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ABSTRACT

Optical surface topography measurements sometimes suffer from systematic errors. In order to predict such
deviations, modeling of optical profilers is a substantial part of the European project TracOptic (Traceable
Optics). Within the framework of this project, we recently developed the UFO (Universal Fourier Optics)
model, which simulates virtual CSI measurements of surface topographies that fulfill the requirements of the
scalar Kirchhoff approximation. The model enables a fast computation of ‘measured’ surface topographies as
it is based on discrete Fourier transforms. It treats the surface under investigation as a two-dimensional phase
object assuming a linear dependence of the interference phase on surface height and axial spatial frequency. The
scattered light field is transferred to the Fourier domain and multiplied by a partial two-dimensional transfer
function (TF) representing a horizontal cross section of the three-dimensional TF at a certain axial spatial
frequency or evaluation wavelength, respectively. The TF includes parameters of the interference microscope
and the reference field distribution. Inverse Fourier transform enables the reconstruction of the phase object. The
coherence peak position of an interference signal results from numerical differentiation with respect to the axial
spatial frequency and is generally used to overcome the 2π ambiguity of the phase profile. Parameters affecting
final results of reconstructed surface topographies are the central wavelength and the spectral bandwidth of the
illuminating light as well as the numerical aperture of the objective lens and the chosen evaluation wavelength.
We discuss results of the UFO model with respect to the prediction of systematic deviations of measured surface
topographies.
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1. INTRODUCTION

Coherence scanning interferometry (CSI) is a widely used optical topography measurement technique due to
its outstanding axial resolution. Common configurations of CSI instruments are Michelson, Mirau and Linnik
interference microscopes.1 Light from the spatially extended source is split into two separate arms and focused
to the measurement object and the reference mirror, respectively. The reflected light is then recombined such
that the object and reference waves interfere and an interference pattern is recorded in the image plane of the
microscope. In CSI systems typically either the measurement object or the reference mirror is scanned along
the optical axis through the focus of the microscope objective. The optical path length difference of the two
interferometer arms determines the phase of the interference signals that are recorded at each pixel of the camera.
While temporally perfectly coherent light and a single angle of incidence causes a sinusoidal interference signal,
a limited coherence length and a broad range of incidence angles leads to an envelope, which shows its maximum
when both, the measurement object and the reference mirror are in focus of the objective lenses and the optical
path lengths of the two interferometer arms are balanced. The coherence length and the depth of field depending
on the numerical aperture (NA) of the system affect the width of signal envelope, as it is discussed in detail by
Abdulhalim.2 After signal acquisition the envelope position is typically estimated for each pixel separately to
reconstruct the 3D topography. Today’s CSI systems commonly use extended spatially incoherent light emitted
by LEDs in a Köhler illumination arrangement.
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In addition to the envelope, the phase of CSI signals provides information that enables an improved measure-
ment accuracy. However, the phase values suffer f rom t he 2π-ambiguity and t hus n eed additional f ringe order
information or phase unwrapping procedures to recover the correct height data.

Even though CSI is considered to be one of the most powerful optical topography measurement methods it
has to deal with systematic errors and limitations. Since conventional microscopic imaging is used to obtain
interference patterns, the diffraction l imit f ound by Ernst Abbe applies to the interferometric imaging process,
too. In addition, systematic deviations like the batwing effect3–6 or slope e ffects7 that mainly affect the envelope
position can lead to erroneous height values. To achieve the best possible measurement accuracy, these effects
have to be kept in mind when evaluating CSI image stacks.

To fully understand these limitations and to predict the surface transfer characteristics of an optical system,
the transfer function (TF) of the system has proven to be essential. In order to model the 3D image formation
process of CSI systems, the three-dimensional transfer function (3D TF) has to be taken into account.

The surface of the object can be introduced as a thin foil, which is mathematically represented by a set of
Dirac delta functions at certain height values.8 The Fourier transform of the foil representation9–13 of a surface
with respect to the height (z) coordinate results in the so-called phase object representation of the electric field
on the surface, where the term ’phase object’ means an object that modulates the phase of an incident wave.8,14

Thus, the phase object represents a fully equivalent approach to obtain the scattered light field and in contrast
to the foil model only a 2D Fourier transform with respect to x and y coordinates is needed. A simulated image
stack then follows from an inverse 3D Fourier transform of the product of 2D Fourier transformed phase objects
for certain fringe frequencies and the 3D TF in the spatial frequency domain. On the other hand, if interference
signals can be analyzed at a single fringe frequency. In this case one or two inverse 2D Fourier transforms of
the product in the 3D spatial frequency domain enable the reconstruction of the input surface. This kind of
CSI modeling is what we call the ’Universal Fourier Optics’ model (UFO). If a certain average wavelength called
equivalent wavelength, which corresponds to the most dominant interference fringe frequency, is used and the
2D Fourier transform of the corresponding phase object is low-pass filtered in the lateral spatial frequency plane
by the MTF (modulation transfer function), which is well-known from 2D imaging, the results correspond to the
elementary Fourier optics (EFO) model introduced by de Groot et al.15 The EFO model uses the fact that under
certain conditions an integration of the 3D TF agrees with the MTF defined in the 2D spatial frequency domain.
However, the EFO model lacks accuracy at high NA values and if the envelope of the resulting interference signals
is to be taken into account. The UFO model is based on previous investigations published in recent years.16–19

In addition to a fast computation of simulated CSI measurement results, analysing the 3D TF and the
interference signals in the spatial frequency domain gives insight into the signal formation process and helps
choosing most appropriate parameters for signal analysis. This is especially important when phase analysis is
performed since this can be done for different frequency components of the interference s ignal. These frequency
components carry information from different s patial f requencies o f t he o bject’s surface,16, 2 0 s o t hat analyzing
the interference signal at an optimum fringe frequency is quite essential in order to achieve minimum deviation
between the surface topography of the measuring object and the topography reconstructed by the CSI instrument.

2. THEORY

The theoretical treatment starts with CSI signal analysis in order to identify the minimum information that is
needed in order to reconstruct a surface profile. Based on these results the second subsection introduces the way
how the UFO model provides this information. The final subsection gives insight into the optical 3D TF.

2.1 Extended signal analysis in coherence scanning interferometry

To introduce the concept of extended signal analysis, Figures 1 (a) to (c) show simulated CSI signals for different
positions along the z-axis representing the height of an object point. Note that at the position z = 0 the interfer-
ometer is balanced and thus the corresponding signal in Figure 1 (b) shows axial symmetry. The lower subfigures
display the spectral magnitude and the phase spectra of the corresponding z-dependent signals including the
individual sampling points along the fringe frequency fz axis. Obviously, the spectral magnitude is independent
of the height position of a signal. The density of sampling points in the frequency domain depends reciprocally

Author copy. Copyright 2023, Society of Photo-Optical Instrumentation Engineers (SPIE), see last page for details.



Uni-
Kas

se
l, F

B16
, F

G M
es

ste
ch

nik

on the total scanning range of the depth scan along the z-axis. Comparing the phase spectra for different z-axis
positions of the signal shows two characteristic properties. First, the absolute value of the phase for a certain
fringe frequency depends linearly on the z-position of the signal. Unfortunately, due to the 2π-ambiguity the
measured phase values are restricted to an interval of 2π in practice. However, if in addition the slope of the
phase along the fringe frequency is considered, the 2π-ambiguity can be overcome enabling an unambiguous
profile reconstruction. This is the basic idea of the FDA algorithm introduced 30 years ago by de Groot et
al.21,22 However, the envelope position results from the slope of the phase with respect to the fringe frequency.
According to Figure 1 this slope shows a linear behaviour. Hence, an unambiguous profile reconstruction can be
achieved by phase analysis at two different discrete phase values only. If the phase gradient is analyzed for two
neighboring phase values corresponding to slightly different fringe frequencies separated by ∆fz, this leads to a
total number of nmax − nmin − 1 different envelope profiles, where nmax and nmin are defined in Figure 1 (b).
Of course, the total number of reconstructed individual phase profiles is then nmax − nmin. Each phase profile
reconstruction is based on two 2D Fourier transforms of the field modulated by a phase object.

UF (x, y) = UF0 e
−iqzhph(x,y) (1)

represents the filtered complex-valued electric field of amplitude UF0 in the image plane (xy-plane) related to
the angular fringe frequency qz = 2πfz. The filter characteristics depend on the properties of the optical imaging
system as described in detail in Sec. 2.3. To reconstruct an envelope profile based on two phase profiles of
neighboring phase values separated by ∆fz a total number of four individual 2D Fourier transforms is needed.

𝑛max𝑛min

Lowest frequency
corresponding to longest evaluation wavelength

Fringe frequency fz (µm-1) Fringe frequency fz (µm-1) Fringe frequency fz (µm-1)
(a) (b) (c)

Figure 1. Simulated CSI signals (upper diagrams), corresponding spectral magnitudes and spectral phase values (lower
diagrams): (a) signal position at z = −5µm, (b) signal position at z = 0µm, (c) signal position at z = +5µm.

The phase
φ(x, y) = qz hph(x, y). (2)

of a measured phase object depends linearly on the angular fringe frequency and the reconstructed surface height
function hph(x, y), which is a function of the coordinates x and y in the image plane. Once the phase function
φ(x, y) is known the surface height function also named phase profile can be reconstructed via

hph(x, y) = φ(x, y)/qz. (3)

If a second phase function φ∆(x, y) is calculated for the angular fringe frequency qz + ∆qz the corresponding
envelope profile results in

henv(x, y) = (φ∆(x, y)− φ(x, y))/∆qz. (4)

Using the envelope information for fringe order determination results in the reconstructed height function:

hrec(x, y) = round

{
φ∆(x, y)− φ(x, y)

∆qz λeval/2

}
λeval

2
+

φ(x, y)λeval

4π
, (5)
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which relates to a certain angular fringe frequency

qz = qz,eval =
4π

λeval
. (6)

2.2 Simulation of interference signals

In order to simulate a phase function φ(x, y) that considers the properties of the optical system, first the 2D
Fourier transform of the field U(x, y, qz) related to the phase object needs to be calculated for the angular fringe
frequency qz,eval.

This results in

Ũ(qx, qy, qz = qz,eval) =
U0

A

+∞∫∫
−∞

A(x, y) e−iqz,evalh(x,y) e−i(qxx+qyy)dxdy, (7)

where A is the size of the illuminated area A(x, y) and U0 the field amplitude. According to the Kirchhoff or
physical optics approximation qx, qy, qz are the coordinates in the 3D spatial frequency domain called q-space
throughout this paper. Note that Eq. (7) can be directly derived from the Kirchhoff integral of the scattered
field. However, here the inclination factor known from the Kirchhoff approximation14,23,24 is neglected, since in
contrast to Kirchhoff scattering we assume a microscope with incoherent Koehler illumination and include all
inclination factors in the 3D transfer function introduced below. If the electric field extends over an area A on
the surface, which is large enough, the equivalent convolution with the 2D Fourier transform of A(x, y) does not
affect the final result. Hence,

Ũ(qx, qy, qz = qz,eval) ≈ U0

+∞∫∫
−∞

e−iqz,evalh(x,y) e−i(qxx+qyy)dxdy (8)

equals a 2D Fourier transform of the field in the object plane. The vector q in the spatial frequency domain
comprises transverse spatial frequencies qx and qy and the axial spatial frequency qz, which equals the angular
fringe frequency. q represents the difference between the wave vector ks of the scattered light field and the wave
vector kin of the incident wave:

q = ks − kin = k0

 sin(θs) cos(ϕs)− sin(θin) cos(ϕin)

sin(θs) sin(ϕs)− sin(θin) sin(ϕin)

cos(θin) + cos(θs)

 . (9)

q is defined in terms of the wavenumber k0 = 2π/λ0 depending on the illumination wavelength λ0 and the
polar and azimuth angles θin and ϕin of the incident wave as well as the angles θs and ϕs of the scattered wave.18

Note that Eq. (9) represents a generalized geometrical arrangement compared to the conventional Kirchhoff
scattering geometry24,25 since in a microscope a cone of incident wave vectors needs to be considered. The
function Ũ(qx, qy, qz = qz,eval) is then multiplied by the 2D cross section of the 3D transfer function H̃(qx, qy, qz)
introduced below corresponding to the axial spatial frequency qz = qz,eval. This results in the complex function

∆Ĩ(qx, qy, qz = qz,eval) = Ũ(qx, qy, qz = qz,eval) H̃(qx, qy, qz = qz,eval). (10)

Inverse 2D Fourier transform of ∆Ĩ(qx, qy, qz = qz,eval) results in a complex interference intensity function

∆I(x, y, qz = qz,eval) =
1

4π2

+∞∫∫
−∞

∆Ĩ(qx, qy, qz = qz,eval) e
i(qxx+qyy)dqxdqy. (11)
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This function represents the Fourier transform of the unbiased interference image stack with respect to the z-
coordinate for a given angular spatial frequency qz,eval. The required phase function φ(x, y) equals the phase of
∆I(x, y, qz = qz,eval), i.e.

φ(x, y, qz = qz,eval) = arctan

(
Im{∆I(x, y, qz = qz,eval)}
Re{∆I(x, y, qz = qz,eval)}

)
. (12)

From this phase function the corresponding phase profile for the angular fringe frequency qz,eval will be recon-
structed. Repeating the procedure for the fringe frequency qz,eval +∆qz results in a second phase profile. From
these two phase profiles according to Eq. (4) an envelope profile can be derived. Of course, following this
procedure for all discrete angular spatial frequencies appearing in the resulting discrete Fourier transform of a
measured or simulated image stack with respect to the z-coordinate enables multiple reconstructions of phase
and envelope profiles as mentioned before. Furthermore, Eq. (11) leads to a single fringe frequency component
of an image stack. Hence, superposition of simulated sinusoidal interference signals for the whole set of fringe
frequencies yields a simulated 3D interference image stack.

2.3 Three-dimensional transfer functions

The concept of 3D transfer functions is introduced in Figure 2. Figure 2 (a) shows a set of incident and scattered
wave vectors ki and ks, where the angle θmax = arcsin (NA) limits the angles of incidence and the scattering
angles due to the numerical aperture NA of the system. If the difference vectors q resulting from all possible
combinations of ki and ks are plotted in a q-coordinate system the Ewald limiting sphere14 according to Figure
2 (b) results, which represents the typical umbrella shape. An analytical calculation of the optical 3D transfer
function based on the correlation of two spherical caps belonging to the ensemble of contributing incident and
scattered wave vectors is introduced elsewhere.17 Since uniform intensity is assumed in the entrance and exit
pupil planes, integration of this 3D TF along the qz axis results in the well-known MTF of a diffraction limited
imaging system. However, for piecewise continuous diffracting or tilted specular surfaces the intensity distribution
in the exit pupil plane is no longer uniform and thus a slightly different 3D transfer function occurs.18,19

H̃(qρ, qz, k0) =
qz
2k0

for q ∈ area1,

H̃(qρ, qz, k0) =

1− 2

π
arccos

 |q|
(
qz − k0

√
1−NA2

)
qρ

√
4k20 − |q|2

 qz
2k0

for q ∈ area2,

H̃(qρ, qz, k0) = 0 elsewhere, (13)

with qρ =
√
q2x + q2y representing the distance from the optical axis. Note that the factor qz/2k0 included in the

3D transfer function for both areas (1 and 2) equals the inclination factor derived from the Kirchhoff integral
for plane wave scattering.24 A 2D cross section in the qxqz-plane of a 3D transfer function for an NA of 0.9 and
monochromatic light of 500 nm wavelength is plotted in Figure 2 (c). For a certain fringe frequency qz,eval only
the corresponding cross section of the 3D TF with respect to the qxqy-plane needs to be considered in Eq. (10).
For example, the maximum lateral spatial frequency that can be resolved by an optical system corresponds to the
qz-position of maximum extend of the 3D transfer function along the qx-axis, i.e. the minimum value of qz,eval,
where the 3D TF is different from zero.19 The 3D TF introduced so far describes the transfer characteristics of
interference microscopes under monochromatic illumination given by the wavenumber k0 = 2π/λ0 and the central
wavelength λ0. However, CSI instruments commonly use broadband light sources such as light emitting diodes
(LEDs). To take this into account, monochromatic 3D transfer functions must be weighted according to the
wavenumber spectrum of the light source, the spectral sensititvity of the camera and the spectral transmittivity
of the optical imaging system. Therefore, the polychromatic 3D TF results in

H̃(q) =

∞∫
0

S(k0) H̃(q, k0) dk0, (14)

Author copy. Copyright 2023, Society of Photo-Optical Instrumentation Engineers (SPIE), see last page for details.



Uni-
Kas

se
l, F

B16
, F

G M
es

ste
ch

nik
𝑘𝑧

𝑘𝑥𝐤in

𝐤𝐬

θmax

θmax

2𝑘0
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(a) (b) (c)

Figure 2. (a) Ewald sphere of an optical microscope generated by wavevectors kin of incident light and ks of scattered
light, where the maximum angle θmax is due to the NA of the system, (b) construction of the Ewald limiting sphere
defining the q-space, (c) two-dimensional cross section in the qxqz-plane of the monochromatic 3D transfer function of an
interference microscope of NA = 0.9 for the wavelength λ0 = 500 nm.

where S(k0) equals the overall spectral distribution. With respect to the transfer function H̃(q, k0) it should be
noticed that all Cartesian axes in q-space scale with the wavenumber k0. As a consequence, the ’wings’ of the
transfer function at high qx and low qz-values will be significantly shifted as the wavenumber changes and, as a
consequence, the 3D TF will be blurred.18 For the simulation results shown below we use Gaussian distributed
wavenumbers according to spectral distribution:

S(k) =
1√
πσk

e−(k−k0)
2/σ2

k , (15)

with the central wavenumber k0 and the spectral full width at half maximum bandwidth

FWHM ≈ 4π
√
ln 2σk/k

2
0. (16)

According to Figure 2 (b) specularly reflected light contributes to the 3D spatial frequency representation at

(a) (b)

Figure 3. Spectra of simulated CSI signals appearing at a mirror-like object (a) for a broad spectral bandwidth (FWHM 
= 100 nm) of the light emitted by the light source and a low NA system (NA = 0.1) resulting in a high depth of field,
(b) for a high NA system (NA = 0.9) resulting in a low depth of field and b oth, nearly monochromatic l ight a s well as 
broad bandwidth light (FWHM = 100 nm).

qx = 0, qy = 0. Hence, H̃ (qx = 0, qy = 0, qz) is related to the transfer characteristics of a plane mirror depending 
on the fringe frequency fz = qz/2π. Figure 3 (a) shows such a fringe frequency distribution for an imaging system 
of low NA = 0.1. The blue Gaussian curve represents a Gaussian spectral distribution with FWHM = 100 nm. 
The red spectral peak belongs to the rather long depth of field related to a long sinusoidal interference signal
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of the center wavelength λ0 = 570 nm. The spectral bandwidth of the light source dominates the spectral
bandwidth of the interference signal. A different situation occurs for a system of high NA as it is shown in
Figure 3 (b) for NA = 0.9. In this case, even for a narrow bandwidth of 1 nm a broad spectral distribution
results, that follows the well-known ramp shape26,27 in accordance with the 3D transfer function given in Eq.
(13). For a larger FWHM of 100 nm the spectral distribution is broadened and the flanks are rounded due to the
Gaussian wavenumber distribution, but still the spectral contributions due to the limited depth of field dominate
and in the region 2µm−1 < fz < 3µm−1 the ramp shape can be recognized.

(a)

(b)

(c) (d)

Figure 4. (a) Interference signals in the xz-plane related to a single rectangular plateau of 20 µm width and 140 nm height
for a CSI instrument of NA = 0.3, λ0 = 570 nm and FWHM = 80 nm, (b) and (c) reconstructed height profiles depending
on the angular fringe frequency qz using either phase (b, Eq. (3)) or envelope analysis (c, Eq. (4)), (d) reconstructed

surface profiles for q z,eval= 21.5385 µm−1.

3. SIMULATION RESULTS

A further significant reduction of the computational effort can be achieved, if the input surface h(x, y) is transla-
tional invariant with respect to the y coordinate, i.e. h(x, y) = h(x). In this case qy = 0 in Eq. (9) and only the
qxqz-plane needs to be considered for the scattered light field. Consequently, according to E q. (10) only the 2D
cross section H(qx, qz) of the 3D transfer function becomes relevant. Hence, the simulation of a phase profile for
a certain angular fringe frequency qz,eval requires only two one-dimensional fast Fourier transforms. To simulate
an envelope profile twice the computational effort is needed as mentioned above.

Figure 4 (a) shows interference signals in the xz-plane related to a single rectangular plateau of 20 µm width
and 140 nm height for a CSI instrument of NA = 0.3, λ0 = 570 nm and FWHM = 80 nm. Figures 4 (b) and (c)
display reconstructed height profiles for d ifferent angular fr inge frequencies qz us ing ei ther phase (Figure 4 (b),

Eq. (3)) or envelope analysis (Figure 4 (c), Eq. (4)). For qz < 20 µm−1 the phase profiles a re b lurred a t the
edges, whereas the envelope profiles show strong batwings for certain qz-values as it is shown in Figure 4 (d) for

qz,eval = 21.5385 µm−1. Due to the redundancy of the profiles evaluated at d ifferent fr inge fr equencies, median
filtering c an b e applied t o t he c olumns o f F igure 4 ( c) r esulting i n t he fi ltered envelope pr ofile (bl ack cur ve in
Figure 4 (d)), where the batwings disappear.

In Figure 5 reconstructed sinusoidal profiles o f 3 .6 µm p eriod a nd 2 00 nm amplitude a ssuming a C SI in-
strument of NA = 0.55, λ0 = 570 nm and FWHM = 100 nm are shown. The profiles o btained f or different
evaluation wavelength again exhibit the strong dependence on qz,eval = 4π/λeval. While the red curves repre-
senting the unwrapped phase profiles are less affected, the envelope profiles show the typical slope effe ct,7which
leads to phase jumps in Figures 5 (a) and (d) if the fringe order of the phase profile (black curves) i s obtained
from the envelope profile. The best reconstruction is achieved for the phase profile according to Figure 5 (c) for
an evaluation wavelength of 613 nm.

Figure 6 depicts reconstructed sinusoidal profiles for an input sinusoidal surface of 0.3 µm period and 30 nm 
amplitude simulated for a CSI instrument of NA = 0.9, λ0 = 450 nm and FWHM = 80 nm. Single profiles for the
three different values qz,eval = 27.5, 20 and 16 µm−1 marked by the dashed red lines in Figure 6 are plotted in 
Figure 7. Even though the input profile is no longer resolved in Figure 7 (a) for λeval = 457 nm, the profile is
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eval 535nm = eval 571nm =

eval 613nm = eval 661nm =

(a) (b)

(c) (d)

Figure 5. Reconstructed sinusoidal profiles of 3.6 µm period and 200 nm amplitude assuming a CSI instrument of NA
= 0.55, λ0 = 570 nm and FWHM = 100 nm, the profiles are obtained for evaluation wavelengths λeval of 535 nm (a), 571
nm (b), 613 nm (c) and 661 nm (d).

(a) (b)

Figure 6. Reconstructed sinusoidal profiles for an input surface of 0.3 µm period and 30 nm amplitude simulated for a CSI 
instrument of NA = 0.9, λ0 = 450 nm and FWHM = 80 nm, (a) phase profiles depending on the angular fringe frequency 
qz , (b) envelope profiles depending on the angular f ringe f requency qz .

laterally resolved in Figures 7 (b) and (c) for significantly longer evaluation wavelengths of λ eval =  628 nm and 
785 nm, respectively. However, in Figure 7 (b) the envelope profile i s inverted, what can be seen also in Figure 
6 (b), whereas the sign of the envelope profile i s c orrect i n F igure 7  ( c). I n b oth c ases, F igures 7  ( b) and (c), 
the amplitudes of the reconstructed phase profiles a re much t oo s mall. These effects we re al ready ob served in 
experimental results and stem from the limited lateral resolution of the instrument.20, 28

4. CONCLUSION

In this contribution we introduce a Universal Fourier Optics (UFO) model that provides fast simulations of CSI 
measurement results and prediction of systematic measurement errors. The model holds under the assumptions
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eval 628nm =

inverted profile

eval 457nm =
eval 785nm =

(a) (b) (c)

Figure 7. Reconstructed sinusoidal profiles according to Figure 6 for the evaluation wavelengths λeval = 457 nm (a), 628
nm (b) and 785 nm (c).

of the Kirchhoff or physical optics approximation and multiplies the Fourier transformed light field on the surface
of a phase object by the corresponding cross-section of the 3D transfer function, which is calculated analytically.

Due to its computational efficiency the UFO model allows not only the reconstruction of phase and envelope
profiles for single, preselected fringe frequencies. If simulations are performed for different fringe frequencies
following the spectral distribution of incident light and considering the spectral broadening due to the numerical
aperture of the CSI instrument the model provides a full CSI interference image stack after a few seconds runtime
of a Matlab coded program on an Intel Core i7-9700K CPU. From such simulations most suitable parameters
for surface profile reconstruction can be obtained in order to reduce sytematic deviations between measured and
input profiles.
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