
Master Thesis

On the Undecidability of the Output
Reachability Problem for Transformer

Sequence Classifiers

Submitted in partial fulfillment of the requirements
for the degree of

Master of Science

at the
Theoretical Computer Science / Formal Methods Group

Eric Alsmann

First Examiner : Prof. Dr. Martin Lange
Second Examiner : Prof. Dr. Bernhard Sick
Supervisor : Marco Sälzer, M.Sc.

Department of Electrical Engineering and Computer Science
University of Kassel



Abstract

Transformer models have revolutionised natural language processing, achieving remark-
able performance in a variety of tasks. However, as they become increasingly integral to
critical applications, ensuring their reliability and trustworthiness is becoming increas-
ingly important. This paper addresses the challenging problem of verifying transformer
models. We establish the undecidability of the output reachability problem for trans-
former sequence classifiers, highlighting the complexities arising from their massive pa-
rameter counts and complex structures. We also show that a restricted version of this
problem is NP-complete, and discuss another decidability result for models with limited
precision.

2



Declaration

I confirm that the submitted thesis is original work and was written by me without
further assistance.

Appropriate credit has been given where reference has been made to the work of others.
The thesis was not examined before, nor has it been published. The submitted electronic
version of the thesis matches the printed version.

(Eric Alsmann)

3



Contents

1 Introduction 5

2 Preliminaries 7
2.1 Mathematical Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Finite Sample Expressivity . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Word Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Positional Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.3 Self-Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.4 Encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.5 Sequence Classification . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Verification Problems for Transformer Models 14

4 Undecidability of TransReach for Transformer Sequence Classifiers 16
4.1 Overview of the Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Undecidability Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.1 Word Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.2 Word Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.3 Positional Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.4 Encoder 1: Aggregating Neighborhood Information . . . . . . . . . 28
4.2.5 Encoder 1: Validate Encoding . . . . . . . . . . . . . . . . . . . . . 30
4.2.6 Encoder 2: Enumerating the Tiles . . . . . . . . . . . . . . . . . . 32
4.2.7 Encoder 3: Tile Matching . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.8 Final Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.9 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Bounded Output Reachability . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 TransReach for Transformers with Limited Precision 41
5.1 Limited Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Capturing the Behaviour of Self-Attention . . . . . . . . . . . . . . . . . . 43
5.3 Discussion of Further Steps . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Conclusion 47

4



1 Introduction

In recent years, the field of natural language processing (NLP) has seen significant break-
throughs with the introduction of transformer models. Transformer models rely heavily
on the architecture developed by Vaswani et al. in 2017 [VSP+17]. In the short time
since its introduction, large language models (LLMs) based on this architecture have
significantly advanced the state of the art in several NLP tasks, including machine trans-
lation, sentiment analysis, question answering, and speech generation. These models
have shown exceptional ability to capture linguistic patterns and understand natural
language. The main reasons for the success of transformer models can be attributed to
their ability to effectively model long-range dependencies within sequences, overcoming
previous limitations of recurrent neural networks (RNNs) and similar models. By using
a self-attention mechanism, transformer models are able to capture the global context
and cross-references between all elements in a sequence simultaneously. This enables the
model to efficiently process input sequences of any length, resulting in superior perfor-
mance to previous models.

While transformer models have achieved unprecedented performance in a wide range of
NLP applications, their increasing use in real-world scenarios requires verification and
validation techniques. As these models are increasingly relied upon for critical decision-
making tasks such as question answering, autonomous systems, medical diagnosis, image
generation and financial forecasting, the need to ensure their reliability, robustness and
trustworthiness becomes particularly important. The risks of unverified transformer mod-
els, or models trained on unverified data, are many. They range from biased decision
making and ethical dilemmas to potential security vulnerabilities. Undetected biases in
the training data can propagate through the model, leading to discriminatory behaviour.
Adversarial attacks can exploit weaknesses in the model’s decision boundary, resulting
in incorrect or malicious outputs. This is particularly important in tasks such as hate
speech detection or fake news detection, where models need to be robust against the use
of synonyms or pertubations.

The verification of transformer models is a particularly big challenge. The reason for this
is in particular the massive number of parameters that make up these models. Param-
eter numbers of several trillion are not uncommon. Furthermore, the complex internal
structure makes formal verification of the models difficult. In principle, the models are

5



1 Introduction

built from two structures. One is the self-attention mechanism and the other is neural
networks. Verification of neural networks is already known to be NP-hard. Verification
of the self-attention mechanism presents us with even greater challenges, because of the
cross-position dependencies and internal calculations based on non-rational functions and
the scalar product.

Aim and Structure of This Thesis

This paper deals specifically with transformer models for sequence classification. Se-
quence classification means that an input sentence is classified. These models are used
in various areas such as fake news and hate speech detection or the detection of fake
product reviews. After the necessary mathematical foundations have been defined, the
thesis first deals with the question of which verification problems are interesting in re-
lation to this model. Then, the undecidability of the output reachability problem for
transformer sequence classifiers is shown. In particular, it is discussed which mechanisms
of the transformer cause the undecidability and thus also make the verification of such
models so difficult. Subsequently, it is shown that if the length of the input is restricted,
the problem becomes NP-complete. In the last chapter, transformer sequence classifiers
that work with limited precision are considered. It is discussed how limited precision
affects the power of the transformer and a first approach for a decidability proof of the
output reachability problem for these models is given.

Related Work

The formal analysis of transformer models began with Hsieh et al. [HCJ+19] who exper-
imentally investigated the robustness of transformers to small input pertubations. Fur-
thermore, they did the first formal analysis on how sensitive the self attention mechanism
is to small changes in the input. Perez et al. [PBM21] showed that the whole sequence-
to-sequence transformer model is turing-complete, which was the first characterisation of
transformers in terms of their computational power. They also proposed the first general
formalisation of the transformer model, abstracting away the specific choice of functions
and parameters and therefore, provided a mathematical framework to work with when
analysing transformer models. Further research [CCP23] [HAF22] [MS23b] [MS23a] has
been dealing with analysing the expressiveness of sequence classifiction transformers with
arbitrary as well as limited precision with respect to circuit complexity and logics. The
only notable works regarding the verification of transformers are from Shi et al. [SZC+19]
and Bonaert et al. [BDBV21] who provided approximative algorithms for ensuring a
special kind of adversarial robustness properties using well known techniques from the
verification of neural networks like Interval Bound Propagation and Zonotopes.

6



2 Preliminaries

This chapter introduces the mathematical prerequisites needed for the following chapters.
We introduce neural networks and give a detailed introduction into the transformer
model.

2.1 Mathematical Notations

Big bold letters like A,B indicate matrices and small bold symbols indicate vectors like
v,w. For some matrix A ∈ Kn×m we denote by (a1, . . . ,am) the ordered set of column
vectors, all from Kn. Scalars are denoted by small normal symbols like x, y. Respectively
we define by (a1, . . . , an) the ordered set of entries in some vector a. We define [n] =

{1, . . . , n} and [n]0 = {0, . . . , n}. Sometimes we arrange vectors in groups, for example to
write the vector which consists of the entries of vector a and a additional value x we write
Ja, xK = (a1, . . . , an, x)T . Furthermore, for some set M we write P(M) = {A | A ⊆ M}
for the power set of M .

2.2 Neural Networks

A deep neural network (DNN) with n inputs and m outputs computes a function f :

Rn → Rm. It is composed of an input layer and several hidden layers. Each hidden layer
is composed of neurons. A neuron v with input dimension k can be seen as a function
v : Rk → R with

v(x) = σ

(
k−1∑
i=0

wixi + bi

)
, wi, bi ∈ R (2.1)

The activation function σ is either the identity function or the rectified linear unit (ReLu)
relu(x) = max(0, x). A hidden layer l is an ordered set of neurons (vl0, . . . , v

l
kl−1) all with

7



2 Preliminaries

the same input dimension . kl is the number of neurons in layer l. It computes a function
vl : Rkl−1 → Rkl with

vl(x) =

 vl0(x)
...

vlkl−1(x)


A DNN N with n inputs, m outputs and l hidden layers, therefore computes the function
fN : Rn → Rm with

fN (x) = vl−1 ◦ vl−2 ◦ · · · ◦ v0(x).

Moreover, we define the size of a DNN N as the total number of neurons, occuring in
N .x

2.2.1 Finite Sample Expressivity

The following results characterise the expressibility of neural networks in terms of their
ability to remember a finite set of input-output pairs. We will need this later in some
places to consider neural networks in transformers as a kind of black-box functions that
can check finitely many conditions. The results go back to [ZBH+21], but we prove them
constructively in a somewhat simpler way in this context.

Lemma 2.2.1. Let B ⊆ R and |B| = n < ∞. For every function f : B → R, there is a
DNN Nf of size O(n) with f(x) = Nf (x) for all x ∈ B.

Proof. Due to the finiteness of B, we can construct a DNN which memorizes the finitely
many input-output pairs of f . Let (x1, . . . , xk) be a enumeration of all elements in B
with xi ≤ xi+1 for all 0 ≤ i ≤ k − 1. The constructed DNN will have one hidden layer
with n neurons. The i-th neuron will compute the function

fi(x) = relu
(

x

xi − xi−1
− xi−1

xi − xi−1

)
The function has the property fi(xi) = 1 and fi(xj) = 0 for all j < i. Therefore, if the
input is xi, fj(xi) = 0 for all j ≥ i, because xi < xj . To get the output value yi, we have
to define the weight wi for the output layer as follows:

wi = yi −
i−1∑
j=1

wj · fj(xi)

8



2 Preliminaries

Then the output is

N(xi) = fi(xi) · wi +

n∑
j=1

wj · fj(xi)

= wi +

i−1∑
j=1

wj · fj(xi)

= yi −
i−1∑
j=1

wj · fj(xi) +
i−1∑
j=1

wj · fj(xi)

= yi

Lemma 2.2.2. Lemma 2.2.1 also holds when B ⊆ Rm.

Proof. We add a hidden layer with a single neuron behind the input layer. This neuron
now maps each vector from the finite input set to a unique real number. So we get a
bijective function φ : B → F, where F ⊆ R and |F| < ∞. We can therefore write the
function f as a composition of the functions f ′ : F→ R and φ with f(x) = f ′(φ(x)). f ′

can be computed by a neuronal network after Lemma 2.2.1 and φ can be represented as
a linear map, which is obviously computable by a neural network.

Theorem 2.2.3. Lemma 2.2.1 also holds for functions f : B ⊆ Rn → Rm and the
resulting DNN is of size O(|B| ·m).

Proof. We define a function fi for all output components 1 ≤ i ≤ m as in Lemma 2.2.2.
The final DNN f is obtained by a join of all component neural networks.

2.3 Transformers

A transformer model is designed to process sequences of data, such as sentences or
time series data, by capturing dependencies and relationships between elements in the
sequence. Transformers rely on a mechanism called self-attention to weigh the importance
of different elements in the input sequence when making predictions. This self-attention
mechanism allows the model to consider all positions in the input sequence simultaneously
and enables it to capture long-range dependencies, making it highly effective for tasks
involving context and understanding relationships between elements in the sequence.

9



2 Preliminaries

In this section we present a formalisation of the transformer model. Transformer were
introduced by Vaswani et al. in 2017 [VSP+17]. The transformer model consists of an
encoder-decoder structure, where both the encoder and decoder are composed of multiple
layers. Each layer in the encoder and decoder consists of two sub-layers: a multi-head
self-attention mechanism and a position-wise feed-forward neural network. In this work
we will consider encoder-only models. Such models are used for sequence classification,
where a input word is classified.

The following mathematical notations used to define the transformer model are based
on work from Perez et. al. [PBM21], who first proposed a formalisation of transformer
models, which can be used to simplify formal proofs.

2.3.1 Word Embeddings

For this work, we only consider transformers that operate on words. Let Σ be some finite
input alphabet. For some input word w ∈ Σ∗, each symbol (sometimes also called token)
is mapped to a numerical vector of embedding dimension de. These initial embeddings
are learned during training in form of a neural network, and the model adjusts them
to capture meaningful features of the words. Hence, the word embedding is a function
femb : Σ→ Rde , which naturally extends to words by symbol-wise application femb(w):

w = w1 w2 w3 · · · wn
↓ ↓ ↓ · · · ↓ femb

x1 x2 x3 · · · xn

2.3.2 Positional Encoding

Positional encoding is another crucial component of transformer models, working hand
in hand with word embeddings to enable these models to process sequential data such
as text. In transformers, word embeddings on their own do not contain any information
about the order or the position of the symbols within a sequence. Positional encoding
is designed to overcome this limitation by injecting positional information into the em-
beddings. To each word embedding vector, positional encoding adds unique positional
values. These values encode the relative positions of words, allowing the model to distin-
guish between words in different positions within a sequence. This positional awareness
is essential for transformers to effectively capture dependencies between symbols that are
not purely based on their semantics.

Mathematically the positional encoding is simply a function pos : N→ Rde , which assigns
every position a vector of positional information, which is then added to the respective

10



2 Preliminaries

word embedding vector. This means for some input word w = a1 · · · an, the input into
the transformer is a vector sequence X = (x1, . . . ,xn), with xi = femb(ai) + pos(n):

w = w1 w2 w3 · · · wn
↓ ↓ ↓ · · · ↓ femb

a1 a2 a3 · · · an
⊕ ⊕ ⊕ · · · ⊕

pos(1) pos(2) pos(3) · · · pos(n)

↓ ↓ ↓ · · · ↓
X = ( x1 x2 x3 · · · xn )

2.3.3 Self-Attention

The key concept behind transformer models is self-attention. Basically, self-attention
allows the transformer to attend to different positions across the whole input sequence
to capture relevant contextual information. An importance score is assigned to each
position. This importance score is determined by attending to every other position in
relation to the position currently under consideration.

In detail, each position in the input sequence is linearly transformed into a query, key
and value vector. Then, for each position, the query vector is evaluated against each
key vector of every other position. These scores determine the importance of each po-
sition in the sequence relative to the position currently in focus. The score values are
then normalised for each position and used to weight the corresponding value vectors.
The weighted sum then produces the final representation for each position in the input
sequence.

Definition 2.3.1. For d, n > 0, let score : Rd → R be a scoring and ρ : Rn → Rn be a
normalization function. Assume that q ∈ Rde and K ∈ Rn×de ,V ∈ Rn×dh . Attention is
a function fatt : Rde × Rn×de × Rn×dh → Rdh with

s = ρ (score(q,k1), . . . , score(q,kn))

fatt(q,K,V ) = s1v1 + · · ·+ snvn

In the original work of Vaswani et. al. [VSP+17], the scalar product 〈q,ki〉 is used as
the score function and the softmax function as the normalisation where:

softmax(x)i =
exi∑n
k=1 e

xk
, 1 ≤ i ≤ n.

11



2 Preliminaries

In recent work [PBM21] on the formal analysis of transformer models, the hardmax
function has often been used for normalisation. The hardmax function is defined as
hardmax(xi) = 1 is xi is the maximum value in x, otherwise hardmax(xi) = 0. If the
maximum value is not unique and r is the number of occurences of the maximum value
then hardmax(xi) = 1

r for all such positions. The advantage of using hardmax is that we
can easily construct transformers that pay attention to a certain position, or all positions
that fulfil a certain property. A basic property required by all possible normalisation
functions is averaging. This means that every normalisation function ρ must have the
following form:

ρ(x)i =
f(xi)∑n
k=1 f(xk)

for some function f . For soft attention f is the exponential function and for hard atten-
tion f is the function, which is 1 if xi is the maximal value in x and 0 otherwise. This
averaging allows the transformer to kind of count specific positions, as we will see later.
We call an attention-head for softmax normalisation hard attention and with hardmax
normalisation soft attention.

In order to allow a transformer model to attend one word to different positions and be
able to have several representation subspaces, the model uses several attention heads.
This works by generating several query, key and value vectors for each input token and
aggregating the embedding of each attention head together. The aggregation works by
applying a linear projection to get a vector of the desired output dimension.

Definition 2.3.2. For h, dh > 0, let fatt be an attention function. Assume that qi ∈ Rd,
Ki ∈ Rn×d,V i ∈ Rn×dh , for all 1 ≤ i ≤ h and W is a linear map from Rh·dh to Rdh .
Multi-Head Attention with h Heads is a function fatt

multi with:

fatt
multi(q1, . . . , qh,K1, . . . ,Kh,V 1, . . . ,V h) = W (Ja1, . . . ,ahK)

where ai = fatt(qi,Ki,Vi).

2.3.4 Encoders

An encoder layer of a transformer is divided into three phases. The input sequence is
first passed through a self-attention layer and then the output of each position passes an
additional neural network.

Definition 2.3.3. Let X = (x1, . . . ,xn) be some input sequence with xi ∈ Rde . A
transformer encoder layer is parameterized in

θ = (Q1, . . . , Qh,K1, . . . ,Kh, V1, . . . , Vh,W,N )

12



2 Preliminaries

where Qi,Ki, Vi,W are linear maps and N is a neural network, which yields an output
sequence Z = (z1, . . . ,zn) with zi ∈ Rde with

ai = fatt
multi(Q1(xi), . . . , Qh(xi),K1(X), . . . ,Kh(X), V1(X), . . . , Vh(X)) + xi

zi = N (ai) + ai

A transformer can have several encoder layers. The first layer gets the input sequence
as input and the other ones get the output of the previous one. We denote a l-layer
transformer encoder with parameters θ1, . . . , θl as TEnc(X; θ1, . . . , θl). We may omit the
parameters if they are not important in the context.

2.3.5 Sequence Classification

One application for transformer models is sequence classification or sometimes called
sentiment analysis. A sequence classification transformer only uses encoder layers and
one final DNN for the classification.

Definition 2.3.4. A transformer sequence classification model Tseq is a function f :

Σ∗ → R. Supppose we have a embedding with positional encoding femb, a l-layer encoder
TEnc(θ1, . . . , θl) and a DNN Nclass : Rd → R. Then

Tseq(w) = Nclass

(
n∑
i=0

zi

)
(2.2)

Z = TEnc(femb(w); θ1, . . . , θl) (2.3)

This definition of sequence classification can be seen as a language acceptor. Let t ∈ R
be some threshold value, then a transformer sequence classifier Tseq defines a language
LTseq over Σ by:

LTseq = {w ∈ Σ∗ | Tseq(w) ≥ t}

13



3 Verification Problems for Transformer
Models

This chapter discusses the various verification problems that are of interest in the con-
text of transformers. The recent success of large language models (LLMs), such as
GPT [BMR+20] or BART [LLG+20], and their applications in various safety-critical
environments, such as hate speech detection [MNO20], fake news detection [KGN21],
autonomous driving [PCG21], mathematical problem solving [CKB+21] and financial
forecasting [YSPK21], have led to the need for techniques to verify such models. For
example, it is desirable that the models are invulnerable to word substitutions and the
use of synonyms.

Word embedding plays a central role in the robustness of such models. A priori, we
assume that during word embedding learning, semantically similar words (synonyms)
are mapped to similar embedding vectors with respect to a given norm. To ensure
this assumption, there are techniques to ensure during the training process that this
assumption is met and that the transformer is invariant to small changes in the in-
put [WGL19] [JRGL19]. However, it is difficult to formally check whether, for a given
input sequence, a trained transformer model is robust to the use of synonyms and per-
turbations. As the length of the text increases, the number of possible transformations
scales exponentially. Therefore, existing research on verifying transformers tries to skip
the embedding part and assumes similarity of synonyms after embedding. This makes
the problem easier to approach, because there are already well-studied techniques from
the verification of neural networks like Interval Bound Propagation, Mixed Integer Pro-
gramming, SMT solving and others that can possibly be adapted to transformers. While
this solves one of the challenges, another difficulty that makes verification of transformer
models difficult is the complex self-attention mechanism with the use of the non-rational
functions and cross-position dependencies. A recently studied verification problem for
adversarial robustness of fixed input sequences is the following. Given an input sequence
after embedding X = (x1, . . . ,xn), a set of perturbed positions P and some small value
of ε, the question is whether, for all perturbed input sequences X̃ with ‖xi− x̃i‖ < ε for
all xi ∈ P , the output of the transformer model is the same as for X. Or one could ask
for the maximum value of ε for which this is the case. Existing work uses well-known

14



3 Verification Problems for Transformer Models

techniques from the verification of neural networks, such as Interval Bounded Propaga-
tion [SZC+19] or Zonotopes [BDBV21], to approximate this problem. To date, there
is no existing sound and complete method for solving this problem. There is also no
existing work that additionally considers permutations in the input sequence.

The focus of this work is on the verification of already trained models. The verification
problem we consider is a more simple problem called output reachability. The output
reachability problem is well known in the field of neural networks [BTT+18]. Intuitively,
an output reachability property wants to ensure that certain misbehaviour does not
occur. Given an input specification and an output specification, the output reachability
problem asks whether there is an input that satisfies the input specification such that
the output satisfies the output specification. For neural networks this problem is known
to be NP-complete [SL21] [KBD+17]. This already hints at NP-hardness as a first lower
bound on the complexity of the output reachability problem for transformers, since neural
networks are used as part of the transformer model. For the scope of this work, we will
work with a simplified version of the output reachability problem that does not consider
any specification and is defined as follows:

Definition 3.0.1 (TransReach). The output reachability problem for transformer models
is the following: Given some transformer model Tclass over some alphabet Σ, is there a
word w ∈ Σ∗, such that Tclass accepts w?

15



4 Undecidability of TransReach for
Transformer Sequence Classifiers

This chapter aims to show the undecidability of the output reachability problem for
transformer sequence classifiers. We will show the undecidability result using a reduction
of Post’s Correspondence Problem (PCP) [Pos46]. We briefly review the definition of the
PCP.

Definition 4.0.1 (PCP). Let Γ be some finite alphabet. An instance of the PCP is an
ordered set P = ((α1, β1), . . . , (αk, βk)) ⊆ Γ+×Γ+. The decision problem asks if there is
a finite non-empty sequence of indices i1, . . . , il from [k], such that αi1 · · ·αil = βi1 · · ·βil .

Theorem 4.0.2 ( [Pos46]). The PCP is undecidable over all Γ with |Γ| ≥ 2.

We will always assume in the following that all PCP instances are defined over the
alphabet {0, 1}.

As stated in the Preliminaries, our transformer model is generic in terms of the normali-
sation and scoring functions. The original transformer model of Vaswani et al. [VSP+17]
uses soft attention for normalisation and the standard scalar product for scoring. How-
ever, previous works regarding the expressibility of transformer have shown, that on the
one hand, using soft attention is difficult to handle formally because of the exponential
function and using the standard scalar product is rather weak, because it does not allow
or at least makes it quite difficult to attend to specific positions. Therefore, we make
some assumptions on these functions, which are presented in the following.

Hard Attention. The first change is the use of hard attention. This has been a
standard assumption so far when investigating the expressibility of Transformer models.
Hard-attention allows targeted access to certain positions in a self-attention layer. So far,
no technique is known that can also apply this property to soft-attention. The answer to
the question whether the following arguments and results from other papers can also be
applied to soft-attention is probably also related to Tarski’s Exponential Function Prob-
lem [Wil97] , which asks whether the theory of real numbers is decidable together with

16



4 Undecidability of TransReach for Transformer Sequence Classifiers

(a) Max-Scoring Function (b) Threshold-Scoring Function

Figure 4.1: Scoring Functions

the exponential function. The problem has not yet been solved and therefore contributes
to the difficulty of dealing with the exponential function when using soft attention.

Scoring Functions. We will use two types of scoring functions, both of which add an
additional component to the scalar product. This can be motivated by different insights.
The scalar product used by Vaswani et al. [VSP+17] is also known as multiplicative
attention. Another form of scoring function is additive attention [BCB16] where the
sum is taken and then a DNN is applied. Our modification can be interpreted as a
combination of these two techniques. We calculate the scalar product and apply a DNN
to it. We call the two modified scoring functions max-scoring and threshold scoring.
They are defined as follows:

scoremax(u,v) = −|〈u,v〉| = rel(〈u,v〉)− rel(−〈u,v〉)
scorethres(u,v) = −rel(1− 〈u,v〉)

The two functions can be seen in Figure 4.1. We will use them in two different ways.
The scoremax function becomes maximum when the scalar product takes a value as close
to zero as possible. We will use this to identify a specific position that has a certain
property using scoring. Together with the hardmax normalisation, we can attend to a
single specific position. The threshold scoring, on the other hand, allows us to focus on
several positions at once. This function maps the value to 0 when the scalar product has
a value greater than or equal to 1 and is negative otherwise. This allows us to focus on
a set of items that all fulfil a certain property. Together with the hardmax function, it
is then possible to average over these positions. This averaging can be used as inverse
counting of positions, which satisfy a given constraint.

17



4 Undecidability of TransReach for Transformer Sequence Classifiers

In order to simplify the definition of some neural networks, used in the following argu-
ment, we introduce the notation of multiplexer programs. These can be directly trans-
lated into neural networks with which properties of discrete vectors can be checked very
easily.

Multiplexer Programs

Definition 4.0.3. Let X = {x1, . . . , xn} be a set of variables. A multiplexer program
P is inductively defined by the following grammar:

P := xi − xj = k | xi = k | ¬P | P ∧ P | P ∨ P | P → P

for all 1 ≤ i, j ≤ n, k ∈ N. We interpret such a program over the theory of discrete
non-negative vectors. An interpretation for a multiplexer program P is a vector x̄ ∈ Nn

We say x̄ |= P if and only if x̄ fits to the set of variables and satisfies all conditions in P
with the usual interpretation.

The goal is to construct a DNN that, given an interpretation x̄, outputs 0 if x̄ |= P and
1 if x̄ 6|= P . It should be noted here that neural networks are always defined over the real
numbers. With regard to the multiplexer programmes, however, we are only interested
in the behaviour over the natural numbers. The behaviour over the non-natural numbers
does not matter to us here. So in the following, when we say that a DNN calculates a
discrete function, we don’t care about the behaviour over all other values. The following
lemma shows that it is sufficient for the DNN to output 0 in the positive case and a
number other than 0 in the negative case.

Lemma 4.0.4. For every discrete function f : Nn → N calculated by some DNN Nf
there is a DNN Nf ′ computing the function f ′ : Nn → {0, 1} with:

f ′(x) =

{
0 , f(x) = 0

1 , f(x) 6= 0.

Proof. Let f : Nn → N be some function, which is calculated by a DNN Nf . Define the
function f ′ with

f ′(x) = rel(f(x)− rel(f(x)− 1))

This function outputs 0 if the input was 0. For all other natural number inputs x ≥ 1,
the function calculates x− (x−1) = 1. It can be seen that the function can also be easily
implemented as a neural network.

18



4 Undecidability of TransReach for Transformer Sequence Classifiers

Lemma 4.0.5. For every multiplexer program P over variables X = {x1, . . . , xn} there
is a DNN NP , with n inputs and one output, such that:

NP (x̄) =

{
0 , x̄ |= P

1 , x̄ 6|= P

for all x̄ ∈ Nn.

Proof. We prove this by induction over the structure of P . There are three base cases:

1. P := xi − xj = k. Let f be the following function

f(x̄) = rel(rel(x̄i − x̄j − k) + rel(x̄j − x̄i + k)) =

{
0 , x̄i = x̄j + k

≥ 1 , otherwise.

which can easily be verified. This function can obviously be calculated by a neural
network. According to Lemma 4.0.4 this function can be modified to output exactly
one in case, ϕ does not hold.

2. P := xi = k. Let f be the following function

f(x̄) = rel(rel(x̄i − k) + rel(k − x̄i)) = |x̄i − k|

This function can obviously be calculated by a neural network. According to
Lemma 4.0.4 this function can be modified to output exactly one in case, ϕ does
not hold.

Let NP ,NP ′ be neural networks for arbitrary subexpressions P, P ′. There are three
inductive cases:

1. ¬P . Let f be the function

f(x̄) = rel(1−NP (x̄)) =

{
1 , x̄ 6|= P

0 , x̄ |= P

2. P ∧ P ′. Let f be the function

f(x̄) = rel(NP (x̄) +NP ′(x̄)) =

{
0 , x̄ |= P ∧ x̄ |= P ′

> 0 , otherwise.

By using Lemma 4.0.4, we get the desired function.

19



4 Undecidability of TransReach for Transformer Sequence Classifiers

3. P → P ′. Let f be the function

f(x̄) = rel(NP ′(x̄)−NP (x̄)) =

{
NP ′(x̄) , x̄ |= P

0 , x̄ 6|= P

Observation 4.0.6. The size of the resulting DNN coming from Lemma 4.0.5 is linear
in size of the formula.

By closer inspection of the inductive translation, one can see that for each case a constant
number of nodes are added to the DNN independently from any parameters occuring in
the formula.

4.1 Overview of the Reduction

In this section we present the basic ideas we will need to show the undecidability of the
output reachability problem for transformer sequence classifiers. The goal is to construct
a transformer for a given PCP instance P that outputs one for an input word if and only
if the input word corresponds to a correct encoding of a solution for the PCP instance. In
this first section we will perform the reduction on a running example in order to formally
define the reduction and prove its correctness in the next sections.

We use the following PCP instance as an example P = ((001, 00), (1, 011), (10, 11)). A
possible solution of this PCP instance is the following:

s = (1, 3, 1, 2)⇒

(
001

00

)(
10

11

)(
001

00

)(
1

011

)

The first step is to translate this solution into a word over a finite alphabet. We use
multitrack characters to encode the solution. We use these to store multiple pieces of
information in one symbol. We encode each symbol of the solution separately and store
additional information, such as whether the symbol belongs to a tile type, whether it
is the beginning of a lower or upper tile. By saying lower tile we mean the upper part
of a tile in sequence. For the above example the upper tiles are 001, 10, 001, 1 and the
lower tiles are 00, 11, 00, 011. In Figure 4.3, we see what the word representation of the
solution looks like. We also require, for technical reasons, that the word encoding of a
PCP instance always ends with a distinguished end marker. This end marker is start

20



4 Undecidability of TransReach for Transformer Sequence Classifiers

symbol for top and bottom and also has the unique tile type zero, which encodes the
end. Therefore, we can represent every possible solution of the PCP instance using a
finite alphabet Σ.

Obviously, not every word over Σ is an encoding of a possible solution. For this reason, the
transformer must check two things. First, that the input word corresponds to a correct
encoding of a possible solution and second, if the input word encodes a possible solution,
that this solution is also correct with respect to the given PCP instance. In Figure 4.2,
we see the schematic structure of the transformer for a PCP instance. The resulting
transformer will have three encoder layers. The first layer is responsible for validating
the input word. In this layer, we only check whether the input word is actually a possible
solution for the PCP instance. However, we do not check whether the upper and lower
tiles belong together. This is done in encoder layers two and three. The matching of
the upper and lower tiles is more complicated and takes place in two phases. First, we
use the power of self-attention to number the tiles in the input top and bottom. In
the second phase, we check whether tiles with the same number at the top and bottom
also have the same tile type. If all these checks are positive, the input word is indeed a
valid solution for the PCP instance. If a check is negative, the input word is either not
coded correctly or the top and bottom tiles do not match correctly. In the following,
we will now schematically go into more detail about the individual components of the
Transformer.

Word Encoding. The first step is to translate a solution, as seen in Figure 4.3, into a
word. As mentioned above, we use multitrack characters to co-encode additional infor-
mation for each symbol of the solution word. What this looks like can be seen in Figure
4.3. We additionally encode the following information:

1. A marker whether the current symbol is the start of a new upper or lower tile.

2. The type of tile.

3. The ID of the tile, but this is only to be specified a priori for the first tile, since
otherwise we would need an infinite alphabet. We assign the remaining ids with
the help of the transformer.

Word Embedding. Having shown how we can encode each solution of the PCP in-
stance over the alphabet Σ, we now outline the embedding function we will use to trans-
late the word into a sequence of reel-valued vectors. In Figure 4.4, we see the sequence of
vectors for our example after the word embedding. The translation is done character by
character. Basically, we translate the multitrack characters one-to-one into the vectors
and add some auxiliary dimensions that will be needed in later steps. These include

21



4 Undecidability of TransReach for Transformer Sequence Classifiers

Word Embedding / Positional Encoding

Possible Solution

Match upper and lower tiles

Validate matching

∑
Final validation

Enumerate tiles

Assign tile id’s

Aggregate neighbourhood

Validate encoding

Yes / No

· · ·

· · ·

· · ·

· · ·

Encoder #3

Encoder #2

Encoder #1

Figure 4.2: Example of the word embedding of a PCP solution.

symbol 0 0 1 1 0 0 0 1 1 0
start> ◦ ◦ ◦ ◦ ◦
start⊥ ◦ ◦ ◦ ◦ ◦
type> 1 1 1 3 3 1 1 1 2 0
type⊥ 1 1 3 3 1 1 2 2 2 0
id> 1 0 0 0 0 0 0 0 0 0
id⊥ 1 0 0 0 0 0 0 0 0 0

⇒



0
1
1
1
1
1
1





0
0
0
1
1
0
0





1
0
1
1
3
0
0





1
1
0
3
3
0
0





0
0
1
3
1
0
0





0
1
0
1
1
0
0





0
0
1
1
2
0
0





1
0
0
1
2
0
0





1
1
0
2
2
0
0





0
1
1
0
0
0
0


Figure 4.3: Example of the word encoding of a PCP solution.

22



4 Undecidability of TransReach for Transformer Sequence Classifiers

positional
information

constant
check bit



0
0
0
1
1
1
1
1
1
1
0





0
0
0
0
0
1
1
0
0
1
0





0
0
1
0
1
1
3
0
0
1
0





0
0
1
1
0
3
3
0
0
1
0





0
0
0
0
1
3
1
0
0
1
0





0
0
0
1
0
1
1
0
0
1
0





0
0
0
0
1
1
2
0
0
1
0





0
0
1
0
0
1
2
0
0
1
0





0
0
1
1
0
2
2
0
0
1
0





0
0
0
1
1
0
0
0
0
1
0


Figure 4.4: Example of the word embedding of a PCP solution.

two dimensions for the positional encoding, which will be explained in more detail in
the next paragraph, a dimension that always has the value one, since we will need this
in calculations, and a dimension that will have the value 0 at the beginning. This last
dimension is the check dimension. We will use it at the end in the last step to check
whether all phases of the transformer have been passed through successfully. If a check
of the transformer fails, there will be a non-zero number in one of the vectors in the check
dimension at the end. This allows us to check at the end whether it is really a correct
solution of the PCP instance or not.

Positional Encoding. After we have embedded the input word, we now add positional
information to the vectors. We will see that these are necessary in order to specifically
access neighbours or address special positions with the help of self-attention. We will
add two types of positional information to the vectors. One is a simple numbering of the
positions and additionally the reciprocal of the numbering, so that these values are all
smaller than 1. We will see later in the construction of the encoder layer that we need
these reciprocals to check for several properties when scoring. In Figure 4.5 we see how
the vectors look after the positional encoding.

Encoder 1: Validation. Within the first encoder, the input word is validated. This
only checks whether the start markers, tile types and symbols are consistent with the
PCP instance. It is also checked whether the ID of the start position is correct and the
other ids are set to zero and also whether the end marker is present. The matching of
the upper and lower tiles only happens in the later layers.

To check these properties, the neighbourhood must be looked at from each position.
It is easy to see that for each position we only need to look at the right neighbours
up to the length of the longest tile in the PCP instance. This is because we need to

23



4 Undecidability of TransReach for Transformer Sequence Classifiers

1 2 3 4 5 6 7 8 9 10
1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11

0 0 1 1 0 0 0 1 1 0
1 0 0 1 0 1 0 0 1 1
1 0 1 0 1 0 1 0 0 1
1 1 1 3 3 1 1 1 2 0
1 1 3 3 1 1 2 2 2 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0

Figure 4.5: Example of the positional encoding of a PCP solution.

check whether the current tile of the position is consistent and whether a new tile starts
after it. So the distance to the furthest neighbour needed is limited by the PCP instance.
Therefore, we use self-attention with a corresponding number of attention heads to collect
the information of the required neighbours and then check the properties with the help
of a neural network.

Encoder 2: Tile Enumeration. After ensuring that the input word is coded correctly,
the next step is to determine whether the upper and lower tiles match. This means
whether the sequence of the upper tile types matches the sequence of the lower tile
types. To check this, the transformer must be able to explicitly address each tile in the
input word. We realise this by using self-attention to number the tiles. Basically, at each
position we count the number of upper and lower start markers that have occurred up
to that position. We then write this result into the vector representation as tile ID. In
the following encoder, we must then check whether for each tile ID at the top or bottom
there is a corresponding tile ID on the other side and whether the tile type matches in
each case. In Figure 4.6 we can see what the new vector representation of the input word
looks like after passing through the encoder.

Encoder 3: Tile Matching. After the tiles have been numbered, we can now match
the upper and lower tiles and check whether the tile types actually match. To do this,
we again use self-attention to find the corresponding start tile with the same ID on the
other track for each position. Once this is found, the type is compared with the help of
a neural network. Figure 4.6 shows the matching for our example.

24



4 Undecidability of TransReach for Transformer Sequence Classifiers

1 2 3 4 5 6 7 8 9 10
1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11

0 0 1 1 0 0 0 1 1 0
1 0 0 1 0 1 0 0 1 1
1 0 1 0 1 0 1 0 0 1
1 1 1 3 3 1 1 1 2 0
1 1 3 3 1 1 2 2 2 0
1 1 1 1/2 1/2 1/3 1/3 1/3 1/4 1/5

1 1 1/2 1/2 1/3 1/3 1/4 1/4 1/4 1/5

1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0

Figure 4.6: Example of the tile enumeration of a PCP solution.

Final Classification. After all encoders have been passed through, the vectors are
summed up and finally fed into a DNN for classification. As mentioned above, all encoders
work in such a way that if a check fails, the check bit of the vector is set to a non-zero
value. Conversely, this means that after all vectors have been added up, it is only
necessary to check whether the value of the check bit is zero. If this is the case, the input
word actually corresponds to a solution of the PCP instance. If the value is not zero, the
input word was either not coded correctly or the coding did not correspond to a solution.

25



4 Undecidability of TransReach for Transformer Sequence Classifiers

4.2 Undecidability Proof

In this section, the above reduction is now formally defined. The section is divided into
the individual components in the same way as the previous one.

4.2.1 Word Encoding

Suppose we are given a PCP instance P = ((α1, β1), . . . , (αk, βk)). We define for the
remaining chapter c as the maximum length of a tile in P :

c = max{|αi|, |βi| | 1 ≤ i ≤ k}

Suppose we have given a solution s to P by s = (i1, . . . , il) with ij ∈ [k]. We encode
solutions by multi-track symbols with 7 tracks over the finite alphabet

Σ = {0, 1}3 × [k]20 × {0, 1}2

The first track will encode the solution word. The second and third tracks are there
to signal whether an upper or lower tile begins at the position of the current symbol.
The fourth and fifth tracks encode the respective tile type to which the current top and
bottom symbol belongs. The last two tracks are needed later for technical reasons to
match the upper and lower tiles.

Let ws = αi1 · · ·αil = βi1 · · ·βil be the solution word of the solution s. Furthermore, w>s
is a word with |w>s | = |ws| and

(w>s )j =

{
1 , j = 1 +

∑m
t=1 |αit | for some m ∈ [l − 1]0

0 , otherwise.

The word w>s specifies the positions in the solution word, where a new upper tile begins.
We define w⊥s accordingly for the lower tiles β. We define the word of tile types w>,type

s

by
w>,type
s = i1 · · · i1︸ ︷︷ ︸

|αi1
|

· · · il · · · il︸ ︷︷ ︸
|αil
|

26



4 Undecidability of TransReach for Transformer Sequence Classifiers

and w⊥,type
s accordingly with β. We define a function fconv : [k]∗ → Σ∗ with:

fconv(s) = fconv((i1, . . . , il)) =



(ws)1

(w>s )1

(w⊥s )1

(w>,type
s )1

(w⊥,type
s )1

1

1





(ws)2

(w>s )2

(w⊥s )2

(w>,type
s )2

(w⊥,type
s )2

0

0


· · ·



(ws)|ws|
(w>s )|ws|
(w⊥s )|ws|

(w>,type
s )|ws|

(w⊥,type
s )|ws|

0

0





0

1

1

0

0

0

0


︸ ︷︷ ︸

end marker

4.2.2 Word Embedding

In this section we will formally define the embedding function of our transformer. We
will translate input words into vectors with embedding dimension de = 11. For this
purpose, we interpret the multitrack symbols from the input alphabet as real vectors in
the following and add 4 additional dimensions. We define the function femb : Σ → Rde
with:

femb(a) = J0, 0, aR, 1, 0K ∈ Rde

where aR is the interpretation of a as a real vector. This function naturally extends to
words over Σ by symbol-wise application.

Lemma 4.2.1. femb can be computed by a DNN Nemb.

Proof. femb : Σ → Rde is a function defined over a finite domain. The input into the
DNN will be a one-hot encoding of the symbol. Therefore, Nemb computes a function
Nemb : R|Σ| ⊃ A→ Rde with |A| <∞. We can construct this DNN by Theorem 2.2.3.

In the following sections we will always use the abbreviations presented to refer to specific
positions in the vectors. Here is an overview over all abbreviations: LetX = (x1, . . . ,xn)

27



4 Undecidability of TransReach for Transformer Sequence Classifiers

be a encoding of a word over Σ:

l(i) : the symbol at position i (dimension: 3)

s
(i)
> : upper start tile marker at position i (dimension: 4)

s
(i)
⊥ : lower start tile marker at position i (dimension: 5)

t
(i)
type,> : type of upper tile at position i (dimension: 6)

t
(i)
type,⊥ : type of lower tile at position i (dimension: 7)

t
(i)
id,> : ID of upper tile at position i (dimension: 8)

t
(i)
id,⊥ : ID of lower tile at position i (dimension: 9)

t
(i)
check : check bit of position i (dimension: 11)

4.2.3 Positional Encoding

As the last step of embedding, we add positional information to the input vectors. These
are necessary in order to access special positions or to be able to address relative positions.
We define the function pos : N→ Rde as follows:

pos(n) = Jn,
1

n+ 1
, 0, . . . , 0K

We add a simple numbering to all vectors on the one hand and an inverse numbering on
the other hand, where n+ 1 ensures that all these values are smaller than 1. We use the
following abbreviations for these two values:

p(i) : absolute position of position i (dimension: 1)

p−1,(i) : inverse absolute position of position i (dimension: 2)

When the position of the vector talked about is clear, we also just write i or 1
i+1 .

This allows us to define the final input into our transformer. We define the function
fin : Σ∗ → (Rde)∗ as follows. Let w ∈ Σ∗ be a word with w = a1 · · · an.

fin(w) = fin(a1, . . . , an) = femb(a1) + pos(1), . . . , femb(an) + pos(n)

4.2.4 Encoder 1: Aggregating Neighborhood Information

In this section we start to construct the first encoder of the transformer. As described
above, the first encoder is responsible for validating the input word. This includes cor-

28



4 Undecidability of TransReach for Transformer Sequence Classifiers

rectly specifying the start positions, matching tile types and symbols, and correctly
encoding the start and end positions. To check these conditions with the help of a neural
network, we need neighbourhood information. We need to look to the right at most to
the start of the next tile. This distance is determined by the length of the maximum
tile c. We will now use self-attention with c + 1 many attention heads to aggregate the
information of the c nearest right neighbours including self-information.

Lemma 4.2.2. There is a self-attention layer fagg with c+ 1 attention heads and appro-
priate linear maps, such that for each input vector xi, fagg(qi,K,V ) is a vector, which
contains the information defined below for xi and its c right-neigbors.

Proof. We will use max-scoring for all attention heads. Furthermore, we define linear
maps Qhagg,K

h
agg, V

h
agg for all 0 ≤ h ≤ c with:

Qhagg(xi) = qi =

(
1

i+ h

)

Kh
agg(xi) = ki =

(
i

−1

)
V h

agg(xi) = vi = J0, . . . ,0︸ ︷︷ ︸
h

, si,0, . . . ,0︸ ︷︷ ︸
c−h

K

si =



i

l(i)

s
(i)
>
s

(i)
⊥

t
(i)
id,>
t
(i)
id,⊥

t
(i)
type,>
t
(i)
type,⊥


For each attention head f jagg and qi,kj defined as above holds:

scoremax(qi,kj) = −|〈qi,kj〉| = − |j − (i+ h)| =

{
0 , j = i+ h

< 0 , otherwise.

It is easy to see, that by applying the hardmax normalisation, we will attend to exactly
one position pi.

pi = argmax
1≤j≤n

scoremax(qi,kj) =

{
i+ h , i+ h ≤ n
n , otherwise.

This means, that during the aggregation we only aggregate the information of neighbors
to the right and if there is no more neighbor the information of the last position will be

29



4 Undecidability of TransReach for Transformer Sequence Classifiers

aggregated. Therefore it follows for the attention head fhagg:

fhagg(qi,K,V ) = a
(h)
i =

{
vi+h , i+ h ≤ n
vn , i+ h > n

The aggregation of all attention heads works by simply summing up the output of all
attention heads. Therefore,

W
(
a

(0)
i , . . . ,a

(c)
i

)
= a

(0)
i + · · ·+ a

(c)
i = Jsi, smin(i+1,n), . . . , smin(i+c,n)K

The output of the self-attention layer for each position is therefore a vector that addition-
ally contains the information of the nearest c neighbours. This vector is now transferred
position by position to a neural network, which checks the coding of the word. We will
define the DNN in the next section.

4.2.5 Encoder 1: Validate Encoding

After defining the attention function for the encoder in the previous section, in this
section we will construct the DNN that checks whether the input word was a correct
encoding of a possible solution for the PCP instance. We take advantage of the fact that
after the self-attention phase we have a vector for each position that also contains the
information of the c nearest right neighbours. c is the length of the maximum tile in the
given PCP instance. The DNN now checks the following conditions at each position of
the input:

1. The first position must be a start position for an upper and lower tile. Furthermore,
the tile type must match top and bottom.

2. There must be an end marker at the last position. This end marker has the exclusive
tile type zero. Furthermore, no other end marker may occur in the input sequence.

3. For each position i, if this position is a start position for an upper tile and the
tile type is k, then for all successor positions up to i + |αk|, these are not start
positions, the tile type is also k and the symbols match αk. Furthermore, the
position i+ |αk|+ 1 must again be a starting position. The same applies to lower
tiles.

4. The tile ID is one for the first position. For all other positions the tile ID must be
zero.

30



4 Undecidability of TransReach for Transformer Sequence Classifiers

Lemma 4.2.3. Let P = ((α1, β1), . . . , (αk, βk)) be some PCP instance. There is a DNN
NP

valid, for which NP
valid(xi) = yi and for yi holds that

tcheck =

{
0 ,xi fulfills conditions (1) to (4)

1 , otherwise.

Proof. First, we construct a multiplexer program QP that checks the above conditions
for a vector xi. According to Lemma 4.0.5, we can translate QP into a DNN NP such
that

NP (xi) =

{
0 ,xi fulfills conditions (1) to (4)

1 , otherwise.

Finally, we modify the DNN so that the output vector has dimension de and the output
of NP is at the place of the check bit. We will now give multiplexer programs for each
condition mentioned above:

Q1 :=
(
p(i) = 1

)
→
(

(s
(i)
> = 1) ∧ (s

(i)
⊥ = 1) ∧ (t

(i)
type,> = t

(i)
type,⊥)

)
Q2 :=

(
p(i) − p(i+1) = 0

)
→
(

(t
(i)
type,> = 0) ∧ (t

(i)
type,⊥ = 0)

)
∧
(

(t
(i)
type,> = 0) ∨ (t

(i)
type,⊥ = 0)

)
→
(
p(i) − p(i+1) = 0

)
Q3 :=

k∧
j=1

(s
(i)
> = 1 ∧ t(i)type,> = j)→

|αj |−1∧
m=0

(s
(i+m)
> = 0 ∧ t(i+m)

type,> = j ∧ l(i+m) = αj,m)


∧

(s
(i)
⊥ = 1 ∧ t(i)type,⊥ = j)→

|βj |−1∧
m=0

(s
(i+m)
⊥ = 0 ∧ t(i+m)

type,⊥ = j ∧ l(i+m) = βj,m)


∧
(

(s
(i)
> = 1 ∧ t(i)type,> = j)→ (s

(i+|αj |)
> = 1)

)
∧
(

(s
(i)
⊥ = 1 ∧ t(i)type,⊥ = j)→ (s

(i+|βj |)
⊥ = 1)

)
Q4 :=

(
(p(i) = 1)→ (t

(i)
id,> = 1) ∧ (t

(i)
id,⊥ = 1)

)
∧
(
¬(p(i) = 1)→ (t

(i)
id,> = 0) ∧ (t

(i)
id,⊥ = 0)

)

Now we can define the entire first encoder:

Lemma 4.2.4. Let P be some PCP instance. There is a transformer encoder layer
TEncPvalid, such that for an input sequence X, the check bit of all vectors in Z =

31



4 Undecidability of TransReach for Transformer Sequence Classifiers

TEncPvalid(X) are equal to zero if and only if the underlying input word, was a valid
encoding for a possible solution to the PCP instance P.

Proof. Follows directly from Lemmas 4.2.2 and 4.2.3.

4.2.6 Encoder 2: Enumerating the Tiles

To match the top and bottom tiles, we now need to assign a unique ID to each tile in
the solution. To do this, we will use the strength of self-attention to count the number of
start tiles seen so far at each position. In principle, this can be interpreted as numbering
the tiles in the solution. Each position is then given the ID 1

k , where k is the number of
the tile to which that position belongs. In order to check the correct matching, we only
have to check whether there is a tile ID at the bottom for each tile ID at the top, so that
the two ids are the same and the tile type is identical.

Lemma 4.2.5. There is a transformer encoder TEncenum with two attention heads such
that TEncenum(X) = (z1, . . . ,zn) and for all zi hold: t

(i)
id,> = 1

k>i
and t(i)id,⊥ = 1

k⊥i
, where

k>i , k
⊥
i are the number of upper or lower starting tiles which occured up to position i.

Proof. Let X = (x1, . . . ,xn) be the current representation of the input tokens, after
passing the aggregation and validation layer. We will now construct a encoder layer with
two attention heads f>att, f

⊥
att and parameters θ = (Q>enum, K>enum, V >enum, Q

⊥
enum, K⊥enum,

V ⊥enum,W,N), which uses the threshold-scoring function scorethres mentioned earlier. Let
Q>enum, K>enum, V >enum be a linear maps with:

Q>enum(zi) = q>i =

 1
1
i+1

1


K>enum(zi) = k>i =


1
i+1

−1

s
(i)
>


V >enum(zi) = v>i =

(
t
(i)
id,>
0

)

Q⊥enum(zi) = q⊥i =

 1
1
i+1

1


K⊥enum(zi) = k⊥i =


1
i+1

−1

s
(i)
⊥


V ⊥enum(zi) = v⊥i =

(
0

t
(i)
id,⊥

)

We show that f>att(qi,K,V ) = 1
k>

. It follows by the definitions above that:

scorethres(q
>
i ,k

>
j ) = −max

(
0,−

(
1

j + 1
− 1

i+ 1
+ s

(j)
>

))

32



4 Undecidability of TransReach for Transformer Sequence Classifiers

We know that s(i)
> ∈ {0, 1}. We will use that to show:

1

j + 1
− 1

i+ 1
+ s

(j)
> =

{
≥ 1 , (j ≤ i) ∧ (s

(j)
> = 1)

< 1 , otherwise.

There are four cases to distinguish:

1. j ≤ i, s(j)
> = 0. Then:

1

j + 1
− 1

i+ 1︸ ︷︷ ︸
∈[0,1)

+0 ∈ [0, 1)

2. j ≤ i, s(j)
> = 1. Then:

1

j + 1
− 1

i+ 1︸ ︷︷ ︸
∈[0,1)

+1 ∈ [1, 2)

3. j > i, s
(j)
> = 0. Then:

1

j + 1
− 1

i+ 1︸ ︷︷ ︸
∈(−1,0)

+0 ∈ (−1, 0)

4. j > i, s
(j)
> = 1. Then:

1

j + 1
− 1

i+ 1︸ ︷︷ ︸
∈(−1,0)

+1 ∈ (0, 1)

Therefore, it follows that:

score(q>i ,k
>
j ) =

{
0 , (j ≤ i) ∧ (s

(j)
> = 1)

< 0 , otherwise.

33



4 Undecidability of TransReach for Transformer Sequence Classifiers

We can now calculate the output of the attention head f>att.

s = hardmax
(
score(q>i ,k

>
1 ), . . . , score(q>i ,k

>
n )
)

f>att(qi,K,V ) = s1

t(1)
id,>

0

+ · · ·+ sn

t(n)
id,>

0


=

1

k>i

((
1

0

)
+

(
0

0

)
+ · · ·+

(
0

0

))
(4.1)

=

(
1
k>i

0

)

Where k>i = |{j | 1 ≤ j ≤ i and s(j)
> = 1}| is the number of positions left of i which

are starting positions for upper tiles. Equation 4.1 comes from the fact that after the
aggregation layer it is ensured that t(1)

id,> = 1, s
(1)
> = 1 and t(j)id,> = 0 for all j > 1. This

shows the claim for f>att. The proof for f⊥att is analogous, by replacing all > with ⊥
symbols.

Up to this point we have shown that for every input token xi:

a
(i)
1 = f>att(Q

>
enum(xi),K

>
enum(X), V >enum(X)) =

(
1
k>i

0

)

a
(i)
2 = f⊥att(Q

⊥
enum(xi),K

⊥
enum(X), V ⊥enum(X)) =

(
0
1
k⊥i

)

We now define the linear map Wenum, which just sums the outputs of the two attention
heads. Therefore,

Wenum(Ja(i)
1 ,a

(i)
2 K) = a

(i)
1 + a

(i)
2 =

 1
k>i
1
k⊥i


The last part of the transformer encoder is a DNN Nenum, which gets the output of
Wenum(Ja(i)

1 ,a
(i)
2 K) as input and outputs a vector of dimension de. The new representation

of the input token zi is then:

zi = Nenum(Wenum(Ja(i)
1 ,a

(i)
2 K)) + xi

Through the residual connection we will add the information that has not been changed
back to the representation. We add the values for the entries tid,>, tid,⊥ to the correct
position through the DNN and set all other entries of the vector to 0. The only problem
here are the entries of the first token. According to the prerequisite, these are 1, but

34



4 Undecidability of TransReach for Transformer Sequence Classifiers

the new representation must also be 1, because exactly one start tile was seen at the
first position. To remove the effect of the residual connection for these tokens, we will
construct the DNN in such a way that it returns 0 for input 1, and for inputs ≤ 1

2 the
input is simply passed through. Let f : R→ R the function with:

f(x) =


x , x ≤ 1

2

−x+ 1 , 1
2 < x ≤ 1

0 , x > 1

The function has the desired property and is piecewise-linear, hence computable by a
neural network.

In summary the complete encoder layer TEncenum only changes the entries tid,>, tid,⊥ in
each vector. Moreover, after passing the encoder the entries tid,>, tid,⊥ contain a unique
ID for each tile contained in the input word.

4.2.7 Encoder 3: Tile Matching

Lemma 4.2.6. There is a transformer encoder TEncmatch with three attention heads
such that TEncmatch(X) = (z1, . . . ,zn) and for all zi hold: t

(i)
check = 0 if and only if the

input word was a correct matching of upper and lower tiles.

Proof. Let X = (x1, . . . ,xn) be the current representation of the input word, after
passing encoder one and two. We will now construct an encoder layer with three attention
heads f self

match, f
>
match, f

⊥
match and parameters θ = (Q∗match, K

∗
match, V

∗
match,Wmatch, Nmatch),

which use the max-scoring function mentioned earlier. Let Q∗match, K
∗
match, V

∗
match be

35



4 Undecidability of TransReach for Transformer Sequence Classifiers

linear maps with:

Q>match(xi) = qi =

t
(i)
id,>
−1

1


K>match(xi) = ki =

 1

t
(i)
id,⊥

s
(i)
⊥ − 1


V >match(zi) = vi = J04, t

(i)
id,⊥, t

(i)
type,⊥, 0, 0K

Qself
match(xi) = qi =

(
i

−1

)

Q⊥match(zi) = qi =

 1
1
i+1

1


K⊥match(zi) = ki =


1
i+1

−1

s
(i)
⊥


V ⊥match(zi) = vi = J04, 0, 0, t

(i)
id,>, t

(i)
type,>K

Kself
match(xi) = qi =

(
1

i

)
V self

match(zi) = vi = Jt(i)id,>, t
(i)
type,>, t

(i)
id,⊥, t

(i)
type,⊥,04K

The first attention head f self
match, collects the ID and type of the tile at some position

and the other two attention heads f>match, f
⊥
match collect the information of the respecting

upper and lower start tile with the same ID. Then the information gets aggregated
together by a linear projection Wmatch and the neural network, checks if the ids and tile
types match. We first show, that the first attention head f self

match collects the information
of the position itself.

scoremax(qi,kj) = −|qi,kj | = −|i− j| =

{
0 , i = j

< 0 , otherwise.

Therefore, it follows directly that:

f self
match(qi,K,V ) = a

(i)
self = Jt(i)id,>, t

(i)
type,>, t

(i)
id,⊥, t

(i)
type,⊥,04K

This easily shows, that the attention head collects the ID and type information of the
position itself, for every position i. For the attention head f>match, it holds:

scoremax(qi,kj) = −|t(i)id,> − t
(j)
id,⊥ + s

(j)
⊥ − 1| =

{
0 , t

(i)
id,> = t

(j)
id,⊥ ∧ s

(j)
⊥ = 1

< 0 , otherwise.

The score is therefore maximum if and only if the position j being scored against has the
same lower tile ID and is a starting tile. It follows that this attention head calculates the
following:

f>match(qi,K,V ) = a
(i)
> = J04, t

(j)
id,⊥, t

(j)
type,⊥, 0, 0K

where j is the position described above. The same applies analogously to the attention

36



4 Undecidability of TransReach for Transformer Sequence Classifiers

head f⊥match with

f⊥match(qi,K,V ) = a
(i)
⊥ = J04, 0, 0, t

(k)
id,>, t

(k)
type,>K

As mentioned above, the linear map Wmatch just sums the output of all three attention
heads together:

Wmatch(a
(i)
self,a

(i)
> ,a

(i)
⊥ ) = Ja(i)

self,a
(i)
> ,a

(i)
⊥ K =



t
(i)
id,>

t
(i)
type,>
t
(i)
id,⊥

t
(i)
type,⊥
t
(j)
id,⊥

t
(j)
type,⊥
t
(k)
id,>

t
(k)
type,>


This vector is now given into the DNN Nmatch, we define the DNN via a multiplexer
program Pmatch as follows:

Pmatch := t
(i)
id,> = t

(j)
id,⊥ ∧ t

(i)
id,⊥ = t

(k)
id,> ∧ t

(i)
type,> = t

(j)
type,⊥ ∧ t

(i)
type,> = t

(j)
type,⊥

We translate Pmatch into a DNN and modify it to output a vector of dimension de and
write the output of Pmatch to the check bit. By the resdiual connection we then get as
the output of the whole encoder at position i:

zi = Nmatch(Ja(i)
self,a

(i)
> ,a

(i)
⊥ K) + xi

Therefore, the encoder changes at most only the check bit of a position i in case of an
incorrect matching.

4.2.8 Final Classification

The last thing we need to do is define the neural network, which takes the sum of all the
terminating vectors and then classifies them. As already mentioned, at the end we only
have to check the check bits of the vectors. If all of these bits are zero, then the value at
the position of the check bit is also zero after the sum. If, however, a check has failed,
then the sum at the end is not equal to zero. It follows that the DNN should classify
the vector at the end as zero if the value at the position of the check bit is not equal to
zero or as one if the value is zero. Let Nclass be this neural network. It can be defined as

37



4 Undecidability of TransReach for Transformer Sequence Classifiers

follows:
Nclass(y) = rel(−ycheck + 1)− rel(0, ycheck − 1) = 1− ycheck

If we now set the classification threhsold to one, we get the desired behaviour.

4.2.9 Correctness

Now that we have defined everything necessary, we can come to the main result of this
chapter.

Theorem 4.2.7. For every PCP instance P there is a transformer sequence classifier
TP , such that:

P is solvable if and only if there is a word w ∈ Σ∗, such that TP (w) = 1

Proof. Let P = ((α1, β1), . . . , (αk), βk) be a PCP instance. Let TP be the transformer
sequence classifier as defined in the previous sections.

→: Assume P is solvable. Then there is a solution s = (i1, . . . , il) with l ≥ 1, such that
αi1 · · ·αil = βi1 · · ·βil . Let fconv(s) = ws be the encoded solution as defined in
section 4.2.1. Moreover, let X = (x1, . . . ,xn) be the input sequence after the word
embedding and positional encoding as defined in Lemma 4.2.1 and Section 4.2.3.
By Lemma 4.2.4 the output of the first encoder is TEncPvalid(X) = X, because
X is by assumption a valid encoding of a solution to P . Therefore, the check bit
of the input sequence has not been changed. The second encoder layer defined
as in Lemma 4.2.5 enumerates the upper and lower tiles. The upper and lower
enumeration of the tiles must match, because the input was a valid encoding of a
solution. Therefore, the third encoder as defined in Lemma 4.2.6, does not change
the check bit of any position in the sequence. It follows that the output after all
encoder layers, has not changed the check bit of any position and therefore, the
input word gets accepted by the last classification layer.

←: Assume P is not solvable. Let w ∈ Σ∗ be some input word. There are two
cases. Either w is a syntactically correct looking encoding of a upper and lower
tile sequence with respect to Section 4.2.1 or w does not adhere to the encoding
scheme. If w does not adhere to the encoding scheme, the validation happening in
the first encoder, will alter the check bit of some positions in the input sequence.
This will result in a false classification at the final classification. In the other case
the input sequence correctly encodes a possible solution, where the upper and lower
tile sequence encode the same word and matches the underlying PCP instance, but

38



4 Undecidability of TransReach for Transformer Sequence Classifiers

the upper and lower tiles are mismatched. This means that at some position in the
input sequence, the tile type at the start of an upper tile does not match the tile
type at the respecting lower tile. This is checked in encoder layer 3 as described in
Lemma 4.2.6. Therefore, the output classification of such an input sequence is also
false.

Corollary 4.2.8. The output reachability problem for transformer sequence classifiers is
undecidable.

4.3 Bounded Output Reachability

As we saw in the last section, the TransReach problem is undecidable. In the following,
we consider a restricted version of this problem. We restrict the maximum length of
the input word. This restriction makes the problem trivially decidable, because now
all possible inputs can be tested. However, we want to find a characterisation in terms
of computational complexity of this problem. In doing so, we will use the reduction
from the last section to show the NP-completeness of this problem. We use a variant
of the PCP that also limits the maximum length of a solution. This problem is known
to be NP-complete. We show that the reduction from the last section is computable
in polynomial time and that the constrained TransReach problem is in NP. Thus we
conclude the NP-completeness of the bounded TransReach problem.

Definition 4.3.1 (Bounded Output Reachability Problem k-TransReach). Given a trans-
former sequence classifier T and a k ≥ 1 in unary. Is there a word w ∈ Σ∗ with |w| ≤ k,
such that T accepts w?

Definition 4.3.2 (Bounded PCP k-PCP). Given an instace of the PCP problem P =

((α1, β1), . . . , (αk, βk)) and k ≥ 1. Is there a solution to P s = (i1, . . . , il), such that
|αi1 · · ·αil | ≤ k?

Proposition 4.3.3 (Garey and Johnson [GJ79]). k-PCP is NP-complete.

Theorem 4.3.4. The reduction from k-PCP to k-TransReach is computable in polyno-
mial time.

39



4 Undecidability of TransReach for Transformer Sequence Classifiers

Proof. By revisiting the reduction from the previous section, one can see that the only
parts of the transformer, which are dependent on the PCP instance P are the DNN
for the word embedding Nemb from Lemma 4.2.1 and the DNN for checking the valid
encoding Nvalid from Lemma 4.2.3.

The size of Nemb is linear in the size of the input alphabet Σ, because the input into the
DNN is a one-hot encoding of the symbol. The size of the input alphabet is linear in size
of the PCP instance.

We defined the DNN from Lemma 4.2.3 as a multiplexer program. On closer inspection
one can see that the size of the formula is at most quadratic in the size of the PCP
instance, because for each tile type, the corresponding symbols of the tile have to be
defined. By Observation 4.0.6 the DNN is of linear size in the size of the formula.

Therefore, the reduction can be computed in polynomial time.

Theorem 4.3.5. The bounded output reachability problem for sequence classification
transformers is in NP.

Proof. Let T be a transformer sequence classifier and k ≥ 1. Existence of a solution
can be decided as follows. Guess a word w ∈ Σ∗ with length ≤ k. Then compute the
output T (w) of the transformer. The length of w is of linear size in k. The computation
of the output can be done in polynomial time. This is, because the computations of
the neural networks and linear maps in T can be done in linear time O(|T |). The self-
attention can be computed in O(|w|2), because each positions has to be scored against
each other position. This has to be done for every attention head in every encoder layer.
In summmary this gives us polynomial time O(|w|2 · |T | · a) in summary, where a is the
total number of attention heads in T .

Corollary 4.3.6. k-TransReach is NP-complete.

40



5 TransReach for Transformers with
Limited Precision

Having demonstrated in the preceding chapter that transformer sequence classifiers pos-
sess an undecidable output reachability problem, this chapter aims to explore a constraint
on the model in order to make the verification problem decidable. Essentially, two main
factors can be identified that lead to the undecidability in the last chapter. Firstly, the
arbitrary length of the input words, and secondly, the need for arbitrary precision in
the internal computations of the transformer. Restricting the word length makes the
TransReach problem easily decidable as all possible words can be tested. As shown in
Section 4.3 this problem is NP-complete. However, arbitrary precision allows a position
in the input sequence to attend to positions that are arbitrarily far away. By limiting
the precision, a position cannot reference positions that are arbitrarily far away, because
due to the small amount of representable numbers, positions can no longer have unique
ids up to any length. While this gives us an indication that such transformers may have
less power, it is not apparent whether the output reachability problem becomes decidable
with this restriction.

In the following, we first define what we mean by transformers with limited precision and
why these models are interesting in practice. Then we discuss what effects the precision
constraint has on the power of the transformer and why the decidability of TransReach
over limited precision presumably follows from this. Afterwards, first approaches of a
decidability proof are presented.

5.1 Limited Precision

The practical relevance of limited precision transformers is obvious, as the assumption
of arbitrary precision is unrealistic in practice. The hardware used to apply transformer
models always operates with limited precision. Most computers employ floating-point
arithmetic, where each number represented by a bit string of finite bit width p. It is
apparent that computers can only represent a finite set of numbers using such a repre-
sentation. The question that naturally arises is to what extent this limits the capabilities

41



5 TransReach for Transformers with Limited Precision

of the transformer. This work solely focuses on floating point representations of num-
bers. We refer to the set of p precision numbers as Dp. The amount of numbers that can
be represented with p precision is obviously exponential in p, |Dp| ∈ O(2p). Floating-
point arithmetic operations work as usual, but results outside the representable space
are rounded to the nearest representable number. When referring to p-precision trans-
formers, this implies transformers that operate on Dp using floating-point arithmetic.
Transformers with limited precision have already been investigated in terms of express-
ibility [MS23a] [CCP23]. In order to obtain a decidability result regarding the output
reachability problem for transformers with limited precision, we first have to investigate
how finite precision affects the different components of the transformer.

Positional Encoding. At the word level, additional positional information is added
to each position after word embedding. This positional information allows regular trans-
formers to address specific positions and aggregate the information. When limited pre-
cision is used, these positional information cannot be unique for every possible input
length. It follows that vectors must repeat in embeddings of words, that exceed a certain
length.

Self-Attention. During the self-attention mechanism the transformer cannot see the
order in which the input sequence is given, because the calculations are done indepen-
dently for each position. The only information that is taken into consideration is the
positional information added through the positional encoding. As explained above, in
transformers with limited precision this positional information is no longer unique for
each position. But this means that the calculations done for two positions with the
exact same embedding, are also the same. Hence the output from the self-attention
for these two vectors must be equal. This observation was formally proven by Perez et
al. [PBM21].

Proposition 5.1.1 (Perez et al. [PBM21]). Let TEnc be some transformer encoder layer
and let X = (x1, . . . ,xn) be an input sequence. Furthermore, let Z = TEnc(X). Then
for every pair of indices (i, j) ∈ [n]× [n] the following holds: if xi = xj then zi = zj.

Self-Attention can also be used to count the number of items with certain properties.
This works through the interaction of scoring and normalisation in each attention head.
Scoring is used to check the respective property and averaging in normalisation counts
the occurrences. However, with limited precision transformers, it is not possible to count
indefinitely, as only a finite amount of representable numbers is available. Merrill and
Sabharwal [MS23a] have shown another property that limits the counting range of the

42



5 TransReach for Transformers with Limited Precision

self-attention depending on the available precision. In particular, they proved that trans-
formers with finite precision are much less expressive, since only a constant number of
other positions can be attended to during self-attention. The constant depends on the
precision.

Proposition 5.1.2 (Merrill and Sabharwal [MS23a]). Let a ∈ Rn with
∑n

i=1 ai = 1 and
ã be the nearest p-precision approximation to a. Then:

1. ã has at most 22p many nonzero entries.

2. If n > 22p and a is uniform
(
ai = 1

n

)
, then ã = 0.

It follows for any p-precision transformer that if the length of the input word is greater
than 22p , the self-attention of each position cannot depend on all other position. In the
special case of uniform normalisation like hardmax, the scoring vector even gets to zero,
which means that the output for this position is the zero vector. We will first address
decidability under the assumption of hardmax as a normalisation function, as this case
is easier to consider for the time being. In the case of general normalisation functions,
more work has to be done, as we will see later, because it has to be calculated beforehand
which entries become zero during normalisation.

5.2 Capturing the Behaviour of Self-Attention

We will now use these results to develop a first approach to the decidability result. So
far, we have seen two limitations of transformers with limited precision related to the
self-attention mechanism. Firstly, the transformer can no longer distinguish positions in
the input up to any length and secondly, the possibilities of averaging are also limited by
the limited precision and thus the ability of the transformer to count certain positions.
In the following, we will take advantage of these two limitations to reduce the behaviour
of the self-attention mechanism to finitely many different cases. We show that for all
longer inputs, they behave similarly to shorter inputs. Specifically, we want to find
an upper bound on the length of the input sequence that we need to look at, so that
longer input sequences behave equivalently to shorter input sequences. From Proposition
5.1.1, we have already identified |Dp| as a lower bound on this word length, since up to
this length, the transformer can distinguish positions with precision p. But as we have
seen, an attention head can not only distinguish positions, but also count. The counting
threshold is double-exponential in the precision p. If this counting threshold is exceeded,
the output of the attention head for this position is by Proposition 5.1.2 is zero. If it is
true for an input sequence that each position attends to more positions than the counting

43



5 TransReach for Transformers with Limited Precision

threshold is large, the output for all positions is the zero vector. In summary, the output
for an input sequence X depends on the following factors:

• The set of disjunct vectors vals(X) occuring in X

• The set of vectors Av each vector v in vals(X) attends to

• The number of occurences of each vector in vals(X)

Let fatt be some p precision transformer encoder attention head with linear mapsQ,K, V .
Let dQ be the dimension of the query vectors and dV be the dimension of the value vectors.
Furthermore, let score : DdQp × DdQp → Dp be the scoring function used in the attention
head. We introduce the notion of the attention map matt : DdQp × P(DdQp ) → P(DdQp ).
For some input sequence X = (x1, . . . ,xn) with vals(X) = M , matt(v,M) = A is the
set of vectors, the vector v attends to, when M is the set of other vectors occuring in
the input sequence X.

matt(v,M) = argmax
w∈M

score(v,w)

We need the Attention Map to determine for an input sequence whether or not it already
exceeds the Counting Threshold for all positions. We define h(M,X) as the frequency
of occurrences of vectors of M in X. We use this notation in order to formally prove
that it suffices to only consider input sequences where each position attends to at most
22p + 1 positions.

Lemma 5.2.1. Let matt be an attention map of a transformer attention head fatt,
X = (x1, . . . ,xn) be an input sequence and its corresponding output fatt(X) = Z =

(z1, . . . ,zn). If matt(xi, vals(X)) = A and h(A,X) > 22p for some i ∈ [n], then zi = 0.

Proof. This Lemma is a direct consequence of Propositions 5.1.1 and 5.1.2.

The idea is to characterise the behaviour of an attention head for each possible input
sequence by increasing the frequencies for each possible set M ⊆ Dp of occurring vectors
until each position attends to 22p+1 other positions. It is important to note that the order
of the input sequence does not matter for the attention head. Order will only become
important when we look for input words that map to specific sequences. The worst case is
that every vector only attends to itself. In this case we have to consider all input sequences
up to length |Dp| · 22p . Every input sequence which is not considered, has at least one
positions which attends to more than 22p + 1 other positions. Therefore, with Lemma
5.2.1 it follows that this position will be mapped to the zero vector. The complexity
of calculating all these input sequences and their corresponding output sequences is
immense. We have to calculate the output for all input sequences up to length |Dp| · 22p

44



5 TransReach for Transformers with Limited Precision

in the worst case. The computational cost per input sequences is quadratic in the length
of the input sequences, because during scoring, each position is scored against each other
positions. So the complexity of calculating all possible sequences is:

|DdQp ||D
dQ
p |·22

p

· O((|DdQp | · 22p)2)

dQ is a constant coming from the transformer and with Dp ∈ O(2p) we get:

2O(p)·2O(p)·22p · O((2O(p) · 22p)2) ∈ O
(

222
p)

which gives us triple-exponential computational cost.

5.3 Discussion of Further Steps

In the following, we will discuss how this result for individual attention heads can be
extended to the other components of the transformer in order to decide the output
reachability problem. The next largest component of the transformer is an encoder
layer. As we have just seen, we can precompute the behaviour of the individual attention
heads on all input sequences. The output sequences of the individual attention heads
are then combined with each other. However, since the individual attention heads score
individual positions differently with each other, two input sequences that are similar
with respect to one attention head are not necessarily similar with respect to the others.
Therefore, to characterise the behaviour of an entire encoder, all input sequences must be
considered up to a limit where each of the vectors occurring attends to more than 22p of
other positions in each attention head. This has to be done for all encoder layers. After
we have captured the input output behaviour of all encoder layers we have to determine
what kind of input sequences output one in the last classification layer. This can be
done inductively in reverse order from classification to word embedding. The first step
is to calculate all vectors F ⊆ Ddp which the final DNN classifier accepts. Naively, this
can be done by simply testing all possible inputs from Ddp. Next we consider the last
encoder layer of the transformer. We have to check for all input sequences, whether
the sum of the output sequence belongs to F. This step is tricky, because we also have
to consider sequences exceeding the counting treshold. For input sequences in which
no vector attends to more than 22p position, this is not an issue. But for every input
sequence X in which TX is the set of vectors attending to more than 22p positions, we
know, that adding vectors from TX to the sequence, does not change the output of the
corresponding vector. Then the question is, if there is a function fext : TX → N such that
if X is extended by vectors in TX with frequencies given by fext the sum of the output

45



5 TransReach for Transformers with Limited Precision

sequence is in F. There may be infinitely many possibilities for such a function, but
one can show that the frequencies repeat periodically. After having determined all such
input sequences into the last encoder layer, which the final DNN classifier accepts, we just
have to propagate these input sequence backwards through the remaining encoder layers.
This means we check for every possible input sequence, if this sequence is in the set of
possible output sequences of the previous encoder layer. After we done that, we have
a set of possibly infinite many input sequences, which are accepted by the transformer.
The last step is to match these input sequences to the corresponding input words, while
also take the positional encoding into consideration. This requires further investigation
of positional encoding and more pigeonhole arguments to map the correct input words
with the sequences.

In summary, in this chapter we have taken the first steps towards decidability of the
TransReach problem for p-precision transformers. Although, this problem is most likely
decidable, the practical application of this algorithm is very questionable. Already for
the first decidability result for the self-attention mechanism we have triple-exponential
complexity. This is not practical in reality for models with many parameters.

46



6 Conclusion

In this thesis, the output reachability problem for transformer sequence classifiers was
investigated. First, the undecidability of the problem was shown. On closer analysis,
two main factors were found to be the cause of the undecidability. The first is that the
input to a transformer can be arbitrarily long, and the second is that the transformer
can compare positions in the input that are arbitrarily far apart and can also count
indefinitely. If either of these capabilities is restricted, the problem becomes decidable.
It has been shown that the problem is NP-complete when the input length is bounded.
Then, in the last chapter, a first sketch of a proof of decidability was given under the
assumption that the transformer works with limited precision. With this restriction, the
input can still be arbitrarily long, but the ability to count and distinguish positions is
severely limited.

Further Research

While this work has only provided a first insight into the computational complexity of
verifying transformer models, there are several interesting next steps for research.

• While proving undecidability, we made several non-standard assumptions. Most
importantly, we used hard attention and an improved scalar product equipped
with a DNN for scoring. It would be interesting to investigate whether this result
can be extended to soft attention or the standard scalar product for scoring.

• The investigation of the adversarial robustness verification problem discussed in
Chapter 3. This problem is much more relevant from a practical point of view.
There are already approximate algorithms for this problem, but finding a sound
and complete algorithm and determining the computational complexity could be a
very interesting task.

• The use of hardmax normalisation and the advanced scalar product could also
be analysed in terms of expressiveness. Intuitively, it seems that the advanced
scalar product is somewhat better able to attend to certain positions than the
standard. This could be investigated both formally and experimentally. This would
also give us more insights from a linguistic or language-theoretic perspective, in

47



6 Conclusion

terms of understanding what makes transformer models so capable of capturing
the semantics of natural languages.

• Another interesting direction would be to develop more practical algorithms for
verifying transformer models. A very successful approach from the verification of
neural networks is SMT solving [KBD+17]. This technique has proven to be quite
scalable to very large neural networks.

• As we have only considered sequence classifiers in this paper, sequence-to-sequence
models such as translator and generative models are also very common. Verifica-
tion problems for these models include avoiding abusive, biased or inappropriate
language in the output. It would be interesting to find formal definitions for these
problems and to study them from a theoretic perspective.

• The previous point could also be interesting in terms of whether transformer models
can be trained to avoid specific behaviour. This robustness by design has already
been worked on in terms of word embeddings, but it would also be interesting to
develop algorithms for general training of transformer models.

• The study of limited precision transformers should be extended. Although these
transformer models are much weaker in terms of power, they are much closer to
the hardware on which these models are used in practice. The verification of these
transformers seems to be easier. Limited precision can also be motivated by re-
cent research on quantized neural networks [DKSL20]. It has been shown that
low-precision neural networks are less vulnerable to adversarial attacks than full-
precision neural networks. There has also been work to do verification of quantized
neural networks with SMT solving [BHL+20]. It could be investigated if this frame-
work could also be applied to transformer models.

48



Bibliography

[BCB16] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine
Translation by Jointly Learning to Align and Translate, May 2016. arXiv:
1409.0473, doi:10.48550/arXiv.1409.0473.

[BDBV21] Gregory Bonaert, Dimitar I. Dimitrov, Maximilian Baader, and Martin
Vechev. Fast and precise certification of transformers. In Proceedings of
the 42nd ACM SIGPLAN International Conference on Programming Lan-
guage Design and Implementation, PLDI 2021, pages 466–481, New York,
NY, USA, June 2021. Association for Computing Machinery. doi:10.1145/
3453483.3454056.

[BHL+20] Marek Baranowski, Shaobo He, Mathias Lechner, Thanh Son Nguyen, and
Zvonimir Rakamarić. An SMT Theory of Fixed-Point Arithmetic. In Nico-
las Peltier and Viorica Sofronie-Stokkermans, editors, Automated Reasoning,
Lecture Notes in Computer Science, pages 13–31, Cham, 2020. Springer In-
ternational Publishing. doi:10.1007/978-3-030-51074-9.

[BMR+20] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei. Language Models are Few-
Shot Learners. In Advances in Neural Information Processing Systems, vol-
ume 33, pages 1877–1901. Curran Associates, Inc., 2020.

[BTT+18] Rudy Bunel, Ilker Turkaslan, Philip H.S. Torr, Pushmeet Kohli, and
M. Pawan Kumar. A unified view of piecewise linear neural network verifi-
cation. In Proceedings of the 32nd International Conference on Neural Infor-
mation Processing Systems, NIPS’18, pages 4795–4804, Red Hook, NY, USA,
December 2018. Curran Associates Inc. doi:10.48550/arXiv.1711.00455.

49

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://doi.org/10.48550/arXiv.1409.0473
https://doi.org/10.1145/3453483.3454056
https://doi.org/10.1145/3453483.3454056
https://doi.org/10.1007/978-3-030-51074-9
https://doi.org/10.48550/arXiv.1711.00455


Bibliography

[CCP23] David Chiang, Peter Cholak, and Anand Pillay. Tighter Bounds on the Ex-
pressivity of Transformer Encoders. In Proceedings of the 40th International
Conference on Machine Learning, pages 5544–5562. PMLR, July 2023.

[CKB+21] Karl Cobbe, V. Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun,
Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and J. Schulman. Training Verifiers to Solve
Math Word Problems. ArXiv, October 2021.

[DKSL20] Kirsty Duncan, Ekaterina Komendantskaya, Robert Stewart, and Michael
Lones. Relative Robustness of Quantized Neural Networks Against Adver-
sarial Attacks. In 2020 International Joint Conference on Neural Networks
(IJCNN), pages 1–8, July 2020. doi:10.1109/IJCNN48605.2020.9207596.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-completeness. A Series of Books in the Mathe-
matical Sciences. W. H. Freeman & Company, New York, 1979.

[HAF22] Yiding Hao, Dana Angluin, and Robert Frank. Formal Language Recogni-
tion by Hard Attention Transformers: Perspectives from Circuit Complexity.
Transactions of the Association for Computational Linguistics, 10:800–810,
July 2022. doi:10.1162/tacl_a_00490.

[HCJ+19] Yu-Lun Hsieh, Minhao Cheng, Da-Cheng Juan, Wei Wei, Wen-Lian Hsu, and
Cho-Jui Hsieh. On the Robustness of Self-Attentive Models. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguis-
tics, pages 1520–1529, Florence, Italy, 2019. Association for Computational
Linguistics. doi:10.18653/v1/P19-1147.

[JRGL19] Robin Jia, Aditi Raghunathan, Kerem Göksel, and Percy Liang. Certified
Robustness to Adversarial Word Substitutions. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 4129–4142, Hong Kong, China, November 2019. Association
for Computational Linguistics. doi:10.18653/v1/D19-1423.

[KBD+17] Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochen-
derfer. Reluplex: An Efficient SMT Solver for Verifying Deep Neural Net-
works. In Rupak Majumdar and Viktor Kunčak, editors, Computer Aided
Verification, Lecture Notes in Computer Science, pages 97–117, Cham, 2017.
Springer International Publishing. doi:10.1007/978-3-319-63387-9_5.

50

https://doi.org/10.1109/IJCNN48605.2020.9207596
https://doi.org/10.1162/tacl_a_00490
https://doi.org/10.18653/v1/P19-1147
https://doi.org/10.18653/v1/D19-1423
https://doi.org/10.1007/978-3-319-63387-9_5


Bibliography

[KGN21] Rohit Kumar Kaliyar, Anurag Goswami, and Pratik Narang. FakeBERT:
Fake news detection in social media with a BERT-based deep learning ap-
proach. Multimedia Tools and Applications, 80(8):11765–11788, March 2021.
doi:10.1007/s11042-020-10183-2.

[LLG+20] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: De-
noising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pages 7871–7880, Online,
2020. Association for Computational Linguistics. doi:10.18653/v1/2020.a
cl-main.703.

[MNO20] Raymond T Mutanga, Nalindren Naicker, and Oludayo O. Hate Speech
Detection in Twitter using Transformer Methods. International Journal of
Advanced Computer Science and Applications, 11(9), 2020. doi:10.14569/I
JACSA.2020.0110972.

[MS23a] William Merrill and Ashish Sabharwal. A Logic for Expressing Log-Precision
Transformers, May 2023. arXiv:2210.02671.

[MS23b] William Merrill and Ashish Sabharwal. Transformers Can Be Expressed In
First-Order Logic with Majority, January 2023. arXiv:2210.02671, doi:
10.48550/arXiv.2210.02671.

[PBM21] Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is turing com-
plete. The Journal of Machine Learning Research, 22(1):75:3463–75:3497,
January 2021.

[PCG21] Aditya Prakash, Kashyap Chitta, and Andreas Geiger. Multi-Modal Fusion
Transformer for End-to-End Autonomous Driving. 2021 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 7073–7083,
June 2021. doi:10.1109/CVPR46437.2021.00700.

[Pos46] Emil L. Post. A variant of a recursively unsolvable problem. Bulletin of the
American Mathematical Society, 52(4):264–268, 1946. doi:10.1090/S0002-
9904-1946-08555-9.

[SL21] Marco Sälzer and Martin Lange. Reachability is NP-Complete Even for the
Simplest Neural Networks. In Paul C. Bell, Patrick Totzke, and Igor Potapov,
editors, Reachability Problems, Lecture Notes in Computer Science, pages
149–164, Cham, 2021. Springer International Publishing. doi:10.1007/97
8-3-030-89716-1_10.

51

https://doi.org/10.1007/s11042-020-10183-2
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.14569/IJACSA.2020.0110972
https://doi.org/10.14569/IJACSA.2020.0110972
http://arxiv.org/abs/2210.02671
http://arxiv.org/abs/2210.02671
https://doi.org/10.48550/arXiv.2210.02671
https://doi.org/10.48550/arXiv.2210.02671
https://doi.org/10.1109/CVPR46437.2021.00700
https://doi.org/10.1090/S0002-9904-1946-08555-9
https://doi.org/10.1090/S0002-9904-1946-08555-9
https://doi.org/10.1007/978-3-030-89716-1_10
https://doi.org/10.1007/978-3-030-89716-1_10


Bibliography

[SZC+19] Zhouxing Shi, Huan Zhang, Kai-Wei Chang, Minlie Huang, and Cho-Jui
Hsieh. Robustness Verification for Transformers. In International Conference
on Learning Representations, September 2019.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Proceedings of the 31st International Conference on Neural Infor-
mation Processing Systems, NIPS’17, pages 6000–6010, Red Hook, NY, USA,
December 2017. Curran Associates Inc.

[WGL19] Dilin Wang, Chengyue Gong, and Qiang Liu. Improving Neural Language
Modeling via Adversarial Training. In International Conference on Machine
Learning, May 2019.

[Wil97] A. J. Wilkie. Schanuel’s Conjecture and the Decidability of the Real Ex-
ponential Field. In Bradd T. Hart, Alistair H. Lachlan, and Matthew A.
Valeriote, editors, Algebraic Model Theory, pages 223–230. Springer Nether-
lands, Dordrecht, 1997. doi:10.1007/978-94-015-8923-9_11.

[YSPK21] Jaemin Yoo, Yejun Soun, Yong-chan Park, and U Kang. Accurate Multi-
variate Stock Movement Prediction via Data-Axis Transformer with Multi-
Level Contexts. Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, pages 2037–2045, August 2021. doi:
10.1145/3447548.3467297.

[ZBH+21] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol
Vinyals. Understanding deep learning (still) requires rethinking generaliza-
tion. Communications of the ACM, 64(3):107–115, February 2021. doi:
10.1145/3446776.

52

https://doi.org/10.1007/978-94-015-8923-9_11
https://doi.org/10.1145/3447548.3467297
https://doi.org/10.1145/3447548.3467297
https://doi.org/10.1145/3446776
https://doi.org/10.1145/3446776

	Introduction
	Preliminaries
	Mathematical Notations
	Neural Networks
	Finite Sample Expressivity

	Transformers
	Word Embeddings
	Positional Encoding
	Self-Attention
	Encoders
	Sequence Classification


	Verification Problems for Transformer Models
	Undecidability of TransReach for Transformer Sequence Classifiers
	Overview of the Reduction
	Undecidability Proof
	Word Encoding
	Word Embedding
	Positional Encoding
	Encoder 1: Aggregating Neighborhood Information
	Encoder 1: Validate Encoding
	Encoder 2: Enumerating the Tiles
	Encoder 3: Tile Matching
	Final Classification
	Correctness

	Bounded Output Reachability

	TransReach for Transformers with Limited Precision
	Limited Precision
	Capturing the Behaviour of Self-Attention
	Discussion of Further Steps

	Conclusion

