration
part, a. In the following section we will show how. We will use the definition part of SoPHY
to create an automaton by using the definition of a hybrid automaton from Section 2.4 and
we will add the initial values, which are important for the simulation, with the configuration
part.
In this section we will see expressions such as: x in "properties". This means that x is
an element associated with the key "properties" in SoPHY. This expression will be used
to build a set containing all these x. In addition, we will also use expressions of the form:
"states"."name". These result from the hierarchically nested structure of SoPHY and
are used to access the names of all states.

3.3.1 Continuous Variables

The continuous variables are the global properties of a hybrid automaton. Therefore
they are given at the very beginning of the definition part, right after the name of the
system. So the finite set X is defined by:

X = {x | x ∈ "properties"}

In the example in Listing 3.1 a water tank has the properties h and x.

3.3.2 Locations

In the definition part each system has a set called states which describe the various states
in which the system can be. These states build the locations of the hybrid automaton. For
each state a location is created:

L = {l | l ∈ "states"."name"}

3 The syntax and semantics of SoPHY 31

Figure 3.1: Locations

On Open Off

Figure 3.2: Invariants and Continuous Evolution

On

ḣ = 1− 0.0295
√
h

ẋ = 0

h ≤ 9.5

Open

ḣ = −1.5069
√
h

ẋ = 1

h ≥ 0 ∧ x ≤ 3

Off

ḣ = −0.0295
√
h

ẋ = 0

h ≥ 1

We can now begin to create the graphical representation of the hybrid automaton. The
locations of the water tank example can be seen in Figure 3.1.

3.3.3 Invariants and Continuous Evolution

The invariant of an location describes for which condition the system can stay in this
location. In the definition part each state has a range. This is used to assign an invariant
to each location. The function Inv is determined by:

Inv(s."name") 7→ (s."range"), where s ∈ "states".

The activity of a location describes the evolution of the properties in the respective location.
This evolution is also assigned to a state in the definition part. The function Act is
determined by the definition part in the following way:

Act(s."name") 7→ (s."evolution"), where s ∈ "states".

The current progress of the automaton is shown in Figure 3.2.

3.3.4 Transitions

The next step is to connect the locations with transitions. This information is called
events in the definition part. Each state has a set of events that can happen. Such an

3 The syntax and semantics of SoPHY 32

event describes a discrete change that can happen to the system. An event has a name

that is going to be the label of the transition. The set of labels is filled by

Lab = {"states"."events"."name"}.

Furthermore the events have a condition which determines when this actual event hap-
pens. This is the guard of the transition. Each event results in another state of the system.
This result contains the name of the next state and the new values of the properties, called
property_values, which denote the resets of the transition. The name of the next state is
the target location, while the state that contains the event is the source location. Therefore
the set of transitions is

E = {s."name",
s.e."name",

s.e."condition"

s.e."result"."property_values",

s.e."result"."name"},
where s ∈ "states" and e ∈ "events".

In Figure 3.3 can be seen how the locations are connected to each other and how this
transitions are annotated with labels, guards and resets.

Figure 3.3: Transitions and Initial State

On

ḣ = 1− 0.0295
√
h

ẋ = 0

h ≤ 9.5

Open

ḣ = −1.5069
√
h

ẋ = 1

h ≥ 0 ∧ x ≤ 3

Off

ḣ = −0.0295
√
h

ẋ = 0

h ≥ 1

h = 1

x = 0

h ≥ 7, h := h+ 0.5

Turn pump off

h
<

4

O
pe
n
va
lv
e

h
=

0 ∨
x

=
0, x

:=
0

Connect pum
p

3 The syntax and semantics of SoPHY 33

3.3.5 Initial States

Now the hybrid automaton from the definition part is completed. We still have to include
the information from the configuration part, which determines how the actual system is con-
figured. The configuration part contains the setup which finalizes the system. The automa-
ton will be extended by an edge that defines an initial_state and the initial_values

of the properties. The final system can be seen in Figure 3.3.

4 Using SoPHY: Scientific examples 34

4 Using SoPHY: Scientific examples

In this Section we will see how to model experiments with SoPHY.
At first a physical example is given. In school pendulum experiments are used to learn
about the effects of velocity and gravity. We will see how to specify a pendulum with
SoPHY, which is constrained by a pen.
The second example comes from the field of biology. Ecology, a part of biology, is often con-
cerned with questions about population models. We will use SoPHY to specify a predator
prey model that can be used to monitor the growth of two competing populations.

4.1 Constrained Pendulum [Kle08]

The simple pendulum is an experiment that nearly every student has seen in school once.
This experiment is used so often, because the mathematical representation, which assumes
that there is no friction at all and the mass of the pendulum is concentrated to one point,
does not differ from reality so much. To approach this idealized version in a real experiment
the students just need to use a long and thin thread to minimize the friction and to use
a small and heavy pendulum to approach that the mass is concentrated to one point. In
that way the students can calculate the values of the experiment in an easy way without
a big loss of accuracy.
Some questions on this experiment are for example

• Does the duration of the oscillation depend on the mass of the pendulum?

• What is the difference in starting at a high and at a low angle?

• What happens if the length of the pendulum is changed?

A modification to the simple pendulum is the constrained pendulum. In contrast to
the simple one, the constrained pendulum is extended by a pen which the thread hits at
some point. A diagram of this pendulum is shown in Figure 4.1. The pendulum has length
l and when it hits the pen the length is shortened to lpen. φpen determines the angle of the
position of the pen and φ is the angle of the pendulum.
To define this experiment with SoPHY, first of all we have to think about the properties of

4 Using SoPHY: Scientific examples 35

Figure 4.1: Constrained Pendulum

φpen

φ −φ

l

lpen

the systems. The question is how the behavior of the system can be described by variables
that change continuous in time. With this pendulum it is the angle φ that changes while
the pendulum is oscillating and the angular velocity v of the end of the pendulum. So we
call the properties of the system φ and v.
The next step is to determine the states of the experiment. These states describe the dis-
crete changes which can happen during the experiment. For this experiment the pendulum
can be in two states: to be unconstrained or constrained.
The pendulum is unconstrained if it oscillates without touching the pen. So the range of
the state unconstrained is φ ≤ φpen because as long as the pendulum does not hit the
pen, its angle is smaller than the one where the pen is located. While the pendulum is
unconstrained the velocity v evolves according to the differential equation v̇ = −g sin φ
and the equation for the evolution of the angle is φ̇ = 1

l v.
The pendulum is constrained when the pendulum hits the pen, which leads to the range
φ ≥ φpen for the state constrained. As long as the pendulum is constrained by the pen the
angle φ evolves with φ̇ = 1

lpen
v. This is the same equation as in the unconstrained state,

but the length of the pendulum is shortened by the pen to lpen. The velocity v evolves in
the same way as in the unconstrained state, because it does not depend on the length of
the pendulum.
After the states with their range and the evolution of the properties are defined we need
to think about the events that can happen in the two states. An event is a discrete
change that happens and has the result, that the system changes its state. Regarding the
unconstrained state, the event that can happen is that the pendulum hits the pen. The

4 Using SoPHY: Scientific examples 36

condition of the event is φ = φpen and it results in the constrained state, without changing
the values of the properties. While the pendulum touches the pen, the state changes to
constrained. In the moment the pendulum moves away from the pen, when φ = φpen, an
event occurs that brings the system back to the unconstrained state.
We now got all the information to define the experiment with SoPHY. In Listing 4.1 the
definition of the pendulum in SoPHY is given. It should be noted, that φpen, g, l and lpen
need to be replaced by exact values to describe a particular system. This is not done here,
for the reason that the definition does not depend on the value of these variables. The
resulting hybrid automaton is shown in Figure 4.2.

Listing 4.1: Pendulum Definition

1 [

2 {

3 "name":"Constrained Pendulum",

4 "properties":[

5 "v",

6 "phi"

7],

8 "states":[

9 {

10 "name":"Unconstrained",

11 "range":"phi <= phi_pen",

12 "evolution":"v’=-g sin phi; phi ’=1/l v",

13 "events":[

14 {

15 "name":"Hit pen",

16 "condition":"phi = phi_pen",

17 "result":{

18 "name":"Constrained",

19 "property_values":"v:=v; phi:=phi"

20 }

21 }

22]

23 },

24 {

25 "name":"Constrained",

26 "range":"phi >= phi_pen",

27 "evolution":"v’=-g sin phi; phi ’=1/l_pen v",

28 "events":[

29 {

30 "name":"Free",

31 "condition":"phi = phi_pen",

4 Using SoPHY: Scientific examples 37

32 "result":{

33 "name":"Unconstrained",

34 "property_values":"v:=v; phi:=phi"

35 }

36 }

37]

38 }

39]

40 }

41]

Figure 4.2: Pendulum Automaton

Unconstrained

v̇ = −g sin φ
φ̇ = 1

l v

φ ≤ φpen

Constrained

v̇ = −g sin φ
φ̇ = 1

lpen
v

φ ≥ φpen

φ = φpen

Hit pen

φ = φpen

Free

4.2 Predator-Prey Relationship

Here we consider the well known predator-prey relationship [Grü08]. The predator-prey
relationship is a model of a section of the food chain, which involves two different types.
One species is the predator whose source of food is the other species, the prey. In our
model, we assume that the food resources for the prey are unlimited. Figure 4.3 illustrates
this relationship. The predator must eat prey in order not to die. The more prey there is,

Figure 4.3: Predator-Prey Model

The more predators,
the less preys.

The more preys,

the more predators.

4 Using SoPHY: Scientific examples 38

the faster the predator can multiply. This, however, leads to a reduction in the number of
prey, as many predators eat a lot of prey. However, the decreasing number of prey leads to
a reduction in the predator population. As a result, the prey population can grow again.
In order to model the predator-prey relationship in SoPHY, we have to think again about
the obligatory properties. First of all, the experiment deals with the size of the two
populations. We denote the prey population with x1 and the predator population with x2.
The equations used in the following are from [Grü08]. Both populations grow according
to the ODE ẋ = λx, where λ is the growth rate resulting from the birth rate γ, minus the
death rate σ: λ = γ − σ.
Let us first consider the prey population. The birth rate γ of the prey population is
constant. The death rate is given by σ = σ̃+ bx2 where σ̃ ∈ (0, γ) is the natural death and
the term bx2 describes the death by predator. The constant b depends on the species. We
define a = γ − σ̃ > 0, which can also be called the net growth rate of the prey. From this
we can derive the following equation:

ẋ1 = λx1 = (γ − σ)x1

ẋ1 = (γ − (σ̃ + bx2))x1 (σ = σ̃ + bx2)

ẋ1 = (a− bx2)x1 (a = γ − σ̃).

We now consider the predator population. There, the death rate σ is constant and the
birth rate γ arises from γ = γ̃+dx1. This means that more predators are born when more
prey is available. The constant d depends on the species. We define c = σ − γ̃ > 0 and
conclude the following equation:

ẋ2 = λx2 = (γ − σ)x2

ẋ2 = (γ̃ + dx1 − σ)x2 (γ = γ̃ + dx1)

ẋ2 = (−c+ dx1)x2 (c = σ − γ̃).

Thus the system of differential equations, which is called Lotka-Volterra model, is ob-
tained:

ẋ1 = ax1 − bx1x2

ẋ2 = −cx2 + dx1x2.

We now need to define the discrete states. In this experiment, the development of continu-
ous variables is not affected by discrete events. This does not mean that no discrete states
can or should be modeled. As already mentioned, recurring curves, in which the predator
population decreases, occur in the predator-prey model. An example of the Lotka-Volterra
model is shown in Figure 4.4. There is a limit l, where the prey population begins to
recover as soon as the predator population drops below it. If the predator population
exceeds the line again, it has recovered so far that the prey population begins to decline
again. This situation can be used as discrete states with the help of this limit. We thus

4 Using SoPHY: Scientific examples 39

Figure 4.4: Lotka-Volterra Graph

0 5 10 15 20
0

10

20

30

40

50

60

Time, t

Po
pu

la
tio

n
Si

ze
s

Prey
Predator

l

get two states: Predator eats prey and Prey recovers. As soon as the predator population
reaches the limit in the Predator eats prey state, the state changes to Prey recovers and
vice versa. This also leads to the ranges of the states.
Now we can specify the system in SoPHY. The definition can be found in Listing 4.2.
To create a particular experiment, the variables a, b, c, d and l need to be filled with real
values. These values depend on the species used in the experiment. The associated hybrid
automaton can be found in Figure 4.5.

Figure 4.5: Predator-Prey Automaton

Predator eats prey

ẋ1 = ax1 − bx1x2
ẋ2 = −cx2 + dx1x2

x2 ≥ l

Prey recovers

ẋ1 = ax1 − bx1x2
ẋ2 = −cx2 + dx1x2

x2 ≤ l

x2 = l

Predator is minimized

x2 = l

Predator population rises

4 Using SoPHY: Scientific examples 40

Listing 4.2: Predator-Prey Definition
1 {
2 "name":"Predator Prey",
3 "properties":[
4 "x1",
5 "x2"
6],
7 "states":[
8 {
9 "name":"Predator eats Prey",

10 "range":"x2 >= l",
11 "evolution":"x1=a*x1-b*x1*x2; x2=-c*x2+d*x1*x2",
12 "events":[
13 {
14 "name":"Predator is minimized",
15 "condition":"x2 = l",
16 "result":{
17 "name":"Prey is recovering",
18 "property_values":"x1 = x1; x2 = x2"
19 }
20 }
21]
22 },
23 {
24 "name":"Prey is recovering",
25 "range":"x2 <= l",
26 "evolution":"x1=a*x1-b*x1*x2; x2=-c*x2+d*x1*x2",
27 "events":[
28 {
29 "name":"Predator population rises",
30 "condition":"x2 = l",
31 "result":{
32 "name":"Predator eats Prey",
33 "property_values":"x1 = x1; x2 = x2"
34 }
35 }
36]
37 }
38]
39 }

5 From SoPHY to HSolver 41

5 From SoPHY to HSolver

HSolver is a tool for the verification of hybrid systems which can handle, unlike many other
tools, non-linear ordinary differential equations. As explained, SoPHY is a specification
language for specify hybrid systems with the goal of simulation. Another interesting subject
despite the simulation of hybrid systems is safety verification and that is what HSolver does.
To now be able to also verify the systems that are specified with SoPHY this chapter will
show how to transfer SoPHY code to HSolver.

5.1 Reasons to transfer

In the simulation of experiments, there is usually not only a single way to perform the ex-
periment, but different decisions can be made during the simulation which lead to different
further courses of the experiment. In the water tank experiment, for example, the pump
can be switched off at h = 7 or only at h = 9.5. This decision leads, as in the transition
system in Figure 2.2, to different further courses of the experiment.
When simulating, students can test whether their assumptions are valid or not, by trying
out different runs. However, they can only guess that because they only know that their
assumption applies in exactly the runs of the system they have also tried. With the help
of verification, it can really be proved if an assumption is valid. Which assumptions could
be made in the case of the water tank experiment and how the verification works for such
assumptions is explained below.

5.1.1 Verification

The matter of safety verification is to check if a system fulfills a given specification. There-
fore, the whole system needs to be examined with respect to a global safety property. A
safety property asserts, that nothing bad will happen during the evolution of a system
[HHWt97]. By now verification is an important part in the development of systems. To
determine whether a system is correct or not, a set of properties is created. This proper-
ties describe what a system should do and what it should not. If the system fulfills every
property, it is called correct. Therefore correctness is not a global property of a system
but depends on a specification that is described by multiple properties [BK08].

5 From SoPHY to HSolver 42

5.1.2 Safety Verification of Hybrid Systems

Relating to systems that are modeled by automata—like hybrid systems—safety verifica-
tion is realized by calculating the reachability of certain set of states inside the transition
system of the hybrid system. In simple terms, a set of unsafe states is defined or calcu-
lated. Let us call this set U . In addition, all reachable states of the transition system are
required, we call this set R. If the set of reachable states R does not contain unsafe states
from U , the system is safe. As simple as it sounds, a big problem is to determine the
reachable states R. In fact, we even know that the reachability problem, needed to ver-
ify safety properties, is in general cases undecidable [HKPV98]. There are certain special
cases where it is decidable, but the model of the hybrid systems is severely restricted there.
Regardless of this fact, HSolver includes an algorithm that terminates when a given system
is secure. For practically relevant problems, the algorithm efficiently terminates [RS07].
In simplest terms, their algorithm builds an abstraction of the actual system so that the
following holds: If the abstraction is safe, then the original system is safe. They abstract
the states of the system so that they no longer consist of a location and exact values of the
variables, but from a location and a hyperrectangle, called box, which represents subset of
the original state space of the variables. How the algorithm works in detail, can be read
in the same article.
As described in [HHWt97], one way to verification is, to expand the hybrid automatons
locations L by control locations LC . The locations of the new, expanded automaton are
L ∪ LC . This control locations are build in such way, that they are only reached if some-
thing bad or forbidden happens.
For example in the automaton of the water tank a control location could be that the tank
is oveflowing. A safety property would be something like h < 15. The created location,
we call it Overflowing, would have the invariant h ≥ 15, which determines that the new
forbidden location is only reached if the safety property is not fulfilled. The extended
automaton is shown in 5.1.
If now the reachable states R ⊆ (L ∪ LC)× V are calculated it can be checked whether the
safety property is fulfilled or not. It is fulfilled, if the reachable states do not include any
states that contain control locations lc ∈ LC . In other words, non of the forbidden control
locations should be reachable: R ∩ {(l, v) | l ∈ LC} = ∅. Sometimes the automaton even
has to be extended by control variables to check for some safety properties. In many times
this control variables are clocks, because it should often be checked if a system lasts too
long in some locations. In the water tank example a clock is already used to determine that
the pump needs 3s to connect. If this should be a safety property, a new control location
could be included that is entered when x is greater than 3.
Another way is to define states that are forbidden in the system, without adding new
locations. The way to do this, is to add a so called state assertion ϕ to the automaton.
The state assertion ϕ denotes a function, that assigns a safety condition (in the same form
as the invariant of a location) ϕ(l) to each location. This safety condition describes the

5 From SoPHY to HSolver 43

Figure 5.1: Water tank with forbidden location

On

ḣ = 1− 0.0295
√
h

ẋ = 0

h ≤ 9.5

Open

ḣ = −1.5069
√
h

ẋ = 1

h ≥ 0 ∧ x ≤ 3

Off

ḣ = −0.0295
√
h

ẋ = 0

h ≥ 1

Overflowing

ḣ = 0
ẋ = 0

h ≥ 15

h = 1

x = 0

h ≥ 7, h := h+ 0.5

Turn pump off

h
<

4

O
pe
n
va
lv
e

h
=

0 ∨
x

=
0, x

:=
0

Connect pum
p

h
≥

15 h
≥

15

h
≥

15

unsafe ranges for the variables. For example we could add the safety condition h ≥ 15 to
every location of the water tank and define ϕ like

ϕ(l) = h ≥ 15, for l ∈ {On,Off,Open}.

This has the same effect as adding the control state mentioned before. The state assertion
ϕ is false for a state (l, a) if the safety condition ϕ(l) is false, when every occurrence of the
variables xi ∈ X in ϕ(l) is replaced by the values ai of the state. It works the same way for
a true state assertion. If the unsafe states are defined like this, the system can be called
safe if for every reachable state of the automatons transition system, the state assertion
is false. This can again be realized by the intersection of the reachable states R and the

5 From SoPHY to HSolver 44

unsafe states SUnsafe = {(l, ϕ(l) | l ∈ L)}, that needs to be empty R ∩ SUnsafe = ∅. Both
versions can be realized with HSolver.

5.2 Translating SoPHY to HSolver

Here we focus on the conversion from SoPHY to HSolver. Before an algorithm can be
developed, it needs to be checked if it is at all possible to transform hybrid automata from
one system to the other. To figure this out we will compare the hybrid system models
that SoPHY and HSolver use and figure out how we can transform SoPHY into HSolver.
First we look at the syntax of HSolver. For that we consider the water tank example in
Listing 5.1, which was specified in HSolver.
The continuous variables are listed in brackets after the keyword VARIABLES. It is the same
with the locations for the keyword MODES. After the keyword STATESPACE, a lower and
upper limit is specified for each mode, for each variable in brackets. The keyword INITIAL

forwards a collection of constraints in which an initial condition can be specified for each
mode in braces. The structure of the constraints is later defined in Definition 5.1. After
the keyword FLOW, a list of constraints is assigned to each mode. These can contain the
variables and the i-th constraint can contain the ODE for the i-th variable. In this case,
x_d marks the derivation. The transitions are inserted after the keyword JUMP. There,
source and target location, separated by an arrow, are specified first and then constraints.
The keyword UNSAFE is used for the verification and therefore remains empty during the
translation. More detailed information can be found in [RDS] and [Rat].

Listing 5.1: Water tank in HSolver

1 VARIABLES [h, x]
2 MODES [On, Off , Open]
3 STATESPACE
4 On[[1, 9.5], [0, 0]]
5 Off[[1, 7.5], [0, 0]]
6 On[[0, 4], [0, 3]]
7 INITIAL
8 On{h=1/\x=0}
9 FLOW

10 On{h_d =1 -0.0295 * h^0.5 /\ h <= 9.5}{ x_d=0 /\ h <= 9.5}
11 Off{h_d = -0.0295 * h^0.5 /\ h >= 1}{ x_d=0 /\ h >= 1}
12 Open{h_d = -1.5069 * h^0.5 /\ h >= 0 /\ x <= 3}
13 {x_d=1 /\ h >= 0 /\ x <= 3}
14 JUMP
15 On ->Off{h >=7/\h’=h+0.5}
16 Off ->Open{h<4}
17 Open ->On{h=0\/x=0/\x’=0}
18 UNSAFE

5 From SoPHY to HSolver 45

5.2.1 Comparing the hybrid systems models

We have seen SoPHYs hybrid automata model in Section 2.4 and in the previous Section
the model of HSolver was outlined. This section will be dedicated to the comparison of the
two models. On that account we will consider six elements of a hybrid automata model
that we have in SoPHY:

• Continuous Variables,

• Discrete Locations,

• Initial state,

• Activities,

• Invariants and

• Transitions

For each element, we examine how we can transfer it to the HSolver model. Below we will
often use the constraint, that is defined in HSolver in the following way:

Definition 5.1 Constraint [Rat]
In HSolver a constraint can contain

• the quantifiers ∀ and ∃, the operators ∧, ∨ and =⇒ ,
• the predicates <,≤, >,≥ and =,
• the functions +,−, ∗,̂ , sin, cos, exp, asin, acos, atan and log,
• the variables and
• real-valued constants.

HSolvers constraints are more powerful than the conditions we defined for SoPHY. Every-
thing that can be modeled by a condition in SoPHY, can also be modeled by a HSolver
constraint. Since we want to transfer SoPHY to HSolver and not the other way around,
there is no issue.

Continuous Variables: The continuous variables in SoPHY exactly correspond to the
VARIABLES in HSolver.

5 From SoPHY to HSolver 46

Discrete Locations: Here it is the same as for the variables: The discrete locations
exactly correspond to the MODES in HSolver.

Initial state: In SoPHY we only have one initial state, HSolver can have an initial
constraint for each mode. So we only need to use just one mode and add the values of
SoPHYs initial state.

Activities: The ODEs that describe the activities in SoPHY can be described in HSolver
within FLOW. The ODEs for the evolution of the individual variables are formulated in the
list of constraints at the respective position.

Invariants: At first glance, we do not see a space to formulate invariants in HSolver.
But, in HSolvers FLOW it is not only possible to formulate the activities. Each element is a
constraint, that can also contain the first derivative of the corresponding variable. Thus,
the invariant that is defined in SoPHY can simply be added to every flow constraint by
connecting it with ∧.

Transitions: The transitions can be easily transferred to HSolvers JUMP, because they
share the same information, only in another form.

In HSolver, there is another set of information that is needed. It needs a state space for
every variable for each mode. This means that HSolver needs to know an upper and a
lower bound of the variables for every mode. Unfortunately SoPHY does not provide this
kind of information. But in some cases these bounds can be found out by a combination of
the initial values, the invariants, the guards and the resets. The method how this can be
done will be shown in the Algorithm in the next Section. In the cases where this method
is not working, the user could be asked to give some more information.
The next section provides pseudocode for an algorithm that transfers SoPHY to HSolver,
by solving the differences like we have stated here.

5.2.2 Pseudocode

The following algorithm translates SoPHY code into code that can be used by HSolver to
verify the specified hybrid system. The input to this algorithm are the definition of the
SoPHY definition part and the configuration of the SoPHY configuration part.

5 From SoPHY to HSolver 47

Procedure 1 Translate SoPHY to HSolver
Input: definition, configuration
Output: HSolver code
variables ← []
modes ← []
statespace ← []
initials ← []
flows ← []
jumps ← []
d⇐ definition
for Every element x in d.properties do
variables ← variables.add("x")

end for
for Every element s in d.states do
modes ← modes.add("s.name")
invariant ← s.range
flows ← flows.add("s.name" + "{invariant)
for Every element e in s.evolution do
e_d ← e where every x’ is replaced by x_d, where x is a variable
flows ← flows.add(/\e_d}")

end for
flows ← flows.add(})
for Every element e in s.events do
r ← e.result.property_values where every x: is replaced by x’, where x is a variable

jumps ← jumps.add("s.name" + "->" + "e.result.name" + "{e.condition /\[r]}")
end for

end for
for Every element s in d.states do
statespace ← statespace.add(s[)
for Every element x in variables do
min ← search in s."range" and in jumps that lead to s for the minimal value of x
max ← search in s."range" and in jumps that lead to s for the maximal value of x
statespace ← statespace.add([min,max])

end for
statespace ← statespace.add(])

end for
initial_values ← []
for Every element v in c.initial_values do
initial_values ← initial_values.add(name of the variable + "=v"))

end for
initials ← "c.initial_state" + "{All values in initial_values, connected by /\}"
print VARIABLES[variables, separated by commas]
print MODES[modes, separated by commas]
print STATESPACE + statespace, separated by linebreaks
print INITIAL + initials, separated by line breaks
print FLOW + flows, separated by line breaks
print JUMP + jumps, separated by line breaks
print UNSAFE

6 Conclusion and Future Work 48

6 Conclusion and Future Work

In the introduction we have discussed that the present work deals with three subjects:
hybrid systems, modeling languages and educational software (Figure 1.2). On the basis
of these subjects, let us show the contribution made in this thesis.
In the field of hybrid systems, the specification language SoPHY contributed to the simu-
lation of a certain class of hybrid systems, called hybrid automata. This language allows
to develop tools, based on SoPHY, that simulate hybrid automata.
With the introduction of SoPHY, a new specification language for this class of hybrid sys-
tems was developed as a contribution to the subject of modeling languages. To develop
the structure of this language, we considered the insides of scientific experiments, by iden-
tifying the characteristic parts of an experiments and modeled these into hybrid automata.
As a contribution to the third area, educational software, this thesis explores how scientific
experiments can be better integrated into self-regulated learning. SoPHY is the prepa-
ration for a software tool in this context. Our design approach for SoPHY is the use in
didactics, therefore several examples were used to elaborate in detail which properties can
be found in almost all scientific experiments. By reference to this data, SoPHY was de-
signed easy to readable and self-explanatory and determined that and how the experiments
can be modeled with hybrid systems.

This thesis is a first step onto a tool that can be used in the school education as well as for
the independent further education of the students at home. This tool is implemented in
another thesis parallel to this work on the basis of the developed language [Yör17]. There
are some points in this work that need to be discussed and examined in the future. In
dialogues with didactics in the processing phase of this thesis, it has become clear that
SoPHY is still to abstract to be used as the only input to such a tool.

In order to improve this fact, it would make sense to further simplify the syntax of SoPHY.
If possible, a meta-level above SoPHY should be placed closer to the intuitive description
of experiments. This could be achieved in finding a way to formulate an experiment by
describing the dependencies of the objects that are used within the experiment.
In order to increase the performance of SoPHY, a possibility could be created of how
to divide large systems into several smaller systems. This should be easy to implement
because, only the syntax of the language must be expanded from individual systems, on
lists of systems. The adaptation of the semantics and the investigation of the effects of
parallel simulated systems could mean a greater effort. As a last point, the possibility of

6 Conclusion and Future Work 49

verifying experiments could be integrated directly into SoPHY, so that no translation into
other languages is necessary. The verification of the experiments would provide teachers
with a possibility to check their modeling, as well as offer the students further learning
experiences.

7 Bibliography 50

7 Bibliography

[ABRW17] A. Angermann, M. Beuschel, M. Rau, and U. Wohlfarth.
MATLAB - Simulink - Stateflow: Grundlagen, Toolboxen, Beispiele. De
Gruyter Studium. De Gruyter, 2017.

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis
of hybrid systems. THEORETICAL COMPUTER SCIENCE, 138:3–34, 1995.

[AD94] Rajeev Alur and David L. Dill. A Theory of Timed Automata. Theor. Comput.
Sci., 126(2):183–235, apr 1994.

[AGH+00] Rajeev Alur, Radu Grosu, Yerang Hur, Vijay Kumar, and Insup Lee.
Modular Specification of Hybrid Systems in Charon, pages 6–19. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2000.

[BCL+05] Christopher Brooks, Adam Cataldo, Edward A. Lee, J. Liu, Xiaojun Liu,
Stephen Neuendorffer, and Haiyang Zheng. HyVisual: A Hybrid System Visual
Modeler. Technical Report UCB/ERL M05/24, EECS Department, University
of California, Berkeley, Jul 2005.

[BHR84] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A Theory of Communicating
Sequential Processes. J. ACM, 31(3):560–599, jun 1984.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The
MIT Press, 2008.

[Bun] Bundesministerium für Bildung und Forschung. qualifizierung digital.
https://www.qualifizierungdigital.de.

[Col81] L. Collatz. Differentialgleichungen: eine Einführung unter besonderer
Berücksichtigung der Anwendungen. Leitfäden der angewandten Mathematik
und Mechanik. Teubner, 1981.

7 Bibliography 51

[Cro06] Douglas Crockford. The application/json media type for javascript object no-
tation (json). 2006.

[DGS00] Akash Deshpande, Aleks Göllü, and Luigi Semenzato.
The SHIFT Programming Language and Run-time System for Dynamic
Networks of Hybrid Automata, pages 355–371. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2000.

[EGK11] C. Eck, H. Garcke, and P. Knabner. Mathematische Modellierung. Springer-
Lehrbuch. Springer Berlin Heidelberg, 2011.

[GNH13] Thomas Götz, Ulrike E. Nett, and Nathan C. Hall. Self-Regulated Learning.
In Nathan C. Hall and Thomas Goetz, editors, Emotion, Motivation, and
Self-Regulation : A Handbook for Teachers, pages 123–16. Emerald Group,
Bradford, 2013.

[Gre12] Michael D. Greenberg. Ordinary Differential Equations. Wiley, 2012.

[Grö77] Wolfgang Gröbner. Differentialgleichungen : 1. Gewöhnliche Differentialgleichungen.
Mathematik für Physiker. D. Laugwitz, P.Mittelstaedt, H.Rollnik, G.Süßmann,
1977.

[Grü08] Lars Grüne. Modellierung mit Differentialgleichungen - Vorlesungsskript. Uni-
versität Bayreuth, 2008.

[Hen] Martin Hennecke. Softwareentwicklung für den Mathematikunterricht.
https://www.uni-hildesheim.de/fb4/institute/imai/mitglieder/dr-martin-
hennecke/softwareentwicklung-fuer-den-mathematikunterricht-semu/.

[Hen96] Thomas A. Henzinger. The Theory of Hybrid Automata. pages 278–292. IEEE
Computer Society Press, 1996.

[HHWt97] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-toi. HyTech: A Model
Checker for Hybrid Systems. Software Tools for Technology Transfer, 1:460–
463, 1997.

[HJ90] H. Hansson and B. Jonsson. A Calculus for Communicating Systems with Time
and Probabilities. In [1990] Proceedings 11th Real-Time Systems Symposium,
pages 278–287, Dec 1990.

[HKPV98] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What’s
decidable about hybrid automata? Journal of Computer and System Sciences,

7 Bibliography 52

57(1):94 – 124, 1998.

[HMP+] Marit Hoch, Monique Meier, Felix Papsch, Lara Yörük, and Orcun Yörük.
DiVoX. Master Project, University of Kassel.

[Hoh02] Markus Hohenwarter. GeoGebra – ein Softwaresystem für dynamische Geome-
trie und Algebra der Ebene. Master thesis, 2002.

[Hoh06] Markus Hohenwarter. GeoGebra – didaktische Materialien und Anwendungen
für den Mathematikunterricht. PhD Thesis, 2006.

[Int] International GeoGebra Institute. GeoGebra. https://www.geogebra.org.

[Kle08] Wolfgang Kleier. Hybride Systems - Vortrag 2008. http://num.math.uni-
bayreuth.de/de/teaching/archive/ss_2008/01069/Wolfgang_Kleier_Vortrag.pdf,
2008.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. Int.
Journal on Software Tools for Technology Transfer, 1(134–152), 1997.

[LTS08] John Lygeros, Claire Tomlin, and Shankar Sastry.
Hybrid Systems: Modeling, Analysis and Control. December 2008.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 94 of Lecture
Notes in Computer Science. Springer-Verlag, New York, NY, 1980.

[MPW92] R. Milner, J. Parrow, and J. Walker. A Calculus of Mobile Processes, I and II.
Information and Computation, 100(1):1–40,41–77, 1992.

[Pla10] Andre Platzer. Logical Analysis of Hybrid Systems: Proving Theorems
for Complex Dynamics. Springer Publishing Company, Incorporated, 1st edi-
tion, 2010.

[Rat] Stefan Ratschan. RSolver User Manual.
http://rsolver.sourceforge.net/documentation/manual.pdf.

[RDS] Stefan Ratschan, Tomáš Dzetkulič, and Zhikun She. HSolver User Manual.
http://hsolver.sourceforge.net/documentation/manual.pdf.

[RS07] Stefan Ratschan and Zhikun She. Safety Verification of Hybrid Systems by
Constraint Propagation-based Abstraction Refinement. ACM Trans. Embed.
Comput. Syst., 6(1), feb 2007.

7 Bibliography 53

[Sta16] Dr Guy-Bart Stan. Modelling in Biology. Imperial College London, 2016.

[Yör17] Orcun Yörük. Ein Simulationstool für Hybride Systeme. Masterthesis, Uni-
versity of Kassel, 2017.

	Abstract
	Declaration
	List of Figures
	Listings
	Introduction
	Motivation
	Task and Outline
	Related Work
	Work on hybrid systems
	Work on modeling languages
	Work on educational software

	Preliminaries
	Modeling experiments
	Transition Systems
	Hybrid Systems
	Hybrid Automata
	Semantics
	Satisfaction Relation for Invariants and Guards
	Transition System Semantics of a Hybrid Automaton

	Ordinary Differential Equations
	Definition
	Existence and Uniqueness of solutions

	The syntax and semantics of SoPHY
	Challenges
	Syntax
	Definition part
	Configuration part

	Semantics: From SoPHY to hybrid automata
	Continuous Variables
	Locations
	Invariants and Continuous Evolution
	Transitions
	Initial States

	Using SoPHY: Scientific examples
	Constrained Pendulum HSBayreuth
	Predator-Prey Relationship

	From SoPHY to HSolver
	Reasons to transfer
	Verification
	Safety Verification of Hybrid Systems

	Translating SoPHY to HSolver
	Comparing the hybrid systems models
	Pseudocode

	Conclusion and Future Work
	Bibliography

